WO2019029635A1 - 波束选择方法、基站和用户设备 - Google Patents

波束选择方法、基站和用户设备 Download PDF

Info

Publication number
WO2019029635A1
WO2019029635A1 PCT/CN2018/099681 CN2018099681W WO2019029635A1 WO 2019029635 A1 WO2019029635 A1 WO 2019029635A1 CN 2018099681 W CN2018099681 W CN 2018099681W WO 2019029635 A1 WO2019029635 A1 WO 2019029635A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transmit
transmit beam
base station
beams
Prior art date
Application number
PCT/CN2018/099681
Other languages
English (en)
French (fr)
Inventor
刘敏
那崇宁
王新
柿岛佑一
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to US16/637,783 priority Critical patent/US11357009B2/en
Priority to CN201880052785.3A priority patent/CN111034303B/zh
Publication of WO2019029635A1 publication Critical patent/WO2019029635A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0882Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity
    • H04B7/0888Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity with selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present disclosure relates to the field of mobile communications, and in particular to a beam selection method performed in a communication system and corresponding base stations and user equipment.
  • a user equipment UE
  • base station 5G transmit/receive point
  • LTE long term evolution
  • Beamforming techniques are used, that is, both the base station and the UE can use multiple beams for transmitting and receiving information.
  • the UE usually includes one or more transceivers, each of which can carry one or more transceiver units (TXRUs) to transmit and receive signals, and each transceiver unit can form one or more transmit beams and one or Multiple receive beams.
  • TXRU transceiver unit
  • NR New Radio
  • a transceiver unit of the UE can only form one beam to transmit or receive information at the same time, thereby causing the base station and the user equipment. It is not possible to arbitrarily select a beam among a plurality of beams for information transmission and reception.
  • the above method does not enable the base station to obtain sufficient UE reception status information, which affects the selection and judgment of the base station, thereby increasing system overhead and reducing system information transmission efficiency.
  • a beam selection method which is performed by a base station, and includes: receiving, by a user equipment, transmit beam group information of the base station and receiving by the user equipment corresponding to each transmit beam group.
  • the received capability information of the set wherein the receiving capability information of the receiving set is a number of receiving beams that can be simultaneously formed by the user equipment in the receiving set; at least partially according to the sending beam group information and each receiving set.
  • the receiving capability information selects a transmitting beam corresponding to the receiving set for transmitting information to the user equipment.
  • a beam selection method is provided, which is performed by a user equipment, including: acquiring transmit beam group information of a base station and receiving capability of a receive set of the user equipment corresponding to each transmit beam group. Information, where the receiving capability information of the receiving set is a number of receiving beams that the user equipment can simultaneously form in the receiving set; transmitting the transmitting beam group information and receiving capability information, so that the base station is at least partially based on the The transmit beam group information and the receive capability information of each receive set select a transmit beam corresponding to the receive set for transmitting information to the user equipment.
  • a base station including: a receiving unit, configured to receive transmit beam group information of the base station fed back by a user equipment, and receive by the user equipment corresponding to each transmit beam group The received capability information of the set, wherein the receiving capability information of the receiving set is a number of receiving beams that can be simultaneously formed by the user equipment in the receiving set; and the selecting unit is configured to at least partially according to the sending beam group information and The receiving capability information of each receiving set selects a transmitting beam corresponding to the receiving set for transmitting information to the user equipment.
  • a user equipment including: an obtaining unit configured to acquire transmit beam group information of a base station and receive capability information of a receive set of the user equipment corresponding to each transmit beam group
  • the receiving capability information of the receiving set is the number of receiving beams that the user equipment can simultaneously form in the receiving set
  • the sending unit is configured to send the sending beam group information and the receiving capability information, so that the base station
  • the beam selection method performed by the communication system according to the embodiment of the present disclosure and the corresponding base station and user equipment enable the user equipment to upload the reception capability information of the reception set corresponding to each transmission beam group of the base station, thereby enabling the base station to at least partially
  • the corresponding transmit beam is selected according to the receiving capability information of the user equipment.
  • the beam selection method, the base station and the user equipment can significantly reduce the system overhead and improve the information transmission efficiency of the system.
  • FIG. 1 is a schematic diagram of a mobile communication system in accordance with an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing beam transmission of a base station and a user equipment according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a beam selection method performed by a base station according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of selecting a transmit beam for feedback using a reference signal resource location, in accordance with an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of information transmission between a base station and an UE according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of information transmission between a base station and an UE according to another embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a beam selection method performed by a user equipment, in accordance with an embodiment of the present disclosure
  • FIG. 8 is a structural block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram showing an example of a hardware configuration of a base station or a user equipment according to an embodiment of the present disclosure.
  • the wireless communication system can include a base station 10 and a user equipment (UE) 20.
  • the UE 20 may receive a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Shared Channel (PDSCH) transmitted by the base station 10.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • base station 10 may be a transmit and receive point (TRP), or may manage multiple TRPs with the same central processor schedule, hereinafter, the terms "base station” and "TRP" are used interchangeably.
  • TRP transmit and receive point
  • FIG. 2 is a schematic diagram showing beam transmission of a base station and a user equipment in an embodiment of the present disclosure.
  • the base station 10 may have multiple transmit beams such that one or more transmit beams may be used to transmit signals to the UE.
  • the UE 20 may have multiple receive beams such that one or more receive beams may be used to receive signals transmitted by the base station.
  • Each receive beam of UE 20 may correspond to a transmit beam of one or more base stations 10 such that UE 20 may utilize the receive beam to receive information transmitted by the base station through the transmit beam of the receive beam.
  • the UE 20 may select a transmit beam corresponding to each of its receive beams according to a channel measurement result of a transmit beam to the base station. For example, a transmit beam whose reception quality exceeds a threshold may be selected as a transmit beam corresponding to each of its receive beams.
  • the UE needs to group the transmit beams of the base station according to the condition of the receive beam, so that the base station selects some or all of the transmit beams in each transmit beam group to perform information transmission.
  • the base station still cannot know the specific receiving capability information of the user equipment, so that the number of transmitting beams selected by the base station may exceed the corresponding receiving capability of the UE, thereby causing some or all of the information transmission to be unsuccessful.
  • the base station there is a need to provide a method capable of improving information transmission efficiency of a base station and reducing system overhead.
  • FIG. 3 illustrates a beam selection method performed by a base station according to an embodiment of the present disclosure.
  • the base station can receive the specific receiving capability information uploaded by the UE, so that the base station selects the transmitting beam according to the receiving capability information of the UE.
  • the UE usually includes one or more transceivers, each of which can carry one or more transceiver units (TXRUs) to transmit and receive signals, and each transceiver unit can form one or more receivers. Beam.
  • the receiving capabilities of the UE may be grouped according to a transceiver board, a receiving beam, or other criteria to form a receiving set.
  • the TXRU of each transceiver board of the UE can be set as a group, that is, one reception set.
  • the receive beams that can be formed according to the TXRU of each transceiver board can be set as one set, that is, one receive set.
  • the receive beams that can be formed by all the TXRUs on all the transceiver boards of the UE can be arbitrarily divided into multiple groups, that is, each group is a reception set.
  • a portion of one or more transceiver boards of the UE ie, a portion of the TXRU on the transceiver board
  • the foregoing example of forming a received set does not constitute a specific limitation on the receiving set of the UE.
  • the receiving set of the UE may be divided by an arbitrary dividing manner.
  • the number of TXRUs or the number of received beams in each receiving set of the UE represents the receiving capability of the UE, that is, the number of receiving beams that the UE can simultaneously form in the receiving set, and the number can be used as the receiving capability information of the receiving set.
  • the number of TXRUs are carried on one transceiver board, indicating that the receiving set formed by the transceiver board of the UE can form two receiving beams at the same time to receive two of the base stations. The information sent by the transmit beam.
  • step S301 receiving, by the user equipment, the transmit beam group information of the base station and the receive capability information of the receive set of the user equipment corresponding to each transmit beam group, where the receiving
  • the aggregated receive capability information is the number of receive beams that the user equipment can simultaneously form in the receive set.
  • the base station may first transmit signals to the UE using the respective transmit beams. After receiving the signals sent by the base station through the respective transmit beams, the UE may perform channel measurement on each transmit beam to determine the channel quality corresponding to each transmit beam. Then, the transmission beams of the base station are grouped according to the channel measurement results of the UE to different transmission beams and the reception beams included in the UE. Specifically, the UE may select one or more receiving beams in each receiving set according to channel conditions according to the different receiving sets, and use the corresponding one or more receiving beams as one transmitting beam group, and The information of the transmit beam group is fed back to the base station.
  • the transmit beam group information that the UE feeds back to the base station may include all the transmit beam group information, and may also report part of the transmit beam group information.
  • the transmit beam group information reported by the UE may be included in each transmit beam group.
  • the information of all the transmit beams may also include information of a part of the transmit beams of all of the transmit beams of one or more transmit beam groups.
  • the transmit beam group information may include various information such as a beam index of the transmit beam, a beam packet condition (eg, a group sequence number). For example, when the UE includes two transceiver boards, each of which carries 2 TXRUs, the UE may be considered to have two reception sets, and each reception set includes two TXRUs.
  • the UE may group all the transmit beams of the base stations corresponding to the two receive beams that can be formed by two TXRUs on each receive set, thereby reporting two transmit beam group information to the base station, and may also report to the base station.
  • the UE may select and report one of the transmit beam group information according to the channel condition.
  • the UE may select a part of the transmit beams for reporting according to the channel measurement result. For example, the UE may select a set of transmit beams whose channel measurement result exceeds the threshold to report to the base station.
  • the method of the embodiment of the present disclosure may further include: receiving, by the base station, a channel measurement result that is reported by the UE and corresponding to the at least part of the transmit beam.
  • the channel measurement result may include reference signal received power (RSRP), and/or channel state information (CSI), and the like of each of the transmit beams supporting the L1 layer.
  • RSRP reference signal received power
  • CSI channel state information
  • the beam index in the transmit beam group information reported by the UE may be determined according to a channel measurement result for the transmit beam.
  • the UE may first determine a reference transmit beam in a certain transmit beam group.
  • the UE may determine a reference transmit beam in the transmit beam group according to channel measurement results (eg, RSRP) of all transmit beams of a certain transmit beam group, where a beam with the best channel measurement result may be used as a reference transmit beam.
  • channel measurement results eg, RSRP
  • other preset criteria can also be used to determine the reference transmit beam.
  • the results of RSRP of those beams adjacent to the spatial position of the reference transmission beam can be considered to be good, so that these beams can be selected as the preferred transmission beam in the transmission beam group.
  • the spatial location here may be considered to be a small angle between the spatial azimuth angles of the preferred transmit beams and the reference transmit beams, for example, the included angle may be less than a certain threshold.
  • the base station generally configures the beam adjacent to the spatial position at the adjacent reference signal resource mapping position during configuration, and therefore, in this case, the reference signal resource position with the reference beam can also be used. Adjacent other transmit beams are used as feedback for the preferred transmit beam.
  • 4 shows a schematic diagram of a transmit beam selected for feedback using reference signal resource locations in one embodiment of the present disclosure. As shown in FIG.
  • the transmit beams corresponding to the adjacent resource mapping locations are adjacent in spatial position, that is, beam 2 and beam 3 are adjacent in spatial position, and beam 6 and beam 10 are in the same manner.
  • the spatial locations are also adjacent.
  • the UE learns that the transmit beam of the base station with the highest RSRP is the beam 7 through the measurement of the RSRP. Therefore, the UE can define the beam 7 as the reference transmit beam and consider it to be spatially adjacent to the beam 7.
  • the RSRP of beams 3, 6, 8, and 11 is relatively high, and beams 7, 3, 6, 8, and 11 are reported to the base station.
  • the UE can report the absolute number of each selected beam, such as 7, 3, 6, 8, 11.
  • the UE may also report the relative value between the index of each beam and the index of the reference transmit beam, which makes more sense for the beam number of the large number of bits. For example, in the example where the reference transmit beam is 7, the UE can report the beam as the beam 7, 4, -1, 1, 4, in order to reduce the number of bits reported by the transmit beam information.
  • -4, -1, 1, 4 are relative values of indexes of other beams with respect to the reference beam
  • the base station can determine other beams by 7-4, 7-1, 7+1, 7+4.
  • the UE may set a bit in the report information to indicate the sign, for example, a value of 1 may be used to represent "+", a value of 0 may be used to represent "-", and of course, a value of 0 may be used to represent "+”. , with a value of 1 for "-”.
  • the absolute value of the difference between the beam indices of the other transmit beams and the reference transmit beam can be reported by the remaining bits. For example, “4” in the beam relative number “-4” in FIG. 4 can be expressed as “100”.
  • the relative numbering of a certain transmit beam and the reference transmit beam can be reported by a combination of the bits representing the sign and the bits representing the absolute value of the difference between the beam indices, with a view to minimizing system overhead.
  • the spatial positional relationship between the other transmitting beam and the reference transmitting beam and the relative positional relationship of the reference signal resource mapping position may be comprehensively selected to select a transmitting beam for feedback.
  • the UE may notify the base station of the reference transmit beam in an explicit manner.
  • the UE may set one bit for each reported beam, and use the bit to notify the base station whether the beam is a reference transmit beam, for example, Bit 1 represents that the beam is the reference transmit beam, and bit 0 represents that the beam is not the reference transmit beam, and vice versa.
  • the UE may also notify the reference transmit beam in an implicit manner.
  • the UE and the base station may agree that the first one of the series of beams reported by the UE is the default reference transmit beam, and the other beams are relative numbers relative to the reference transmit beam.
  • the reference transmit beam may be determined in any manner and represent the relative number of the reference transmit beam.
  • the receiving capability information of the received set of the UE may be sent as one-time or long-period information.
  • the receiving capability information of each receiving set is the same, the receiving capability information can be combined and reported only once, without being reported with each different transmitting beam group information, to maximize system overhead;
  • the receiving capability information of one or more of the receiving sets is different, the receiving capability information of the different transmitting beam groups and their corresponding receiving sets needs to be reported separately.
  • step S302 a transmit beam corresponding to the receive set for transmitting information to the user equipment is selected according to the transmit beam group information and the receive capability information of each receive set.
  • the base station may further obtain, according to the transmit beam group information, the receive capability information of each receive set. And the beam information of at least part of the transmit beams in each of the transmit beam groups, and the like, to select the transmit beam.
  • the UE does not want the base station to transmit a signal to a certain receiving set using the transmission beam above the number indicated by the receiving capability information, and therefore, the transmitting beam corresponding to the certain receiving set selected by the base station is selected.
  • the number of transmit beams in a group may be less than or equal to the number of receive beams that can be simultaneously formed in the receive set.
  • the base station may perform the selection according to the transmit beam included in the transmit beam group information fed back by the UE. For example, the base station may select a transmit beam with a higher RSRP to send information according to the RSRP result reported by the UE. Alternatively, the base station may also select a transmit beam that is not included in the transmit beam group fed back by the UE. For example, the base station may select a spatial positional relationship of the transmit beam with a higher RSRP reported by the UE and/or a reference signal resource mapping location. Transmit beams that are relatively close in relative position to transmit information.
  • the base station may send a beam indication to the UE after determining the selected transmit beam to indicate information about the selected transmit beam of the UE base station.
  • the base station may also determine whether the beam indication information needs to be sent, and may select different beams when transmitting.
  • the indication is sent. For example, when the number of the at least part of the transmit beams in the transmit beam group reported by the UE is less than or equal to the number of receive beams that can be simultaneously formed in the receive set corresponding to the transmit beam set (ie, the receive capability information in the receive set)
  • the base station can only select the transmit beam from the corresponding transmit beam group reported by the UE.
  • the number of transmit beams selected by the base station must not be greater than the receive capability information of the receive set of the UE.
  • the UE can also ensure that it can receive the information sent by the base station through the corresponding transmit beam on the corresponding receiving set. Accordingly, the base station may not need to indicate the specific information of the finally selected transmit beam to the UE, but may only indicate The information of the transmit beam group corresponding to the selected transmit beam.
  • the UE may also make the number of the at least part of the transmit beams in the transmit beam group that it reports is greater than the number of receive beams that can be simultaneously formed in the receive set corresponding to the transmit beam set, when the base station When selecting these transmit beams, it may be necessary to inform the UE of the selected transmit beam and/or the information of the transmit beam group in which the transmit beam is located, so that the UE can cooperate with the base station to receive as much as possible.
  • the beam indications of the base station to the UE in different situations may be selected according to actual conditions.
  • the base station when the base station selects the transmit beams 1, 3 located in the transmit beam group (1) and the transmit beam 4 in the transmit beam group (2), the base station may only transmit the beam set (1) And (2) inform the UE without having to inform the UE of the beams 1, 3, and 4. Therefore, the base station can save system overhead by informing the UE to transmit information of the beam group instead of the specific information of the transmission beam.
  • the base station may need to select two of the four transmit beams to transmit information to ensure that the UE receives the corresponding reception capability of the set. For example, the base station can select transmit beams 5 and 7. In this case, the base station needs to inform the UE of the relevant information of the selected transmission beam. As described above, the base station may select to inform the UE of the information of the transmit beam, that is, the base station informs the UE that the selected transmit beams are beam 5 and beam 7, respectively, and the system overhead of this method is large.
  • the base station may further combine the four beams reported by the UE according to the receiving capability information of the receiving set of the UE, and each combination may include a number of beams equal to or smaller than the number of receiving capability information of the corresponding receiving set.
  • the number of acceptance capability information of this reception set in this example is 2, therefore, it can be set that combination 1 includes two beams 5 and 6, combination 2 includes beams 7 and 8, combination 3 includes beams 5 and 7, and combination 4 Includes beams 6 and 8.
  • the above combination relationship may be pre-stored jointly by the base station and the UE or notified to the UE in advance by the base station by signaling. Thereafter, when the base station selects beams 5 and 7, it is only necessary to inform the UE that the combination 3 is currently selected.
  • the system overhead can be further saved by this combined beam indication transmission method.
  • the base station when the base station sends information indicating the transmit beam group where the transmit beam is located to the UE according to the selected transmit beam, the UE cannot accurately learn the specific situation of the transmit beam selected by the base station, Information can be received in a polling manner on different time slots and/or resource elements.
  • the base station can pre-agreed the manner of transmitting and receiving information with the UE by means of, for example, signaling.
  • the signaling may be MAC CE signaling, or may be RRC signaling or DCI indication.
  • the base station may send information in different time slots and/or resource unit positions with different transmission beams, and the UE may receive different information in the different time slots according to the agreement after receiving the corresponding transmission beam group information indicated by the base station.
  • Information is received on the resource unit in sequence using different receive beams corresponding to the transmit beam set. Further, the UE can also perform channel measurement according to the information receiving status, and can know which channel quality is better in different time slots and/or resource units, and feed back the measurement result to the base station, so that the base station can be as A transmission beam for transmitting information is selected according to a channel measurement result of the UE.
  • FIG. 5 shows a base station and inter-UE information transmission situation according to an example of the present disclosure.
  • a transmission beam group (3) composed of transmission beams 1 and 2 of a base station corresponds to a reception set 1 of a UE, and a UE
  • the receiving set 1 can generate two receiving beams 1, 2 at the same time to receive the information transmitted by the corresponding transmitting beam of the base station.
  • the base station wishes to transmit information using the transmit beam in the transmit beam group (3), it only informs the UE to transmit the information of the beam set, and does not accurately inform the UE which of the transmit beams 1, 2 to transmit.
  • the base station and the UE will agree that in the time slot 1, the base station transmits information through the transmission beam 1, and the UE receives the reception through the reception beam 1; in the time slot 2, the base station transmits information through the transmission beam 2, and the UE receives the information through the reception.
  • Beam 2 performs reception; in time slot 3, the base station transmits information together by transmitting beams 1 and 2, and the UE performs reception through reception beams 1 and 2. In this way, regardless of which one or which transmit beams are selected by the base station for transmission, the UE can select the corresponding receive beam to accurately receive the information at the corresponding time point.
  • the base station can also transmit information through the transmit beam 1 only in slot 1, and the UE will accordingly receive the information through the receive beam 1 only in slot 1. Further, the UE can also perform channel measurement according to the information receiving condition, and can know which channel quality is best in the above three time slots (for example, time slot 1), and feed back the measurement result to the base station, so that the base station can The transmission beam 1 for transmitting information in the slot 1 is selected according to the channel measurement result of the UE.
  • the base station may also send information with the same transmit beam at different time slots and/or resource unit locations within a predetermined time period, and the UE may, after receiving the corresponding transmit beam group information indicated by the base station, follow It is agreed to receive information sequentially using different receive beams corresponding to the transmit beam set on different time slots and/or resource elements. Further, the UE can also perform channel measurement according to the information receiving condition, and can know which channel quality is better in different time slots and/or resource units, and select corresponding receiving beams according to channel measurement results as much as possible. BB.
