WO2018201685A1 - 交通工具及其光线控制装置、光线控制方法 - Google Patents

交通工具及其光线控制装置、光线控制方法 Download PDF

Info

Publication number
WO2018201685A1
WO2018201685A1 PCT/CN2017/110442 CN2017110442W WO2018201685A1 WO 2018201685 A1 WO2018201685 A1 WO 2018201685A1 CN 2017110442 W CN2017110442 W CN 2017110442W WO 2018201685 A1 WO2018201685 A1 WO 2018201685A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
vehicle
controllable
polarizer
conductive layer
Prior art date
Application number
PCT/CN2017/110442
Other languages
English (en)
French (fr)
Inventor
王明
刘广辉
汪军
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/779,469 priority Critical patent/US20190204627A1/en
Publication of WO2018201685A1 publication Critical patent/WO2018201685A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/06Antiglare equipment associated with windows or windscreens; Sun visors for vehicles using polarising effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • B60Q1/143Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic combined with another condition, e.g. using vehicle recognition from camera images or activation of wipers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/05Special features for controlling or switching of the light beam
    • B60Q2300/056Special anti-blinding beams, e.g. a standard beam is chopped or moved in order not to blind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/42Indexing codes relating to other road users or special conditions oncoming vehicle

Definitions

  • the present disclosure relates to the field of light processing technologies, and in particular, to a vehicle, a light control device thereof, and a light control method.
  • the driver of the car When driving a car in a dimly lit environment, the driver of the car often uses a high beam to ensure that the field of view is wide enough and bright. However, when the two cars are driving in the opposite direction, there is often a situation where one or even both drivers cannot turn off the high beam in time. When the car is in the glare, the glare from the high beam is easy to cause the driver of the other vehicle to have a visual blind spot. The occurrence of the situation makes a correct judgment, which is very likely to cause traffic accidents.
  • the at least one controllable polarizer is located in front of the first vehicle The light shines out.
  • the at least one controllable polarizer is located on a windshield of the first vehicle.
  • the at least one controllable polarizer comprises two controllable polarizers, one of the two controllable polarizers is located on a front light exit surface of the first vehicle, and the other is located in the first a windshield of a vehicle; the two controllable polarizers have different polarization directions.
  • each of the at least one controllable polarizer comprises a controllable power source, a first conductive layer, a second conductive layer, and the first conductive layer and the second conductive layer a layer of polarizing material, the output end of the controllable power source being respectively connected to the first conductive layer and the second conductive layer, the signal output end of the distance detector and the control end of the controllable power source connection.
  • the first conductive layer and the second conductive layer are both made of an indium tin oxide material.
  • the layer of polarizing material comprises an electro-optic crystal sub-layer and an optical material sub-layer disposed in sequence along a light transmission direction.
  • the interference light source comprises a high beam light on a second vehicle that is traveling opposite the first vehicle.
  • a vehicle including the light control device provided by the above technical solution.
  • a further aspect of the present disclosure further provides a light control method for a vehicle, which is applied to the light control device provided by the above technical solution, and the light control method of the vehicle includes:
  • a distance detector detects a distance between the first vehicle and the interference light source where the distance detector is located;
  • At least one controllable polarizer polarizes the light such that the intensity of the light is weakened; when the interference light source is The distance between the first vehicles is outside the predetermined range, and the at least one controllable polarizer stops polarization processing of the light.
  • the at least one controllable polarizer is located on a front light exit surface of the first vehicle, and the at least one controllable polarizer performs polarization processing on the light comprising: the at least one controllable polarizer pair The light emitted by the headlights of the first vehicle is polarized such that the light emitted by the headlights of the first vehicle is weakened;
  • the at least one controllable polarizer stops polarization processing of the light light comprising: the at least one controllable polarizer stops polarization processing of light emitted by the headlights of the first vehicle.
  • the at least one controllable polarizer is located on a windshield of the first vehicle, and the at least one controllable polarizer performs polarization processing on the light comprising: the at least one controllable polarizer pair is directed The light of the windshield of the first vehicle is polarized such that light entering the windshield of the first vehicle is weakened;
  • the at least one controllable polarizer stops polarization processing of the light comprising: the at least one controllable polarizer stops polarization processing of light directed at the windshield of the first vehicle.
  • the at least one controllable polarizer comprises two controllable polarizers, one of the controllable polarizers of the two controllable polarizers is located on a front light exit surface of the first vehicle, and the other a controllable polarizer is located on the windshield of the first vehicle; the two controllable polarizers have different polarization directions; and the two controllable polarizers polarize the light including:
  • a controllable polarizer located on a light exit surface of the headlight of the first vehicle polarizes light emitted by the headlights of the first vehicle such that light emitted by the headlights of the first vehicle is weakened;
  • a controllable polarizer located on the windshield of the first vehicle polarizes light directed to the windshield of the first vehicle such that light entering the windshield of the first vehicle is diminished ;
  • the two controllable polarizers stop polarizing the light including: the controllable polarizer located on the light exit surface of the first vehicle stops polarizing the light emitted by the headlights of the first vehicle Processing; a controllable polarizer located on the windshield of the first vehicle stops polarization processing of light directed at the windshield of the first vehicle.
  • each of the at least one controllable polarizer comprises a controllable power source, a first conductive layer, a second conductive layer, and the first conductive layer and the second conductive layer a layer of polarizing material, the output end of the controllable power source being respectively connected to the first conductive layer and the second conductive layer, the signal output end of the distance detector and the control end of the controllable power source Connecting;
  • the layer of polarizing material includes an electro-optic crystal sub-layer and an optical material sub-layer disposed in sequence along a light transmission direction;
  • Polarizing the light by the at least one controllable polarizer comprises:
  • Controllable polarizer for each of said at least one controllable polarizer, the controllable power supply of which applies a voltage to its first conductive layer and said second conductive layer such that its electro-optic crystal sublayer is at said An electric field formed by a conductive layer and the second conductive layer;
  • the electro-optic crystal sublayer performs birefringence treatment on the light such that the light becomes two linearly polarized lights having mutually perpendicular polarization directions;
  • a light control apparatus for a vehicle including a processor, a distance detector, and at least one controllable polarizer;
  • the distance detector is configured to detect a distance between the first vehicle and the interference light source where the distance detector is located;
  • the processor is configured to determine, when the detection result of the distance detector is received, whether a distance between the interference light source and the first vehicle is within a preset range, and in the interference light source and the Controlling, by the at least one controllable polarizer, a polarization treatment of the light such that the intensity of the light is weakened, and the interference light source is in the state in which the distance between the first vehicles is within a preset range
  • the at least one controllable polarizer is controlled to stop polarization processing of the light when the distance between the first vehicles is outside the preset range.
  • a computer non-transitory readable storage medium having computer instructions executed by a processor, the computer instructions being configured to perform the light control method described above while the processor is running.
  • a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the light control method described above.
  • a computer program that, when loaded into a processor, causes the processor to perform a light control method for a vehicle as described above.
  • FIG. 1 is a structural block diagram of a light control apparatus for a vehicle according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a light control method for a vehicle according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a first position of a light control device for a vehicle provided in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a second position of a light control device for a vehicle provided in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a light guiding principle of a light control device for a vehicle during a vehicle traveling direction according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural view of a controllable polarizer in an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a control relationship of a light control device for a vehicle according to an embodiment of the present disclosure.
  • the object of the present invention is to provide a vehicle, a light control device and a light control method thereof, so as to reduce the light intensity of the driver's line of sight entering the vehicle, so as to reduce the visual blind spot of the driver due to the interference light in front of the vehicle during driving. The chance.
  • Light control device for vehicle can be an ordinary car, bus, or other means of transportation.
  • the light control device 10 for a vehicle includes a controllable polarizer 2 and a distance detector 3, the signal output of which is coupled to the control terminal of the controllable polarizer 2.
