WO2018199568A1 - 전기변색필름 - Google Patents

전기변색필름 Download PDF

Info

Publication number
WO2018199568A1
WO2018199568A1 PCT/KR2018/004668 KR2018004668W WO2018199568A1 WO 2018199568 A1 WO2018199568 A1 WO 2018199568A1 KR 2018004668 W KR2018004668 W KR 2018004668W WO 2018199568 A1 WO2018199568 A1 WO 2018199568A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrochromic
light absorbing
film
absorbing layer
Prior art date
Application number
PCT/KR2018/004668
Other languages
English (en)
French (fr)
Inventor
김용찬
장성호
김기환
조필성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180045420A external-priority patent/KR102126688B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019558575A priority Critical patent/JP6956802B2/ja
Priority to CN201880027298.1A priority patent/CN110573956B/zh
Priority to EP18790622.7A priority patent/EP3617790A1/en
Priority to US16/604,373 priority patent/US11415857B2/en
Publication of WO2018199568A1 publication Critical patent/WO2018199568A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Definitions

  • the present application relates to an electrochromic film.
  • Electrochromic refers to a phenomenon in which the optical properties of an electrochromic material are changed by an electrochemical oxidation or reduction reaction, and the device using the phenomenon is called an electrochromic device.
  • Electrochromic devices generally include a working electrode, a counter electrode, and an electrolyte, and the optical properties of each electrode may be reversibly changed by an electrochemical reaction.
  • the working electrode or counter electrode may include a transparent conductive material and an electrochromic material, respectively, in the form of a film.
  • electrolyte ions are inserted into or detached from the electrochromic material-containing film.
  • electrons move through external circuits, resulting in a change in the optical properties of the electrochromic material.
  • Such an electrochromic device can manufacture a device with a large area at low cost, and has an advantage of low power consumption. However, since the discoloration speed is slow, an improvement on this is necessary. On the other hand, in the conventional electrochromic device because the color of the device to implement only depend on the electrochromic material, there is a part that does not meet the market demand for a variety of colors or excellent aesthetics.
  • One object of the present application is to provide an electrochromic film with improved discoloration speed.
  • Another object of the present application is to provide an electrochromic film that can implement a pattern of various colors or three-dimensional colors.
  • the present application relates to an electrochromic film.
  • the electrochromic film includes a reflective substrate and an electrochromic layer.
  • the electrochromic film of the present application is a so-called "reflective" electrochromic film, which is different from a general transmissive electrochromic film including a translucent electrode material and a translucent substrate on both outer surfaces of the film.
  • at least one side of the film may be used a metal material having low light transmittance and remarkably superior reflection characteristics.
  • the reflective electrochromic film of the present application including a reflective substrate and an electrochromic layer at the same time has excellent aesthetics and color implementation characteristics.
  • the change in the optical properties of the device was generally dependent on the inherent color itself in which the color change material is expressed.
  • the electrochromic film of the present application includes a reflective substrate having a structure in which a metal electrode layer (light reflection layer) having a superior light reflection function and a light absorption layer having a superior light absorption function are laminated. Can provide.
  • the light reflection layer may mean a layer that reflects light of a specific wavelength relatively large
  • the light absorption layer may mean a layer that reflects light of a specific wavelength relatively small.
  • the layers are stacked in the order of the L i -1 layer, the L i layer, and the L i +1 layer based on the direction in which light is input, and the interface between the L i -1 layer and the L i layer ( interface) Assuming that I i is located and the interface I i + 1 is located between the L i layer and the L i +1 layer, the light reflection layer and the light absorption layer will be described as follows.
  • the reflectance at the interface I i may be expressed by Equation 1 below.
  • Equation 1 n i ( ⁇ ) denotes a refractive index according to the wavelength ⁇ of the i-th layer, and k i ( ⁇ ) denotes an extinction coefficient according to the wavelength ⁇ of the i-th layer. Means.
  • the extinction coefficient is a measure that can define how strongly the target material absorbs light at a particular wavelength, as described below.
  • Equation 2 when the sum of the reflectance for each wavelength at the interface I i calculated at each wavelength in the predetermined range, for example, in the range of 380 nm to 780 nm, R i , i is shown in Equation 2 below.
  • the laminate surface of the I i of R i is the greater, the interface I i and in contact with, the interface I i and the light is defined as the light-absorbing layer a in the light-reflecting layer, the other layer opposite to the incoming direction Can be.
  • the layer L i + 1 layer may be regarded as a light reflecting layer, the remaining layer L i- 1 layer and / or the L i layer as a light absorbing layer.
  • the light reflection function is achieved by the metal electrode layer.
  • the reflective substrate may include a metal electrode layer and a light absorbing layer.
  • FIG. 2 shows a reflective substrate according to one example of the present application. As shown, in the light absorbing layer, light is absorbed in both the incident path and the reflective path, and the light is reflected at both the surface and the interface of each layer. The constructive and destructive interferences occurring between the reflected light add additional color change or aesthetics to the intrinsic color of the electrochromic layer. Accordingly, the electrochromic film of the present application allows the user to see a color, color, or color pattern different from the color expressed in the electrochromic layer.
  • the metal electrode layer included in the reflective substrate is aluminum (Al), silver (Ag), platinum (Pt), palladium (Pd), titanium (Ti), nickel (Ni), tungsten (W), copper (Cu) or alloys thereof.
  • the reflectivity of the metal facilitates the optical interference by the light absorbing layer and allows the color or the color unique to the present application to be clearly seen from the user side.
  • the metal electrode layer may not include oxides, nitrides or oxynitrides of the metal components listed above. That is, the electrode layer may be a layer containing only a metal component. Since the oxide, nitride, or oxynitride as described above may have a high light transmittance or a high light absorbency, it may not sufficiently realize the reflection effect by the electrode layer required in the reflective electrochromic film of the present application.
  • the electrochromic film according to the prior art it was common to use a translucent material as the electrode material located on both sides of the film.
  • transparent conductive oxides represented by ITO have been widely used as light transmitting materials.
  • ITO transparent conductive oxide
  • such a transparent conductive oxide has a high sheet resistance and thus does not contribute to the improvement of discoloration rate.
  • the metal materials listed above have a lower sheet resistance compared to ITO, the electrochromic time of the film can be shortened.
  • the thickness of the metal electrode layer may range from 5 nm to 500 nm.
  • the term “thickness” refers to a "normal distance between a point on a layer that meets a normal and an opposite point of the layer” when an imaginary normal is drawn from the ground to the film, or "one side of the layer to be measured and Mean normal distance between two opposing faces ”.
  • the light absorbing layer included in the reflective substrate may be a layer which changes, adjusts or changes the color or color of the color or color of the electrochromic layer, which is colored or decolored, by interaction with the metal electrode layer. Such alterations, adjustments or variations are provided by optical interference by the electrode layer and the light absorbing layer.
  • the light absorbing layer may include a metal oxide, a metal nitride, or a metal oxynitride.
  • the light absorbing layer is nickel (Ni), chromium (Cr), iron (Fe), cobalt (Co), titanium (Ti), vanadium (V), aluminum (Al), gold (Au), copper (Cu), silver (Ag), molybdenum (Mo), and alloys thereof may include oxides, nitrides or oxynitrides containing at least one metal. More specifically, the light absorbing layer may include nitride or oxynitride including one or more selected from molybdenum (Mo), titanium (Ti), aluminum (Al), and copper (Cu).
  • the light absorbing layer may comprise CuO x N y (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y> 0).
  • x and y may refer to the ratio of the number of atoms of each of oxygen (O) and nitrogen (N) to copper (Cu) 1 atom.
  • the light absorbing layer may include a nitride or oxynitride containing both molybdenum and titanium. More specifically, the light absorbing layer may include MoTi a O x N y (0 ⁇ a ⁇ 2, 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 2, x + y> 0).
  • a, x, and y means the ratio of the number of atoms of titanium (Ti), oxygen (O), and nitrogen (N) to one atom of molybdenum (Mo).
  • the light absorbing layer may include a nitride or oxynitride of aluminum (Al). More specifically, the light absorbing layer may include AlO x N y (0 ⁇ x ⁇ 1.5, 0 ⁇ y ⁇ 1, and x + y> 0) satisfying the following relationship.
  • x and y means the ratio of the number of atoms of each O and N to Al 1 atom, and in the above relation based on the content of all the elements contained in AlO x N y 100% (Aluminum element content) indicates an element content of Al (atomic%), (oxygen element content) indicates an element content of O (atomic%), and (nitrogen element content) indicates an element content of N (atomic%). .
  • the relational expression is a formula considering elemental content (atomic%) and chemical valence measured by X-ray photoelectron spectroscopy (XPS).
  • the chemical valence of Al is 3, the chemical valence of O is 2, and the chemical valence of N is 3.
  • the value of the relational expression is greater than 1, it means that Al is rich in Al, O and N, and when it is 1 or less, it means that Al is insufficient in Al, O and N.
  • Al 2 O 3 or AlN represents a relatively transparent phase, and the value of the relation is 1. In such a case, it is difficult to perform the function of the above-mentioned light absorbing layer.
  • the value obtained in the above relation is greater than 2
  • the Al content is higher and the metal properties become stronger, so that the reflectivity is high and it is difficult to perform the function of the above-mentioned light absorbing layer.
  • the light absorbing layer may have a thickness in the range of 5 nm to 500 nm. As long as it has the thickness of the said range, the form of a light absorption layer is not specifically limited.
  • the light absorbing layer may have a gradient (gradient).
  • the light absorbing layer may be an inclined layer whose cross section is inclined, and the cross section may have a quadrangular or trapezoidal shape. There may be two or more gradients that can be identified through the cross section.
  • the light absorbing layer may have bending or irregularities, as shown in FIG. 4.
  • the cross-sectional shape of the bend or irregularities is not particularly limited and may be, for example, part of a circle, triangle or part of a quadrilateral. When bending or irregularities are repeated, interference of various paths may occur, so that the reflective substrate can impart a pattern of various colors to the electrochromic film.
  • one surface of the light absorbing layer may have a regular or irregular pattern.
  • the form of the pattern is not particularly limited. By a regular or irregular pattern, interference of various paths may occur in the reflective substrate, whereby the reflective substrate can impart a pattern of various colors to the electrochromic film.
  • the light absorbing layer may have a refractive index in the range of 0 to 3.
  • the extinction coefficient value k of the light absorbing layer may range from 0.2 to 2.5. More specifically, the light absorbing layer may have an extinction coefficient in the range of 0.2 to 1.5 or 0.2 to 0.8.
  • the extinction coefficient k also called the absorption coefficient, is a measure of how much a structure can absorb light or light at a particular wavelength. For example, when k is less than 0.2, since it is transparent, the extent which absorbs light is insignificant. On the contrary, when the metal component content of the light absorbing layer increases, the reflection characteristic becomes predominant, and the k value exceeds 2.5.
  • the extinction coefficient of the above range the light absorbing layer can efficiently perform the interference effect intended in the present application.
  • the method for providing the light absorbing layer is not particularly limited.
  • a light absorbing layer can be formed using known wet or dry methods. More specifically, the light absorbing layer may be formed by sputtering, chemical vapor deposition (CVD), or electron beam (e-beam).
  • the sheet resistance of the reflective substrate may be 100 kW / ⁇ or less. More specifically, the lower limit may be 1 1 / ⁇ or more or 3 ⁇ / ⁇ , and the upper limit may be 70 ⁇ / ⁇ or 50 ⁇ / ⁇ .