  • a transmission beam group (3) composed of transmission beams 1 and 2 of a base station corresponds to a reception set 1 of a UE
  • the receiving set 1 of the UE can generate two receiving beams 1, 2 at the same time to receive the information transmitted by the corresponding transmitting beam of the base station.
  • the base station wishes to transmit information using the transmit beam in the transmit beam group (3), it only informs the UE to transmit the information of the beam set, and does not accurately inform the UE which of the transmit beams 1, 2 to transmit.
  • the difference from FIG. 5 is that the base station will only send information in one of the modes.
  • the base station can jointly transmit information only through the transmit beams 1 and 2 within a preset time, and the UE is in the corresponding time.
  • different receiving beams are used to receive information: for example, in time slot 1, the UE receives by receiving beam 1; in time slot 2, the UE receives by receiving beam 2; and in time slot 3, UE Reception is performed by receiving beams 1 and 2.
  • the UE will use different receive beam reception information in turn, which ensures that the UE can always receive better quality information in a certain period.
  • the UE may also perform channel measurement according to information reception status in the process, and can know which channel quality is best in the above three time slots (for example, time slot 3), and try to use the channel quality as best as possible.
  • Receive beams 1 and 2 collectively receive information transmitted by the base station.
  • the beam selection method performed by the base station according to the embodiment of the present disclosure enables the user equipment to upload the reception capability information of the reception set corresponding to each transmission beam group of the base station, so that the base station can select at least part according to the reception capability information of the user equipment. Corresponding transmit beam.
  • This beam selection method can significantly reduce system overhead and improve system information transmission efficiency.
  • FIG. 7 illustrates a beam selection method performed by a UE according to an embodiment of the present disclosure.
  • the UE can report its specific receiving capability information to the base station, so that the base station selects the transmitting beam according to the receiving capability information of the UE.
  • step S701 the transmit beam group information of the base station and the receive capability information of the receive set of the user equipment corresponding to each transmit beam group are acquired, where the receive capability information of the receive set is The number of receive beams that the user equipment can simultaneously form in the received set.
  • the receiving set of the UE may be a transceiver board in the UE, that is, a panel, and the transceiver board may respectively carry one or more TXRUs to send and receive information.
  • the number of TXRUs carried on one receiving set of the UE may be used as the receiving capability information of the UE receiving set, that is, the number of receiving beams that the UE can simultaneously form in the receiving set as the receiving capability of the receiving port. information.
  • the receiving set formed by the transceiver board of the UE can form two receiving beams at the same time to receive the information sent by the two transmitting beams of the corresponding base station.
  • the UE's receive set can also have other representations.
  • a particular portion of one or more transceiver boards of the UE may be used as a receiving set of UEs.
  • the combination of the partial receive beams of the UE may be formed as a receive set of the UE.
  • the number of receive beams that the UE can form at the same time is also the receive capability information of the receive set.
  • the example of the above-mentioned receiving set does not constitute a specific limitation on the receiving set of the UE.
  • the receiving set of the UE may be divided by an arbitrary dividing manner.
  • the base station may first transmit signals to the UE using the respective transmit beams. After receiving the signals sent by the base station through the respective transmit beams, the UE may perform channel measurement on each transmit beam to determine the channel quality corresponding to each transmit beam. Then, the transmission beams of the base station are grouped according to the channel measurement results of the UE to different transmission beams and the reception beams included in the UE. Specifically, the UE may select one or more receiving beams in each receiving set according to channel conditions according to the different receiving sets, and use the corresponding one or more receiving beams as one transmitting beam group. The transmit beam group determined by the UE corresponds to the receive set of the UE.
  • the transmit beam group information acquired by the UE may include various information such as a beam index of the transmit beam, a beam packet condition (for example, a group sequence number).
  • the information about the transmit beams in each transmit beam group may be included in the transmit beam group information obtained by the UE, and may also include information on a part of the transmit beams of all the transmit beams of one or more transmit beam groups.
  • the transmit beam group information may include various information such as a beam index of the transmit beam, a beam packet condition (eg, a group sequence number). For example, when the UE includes two transceiver boards in total, the UE may be considered to have two reception sets, and each reception set includes two TXRUs.
  • the UE may group the transmission beams of all the base stations corresponding to the two receiving beams that are preferred by the two TXRUs on each receiving set, and obtain two sets of transmitting beam group information, or report one of them to the base station.
  • the beam group information is transmitted.
  • the UE may select and report one of the transmit beam group information according to the channel condition.
  • the UE may select a part of the transmit beams according to the channel measurement result.
  • the UE may select information of a set of transmit beams whose channel measurement results exceed a threshold in a certain transmit beam group. Transmit beam group information of the transmit beam group.
  • the beam index in the transmit beam group information of the UE may be determined according to channel measurement results for the transmit beam.
  • the UE may first determine a reference transmit beam in a certain transmit beam group.
  • the UE may determine a reference transmit beam in the transmit beam group according to channel measurement results (eg, RSRP) of all transmit beams of a certain transmit beam group, where a beam with the best channel measurement result may be used as a reference transmit beam.
  • channel measurement results eg, RSRP
  • other preset criteria can also be used to determine the reference transmit beam.
  • the results of RSRP of those beams adjacent to the spatial position of the reference transmission beam can be considered to be good, so that these beams can be selected as the preferred transmission beam in the transmission beam group.
  • the spatial location here may be considered to be a small angle between the spatial azimuth angles of the preferred transmit beams and the reference transmit beams, for example, the included angle may be less than a certain threshold.
  • the base station generally configures the beam adjacent to the spatial position at the adjacent reference signal resource mapping position during configuration, and therefore, in this case, the reference signal resource position with the reference beam can also be used. Adjacent other transmit beams are used as feedback for the preferred transmit beam.
  • 4 shows a schematic diagram of a transmit beam selected for feedback using reference signal resource locations in one embodiment of the present disclosure. As shown in FIG.
  • the transmit beams corresponding to the adjacent resource mapping locations are adjacent in spatial position, that is, beam 2 and beam 3 are adjacent in spatial position, and beam 6 and beam 10 are in the same manner.
  • the spatial locations are also adjacent.
  • the UE learns that the transmit beam of the base station with the highest RSRP is the beam 7 through the measurement of the RSRP. Therefore, the UE can define the beam 7 as the reference transmit beam and consider it to be spatially adjacent to the beam 7.
  • the RSRP of beams 3, 6, 8, and 11 is relatively high, and beams 7, 3, 6, 8, and 11 are reported to the base station.
  • the UE can report the absolute number of each selected beam, such as 7, 3, 6, 8, 11.
  • the UE may also report the relative value between the index of each beam and the index of the reference transmit beam, which makes more sense for the beam number of the large number of bits. For example, in the example where the reference transmit beam is 7, the UE can report the beam as the beam 7, 4, -1, 1, 4, in order to reduce the number of bits reported by the transmit beam information.
  • -4, -1, 1, 4 are relative values of indexes of other beams with respect to the reference beam
  • the base station can determine other beams by 7-4, 7-1, 7+1, 7+4.
  • the UE may set a bit in the report information to indicate the sign, for example, a value of 1 may be used to represent "+", a value of 0 may be used to represent "-", and of course, a value of 0 may be used to represent "+”. , with a value of 1 for "-”.
  • the absolute value of the difference between the beam indices of the other transmit beams and the reference transmit beam can be reported by the remaining bits. For example, “4” in the beam relative number “-4” in FIG. 4 can be expressed as “100”.
  • the relative numbering of a certain transmit beam and the reference transmit beam can be reported by a combination of the bits representing the sign and the bits representing the absolute value of the difference between the beam indices, with a view to minimizing system overhead.
  • the spatial positional relationship between the other transmitting beam and the reference transmitting beam and the relative positional relationship of the reference signal resource mapping position may be comprehensively selected to select a transmitting beam for feedback.
  • the reference transmit beam may be determined in any manner and represent the relative number of the reference transmit beam.
  • step S702 the sending beam group information and the receiving capability information are sent, so that the base station selects, according to the sending beam group information and the receiving capability information of each receiving set, a pair corresponding to the receiving set.
  • the user equipment sends a transmit beam of information.
  • the UE may report all the transmit beam group information to the base station, or report part of the transmit beam group information according to, for example, the channel condition, where the UE may report one or several transmit beam group information with better channel quality.
  • the base station may report all the transmit beam group information to the base station, or report part of the transmit beam group information according to, for example, the channel condition, where the UE may report one or several transmit beam group information with better channel quality.
  • the method of the embodiment of the present disclosure may further include reporting the channel measurement result corresponding to the at least part of the transmit beam.
  • the channel measurement result may include reference signal received power (RSRP), and/or channel state information (CSI), and the like of each of the transmit beams supporting the L1 layer.
  • RSRP reference signal received power
  • CSI channel state information
  • the UE after the UE determines the reference transmission beam and obtains the beam index of the transmission beam to be reported accordingly, the UE also needs to inform the base station to transmit the reference. Which transmit beam is the beam, enables the base station to accurately obtain the information of the transmit beams fed back by all UEs according to the reference transmit beam and the relative number of the reference transmit beam. For example, the UE may notify the base station of the reference transmit beam in an explicit manner.
  • the UE may set one bit for each reported beam, and use the bit to notify the base station whether the beam is a reference transmit beam, for example, Bit 1 represents that the beam is the reference transmit beam, and bit 0 represents that the beam is not the reference transmit beam, and vice versa.
  • the UE may also notify the reference transmit beam in an implicit manner. For example, the UE and the base station may agree that the first one of the series of beams reported by the UE is the default reference transmit beam, and the other beams are relative numbers relative to the reference transmit beam.
  • the receiving capability information of the received set of the UE may be sent as one-time or long-period information.
  • the receiving capability information of each receiving set is the same, the receiving capability information can be combined and reported only once, without being reported with each different transmitting beam group information, to maximize system overhead;
  • the receiving capability information of one or more of the receiving sets is different, the receiving capability information of the different transmitting beam groups and their corresponding receiving sets needs to be reported separately.
  • the base station may further perform, according to the transmit beam group information, the receive capability information of each receive set, and each transmit beam.
  • the beam information of at least part of the transmit beam in the group is commonly used to select the transmit beam.
  • the UE does not want the base station to transmit a signal to a certain receiving set using the transmission beam above the number indicated by the receiving capability information, and therefore, the transmitting beam corresponding to the certain receiving set selected by the base station is selected.
  • the number of transmit beams in a group may be less than or equal to the number of receive beams that can be simultaneously formed in the receive set.
  • the base station may perform the selection according to the transmit beam included in the transmit beam group information fed back by the UE. For example, the base station may select a transmit beam with a higher RSRP to send information according to the RSRP result reported by the UE. Alternatively, the base station may also select a transmit beam that is not included in the transmit beam group fed back by the UE. For example, the base station may select a spatial positional relationship of the transmit beam with a higher RSRP reported by the UE and/or a reference signal resource mapping location. Transmit beams that are relatively close in relative position to transmit information.
  • the UE may learn related information of the selected transmit beam of the base station according to the beam indication sent by the base station.
  • the base station may also determine whether the beam indication information needs to be sent, and may select different beams when transmitting.
  • the indication is sent. For example, when the number of the at least part of the transmit beams in the transmit beam group reported by the UE is less than or equal to the number of receive beams that can be simultaneously formed in the receive set corresponding to the transmit beam set (ie, the receive capability information in the receive set)
  • the base station can only select the transmit beam from the corresponding transmit beam group reported by the UE.
  • the number of transmit beams selected by the base station must not be greater than the receive capability information of the receive set of the UE.
  • the UE can also ensure that it can receive the information sent by the base station through the corresponding transmit beam on the corresponding receiving set. Accordingly, the base station may not need to indicate the specific information of the finally selected transmit beam to the UE, but may only indicate The information of the transmit beam group corresponding to the selected transmit beam.
  • the UE may also make the number of the at least part of the transmit beams in the transmit beam group that it reports is greater than the number of receive beams that can be simultaneously formed in the receive set corresponding to the transmit beam set, when the base station When selecting these transmit beams, it may be necessary to inform the UE of the selected transmit beam and/or the information of the transmit beam group in which the transmit beam is located, so that the UE can cooperate with the base station to receive as much as possible.
  • the beam indications of the base station to the UE in different situations may be selected according to actual conditions.
  • the base station when the base station selects the transmit beams 1, 3 located in the transmit beam group (1) and the transmit beam 4 in the transmit beam group (2), the base station may only transmit the beam set (1) And (2) inform the UE without having to inform the UE of the beams 1, 3, and 4. Therefore, the base station can save system overhead by informing the UE to transmit information of the beam group instead of the specific information of the transmission beam.
  • the base station may need to select two of the four transmit beams to transmit information to ensure that the UE receives the corresponding reception capability of the set. For example, the base station can select transmit beams 5 and 7. In this case, the base station needs to inform the UE of the relevant information of the selected transmission beam. As described above, the base station may select to inform the UE of the information of the transmit beam, that is, the base station informs the UE that the selected transmit beams are beam 5 and beam 7, respectively, and the system overhead of this method is large.
  • the base station may further combine the four beams reported by the UE according to the receiving capability information of the receiving set of the UE, and each combination may include a number of beams equal to or smaller than the number of receiving capability information of the corresponding receiving set.
  • the number of acceptance capability information of this reception set in this example is 2, therefore, it can be set that combination 1 includes two beams 5 and 6, combination 2 includes beams 7 and 8, combination 3 includes beams 5 and 7, and combination 4 Includes beams 6 and 8.
  • the above combination relationship may be pre-stored jointly by the base station and the UE or notified to the UE in advance by the base station by signaling. Thereafter, when the base station selects beams 5 and 7, it is only necessary to inform the UE that the combination 3 is currently selected.
  • the system overhead can be further saved by this combined beam indication transmission method.
  • the base station when the base station sends information indicating the transmit beam group where the transmit beam is located to the UE according to the selected transmit beam, the UE cannot accurately learn the specific situation of the transmit beam selected by the base station, Information can be received in a polling manner on different time slots and/or resource elements.
  • the base station can pre-agreed the manner of transmitting and receiving information with the UE by means of, for example, signaling.
  • the signaling may be MAC CE signaling, or may be RRC signaling or DCI indication.
  • the base station may send information in different time slots and/or resource unit positions with different transmission beams, and the UE may receive different information in the different time slots according to the agreement after receiving the corresponding transmission beam group information indicated by the base station.
  • Information is received on the resource unit in sequence using different receive beams corresponding to the transmit beam set. Further, the UE can also perform channel measurement according to the information receiving status, and can know which channel quality is better in different time slots and/or resource units, and feed back the measurement result to the base station, so that the base station can be as A transmission beam for transmitting information is selected according to a channel measurement result of the UE.
  • FIG. 5 shows a base station and inter-UE information transmission situation according to an example of the present disclosure.
  • a transmission beam group (3) composed of transmission beams 1 and 2 of a base station corresponds to a reception set 1 of a UE, and a UE
  • the receiving set 1 can generate two receiving beams 1, 2 at the same time to receive the information transmitted by the corresponding transmitting beam of the base station.
  • the base station wishes to transmit information using the transmit beam in the transmit beam group (3), it only informs the UE to transmit the information of the beam set, and does not accurately inform the UE which of the transmit beams 1, 2 to transmit.
  • the base station and the UE will agree that in the time slot 1, the base station transmits information through the transmission beam 1, and the UE receives the reception through the reception beam 1; in the time slot 2, the base station transmits information through the transmission beam 2, and the UE receives the information through the reception.
  • Beam 2 performs reception; in time slot 3, the base station transmits information together by transmitting beams 1 and 2, and the UE performs reception through reception beams 1 and 2. In this way, regardless of which one or which transmit beams are selected by the base station for transmission, the UE can select the corresponding receive beam to accurately receive the information at the corresponding time point.
  • the base station can also transmit information by transmitting beam 1 only in time slot 1, and the UE will accordingly receive information through receive beam 1 only in time slot 1. Further, the UE can also perform channel measurement according to the information receiving condition, and can know which channel quality is best in the above three time slots (for example, time slot 1), and feed back the measurement result to the base station, so that the base station can The transmission beam 1 for transmitting information in the slot 1 is selected according to the channel measurement result of the UE.
  • the base station may also send information with the same transmit beam at different time slots and/or resource unit locations within a predetermined time period, and the UE may, after receiving the corresponding transmit beam group information indicated by the base station, follow It is agreed to receive information sequentially using different receive beams corresponding to the transmit beam set on different time slots and/or resource elements. Further, the UE can also perform channel measurement according to the information receiving condition, and can know which channel quality is better in different time slots and/or resource units, and select corresponding receiving beams according to channel measurement results as much as possible. BB.
  • a transmission beam group (3) composed of transmission beams 1 and 2 of a base station corresponds to a reception set 1 of a UE
  • the receiving set 1 of the UE can generate two receiving beams 1, 2 at the same time to receive the information transmitted by the corresponding transmitting beam of the base station.
  • the base station wishes to transmit information using the transmit beam in the transmit beam group (3), it only informs the UE to transmit the information of the beam set, and does not accurately inform the UE which of the transmit beams 1, 2 to transmit.
  • the difference from FIG. 5 is that the base station will only send information in one of the modes.
  • the base station can jointly transmit information only through the transmit beams 1 and 2 within a preset time, and the UE is in the corresponding time.
  • different receiving beams are used to receive information: for example, in time slot 1, the UE receives by receiving beam 1; in time slot 2, the UE receives by receiving beam 2; and in time slot 3, UE Reception is performed by receiving beams 1 and 2.
  • the UE will use different receive beam reception information in turn, which ensures that the UE can always receive better quality information in a certain period.
  • the UE may also perform channel measurement according to information reception status in the process, and can know which channel quality is best in the above three time slots (for example, time slot 3), and try to use the channel quality as best as possible.
  • Receive beams 1 and 2 collectively receive information transmitted by the base station.
  • the beam selection method performed by the user equipment enables the user equipment to upload the reception capability information of the reception set corresponding to each transmission beam group of the base station, so that the base station can be based at least in part on the reception capability information of the user equipment. Select the appropriate transmit beam.
  • This beam selection method can significantly reduce system overhead and improve system information transmission efficiency.
  • the base station can perform the beam selection method described above. Since the operation of the base station is substantially the same as the steps of the beam selection method described in FIG. 3, only a brief description thereof will be made herein, and a repeated description of the same content will be omitted.
  • the base station 800 can include a receiving unit 810 and a selecting unit 820. It is to be appreciated that FIG. 8 only shows components related to embodiments of the present invention, while other components are omitted, but this is merely illustrative, and base station 800 may include other components as needed.
  • the receiving unit 810 receives the sending beam group information of the base station and the receiving capability information of the receiving set of the user equipment corresponding to each transmitting beam group, where the receiving capability information of the receiving set is The number of receive beams that the user equipment can simultaneously form in the receive set.
  • the receiving set of the UE may be a transceiver board in the UE, that is, a panel, and the transceiver board may respectively carry one or more TXRUs to send and receive information.
  • the number of TXRUs carried on one receiving set of the UE may be used as the receiving capability information of the UE receiving set, that is, the number of receiving beams that the UE can simultaneously form in the receiving set as the receiving capability of the receiving port. information.
  • the receiving set formed by the transceiver board of the UE can form two receiving beams at the same time to receive the information sent by the two transmitting beams of the corresponding base station.
  • the UE's receive set can also have other representations.
  • a particular portion of one or more transceiver boards of the UE may be used as a receiving set of UEs.
  • the combination of the partial receive beams of the UE may be formed as a receive set of the UE.
  • the number of receive beams that the UE can form at the same time is also the receive capability information of the receive set.
  • the example of the above-mentioned receiving set does not constitute a specific limitation on the receiving set of the UE.
  • the receiving set of the UE may be divided by an arbitrary dividing manner.
  • the base station 800 may further include a transmitting unit (not shown), and the transmitting unit may first transmit a signal to the UE by using each of the transmitting beams.
  • the UE may perform channel measurement on each transmit beam to determine the channel quality corresponding to each transmit beam.
  • the transmission beams of the base station are grouped according to the channel measurement results of the UE to different transmission beams and the reception beams included in the UE.
  • the UE may select one or more receiving beams in each receiving set according to channel conditions according to the different receiving sets, and use the corresponding one or more receiving beams as one transmitting beam group, and The information of the transmit beam group is fed back to the base station.
  • the transmit beam group information that the UE feeds back to the base station may include all the transmit beam group information, and may also report part of the transmit beam group information.
  • the transmit beam group information reported by the UE may be included in each transmit beam group.