  • the distance detector 3 is configured to detect the distance between the vehicle in which the distance detector 3 is located and the interference light source.
  • the controllable polarizer 2 is configured to polarize the light when the distance between the interference light source and the vehicle is within a preset range, so that the intensity of the light is weakened; when the distance between the interference light source and the vehicle is at a preset Outside the range, the polarization treatment of the light is stopped.
  • the interference light source refers to a light source located outside the vehicle where the detector 3 is located, which may affect the safe driving of the driver, including but not limited to the distance from another vehicle that is opposite to the vehicle in which the distance detector 3 is located. Lights.
  • the distance detector 3 detects the distance between the vehicle in which the distance detector 3 is located and the vehicle (hereinafter referred to as the opposite vehicle) on which the distance detector 3 is located during the vehicle traveling direction;
  • Step 2 determining whether the distance between the opposite vehicle and the vehicle where the distance detector 3 is located is within a preset range
  • Step 3 When the distance between the opposite vehicle and the vehicle where the distance detector 3 is located is within a preset range, the controllable polarizer 2 polarizes the light so that the intensity of the light is weakened to ensure that it is within a preset range. The light intensity entering the driver is weakened; when the distance between the opposing vehicle and the vehicle in which the distance detector 3 is located is outside the preset range, the controllable polarizer 2 stops the polarization processing of the light.
  • the signal output end of the distance detector 3 is connected to the control end of the controllable polarizer 2, so that the distance detector 3 can be used to detect the vehicle traveling direction.
  • the distance between the medium-phase vehicle and the vehicle where the distance detector 3 is located, the distance between the opposite vehicle and the vehicle where the distance detector 3 is located is within a preset range, so that it can be within a preset range.
  • the intensity of the light is attenuated by the controllable polarizer 2, thereby reducing the problem of visual blind spots in the driver's preset range.
  • the light control device provided in this embodiment is in the traffic of the opposite vehicle and the distance detector 3.
  • the preset range is expressed as being greater than or equal to zero and less than or equal to the preset distance A, wherein the preset distance A may be any value within a range of 145 meters or more and 180 meters or less.
  • the preset range described above may be 0 to 180 m, or 0 to 150 m, or 0 to 145 m.
  • the distance detector 3 detects the distance between the opposite vehicle and the vehicle where the distance detector 3 is located during the opposite direction of the vehicle, and the controllable polarizer 2 polarizes the light so that the intensity of the light is weakened; and in the opposite vehicle
  • the distance between the controllable polarizer 2 and the vehicle in which the distance detector 3 is located is outside the predetermined range, and the controllable polarizer 2 stops the polarization treatment of the light, and the energy loss of the unnecessary controllable polarizer 2 can be sufficiently reduced.
  • the distance detector 3 may be a GPS positioning system, a Beidou positioning system, an infrared detector or an ultrasonic detector. Of course, other distance detectors 3 capable of distance detection may be used. Do one by one. In addition, the preset range can be set according to actual needs, and is not static.
  • controllable polarizer 2 in the embodiment has multiple types in the installation position of the vehicle 1, and the following illustrates that the controllable polarizer 2 can be different when the position of the vehicle is different.
  • the polarizer 2 controls the effect of the polarization treatment on the light emitted by the headlights of the vehicle 1.
  • the first position: the controllable polarizer 2 is located on the front light exit surface of the vehicle 1 as shown in FIG. 3, when the controllable polarizer 2 polarizes the light: the controllable polarizer 2 is applied to the vehicle 1
  • the light emitted by the headlight is polarized, so that the light emitted by the headlight of the vehicle 1 is weakened; specifically, when the controllable polarizer 2 polarizes the light emitted by the headlight of the vehicle 1, the vehicle 1
  • the light emitted by the headlights is reflected or absorbed by the controllable polarizer 2, while the remaining portion is emitted from the headlights of the vehicle 1.
  • Light passes through the controllable polarizer 2 such that the intensity of the light in the field of view of the driver in the opposite direction of the vehicle can be somewhat reduced.
  • the controllable polarizer 2 stops the polarization processing of the light comprising: the controllable polarizer 2 stops the polarization treatment of the light emitted by the headlights of the vehicle 1.
  • the light of the windshield is polarized so that the light entering the windshield of the vehicle 1 is weakened; thus the intensity of the light in the driver's field of view in the vehicle 1 is reduced; and, since the controllable polarizer 2 is only
  • the polarization treatment by the light at the windshield 32 does not affect the intensity of the light emitted by the headlights of the vehicle in which the controllable polarizer 2 is located.
  • the controllable polarizer 2 stops the polarization processing of the light comprising: the controllable polarizer 2 stops the polarization treatment of the light directed to the windshield of the vehicle.
  • the light that is directed to the windshield 32 of the vehicle 1 may be the light emitted by the vehicle 1 itself, or the light emitted by the two vehicles in the opposite direction of the vehicle, of course. It can be the light emitted by other light sources, which also greatly increases the application range of the light control device for the vehicle provided by the embodiment.
  • the number of controllable polarizers may also be set according to actual needs.
  • the number of controllable polarizers is two, respectively, the first controllable polarizer 21 And a second controllable polarizer 22, the first controllable polarizer 21 is located on the light exit surface of the vehicle, and the other controllable polarizer is located on the windshield of the vehicle; the first controllable polarizer 21 and the second The polarizer 22 is located in the same vehicle, in which case the first controllable polarizer 21 and the second controllable polarizer 22 are controlled by the same controller.
  • controllable polarizer 2 When the controllable polarizer 2 polarizes the light, it is carried out while the two vehicles are traveling in the opposite direction.
  • two vehicles traveling in opposite directions are represented by the first vehicle 11 and the second vehicle 12, and the first vehicle 11 and the second vehicle 12 are each provided with a first controllable polarizer 21
  • the specific position of the second controllable polarizer 22, the first controllable polarizer 21 and the second controllable polarizer 22 can be referred to the foregoing description.
  • the first controllable polarizer 21 in the first vehicle 11 polarizes the light emitted by the headlights of the first vehicle 11 into polarized light, and the first vehicle 11
  • the light emitted by the headlights may be partially reflected or absorbed by the first controllable polarizer 21, and the remaining portion of the light emitted from the headlights of the first vehicle 11 may pass through the first of the first vehicle 11.
  • the second controllable polarizer 22 of the second vehicle 12 polarizes the light, thereby further weakening the first vehicle
  • the light emitted by the headlights of 11 causes the intensity of light within the driver's field of view in the second vehicle 12 to decrease.
  • the first controllable polarizer 21 in the second vehicle 12 polarizes the light emitted by the headlights of the second vehicle 12 into polarized light, and the second vehicle
  • the light emitted by the headlights of 12 may be partially reflected or absorbed by the first controllable polarizer 21, while the remaining portion of the light emitted from the headlights of the second vehicle 12 passes through the first of the second vehicle 12.
  • the light emitted by the headlights of the tool 12 causes the intensity of the light within the driver's field of view located in the first vehicle 11 to decrease.
  • the polarization direction of the first controllable polarizer 21 and the polarization direction of the second controllable polarizer 22 may be defined such that the first vehicle 11 and the second vehicle 12 face each other.
  • the second controllable polarizer 22 of the second vehicle 12 can further absorb and The light emitted by the headlights of the first vehicle is reflected to better reduce the intensity of light entering the driver's field of view in the second vehicle 12.
  • the light emitted by the headlights of the second vehicle 12 can also be further reduced in intensity by the second controllable polarizer 22 in the first vehicle 11 before entering the field of view of the driver in the first vehicle 11.
  • the controllable polarizer 2 includes not only the controllable power source 24 but also the first conductive layer 210, the second conductive layer 220, and the first conductive layer.
  • the control terminal of the power source 24 is connected.
  • the distance detector 3 detects the distance between the opposite vehicle and the vehicle where the distance detector 3 is located in real time, and the distance between the opposite vehicle and the vehicle where the distance detector 3 is located is within a preset range.
  • the signal generated by the distance detector 3 is transmitted to the control end of the controllable power source 24 through the signal output terminal, and the controllable power source 24 is brought into an active state. At this time, the controllable power source 24 is applied to the first conductive layer 210 and the second conductive layer 220.
  • the voltage is such that the polarizing material layer 23 is in the electric field formed by the first conductive layer 210 and the second conductive layer 220, thereby ensuring that the polarizing material layer 23 enters an operational state to polarize the light passing through the polarizing material layer 23.
  • the first conductive layer 210 and the second conductive layer 220 are both made of an indium tin oxide film or a carbon nanotube conductive coating to improve the conductivity of the first conductive layer 210 and the second conductive layer 220.