  • the sheet resistance of the said range is a value which is generally lower than the sheet resistance which the transparent conductive oxide represented by ITO generally has, for example, 150 mA / square level.
  • the electrochromic speed of the film can be improved. Sheet resistance can be measured by a known sheet resistance meter.
  • the electrochromic layer may include a color change material that changes optical properties, ie, color through a reversible oxidation / reduction reaction.
  • the type of discoloration material is not particularly limited.
  • the electrochromic layer may include a reducing discoloration material that is colored when a reduction reaction occurs.
  • the type of the reducing discoloration material is not particularly limited.
  • the reducing discoloration material may be WO 3 , MoO. It may be an oxide of Ti, Nb, Mo, Ta or W, such as 3 , Nb 2 O 5 , Ta 2 O 5 or TiO 2 .
  • the electrochromic layer may include a material having a color development characteristic different from that of the reducing color change material, that is, an oxidative color change material.
  • the type of the oxidative discoloring material is not particularly limited, but for example, the oxidizing discoloring material may be Cr, Mn, Fe, Cr, Mn, Fe, such as LiNiOx, IrO 2 , NiO, V 2 O 5 , LixCoO 2, Rh 2 O 3 or CrO 3 . Oxides of Co, Ni, Rh, or Ir; Hydroxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; And it may be a material selected from prussian blue.
  • the electrochromic layer may be provided using known methods, for example, various types of wet or dry coating methods.
  • the thickness of the electrochromic layer may range from 30 nm to 500 nm.
  • the electrochromic film may sequentially include a metal electrode layer, a light absorbing layer, and an electrochromic layer.
  • a metal electrode layer such as a metal electrode layer, a light absorbing layer, and an electrochromic layer.
  • the layer configuration may constitute an electrochromic film while directly contacting each other, or a separate configuration may exist between each layer.
  • the electrochromic film may include two or more light absorbing layers.
  • the electrochromic film may sequentially include a second light absorbing layer, a metal electrode layer, a first light absorbing layer, and an electrochromic layer.
  • the layer configuration may constitute an electrochromic film while directly contacting each other, or may include a separate configuration between each layer.
  • the electrochromic film of the present application may further include a passivation layer.
  • the present application implements a reflective electrochromic film and includes a metal in the electrode layer in order to improve the discoloration speed of the electrochromic film.
  • a metal-containing light absorbing layer is included to impart an improved aesthetic or color to the film.
  • side reactions may occur between the electrolyte ions involved in the electrochromic layer of the electrochromic layer and the metal components included in the layer, thereby degrading each layer. For example, when the metal electrode layer is deteriorated, the durability of the device is not only degraded but also the above-mentioned object of the present application cannot be achieved.
  • the present application may include a passivation layer that prevents deterioration of the metal layer.
  • the passivation layer performs a kind of barrier function to prevent the electrode layer or the light absorbing layer including the metal component from being degraded by the electrolyte ions.
  • the passivation layer may include a transparent conductive oxide. More specifically, ITO (Indium Tin Oxide), In 2 O 3 (Indium Oxide), IGO (Indium Galium Oxide), FTO (Fluor doped Tin Oxide), AZO (Aluminium doped Zinc Oxide), GZO (Galium doped Zinc Oxide) , Transparent conductive oxides such as antimony doped tin oxide (ATO), indium doped zinc oxide (IZO), niobium doped titanium oxide (NTO) or zinc oxide (ZnO) may be used in the passivation layer.
  • ITO Indium Tin Oxide
  • IGO Indium Galium Oxide
  • FTO Fluor doped Tin Oxide
  • AZO Alium doped Zinc Oxide
  • GZO Gadium doped Zinc Oxide
  • Transparent conductive oxides such as antimony doped tin oxide (ATO), indium doped zinc oxide (IZO), niobium doped titanium oxide (NTO) or zinc
  • the electrochromic film may include a passivation layer between the electrochromic layer and the light absorbing layer.
  • a passivation layer may be included between the electrochromic layer and the first light absorbing layer or between the electrochromic layer and the second light absorbing layer.
  • the electrochromic film of the present application may further include an electrolyte layer and a counter electrode layer.
  • the electrolyte layer and the counter electrode layer may be sequentially disposed on one surface opposite to one surface of the electrochromic layer facing the light absorbing layer.
  • the electrochromic film of the present application may sequentially include a metal electrode layer, a light absorbing layer, an electrochromic layer, an electrolyte layer, and a counter electrode layer.
  • the electrolyte layer is configured to provide the electrochromic layer with electrolyte ions involved in the electrochromic reaction.
  • the kind of the electrolyte is not particularly limited.
  • liquid electrolytes, gel polymer electrolytes or inorganic solid electrolytes can be used without limitation.
  • the specific composition of the electrolyte used in the electrolyte layer is not particularly limited.
  • the electrolyte layer may comprise a metal salt capable of providing electrolyte ions such as H + , Li + , Na + , K + , Rb + , or Cs + . More specifically, the electrolyte layer is LiClO 4 , LiBF 4 , LiAsF 6 , or LiPF 6 It may include a lithium salt compound, such as, or a sodium salt compound such as NaClO 4 .
  • the electrolyte layer may further include a carbonate compound as a solvent. Since a carbonate type compound has high dielectric constant, ionic conductivity can be improved.
  • a solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC) or ethylmethyl carbonate (EMC) may be used as the carbonate-based compound.
  • the counter electrode layer may be a transparent electrode layer having excellent light transmittance.
  • the term “transmittance” may mean, for example, a case in which the transmittance to visible light is 60% or more, specifically, 60% to 95%.
  • the visible light may mean light in a wavelength range of 380 nm to 780 nm, specifically, light having a wavelength of about 550 nm.
  • the transmittance may be measured using a known method or apparatus, for example, a haze meter or the like. The transmittance may be equally applied to the electrolyte layer.
  • the kind of material which can be used for a counter electrode is not specifically limited.
  • a transparent conductive oxide having translucency, metal mesh, or OMO organic / metal / oxide
  • the OMO can provide a lower surface resistance than the transparent conductive oxide represented by ITO, it can contribute to improving the discoloration speed of the device.
  • the same oxide as the transparent conductive oxide mentioned as the passivation layer material can be used.
  • the metal mesh usable in the counter electrode layer may have a lattice form including Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni, or an alloy thereof.
  • the materials usable for the metal mesh are not limited to the metal materials listed above.
  • OMO usable for the counter electrode layer may include a top layer, a bottom layer, and a metal layer therebetween.
  • the top and bottom layers are at least one metal oxide selected from the group consisting of Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn and Zr. It may include.
  • the metal layer of the OMO may include a metal such as Ag, Cu, Zn, Au, or Pd.
  • the counter electrode layer may have a thickness of 50 nm to 400 nm or less.
  • the electrochromic film of the present application may further include an ion storage layer between the electrolyte layer and the counter electrode layer.
  • the ion storage layer may refer to a layer formed to balance a charge balance with the electrochromic layer in an oxidation and reduction reaction for electrochromic.
  • the ion storage layer may include an electrochromic material having a color development characteristic different from that of the electrochromic material used in the electrochromic layer.
  • the electrochromic layer may include a reducing electrochromic material
  • the ion storage layer may include an oxidative discoloring material and vice versa.
  • the electrochromic film may further include a translucent substrate on the outer surface of the film.
  • the light transmissive substrate may be located on the outer surface of the metal electrode layer and / or the counter electrode layer.
  • the type of the light transmissive substrate is not particularly limited, but glass or polymer resin may be used, for example. More specifically, a polyester film such as polycarbonate (PC), polyethylene (phthalene naphthalate) (PEN) or polyethylene (ethylene terephthalate) (PET), an acrylic film such as poly (methyl methacrylate) (PMMA), or polyethylene (PE) Or a polyolefin film such as PP (polypropylene) may be used as the light transmitting substrate.
  • the transmittance of the light transmissive substrate may be the same as that of the counter electrode layer described above.
  • the electrochromic film may further include a power source.
  • the manner of electrically connecting the power source to the device is not particularly limited and may be appropriately made by those skilled in the art.
  • the present application relates to an element, an apparatus or an apparatus comprising the film.
  • the type of the device is not particularly limited, but may be, for example, a jacket of a computer or a mobile phone, a wearable device such as a smart watch or smart clothing, or a building material such as a window.
  • the film can be used as a decorative film in these devices, devices or devices.
  • an electrochromic film and a device, apparatus, or apparatus including the same may be provided, in which the color change speed is improved, and which may implement various aesthetic, color or three-dimensional color patterns.
  • FIG. 2 is a conceptual diagram illustrating a principle of color change by the reflective substrate according to the present application.
  • FIG 3 illustrates a cross section of a reflective substrate in accordance with an example of the present application.
  • FIG. 4 illustrates a cross section of a reflective substrate according to another example of the present application.
  • a reflective substrate was prepared in which the AlO x N y layer having a thickness of 10 nm, the Al layer having a thickness of 100 nm, and transparent PET were sequentially stacked, satisfying the above-described relations and formulas.
  • the reflectance with respect to the wavelength which a base material has is as shown in FIG. 5, and the color of the base material visually recognized is shown in Table 1.
  • a reflective substrate was prepared in the same manner except that the thickness of the AlO x N y layer was changed as shown in Table 1 below.
  • the reflectance with respect to the wavelength which each base material has is shown in FIG. 5, and the color of the base material visually recognized is shown in Table 1.
  • the numerical value related to the experiment was measured using the following method or apparatus.
  • the sheet resistance was measured with respect to the reflective base material of an Example and the ITO of the comparative example corresponding to the said reflective base material using the well-known surface resistor according to the 4-point probe system.
  • Discoloration time The time taken to reach the 80% level of the final colored state transmittance observed after the time (50s) when the potential for coloring was applied was measured. In addition, the time taken to reach 80% of the final discolored state transmittance observed after the time (50s) when the potential for discoloration was applied was measured.
  • the reflective substrate of Preparation Example 3 an 80 nm thick ITO layer, and a 250 nm thick WO 3 layer were sequentially stacked.
  • An electrolyte solution (LiClO 4 (1M) + propylene carbonate (PC)) and a potentiostat device were prepared, and a voltage of ⁇ 1 V was applied for 50 seconds to color WO 3 .
  • a film having a lamination structure of Al / AlO x N y / ITO / WO 3 / GPE / PB / ITO by bonding the film to a Prussian blue (PB) / ITO laminate through a gel polymer electrolyte (GPE). was prepared.
  • the discoloration rate was measured while repeatedly applying a bleaching voltage and a coloration voltage to the produced film at regular intervals.
  • the bleaching voltage and the coloring voltage per cycle were applied for 50 seconds with a magnitude of ( ⁇ ) 1.2 V, respectively. After driving a predetermined cycle for stabilization, the measured results are shown in Table 2 and FIG.
  • An electrochromic film was prepared in the same manner as in Example 1, except that the thickness of the Al layer was changed to 50 nm.
  • the measurement point of related physical properties is the same as in Example 1.
  • Example 1 Without using the reflective substrate of Example 1, a 210 nm thick ITO and a 250 nm thick WO 3 layer were sequentially stacked on the PET substrate. After the same process to prepare a transmissive electrochromic film (ITO / WO 3 / GPE / PB / ITO). The measurement point of related physical properties is the same as in Example 1.
  • the reflective substrate of the present example has a very low level of resistance, which contributes to the improvement of the coloring time and the decolorizing time.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