  • the information of all the transmit beams may also include information of a part of the transmit beams of all of the transmit beams of one or more transmit beam groups.
  • the transmit beam group information may include various information such as a beam index of the transmit beam, a beam packet condition (eg, a group sequence number). For example, when the UE includes two transceiver boards in total, the UE may be considered to have two reception sets, and each reception set includes two TXRUs.
  • the UE may group the transmission beams of all the base stations corresponding to the two receiving beams that are preferred by the two TXRUs on each receiving set, and jointly upload two sets of transmitting beam group information to the base station, or report to the base station.
  • One of the transmission beam group information for example, the UE can select and report one of the transmission beam group information according to the channel condition.
  • the UE may select a part of the transmit beams for reporting according to the channel measurement result. For example, the UE may select a set of transmit beams whose channel measurement result exceeds the threshold to report to the base station.
  • the method of the embodiment of the present disclosure may further include: receiving, by the base station, a channel measurement result that is reported by the UE and corresponding to the at least part of the transmit beam.
  • the channel measurement result may include reference signal received power (RSRP), and/or channel state information (CSI), and the like of each of the transmit beams supporting the L1 layer.
  • RSRP reference signal received power
  • CSI channel state information
  • the beam index in the transmit beam group information reported by the UE may be determined according to a channel measurement result for the transmit beam.
  • the UE may first determine a reference transmit beam in a certain transmit beam group.
  • the UE may determine a reference transmit beam in the transmit beam group according to channel measurement results (eg, RSRP) of all transmit beams of a certain transmit beam group, where a beam with the best channel measurement result may be used as a reference transmit beam.
  • channel measurement results eg, RSRP
  • other preset criteria can also be used to determine the reference transmit beam.
  • the results of RSRP of those beams adjacent to the spatial position of the reference transmission beam can be considered to be good, so that these beams can be selected as the preferred transmission beam in the transmission beam group.
  • the spatial location here may be considered to be a small angle between the spatial azimuth angles of the preferred transmit beams and the reference transmit beams, for example, the included angle may be less than a certain threshold.
  • the base station generally configures the beam adjacent to the spatial position at the adjacent reference signal resource mapping position during configuration, and therefore, in this case, the reference signal resource position with the reference beam can also be used. Adjacent other transmit beams are used as feedback for the preferred transmit beam.
  • 4 shows a schematic diagram of a transmit beam selected for feedback using reference signal resource locations in one embodiment of the present disclosure. As shown in FIG.
  • the transmit beams corresponding to the adjacent resource mapping locations are adjacent in spatial position, that is, beam 2 and beam 3 are adjacent in spatial position, and beam 6 and beam 10 are in the same manner.
  • the spatial locations are also adjacent.
  • the UE learns that the transmit beam of the base station with the highest RSRP is the beam 7 through the measurement of the RSRP. Therefore, the UE can define the beam 7 as the reference transmit beam and consider it to be spatially adjacent to the beam 7.
  • the RSRP of beams 3, 6, 8, and 11 is relatively high, and beams 7, 3, 6, 8, and 11 are reported to the base station.
  • the UE can report the absolute number of each selected beam, such as 7, 3, 6, 8, 11.
  • the UE may also report the relative value between the index of each beam and the index of the reference transmit beam, which makes more sense for the beam number of the large number of bits. For example, in the example where the reference transmit beam is 7, the UE can report the beam as the beam 7, 4, -1, 1, 4, in order to reduce the number of bits reported by the transmit beam information.
  • -4, -1, 1, 4 are relative values of indexes of other beams with respect to the reference beam
  • the base station can determine other beams by 7-4, 7-1, 7+1, 7+4.
  • the UE may set a bit in the report information to indicate the sign, for example, a value of 1 may be used to represent "+", a value of 0 may be used to represent "-", and of course, a value of 0 may be used to represent "+”. , with a value of 1 for "-”.
  • the absolute value of the difference between the beam indices of the other transmit beams and the reference transmit beam can be reported by the remaining bits. For example, “4” in the beam relative number “-4” in FIG. 4 can be expressed as “100”.
  • the relative numbering of a certain transmit beam and the reference transmit beam can be reported by a combination of the bits representing the sign and the bits representing the absolute value of the difference between the beam indices, with a view to minimizing system overhead.
  • the spatial positional relationship between the other transmit beam and the reference transmit beam and the relative positional relationship of the reference signal resource mapping position may be comprehensively selected to select a transmit beam for feedback.
  • the UE may notify the base station of the reference transmit beam in an explicit manner.
  • the UE may set one bit for each reported beam, and use the bit to notify the base station whether the beam is a reference transmit beam, for example, Bit 1 represents that the beam is the reference transmit beam, and bit 0 represents that the beam is not the reference transmit beam, and vice versa.
  • the UE may also notify the reference transmit beam in an implicit manner.
  • the UE and the base station may agree that the first one of the series of beams reported by the UE is the default reference transmit beam, and the other beams are relative numbers relative to the reference transmit beam.
  • the reference transmit beam may be determined in any manner and represent the relative number of the reference transmit beam.
  • the receiving capability information of the received set of the UE may be sent as one-time or long-period information.
  • the receiving capability information of each receiving set is the same, the receiving capability information can be combined and reported only once, without being reported with each different transmitting beam group information, to maximize system overhead;
  • the receiving capability information of one or more of the receiving sets is different, the receiving capability information of the different transmitting beam groups and their corresponding receiving sets needs to be reported separately.
  • the selecting unit 820 selects, according to the sending beam group information and the receiving capability information of each receiving set, a transmitting beam corresponding to the receiving set for transmitting information to the user equipment.
  • the selecting unit 820 may, after acquiring information, such as a beam index of the at least part of the transmit beam in the transmit beam group, according to the transmit beam group information, the receive capability information of each receive set, and at least each transmit beam group.
  • the beam information of a part of the transmission beams and the like are commonly used to select the transmission beam.
  • the selection unit 820 selects a corresponding one of the received sets.
  • the number of transmit beams in the transmit beam group may be less than or equal to the number of receive beams that can be simultaneously formed in the receive set.
  • the base station may perform the selection according to the transmit beam included in the transmit beam group information fed back by the UE. For example, the base station may select a transmit beam with a higher RSRP to send information according to the RSRP result reported by the UE. Alternatively, the base station may also select a transmit beam that is not included in the transmit beam group fed back by the UE. For example, the base station may select a spatial positional relationship of the transmit beam with a higher RSRP reported by the UE and/or a reference signal resource mapping location. Transmit beams that are relatively close in relative position to transmit information.
  • the selecting unit 820 may send a beam indication to the UE after determining the selected transmit beam to indicate related information of the selected transmit beam of the UE base station.
  • the base station may also determine whether the beam indication information needs to be sent, and may select different beams when transmitting. The indication is sent.
  • the selection unit 820 can only perform the selection of the transmission beam from the corresponding transmission beam group reported by the UE. Therefore, in this case, the number of transmission beams selected by the selection unit 820 must not be greater than the reception set of the UE.
  • the capability information is received, and the UE can also ensure that it has the capability to receive the information sent by the base station through the corresponding transmit beam on the corresponding receive set.
  • the selection unit 820 may not need to perform specific information on the transmit beam that is ultimately selected by the UE.
  • the indication may only indicate the information of the transmit beam group corresponding to the selected transmit beam.
  • the UE may also make the number of the at least part of the transmit beams in the transmit beam group that it reports is greater than the number of receive beams that can be simultaneously formed in the receive set corresponding to the transmit beam set, in this case, when the unit is selected
  • the beam indications of the base station to the UE in different situations may be selected according to actual conditions.
  • the base station may only transmit the beam set ( 1) and (2) inform the UE without having to inform the UE of the beams 1, 3, and 4. Therefore, the base station can save system overhead by informing the UE to transmit information of the beam group instead of the specific information of the transmitted beam.
  • the base station may need to select two of the four transmit beams to transmit information to ensure that the UE receives the corresponding reception capability of the set. For example, the base station can select transmit beams 5 and 7. In this case, the base station needs to inform the UE of the relevant information of the selected transmission beam. As described above, the base station may select to inform the UE of the information of the transmit beam, that is, the base station informs the UE that the selected transmit beams are beam 5 and beam 7, respectively, and the system overhead of this method is large.
  • the base station may further combine the four beams reported by the UE according to the receiving capability information of the receiving set of the UE, and each combination may include a number of beams equal to or smaller than the number of receiving capability information of the corresponding receiving set.
  • the number of acceptance capability information of this reception set in this example is 2, therefore, it can be set that combination 1 includes two beams 5 and 6, combination 2 includes beams 7 and 8, combination 3 includes beams 5 and 7, and combination 4 Includes beams 6 and 8.
  • the above combination relationship may be pre-stored jointly by the base station and the UE or notified to the UE in advance by the base station by signaling. Thereafter, when the base station selects beams 5 and 7, it is only necessary to inform the UE that the combination 3 is currently selected.
  • the system overhead can be further saved by this combined beam indication transmission method.
  • the base station when the base station sends information indicating the transmit beam group where the transmit beam is located to the UE according to the selected transmit beam, the UE cannot accurately learn the specific situation of the transmit beam selected by the base station, Information can be received in a polling manner on different time slots and/or resource elements.
  • the base station can pre-agreed the manner of transmitting and receiving information with the UE by means of, for example, signaling.
  • the signaling may be MAC CE signaling, or may be RRC signaling or DCI indication.
  • the base station may send information in different time slots and/or resource unit positions with different transmission beams, and the UE may receive different information in the different time slots according to the agreement after receiving the corresponding transmission beam group information indicated by the base station.
  • Information is received on the resource unit in sequence using different receive beams corresponding to the transmit beam set. Further, the UE can also perform channel measurement according to the information receiving status, and can know which channel quality is better in different time slots and/or resource units, and feed back the measurement result to the base station, so that the base station can be as A transmission beam for transmitting information is selected according to a channel measurement result of the UE.
  • FIG. 5 shows a base station and inter-UE information transmission situation according to an example of the present disclosure.
  • a transmission beam group (3) composed of transmission beams 1 and 2 of a base station corresponds to a reception set 1 of a UE, and a UE
  • the receiving set 1 can generate two receiving beams 1, 2 at the same time to receive the information transmitted by the corresponding transmitting beam of the base station.
  • the base station wishes to transmit information using the transmit beam in the transmit beam group (3), it only informs the UE to transmit the information of the beam set, and does not accurately inform the UE which of the transmit beams 1, 2 to transmit.
  • the base station and the UE will agree that in the time slot 1, the base station transmits information through the transmission beam 1, and the UE receives the reception through the reception beam 1; in the time slot 2, the base station transmits information through the transmission beam 2, and the UE receives the information through the reception.
  • Beam 2 performs reception; in time slot 3, the base station transmits information together by transmitting beams 1 and 2, and the UE performs reception through reception beams 1 and 2. In this way, regardless of which one or which transmit beams are selected by the base station for transmission, the UE can select the corresponding receive beam to accurately receive the information at the corresponding time point.
  • the base station can also transmit information through the transmit beam 1 only in slot 1, and the UE will accordingly receive the information through the receive beam 1 only in slot 1. Further, the UE can also perform channel measurement according to the information receiving condition, and can know which channel quality is best in the above three time slots (for example, time slot 1), and feed back the measurement result to the base station, so that the base station can The transmission beam 1 for transmitting information in the slot 1 is selected according to the channel measurement result of the UE.
  • the base station may also send information with the same transmit beam at different time slots and/or resource unit locations within a predetermined time period, and the UE may, after receiving the corresponding transmit beam group information indicated by the base station, follow It is agreed to receive information sequentially using different receive beams corresponding to the transmit beam set on different time slots and/or resource elements. Further, the UE can also perform channel measurement according to the information receiving condition, and can know which channel quality is better in different time slots and/or resource units, and select corresponding receiving beams according to channel measurement results as much as possible. BB.
  • a transmission beam group (3) composed of transmission beams 1 and 2 of a base station corresponds to a reception set 1 of a UE
  • the receiving set 1 of the UE can generate two receiving beams 1, 2 at the same time to receive the information transmitted by the corresponding transmitting beam of the base station.
  • the base station wishes to transmit information using the transmit beam in the transmit beam group (3), it only informs the UE to transmit the information of the beam set, and does not accurately inform the UE which of the transmit beams 1, 2 to transmit.
  • the difference from FIG. 5 is that the base station will only send information in one of the modes.
  • the base station can jointly transmit information only through the transmit beams 1 and 2 within a preset time, and the UE is in the corresponding time.
  • different receiving beams are used to receive information: for example, in time slot 1, the UE receives by receiving beam 1; in time slot 2, the UE receives by receiving beam 2; and in time slot 3, UE Reception is performed by receiving beams 1 and 2.
  • the UE will use different receive beam reception information in turn, which ensures that the UE can always receive better quality information in a certain period.
  • the UE may also perform channel measurement according to information reception status in the process, and can know which channel quality is best in the above three time slots (for example, time slot 3), and try to use the channel quality as best as possible.
  • Receive beams 1 and 2 collectively receive information transmitted by the base station.
  • the base station can enable the user equipment to upload the reception capability information of the reception set corresponding to each transmission beam group of the base station, so that the base station can select the corresponding transmission beam according to the reception capability information of the user equipment at least in part.
  • This beam selection method can significantly reduce system overhead and improve system information transmission efficiency.
  • the user equipment can perform the beam selection method described above. Since the operation of the user equipment is substantially the same as the steps of the beam selection method described in FIG. 7, only a brief description thereof will be made herein, and a repeated description of the same content will be omitted.
  • the UE 900 may include an obtaining unit 910 and a transmitting unit 920. It will be appreciated that FIG. 9 only shows components related to embodiments of the present invention, while other components are omitted, but this is merely illustrative, and the UE 900 may include other components as needed.
  • the obtaining unit 910 acquires the transmit beam group information of the base station and the receive capability information of the receive set of the user equipment corresponding to each of the transmit beam groups, where the receive capability information of the receive set is the receive set of the user equipment The number of receive beams that can be formed simultaneously.
  • the receiving set of the UE may be a transceiver board in the UE, that is, a panel, and the transceiver board may respectively carry one or more TXRUs to send and receive information.
  • the number of TXRUs carried on one receiving set of the UE may be used as the receiving capability information of the UE receiving set, that is, the number of receiving beams that the UE can simultaneously form in the receiving set as the receiving capability of the receiving port. information.
  • the receiving set formed by the transceiver board of the UE can form two receiving beams at the same time to receive the information sent by the two transmitting beams of the corresponding base station.
  • the UE's receive set can also have other representations.
  • a particular portion of one or more transceiver boards of the UE may be used as a receiving set of UEs.
  • the combination of the partial receive beams of the UE may be formed as a receive set of the UE.
  • the number of receive beams that the UE can form at the same time is also the receive capability information of the receive set.
  • the example of the above-mentioned receiving set does not constitute a specific limitation on the receiving set of the UE.
  • the receiving set of the UE may be divided by an arbitrary dividing manner.
  • the acquiring unit 910 of the UE may receive the signal sent by the base station, and perform channel measurement on each transmit beam to determine the channel quality corresponding to each transmit beam. Then, the obtaining unit 910 groups the transmit beams of the base station according to the channel measurement results of the UE to different transmit beams and the case of the receive beams included in the UE. Specifically, the acquiring unit 910 may select one or more receiving beams in each receiving set according to channel conditions according to the different receiving sets, and use the corresponding one or more receiving beams as one transmitting beam. group.
  • the transmit beam group information acquired by the UE may include various information such as a beam index of the transmit beam, a beam packet condition (for example, a group sequence number).
  • the information about the transmit beams in each transmit beam group may be included in the transmit beam group information obtained by the UE, and may also include information on a part of the transmit beams of all the transmit beams of one or more transmit beam groups.
  • the transmit beam group information may include various information such as a beam index of the transmit beam, a beam packet condition (eg, a group sequence number). For example, when the UE includes two transceiver boards in total, the UE may be considered to have two reception sets, and each reception set includes two TXRUs.
  • the obtaining unit 910 may group the transmission beams of all the base stations corresponding to the two receiving beams that are preferred by the two TXRUs on each receiving set, and obtain two sets of transmitting beam group information, or report the information to the base station.
  • the UE may select and report one of the transmit beam group information according to the channel condition.
  • the UE may select a part of the transmit beams according to the channel measurement result.
  • the UE may select information of a set of transmit beams whose channel measurement results exceed a threshold in a certain transmit beam group. Transmit beam group information of the transmit beam group.
  • the beam index in the transmit beam group information selected by the obtaining unit 910 may be determined according to a channel measurement result for the transmit beam.
  • the obtaining unit 910 may first determine a reference transmit beam in a certain transmit beam group.
  • the obtaining unit 910 may determine a reference transmit beam in the transmit beam group according to channel measurement results (eg, RSRP) of all transmit beams of a certain transmit beam group, where the beam with the best channel measurement result may be sent as a reference.
  • Beams can also use other preset criteria to determine the reference transmit beam.
  • the results of RSRP of those beams adjacent to the spatial position of the reference transmission beam can be considered to be good, so that these beams can be selected as the preferred transmission beam in the transmission beam group.
  • the spatial location here may be considered to be a small angle between the spatial azimuth angles of the preferred transmit beams and the reference transmit beams, for example, the included angle may be less than a certain threshold.
  • the base station generally configures the beam adjacent to the spatial position at the adjacent reference signal resource mapping position during configuration, and therefore, in this case, the reference signal resource position with the reference beam can also be used. Adjacent other transmit beams are used as feedback for the preferred transmit beam.
  • 4 shows a schematic diagram of a transmit beam selected for feedback using reference signal resource locations in one embodiment of the present disclosure. As shown in FIG.
  • the transmit beams corresponding to the adjacent resource mapping locations are adjacent in spatial position, that is, beam 2 and beam 3 are adjacent in spatial position, and beam 6 and beam 10 are in the same manner.
  • the spatial locations are also adjacent.
  • the UE learns that the transmit beam of the base station with the highest RSRP is the beam 7 through the measurement of the RSRP. Therefore, the UE can define the beam 7 as the reference transmit beam and consider it to be spatially adjacent to the beam 7.
  • the RSRP of beams 3, 6, 8, and 11 is relatively high, and beams 7, 3, 6, 8, and 11 are reported to the base station.
  • the UE can report the absolute number of each selected beam, such as 7, 3, 6, 8, 11.
  • the UE may also report the relative value between the index of each beam and the index of the reference transmit beam, which makes more sense for the beam number of the large number of bits. For example, in the example where the reference transmit beam is 7, the UE can report the beam as the beam 7, 4, -1, 1, 4, in order to reduce the number of bits reported by the transmit beam information.
  • -4, -1, 1, 4 are relative values of indexes of other beams with respect to the reference beam
  • the base station can determine other beams by 7-4, 7-1, 7+1, 7+4.
  • the UE may set a bit in the report information to indicate the sign, for example, a value of 1 may be used to represent "+", a value of 0 may be used to represent "-", and of course, a value of 0 may be used to represent "+”. , with a value of 1 for "-”.
  • the absolute value of the difference between the beam indices of the other transmit beams and the reference transmit beam can be reported by the remaining bits. For example, “4” in the beam relative number “-4” in FIG. 4 can be expressed as “100”.
  • the relative numbering of a certain transmit beam and the reference transmit beam can be reported by a combination of the bits representing the sign and the bits representing the absolute value of the difference between the beam indices, with a view to minimizing system overhead.
  • the spatial positional relationship between the other transmitting beam and the reference transmitting beam and the relative positional relationship of the reference signal resource mapping position may be comprehensively selected to select a transmitting beam for feedback.
  • the reference transmit beam may be determined in any manner and represent the relative number of the reference transmit beam.
  • the sending unit 920 sends the sending beam group information and the receiving capability information, so that the base station selects, according to the sending beam group information and the receiving capability information of each receiving set, the pair corresponding to the receiving set for the The transmit beam of the information sent by the user equipment.
  • the sending unit 920 may report all the transmit beam group information to the base station, or report part of the transmit beam group information according to, for example, a channel condition, where the UE may send one or several transmit beam groups with better channel quality. The information is reported to the base station.
  • the method of the embodiment of the present disclosure may further include the channel measurement result that is sent by the sending unit 920 and corresponding to the at least part of the transmit beam.
  • the channel measurement result may include reference signal received power (RSRP), and/or channel state information (CSI), and the like of each of the transmit beams supporting the L1 layer.
  • RSRP reference signal received power
  • CSI channel state information
  • the transmitting unit 920 after the UE determines the reference transmission beam and obtains the beam index of the transmission beam to be reported accordingly, the transmitting unit 920 also needs to inform the base station of this. Which transmit beam is the reference transmit beam, so that the base station can accurately obtain the information of the transmit beams fed back by all UEs according to the reference transmit beam and the relative number of the reference transmit beam.
  • the sending unit 920 can notify the base station of the reference transmit beam in an explicit manner.
  • the sending unit 920 can set one bit for each reported beam, and use the bit to notify the base station whether the beam is the reference transmit beam.
  • bit 1 can be used to represent that the beam is the reference transmit beam, while bit 0 is used to represent that the beam is not the reference transmit beam, and vice versa.
  • the transmitting unit 920 can also notify the reference transmission beam in an implicit manner. For example, the UE and the base station may agree that the first of the series of beams reported by the transmitting unit 920 is the default reference transmit beam, and the other beams are relative numbers relative to the reference transmit beam.