  • the performance enables the polarizing material layer 23 located between the first conductive layer 210 and the second conductive layer 220 to quickly enter the working state; and, because of the first conductive layer made of an indium tin oxide film or a carbon nanotube conductive coating
  • the first conductive layer 210 and the second conductive layer 220 have good light transmission properties, so that the polarization material layer 23 can only pass through the polarizing material layer 23 when the light is polarized.
  • the polarization performance weakens the intensity of the light, making the reduction in light intensity controllable.
  • the polarizing material layer 23 includes an electro-optic crystal sub-layer 231 and an optical material sub-layer 232 disposed in sequence along the light transmission direction; that is, whether it is the first controllable polarizer 21 or the second controllable polarizer 22.
  • the light is first subjected to birefringence through the electro-optical crystal sub-layer 231 to form two linearly polarized lights whose polarization directions are perpendicular to each other, and then the optical material sub-layer 232 is used to vertically cross the two beams.
  • the linearly polarized light is selectively transmitted such that one of the linearly polarized light is totally reflected by the optical material sub-layer 232, and the other of the linearly polarized light passes through the optical material sub-layer 232, so that the electro-optic crystal sub-layer 231 can be utilized. And the optical material sub-layer 232 attenuates the intensity of the light.
  • the electro-optic crystal sub-layer 231 is composed of potassium dihydrogen phosphate and phosphorus. Made of one or any of a variety of ammonium dihydrogen phosphate or potassium dihydrogen hydride. Under energized conditions, these crystal materials are capable of birefringent treatment of light to form two lines of polarization perpendicular to each other. polarized light.
  • an embodiment of the present disclosure further provides a vehicle, including the light control device for a vehicle provided by the above technical solution, which is beneficial to the vehicle provided by the embodiment of the present disclosure.
  • the effect is the same as that of the light control device for a vehicle provided by the above technical solution, and details are not described herein.
  • the embodiment further provides a light control method for a vehicle, which is applied to a light control device 10 of a vehicle, and the light control method of the vehicle includes:
  • the distance detector 3 detects the distance between the opposite vehicle and the vehicle in which the distance detector 3 is located during the vehicle traveling direction;
  • the controllable polarizer 2 polarizes the light so that the intensity of the light is weakened; when the opposite vehicle and the said The distance between the vehicles where the detector 3 is located is outside the preset range, and the controllable polarizer 2 stops the polarization processing of the light.
  • the beneficial effects of the light control method of the vehicle provided by the embodiment are the same as those of the light control device for the vehicle provided in the first embodiment, and are not described herein.
  • a judging step is generally included to determine whether the distance between the opposite vehicle and the vehicle in which the distance detector 3 is located is within a preset range.
  • the controllable polarizer 2 is located on the light-emitting surface of the headlight of the vehicle 1.
  • the polarization treatment of the light by the controllable polarizer 2 includes: the controllable polarizer 2 emits a light to the headlight of the vehicle. The light is polarized to cause the light emitted by the headlight of the vehicle 1 to be weakened; the controllable polarizer 2 stops the polarization processing of the light comprising: the controllable polarizer 2 stops the polarization of the light emitted by the headlight of the vehicle 1 .
  • the controllable polarizer 2 is located on the windshield of the vehicle 1, and the polarizing treatment of the light by the controllable polarizer 2 includes: the pair of controllable polarizers 2 are directed to the vehicle 1 The light of the windshield is polarized, so that the light entering the windshield of the vehicle is weakened; the controllable polarizer 2 stops the polarization treatment of the light, including: the controllable polarizer 2 stops the wind shield against the vehicle 1 The light of the glass is polarized.
  • one of the two controllable polarizers is located on the light-emitting surface of the headlight of the vehicle 1, and the other is located in the windshield of the vehicle 1;
  • the polarizing directions of the polarizers are different; the steps of polarizing the light by the two controllable polarizers include:
  • a controllable polarizer located on the light exit surface of the vehicle 1 polarizes the light emitted by the headlights of the vehicle 1 such that the light from the headlights of the vehicle 1 is diminished; the windshield of the vehicle 1 is located The controllable polarizer polarizes light directed to the windshield of the vehicle 1 such that light entering the windshield of the vehicle 1 is diminished;
  • the two controllable polarizers 2 stop the polarization processing of the light comprising: the controllable polarizer located on the light exit surface of the headlight of the vehicle 1 stops the polarization treatment of the light emitted by the headlights of the vehicle 1; The controllable polarizer of the windshield of 1 stops the polarization treatment of the light directed at the windshield of the vehicle 1.
  • the controllable polarizer 2 includes a controllable power source 24, a first conductive layer 210, a second conductive layer 220, and a layer of polarizing material between the first conductive layer 210 and the second conductive layer 220.
  • the output end of the controllable power source 24 is connected to the first conductive layer 210 and the second conductive layer 220, respectively, and the signal output end of the distance detector 3 is connected to the control end of the controllable power source 24;
  • the polarizing material layer 23 includes along the light
  • the electro-optical crystal sub-layer 231 and the optical material sub-layer 232 are sequentially disposed in the transmission direction; at this time, the polarizing treatment of the light by the controllable polarizer 2 includes:
  • the controllable power source 24 applies a voltage to the first conductive layer 210 and the second conductive layer 220 such that the electro-optic crystal sub-layer 231 is in an electric field formed by the first conductive layer 210 and the second conductive layer 220;
  • the electro-optical crystal sub-layer 231 performs birefringence treatment on the light so that the light becomes two linearly polarized lights having mutually perpendicular polarization directions;
  • the embodiment of the present disclosure can achieve a reduction in light intensity by cooperating with the optical material sub-layer 232 by the electro-optical crystal sub-layer 231.
  • the refractive indices of the two mutually perpendicular linearly polarized lights are n and n', respectively, and the refractive index of the optical material sublayer 232 is n0, where n ⁇ n0 ⁇ n'; only satisfying n ⁇ n0 ⁇ n 'A bundle of linearly polarized light having a refractive index of n is totally reflected by the optical material sub-layer 232, and a bundle of linearly polarized light having a refractive index of n' is transmitted through the optical material sub-layer 232.
  • Embodiments of the present disclosure also provide a computer non-transitory readable storage medium storing computer instructions executed by a processor, the computer instructions being configured to perform the Control Method.
  • Embodiments of the present disclosure also provide a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the control method described above.
  • a computer program that, when loaded into a processor, causes the processor to perform a light control method for a vehicle as described above.
  • Embodiments of the present disclosure also provide a light control device 10 for a vehicle, as shown in FIG. 7, including a distance detector 3, a processor 4, a memory 5, and a controllable polarizer 2, the memory 5 including a medium 51
  • the medium 51 stores computer instructions executed by the processor, the computer instructions being configured to execute the control method described above while the processor is running.
  • the processor 4 is configured to perform a determining step when determining the detection result of the distance detector 3, that is, determining whether the distance between the second vehicle and the first vehicle is within a preset range, and obtaining the distance detector 3
  • the detection result is in a state within a preset range
  • a control signal is generated to turn on the controllable power source 24 of the controllable polarizer 2 and input to the control terminal of the controllable power source 24.
  • the controllable power source 24 enters an active state, and the controllable polarizer 2 begins to polarize the passing light.
  • the processor 4 is further configured to generate a control signal for turning off the controllable power source 24 of the controllable polarizer 2 in a state where the detection result obtained by the distance detector 3 is outside the preset range, and input the control signal to the controllable power source 24. end.
  • the controllable power source 24 is thus turned off and the controllable polarizer 2 stops the polarization treatment of the passing light.
  • the light control device for a vehicle provided by the present disclosure has a plurality of controllable polarizers, the operation process of the light control device and the beneficial effects thereof can be specifically described above, and are not described in detail herein.
  • the steps of the method or algorithm described in the embodiments of the present disclosure may be implemented by means of a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the processor may be a central processing unit (CPU), a field programmable logic array (FPGA), a microcontroller (MCU), a specific function application circuit (ASIC), etc., having logic computing capabilities and/or program execution capabilities.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • direct or indirect communication can be performed through a network connection.
  • the network may include a wireless network, a wired network, and/or a wireless network and a wired network.
  • the network may include a local area network, the Internet, a telecommunications network, an internet of things based on the Internet and/or telecommunications network, and/or any combination of the above networks, and the like.
  • the wired network can be communicated by using, for example, a twisted pair cable, a coaxial cable, or an optical fiber.
  • the wireless network can use, for example, a 3G/4G/5G mobile communication network, Bluetooth, Zigbee, or WiFi.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Polarising Elements (AREA)