본 출원은 전기변색필름에 관한 것이다. 상기 전기변색필름은 반사형 전기변색필름으로서, 전극층, 광 흡수층 및 전기변색층을 포함한다. 본 출원은 전기변색속도를 개선하고, 다양한 색 또는 미감을 구현할 수 있다.

Description

전기변색필름
관련 출원들과의 상호 인용
본 출원은 2017년 4월 27일 자 한국 특허 출원 제10-2017-0054317호 및 2018년 4월 19일 자 한국 특허 출원 제10-2018-0045420호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 출원은 전기변색필름에 관한 것이다.
전기변색이란 전기화학적 산화 또는 환원 반응에 의하여 전기변색물질의 광학적 성질이 변하는 현상을 말하며, 상기 현상을 이용한 소자를 전기변색소자라 한다. 전기변색소자는 일반적으로 작업전극, 상대전극, 및 전해질을 포함하며, 전기화학적 반응에 의해 각 전극의 광학적 성질이 가역적으로 변화할 수 있다. 예를 들어, 작업전극 또는 상대전극은 투명 도전성 물질과 전기변색물질을 각각 필름형태로 포함할 수 있는데, 상기 소자에 전위가 인가될 경우 전해질 이온이 전기변색물질 함유 필름에 삽입되거나 이로부터 탈리되고, 동시에 외부 회로를 통해 전자가 이동하게 되면서 전기변색물질의 광학적 성질변화가 나타나게 된다.
이러한, 전기변색소자는 적은 비용으로도 넓은 면적의 소자를 제조할 수 있고, 소비전력이 낮은 장점이 있다. 그러나, 변색속도가 느리기 때문에, 이에 대한 개선이 필요하다. 한편, 종래의 전기변색소자는 소자가 구현하는 색상이 오로지 전기변색물질에만 의존하였기 때문에, 다양한 색상이나 우수한 미감에 대한 시장의 요구를 충족시키지 못하는 부분이 있다.
본 출원의 일 목적은 변색속도가 개선된 전기변색필름을 제공하는 것이다.
본 출원의 다른 목적은 다양한 색감 또는 입체 색상의 패턴을 구현할 수 있는 전기변색필름을 제공하는 것이다.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의해 모두 해결될 수 있다.
본 출원에 관한 일례에서, 본 출원은 전기변색필름에 관한 것이다. 상기 전기변색필름은 반사성 기재 및 전기변색층을 포함한다. 본 출원의 전기변색필름은 소위 「반사형」 전기변색필름으로서, 필름의 양쪽 외측면 모두에 투광성 전극 재료와 투광성 기재를 포함하는 일반적인 투과형 전기변색필름과는 그 구성을 달리한다. 구체적으로, 본 출원의 일 구체예에 따르면, 적어도 필름의 일 측면에는 투광성이 낮고, 반사 특성이 현저히 우세한 금속 재료가 사용될 수 있다.
반사성 기재 및 전기변색층을 동시에 포함하는 본 출원의 반사형 전기변색필름은, 미감과 색상 구현 특성이 우수하다. 예를 들어, 전기변색층에 상응하는 구성만을 포함하는 종래 변색소자의 경우에는, 소자의 광학 특성 변화는 변색물질이 발현하는 고유한 색 자체에 의존하는 것이 일반적이었다. 그러나, 하기 설명되는 바와 같이, 본 출원의 전기변색필름은, 광반사 기능이 우세한 금속 전극층(광반사층)과 광흡수 기능이 우세한 광흡수층이 적층된 구성의 반사성 기재를 포함하기 때문에, 다양한 미감을 제공할 수 있다.
본 출원에서, 광반사층(금속 전극층)은 특정 파장의 광을 상대적으로 많이 반사하는 층을 의미할 수 있고, 광흡수층은 특정 파장의 광을 상대적으로 적게 반사하는 층을 의미할 수 있다. 예를 들어, 도 1과 같이, 빛이 들어오는 방향을 기준으로 Li -1층, Li층 및 Li +1층 순서로 적층되어 있고, Li -1층과 Li층 사이에 계면(interface) Ii가 위치하고, Li층과 Li +1층 사이에 계면 Ii+1이 위치한다고 가정하고, 광반사층과 광흡수층을 설명하면 다음과 같다.
박막 간섭이 일어나지 않도록 각 층에 수직한 방향으로 특정한 파장을 갖는 빛을 조사하였을 때, 계면 Ii에서의 반사율은 하기 수학식 1로 표현할 수 있다
[수학식 1]
Figure PCTKR2018004668-appb-I000001
상기 수학식 1에 있어서, ni(λ)는 i번째 층의 파장(λ)에 따른 굴절율을 의미하고, ki(λ)는 i번째 층의 파장(λ)에 따른 소멸 계수(extinction coefficient)를 의미한다. 소멸 계수는 특정 파장에서 대상 물질이 빛을 얼마나 강하게 흡수하는 지를 정의할 수 있는 척도로서, 하기 설명하는 바와 같다.
상기 수학식 1을 적용하여, 예를 들어, 소정 범위의 파장, 예를 들어 380 nm 내지 780 nm 범위의 각 파장에서 계산된 계면 Ii에서의 파장별 반사율의 합을 Ri라고 할 때, Ri는 하기 수학식 2와 같다.
[수학식 2]
Figure PCTKR2018004668-appb-I000002
정리하면, 적층체의 계면 중 Ii의 Ri가 가장 크다고 할 때, 계면 Ii와 접하고, 계면 Ii와 빛이 들어오는 방향에 대향하여 위치한 층을 광반사층, 나머지층을 광흡수층이라고 정의할 수 있다. 예를 들어, 도 1에 도시한 적층체에서, 계면 Ii+1의 파장별 반사율의 합이 가장 큰 경우, Ii+1과 접하고, 계면 Ii+1과 빛이 들어오는 방향에 대향하여 위치한 층 Li +1층을 광반사층, 나머지 층 Li -1층 및/또는 Li층을 광흡수층이라고 볼 수 있다.
본 출원에서 광반사 기능은 금속 전극층에 의해 이루어진다.
상기 반사성 기재는 금속 전극층 및 광 흡수층을 포함할 수 있다. 이와 관련하여, 도 2는 본 출원의 일례에 따른 반사성 기재를 도시한다. 도시된 바와 같이, 광 흡수층에서는 입사경로와 반사경로 모두에서 광의 흡수가 일어나고, 각 층의 표면 및 계면 모두에서 광의 반사가 일어난다. 반사광 사이에서 일어나는 보강 간섭과 상쇄 간섭은, 전기변색층이 갖는 고유 색에 대하여, 추가적인 색상 변화 또는 미감을 부가한다. 그에 따라, 본 출원의 전기변색필름은, 전기변색층에서 발현되는 색상과는 상이한 색상, 색감 또는 색 패턴을 사용자에게 시인될 수 있도록 한다.
하나의 예시에서, 상기 반사성 기재에 포함되는 금속 전극층은 알루미늄(Al), 은(Ag), 백금(Pt), 팔라듐(Pd), 티타늄(Ti), 니켈(Ni), 텅스텐(W), 구리(Cu) 또는 이들의 합금을 포함할 수 있다. 금속의 반사성은, 광흡수층에 의한 광 간섭을 용이하게 하고, 본 출원 특유의 색상 또는 색감이 사용자 측에서 분명히 시인될 수 있도록 한다.
하나의 예시에서, 상기 금속 전극층은 상기 나열된 금속 성분의 산화물, 질화물 또는 산질화물을 포함하지 않을 수 있다. 즉, 상기 전극층은 금속 성분만을 포함하는 층일 수 있다. 상기와 같은 산화물, 질화물 또는 산질화물은 높은 투광성을 갖거나 높은 흡광성을 가질 수 있기 때문에, 본 출원 반사형 전기변색필름에서 요구되는 전극층에 의한 반사효과를 충분히 구현하지 못할 수 있다.
한편, 종래 기술에 따른 전기변색 필름은, 필름 양측에 위치하는 전극 재료로서 투광성 재료를 사용하는 것이 일반적이었다. 특히, ITO로 대표되는 투명 도전성 산화물이 투광성 재료로 널리 사용되었다. 그러나, 이러한 투명 도전성 산화물은 높은 면저항을 갖기 때문에, 변색속도 개선에 기여하지 못한다. 그러나, 상기 나열된 금속 재료는 ITO 대비 면저항이 낮기 때문에, 필름의 전기변색 시간을 단축할 수 있다.