  • the receiving capability information of the received set of the UE may be sent as one-time or long-period information.
  • the sending unit 920 can jointly report the receiving capability information only once, without reporting with each different transmitting beam group information, to maximize the saving.
  • System overhead for example, when the receiving capability information of one or more of the receiving sets is different, the receiving capability information of the different transmitting beam groups and their corresponding receiving sets need to be reported separately.
  • the base station may further perform, according to the transmit beam group information, the receive capability information of each receive set, and each transmit beam.
  • the beam information of at least part of the transmit beam in the group is commonly used to select the transmit beam.
  • the UE does not want the base station to transmit a signal to a certain receiving set using the transmission beam above the number indicated by the receiving capability information, and therefore, the transmitting beam corresponding to the certain receiving set selected by the base station is selected.
  • the number of transmit beams in a group may be less than or equal to the number of receive beams that can be simultaneously formed in the receive set.
  • the base station may perform the selection according to the transmit beam included in the transmit beam group information fed back by the UE. For example, the base station may select a transmit beam with a higher RSRP to send information according to the RSRP result reported by the UE. Alternatively, the base station may also select a transmit beam that is not included in the transmit beam group fed back by the UE. For example, the base station may select a spatial positional relationship of the transmit beam with a higher RSRP reported by the UE and/or a reference signal resource mapping location. Transmit beams that are relatively close in relative position to transmit information.
  • the UE may learn related information of the selected transmit beam of the base station according to the beam indication sent by the base station.
  • the base station may also determine whether the beam indication information needs to be sent, and may select different beams when transmitting.
  • the indication is sent. For example, when the number of the at least part of the transmit beams in the transmit beam group reported by the sending unit 920 is less than or equal to the number of receive beams that can be simultaneously formed in the receive set corresponding to the transmit beam set (ie, the receive capability in the receive set) In the case of the information, the base station can only select the transmit beam from the corresponding transmit beam group reported by the UE.
  • the number of transmit beams selected by the base station must not be greater than the receive capability of the receive set of the UE.
  • Information, and the UE can also ensure that it has the ability to receive information transmitted by the base station through the corresponding transmit beam on the corresponding receiving set. Accordingly, the base station may not need to indicate the specific information of the transmit beam that is ultimately selected by the base station, but may Only the information of the transmit beam group corresponding to the selected transmit beam is indicated.
  • the UE may also make the number of the at least part of the transmit beams in the transmit beam group that it reports is greater than the number of receive beams that can be simultaneously formed in the receive set corresponding to the transmit beam set, when the base station When selecting these transmit beams, it may be necessary to inform the UE of the selected transmit beam and/or the information of the transmit beam group in which the transmit beam is located, so that the UE can cooperate with the base station to receive as much as possible.
  • the beam indications of the base station to the UE in different situations may be selected according to actual conditions.
  • the base station when the base station selects the transmit beams 1, 3 located in the transmit beam group (1) and the transmit beam 4 in the transmit beam group (2), the base station may only transmit the beam set (1) And (2) inform the UE without having to inform the UE of the beams 1, 3, and 4. Therefore, the base station can save system overhead by informing the UE to transmit information of the beam group instead of the specific information of the transmission beam.
  • the base station may need to select two of the four transmit beams to transmit information to ensure that the UE receives the corresponding reception capability of the set. For example, the base station can select transmit beams 5 and 7. In this case, the base station needs to inform the UE of the relevant information of the selected transmission beam. As described above, the base station may select to inform the UE of the information of the transmit beam, that is, the base station informs the UE that the selected transmit beams are beam 5 and beam 7, respectively, and the system overhead of this method is large.
  • the base station may further combine the four beams reported by the UE according to the receiving capability information of the receiving set of the UE, and each combination may include a number of beams equal to or smaller than the number of receiving capability information of the corresponding receiving set.
  • the number of acceptance capability information of this reception set in this example is 2, therefore, it can be set that combination 1 includes two beams 5 and 6, combination 2 includes beams 7 and 8, combination 3 includes beams 5 and 7, and combination 4 Includes beams 6 and 8.
  • the above combination relationship may be pre-stored jointly by the base station and the UE or notified to the UE in advance by the base station by signaling. Thereafter, when the base station selects beams 5 and 7, it is only necessary to inform the UE that the combination 3 is currently selected.
  • the system overhead can be further saved by this combined beam indication transmission method.
  • the base station when the base station sends information indicating the transmit beam group where the transmit beam is located to the UE according to the selected transmit beam, the UE cannot accurately learn the specific situation of the transmit beam selected by the base station, Information can be received in a polling manner on different time slots and/or resource elements.
  • the base station can pre-agreed the manner of transmitting and receiving information with the UE by means of, for example, signaling.
  • the signaling may be MAC CE signaling, or may be RRC signaling or DCI indication.
  • the base station may send information in different time slots and/or resource unit positions with different transmission beams, and the UE may receive different information in the different time slots according to the agreement after receiving the corresponding transmission beam group information indicated by the base station.
  • Information is received on the resource unit in sequence using different receive beams corresponding to the transmit beam set. Further, the UE can also perform channel measurement according to the information receiving status, and can know which channel quality is better in different time slots and/or resource units, and feed back the measurement result to the base station, so that the base station can be as A transmission beam for transmitting information is selected according to a channel measurement result of the UE.
  • FIG. 5 shows a base station and inter-UE information transmission situation according to an example of the present disclosure.
  • a transmission beam group (3) composed of transmission beams 1 and 2 of a base station corresponds to a reception set 1 of a UE, and a UE
  • the receiving set 1 can generate two receiving beams 1, 2 at the same time to receive the information transmitted by the corresponding transmitting beam of the base station.
  • the base station wishes to transmit information using the transmit beam in the transmit beam group (3), it only informs the UE to transmit the information of the beam set, and does not accurately inform the UE which of the transmit beams 1, 2 to transmit.
  • the base station and the UE will agree that in the time slot 1, the base station transmits information through the transmission beam 1, and the UE receives the reception through the reception beam 1; in the time slot 2, the base station transmits information through the transmission beam 2, and the UE receives the information through the reception.
  • Beam 2 performs reception; in time slot 3, the base station transmits information together by transmitting beams 1 and 2, and the UE performs reception through reception beams 1 and 2. In this way, regardless of which one or which transmit beams are selected by the base station for transmission, the UE can select the corresponding receive beam to accurately receive the information at the corresponding time point.
  • the base station can also transmit information through the transmit beam 1 only in slot 1, and the UE will accordingly receive the information through the receive beam 1 only in slot 1. Further, the UE can also perform channel measurement according to the information receiving condition, and can know which channel quality is best in the above three time slots (for example, time slot 1), and feed back the measurement result to the base station, so that the base station can The transmission beam 1 for transmitting information in the slot 1 is selected according to the channel measurement result of the UE.
  • the base station may also send information with the same transmit beam at different time slots and/or resource unit locations within a predetermined time period, and the UE may, after receiving the corresponding transmit beam group information indicated by the base station, follow It is agreed to receive information sequentially using different receive beams corresponding to the transmit beam set on different time slots and/or resource elements. Further, the UE can also perform channel measurement according to the information receiving condition, and can know which channel quality is better in different time slots and/or resource units, and select corresponding receiving beams according to channel measurement results as much as possible. BB.
  • a transmission beam group (3) composed of transmission beams 1 and 2 of a base station corresponds to a reception set 1 of a UE
  • the receiving set 1 of the UE can generate two receiving beams 1, 2 at the same time to receive the information transmitted by the corresponding transmitting beam of the base station.
  • the base station wishes to transmit information using the transmit beam in the transmit beam group (3), it only informs the UE to transmit the information of the beam set, and does not accurately inform the UE which of the transmit beams 1, 2 to transmit.
  • the difference from FIG. 5 is that the base station will only send information in one of the modes.
  • the base station can jointly transmit information only through the transmit beams 1 and 2 within a preset time, and the UE is in the corresponding time.
  • different receiving beams are used to receive information: for example, in time slot 1, the UE receives by receiving beam 1; in time slot 2, the UE receives by receiving beam 2; and in time slot 3, UE Reception is performed by receiving beams 1 and 2.
  • the UE will use different receive beam reception information in turn, which ensures that the UE can always receive better quality information in a certain period.
  • the UE may also perform channel measurement according to information reception status in the process, and can know which channel quality is best in the above three time slots (for example, time slot 3), and try to use the channel quality as best as possible.
  • Receive beams 1 and 2 collectively receive information transmitted by the base station.
  • the user equipment can enable the user equipment to upload the reception capability information of the reception set corresponding to each transmission beam group of the base station, so that the base station can select the corresponding transmission beam according to the reception capability information of the user equipment.
  • This beam selection method can significantly reduce system overhead and improve system information transmission efficiency.
  • the beam index in the embodiment of the present disclosure may be replaced by a resource mapping position of the reference signal, a resource mapping indication of the reference signal, a slot indication of the reference signal, and a resource mapping indication.
  • each functional block may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated, directly and/or indirectly (eg, This is achieved by a plurality of devices as described above by a wired and/or wireless connection.
  • the (wireless) base station, the user terminal, and the like in one embodiment of the present invention can function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 10 is a diagram showing an example of a hardware configuration of a base station and a user terminal according to an embodiment of the present invention.
  • the base station 800 and the user terminal 900 described above may be configured as a computer device that physically includes the processor 1001, the memory 1002, the memory 1003, the communication device 1004, the input device 1005, the output device 1006, the bus 1007, and the like.
  • the hardware structure of the base station 800 and the user terminal 900 may include one or more of the devices shown in FIG. 10, or may not include some of the devices.
  • the processor 1001 only illustrates one, but may be multiple processors.
  • the processing may be performed by one processor, or may be performed by one or more processors simultaneously, sequentially, or by other methods.
  • the processor 1001 can be installed by more than one chip.
  • Each function in the base station 800 and the user terminal 900 is realized, for example, by reading a predetermined software (program) into hardware such as the processor 1001 and the memory 1002, thereby causing the processor 1001 to perform an operation, and the communication device 1004 The communication performed is controlled, and the reading and/or writing of data in the memory 1002 and the memory 1003 is controlled.
  • a predetermined software program
  • the communication device 1004 The communication performed is controlled, and the reading and/or writing of data in the memory 1002 and the memory 1003 is controlled.
  • the processor 1001 for example, causes the operating system to operate to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads out programs (program codes), software modules, data, and the like from the memory 1003 and/or the communication device 1004 to the memory 1002, and executes various processes in accordance therewith.
  • programs program codes
  • the program a program for causing a computer to execute at least a part of the operations described in the above embodiments can be employed.
  • the control unit 401 of the user terminal 900 can be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and can be similarly implemented for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and may be, for example, a read only memory (ROM), a programmable read only memory (EPROM), an electrically programmable read only memory (EEPROM), or a random access memory ( At least one of RAM, Random Access Memory, and other suitable storage media.
  • the memory 1002 may also be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to the embodiment of the present invention.
  • the memory 1003 is a computer readable recording medium, and may be, for example, a flexible disk, a soft (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact DiscROM), etc.), digital universal CD, Blu-ray (registered trademark) disc, removable disk, hard drive, smart card, flash device (eg card, stick, key driver), magnetic stripe, database, server And at least one of other suitable storage media.
  • the memory 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission and reception device) for performing communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 1004 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to implement, for example, Frequency Division Duplex (FDD) and/or Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs an output to the outside.
  • the input device 1005 and the output device 1006 may also be an integrated structure (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected via a bus 1007 for communicating information.
  • the bus 1007 may be composed of a single bus or a different bus between devices.
  • the base station 800 and the user terminal 900 may include a microprocessor, a digital signal processor (DSP, Digital Signal Processor), an application specific integrated circuit (ASIC), a programmable logic device (PLD, Programmable Logic Device), and a field programmable gate array (FPGA). Hardware such as FieldProgrammableGateArray), which can be used to implement part or all of each function block.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • Hardware such as FieldProgrammableGateArray
  • the processor 1001 can be installed by at least one of these hardwares.
  • the channel and/or symbol can also be a signal (signaling).
  • the signal can also be a message.
  • the reference signal may also be simply referred to as RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, or the like according to applicable standards.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • the radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may also be referred to as a subframe.
  • a subframe may be composed of one or more time slots in the time domain.
  • the subframe may be a fixed length of time (eg, 1 ms) that is independent of the numerology.
  • the time slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA, Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • the time slot can also be a time unit based on parameter configuration.
  • the time slot may also include a plurality of minislots. Each minislot may be composed of one or more symbols in the time domain.
  • a minislot can also be referred to as a subslot.
  • Radio frames, subframes, time slots, mini-slots, and symbols all represent time units when signals are transmitted. Radio frames, subframes, time slots, mini-slots, and symbols can also use other names that correspond to each other.
  • one subframe may be referred to as a transmission time interval (TTI, TransmissionTimeInterval), and multiple consecutive subframes may also be referred to as a TTI, and one slot or one minislot may also be referred to as a TTI.
  • the subframe and/or the TTI may be a subframe (1 ms) in the existing LTE, or may be a period shorter than 1 ms (for example, 1 to 13 symbols), or may be a period longer than 1 ms.
  • a unit indicating a TTI may also be referred to as a slot, a minislot, or the like instead of a subframe.
  • TTI refers to, for example, a minimum time unit scheduled in wireless communication.
  • the radio base station performs scheduling for all user terminals to allocate radio resources (bandwidth, transmission power, etc. usable in each user terminal) in units of TTIs.
  • the definition of TTI is not limited to this.
  • the TTI may be a channel-coded data packet (transport block), a code block, and/or a codeword transmission time unit, or may be a processing unit such as scheduling, link adaptation, or the like.
  • the time interval e.g., the number of symbols
  • actually mapped to the transport block, code block, and/or codeword may also be shorter than the TTI.
  • TTI time slot or one mini time slot
  • more than one TTI ie, more than one time slot or more than one micro time slot
  • the number of slots (the number of microslots) constituting the minimum time unit of the scheduling can be controlled.
  • a TTI having a length of 1 ms may also be referred to as a regular TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe.
  • TTI shorter than a conventional TTI may also be referred to as a compressed TTI, a short TTI, a partial TTI (partial or fractional TTI), a compressed subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, a regular TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • a short TTI eg, a compressed TTI, etc.
  • TTI length of the TTI may be replaced with 1 ms.
  • a resource block is a resource allocation unit of a time domain and a frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the RB may include one or more symbols in the time domain, and may also be one slot, one minislot, one subframe, or one TTI.
  • a TTI and a subframe may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB, Physical RB), a sub-carrier group (SCG), a resource element group (REG, a resource element group), a PRG pair, an RB pair, and the like.
  • a resource block may also be composed of one or more resource elements (RE, ResourceElement).
  • RE resource elements
  • ResourceElement For example, one RE can be a subcarrier and a symbol of a radio resource area.
  • radio frames, subframes, time slots, mini-slots, symbols, and the like are merely examples.
  • the number of subframes included in the radio frame, the number of slots of each subframe or radio frame, the number of microslots included in the slot, the number of symbols and RBs included in the slot or minislot, and the number of RBs included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of the cyclic prefix (CP, Cyclic Prefix) can be variously changed.
  • the information, parameters, and the like described in the present specification may be expressed by absolute values, may be represented by relative values with predetermined values, or may be represented by other corresponding information.
  • wireless resources can be indicated by a specified index.
  • the formula or the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, and the like described in this specification can be expressed using any of a variety of different techniques.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. which may be mentioned in all of the above description, may pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. Combined to represent.
  • information, signals, and the like may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via a plurality of network nodes.
  • Information or signals input or output can be stored in a specific place (such as memory) or managed by a management table. Information or signals input or output may be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of the information is not limited to the mode/embodiment described in the specification, and may be performed by other methods.
  • the notification of the information may be through physical layer signaling (eg, Downlink Control Information (DCI), uplink control information (UCI, Uplink Control Information), upper layer signaling (eg, radio resource control (RRC, RadioResourceControl). Signaling, broadcast information (MIB (Master Information Block), System Information Block (SIB, System Information Block), etc.), Media Access Control (MAC, Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI uplink control information
  • RRC RadioResourceControl
  • Signaling broadcast information (MIB (Master Information Block), System Information Block (SIB, System Information Block), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • the MAC signaling can be notified, for example, by a MAC Control Unit (MAC CE).
  • MAC CE MAC Control Unit
  • the notification of the predetermined information is not limited to being explicitly performed, and may be performed implicitly (for example, by not notifying the predetermined information or by notifying other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true (true) or false (false), and can also be compared by numerical values ( For example, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, should be interpreted broadly to mean commands, command sets, code, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, and the like.
  • software, commands, information, and the like may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coax, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to send software from a website, server, or other remote source
  • wired technology coax, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • base station (BS, BaseStation)
  • radio base station eNB
  • gNB gNodeB
  • cell a cell group
  • carrier a component carrier
  • the terms are used interchangeably.
  • the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can also pass through the base station subsystem (for example, a small indoor base station (RFH, remote head (RRH), RemoteRadioHead))) to provide communication services.
  • the term "cell” or “sector” refers to a portion or the entirety of the coverage area of a base station and/or base station subsystem that performs communication services in the coverage.
  • the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • Mobile stations are also sometimes used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless Terminals, remote terminals, handsets, user agents, mobile clients, clients, or several other appropriate terms are used.
  • the base station in this specification can also be replaced with a user terminal.
  • each mode/embodiment of the present invention can be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user-to-device (D2D) devices.
  • D2D user-to-device
  • the function of the base station 800 described above can be regarded as a function of the user terminal 900.
  • words such as "upstream” and "downstream” can also be replaced with "side”.
  • the uplink channel can also be replaced with a side channel.
  • the user terminal in this specification can also be replaced with a wireless base station.
  • the functions of the user terminal 900 described above can be regarded as functions of the base station 800.
  • a specific operation performed by a base station is also performed by an upper node (upper node) depending on the situation.
  • various actions performed for communication with the terminal may pass through the base station and one or more network nodes other than the base station.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • S-GW Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B Long Term Evolution
  • LTE-Beyond Long Term Evolution
  • SUPER 3G advanced international mobile communication
  • IMT-Advanced 4th generation mobile communication system
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FX
  • Future generation radio access GSM (registered trademark), Global System for Mobile communications), Code Division Multiple Access 2000 (CDMA2000), Super Mobile Broadband (UMB, Ultra) Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra Wideband (UWB, Ultra-W
  • any reference to a unit using the names "first”, “second”, etc., as used in this specification, does not fully limit the number or order of the units. These names can be used in this specification as a convenient method of distinguishing between two or more units. Thus, reference to a first element and a second element does not mean that only two elements may be employed or that the first element must prevail in the form of the second unit.
  • determination used in the present specification sometimes includes various actions. For example, regarding “judgment (determination)", calculation, calculation, processing, deriving, investigating, and lookingup (eg, tables, databases, or other data) may be performed. Search in the structure, ascertaining, etc. are considered to be “judgment (determination)”. Further, regarding “judgment (determination)”, reception (for example, receiving information), transmission (for example, transmission of information), input (input), output (output), and access (for example) may also be performed (for example, Accessing data in memory, etc. is considered to be “judgment (determination)”.
  • judgment (determination) it is also possible to consider “resolving”, “selecting”, selecting (choosing), establishing (comparing), comparing (comparing), etc. as “judging (determining)”. That is to say, regarding "judgment (determination)", several actions can be regarded as performing "judgment (determination)".
  • connection means any direct or indirect connection or combination between two or more units, This includes the case where there is one or more intermediate units between two units that are “connected” or “coupled” to each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • connection can also be replaced with "access”.
  • two units may be considered to be electrically connected by using one or more wires, cables, and/or printed, and as a non-limiting and non-exhaustive example by using a radio frequency region.
  • the electromagnetic energy of the wavelength of the region, the microwave region, and/or the light is "connected” or "bonded” to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例公开了一种波束选择方法、基站和用户终端,其中,由基站执行的波束选择方法包括:接收用户设备反馈的所述基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量;至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择该接收集合对应的用于对所述用户设备发送信息的发送波束。