Abstract

一种用于交通工具(1)的光线控制装置(10)包括距离检测器(3)和至少一个可控偏振器(2)。该距离检测器(3)检测该距离检测器(3)所在的第一交通工具(11)与干扰光源之间的距离。所述至少一个可控偏振器(2)配置为,当该距离位于预设范围内,对光线进行偏振处理,使得光线的强度减弱;否则停止对光线进行偏振处理。

Description

交通工具及其光线控制装置、光线控制方法
本申请要求于2017年5月4日提交中国专利局、申请号为201710309392.3、发明名称为“一种交通工具及其光线控制装置、光线控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光处理技术领域,尤其涉及一种交通工具及其光线控制装置和光线控制方法。
背景技术
随着经济社会的飞速发展,汽车已经成为人们生产、生活中不可或缺的交通运输工具。私家车、客车以及各种货运车辆的大量使用,使得道路交通安全问题成为全社会关注的焦点。
在光线较暗的环境下驾驶汽车时,汽车司机为了保证视野足够宽广明亮,常常使用远光灯。但是两车相向行驶时,往往会出现一方甚至双方司机不能及时关闭远光灯的情况,会车时这些远光灯所发出的强光很容易导致对方车辆的驾驶员出现视觉盲点,无法对路面出现的情况做出正确判断,极易引发交通事故。
发明内容
在本公开的一个方面,提供了一种用于交通工具的光线控制装置,该光线控制装置包括距离检测器和至少一个可控偏振器,所述距离检测器的信号输出端与所述至少一个可控偏振器的控制端连接;所述距离检测器配置为检测所述距离检测器所在的第一交通工具与干扰光源之间的距离;所述至少一个可控偏振器配置为,当所述干扰光源与所述第一交通工具之间的距离位于预设范围内,对光线进行偏振处理,使得所述光线的强度减弱;当所述干扰光源与所述第一交通工具之间的距离位于所述预设范围外,对所述光线进行偏振处理。
可选的,所述至少一个可控偏振器位于所述第一交通工具的前 灯出光面。
可选的,所述至少一个可控偏振器位于所述第一交通工具的挡风玻璃。
可选的,所述至少一个可控偏振器包括两个可控偏振器,所述两个可控偏振器的其中一个位于所述第一交通工具的前灯出光面,另一个位于所述第一交通工具的挡风玻璃;所述两个可控偏振器的偏振方向不同。
可选的,所述至少一个可控偏振器中的每个可控偏振器包括可控电源、第一导电层、第二导电层,以及位于所述第一导电层和所述第二导电层之间的偏振材料层,所述可控电源的输出端分别与所述第一导电层和所述第二导电层连接,所述距离检测器的信号输出端与所述可控电源的控制端连接。
可选的,所述第一导电层和所述第二导电层均由氧化铟锡材料制成。
可选的,所述偏振材料层包括沿着光线传输方向依次设置的电光晶体子层和光学材料子层。
可选的,所述干扰光源包括位于与所述第一交通工具相向行驶的第二交通工具上的远光灯。
本公开的另一方面,还提供一种交通工具,包括上述技术方案提供的所述光线控制装置。
本公开的又一方面,还提供一种用于交通工具的光线控制方法,应用于上述技术方案提供的所述光线控制装置,所述交通工具的光线控制方法包括:
距离检测器检测所述距离检测器所在的第一交通工具与干扰光源之间的距离;
当所述干扰光源与所述第一交通工具之间的距离位于预设范围内,至少一个可控偏振器对光线进行偏振处理,使得所述光线的强度减弱;当所述干扰光源与所述第一交通工具之间的距离位于所述预设范围外,所述至少一个可控偏振器停止对光线进行偏振处理。
可选的,所述至少一个可控偏振器位于所述第一交通工具的前灯出光面,所述至少一个可控偏振器对光线进行偏振处理包括:所述至少一个可控偏振器对所述第一交通工具的前灯所发出的光线进行偏振处理,使得所述第一交通工具的前灯发出的光线减弱;
所述至少一个可控偏振器停止对光线进行偏振处理包括:所述至少一个可控偏振器停止对所述第一交通工具的前灯所发出的光线进行偏振处理。
可选的,所述至少一个可控偏振器位于所述第一交通工具的挡风玻璃,所述至少一个可控偏振器对光线进行偏振处理包括:所述至少一个可控偏振器对射向所述第一交通工具的挡风玻璃的光线进行偏振处理,使得进入所述第一交通工具的挡风玻璃的光线减弱;
所述至少一个可控偏振器停止对光线进行偏振处理包括:所述至少一个可控偏振器停止对射向所述第一交通工具的挡风玻璃的光线进行偏振处理。
可选的,所述至少一个可控偏振器包括两个可控偏振器,所述两个可控偏振器的其中一个可控偏振器位于所述第一交通工具的前灯出光面,另一个可控偏振器位于所述第一交通工具的挡风玻璃;所述两个可控偏振器的偏振方向不同;所述两个可控偏振器对光线进行偏振处理包括:
位于所述第一交通工具的前灯出光面的可控偏振器对所述第一交通工具的前灯所发出的光线进行偏振处理,使得所述第一交通工具的前灯发出的光线减弱;位于所述第一交通工具的挡风玻璃的可控偏振器对射向所述第一交通工具的挡风玻璃的光线进行偏振处理,使得进入所述第一交通工具的挡风玻璃的光线减弱;
所述两个可控偏振器停止对光线进行偏振处理包括:位于所述第一交通工具的前灯出光面的可控偏振器停止对所述第一交通工具的前灯所发出的光线进行偏振处理;位于所述第一交通工具的挡风玻璃的可控偏振器停止对射向所述第一交通工具的挡风玻璃的光线进行偏振处理。
可选的,所述至少一个可控偏振器中的每个可控偏振器包括可控电源、第一导电层、第二导电层,以及位于所述第一导电层和所述第二导电层之间的偏振材料层,所述可控电源的输出端分别与所述第一导电层和所述第二导电层连接,所述距离检测器的信号输出端与所述可控电源的控制端连接;所述偏振材料层包括沿着光线传输方向依次设置的电光晶体子层和光学材料子层;
所述至少一个可控偏振器对光线进行偏振处理包括:
对所述至少一个可控偏振器中的每一个可控偏振器,它的可控电源对它的第一导电层和第二导电层施加电压,使得它的电光晶体子层处在所述第一导电层和所述第二导电层形成的电场中;
所述电光晶体子层对光线进行双折射处理,使得所述光线变成具有相互垂直的偏振方向的两束线偏振光;
所述两束线偏振光在穿过它的光学材料子层时,所述两束线偏振光中其中一束线偏振光被所述光学材料子层全反射,另一束线偏振光穿过所述光学材料子层,得到具有单一偏振方向的出射光线。
在本公开的再一方面,提供了一种用于交通工具的光线控制装置,包括处理器、距离检测器和至少一个可控偏振器;
所述距离检测器配置为检测所述距离检测器所在的第一交通工具与干扰光源之间的距离;
所述处理器配置为在接收到所述距离检测器的检测结果时,判断所述干扰光源与所述第一交通工具之间的距离是否位于预设范围内,并在所述干扰光源与所述第一交通工具之间的距离位于预设范围内的状态下,控制所述至少一个可控偏振器对光线进行偏振处理,使得所述光线的强度减弱;以及在所述干扰光源与所述第一交通工具之间的距离位于所述预设范围外的状态下,控制所述至少一个可控偏振器停止对所述光线进行偏振处理。
在本公开的又一方面,提供一种计算机非瞬时可读存储介质,存储有由处理器运行的计算机指令,所述计算机指令被配置为在处理器运行时执行上述的光线控制方法。
在本公开的又一方面,提供一种计算机程序产品,所述计算机程序产品包含指令,当其在计算机上运行时,使得计算机执行上述的光线控制方法。
本公开的又一方面,提供一种计算机程序,该程序被加载到处理器后使处理器执行时实现如上述所述的交通工具的光线控制方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的用于交通工具的光线控制装置的结构框图;
图2为本公开实施例提供的用于交通工具的光线控制方法流程图;
图3为本公开实施例提供的用于交通工具的光线控制装置在交通工具的第一位置示意图;
图4为本公开实施例提供的用于交通工具的光线控制装置在交通工具的第二位置示意图;
图5为本公开实施例提供的用于交通工具的光线控制装置在交通工具相向行驶过程中的光线走向原理示意图;