특별히 제한되지는 않으나, 상기 금속 전극층의 두께는 5 nm 내지 500 nm 범위일 수 있다. 본 출원에서 「두께」란, 지면으로부터 필름을 향하여 가상의 법선을 그은 경우, “법선과 만나는 층의 어느 지점과 해당 층의 반대 일면 지점 간의 법선 거리”, 또는 “측정 대상 층의 일 면과 그에 대향하는 다른 일 면 사이의 평균 법선 거리”를 의미할 수 있다.
상기 반사성 기재에 포함되는 광 흡수층은 착색 또는 탈색된 전기변색층이 보여주는 색 또는 색감을, 금속 전극층과의 상호작용에 의해 변경, 조절 또는 변화시키는 층일 수 있다. 이러한 변경, 조절 또는 변화는 전극층과 광 흡수층에 의한 광학 간섭에 의해 제공된다.
상기 광 흡수층은 금속 산화물, 금속 질화물 또는 금속 산질화물을 포함할 수 있다.
하나의 예시에서, 상기 광 흡수층은 니켈(Ni), 크롬(Cr), 철(Fe), 코발트(Co), 티타늄(Ti), 바나듐(V), 알루미늄(Al), 금(Au), 구리(Cu), 은(Ag), 몰리브덴(Mo) 및 이들의 합금 중에서 1 이상의 금속을 함유하는 산화물, 질화물 또는 산질화물을 포함할 수 있다. 보다 구체적으로, 상기 광 흡수층은 몰리브덴(Mo), 티타늄(Ti), 알루미늄(Al), 및 구리(Cu) 중에서 선택되는 1 이상을 포함하는 질화물 또는 산질화물을 포함할 수 있다.
하나의 예시에서, 광 흡수층은 CuOxNy(0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+y > 0)를 포함할 수 있다. 이때, x 및 y는 구리(Cu) 1 원자에 대한 산소(O) 및 질소(N) 각각의 원자 수의 비를 의미할 수 있다.
또 하나의 예시에서, 상기 광 흡수층은 몰리브덴과 티타늄을 모두 함유하는 질화물 또는 산질화물을 포함할 수 있다. 보다 구체적으로, 광 흡수층은 MoTiaOxNy(0 < a ≤ 2, 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, x+y > 0)을 포함할 수 있다. 이때, a, x 및 y는, 몰리브덴(Mo) 1원자에 대한 티타늄(Ti), 산소(O) 및 질소(N) 각각의 원자 수의 비를 의미한다.
또 하나의 예시에서, 상기 광 흡수층은 알루미늄(Al)의 질화물 또는 산질화물을 포함할 수 있다. 보다 구체적으로, 상기 광 흡수층은 하기 관계식을 만족하는 AlOxNy (0 ≤ x ≤ 1.5, 0 ≤ y ≤ 1, x+y > 0)을 포함할 수 있다.
[관계식]
Figure PCTKR2018004668-appb-I000003
단, AlOxNy에서, x 및 y는 Al 1 원자에 대한 각각의 O 및 N의 원자 수의 비를 의미하고, AlOxNy에 포함되는 모든 원소의 함량 100%를 기준으로 상기 관계식에서 (알루미늄 원소 함량)은 Al의 원소함량(atomic%)을 나타내고, (산소 원소 함량)은 O의 원소함량(atomic%)을 나타내고, (질소원소 함량)은 N의 원소함량(atomic%)을 나타낸다.
상기 관계식은 XPS(X-ray Photoelectron Spectroscopy)로 측정한 원소함량(atomic%)과 화학적 가수를 고려한 식이다. Al의 화학적 가수는 3이고, O의 화학적 가수는 2이며, N의 화학적 가수는 3이다. 상기 관계식의 값이 1보다 크면 Al, O 및 N 중에서 Al이 풍부한 것을 의미하며, 1 이하이면 Al, O 및 N 중에서 Al이 부족한 것을 의미한다. 예를 들어, 화학양론적으로 Al2O3 또는 AlN의 경우는 비교적 투명한 상을 나타내며, 관계식의 값은 1이 된다. 이러한 경우, 상기 언급된 광 흡수층의 기능을 수행하기 어렵다. 한편, 상기 관계식에서 얻어진 값이 2 보다 크면 Al의 함량이 더욱 높아져서 금속 특성이 강해지기 때문에, 반사성이 높아지고 상기 언급된 광 흡수층의 기능을 수행하기 어렵다.
상기 광 흡수층은 5 nm 내지 500 nm 범위의 두께를 가질 수 있다. 상기 범위의 두께를 갖는 다면, 광 흡수층의 형태는 특별히 제한되지 않는다.
하나의 예시에서, 상기 광 흡수층은, 도 3과 같이, 두께 구배(gradient)를 가질 수 있다. 이 경우, 광 흡수층은 그 단면이 경사를 갖는 경사층일 수 있으며, 그 단면은 삼각형이나 사다리꼴과 같은 사변형의 형상을 가질 수 있다. 단면을 통해 확인될 수 있는 구배는 2개 이상일 수 있다.
또 하나의 예시에서, 광 흡수층은 도 4와 같이, 굴곡 또는 요철을 가질 수 있다. 굴곡 또는 요철의 단면 형상은 특별히 제한되지 않으며, 예를 들어, 원의 일부, 삼각형 또는 사변형의 일부일 수 있다. 굴곡 또는 요철이 반복될 경우, 다양한 경로의 간섭이 일어날 수 있기 때문에, 반사성 기재는 전기변색필름에 다양한 색상의 패턴을 부여할 수 있다.
또, 하나의 예시에서, 상기 광 흡수층의 일면은 규칙 또는 불규칙의 패턴을 가질 수 있다. 패턴의 형태는 특별히 제한되지 않는다. 규칙 또는 불규칙 패턴에 의해, 반사성 기재에서는 다양한 경로의 간섭이 일어날 수 있고, 그에 따라, 반사성 기재는 전기변색필름에 다양한 색상의 패턴을 부여할 수 있다.
하나의 예시에서, 상기 광 흡수층은 0 내지 3 범위의 굴절률을 가질 수 있다.
하나의 예시에서, 상기 광 흡수층의 소멸계수(extinctin coefficient) 값 k는 0.2 내지 2.5 범위일 수 있다. 보다 구체적으로, 광 흡수층은 0.2 내지 1.5 또는 0.2 내지 0.8 범위의 소멸계수(extinctin coefficient)를 가질 수 있다. 소멸계수 k는 흡수 계수(absorption coefficient)라고도 불리며, 구조체가 특정 파장에서 광 또는 빛을 얼마나 흡수할 수 있는 지를 판단하는 척도이다. 예를 들어 k가 0.2 미만일 경우에는 투명하기 때문에, 광을 흡수하는 정도가 미미하다. 반대로, 광 흡수층의 금속 성분 함량이 많아지는 경우에는 반사 특성이 우세해지고, k값은 2.5를 초과하게 된다. 상기 범위의 소멸 계수를 갖는 경우, 상기 광 흡수층은 본 출원에서 의도하는 간섭 효과를 효율적으로 수행할 수 있다.
상기 광 흡수층을 마련하는 방법은 특별히 제한되지 않는다. 예를 들어, 공지된 습식 또는 건식 방법을 이용하여 광 흡수층을 형성할 수 있다. 보다 구체적으로, 스퍼터링(sputtering), CVD(chemical vapor deposition) 또는 전자빔(e-beam)을 이용하여 광 흡수층을 형성할 수 있다.
하나의 예시에서, 상기 반사성 기재의 면저항은 100 Ω/□이하일 수 있다. 보다 구체적으로, 그 하한은 1 Ω/□이상 또는 3 Ω/□일 수 있고, 그 상한은 70 Ω/□또는 50 Ω/□일 수 있다. 상기 범위의 면저항은, ITO로 대표되는 투명 도전성 산화물이 일반적으로 갖는 면저항, 예를 들어, 150 Ω/□수준 보다 낮은 값이다. 상기 범위의 면저항을 가질 경우, 필름의 전기변색속도가 개선될 수 있다. 면저항은 공지된 면저항 측정기에 의해 측정될 수 있다.
상기 전기변색층은 가역적인 산화·환원 반응을 통해 광학적 특성, 즉 색이 변화하는 변색물질을 포함할 수 있다. 변색물질의 종류는 특별히 제한되지 않는다.