Description

波束选择方法、基站和用户设备 技术领域
本公开涉及移动通信领域,并且具体涉及通信系统中执行的波束选择方法以及对应的基站和用户设备。
背景技术
在5G的高频场景中,或者在用户设备(UE)通过双重连接(Dual Connectivity)而连接到5G的发送接收点(基站)或长期演进(LTE)基站的场景中,提出在UE和基站中使用波束成形技术,即,基站和UE均可以使用多个波束来进行信息的发送和接收。
UE通常包括一个或多个收发板(panel),每一个收发板上分别可以承载一个或多个收发单元(TXRU)来收发信号,每个收发单元均可以形成一个或多个发送波束以及一个或多个接收波束。对于5G新空口(NR,New Radio)所支持的模拟波束(analog beam)来说,UE的一个收发单元(TXRU)在同一时刻只能够形成一个波束以发送或接收信息,从而导致基站和用户设备之间并不能在多个波束中任意选择波束进行信息收发。因此,在这种情况下,需要将基站的发送波束进行分组,并使得基站能够根据UE反馈的波束分组情况和信道测量结果来选择波束。但是,上述做法并不能使得基站获知足够的UE接收情况信息,影响了基站对波束的选择和判断,从而会导致增加系统开销,降低系统的信息传输效率。
发明内容
根据本公开的一个实施例,提供了一种波束选择方法,由基站执行,包括:接收用户设备反馈的所述基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量;至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择该接收集合对应的用于对所述用户设备发送信息的发送波束。
根据本公开的另一实施例,提供了一种波束选择方法,由用户设备执行, 包括:获取基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量;发送所述发送波束组信息以及接收能力信息,以使基站至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择与该接收集合对应的用于对所述用户设备发送信息的发送波束。
根据本公开的另一实施例,提供了一种基站,包括:接收单元,配置为接收用户设备反馈的所述基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量;选择单元,配置为至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择该接收集合对应的用于对所述用户设备发送信息的发送波束。
根据本公开的另一实施例,提供了一种用户设备,包括:获取单元,配置为获取基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量;发送单元,配置为发送所述发送波束组信息以及接收能力信息,以使基站至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择与该接收集合对应的用于对所述用户设备发送信息的发送波束。
根据本公开实施例提供的通信系统执行的波束选择方法以及对应的基站和用户设备,能够使得用户设备上传与基站的每个发送波束组对应的接收集合的接收能力信息,从而使得基站能够至少部分根据用户设备的接收能力信息选择相应的发送波束。这种波束选择方法、基站和用户设备能够显著降低系统开销,提高系统的信息传输效率。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开, 并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是根据本公开实施例的移动通信系统的示意图;
图2是示意性地示出本公开实施例的基站和用户设备的波束传输示意图;
图3是根据本公开一个实施例的由基站执行的波束选择方法的流程图;
图4是根据本公开一个实施例的利用参考信号资源位置选取用于反馈的发送波束的示意图;
图5是根据本公开一个实施例的基站、UE间信息传输情况的示意图;
图6是根据本公开另一个实施例的基站、UE间信息传输情况的示意图;
图7是根据本公开一个实施例的由用户设备执行的波束选择方法的流程图;
图8是根据本公开一个实施例的基站的结构框图;
图9是根据本公开一个实施例的用户设备的结构框图;
图10是根据本公开一个实施例的基站或用户设备的硬件结构的示例图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是本公开的全部实施例,应理解,本公开不受这里描述的示例实施例的限制。基于本公开中描述的本公开实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本公开的保护范围之内。
首先,参照图1来描述根据本公开实施例的无线通信系统。如图1所示,该无线通信系统可以包括基站10和用户设备(UE)20。UE 20可以接收基站10发送的物理下行控制信道(PDCCH)和物理下行共享信道(PDSCH)。需要认识到,尽管在图1中示出了一个基站和一个UE,但这只是示意性的,该无线通信系统可以包括一个或多个基站和一个或多个UE。此外,基站10可以是发送接收点(TRP),或者可以利用同一个中央处理器调度管理多个TRP,在下文中,可互换地使用术语“基站”和“TRP”。
图2示出了本公开实施例中基站和用户设备的波束传输示意图。其中,基站10可以具有多个发送波束,使得可以使用一个或多个发送波束向UE发送信号。另一方面,UE 20可以具有多个接收波束,使得可以使用一个或多个接收波束接收基站发送的信号。UE 20的每个接收波束均可以对应一个或多个基站10的发送波束,以使UE 20可以利用该接收波束来接收基站通过该接收波束的发送波束所发送的信息。UE 20可以根据对基站发送波束的信道测量结果来选择其每个接收波束所对应的发送波束。例如,可以选择接收质量超过阈值的发送波束作为其每个接收波束所对应的发送波束。
如前所述,在5G新空口场景下,UE需要依照接收波束的情况将基站的发送波束进行分组,以使基站在各个发送波束组中分别选择其中的部分或全部发送波束进行信息发送。然而,即使在上述分组情况下,基站依然无法获知用户设备的具体接收能力信息,因此有可能导致基站选择的发送波束的数量超出了UE的相应接收能力,从而引起信息传输部分或全部不成功的情况。因此,需要提供一种能够改善基站的信息发送效率并降低系统开销的方法。
下面,将描述根据本公开实施例的波束选择方法,图3示出了根据本公开实施例的由基站执行的波束选择方法。通过该方法,基站可以接收UE上传的具体接收能力信息,从而使得基站根据UE的接收能力信息来选择发送波束。
如上文所述,UE通常包括一个或多个收发板(panel),每一个收发板上分别可以承载一个或多个收发单元(TXRU)来收发信号,每个收发单元可以形成一个或多个接收波束。可以根据收发板、接收波束或者其他标准,对UE的接收能力进行分组,从而形成接收集合。例如,可以将UE的每个收发板的TXRU设置为一组,即一个接收集合。或者,可以根据每个收发板的TXRU所能够形成的接收波束设置为一组,即一个接收集合。或者,可以将UE的所有收发板上的所有TXRU所能够形成的接收波束任意地分为多个组,即每个组是一个接收集合。或者,可以将UE一个或多个收发板的一部分(即,该收发板上的一部分TXRU)作为UE的一个接收集合。上述形成接收集合的示例并不构成对于UE的接收集合的具体限制,在实际应用场景中,可以选择任意的划分方式划分UE的接收集合。
UE的每个接收集合中的TXRU的数量或者接收波束的数量代表着UE的接收能力,即,UE在该接收集合中能够同时形成的接收波束的数量,该数量可以作为接收集合的接收能力信息。例如,在根据收发板来分组的情况下,一个收发板上承载了2个TXRU,则说明UE的这个收发板形成的接收集合上能够在同一时刻形成两个接收波束,来接收基站的两个发送波束发送的信息。
如图3所示,在步骤S301中,接收用户设备反馈的所述基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量。
在本步骤之前,基站首先可以利用各个发送波束向UE发送信号。UE在接收基站通过各个发送波束发送的信号之后,可以对各个发送波束执行信道测量,以确定各个发送波束对应的信道质量。然后,根据UE对不同发送波束的信道测量结果,以及UE包含的接收波束的情况来对基站的发送波束进行分组。具体地,UE可以根据其不同的接收集合,依照信道状况在每个接收集合范围内选取一个或多个接收波束,将此一个或多个接收波束相对应的发送波束作为一个发送波束组,并把发送波束组的信息反馈给基站。
可选地,UE向基站反馈的发送波束组信息可以包括全部的发送波束组信息,也可以上报其中部分发送波束组信息;在UE上报的发送波束组信息中,可以包括每个发送波束组中全部发送波束的信息,也可以包括其中一个或多个发送波束组的全部发送波束中的一部分发送波束的信息。可选地,发送波束组信息可以包括发送波束的波束索引、波束分组情况(例如组别序号)等各种信息。例如,当UE共包括两个收发板,每个收发板承载2个TXRU时,可以认为UE具有两个接收集合,每个接收集合包含两个TXRU。从而,UE可以将每个接收集合上两个TXRU能够形成的两个接收波束所对应的基站的所有发送波束分为一组,从而向基站报告两个发送波束组信息,也可以向基站报告其中的一个发送波束组信息,例如,UE可以根据信道状况来选择并上报其中的某一个发送波束组信息。在其中的一个或多个发送波束组中,UE可以根据信道测量结果来选择其中的部分发送波束进行上报,例如,UE可以选择信道测量结果超过阈值的一组发送波束来上报给基站。此外,在 UE需要向基站反馈针对不同发送波束的信道测量结果时,本公开实施例的方法还可以包括基站接收UE上报的与所述至少部分发送波束对应的信道测量结果。其中,可选地,信道测量结果可以包括各个发送波束支持L1层的参考信号接收功率(RSRP),和/或信道状态信息(CSI)等等。
可选地,UE上报的发送波束组信息中的波束索引可以根据针对发送波束的信道测量结果来确定。例如,UE可以在某一个发送波束组中首先确定一个基准发送波束。例如,UE可以根据对某一个发送波束组的全部发送波束的信道测量结果(例如RSRP),在该发送波束组中确定基准发送波束,这里可以将信道测量结果最佳的波束作为基准发送波束,当然也可以用其他的预设标准来确定基准发送波束。随后,可以根据该发送波束组中其他发送波束与所述基准发送波束的空间位置关系、和/或用于其他发送波束的参考信号资源映射位置与所述基准发送波束的参考信号资源映射位置的相对位置关系,选择该发送波束组中的至少部分发送波束,并获取所述至少部分发送波束的波束索引。例如,当基准发送波束的RSRP测量结果最佳时,可以认为与基准发送波束空间位置邻近的那些波束的RSRP的结果也较好,因此可以选择这些波束,作为优选发送波束在发送波束组中向基站反馈。这里的空间位置邻近可以认为是这些优选发送波束与基准发送波束的空间方位角的夹角较小,例如所述夹角可以小于一定的阈值。在此基础上,考虑到基站一般在配置时会将空间位置邻近的波束配置在相邻的参考信号资源映射位置上,因此,在这种情况下,也可以将与基准波束的参考信号资源位置邻近的其他发送波束来作为优选发送波束进行反馈。图4示出本公开一个实施例中利用参考信号资源位置选取用于反馈的发送波束的示意图。如图4所示,在参考信号资源池的各资源映射位置中,映射了不同的发送波束,即,将对应的资源分配给不同的发送波束,分别编号为1-16。在图4所示实施例的基站配置中,相邻的资源映射位置所对应的发送波束在空间位置上均相邻,即波束2和波束3在空间位置上相邻,波束6和波束10在空间位置上也相邻。针对上述发送波束1-16,UE通过RSRP的测量,获知RSRP最高的基站的发送波束为波束7,因此,UE可以定义波束7为基准发送波束,并认为与波束7在空间位置上相邻的波束3、6、8和11的RSRP相对较高,并将波束7、3、6、8和11均上报给基站。在这种情况下,UE可以报告所选择的各个波束的 绝对编号,例如7、3、6、8、11。可替换地,为了节省报告的开销,UE还可以报告各个波束的索引与基准发送波束的索引之间的相对值,这针对大比特数的波束编号更为有意义。例如,在基准发送波束为7的例子中,UE可以上报上述波束为波束7、-4、-1、1、4,以期减少发送波束信息上报的比特数。其中,-4、-1、1、4为其他波束的索引相对于基准波束的相对值,基站可以通过7-4、7-1、7+1、7+4来确定其他波束。在这种情况下,UE可以在上报信息中设置一个比特来指示正负号,例如可以用值1代表“+”,用值0代表“-”,当然,也可以用值0代表“+”,用值1代表“-”。并且,可以用其余的比特上报其他发送波束与基准发送波束的波束索引之间的差的绝对值,例如,图4中上述波束相对编号“-4”中的“4”可以表示为“100”。这样,可以将通过表示正负号的比特与表示波束索引之间的差的绝对值的比特的组合来报告某个发送波束与基准发送波束的相对编号,以期尽量减少系统开销。当然,可选地,还可以综合考虑其他发送波束与基准发送波束的空间位置关系以及参考信号资源映射位置的相对位置关系来选择用于反馈的发送波束。在UE确定基准发送波束,并据此获得需上报的发送波束的波束索引之后,UE需要告知基站此基准发送波束,才能够使得基站根据基准发送波束和与基准发送波束的相对编号来准确获知所有UE反馈的发送波束的信息。例如,UE可以通过显式的方式将基准发送波束通知基站,可选地,UE可以对每个报告的波束设置一个比特,并且利用该比特来通知基站该波束是否为基准发送波束,例如,可以用比特1代表该波束是基准发送波束,而用比特0代表该波束不是基准发送波束,当然反之亦可。再例如,UE还可以通过隐式的方式通知基准发送波束。例如,UE和基站可以约定在UE上报的一系列波束中的第一个波束即为默认的基准发送波束,而其他波束均为相对于此基准发送波束的相对编号。上述描述仅为示例,在实际应用中,可以采用任何方式确定基准发送波束并表示和基准发送波束的相对编号。
可选地,UE的接收集合的接收能力信息可以作为一次性的或长周期的信息进行发送。例如,当每个接收集合的接收能力信息均相同时,可以将此接收能力信息联合起来仅上报一次,而不需要伴随每个不同的发送波束组信息进行上报,以最大限度地节约系统开销;再例如,当其中一个或多个接收集合的接收能力信息有所不同时,则需要将不同的发送波束组及其相应的接 收集合的接收能力信息分别上报。
在步骤S302中,至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择该接收集合对应的用于对所述用户设备发送信息的发送波束。
在本步骤中,可选地,在获取UE反馈的例如包括发送波束组中至少部分发送波束的波束索引等信息后,基站还可以根据所述发送波束组信息、每个接收集合的接收能力信息以及每个发送波束组中至少部分发送波束的波束信息等共同来选择所述发送波束。其中,考虑到UE并不希望基站针对某个接收集合使用其接收能力信息所指示的的数量之上的发送波束来向其发送信号,因此,基站所选择的与某一个接收集合对应的发送波束组中的发送波束的数量可以小于或等于在该接收集合中能够同时形成的接收波束的数量。也就是说,当UE的某个接收集合只能包含两个TXRU,因此只能同时形成两个接收波束时,UE将希望基站针对此接收集合采用发送波束发送信息的个数是小于等于2的。只有在这种情况下,UE才有能力接收到基站发送的全部发送波束上的信息。可选地,基站可以根据UE反馈的发送波束组信息中包含的发送波束来进行选择,例如,基站可以根据UE上报的RSRP结果选择RSRP较高的发送波束来发送信息。可替换地,基站还可以选择没有包含在UE反馈的发送波束组中的发送波束,例如,基站可以选择与UE上报的RSRP较高的发送波束的空间位置关系和/或参考信号资源映射位置的相对位置关系较为接近的发送波束来发送信息。
基站可以在确定所选择的发送波束之后向UE发送波束指示,以指示UE基站所选择的发送波束的相关信息。可选地,当UE根据其相应接收集合的接收能力信息选择的发送波束组中发送波束的数量不同时,基站也可以相应地确定是否需要发送波束指示信息,并在发送时可以选择不同的波束指示信息进行发送。例如,当UE上报的发送波束组中所述至少部分发送波束的数量小于或等于在与该发送波束组对应的接收集合中能够同时形成的接收波束的数量(即接收集合中的接收能力信息)时,基站仅能够从UE上报的相应发送波束组中进行发送波束的选择,因此,在这种情况下,基站所选择的发送波束的数量一定不会大于UE的这个接收集合的接收能力信息,而UE也能够确保自身有能力在相应的接收集合上接收基站通过相应发送波束 发送的信息,相应地,基站也可能无需对自己最终选择的发送波束的具体信息对UE进行指示,而可以仅指示其所选择的发送波束所对应的发送波束组的信息。可替换地,UE也可以使得其上报的发送波束组中所述至少部分发送波束的数量大于在与该发送波束组对应的接收集合中能够同时形成的接收波束的数量,这时,当基站从这些发送波束中进行选择时,就有可能需要将其选择的发送波束和/或发送波束所在的发送波束组的信息告知UE,以期UE能够尽量与基站配合进行接收。当然,上述不同情况下基站对UE的波束指示均可以依实际情况进行选择。
例如,在一个示例中,当基站选择了位于发送波束组(1)中的发送波束1、3,以及发送波束组(2)中的发送波束4,则基站可以仅将发送波束组(1)和(2)告知UE,而无需将波束1、3、4均告知UE。因此,基站可以通过告知UE发送波束组的信息,而不是具体的发送波束的信息来节约系统开销。
在另一个示例中,当UE的某个接收集合的接收能力信息为2,但上报的与该接收集合对应的发送波束组中的发送波束为4个(例如波束5、6、7、8)时,基站可能需要从这4个发送波束中选择其中的2个发送波束来发送信息,以保证在UE接收集合的相应接收能力之内。例如,基站可以选择发送波束5和7。在这种情况下,基站需要将选择的发送波束的相关信息告知UE。如前所述,基站可以选择将发送波束的信息均告知UE,即基站告知UE其选择的发送波束分别为波束5和波束7,而这种方法的系统开销较大。可替换地,基站还可以将UE上报的4个波束按照UE该接收集合的接收能力信息进行组合,每个组合中均可以包括等于或者小于相应接收集合的接收能力信息的数量的波束个数。例如,本示例中此接收集合的接受能力信息的数量为2,因此,可以设定组合1包括两个波束5和6、组合2包括波束7和8、组合3包括波束5和7、组合4包括波束6和8。上述组合关系可以由基站和UE共同预先存储或者由基站通过信令提前告知UE。此后,当基站选择了波束5和7时,仅需告知UE当前选择的为组合3即可。通过这一组合式的波束指示发送方式,可以进一步地节约系统的开销。
可选地,当基站仅根据所选择的发送波束向UE发送指示所述发送波束所在的所述发送波束组的信息时,由于UE并不能够准确获知基站所选择的 发送波束的具体情况,因此可以在不同的时隙和/或资源单元上通过轮询方式接收信息。例如,基站可以通过例如信令的方式与UE事先约定信息的收发方式。所述信令可以为MAC CE信令,也可以为RRC信令或者DCI指示等。具体地,基站可以在不同的时隙和/或资源单元位置上以不同的发送波束来发送信息,而UE则可以在接收到基站指示的相应发送波束组信息后,依照约定在不同的时隙和/或资源单元上依次利用与发送波束组对应的不同的接收波束来接收信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知不同的时隙和/或资源单元内哪种情况的信道质量较好,并将测量结果反馈至基站,以使基站尽可能地根据UE的信道测量结果选择用于发送信息的发送波束。
图5示出本公开一个例子的基站、UE间信息传输情况,如图5所示,基站的发送波束1、2所组成的发送波束组(3)与UE的接收集合1相对应,UE的接收集合1在同一时刻能够产生两个接收波束1、2来接收基站相应的发送波束所发送的信息。当基站希望利用发送波束组(3)中的发送波束发送信息时,其仅告知UE发送波束组的信息,而并未准确告知UE将用发送波束1、2中的哪个发送波束进行发送。此时,基站和UE将约定:在时隙1内,基站通过发送波束1发送信息,而UE通过接收波束1进行接收;在时隙2内,基站通过发送波束2发送信息,而UE通过接收波束2进行接收;而在时隙3内,基站通过发送波束1和2共同发送信息,UE通过接收波束1和2共同进行接收。这样,不管基站选择哪个或哪几个发送波束进行发送,UE均能够在相应的时间点选择相应的接收波束准确地接收信息。当然,基站也可以仅在时隙1内通过发送波束1发送信息,而UE也相应地会仅在时隙1内通过接收波束1接收到信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知上述3个时隙内哪种情况信道质量最好(例如时隙1),并将测量结果反馈至基站,以使基站尽可能地根据UE的信道测量结果选择时隙1中用于发送信息的发送波束1。
可替换地,基站还可以在约定的时间周期内在不同的时隙和/或资源单元位置上以相同的发送波束来发送信息,而UE可以在接收到基站指示的相应发送波束组信息后,依照约定在不同的时隙和/或资源单元上依次利用与发送波束组对应的不同的接收波束来接收信息。进一步地,UE还可以根据信 息接收状况进行信道测量,并能够获知不同的时隙和/或资源单元内哪种情况的信道质量较好,并尽可能地根据信道测量结果选择相应的接收波束来接收信息。
图6示出本公开另一个例子的基站、UE间信息传输情况,与图5相类似地,基站的发送波束1、2所组成的发送波束组(3)与UE的接收集合1相对应,UE的接收集合1在同一时刻能够产生两个接收波束1、2来接收基站相应的发送波束所发送的信息。当基站希望利用发送波束组(3)中的发送波束发送信息时,其仅告知UE发送波束组的信息,而并未准确告知UE将用发送波束1、2中的哪个发送波束进行发送。而与图5中不同的是,基站将仅通过其中的一种方式发送信息,例如,基站可以在预设的时间内仅通过发送波束1和2共同发送信息,而UE在这段相应的时间内则还是分别采用不同的接收波束接收信息:例如,在时隙1内,UE通过接收波束1进行接收;在时隙2内,UE通过接收波束2进行接收;而在时隙3内,UE通过接收波束1和2共同进行接收。在这种情况下,不管基站采用哪种方式进行发送,UE均会轮流采用不同的接收波束接收信息,这样就保证了UE总能够在某一时期接收到质量较好的信息。可选地,UE还可以在此过程中根据信息接收状况进行信道测量,并能够获知上述3个时隙内哪种情况信道质量最好(例如时隙3),并尽量采用信道质量最好的接收波束1和2共同来接收基站发送的信息。
根据本公开实施例提供的由基站执行的波束选择方法,能够使得用户设备上传与基站的每个发送波束组对应的接收集合的接收能力信息,从而基站能够至少部分根据用户设备的接收能力信息选择相应的发送波束。这种波束选择方法能够显著降低系统开销,提高系统的信息传输效率。
下面,将描述根据本公开实施例的波束选择方法,图7示出了根据本公开实施例的由UE执行的波束选择方法。通过该方法,UE可以向基站上报其具体接收能力信息,从而使得基站根据UE的接收能力信息来选择发送波束。
如图7所示,在步骤S701中,获取基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接 收波束的数量。
UE的接收集合可以为UE中的收发板,即panel,收发板上分别可以承载一个或多个TXRU来收发信息。在本公开实施例中,UE的一个接收集合上承载的TXRU的数量可以作为UE接收集合的接收能力信息,也即将UE在该接收集合中能够同时形成的接收波束的数量作为接收鞂的接收能力信息。例如,UE的一个收发板上承载了2个TXRU,则说明UE的这个收发板形成的接收集合上能够在同一时刻形成两个接收波束,来接收其对应基站的两个发送波束发送的信息。当然,UE的接收集合还可以具有其他的表现形式。例如,可以将UE一个或多个收发板的特定部分作为UE的一个接收集合。再例如,还可以将UE任意的部分接收波束的组合形成为UE的一个接收集合,在此接收集合中,UE在同一时刻能够形成的接收波束的数量也即为这一接收集合的接收能力信息。上述接收集合的示例并不构成对于UE的接收集合的具体限制,在实际应用场景中,可以选择任意的划分方式划分UE的接收集合。
在本步骤之前,基站首先可以利用各个发送波束向UE发送信号。UE在接收基站通过各个发送波束发送的信号之后,可以对各个发送波束执行信道测量,以确定各个发送波束对应的信道质量。然后,根据UE对不同发送波束的信道测量结果,以及UE包含的接收波束的情况来对基站的发送波束进行分组。具体地,UE可以根据其不同的接收集合,依照信道状况在每个接收集合范围内选取一个或多个接收波束,并将此一个或多个接收波束相对应的发送波束作为一个发送波束组。UE所确定的发送波束组是与UE的接收集合相对应的。
可选地,UE所获取的发送波束组信息可以包括发送波束的波束索引、波束分组情况(例如组别序号)等各种信息。在UE获取的发送波束组信息中,可以包括每个发送波束组中全部发送波束的信息,也可以包括其中一个或多个发送波束组的全部发送波束中的一部分发送波束的信息。可选地,发送波束组信息可以包括发送波束的波束索引、波束分组情况(例如组别序号)等各种信息。例如,当UE共包括两个收发板时,可以认为UE具有两个接收集合,每个接收集合上包含两个TXRU。从而,UE可以将每个接收集合上两个TXRU所优选的两个接收波束所对应的所有基站的发送波束分为一 组,共获取两组发送波束组信息,也可以向基站报告其中的一个发送波束组信息,例如,UE可以根据信道状况来选择并上报其中的某一个发送波束组信息。在其中的一个或多个发送波束组中,UE可以根据信道测量结果来选择其中的部分发送波束,例如,UE可以选择某个发送波束组中信道测量结果超过阈值的一组发送波束的信息作为该发送波束组的发送波束组信息。
可选地,UE的发送波束组信息中的波束索引可以根据针对发送波束的信道测量结果来确定。例如,UE可以在某一个发送波束组中首先确定一个基准发送波束。例如,UE可以根据对某一个发送波束组的全部发送波束的信道测量结果(例如RSRP),在该发送波束组中确定基准发送波束,这里可以将信道测量结果最佳的波束作为基准发送波束,当然也可以用其他的预设标准来确定基准发送波束。随后,可以根据该发送波束组中其他发送波束与所述基准发送波束的空间位置关系、和/或用于其他发送波束的参考信号资源映射位置与所述基准发送波束的参考信号资源映射位置的相对位置关系,选择该发送波束组中的至少部分发送波束,并获取所述至少部分发送波束的波束索引。例如,当基准发送波束的RSRP测量结果最佳时,可以认为与基准发送波束空间位置邻近的那些波束的RSRP的结果也较好,因此可以选择这些波束,作为优选发送波束在发送波束组中向基站反馈。这里的空间位置邻近可以认为是这些优选发送波束与基准发送波束的空间方位角的夹角较小,例如所述夹角可以小于一定的阈值。在此基础上,考虑到基站一般在配置时会将空间位置邻近的波束配置在相邻的参考信号资源映射位置上,因此,在这种情况下,也可以将与基准波束的参考信号资源位置邻近的其他发送波束来作为优选发送波束进行反馈。图4示出本公开一个实施例中利用参考信号资源位置选取用于反馈的发送波束的示意图。如图4所示,在参考信号资源池的各资源映射位置中,映射了不同的发送波束,即,将对应的资源分配给不同的发送波束,分别编号为1-16。在图4所示实施例的基站配置中,相邻的资源映射位置所对应的发送波束在空间位置上均相邻,即波束2和波束3在空间位置上相邻,波束6和波束10在空间位置上也相邻。针对上述发送波束1-16,UE通过RSRP的测量,获知RSRP最高的基站的发送波束为波束7,因此,UE可以定义波束7为基准发送波束,并认为与波束7在空间位置上相邻的波束3、6、8和11的RSRP相对较高,并将波束7、3、6、8 和11均上报给基站。在这种情况下,UE可以报告所选择的各个波束的绝对编号,例如7、3、6、8、11。可替换地,为了节省报告的开销,UE还可以报告各个波束的索引与基准发送波束的索引之间的相对值,这针对大比特数的波束编号更为有意义。例如,在基准发送波束为7的例子中,UE可以上报上述波束为波束7、-4、-1、1、4,以期减少发送波束信息上报的比特数。其中,-4、-1、1、4为其他波束的索引相对于基准波束的相对值,基站可以通过7-4、7-1、7+1、7+4来确定其他波束。在这种情况下,UE可以在上报信息中设置一个比特来指示正负号,例如可以用值1代表“+”,用值0代表“-”,当然,也可以用值0代表“+”,用值1代表“-”。并且,可以用其余的比特上报其他发送波束与基准发送波束的波束索引之间的差的绝对值,例如,图4中上述波束相对编号“-4”中的“4”可以表示为“100”。这样,可以将通过表示正负号的比特与表示波束索引之间的差的绝对值的比特的组合来报告某个发送波束与基准发送波束的相对编号,以期尽量减少系统开销。当然,可选地,还可以综合考虑其他发送波束与基准发送波束的空间位置关系以及参考信号资源映射位置的相对位置关系来选择用于反馈的发送波束。上述描述仅为示例,在实际应用中,可以采用任何方式确定基准发送波束并表示和基准发送波束的相对编号。