图6为本公开实施例中可控偏振器的结构示意图;
图7为本公开实施例提供的用于交通工具的光线控制装置的控制关系示意图。
具体实施方式
本发明的目的在于提供一种交通工具及其光线控制装置和光线控制方法,以减少进入交通工具内驾驶员视线的光线强度,以降低汽车行驶过程中中驾驶员因前方的干扰光线视觉盲点出现的机率。
为了进一步说明本公开实施例提供的交通工具及其光线控制装置、光线控制方法,下面结合说明书附图进行详细描述。
本公开实施例提供的用于交通工具的光线控制装置,交通工具 1可以为普通的轿车、公共汽车,也可以是其他交通工具。
请参阅图1和图2,该用于交通工具的光线控制装置10包括可控偏振器2和距离检测器3,距离检测器3的信号输出端与可控偏振器2的控制端连接。距离检测器3配置为检测距离检测器3所在的交通工具与干扰光源之间的距离。可控偏振器2配置为当干扰光源与交通工具之间的距离位于预设范围内,对光线进行偏振处理,使得所述光线的强度减弱;当干扰光源与交通工具之间的距离位于预设范围外,停止对所述光线进行偏振处理。所述的干扰光源指位于距离检测器3所在的交通工具之外的会影响驾驶员安全驾驶的光源,包括但不限于与距离检测器3所在的交通工具相向行驶的另一交通工具上的远光灯。
下面以两车相向行驶时另一交通的远光灯为干扰光源为例,结合图1和图2说明用于交通工具的光线控制装置10控制光线的具体步骤。
第一步:距离检测器3检测交通工具相向行驶过程中距离检测器3所在交通工具另一与距离检测器3所在交通工具相向行驶的交通工具(以下称相向交通工具)之间的距离;
第二步:判断相向交通工具与距离检测器3所在交通工具之间的距离是否位于预设范围内;
第三步:当相向交通工具与距离检测器3所在交通工具之间的距离位于预设范围内,可控偏振器2对光线进行偏振处理,使得光线的强度减弱,以保证在预设范围内进入驾驶员的光线强度减弱;当相向交通工具与距离检测器3所在交通工具之间的距离位于预设范围外,可控偏振器2停止对光线进行偏振处理。
本公开上述实施例提供的用于交通工具的光线控制装置中,距离检测器3的信号输出端与可控偏振器2的控制端连接,这样就可以利用距离检测器3检测交通工具相向行驶过程中相向交通工具与距离检测器3所在交通工具之间的距离,在相向交通工具与距离检测器3所在交通工具之间的距离位于预设范围内,这样就能够在预设范围内 通过可控偏振器2减弱光线强度,从而降低驾驶员在预设范围内出现视觉盲点的问题。
夜间在道路上会车时,一般要求司机距离相向交通工具150米以内将远光灯改用近光灯,因此,本实施例提供的光线控制装置,在相向交通工具与距离检测器3所在交通工具之间的距离小于150米时,通过可控偏振器2减弱光线强度,否则停止对光线进行偏振处理。如果上述的预设范围表述为大于等于零小于等于预设距离A,其中预设距离A可以是大于等于145米小于等于180米的范围内的任意值。例如,上述的预设范围可选为0~180m,或者0~150m,或者0~145m。
通过距离检测器3检测交通工具相向行驶过程中相向交通工具与距离检测器3所在交通工具之间的距离,可控偏振器2对光线进行偏振处理,使得光线的强度减弱;而在相向交通工具与距离检测器3所在交通工具之间的距离位于所述预设范围外,可控偏振器2停止对光线进行偏振处理,也能够充分的减少不必要的可控偏振器2的能源损耗。
在本公开的一些实施例中,上述距离检测器3可以是GPS定位系统、北斗定位系统、红外检测器或者超声波检测器,当然也可以是其它能够实现距离检测的距离检测器3,在此不做一一限定。另外,预设范围可以根据实际需要设定,并不是一成不变。
另外,在本公开的另一些实施例中,本实施例中的可控偏振器2在交通工具1的设置位置存在多种,下面举例说明可控偏振器2在交通工具的位置不同时,可控偏振器2对交通工具1的前灯所发出的光线进行偏振处理的影响。
第一种位置:可控偏振器2位于如图3所示的交通工具1的前灯出光面,此时可控偏振器2对光线进行偏振处理时:可控偏振器2对交通工具1的前灯所发出的光线进行偏振处理,使得交通工具1的前灯发出的光线减弱;具体的,可控偏振器2对交通工具1的前灯所发出的光线进行偏振处理时,交通工具1的前灯所发出的光线被可控偏振器2反射或吸收,而剩余的一部分从交通工具1的前灯所发出的 光线穿过可控偏振器2,这样处相向交通工具中的驾驶员视野内的光线强度就能够在一定程度上减弱。
可控偏振器2停止对光线进行偏振处理包括:可控偏振器2停止对交通工具1的前灯所发出的光线进行偏振处理。
第二种位置:可控偏振器2位于如图4所示的交通工具的挡风玻璃,此时可控偏振器2对光线进行偏振处理包括:可控偏振器2对射向交通工具1的挡风玻璃的光线进行偏振处理,使得进入交通工具1的挡风玻璃的光线减弱;这样位于交通工具1中的驾驶员视野内的光线强度就会减弱;而且,由于可控偏振器2只对通过挡风玻璃32处的光线进行偏振处理,不会影响可控偏振器2所在交通工具的前灯所发出的光线强度。
可控偏振器2停止对光线进行偏振处理包括:可控偏振器2停止对射向所述交通工具的挡风玻璃的光线进行偏振处理。
此处需要明确的是,射向交通工具1的挡风玻璃32的光线可以为交通工具1自身发出的光线,也可以为两辆交通工具相向行驶过程中,相向交通工具发出的光线,当然也可以是其他光源发出的光线,这也极大的增加了本实施例提供的用于交通工具的光线控制装置的应用范围。
在本公开的另一些实施例中可控偏振器的数量也可以根据实际需要设定,例如,如图5所示,可控偏振器的数量为两个,分别为第一可控偏振器21和第二可控偏振器22,第一可控偏振器21位于交通工具的前灯出光面,另一个可控偏振器位于交通工具的挡风玻璃;第一可控偏振器21和第二可控偏振器22位于同一交通工具,这种情况下,第一可控偏振器21和第二可控偏振器22由同一个控制器控制。
可控偏振器2对光线进行偏振处理时,是在两辆交通工具相向行驶过程中进行。为了方便下文描述,将相向行驶的两辆交通工具用第一交通工具11和第二交通工具12具表示,且第一交通工具11和第二交通工具12均设有第一可控偏振器21和第二可控偏振器22,第一可控偏振器21和第二可控偏振器22的具体位置可参照前述描述。
从第一交通工具11的角度来说,第一交通工具11中的第一可控偏振器21将第一交通工具11的前灯所发出的光线偏振处理成偏振光,且第一交通工具11的前灯所发出的光线会有部分被第一可控偏振器21反射或吸收,而剩余的一部分从第一交通工具11的前灯所发出的光线穿过第一交通工具11的第一可控偏振器21,这些光线射向第二交通工具12的挡风玻璃时,第二交通工具12的第二可控偏振器22对这些光线进行偏振处理,这样就能够进一步的减弱第一交通工具11的前灯所发出的光线,使得位于第二交通工具12中的驾驶员视野内的光线强度降低。
而从第二交通工具12的角度来说,第二交通工具12中的第一可控偏振器21将第二交通工具12的前灯所发出的光线偏振处理成偏振光,且第二交通工具12的前灯所发出的光线会有部分被第一可控偏振器21反射或吸收,而剩余的一部分从第二交通工具12的前灯所发出的光线穿过第二交通工具12的第一可控偏振器21,这些光线射向第一交通工具11的挡风玻璃时,第一交通工具11的第二可控偏振器22对这些光线进行偏振处理,这样就能够进一步的减弱第二交通工具12的前灯所发出的光线,使得位于第一交通工具11中的驾驶员视野内的光线强度降低。
而为了进一步提高对光线强度的降低效率,可以限定第一可控偏振器21的偏振方向和第二可控偏振器22的偏振方向不同,使得在第一交通工具11和第二交通工具12相向行驶过程时,第一交通工具11的第一可控偏振器21对第一交通工具的前灯所发出的光线进行偏振后,第二交通工具12的第二可控偏振器22能够进一步吸收和反射第一交通工具的前灯所发出的光线,从而更好的降低进入第二交通工具12中驾驶员视野的光线强度。同理,第二交通工具12的前灯所发出的光线在进入第一交通工具11中驾驶员的视野前,也能够通过第一交通工具11中的第二可控偏振器22进一步减少强度。