하나의 예시에서, 전기변색층은, 환원반응이 일어날 경우 착색되는 환원성 변색물질을 포함할 수 있다, 환원성 변색 물질의 종류는 특별히 제한되지 않으나, 예를 들어, 상기 환원성 변색물질은 WO3, MoO3, Nb2O5, Ta2O5 또는 TiO2 등과 같이, Ti, Nb, Mo, Ta 또는 W의 산화물일 수 있다.
또 하나의 예시에서, 전기변색층은, 환원성 변색물질과는 발색 특성이 상이한 물질, 즉 산화성 변색물질을 포함할 수 있다. 산화성 변색물질의 종류 역시 특별히 제한되지 않으나, 예를 들어, 산화성 변색물질은 LiNiOx, IrO2, NiO, V2O5, LixCoO2, Rh2O3 또는 CrO3 등과 같이, Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir 의 산화물; Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir 의 수산화물; 및 프러시안 블루(prussian blue) 중에서 선택되는 물질일 수 있다.
상기 전기변색층은 공지된 방법, 예를 들어, 다양한 종류의 습식 또는 건식 코팅 방식을 이용하여 제공될 수 있다.
특별히 제한되지는 않으나, 전기변색층의 두께는 30 nm 내지 500 nm 범위일 수 있다.
하나의 예시에서, 상기 전기변색필름은 금속 전극층, 광 흡수층, 및 전기변색층을 순차로 포함할 수 있다. 이러한 구성은, 광 흡수층에 의한 전기변색층 고유 색의 변경, 조절 또는 변화에 대한 시인성을 높일 수 있다. 상기 층 구성은 서로 직접 접하면서 전기변색필름을 구성할 수도 있고, 또는 각 층 사이에 별도의 구성이 존재할 수도 있다.
하나의 예시에서, 상기 전기변색필름은 2 이상의 광 흡수층을 포함할 수 있다. 예를 들어, 상기 전기변색필름이 2개의 광 흡수층을 포함하는 경우, 상기 전기변색필름은 제2 광흡수층, 금속 전극층, 제1 광 흡수층, 및 전기변색층을 순차로 포함할 수 있다. 상기 층 구성은 서로 직접 접하면서 전기변색필름을 구성할 수도 있고, 또는 각 층 사이에 별도의 구성이 포함될 수도 있다.
하나의 예시에서, 본 출원의 전기변색필름은 부동화층(passivation layer)을 더 포함할 수 있다. 상기 언급한 바와 같이 본 출원은, 반사형 전기변색필름을 구현하고, 전기변색필름의 변색속도를 개선하고자 전극층에 금속을 포함한다. 또한, 개선된 미감이나 색감을 필름에 부여하고자, 금속 함유 광 흡수층을 포함한다. 그러나, 전기변색층의 전기변색에 관여하는 전해질 이온과 상기 층에 포함되는 금속 성분 사이에는 부반응이 일어날 수 있고, 그에 따라 각 층이 열화될 수 있다. 예를 들어, 금속 전극층이 열화될 경우, 소자의 내구성이 저하될 뿐 아니라 상기 언급된 본원의 목적을 달성할 수 없다. 따라서, 본 출원은 금속층의 열화를 방지하는 부동화층을 포함할 수 있다. 부동화층은 금속 성분을 포함하는 전극층이나 광 흡수층이 전해질 이온에 의해 열화되는 것을 방지하는 일종의 배리어(barrier) 기능을 수행한다.
하나의 예시에서, 상기 부동화층은 투명 도전성 산화물을 포함할 수 있다. 보다 구체적으로, ITO(Indium Tin Oxide), In2O3(Indium Oxide), IGO(Indium Galium Oxide), FTO(Fluor doped Tin Oxide), AZO(Aluminium doped Zinc Oxide), GZO(Galium doped Zinc Oxide), ATO(Antimony doped Tin Oxide), IZO(Indium doped Zinc Oxide), NTO(Niobium doped Titanium Oxide) 또는 ZnO(Zink Oxide) 와 같은 투명 도전성 산화물이 부동화층에 사용될 수 있다.
하나의 예시에서, 상기 전기변색필름은 전기변색층과 광 흡수층 사이에 부동화층을 포함할 수 있다. 또한, 2 이상의 광흡수층을 포함하는 경우 전기변색층과 제1 광흡수층 사이에 또는 전기변색층과 제2 광흡수층 사이에 부동화층을 포함할 수 있다.
본 출원의 전기변색필름은, 전해질층 및 상대 전극층을 더 포함할 수 있다. 상기 전해질층 및 상대 전극층은, 광 흡수층과 마주하는 전기변색층 일면의 반대 일면 상에 순차로 위치할 수 있다. 예를 들어, 본 출원의 전기변색필름은 금속 전극층, 광 흡수층, 전기변색층, 전해질층 및 상대 전극층을 순차로 포함할 수 있다.
전해질층은 전기변색 반응에 관여하는 전해질 이온을 전기변색층에 제공하는 구성이다. 상기 전해질의 종류는 특별히 제한되지 않는다. 예를 들어, 액체 전해질, 겔 폴리머 전해질 또는 무기 고체 전해질이 제한없이 사용될 수 있다.
전기변색층 또는 하기 설명되는 이온저장층으로 변색에 관여하는 전해질 이온을 제공할 수 있다면, 전해질층에 사용되는 전해질의 구체적인 조성은 특별히 제한되지 않는다. 하나의 예시에서, 전해질층은 H+, Li+, Na+, K+, Rb+, 또는 Cs+ 와 같은 전해질 이온을 제공할 수 있는 금속염을 포함할 수 있다. 보다 구체적으로, 전해질층은 LiClO4, LiBF4, LiAsF6, 또는 LiPF6 와 같은 리튬염 화합물이나, NaClO4와 같은 나트륨염 화합물을 포함할 수 있다.
하나의 예시에서, 상기 전해질층은, 용매로서 카보네이트 화합물을 추가로 포함할 수 있다. 카보네이트계 화합물은 유전율이 높기 때문에, 이온 전도도를 높일 수 있다. 비제한적인 일례로서, PC(propylene carbonate), EC(ethylene carbonate), DMC(dimethyl carbonate), DEC(diethyl carbonate) 또는 EMC(ethylmethyl carbonate) 와 같은 용매가 카보네이트계 화합물로 사용될 수 있다.
상기 상대 전극층은, 상기 언급된 금속 전극층과 달리, 광 투과율이 우수한 투광성 전극층일 수 있다. 본 출원에서 「투광성」이란, 예를 들어, 가시광에 대한 투과율이 60% 이상, 구체적으로는 60% 내지 95% 범위인 경우를 의미할 수 있다. 이때, 가시광이란 380 nm 내지 780 nm 파장 범위의 광, 구체적으로는 약 550 nm 파장의 광을 의미할 수 있다. 상기 투과율은 공지된 방법이나 장치, 예를 들어, 헤이즈 미터 등을 이용하여 측정될 수 있다. 상기 투과율은 전해질층에 대해서도 동일하게 적용될 수 있다.
투광성을 갖는 다면, 상대 전극에 사용 가능한 재료의 종류는 특별히 제한되지 않는다. 예를 들어, 상대전극으로는 투광성을 갖는 투명 도전성 산화물이나, 메탈메쉬 또는 OMO(odxide/metal/oxide)가 사용될 수 있다. 이때, OMO는 ITO로 대표되는 투명 도전성 산화물 대비 좀 더 낮은 면 저항을 제공할 수 있기 때문에, 소자의 변색 속도 개선에 기여할 수 있다.
상대 전극층에 사용 가능한 투명 도전성 산화물로는, 상기 부동화층 재료로서 언급된 투명 도전성 산화물과 동일한 산화물이 사용될 수 있다.
상대 전극층에 사용 가능한 메탈메쉬는 Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni 또는 이들의 합금을 포함하는 격자 형태를 가질 수 있다. 그러나, 메탈메쉬에 사용 가능한 재료가 상기 나열된 금속 재료로 제한되는 것은 아니다.