在步骤S702中,发送所述发送波束组信息以及所述接收能力信息,以使基站至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择与该接收集合对应的用于对所述用户设备发送信息的发送波束。
可选地,UE可以向基站上报全部的发送波束组信息,也可以根据例如信道状况上报其中部分发送波束组信息,其中,UE可以将信道质量较好的某一个或几个发送波束组信息上报给基站。
可选地,在UE需要向基站反馈针对不同发送波束的信道测量结果时,本公开实施例的方法还可以包括上报与所述至少部分发送波束对应的信道测量结果。其中,可选地,信道测量结果可以包括各个发送波束支持L1层的参考信号接收功率(RSRP),和/或信道状态信息(CSI)等等。
另外,在如图4所示的选择基准发送波束并反馈波束索引的示例中,当UE确定基准发送波束,并据此获得需上报的发送波束的波束索引之后,UE还需要告知基站此基准发送波束是哪个发送波束,才能够使得基站根据基准 发送波束和与基准发送波束的相对编号来准确获知所有UE反馈的发送波束的信息。例如,UE可以通过显式的方式将基准发送波束通知基站,可选地,UE可以对每个报告的波束设置一个比特,并且利用该比特来通知基站该波束是否为基准发送波束,例如,可以用比特1代表该波束是基准发送波束,而用比特0代表该波束不是基准发送波束,当然反之亦可。再例如,UE还可以通过隐式的方式通知基准发送波束。例如,UE和基站可以约定在UE上报的一系列波束中的第一个波束即为默认的基准发送波束,而其他波束均为相对于此基准发送波束的相对编号。
可选地,UE的接收集合的接收能力信息可以作为一次性的或长周期的信息进行发送。例如,当每个接收集合的接收能力信息均相同时,可以将此接收能力信息联合起来仅上报一次,而不需要伴随每个不同的发送波束组信息进行上报,以最大限度地节约系统开销;再例如,当其中一个或多个接收集合的接收能力信息有所不同时,则需要将不同的发送波束组及其相应的接收集合的接收能力信息分别上报。
可选地,在获取UE反馈的例如包括发送波束组中至少部分发送波束的波束索引等信息后,基站还可以根据所述发送波束组信息、每个接收集合的接收能力信息以及每个发送波束组中至少部分发送波束的波束信息等共同来选择所述发送波束。其中,考虑到UE并不希望基站针对某个接收集合使用其接收能力信息所指示的的数量之上的发送波束来向其发送信号,因此,基站所选择的与某一个接收集合对应的发送波束组中的发送波束的数量可以小于或等于在该接收集合中能够同时形成的接收波束的数量。也就是说,当UE的某个接收集合只能包含两个TXRU,因此只能同时形成两个接收波束时,UE将希望基站针对此接收集合采用发送波束发送信息的个数是小于等于2的。只有在这种情况下,UE才有能力接收到基站发送的全部发送波束上的信息。可选地,基站可以根据UE反馈的发送波束组信息中包含的发送波束来进行选择,例如,基站可以根据UE上报的RSRP结果选择RSRP较高的发送波束来发送信息。可替换地,基站还可以选择没有包含在UE反馈的发送波束组中的发送波束,例如,基站可以选择与UE上报的RSRP较高的发送波束的空间位置关系和/或参考信号资源映射位置的相对位置关系较为接近的发送波束来发送信息。
UE可以根据基站发送的波束指示来获知基站所选择的发送波束的相关信息。可选地,当UE根据其相应接收集合的接收能力信息选择的发送波束组中发送波束的数量不同时,基站也可以相应地确定是否需要发送波束指示信息,并在发送时可以选择不同的波束指示信息进行发送。例如,当UE上报的发送波束组中所述至少部分发送波束的数量小于或等于在与该发送波束组对应的接收集合中能够同时形成的接收波束的数量(即接收集合中的接收能力信息)时,基站仅能够从UE上报的相应发送波束组中进行发送波束的选择,因此,在这种情况下,基站所选择的发送波束的数量一定不会大于UE的这个接收集合的接收能力信息,而UE也能够确保自身有能力在相应的接收集合上接收基站通过相应发送波束发送的信息,相应地,基站也可能无需对自己最终选择的发送波束的具体信息对UE进行指示,而可以仅指示其所选择的发送波束所对应的发送波束组的信息。可替换地,UE也可以使得其上报的发送波束组中所述至少部分发送波束的数量大于在与该发送波束组对应的接收集合中能够同时形成的接收波束的数量,这时,当基站从这些发送波束中进行选择时,就有可能需要将其选择的发送波束和/或发送波束所在的发送波束组的信息告知UE,以期UE能够尽量与基站配合进行接收。当然,上述不同情况下基站对UE的波束指示均可以依实际情况进行选择。
例如,在一个示例中,当基站选择了位于发送波束组(1)中的发送波束1、3,以及发送波束组(2)中的发送波束4,则基站可以仅将发送波束组(1)和(2)告知UE,而无需将波束1、3、4均告知UE。因此,基站可以通过告知UE发送波束组的信息,而不是具体的发送波束的信息来节约系统开销。
在另一个示例中,当UE的某个接收集合的接收能力信息为2,但上报的与该接收集合对应的发送波束组中的发送波束为4个(例如波束5、6、7、8)时,基站可能需要从这4个发送波束中选择其中的2个发送波束来发送信息,以保证在UE接收集合的相应接收能力之内。例如,基站可以选择发送波束5和7。在这种情况下,基站需要将选择的发送波束的相关信息告知UE。如前所述,基站可以选择将发送波束的信息均告知UE,即基站告知UE其选择的发送波束分别为波束5和波束7,而这种方法的系统开销较大。可替换地,基站还可以将UE上报的4个波束按照UE该接收集合的接收能 力信息进行组合,每个组合中均可以包括等于或者小于相应接收集合的接收能力信息的数量的波束个数。例如,本示例中此接收集合的接受能力信息的数量为2,因此,可以设定组合1包括两个波束5和6、组合2包括波束7和8、组合3包括波束5和7、组合4包括波束6和8。上述组合关系可以由基站和UE共同预先存储或者由基站通过信令提前告知UE。此后,当基站选择了波束5和7时,仅需告知UE当前选择的为组合3即可。通过这一组合式的波束指示发送方式,可以进一步地节约系统的开销。
可选地,当基站仅根据所选择的发送波束向UE发送指示所述发送波束所在的所述发送波束组的信息时,由于UE并不能够准确获知基站所选择的发送波束的具体情况,因此可以在不同的时隙和/或资源单元上通过轮询方式接收信息。例如,基站可以通过例如信令的方式与UE事先约定信息的收发方式。所述信令可以为MAC CE信令,也可以为RRC信令或者DCI指示等。具体地,基站可以在不同的时隙和/或资源单元位置上以不同的发送波束来发送信息,而UE则可以在接收到基站指示的相应发送波束组信息后,依照约定在不同的时隙和/或资源单元上依次利用与发送波束组对应的不同的接收波束来接收信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知不同的时隙和/或资源单元内哪种情况的信道质量较好,并将测量结果反馈至基站,以使基站尽可能地根据UE的信道测量结果选择用于发送信息的发送波束。
图5示出本公开一个例子的基站、UE间信息传输情况,如图5所示,基站的发送波束1、2所组成的发送波束组(3)与UE的接收集合1相对应,UE的接收集合1在同一时刻能够产生两个接收波束1、2来接收基站相应的发送波束所发送的信息。当基站希望利用发送波束组(3)中的发送波束发送信息时,其仅告知UE发送波束组的信息,而并未准确告知UE将用发送波束1、2中的哪个发送波束进行发送。此时,基站和UE将约定:在时隙1内,基站通过发送波束1发送信息,而UE通过接收波束1进行接收;在时隙2内,基站通过发送波束2发送信息,而UE通过接收波束2进行接收;而在时隙3内,基站通过发送波束1和2共同发送信息,UE通过接收波束1和2共同进行接收。这样,不管基站选择哪个或哪几个发送波束进行发送,UE均能够在相应的时间点选择相应的接收波束准确地接收信息。当然,基 站也可以仅在时隙1内通过发送波束1发送信息,而UE也相应地会仅在时隙1内通过接收波束1接收到信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知上述3个时隙内哪种情况信道质量最好(例如时隙1),并将测量结果反馈至基站,以使基站尽可能地根据UE的信道测量结果选择时隙1中用于发送信息的发送波束1。
可替换地,基站还可以在约定的时间周期内在不同的时隙和/或资源单元位置上以相同的发送波束来发送信息,而UE可以在接收到基站指示的相应发送波束组信息后,依照约定在不同的时隙和/或资源单元上依次利用与发送波束组对应的不同的接收波束来接收信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知不同的时隙和/或资源单元内哪种情况的信道质量较好,并尽可能地根据信道测量结果选择相应的接收波束来接收信息。
图6示出本公开另一个例子的基站、UE间信息传输情况,与图5相类似地,基站的发送波束1、2所组成的发送波束组(3)与UE的接收集合1相对应,UE的接收集合1在同一时刻能够产生两个接收波束1、2来接收基站相应的发送波束所发送的信息。当基站希望利用发送波束组(3)中的发送波束发送信息时,其仅告知UE发送波束组的信息,而并未准确告知UE将用发送波束1、2中的哪个发送波束进行发送。而与图5中不同的是,基站将仅通过其中的一种方式发送信息,例如,基站可以在预设的时间内仅通过发送波束1和2共同发送信息,而UE在这段相应的时间内则还是分别采用不同的接收波束接收信息:例如,在时隙1内,UE通过接收波束1进行接收;在时隙2内,UE通过接收波束2进行接收;而在时隙3内,UE通过接收波束1和2共同进行接收。在这种情况下,不管基站采用哪种方式进行发送,UE均会轮流采用不同的接收波束接收信息,这样就保证了UE总能够在某一时期接收到质量较好的信息。可选地,UE还可以在此过程中根据信息接收状况进行信道测量,并能够获知上述3个时隙内哪种情况信道质量最好(例如时隙3),并尽量采用信道质量最好的接收波束1和2共同来接收基站发送的信息。
根据本公开实施例提供的由用户设备执行的波束选择方法,能够使得用户设备上传与基站的每个发送波束组对应的接收集合的接收能力信息,从而 基站能够至少部分根据用户设备的接收能力信息选择相应的发送波束。这种波束选择方法能够显著降低系统开销,提高系统的信息传输效率。
下面,参照图8来描述根据本发明实施例的基站。该基站可以执行上述波束选择方法。由于该基站的操作与图3中所述的波束选择方法的各个步骤基本相同,因此在这里只对其进行简要的描述,而省略对相同内容的重复描述。
如图8所示,基站800可以包括接收单元810和选择单元820。需要认识到,图8仅示出与本发明的实施例相关的部件,而省略了其他部件,但这只是示意性的,根据需要,基站800可以包括其他部件。
接收单元810接收用户设备反馈的所述基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量。
UE的接收集合可以为UE中的收发板,即panel,收发板上分别可以承载一个或多个TXRU来收发信息。在本公开实施例中,UE的一个接收集合上承载的TXRU的数量可以作为UE接收集合的接收能力信息,也即将UE在该接收集合中能够同时形成的接收波束的数量作为接收鞂的接收能力信息。例如,UE的一个收发板上承载了2个TXRU,则说明UE的这个收发板形成的接收集合上能够在同一时刻形成两个接收波束,来接收其对应基站的两个发送波束发送的信息。当然,UE的接收集合还可以具有其他的表现形式。例如,可以将UE一个或多个收发板的特定部分作为UE的一个接收集合。再例如,还可以将UE任意的部分接收波束的组合形成为UE的一个接收集合,在此接收集合中,UE在同一时刻能够形成的接收波束的数量也即为这一接收集合的接收能力信息。上述接收集合的示例并不构成对于UE的接收集合的具体限制,在实际应用场景中,可以选择任意的划分方式划分UE的接收集合。
在本实施例中,基站800还可以包括发送单元(未示出),所述发送单元首先可以利用各个发送波束向UE发送信号。UE在接收基站通过各个发送波束发送的信号之后,可以对各个发送波束执行信道测量,以确定各个发送波束对应的信道质量。然后,根据UE对不同发送波束的信道测量结果, 以及UE包含的接收波束的情况来对基站的发送波束进行分组。具体地,UE可以根据其不同的接收集合,依照信道状况在每个接收集合范围内选取一个或多个接收波束,将此一个或多个接收波束相对应的发送波束作为一个发送波束组,并把发送波束组的信息反馈给基站。
可选地,UE向基站反馈的发送波束组信息可以包括全部的发送波束组信息,也可以上报其中部分发送波束组信息;在UE上报的发送波束组信息中,可以包括每个发送波束组中全部发送波束的信息,也可以包括其中一个或多个发送波束组的全部发送波束中的一部分发送波束的信息。可选地,发送波束组信息可以包括发送波束的波束索引、波束分组情况(例如组别序号)等各种信息。例如,当UE共包括两个收发板时,可以认为UE具有两个接收集合,每个接收集合上包含两个TXRU。从而,UE可以将每个接收集合上两个TXRU所优选的两个接收波束所对应的所有基站的发送波束分为一组,并一共向基站上传两组发送波束组信息,也可以向基站报告其中的一个发送波束组信息,例如,UE可以根据信道状况来选择并上报其中的某一个发送波束组信息。在其中的一个或多个发送波束组中,UE可以根据信道测量结果来选择其中的部分发送波束进行上报,例如,UE可以选择信道测量结果超过阈值的一组发送波束来上报给基站。此外,在UE需要向基站反馈针对不同发送波束的信道测量结果时,本公开实施例的方法还可以包括基站接收UE上报的与所述至少部分发送波束对应的信道测量结果。其中,可选地,信道测量结果可以包括各个发送波束支持L1层的参考信号接收功率(RSRP),和/或信道状态信息(CSI)等等。
可选地,UE上报的发送波束组信息中的波束索引可以根据针对发送波束的信道测量结果来确定。例如,UE可以在某一个发送波束组中首先确定一个基准发送波束。例如,UE可以根据对某一个发送波束组的全部发送波束的信道测量结果(例如RSRP),在该发送波束组中确定基准发送波束,这里可以将信道测量结果最佳的波束作为基准发送波束,当然也可以用其他的预设标准来确定基准发送波束。随后,可以根据该发送波束组中其他发送波束与所述基准发送波束的空间位置关系、和/或用于其他发送波束的参考信号资源映射位置与所述基准发送波束的参考信号资源映射位置的相对位置关系,选择该发送波束组中的至少部分发送波束,并获取所述至少部分发送波 束的波束索引。例如,当基准发送波束的RSRP测量结果最佳时,可以认为与基准发送波束空间位置邻近的那些波束的RSRP的结果也较好,因此可以选择这些波束,作为优选发送波束在发送波束组中向基站反馈。这里的空间位置邻近可以认为是这些优选发送波束与基准发送波束的空间方位角的夹角较小,例如所述夹角可以小于一定的阈值。在此基础上,考虑到基站一般在配置时会将空间位置邻近的波束配置在相邻的参考信号资源映射位置上,因此,在这种情况下,也可以将与基准波束的参考信号资源位置邻近的其他发送波束来作为优选发送波束进行反馈。图4示出本公开一个实施例中利用参考信号资源位置选取用于反馈的发送波束的示意图。如图4所示,在参考信号资源池的各资源映射位置中,映射了不同的发送波束,即,将对应的资源分配给不同的发送波束,分别编号为1-16。在图4所示实施例的基站配置中,相邻的资源映射位置所对应的发送波束在空间位置上均相邻,即波束2和波束3在空间位置上相邻,波束6和波束10在空间位置上也相邻。针对上述发送波束1-16,UE通过RSRP的测量,获知RSRP最高的基站的发送波束为波束7,因此,UE可以定义波束7为基准发送波束,并认为与波束7在空间位置上相邻的波束3、6、8和11的RSRP相对较高,并将波束7、3、6、8和11均上报给基站。在这种情况下,UE可以报告所选择的各个波束的绝对编号,例如7、3、6、8、11。可替换地,为了节省报告的开销,UE还可以报告各个波束的索引与基准发送波束的索引之间的相对值,这针对大比特数的波束编号更为有意义。例如,在基准发送波束为7的例子中,UE可以上报上述波束为波束7、-4、-1、1、4,以期减少发送波束信息上报的比特数。其中,-4、-1、1、4为其他波束的索引相对于基准波束的相对值,基站可以通过7-4、7-1、7+1、7+4来确定其他波束。在这种情况下,UE可以在上报信息中设置一个比特来指示正负号,例如可以用值1代表“+”,用值0代表“-”,当然,也可以用值0代表“+”,用值1代表“-”。并且,可以用其余的比特上报其他发送波束与基准发送波束的波束索引之间的差的绝对值,例如,图4中上述波束相对编号“-4”中的“4”可以表示为“100”。这样,可以将通过表示正负号的比特与表示波束索引之间的差的绝对值的比特的组合来报告某个发送波束与基准发送波束的相对编号,以期尽量减少系统开销。当然,可选地,还可以综合考虑其他发送波束与基准发送波束的空 间位置关系以及参考信号资源映射位置的相对位置关系来选择用于反馈的发送波束。在UE确定基准发送波束,并据此获得需上报的发送波束的波束索引之后,UE需要告知基站此基准发送波束,才能够使得基站根据基准发送波束和与基准发送波束的相对编号来准确获知所有UE反馈的发送波束的信息。例如,UE可以通过显式的方式将基准发送波束通知基站,可选地,UE可以对每个报告的波束设置一个比特,并且利用该比特来通知基站该波束是否为基准发送波束,例如,可以用比特1代表该波束是基准发送波束,而用比特0代表该波束不是基准发送波束,当然反之亦可。再例如,UE还可以通过隐式的方式通知基准发送波束。例如,UE和基站可以约定在UE上报的一系列波束中的第一个波束即为默认的基准发送波束,而其他波束均为相对于此基准发送波束的相对编号。上述描述仅为示例,在实际应用中,可以采用任何方式确定基准发送波束并表示和基准发送波束的相对编号。
可选地,UE的接收集合的接收能力信息可以作为一次性的或长周期的信息进行发送。例如,当每个接收集合的接收能力信息均相同时,可以将此接收能力信息联合起来仅上报一次,而不需要伴随每个不同的发送波束组信息进行上报,以最大限度地节约系统开销;再例如,当其中一个或多个接收集合的接收能力信息有所不同时,则需要将不同的发送波束组及其相应的接收集合的接收能力信息分别上报。
选择单元820至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择该接收集合对应的用于对所述用户设备发送信息的发送波束。
选择单元820可以在获取UE反馈的例如包括发送波束组中至少部分发送波束的波束索引等信息后,根据所述发送波束组信息、每个接收集合的接收能力信息以及每个发送波束组中至少部分发送波束的波束信息等共同来选择所述发送波束。其中,考虑到UE并不希望基站针对某个接收集合使用其接收能力信息所指示的的数量之上的发送波束来向其发送信号,因此,选择单元820所选择的与某一个接收集合对应的发送波束组中的发送波束的数量可以小于或等于在该接收集合中能够同时形成的接收波束的数量。也就是说,当UE的某个接收集合只能包含两个TXRU,因此只能同时形成两个接收波束时,UE将希望基站针对此接收集合采用发送波束发送信息的个数是 小于等于2的。只有在这种情况下,UE才有能力接收到基站发送的全部发送波束上的信息。可选地,基站可以根据UE反馈的发送波束组信息中包含的发送波束来进行选择,例如,基站可以根据UE上报的RSRP结果选择RSRP较高的发送波束来发送信息。可替换地,基站还可以选择没有包含在UE反馈的发送波束组中的发送波束,例如,基站可以选择与UE上报的RSRP较高的发送波束的空间位置关系和/或参考信号资源映射位置的相对位置关系较为接近的发送波束来发送信息。
选择单元820可以在确定所选择的发送波束之后向UE发送波束指示,以指示UE基站所选择的发送波束的相关信息。可选地,当UE根据其相应接收集合的接收能力信息选择的发送波束组中发送波束的数量不同时,基站也可以相应地确定是否需要发送波束指示信息,并在发送时可以选择不同的波束指示信息进行发送。例如,当UE上报的发送波束组中所述至少部分发送波束的数量小于或等于在与该发送波束组对应的接收集合中能够同时形成的接收波束的数量(即接收集合中的接收能力信息)时,选择单元820仅能够从UE上报的相应发送波束组中进行发送波束的选择,因此,在这种情况下,选择单元820所选择的发送波束的数量一定不会大于UE的这个接收集合的接收能力信息,而UE也能够确保自身有能力在相应的接收集合上接收基站通过相应发送波束发送的信息,相应地,选择单元820也可能无需对自己最终选择的发送波束的具体信息对UE进行指示,而可以仅指示其所选择的发送波束所对应的发送波束组的信息。可替换地,UE也可以使得其上报的发送波束组中所述至少部分发送波束的数量大于在与该发送波束组对应的接收集合中能够同时形成的接收波束的数量,这时,当选择单元820从这些发送波束中进行选择时,就有可能需要将其选择的发送波束和/或发送波束所在的发送波束组的信息告知UE,以期UE能够尽量与基站配合进行接收。当然,上述不同情况下基站对UE的波束指示均可以依实际情况进行选择。
例如,在一个示例中,当选择单元820选择了位于发送波束组(1)中的发送波束1、3,以及发送波束组(2)中的发送波束4,则基站可以仅将发送波束组(1)和(2)告知UE,而无需将波束1、3、4均告知UE。因此,基站可以通过告知UE发送波束组的信息,而不是具体的发送波束的信息来 节约系统开销。
在另一个示例中,当UE的某个接收集合的接收能力信息为2,但上报的与该接收集合对应的发送波束组中的发送波束为4个(例如波束5、6、7、8)时,基站可能需要从这4个发送波束中选择其中的2个发送波束来发送信息,以保证在UE接收集合的相应接收能力之内。例如,基站可以选择发送波束5和7。在这种情况下,基站需要将选择的发送波束的相关信息告知UE。如前所述,基站可以选择将发送波束的信息均告知UE,即基站告知UE其选择的发送波束分别为波束5和波束7,而这种方法的系统开销较大。可替换地,基站还可以将UE上报的4个波束按照UE该接收集合的接收能力信息进行组合,每个组合中均可以包括等于或者小于相应接收集合的接收能力信息的数量的波束个数。例如,本示例中此接收集合的接受能力信息的数量为2,因此,可以设定组合1包括两个波束5和6、组合2包括波束7和8、组合3包括波束5和7、组合4包括波束6和8。上述组合关系可以由基站和UE共同预先存储或者由基站通过信令提前告知UE。此后,当基站选择了波束5和7时,仅需告知UE当前选择的为组合3即可。通过这一组合式的波束指示发送方式,可以进一步地节约系统的开销。
可选地,当基站仅根据所选择的发送波束向UE发送指示所述发送波束所在的所述发送波束组的信息时,由于UE并不能够准确获知基站所选择的发送波束的具体情况,因此可以在不同的时隙和/或资源单元上通过轮询方式接收信息。例如,基站可以通过例如信令的方式与UE事先约定信息的收发方式。所述信令可以为MAC CE信令,也可以为RRC信令或者DCI指示等。具体地,基站可以在不同的时隙和/或资源单元位置上以不同的发送波束来发送信息,而UE则可以在接收到基站指示的相应发送波束组信息后,依照约定在不同的时隙和/或资源单元上依次利用与发送波束组对应的不同的接收波束来接收信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知不同的时隙和/或资源单元内哪种情况的信道质量较好,并将测量结果反馈至基站,以使基站尽可能地根据UE的信道测量结果选择用于发送信息的发送波束。
图5示出本公开一个例子的基站、UE间信息传输情况,如图5所示,基站的发送波束1、2所组成的发送波束组(3)与UE的接收集合1相对应, UE的接收集合1在同一时刻能够产生两个接收波束1、2来接收基站相应的发送波束所发送的信息。当基站希望利用发送波束组(3)中的发送波束发送信息时,其仅告知UE发送波束组的信息,而并未准确告知UE将用发送波束1、2中的哪个发送波束进行发送。此时,基站和UE将约定:在时隙1内,基站通过发送波束1发送信息,而UE通过接收波束1进行接收;在时隙2内,基站通过发送波束2发送信息,而UE通过接收波束2进行接收;而在时隙3内,基站通过发送波束1和2共同发送信息,UE通过接收波束1和2共同进行接收。这样,不管基站选择哪个或哪几个发送波束进行发送,UE均能够在相应的时间点选择相应的接收波束准确地接收信息。当然,基站也可以仅在时隙1内通过发送波束1发送信息,而UE也相应地会仅在时隙1内通过接收波束1接收到信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知上述3个时隙内哪种情况信道质量最好(例如时隙1),并将测量结果反馈至基站,以使基站尽可能地根据UE的信道测量结果选择时隙1中用于发送信息的发送波束1。
可替换地,基站还可以在约定的时间周期内在不同的时隙和/或资源单元位置上以相同的发送波束来发送信息,而UE可以在接收到基站指示的相应发送波束组信息后,依照约定在不同的时隙和/或资源单元上依次利用与发送波束组对应的不同的接收波束来接收信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知不同的时隙和/或资源单元内哪种情况的信道质量较好,并尽可能地根据信道测量结果选择相应的接收波束来接收信息。
图6示出本公开另一个例子的基站、UE间信息传输情况,与图5相类似地,基站的发送波束1、2所组成的发送波束组(3)与UE的接收集合1相对应,UE的接收集合1在同一时刻能够产生两个接收波束1、2来接收基站相应的发送波束所发送的信息。当基站希望利用发送波束组(3)中的发送波束发送信息时,其仅告知UE发送波束组的信息,而并未准确告知UE将用发送波束1、2中的哪个发送波束进行发送。而与图5中不同的是,基站将仅通过其中的一种方式发送信息,例如,基站可以在预设的时间内仅通过发送波束1和2共同发送信息,而UE在这段相应的时间内则还是分别采用不同的接收波束接收信息:例如,在时隙1内,UE通过接收波束1进行 接收;在时隙2内,UE通过接收波束2进行接收;而在时隙3内,UE通过接收波束1和2共同进行接收。在这种情况下,不管基站采用哪种方式进行发送,UE均会轮流采用不同的接收波束接收信息,这样就保证了UE总能够在某一时期接收到质量较好的信息。可选地,UE还可以在此过程中根据信息接收状况进行信道测量,并能够获知上述3个时隙内哪种情况信道质量最好(例如时隙3),并尽量采用信道质量最好的接收波束1和2共同来接收基站发送的信息。
根据本公开实施例提供的基站,能够使得用户设备上传与基站的每个发送波束组对应的接收集合的接收能力信息,从而基站能够至少部分根据用户设备的接收能力信息选择相应的发送波束。这种波束选择方法能够显著降低系统开销,提高系统的信息传输效率。
下面,参照图9来描述根据本发明实施例的用户设备。该用户设备可以执行上述波束选择方法。由于该用户设备的操作与图7中所述的波束选择方法的各个步骤基本相同,因此在这里只对其进行简要的描述,而省略对相同内容的重复描述。