进一步地,请参阅图6,可控偏振器2不仅包括可控电源24,而且还包括第一导电层210、第二导电层220,以及位于第一导电层 210和第二导电层220之间的偏振材料层23;其中,可控电源24的输出端分别与第一导电层210和第二导电层220连接,距离检测器3的信号输出端与可控电源24的控制端连接。
在相向行驶过程中,距离检测器3实时检测相向交通工具与距离检测器3所在交通工具之间的距离,当相向交通工具与距离检测器3所在交通工具之间的距离位于预设范围内,距离检测器3产生的信号通过信号输出端传输到可控电源24的控制端,使可控电源24进入工作状态,此时,可控电源24向第一导电层210和第二导电层220施加电压,使得偏振材料层23处在第一导电层210和第二导电层220形成的电场中,从而保证偏振材料层23进入工作状态,以对经过偏振材料层23的光线进行偏振处理。
在本公开的一实施例中,第一导电层210和第二导电层220均采用氧化铟锡薄膜或碳纳米管导电镀膜制成,以提高第一导电层210和第二导电层220的导电性能,使得位于第一导电层210和第二导电层220之间的偏振材料层23能够快速的进入工作状态;而且,由于采用氧化铟锡薄膜或碳纳米管导电镀膜制成的第一导电层210和第二导电层220,使得第一导电层210和第二导电层220具有良好的透光性能,这样就能够保证偏振材料层23对光线进行偏振处理时,只能通过偏振材料层23的偏振性能减弱光线的强度,使得光线强度的减弱可控化。
可选的,偏振材料层23包括沿着光线传输方向依次设置的电光晶体子层231和光学材料子层232;也就是说,不管是第一可控偏振器21,还是第二可控偏振器22,对光线进行偏振处理时,光线都是先经过电光晶体子层231将光线进行双折射处理成两束偏振方向相互垂直的线偏振光,然后再利用光学材料子层232对两束相互垂直的线偏振光进行选择性透过,使得其中一束线偏振光被光学材料子层232全反射,而另一束线偏振光则通过光学材料子层232,这样就能够利用电光晶体子层231和光学材料子层232减弱光线的强度。
在本公开的一实施例中,电光晶体子层231由磷酸二氢钾、磷 酸二氢铵、砷酸二氢钾中的一种或者任意几种的材料制成,在通电状态下,这几种晶体材料能够对光线进行双折射处理,形成两束偏振方向相互垂直的线偏振光。
请参阅图1,本公开实施例还提供一种交通工具,该交通工具包括上述技术方案提供的用于交通工具的光线控制装置,与相关技术相比,本公开实施例提供的交通工具的有益效果与上述技术方案提供的用于交通工具的光线控制装置的有益效果相同,在此不做赘述。
请参阅图1和图2,本实施例还提供一种交通工具的光线控制方法,应用于交通工具的光线控制装置10,该交通工具的光线控制方法包括:
第一步,距离检测器3检测交通工具相向行驶过程中相向交通工具与所述距离检测器3所在交通工具之间的距离;
第二步,当相向交通工具与距离检测器3所在交通工具之间的距离位于预设范围内,可控偏振器2对光线进行偏振处理,使得光线的强度减弱;当相向交通工具与所述距离检测器3所在交通工具之间的距离位于所述预设范围外,可控偏振器2停止对光线进行偏振处理。
与相关技术相比,本实施例提供的交通工具的光线控制方法的有益效果与上述实施例一提供的用于交通工具的光线控制装置的有益效果相同,在此不做赘述。
可以理解的是,在第一步和第二步之间,一般还会包括判断步骤,以判断相向交通工具与距离检测器3所在交通工具之间的距离是否位于预设范围内。
如图3所示,可控偏振器2位于交通工具1的前灯出光面,此时,可控偏振器2对光线进行偏振处理包括:可控偏振器2对交通工具的前灯所发出的光线进行偏振处理,使得交通工具1的前灯发出的光线减弱;可控偏振器2停止对光线进行偏振处理包括:可控偏振器2停止对交通工具1的前灯所发出的光线进行偏振处理。
如图4所示,可控偏振器2位于交通工具1的挡风玻璃,可控偏振器2对光线进行偏振处理包括:可控偏振器2对射向交通工具1 的挡风玻璃的光线进行偏振处理,使得进入交通工具的挡风玻璃的光线减弱;可控偏振器2停止对光线进行偏振处理包括:可控偏振器2停止对射向交通工具1的挡风玻璃的光线进行偏振处理。
而在可控偏振器的数量为两个的状态下,两个可控偏振器的其中一个位于交通工具1的前灯出光面,另一个位于交通工具1的挡风玻璃;且这两个可控偏振器的偏振方向不同;这两个可控偏振器对光线进行偏振处理的步骤包括:
位于交通工具1的前灯出光面的可控偏振器对交通工具1的前灯所发出的光线进行偏振处理,使得交通工具1的前灯发出的光线减弱;位于交通工具1的挡风玻璃的可控偏振器对射向交通工具1的挡风玻璃的光线进行偏振处理,使得进入交通工具1的挡风玻璃的光线减弱;
这两个可控偏振器2停止对光线进行偏振处理包括:位于交通工具1的前灯出光面的可控偏振器停止对该交通工具1的前灯所发出的光线进行偏振处理;位于交通工具1的挡风玻璃的可控偏振器停止对射向交通工具1的挡风玻璃的光线进行偏振处理。
上述实施例中可控偏振器的具体设置位置,以及可控偏振器的数量为两个时,对交通工具的光线控制方法所带来的有益效果具体可参见前文描述,在此不详细描述。
具体的,请参阅图6,可控偏振器2包括可控电源24、第一导电层210、第二导电层220,以及位于第一导电层210和第二导电层220之间的偏振材料层23,可控电源24的输出端分别与第一导电层210和第二导电层220连接,距离检测器3的信号输出端与可控电源24的控制端连接;偏振材料层23包括沿着光线传输方向依次设置的电光晶体子层231和光学材料子层232;此时,可控偏振器2对光线进行偏振处理包括:
可控电源24对第一导电层210和第二导电层220施加电压,使得电光晶体子层231处在第一导电层210和第二导电层220形成的电场中;
电光晶体子层231对光线进行双折射处理,使得光线变成具有相互垂直的偏振方向的两束线偏振光;
两束线偏振光在穿过光学材料子层232时,其中一束线偏振光被光学材料子层232全反射,另一束线偏振光穿过光学材料子层232,得到具有单一偏振方向的出射光线。
通过上述可控偏振器2对光线进行偏振处理的具体过程可知,由于光线在通过电光晶体子层231时,分成了相互垂直的偏振方向的两束线偏振光,而这两束线偏振光在通过光学材料子层232时,只有一束线偏振光通过,因此,本公开实施例能够通过电光晶体子层231与光学材料子层232相配合,实现对光线强度的减弱。
需要说明的是,两束相互垂直的线偏振光的折射率分别为n和n’,光学材料子层232的折射率为n0,其中,n<n0<n’;只有满足n<n0<n’,折射率为n的一束线偏振光才会被光学材料子层232全部反射,而折射率为n’的一束线偏振光则能够透过光学材料子层232。
本公开的实施例还提供一种计算机非瞬时可读存储介质,该计算机非瞬时可读存储介质存储有由处理器运行的计算机指令,所述计算机指令被配置为在处理器运行时执行上述的控制方法。
本公开的实施例还提供一种计算机程序产品,该计算机程序产品,所述计算机程序产品包含指令,当其在计算机上运行时,使得计算机执行上述的控制方法。
本公开的又一方面,提供一种计算机程序,该程序被加载到处理器后使处理器执行时实现如上述所述的交通工具的光线控制方法。
本公开的实施例还提供了一种用于交通工具的光线控制装置10,如图7所示,包括距离检测器3、处理器4、存储器5和可控偏振器2,存储器5包括介质51,介质51中存储有由处理器运行的计算机指令,该计算机指令被配置为在处理器运行时执行上述的控制方法。处理器4配置为在接收到距离检测器3的检测结果时,执行判断步骤,即判断第二交通工具与第一交通工具之间的距离是否位于预设范围内,并在距离检测器3所得检测结果位于预设范围内的状态下, 生成使可控偏振器2的可控电源24开启的控制信号,并输入到可控电源24的控制端。可控电源24进入工作状态,可控偏振器2开始对经过光线进行偏振处理。处理器4还配置为在距离检测器3所得检测结果位于预设范围之外的状态下,生成使可控偏振器2的可控电源24关闭的控制信号,并输入到可控电源24的控制端。可控电源24因此关闭,可控偏振器2停止对经过光线进行偏振处理。