상대 전극층에 사용 가능한 OMO는 상부층, 하부층, 및 이들 사이에 금속층을 포함할 수 있다. 하나의 예시에서, 상부층 및 하부층은 Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn 및 Zr로 이루어진 군에서 선택되는 1 이상의 금속 산화물을 포함할 수 있다. 또한, OMO의 금속층은 Ag, Cu, Zn, Au, 또는 Pd와 같은 금속을 포함할 수 있다.
특별히 제한되지는 않으나, 상기 상대 전극층은 50 nm 내지 400 nm 이하의 두께를 가질 수 있다.
하나의 예시에서, 본 출원의 전기변색필름은 전해질층과 상대 전극층 사이에 이온저장층을 추가로 포함할 수 있다. 이온저장층은, 전기변색을 위한 산화 및 환원 반응시, 전기변색층과의 전하 균형(charge balance)을 맞추기 위해 형성된 층을 의미할 수 있다.
상기 이온저장층은, 상기 전기변색층에 사용되는 전기변색물질과는 발색 특성이 상이한 전기변색물질을 포함할 수 있다. 예를 들어, 전기변색층이 환원성 전기변색물질을 포함하는 경우, 이온저장층은 산화성 변색물질을 포함할 수 있고, 그 반대의 경우도 가능하다.
하나의 예시에서, 상기 전기변색필름은 필름의 외측면에 투광성 기재를 추가로 포함할 수 있다. 예를 들어, 상기 투광성 기재는 금속 전극층 및/또는 상대 전극층의 외측면에 위치할 수 있다.
하나의 예시에서, 투광성 기재의 종류는 특별히 제한되지 않지만, 예를 들어 유리 또는 고분자 수지가 사용될 수 있다. 보다 구체적으로, PC(Polycarbonate), PEN(poly(ethylene naphthalate)) 또는 PET(poly(ethylene terephthalate))와 같은 폴리에스테르 필름, PMMA(poly(methyl methacrylate))와 같은 아크릴 필름, 또는 PE(polyethylene) 또는 PP(polypropylene)와 같은 폴리올레핀 필름 등이 투광성 기재로서 사용될 수 있다. 투광성 기재의 투과율은, 앞서 설명된 상대 전극층의 그것과 같을 수 있다.
또 하나의 예시에서, 상기 전기변색필름은 전원을 더 포함할 수 있다. 전원을 소자에 전기적으로 연결하는 방식은 특별히 제한되지 않으며, 당업자에 의해 적절히 이루어질 수 있다.
본 출원에 관한 일례에서, 본 출원은 상기 필름을 포함하는 소자, 장치 또는 기기에 관한 것이다. 상기 장치의 종류는 특별히 제한되지 않으나, 예를 들어, 컴퓨터나 휴대폰의 외피, 스마트 워치나 스마트 의류와 같은 웨어러블 기기, 또는 창문과 같은 건축용 자재일 수 있다. 하나의 예시에서, 상기 필름은 이들 소자, 장치 또는 기기에서 장식용 필름으로 사용될 수 있다.
본 출원의 일례에 따르면, 변색속도가 개선되고, 다양한 미감, 색감 또는 입체 색상의 패턴을 구현할 수 있는 전기변색필름 및 이를 포함하는 소자, 장치 또는 기기가 제공될 수 있다.
도 1은 반사층과 흡수층의 개념을 설명하기 위하여 도시된 것이다.
도 2는 본 출원에 따른 반사성 기재에 의한 색상 변화 원리를 설명하기 위한 개념도이다.
도 3은 본 출원의 일례에 따른 반사성 기재의 단면을 도시한 것이다.
도 4는 본 출원의 다른 일례에 따른 반사성 기재의 단면을 도시한 것이다.
도 5는 본 출원의 일례에 따라, 광 흡수층의 두께가 변화하는 경우에 나타나는 파장별 총 반사율을 도시한 것이다.
도 6은 실시예와 비교예의 소자 특성을 비교 도시한 그래프이다.
이하, 실시예를 통해 본 출원을 상세히 설명한다. 그러나, 본 출원의 보호범위가 하기 설명되는 실시예에 의해 제한되는 것은 아니다.
실험례 1: 반사성 기재에 의한 색상 변화 확인
제조예 1
스퍼터링 증착을 이용하여, 상기 설명된 관계식 및 수식을 만족하고, 10 nm 두께를 갖는 AlOxNy층, 100 nm 두께의 Al층, 및 투명 PET가 순차로 적층된 반사성 기재를 제조하였다. 기재가 갖는 파장에 대한 반사율은 도 5와 같고, 시인되는 기재의 색은 표 1과 같다.
제조예 2 내지 6
AlOxNy층의 두께를 하기 표 1과 같이 달리한 것을 제외하고, 동일하게 반사성 기재를 제조하였다. 각 기재가 갖는 파장에 대한 반사율은 도 5와 같고, 시인되는 기재의 색은 표 1과 같다.
[표 1]
Figure PCTKR2018004668-appb-I000004
실험례 2: 변색 속도 개선 확인
실험과 관련된 수치는 다음의 방법 또는 장치를 이용하여 측정하였다.
* 저항: 4-point probe 방식에 따라 공지의 면 저항기를 이용하여, 실시예의 반사성 기재에 대하여, 그리고 상기 실시예 반사성 기재에 대응하는 비교예의 ITO에 대하여 면저항을 측정하였다.
* Absorbance : 하기 식을 이용하여 측정하고, 기록하였다(도 6 참조).
Absorbance (A) = log (I0/I) = log 1/T = log 100/%T = 2 - logT
(단, Absorbance = - Log Transmittance, Transmittance T = I/I0, %T = 100 × T, I0 = intensity of the light enetering the sample, I = intensity of the light leaving the sample)
* 변색시간: 착색을 위한 전위가 인가되는 시간(50s)이 경과한 후 관찰된 최종 착색 상태 투과율의 80% 수준까지 도달하는데 걸린 시간을 측정하였다. 또한, 탈색을 위한 전위가 인가되는 시간(50s)이 경과한 후 관찰된 최종 탈색 상태 투과율의 80% 수준까지 도달하는데 걸린 시간을 측정하였다.
실시예 1
제조예 3의 반사성 기재, 80 nm 두께의 ITO층, 및 250 nm 두께의 WO3층을 순차로 적층하였다. 전해액(LiClO4(1M) + 프로필렌카보네이트(PC)) 및 포텐셔스탯(potentiostat) 장치를 준비하고, -1V의 전압을 50 초간 인가하여, WO3를 착색시켰다.
겔 폴리머 전해질(GPE)을 매개로, 상기 필름을 프러시안 블루(PB)/ITO 적층체와 합착하여, Al/AlOxNy/ITO/WO3/GPE/PB/ITO의 적층구조를 갖는 필름을 제조하였다.
제조된 필름에, 탈색(bleaching) 전압과 착색(coloration) 전압을 일정 주기로 반복 인가하면서, 변색 속도를 측정하였다. 1 주기(cycle)당 탈색 전압과 착색 전압은 각각 (±) 1.2 V 크기로 50 초간 인가되었다. 안정화를 위한 소정의 사이클을 구동 시킨 다음 측정된 결과는 표 2 및 도 6과 같다.
실시예 2
Al층의 두께를 50 nm 로 변경한 것을 제외하고, 실시예 1과 동일하게 전기변색필름을 제조하였다. 관련 물성의 측정 시점은 실시예 1과 동일하다.
비교예 1
실시예 1의 반사성 기재를 사용하지 않고, PET 기재상에, 두께 210 nm 의 ITO와 두께 250 nm 의 WO3 층을 순차로 적층하였다. 이후 동일한 과정을 거쳐 투과형 전기변색필름(ITO/WO3/GPE/PB/ITO)을 제조하였다. 관련 물성의 측정 시점은 실시예 1과 동일하다.
[표 2]
Figure PCTKR2018004668-appb-I000005
표 2에 및 도 6으로부터, 본원 실시예의 반사성 기재는 매우 낮은 수준의 저항을 갖기 때문에 착색 시간 및 탈색 시간 개선에 기여하는 것을 확인할 수 있다.