如图9所示,UE 900可以包括获取单元910和发送单元920。需要认识到,图9仅示出与本发明的实施例相关的部件,而省略了其他部件,但这只是示意性的,根据需要,UE 900可以包括其他部件。
获取单元910获取基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量。
UE的接收集合可以为UE中的收发板,即panel,收发板上分别可以承载一个或多个TXRU来收发信息。在本公开实施例中,UE的一个接收集合上承载的TXRU的数量可以作为UE接收集合的接收能力信息,也即将UE在该接收集合中能够同时形成的接收波束的数量作为接收鞂的接收能力信息。例如,UE的一个收发板上承载了2个TXRU,则说明UE的这个收发板形成的接收集合上能够在同一时刻形成两个接收波束,来接收其对应基站的两个发送波束发送的信息。当然,UE的接收集合还可以具有其他的表现形式。例如,可以将UE一个或多个收发板的特定部分作为UE的一个接收集合。再例如,还可以将UE任意的部分接收波束的组合形成为UE的一个 接收集合,在此接收集合中,UE在同一时刻能够形成的接收波束的数量也即为这一接收集合的接收能力信息。上述接收集合的示例并不构成对于UE的接收集合的具体限制,在实际应用场景中,可以选择任意的划分方式划分UE的接收集合。
在基站利用各个发送波束向UE发送信号之后,UE的获取单元910可以接收基站发送的信号,并对各个发送波束执行信道测量,以确定各个发送波束对应的信道质量。然后,获取单元910根据UE对不同发送波束的信道测量结果,以及UE包含的接收波束的情况来对基站的发送波束进行分组。具体地,获取单元910可以根据其不同的接收集合,依照信道状况在每个接收集合范围内选取一个或多个接收波束,并将此一个或多个接收波束相对应的发送波束作为一个发送波束组。
可选地,UE所获取的发送波束组信息可以包括发送波束的波束索引、波束分组情况(例如组别序号)等各种信息。在UE获取的发送波束组信息中,可以包括每个发送波束组中全部发送波束的信息,也可以包括其中一个或多个发送波束组的全部发送波束中的一部分发送波束的信息。可选地,发送波束组信息可以包括发送波束的波束索引、波束分组情况(例如组别序号)等各种信息。例如,当UE共包括两个收发板时,可以认为UE具有两个接收集合,每个接收集合上包含两个TXRU。从而,获取单元910可以将每个接收集合上两个TXRU所优选的两个接收波束所对应的所有基站的发送波束分为一组,共获取两组发送波束组信息,也可以向基站报告其中的一个发送波束组信息,例如,UE可以根据信道状况来选择并上报其中的某一个发送波束组信息。在其中的一个或多个发送波束组中,UE可以根据信道测量结果来选择其中的部分发送波束,例如,UE可以选择某个发送波束组中信道测量结果超过阈值的一组发送波束的信息作为该发送波束组的发送波束组信息。
可选地,获取单元910所选择的发送波束组信息中的波束索引可以根据针对发送波束的信道测量结果来确定。例如,获取单元910可以在某一个发送波束组中首先确定一个基准发送波束。例如,获取单元910可以根据对某一个发送波束组的全部发送波束的信道测量结果(例如RSRP),在该发送波束组中确定基准发送波束,这里可以将信道测量结果最佳的波束作为基准发 送波束,当然也可以用其他的预设标准来确定基准发送波束。随后,可以根据该发送波束组中其他发送波束与所述基准发送波束的空间位置关系、和/或用于其他发送波束的参考信号资源映射位置与所述基准发送波束的参考信号资源映射位置的相对位置关系,选择该发送波束组中的至少部分发送波束,并获取所述至少部分发送波束的波束索引。例如,当基准发送波束的RSRP测量结果最佳时,可以认为与基准发送波束空间位置邻近的那些波束的RSRP的结果也较好,因此可以选择这些波束,作为优选发送波束在发送波束组中向基站反馈。这里的空间位置邻近可以认为是这些优选发送波束与基准发送波束的空间方位角的夹角较小,例如所述夹角可以小于一定的阈值。在此基础上,考虑到基站一般在配置时会将空间位置邻近的波束配置在相邻的参考信号资源映射位置上,因此,在这种情况下,也可以将与基准波束的参考信号资源位置邻近的其他发送波束来作为优选发送波束进行反馈。图4示出本公开一个实施例中利用参考信号资源位置选取用于反馈的发送波束的示意图。如图4所示,在参考信号资源池的各资源映射位置中,映射了不同的发送波束,即,将对应的资源分配给不同的发送波束,分别编号为1-16。在图4所示实施例的基站配置中,相邻的资源映射位置所对应的发送波束在空间位置上均相邻,即波束2和波束3在空间位置上相邻,波束6和波束10在空间位置上也相邻。针对上述发送波束1-16,UE通过RSRP的测量,获知RSRP最高的基站的发送波束为波束7,因此,UE可以定义波束7为基准发送波束,并认为与波束7在空间位置上相邻的波束3、6、8和11的RSRP相对较高,并将波束7、3、6、8和11均上报给基站。在这种情况下,UE可以报告所选择的各个波束的绝对编号,例如7、3、6、8、11。可替换地,为了节省报告的开销,UE还可以报告各个波束的索引与基准发送波束的索引之间的相对值,这针对大比特数的波束编号更为有意义。例如,在基准发送波束为7的例子中,UE可以上报上述波束为波束7、-4、-1、1、4,以期减少发送波束信息上报的比特数。其中,-4、-1、1、4为其他波束的索引相对于基准波束的相对值,基站可以通过7-4、7-1、7+1、7+4来确定其他波束。在这种情况下,UE可以在上报信息中设置一个比特来指示正负号,例如可以用值1代表“+”,用值0代表“-”,当然,也可以用值0代表“+”,用值1代表“-”。并且,可以用其余的比特上报其他发送波束与基准发送波束的 波束索引之间的差的绝对值,例如,图4中上述波束相对编号“-4”中的“4”可以表示为“100”。这样,可以将通过表示正负号的比特与表示波束索引之间的差的绝对值的比特的组合来报告某个发送波束与基准发送波束的相对编号,以期尽量减少系统开销。当然,可选地,还可以综合考虑其他发送波束与基准发送波束的空间位置关系以及参考信号资源映射位置的相对位置关系来选择用于反馈的发送波束。上述描述仅为示例,在实际应用中,可以采用任何方式确定基准发送波束并表示和基准发送波束的相对编号。
发送单元920发送所述发送波束组信息以及所述接收能力信息,以使基站至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择与该接收集合对应的用于对所述用户设备发送信息的发送波束。
可选地,发送单元920可以向基站上报全部的发送波束组信息,也可以根据例如信道状况上报其中部分发送波束组信息,其中,UE可以将信道质量较好的某一个或几个发送波束组信息上报给基站。
可选地,在UE需要向基站反馈针对不同发送波束的信道测量结果时,本公开实施例的方法还可以包括发送单元920上报的与所述至少部分发送波束对应的信道测量结果。其中,可选地,信道测量结果可以包括各个发送波束支持L1层的参考信号接收功率(RSRP),和/或信道状态信息(CSI)等等。
另外,在如图4所示的选择基准发送波束并反馈波束索引的示例中,当UE确定基准发送波束,并据此获得需上报的发送波束的波束索引之后,发送单元920还需要告知基站此基准发送波束是哪个发送波束,才能够使得基站根据基准发送波束和与基准发送波束的相对编号来准确获知所有UE反馈的发送波束的信息。例如,发送单元920可以通过显式的方式将基准发送波束通知基站,可选地,发送单元920可以对每个报告的波束设置一个比特,并且利用该比特来通知基站该波束是否为基准发送波束,例如,可以用比特1代表该波束是基准发送波束,而用比特0代表该波束不是基准发送波束,当然反之亦可。再例如,发送单元920还可以通过隐式的方式通知基准发送波束。例如,UE和基站可以约定在发送单元920上报的一系列波束中的第一个波束即为默认的基准发送波束,而其他波束均为相对于此基准发送波束的相对编号。
可选地,UE的接收集合的接收能力信息可以作为一次性的或长周期的信息进行发送。例如,当每个接收集合的接收能力信息均相同时,发送单元920可以将此接收能力信息联合起来仅上报一次,而不需要伴随每个不同的发送波束组信息进行上报,以最大限度地节约系统开销;再例如,当其中一个或多个接收集合的接收能力信息有所不同时,则需要将不同的发送波束组及其相应的接收集合的接收能力信息分别上报。
可选地,在获取UE反馈的例如包括发送波束组中至少部分发送波束的波束索引等信息后,基站还可以根据所述发送波束组信息、每个接收集合的接收能力信息以及每个发送波束组中至少部分发送波束的波束信息等共同来选择所述发送波束。其中,考虑到UE并不希望基站针对某个接收集合使用其接收能力信息所指示的的数量之上的发送波束来向其发送信号,因此,基站所选择的与某一个接收集合对应的发送波束组中的发送波束的数量可以小于或等于在该接收集合中能够同时形成的接收波束的数量。也就是说,当UE的某个接收集合只能包含两个TXRU,因此只能同时形成两个接收波束时,UE将希望基站针对此接收集合采用发送波束发送信息的个数是小于等于2的。只有在这种情况下,UE才有能力接收到基站发送的全部发送波束上的信息。可选地,基站可以根据UE反馈的发送波束组信息中包含的发送波束来进行选择,例如,基站可以根据UE上报的RSRP结果选择RSRP较高的发送波束来发送信息。可替换地,基站还可以选择没有包含在UE反馈的发送波束组中的发送波束,例如,基站可以选择与UE上报的RSRP较高的发送波束的空间位置关系和/或参考信号资源映射位置的相对位置关系较为接近的发送波束来发送信息。
UE可以根据基站发送的波束指示来获知基站所选择的发送波束的相关信息。可选地,当UE根据其相应接收集合的接收能力信息选择的发送波束组中发送波束的数量不同时,基站也可以相应地确定是否需要发送波束指示信息,并在发送时可以选择不同的波束指示信息进行发送。例如,当发送单元920上报的发送波束组中所述至少部分发送波束的数量小于或等于在与该发送波束组对应的接收集合中能够同时形成的接收波束的数量(即接收集合中的接收能力信息)时,基站仅能够从UE上报的相应发送波束组中进行发送波束的选择,因此,在这种情况下,基站所选择的发送波束的数量一定不 会大于UE的这个接收集合的接收能力信息,而UE也能够确保自身有能力在相应的接收集合上接收基站通过相应发送波束发送的信息,相应地,基站也可能无需对自己最终选择的发送波束的具体信息对UE进行指示,而可以仅指示其所选择的发送波束所对应的发送波束组的信息。可替换地,UE也可以使得其上报的发送波束组中所述至少部分发送波束的数量大于在与该发送波束组对应的接收集合中能够同时形成的接收波束的数量,这时,当基站从这些发送波束中进行选择时,就有可能需要将其选择的发送波束和/或发送波束所在的发送波束组的信息告知UE,以期UE能够尽量与基站配合进行接收。当然,上述不同情况下基站对UE的波束指示均可以依实际情况进行选择。
例如,在一个示例中,当基站选择了位于发送波束组(1)中的发送波束1、3,以及发送波束组(2)中的发送波束4,则基站可以仅将发送波束组(1)和(2)告知UE,而无需将波束1、3、4均告知UE。因此,基站可以通过告知UE发送波束组的信息,而不是具体的发送波束的信息来节约系统开销。
在另一个示例中,当UE的某个接收集合的接收能力信息为2,但上报的与该接收集合对应的发送波束组中的发送波束为4个(例如波束5、6、7、8)时,基站可能需要从这4个发送波束中选择其中的2个发送波束来发送信息,以保证在UE接收集合的相应接收能力之内。例如,基站可以选择发送波束5和7。在这种情况下,基站需要将选择的发送波束的相关信息告知UE。如前所述,基站可以选择将发送波束的信息均告知UE,即基站告知UE其选择的发送波束分别为波束5和波束7,而这种方法的系统开销较大。可替换地,基站还可以将UE上报的4个波束按照UE该接收集合的接收能力信息进行组合,每个组合中均可以包括等于或者小于相应接收集合的接收能力信息的数量的波束个数。例如,本示例中此接收集合的接受能力信息的数量为2,因此,可以设定组合1包括两个波束5和6、组合2包括波束7和8、组合3包括波束5和7、组合4包括波束6和8。上述组合关系可以由基站和UE共同预先存储或者由基站通过信令提前告知UE。此后,当基站选择了波束5和7时,仅需告知UE当前选择的为组合3即可。通过这一组合式的波束指示发送方式,可以进一步地节约系统的开销。
可选地,当基站仅根据所选择的发送波束向UE发送指示所述发送波束所在的所述发送波束组的信息时,由于UE并不能够准确获知基站所选择的发送波束的具体情况,因此可以在不同的时隙和/或资源单元上通过轮询方式接收信息。例如,基站可以通过例如信令的方式与UE事先约定信息的收发方式。所述信令可以为MAC CE信令,也可以为RRC信令或者DCI指示等。具体地,基站可以在不同的时隙和/或资源单元位置上以不同的发送波束来发送信息,而UE则可以在接收到基站指示的相应发送波束组信息后,依照约定在不同的时隙和/或资源单元上依次利用与发送波束组对应的不同的接收波束来接收信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知不同的时隙和/或资源单元内哪种情况的信道质量较好,并将测量结果反馈至基站,以使基站尽可能地根据UE的信道测量结果选择用于发送信息的发送波束。
图5示出本公开一个例子的基站、UE间信息传输情况,如图5所示,基站的发送波束1、2所组成的发送波束组(3)与UE的接收集合1相对应,UE的接收集合1在同一时刻能够产生两个接收波束1、2来接收基站相应的发送波束所发送的信息。当基站希望利用发送波束组(3)中的发送波束发送信息时,其仅告知UE发送波束组的信息,而并未准确告知UE将用发送波束1、2中的哪个发送波束进行发送。此时,基站和UE将约定:在时隙1内,基站通过发送波束1发送信息,而UE通过接收波束1进行接收;在时隙2内,基站通过发送波束2发送信息,而UE通过接收波束2进行接收;而在时隙3内,基站通过发送波束1和2共同发送信息,UE通过接收波束1和2共同进行接收。这样,不管基站选择哪个或哪几个发送波束进行发送,UE均能够在相应的时间点选择相应的接收波束准确地接收信息。当然,基站也可以仅在时隙1内通过发送波束1发送信息,而UE也相应地会仅在时隙1内通过接收波束1接收到信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知上述3个时隙内哪种情况信道质量最好(例如时隙1),并将测量结果反馈至基站,以使基站尽可能地根据UE的信道测量结果选择时隙1中用于发送信息的发送波束1。
可替换地,基站还可以在约定的时间周期内在不同的时隙和/或资源单元位置上以相同的发送波束来发送信息,而UE可以在接收到基站指示的相 应发送波束组信息后,依照约定在不同的时隙和/或资源单元上依次利用与发送波束组对应的不同的接收波束来接收信息。进一步地,UE还可以根据信息接收状况进行信道测量,并能够获知不同的时隙和/或资源单元内哪种情况的信道质量较好,并尽可能地根据信道测量结果选择相应的接收波束来接收信息。
图6示出本公开另一个例子的基站、UE间信息传输情况,与图5相类似地,基站的发送波束1、2所组成的发送波束组(3)与UE的接收集合1相对应,UE的接收集合1在同一时刻能够产生两个接收波束1、2来接收基站相应的发送波束所发送的信息。当基站希望利用发送波束组(3)中的发送波束发送信息时,其仅告知UE发送波束组的信息,而并未准确告知UE将用发送波束1、2中的哪个发送波束进行发送。而与图5中不同的是,基站将仅通过其中的一种方式发送信息,例如,基站可以在预设的时间内仅通过发送波束1和2共同发送信息,而UE在这段相应的时间内则还是分别采用不同的接收波束接收信息:例如,在时隙1内,UE通过接收波束1进行接收;在时隙2内,UE通过接收波束2进行接收;而在时隙3内,UE通过接收波束1和2共同进行接收。在这种情况下,不管基站采用哪种方式进行发送,UE均会轮流采用不同的接收波束接收信息,这样就保证了UE总能够在某一时期接收到质量较好的信息。可选地,UE还可以在此过程中根据信息接收状况进行信道测量,并能够获知上述3个时隙内哪种情况信道质量最好(例如时隙3),并尽量采用信道质量最好的接收波束1和2共同来接收基站发送的信息。
根据本公开实施例提供的用户设备,能够使得用户设备上传与基站的每个发送波束组对应的接收集合的接收能力信息,从而基站能够至少部分根据用户设备的接收能力信息选择相应的发送波束。这种波束选择方法能够显著降低系统开销,提高系统的信息传输效率。
本公开实施例中的波束索引可以由参考信号的资源映射位置、参考信号的资源映射指示、参考信号的时隙指示及资源映射指示等替换。
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相 结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本发明的一实施方式中的(无线)基站、用户终端等可以作为执行本发明的无线通信方法的处理的计算机来发挥功能。图10是示出本发明的一实施方式所涉及的基站和用户终端的硬件结构的一例的图。上述的基站800和用户终端900可以作为在物理上包括处理器1001、内存1002、存储器1003、通信装置1004、输入装置1005、输出装置1006、总线1007等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。基站800和用户终端900的硬件结构可以包括一个或多个图10中所示的各装置,也可以不包括部分装置。
例如,处理器1001仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器1001可以通过一个以上的芯片来安装。
基站800和用户终端900中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器1001、内存1002等硬件上,从而使处理器1001进行运算,对由通信装置1004进行的通信进行控制,并对内存1002和存储器1003中的数据的读出和/或写入进行控制。
处理器1001例如使操作系统进行工作从而对计算机整体进行控制。处理器1001可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。
此外,处理器1001将程序(程序代码)、软件模块、数据等从存储器1003和/或通信装置1004读出到内存1002,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,用户终端900的控制单元401可以通过保存在内存1002中并通过处理器1001来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存1002是计算机可读取记录介质,例如可以由只读存储器(ROM, ReadOnlyMemory)、可编程只读存储器(EPROM,ErasableProgrammableROM)、电可编程只读存储器(EEPROM,ElectricallyEPROM)、随机存取存储器(RAM,RandomAccessMemory)、其它适当的存储介质中的至少一个来构成。内存1002也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存1002可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器1003是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(CompactDiscROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1003也可以称为辅助存储装置。
通信装置1004是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1004为了实现例如频分双工(FDD,FrequencyDivisionDuplex)和/或时分双工(TDD,TimeDivisionDuplex),可以包括高频开关、双工器、滤波器、频率合成器等。
输入装置1005是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1006是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,LightEmittingDiode)灯等)。另外,输入装置1005和输出装置1006也可以为一体的结构(例如触控面板)。
此外,处理器1001、内存1002等各装置通过用于对信息进行通信的总线1007连接。总线1007可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,基站800和用户终端900可以包括微处理器、数字信号处理器(DSP,DigitalSignalProcessor)、专用集成电路(ASIC,ApplicationSpecificIntegratedCircuit)、可编程逻辑器件(PLD,ProgrammableLogicDevice)、现场可编程门阵列(FPGA, FieldProgrammableGateArray)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器1001可以通过这些硬件中的至少一个来安装。
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(ReferenceSignal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,ComponentCarrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或多个期间(帧)构成。构成无线帧的该一个或多个期间(帧)中的每一个也可以称为子帧。进而,子帧在时域中可以由一个或多个时隙构成。子帧可以是不依赖于参数配置(numerology)的固定的时间长度(例如1ms)。
进而,时隙在时域中可以由一个或多个符号(正交频分复用(OFDM,OrthogonalFrequencyDivisionMultiplexing)符号、单载波频分多址(SC-FDMA,SingleCarrierFrequencyDivisionMultipleAccess)符号等)构成。此外,时隙也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个符号构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及符号均表示传输信号时的时间单元。无线帧、子帧、时隙、微时隙以及符号也可以使用各自对应的其它名称。例如,一个子帧可以被称为传输时间间隔(TTI,TransmissionTimeInterval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个符号),还可以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE系统中,无线基站对各用户终端进行以TTI为单位分配无线资源(在各用户终端中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(传输块)、码块、和/或码字的发送 时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与传输块、码块、和/或码字映射的时间区间(例如符号数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,ResourceBlock)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包括一个或多个符号,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,PhysicalRB)、子载波组(SCG,Sub-CarrierGroup)、资源单元组(REG,Resource ElementGroup)、PRG对、RB对等。
此外,资源块也可以由一个或多个资源单元(RE,ResourceElement)构成。例如,一个RE可以是一个子载波和一个符号的无线资源区域。
另外,上述的无线帧、子帧、时隙、微时隙以及符号等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的符号和RB的数目、RB中包括的子载波数、以及TTI内的符号数、符号长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与 本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,PhysicalUplink ControlChannel)、物理下行链路控制信道(PDCCH,PhysicalDownlink ControlChannel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,DownlinkControlInformation)、上行链路控制信息(UCI,UplinkControlInformation))、上层信令(例如,无线资源控制(RRC,RadioResourceControl)信令、广播信息(主信息块(MIB,MasterInformationBlock)、系统信息块(SIB,SystemInformationBlock)等)、媒体存取控制(MAC,MediumAccessControl)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,DigitalSubscriberLine)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,BaseStation)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,RemoteRadioHead)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,MobileStation)”、“用户终端(userterminal)”、“用户装置(UE,UserEquipment)”以及“终端”这样的用语可以互换使用。基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本发明的各方式/实施方式。此时,可以将上述的基站800所具有的功能当作和用户终端900所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端900所具有的功能当作基站800所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(uppernode)来进行。显然,在具有基站的由一个或多个网络节点(networknodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,MobilityManagementEntity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,LongTermEvolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New  Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(lookingup)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以 替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。