如果本公开提供的用于交通工具的光线控制装置中,存在多个可控偏振器,光线控制装置的运行过程以及所带来的有益效果具体可参见前文描述,在此不详细描述。
本公开实施例所描述的方法或者算法的步骤可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。处理器可以是中央处理单元(CPU)、现场可编程逻辑阵列(FPGA)、单片机(MCU)、特定功能应用电路(ASIC)等具有逻辑运算能力和/或程序执行能力的器件。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。在本公开实施例中,在发生数据、信息等的通讯时,可通过网络连接进行直接或间接地通信。例如,网络可以包括无线网络、有线网络、和/或无线网络和有线网 络的任意组合。网络可以包括局域网、互联网、电信网、基于互联网和/或电信网的物联网、和/或以上网络的任意组合等。有线网络例如可以采用双绞线、同轴电缆或光纤等传输方式进行通信,无线网络例如可以采用3G/4G/5G移动通信网络、蓝牙、Zigbee或者WiFi等通信方式。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种用于交通工具的光线控制装置,包括距离检测器和至少一个可控偏振器,所述距离检测器的信号输出端与所述至少一个可控偏振器的控制端连接;
    所述距离检测器配置为检测所述距离检测器所在的第一交通工具与干扰光源之间的距离,
    所述至少一个可控偏振器配置为,当所述干扰光源与所述第一交通工具之间的距离位于预设范围内,对光线进行偏振处理,使得所述光线的强度减弱;当所述干扰光源与所述第一交通工具之间的距离位于所述预设范围外,停止对所述光线进行偏振处理。
  2. 根据权利要求1所述的光线控制装置,其中,所述至少一个可控偏振器位于所述第一交通工具的前灯出光面。
  3. 根据权利要求1所述的光线控制装置,其中,所述至少一个可控偏振器位于所述第一交通工具的挡风玻璃。
  4. 根据权利要求1所述的光线控制装置,其中,所述至少一个可控偏振器包括两个可控偏振器,所述两个可控偏振器的其中一个位于所述第一交通工具的前灯出光面,另一个位于所述第一交通工具的挡风玻璃;所述两个可控偏振器的偏振方向不同。
  5. 根据权利要求1~4任一项所述的光线控制装置,其中,所述至少一个可控偏振器中的每个可控偏振器包括可控电源、第一导电层、第二导电层,以及位于所述第一导电层和所述第二导电层之间的偏振材料层,所述可控电源的输出端分别与所述第一导电层和所述第二导电层连接,所述距离检测器的信号输出端与所述可控电源的控制端连接。
  6. 根据权利要求5所述的光线控制装置,其中,所述第一导电层和所述第二导电层均由氧化铟锡材料制成。
  7. 根据权利要求5所述的光线控制装置,其中,所述偏振材料层包括沿着光线传输方向依次设置的电光晶体子层和光学材料子层。
  8. 根据权利要求1所述的光线控制装置,其中,所述干扰光源包 括位于与所述第一交通工具相向行驶的第二交通工具上的远光灯。
  9. 一种交通工具,包括权利要求1~8任一项所述的光线控制装置。
  10. 一种交通工具的光线控制方法,该光线控制方法应用于权利要求1所述的光线控制装置,所述交通工具的光线控制方法包括:
    距离检测器检测所述距离检测器所在的第一交通工具与干扰光源之间的距离;
    当所述干扰光源与所述第一交通工具之间的距离位于预设范围内,至少一个可控偏振器对光线进行偏振处理,使得所述光线的强度减弱;当所述干扰光源与所述第一交通工具之间的距离位于所述预设范围外,所述至少一个可控偏振器停止对光线进行偏振处理。
  11. 根据权利要求10所述的交通工具的光线控制方法,其中,所述至少一个可控偏振器位于所述第一交通工具的前灯出光面,所述至少一个可控偏振器对光线进行偏振处理包括:所述至少一个可控偏振器对所述第一交通工具的前灯所发出的光线进行偏振处理,使得所述第一交通工具的前灯发出的光线减弱;
    所述至少一个可控偏振器停止对光线进行偏振处理包括:所述至少一个可控偏振器停止对所述第一交通工具的前灯所发出的光线进行偏振处理。
  12. 根据权利要求10所述的交通工具的光线控制方法,其中,所述至少一个可控偏振器位于所述第一交通工具的挡风玻璃,所述至少一个可控偏振器对光线进行偏振处理包括:所述至少一个可控偏振器对射向所述第一交通工具的挡风玻璃的光线进行偏振处理,使得进入所述第一交通工具的挡风玻璃的光线减弱;
    所述至少一个可控偏振器停止对光线进行偏振处理包括:所述至少一个可控偏振器停止对射向所述第一交通工具的挡风玻璃的光线进行偏振处理。
  13. 根据权利要求10所述的交通工具的光线控制方法,其中,所述至少一个可控偏振器包括两个可控偏振器,所述两个可控偏振器的其中一个可控偏振器位于所述第一交通工具的前灯出光面,另一个可 控偏振器位于所述第一交通工具的挡风玻璃;所述两个可控偏振器的偏振方向不同;所述两个可控偏振器对光线进行偏振处理包括:
    位于所述第一交通工具的前灯出光面的可控偏振器对所述第一交通工具的前灯所发出的光线进行偏振处理,使得所述第一交通工具的前灯发出的光线减弱;位于所述第一交通工具的挡风玻璃的可控偏振器对射向所述第一交通工具的挡风玻璃的光线进行偏振处理,使得进入所述第一交通工具的挡风玻璃的光线减弱;
    所述两个可控偏振器停止对光线进行偏振处理包括:位于所述第一交通工具的前灯出光面的可控偏振器停止对所述第一交通工具的前灯所发出的光线进行偏振处理;位于所述第一交通工具的挡风玻璃的可控偏振器停止对射向所述第一交通工具的挡风玻璃的光线进行偏振处理。
  14. 根据权利要求10~13任一项所述的交通工具的光线控制方法,其中,所述至少一个可控偏振器中的每个可控偏振器包括可控电源、第一导电层、第二导电层,以及位于所述第一导电层和所述第二导电层之间的偏振材料层,所述可控电源的输出端分别与所述第一导电层和所述第二导电层连接,所述距离检测器的信号输出端与所述可控电源的控制端连接;所述偏振材料层包括沿着光线传输方向依次设置的电光晶体子层和光学材料子层;
    所述至少一个可控偏振器对光线进行偏振处理包括:
    对所述至少一个可控偏振器中的每一个可控偏振器,它的可控电源对它的第一导电层和第二导电层施加电压,使得它的电光晶体子层处在所述第一导电层和所述第二导电层形成的电场中;
    所述电光晶体子层对光线进行双折射处理,使得所述光线变成具有相互垂直的偏振方向的两束线偏振光;
    所述两束线偏振光在穿过它的光学材料子层时,所述两束线偏振光中其中一束线偏振光被所述光学材料子层全反射,另一束线偏振光穿过所述光学材料子层,得到具有单一偏振方向的出射光线。
PCT/CN2017/110442 2017-05-04 2017-11-10 交通工具及其光线控制装置、光线控制方法 WO2018201685A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/779,469 US20190204627A1 (en) 2017-05-04 2017-11-10 Vehicle, light control device and light control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710309392.3 2017-05-04
CN201710309392.3A CN107054202A (zh) 2017-05-04 2017-05-04 一种交通工具及其光线控制装置、光线控制方法