Claims (20)

  1. 반사성 기재; 및 전기변색층을 포함하는 전기변색필름이고,
    상기 반사성 기재는 금속 전극층 및 광 흡수층을 포함하는 전기변색필름.
  2. 제1항에 있어서, 상기 금속 전극층은 알루미늄(Al), 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 티타늄(Ti), 니켈(Ni), 텅스텐(W), 구리(Cu) 및 이들의 합금 중 어느 하나 이상을 포함하는 전기변색필름.
  3. 제1항에 있어서, 상기 금속 전극층은 10 nm 내지 500 nm 범위의 두께를 갖는 전기변색필름.
  4. 제1항에 있어서, 상기 광 흡수층은 금속 산화물, 금속 질화물 또는 금속 산질화물을 포함하는 전기변색필름.
  5. 제4항에 있어서, 상기 광 흡수층은 몰리브덴(Mo), 티타늄(Ti), 알루미늄(Al), 및 구리(Cu) 중에서 선택되는 1 이상의 금속을 포함하는 산화물, 질화물 또는 산질화물을 포함하는 전기변색필름.
  6. 제5항에 있어서, 상기 광 흡수층은 CuOxNy(0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+y > 0); MoTiaOxNy(0 < a ≤ 2, 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, x+y > 0); 또는 하기 관계식을 만족하는 AlOxNy (0 ≤ x ≤ 1.5, 0 ≤ y ≤ 1, x+y > 0)을 포함하는 전기변색필름:
    [관계식]
    Figure PCTKR2018004668-appb-I000006
    단, AlOxNy에서, x 및 y는 Al 1 원자에 대한 각각의 O 및 N의 원자 수의 비를 의미하고, AlOxNy에 포함되는 모든 원소의 함량 100%를 기준으로 상기 관계식에서 (알루미늄 원소 함량)은 Al의 원소함량(atomic%)을 나타내고, (산소 원소 함량)은 O의 원소함량(atomic%)을 나타내고, (질소원소 함량)은 N의 원소함량(atomic%)을 나타낸다.
  7. 제1항에 있어서, 상기 광 흡수층의 두께는 5 nm 내지 500 nm 범위인 전기변색필름.
  8. 제7항에 있어서, 상기 광 흡수층은 두께 구배(gradient)를 갖는 전기변색필름.
  9. 제7항에 있어서, 상기 광 흡수층은 요철을 갖는 전기변색필름.
  10. 제7항에 있어서, 상기 광 흡수층은 패턴을 갖는 전기변색필름.
  11. 제1항에 있어서, 상기 광 흡수층의 소멸계수는 0.2 내지 2.5 인 전기변색필름.
  12. 제1항에 있어서, 상기 반사성 기재의 면저항은 100 Ω/□이하인 전기변색필름.
  13. 제1항에 있어서, 상기 전기변색층은 30 nm 내지 500 nm 범위의 두께를 갖는 전기변색필름.
  14. 제13항에 있어서, 상기 전기변색층은 환원성 변색물질 또는 산화성 변색물질을 포함하는 전기변색필름.
  15. 제14항에 있어서, 상기 환원성 변색물질은 Ti, Nb, Mo, Ta 또는 W의 산화물을 포함하고,
    상기 산화성 변색물질은 Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir의 산화물; Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir의 수산산화물; 및 프러시안 블루(prussian blue) 중에서 선택되는 어느 하나 이상을 포함하는 전기변색필름.
  16. 제1항에 있어서, 금속 전극층, 광 흡수층, 및 전기변색층을 순차로 포함하는 전기변색필름.
  17. 제16항에 있어서, 전기변색층과 광 흡수층 사이에 부동화층(passivation layer)을 더 포함하고, 상기 부동화층은 투명 도전성 산화물을 포함하는 전기변색필름.
  18. 제1항에 있어서, 제2 광 흡수층, 금속 전극층, 제1 광 흡수층, 및 전기변색층을 순차로 포함하는 전기변색필름.
  19. 제18항에 있어서, 전기변색층과 제1 광흡수층 사이에 또는 전기변색층과 제2 광흡수층 사이에 부동화층(passivation layer)을 더 포함하고, 상기 부동화층은 투명 도전성 산화물을 포함하는 전기변색필름.
  20. 제1항 내지 제19항 중 어느 한 항에 따른 전기변색필름을 포함하는 장치.
PCT/KR2018/004668 2017-04-27 2018-04-23 전기변색필름 WO2018199568A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019558575A JP6956802B2 (ja) 2017-04-27 2018-04-23 エレクトロクロミックフィルム
CN201880027298.1A CN110573956B (zh) 2017-04-27 2018-04-23 电致变色膜
EP18790622.7A EP3617790A1 (en) 2017-04-27 2018-04-23 Electrochromic film
US16/604,373 US11415857B2 (en) 2017-04-27 2018-04-23 Electrochromic film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170054317 2017-04-27
KR10-2017-0054317 2017-04-27
KR1020180045420A KR102126688B1 (ko) 2017-04-27 2018-04-19 전기변색필름
KR10-2018-0045420 2018-04-19