Claims (23)

  1. 一种波束选择方法,由基站执行,包括:
    接收用户设备反馈的所述基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量;
    至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择该接收集合对应的用于对所述用户设备发送信息的发送波束。
  2. 如权利要求1所述的方法,其中,
    所述发送波束组包括所述接收集合范围内选取的接收波束相对应的一组发送波束。
  3. 如权利要求1所述的方法,其中,
    所选择的与接收集合对应的发送波束组中发送波束的数量小于或等于在该接收集合中能够同时形成的接收波束的数量。
  4. 如权利要求1所述的方法,其中,
    所述发送波束组信息包括所述发送波束组中至少部分发送波束的信息。
  5. 如权利要求4所述的方法,其中,
    所述发送波束组中至少部分发送波束为所述发送波束组中信道质量超过预设值的发送波束。
  6. 如权利要求4所述的方法,其中,所述方法还包括:
    接收与所述至少部分发送波束对应的信道测量结果。
  7. 如权利要求4-6中任一项所述的方法,其中,所述至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择该接收集合对应的用于对所述用户设备发送信息的发送波束包括:
    根据所述发送波束组信息、每个接收集合的接收能力信息以及每个发送波束组中至少部分发送波束的波束信息选择所述发送波束。
  8. 如权利要求4所述的方法,其中,所述方法还包括:
    当所述发送波束组中所述至少部分发送波束的数量大于在与该发送波束组对应的接收集合中能够同时形成的接收波束的数量时,根据所述基站所 选择的发送波束发送指示所述发送波束所在的所述发送波束组的信息。
  9. 如权利要求8所述的方法,其中,所述方法还包括:
    根据预设规则在不同的时隙和/或资源单元上依次利用所选择的发送波束来发送信息;
    根据所述用户设备的反馈选择发送波束中的一个或多个发送波束。
  10. 如权利要求8所述的方法,其中,所述方法还包括:
    在预设时间或周期内利用所选择的发送波束来发送信息。
  11. 一种波束选择方法,由用户设备执行,包括:
    获取基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量;
    发送所述发送波束组信息以及所述接收能力信息,以使基站至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择与该接收集合对应的用于对所述用户设备发送信息的发送波束。
  12. 如权利要求11所述的方法,其中,
    所述发送波束组包括所述接收集合范围内选取的接收波束相对应的一组发送波束。
  13. 如权利要求11所述的方法,其中,
    所述基站选择的与接收集合对应的发送波束组中发送波束的数量小于或等于在该接收集合中能够同时形成的接收波束的数量。
  14. 如权利要求11所述的方法,其中,
    所述发送波束组信息包括所述发送波束组中至少部分发送波束的波束信息。
  15. 如权利要求14所述的方法,其中,
    所述发送波束组中至少部分发送波束为所述发送波束组中信道质量超过预设值的发送波束。
  16. 如权利要求14所述的方法,其中,所述方法还包括:
    向基站发送与所述至少部分发送波束对应的信道测量结果。
  17. 如权利要求14-16中任一项所述的方法,其中,所述方法还包括:
    根据对发送波束组中全部发送波束的所述信道测量结果在该发送波束 组中确定基准发送波束;
    根据该发送波束组中其他发送波束与所述基准发送波束的空间位置关系、和/或用于其他发送波束的参考信号资源映射位置与所述基准发送波束的参考信号资源映射位置的相对位置关系,选择该发送波束组中的至少部分发送波束,并获取所述至少部分发送波束的波束索引。
  18. 如权利要求17所述的方法,其中,
    将所述基准发送波束显式或隐式地通知基站。
  19. 如权利要求11所述的方法,其中,所述方法还包括:
    接收基站根据所选择的发送波束而发送的指示所述发送波束所在的所述发送波束组的信息。
  20. 如权利要求19所述的方法,其中,所述方法还包括:
    根据预设规则在不同的时隙和/或资源单元上依次利用与所述发送波束组对应的一个或多个接收波束来接收信息。
  21. 如权利要求19所述的方法,其中,所述方法还包括:
    在预设时间或周期内利用与所述发送波束组对应的一个或多个接收波束来接收信息。
  22. 一种基站,包括:
    接收单元,配置为接收用户设备反馈的所述基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量;
    选择单元,配置为至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选择该接收集合对应的用于对所述用户设备发送信息的发送波束。
  23. 一种用户设备,包括:
    获取单元,配置为获取基站的发送波束组信息以及与每个发送波束组对应的所述用户设备的接收集合的接收能力信息,其中,所述接收集合的接收能力信息为所述用户设备在该接收集合中能够同时形成的接收波束的数量;
    发送单元,配置为发送所述发送波束组信息以及接收能力信息,以使基站至少部分根据所述发送波束组信息以及每个接收集合的接收能力信息选 择与该接收集合对应的用于对所述用户设备发送信息的发送波束。
PCT/CN2018/099681 2017-08-10 2018-08-09 波束选择方法、基站和用户设备 WO2019029635A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/637,783 US11357009B2 (en) 2017-08-10 2018-08-09 Beam selection method, base station, and user equipment
CN201880052785.3A CN111034303B (zh) 2017-08-10 2018-08-09 波束选择方法、基站和用户设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710682216.4A CN109392123A (zh) 2017-08-10 2017-08-10 波束选择方法、基站和用户设备
CN201710682216.4 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019029635A1 true WO2019029635A1 (zh) 2019-02-14

Family

ID=65270836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099681 WO2019029635A1 (zh) 2017-08-10 2018-08-09 波束选择方法、基站和用户设备

Country Status (3)

Country Link
US (1) US11357009B2 (zh)
CN (2) CN109392123A (zh)
WO (1) WO2019029635A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230056064A (ko) * 2018-04-06 2023-04-26 노키아 테크놀로지스 오와이 다중 패널 ue에 대한 빔 표시
US11349543B2 (en) * 2018-11-16 2022-05-31 Qualcomm Incorporated Beam switch count in beamformed wireless communications
CN111682889A (zh) * 2019-03-11 2020-09-18 华为技术有限公司 多波束追踪方法和装置
US11304201B2 (en) * 2019-03-29 2022-04-12 Qualcomm Incorporated Beam indication set determination
CN110536231B (zh) * 2019-05-27 2023-06-20 中兴通讯股份有限公司 一种信息反馈方法及装置
EP4087149A4 (en) * 2020-01-07 2022-12-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. BEAM SELECTION METHOD, TERMINAL AND NETWORK DEVICE
WO2021155589A1 (en) * 2020-02-07 2021-08-12 Qualcomm Incorporated User equipment capability on report related to uplink beam selection
CN113965940A (zh) * 2020-07-20 2022-01-21 中兴通讯股份有限公司 测量下行路损的方法、系统、设备及介质
CN113508610B (zh) * 2021-03-30 2023-10-24 北京小米移动软件有限公司 能力获取方法和装置、能力指示方法和装置
WO2023075410A1 (ko) * 2021-10-29 2023-05-04 삼성전자 주식회사 멀티 포인트와의 조직화 기능을 수행하는 셀을 선택하는 무선 액세스 통신망 지능형 컨트롤러 및 그 동작 방법
CN117014047A (zh) * 2022-04-29 2023-11-07 中兴通讯股份有限公司 通信方法、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688474A (zh) * 2013-09-27 2014-03-26 华为技术有限公司 通信方法、基站和用户设备
US20140120926A1 (en) * 2012-10-29 2014-05-01 Electronics And Telecommunications Research Institute Method of operating base station and terminal in cellular telecommunication system for operating multiple beams
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN106470062A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 一种数据传输方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9137698B2 (en) * 2012-02-24 2015-09-15 Samsung Electronics Co., Ltd. Beam management for wireless communication
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
KR102177804B1 (ko) * 2014-03-25 2020-11-11 삼성전자주식회사 다중입력 다중출력 시스템에서 스케줄링 방법 및 장치
KR102187855B1 (ko) * 2014-07-31 2020-12-07 삼성전자 주식회사 빔포밍 시스템에서 셀 측정 방법 및 장치
US10038530B2 (en) * 2015-08-14 2018-07-31 Industrial Technology Research Institute Method of transmitting and receiving CSI-RS and related apparatuses using the same
EP3494648B1 (en) * 2016-08-05 2024-03-20 Nokia Technologies Oy 5g beam group discontinuous reception
US10374683B2 (en) * 2017-09-07 2019-08-06 Futurewei Technologies, Inc. Apparatus and method for beam failure recovery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140120926A1 (en) * 2012-10-29 2014-05-01 Electronics And Telecommunications Research Institute Method of operating base station and terminal in cellular telecommunication system for operating multiple beams
CN103688474A (zh) * 2013-09-27 2014-03-26 华为技术有限公司 通信方法、基站和用户设备
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN106470062A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 一种数据传输方法及系统

Also Published As

Publication number Publication date
CN111034303A (zh) 2020-04-17
US20200213993A1 (en) 2020-07-02
CN109392123A (zh) 2019-02-26
CN111034303B (zh) 2023-12-01
US11357009B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2019029635A1 (zh) 波束选择方法、基站和用户设备
JP7321161B2 (ja) 端末、無線通信方法及びシステム
KR102456057B1 (ko) 유저단말 및 무선 통신 방법
KR102479280B1 (ko) 유저단말 및 무선 통신 방법
WO2018171655A1 (zh) 参考信号发送方法、信道测量方法、无线基站及用户终端
WO2020039484A1 (ja) ユーザ端末
WO2020021725A1 (ja) ユーザ端末及び無線通信方法
JPWO2019021488A1 (ja) ユーザ端末、基地局装置及び無線通信方法
JPWO2019021489A1 (ja) ユーザ端末及び無線通信方法
WO2018171426A1 (zh) 波束配置方法、移动台和基站
JP7132244B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7074765B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2018203408A1 (ja) ユーザ端末及び無線通信方法
KR20190119618A (ko) 유저단말 및 무선 통신 방법
JP7324004B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2017213222A1 (ja) ユーザ端末および無線通信方法
WO2018229928A1 (ja) ユーザ端末及び無線通信方法
JP7248685B2 (ja) 端末、無線通信方法、基地局及びシステム
KR102629511B1 (ko) 유저단말
WO2018196505A1 (zh) 星座图旋转方法及装置
JP7252239B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018202058A1 (zh) 一种混合信道质量测量方法和用户设备
WO2018201786A1 (zh) 一种多波束的csi反馈信息的传输方法和装置
JP7227248B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019037555A1 (zh) 资源调度方法、用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843184

Country of ref document: EP

Kind code of ref document: A1