Publications (1)

Publication Number Publication Date
WO2018201685A1 true WO2018201685A1 (zh) 2018-11-08

Family

ID=59596977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110442 WO2018201685A1 (zh) 2017-05-04 2017-11-10 交通工具及其光线控制装置、光线控制方法

Country Status (3)

Country Link
US (1) US20190204627A1 (zh)
CN (1) CN107054202A (zh)
WO (1) WO2018201685A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054202A (zh) * 2017-05-04 2017-08-18 京东方科技集团股份有限公司 一种交通工具及其光线控制装置、光线控制方法
CN108327490B (zh) 2018-01-30 2020-03-10 成都京东方光电科技有限公司 一种灯光防炫目系统及车辆
US10850595B2 (en) * 2018-03-07 2020-12-01 Magna Electronics Inc. Vehicular sensing system with attenuation of reflected-refracted light off of precipitation using light polarization
CN108761618B (zh) * 2018-05-23 2020-05-19 京东方科技集团股份有限公司 光学膜片及制作方法、挡风玻璃、驾驶设备
DE102018216562A1 (de) * 2018-09-27 2020-04-02 Conti Temic Microelectronic Gmbh Verfahren zum Detektieren von Lichtverhältnissen in einem Fahrzeug
CN111174169A (zh) * 2018-11-09 2020-05-19 华域视觉科技(上海)有限公司 利用偏振属性实现点灯效果的车灯结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036876A (ja) * 2000-07-21 2002-02-06 Kinio Seki 他車前照灯の防眩装置
CN1664441A (zh) * 2005-03-10 2005-09-07 上海交通大学 车辆防眩装置
CN201721292U (zh) * 2010-06-22 2011-01-26 浙江天鸿汽车用品有限公司 汽车自动挡光防眩系统
CN105857032A (zh) * 2016-05-17 2016-08-17 京东方科技集团股份有限公司 一种防眩光系统及汽车
CN106016130A (zh) * 2016-07-19 2016-10-12 开发晶照明(厦门)有限公司 车头灯装置和车辆
CN205877967U (zh) * 2016-05-20 2017-01-11 京东方科技集团股份有限公司 一种照明装置及交通工具
CN107054202A (zh) * 2017-05-04 2017-08-18 京东方科技集团股份有限公司 一种交通工具及其光线控制装置、光线控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646801B1 (en) * 2000-06-09 2003-11-11 Benjamin Sley Glare reduction system and method
US20030103261A1 (en) * 2001-01-09 2003-06-05 Ranald Hay Techniques for reducing observed glare by using polarized optical transmission & reception devices
CN1260079C (zh) * 2003-11-27 2006-06-21 程凯芬 一种车辆前挡风和车灯用偏振玻璃
US20060215076A1 (en) * 2005-03-22 2006-09-28 Karim John H Selective light transmitting and receiving system and method
KR100853519B1 (ko) * 2007-04-27 2008-08-21 울산대학교 산학협력단 차량용 운전자 눈부심 방지 시스템 및 운전자 눈부심 방지방법
KR100816889B1 (ko) * 2007-04-27 2008-03-26 울산대학교 산학협력단 Gps를 이용한 차량용 운전자 눈부심 방지 시스템 및운전자 눈부심 방지 방법
DE102008025807A1 (de) * 2008-05-29 2009-12-03 Hella Kgaa Hueck & Co. Steuergerät zum Einstellen einer vertikalen Hell-Dunkel-Grenze eines Kraftfahrzeugscheinwerfers in Abhängigkeit von der Objektentfernung
US20110063861A1 (en) * 2009-09-14 2011-03-17 Edgeworth Christopher M System, method, and computer program product for adjusting a headlight associated with a vehicle, based on a distance of an object from the vehicle
CN202071751U (zh) * 2011-05-05 2011-12-14 罗正坤 防强光车前玻璃
CN202769549U (zh) * 2012-09-22 2013-03-06 山东科技大学 车辆会车时互相减弱强光影响的光学结构
CN103941431B (zh) * 2014-03-26 2017-03-15 京东方科技集团股份有限公司 可调偏振装置及其方法、显示装置
JP6314666B2 (ja) * 2014-06-02 2018-04-25 株式会社デンソー 前照灯制御装置
CN104155776B (zh) * 2014-07-22 2017-02-15 京东方科技集团股份有限公司 电子窗及其控制方法
KR101683509B1 (ko) * 2015-05-20 2016-12-07 현대자동차 주식회사 헤드램프 눈부심 방지 장치 및 이를 이용한 눈부심 방지 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036876A (ja) * 2000-07-21 2002-02-06 Kinio Seki 他車前照灯の防眩装置
CN1664441A (zh) * 2005-03-10 2005-09-07 上海交通大学 车辆防眩装置
CN201721292U (zh) * 2010-06-22 2011-01-26 浙江天鸿汽车用品有限公司 汽车自动挡光防眩系统
CN105857032A (zh) * 2016-05-17 2016-08-17 京东方科技集团股份有限公司 一种防眩光系统及汽车
CN205877967U (zh) * 2016-05-20 2017-01-11 京东方科技集团股份有限公司 一种照明装置及交通工具
CN106016130A (zh) * 2016-07-19 2016-10-12 开发晶照明(厦门)有限公司 车头灯装置和车辆
CN107054202A (zh) * 2017-05-04 2017-08-18 京东方科技集团股份有限公司 一种交通工具及其光线控制装置、光线控制方法

Also Published As

Publication number Publication date
CN107054202A (zh) 2017-08-18
US20190204627A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018201685A1 (zh) 交通工具及其光线控制装置、光线控制方法
CN111806338B (zh) 车辆中输出队列行驶信息的装置及方法
US20170212527A1 (en) Cooperative driving method by which follow vehicle merges with or diverges from cooperative driving and cooperative driving method by which lead vehicle controls merging with or diverging from cooperative driving
CN112158198B (zh) L3级自动驾驶的横向感知安全驾驶控制方法、系统及车辆
CN202686097U (zh) 车辆对外遥控远近光切换系统
CN110979338B (zh) 牵引车盲区监测方法、装置及存储介质
CN107264287A (zh) 基于电动车辆的车速测量方法和装置
CN111796587B (zh) 自动驾驶方法及存储介质、电子设备
CN105857032A (zh) 一种防眩光系统及汽车
CN109827610B (zh) 用于校验传感器融合结果的方法和装置
CN113911111B (zh) 车辆碰撞检测方法、系统、电子设备以及存储介质
JP2020035442A (ja) 車両運行状態監視方法、装置、及び機器
CN109774710A (zh) 汽车避障的控制方法、装置以及汽车
CN114038196A (zh) 车辆前向防撞预警系统及方法
CN109492360B (zh) 触发操作的权限授权方法、装置及电动汽车
CN116605194A (zh) 危险工况处理方法、装置、车辆、服务器、系统及介质
CN109649262B (zh) 汽车状态的感应控制系统及方法
CN114724408A (zh) 一种车辆后车距预警方法、装置、电子设备及读存介质
CN110473401B (zh) 一种基于车载停车警示牌的快速车道事故报警方法及系统
CN114148252B (zh) 应用于车辆中的指示灯控制方法、装置、设备及介质
KR20120051202A (ko) 휠속 센서를 이용한 조향각 산출 장치 및 그 방법과 이를 이용한 자동 주차 방법
JPH09210905A (ja) レーザによる路面湿分検出装置
US9260057B2 (en) Vehicle lamp using fluid lens and control method of the vehicle lamp
US11970231B2 (en) Causing a difference between steering angles of front wheels or rear wheels of a vehicle in a park mode
Pandey et al. Cost effective reliability centric validation model for automotive ECUs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17908181

Country of ref document: EP

Kind code of ref document: A1