Publications (1)

Publication Number Publication Date
WO2018199568A1 true WO2018199568A1 (ko) 2018-11-01

Family

ID=63920326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004668 WO2018199568A1 (ko) 2017-04-27 2018-04-23 전기변색필름

Country Status (1)

Country Link
WO (1) WO2018199568A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520830A (ja) * 2017-06-27 2020-07-16 エルジー・ケム・リミテッド 装飾部材およびその製造方法
KR20200106019A (ko) * 2019-02-27 2020-09-10 중국 과학원, 쑤저우 나노기술 및 나노바이오닉스 연구소 다채로운 전기변색 구조, 그 제조방법 및 응용
RU2743655C1 (ru) * 2020-07-17 2021-02-20 Акционерное общество "Октогласс" Способ стабилизированного управления высокоскоростным оптическим переключением электрохромного модуля и устройство для его осуществления

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070590A (ja) * 2003-08-27 2005-03-17 Victor Co Of Japan Ltd 反射型液晶表示素子
KR20060092362A (ko) * 2005-02-17 2006-08-23 주식회사 엘지화학 전기변색소자 및 그 제조방법
KR20080040439A (ko) * 2006-11-03 2008-05-08 주식회사 엘지화학 에너지 절약형 스마트 윈도우 및 그 제조 방법
KR20140001502A (ko) * 2012-06-27 2014-01-07 엘지이노텍 주식회사 전기변색소자 및 그 제조 방법
KR20140041117A (ko) * 2012-09-27 2014-04-04 엘지이노텍 주식회사 전기변색미러 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070590A (ja) * 2003-08-27 2005-03-17 Victor Co Of Japan Ltd 反射型液晶表示素子
KR20060092362A (ko) * 2005-02-17 2006-08-23 주식회사 엘지화학 전기변색소자 및 그 제조방법
KR20080040439A (ko) * 2006-11-03 2008-05-08 주식회사 엘지화학 에너지 절약형 스마트 윈도우 및 그 제조 방법
KR20140001502A (ko) * 2012-06-27 2014-01-07 엘지이노텍 주식회사 전기변색소자 및 그 제조 방법
KR20140041117A (ko) * 2012-09-27 2014-04-04 엘지이노텍 주식회사 전기변색미러 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617790A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520830A (ja) * 2017-06-27 2020-07-16 エルジー・ケム・リミテッド 装飾部材およびその製造方法
US11225045B2 (en) 2017-06-27 2022-01-18 Lg Chem, Ltd. Decorative member and method for preparing same
KR20200106019A (ko) * 2019-02-27 2020-09-10 중국 과학원, 쑤저우 나노기술 및 나노바이오닉스 연구소 다채로운 전기변색 구조, 그 제조방법 및 응용
JP2021517260A (ja) * 2019-02-27 2021-07-15 中国科学院蘇州納米技術与納米▲ファン▼生研究所 マルチカラーエレクトロクロミック構造、その製造方法及び応用
KR102363477B1 (ko) 2019-02-27 2022-02-15 중국 과학원, 쑤저우 나노기술 및 나노바이오닉스 연구소 다채로운 전기변색 구조, 그 제조방법 및 응용
JP7104436B2 (ja) 2019-02-27 2022-07-21 中国科学院蘇州納米技術与納米▲ファン▼生研究所 マルチカラーエレクトロクロミック構造、その製造方法及び応用
RU2743655C1 (ru) * 2020-07-17 2021-02-20 Акционерное общество "Октогласс" Способ стабилизированного управления высокоскоростным оптическим переключением электрохромного модуля и устройство для его осуществления

Similar Documents

Publication Publication Date Title
WO2018199568A1 (ko) 전기변색필름
KR102149672B1 (ko) 전기변색 소자
EP3617789B1 (en) Electrochromic device
KR102078403B1 (ko) 전기변색소자
JP6956802B2 (ja) エレクトロクロミックフィルム
KR102079142B1 (ko) 전기변색소자
WO2018199567A1 (ko) 전기변색소자
KR102202928B1 (ko) 투광성 필름 및 이를 포함하는 전기변색소자
WO2018199566A1 (ko) 전기변색소자
WO2018199569A1 (ko) 전기변색필름 및 이를 포함하는 전기변색소자
WO2018199570A1 (ko) 투광성 필름 및 이를 포함하는 전기변색소자
KR102108565B1 (ko) 전기변색필름 및 전기변색소자
KR20190118120A (ko) 전기변색필름
KR20190118121A (ko) 전기변색필름
KR20210051216A (ko) 전기변색시트 및 이를 포함하는 소자
WO2018199572A1 (ko) 도전성 적층체 및 이를 포함하는 전기변색소자
US20230367167A1 (en) Multicolor electrochromic structure, fabrication method and application thereof
WO2018174440A1 (ko) 전기변색소자
KR102069486B1 (ko) 전기변색소자
WO2019199012A1 (ko) 전기변색필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018790622

Country of ref document: EP

Effective date: 20191127