WO2018199567A1 - 전기변색소자 - Google Patents

전기변색소자 Download PDF

Info

Publication number
WO2018199567A1
WO2018199567A1 PCT/KR2018/004667 KR2018004667W WO2018199567A1 WO 2018199567 A1 WO2018199567 A1 WO 2018199567A1 KR 2018004667 W KR2018004667 W KR 2018004667W WO 2018199567 A1 WO2018199567 A1 WO 2018199567A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive layer
electrochromic device
reflective
electrochromic
Prior art date
Application number
PCT/KR2018/004667
Other languages
English (en)
French (fr)
Inventor
김용찬
김기환
조필성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180045414A external-priority patent/KR102078403B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019558519A priority Critical patent/JP7158410B2/ja
Priority to EP18790856.1A priority patent/EP3617791A4/en
Priority to US16/604,496 priority patent/US11835833B2/en
Priority to CN201880026885.9A priority patent/CN110573955B/zh
Publication of WO2018199567A1 publication Critical patent/WO2018199567A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Definitions

  • the present application relates to an electrochromic device.
  • Electrochromic refers to a phenomenon in which the optical properties of an electrochromic material are changed by an electrochemical oxidation or reduction reaction, and the device using the phenomenon is called an electrochromic device.
  • Electrochromic devices generally include a working electrode, a counter electrode, and an electrolyte, and the optical properties of each electrode may be reversibly changed by an electrochemical reaction.
  • the working electrode or the counter electrode may include a transparent conductive material and an electrochromic material, respectively, in the form of a device.
  • One object of the present application is to provide a reflective electrochromic device that can implement a pattern of various colors or three-dimensional colors.
  • Another object of the present application is to provide a reflective electrochromic device having excellent durability.
  • the present application relates to an electrochromic device.
  • the electrochromic device is a so-called "reflective" electrochromic device, which is different from a general transmissive electrochromic device including a translucent electrode material and a translucent substrate on both outer surfaces of the device.
  • the present application may use a conductive layer having both light absorption and reflectivity.
  • the conductive layer having light absorption provides the electrochromic device with excellent aesthetic and color realization characteristics.
  • the device of the present application including a conductive layer having both reflectivity and absorbance for light can provide additional optical property changes in addition to the color change caused by the electrochromic layer.
  • the reflective electrochromic device of the present application may sequentially include a conductive layer, an electrochromic layer, an electrolyte layer, and a transparent counter electrode layer.
  • the conductive layer may be a light absorbing layer having better light absorption than a light transmitting property, and at the same time, may have characteristics of a reflective layer having low reflectivity but appropriate reflectivity than metal.
  • the conductive layer may change, adjust, or change a color or a sense of color that the colored or decolorized electrochromic layer exhibits. Such alterations, adjustments or variations are thought to be implemented by optical interference by the conductive layer.
  • the conductive layer of the present application absorbs light in both the incident path and the reflective path of the light due to its absorbance.
  • the conductive layer since the conductive layer has appropriate reflectivity, reflection occurs at both the surface of the conductive layer and the interface with the adjacent layer.
  • additional color change or aesthetic may be added by constructive and destructive interference that occurs between reflected light.
  • the electrochromic device of the present application allows a user to recognize a color, color, or color pattern different from the color expressed in the electrochromic layer.
  • the conductive layer may include metal oxide, metal nitride, or metal oxynitride.
  • the conductive layer may have a single layer structure including a metal oxide, a metal nitride, or a metal oxynitride.
  • the conductive layer including the material may have appropriate light absorbency and reflectivity. In consideration of the reflection characteristics of the conductive layer and the interference effect thereof, it may be considered to use pure metal as the conductive layer material. However, since the pure metal material has a high degree of deterioration due to electrolyte ions, the durability of the device may be reduced. .
  • the conductive layer is nickel (Ni), chromium (Cr), iron (Fe), cobalt (Co), titanium (Ti), vanadium (V), aluminum (Al), gold (Au), copper (Cu), silver (Ag), molybdenum (Mo), and alloys thereof may include oxides, nitrides or oxynitrides containing at least one metal. More specifically, the conductive layer may include nitride or oxynitride including one or more selected from molybdenum (Mo), titanium (Ti), aluminum (Al), and copper (Cu).
  • the conductive layer may include CuO x N y (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y> 0).
  • x and y may refer to the ratio of the number of atoms of each of oxygen (O) and nitrogen (N) to copper (Cu) 1 atom.
  • the conductive layer may include a nitride or oxynitride containing both molybdenum and titanium. More specifically, the conductive layer may include MoTi a O x N y (0 ⁇ a ⁇ 2, 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 2, x + y> 0).
  • a, x, and y means the ratio of the number of atoms of titanium (Ti), oxygen (O), and nitrogen (N) to one atom of molybdenum (Mo).
  • the conductive layer may include a nitride or oxynitride of aluminum (Al). More specifically, the conductive layer is AlO x N y satisfying the following relationship (0 ⁇ x ⁇ 1.5, 0 ⁇ y ⁇ 1, x + y> 0).
  • x and y mean the ratio of the number of atoms of each of O and N to the Al 1 atom.
  • (aluminum element content) represents an element content of Al (atomic%)
  • (oxygen element content) represents an element content of O (atomic). %)
  • (nitrogen element content) represents the elemental content (atomic%) of N.
  • the relational expression is a formula considering elemental content (atomic%) and chemical valence measured by X-ray photoelectron spectroscopy (XPS).
  • the chemical valence of Al is 3, the chemical valence of O is 2, and the chemical valence of N is 3.
  • the value of the relational expression is greater than 1, it means that Al is rich in Al, O, and N, and when it is 1 or less, it means that Al is insufficient in Al, O, and N.
  • Al 2 O 3 or AlN represents a relatively transparent phase, and the value of the relation is 1. In such a case, it is difficult to perform the function of the above-mentioned conductive layer.
  • the value obtained in the above relation is greater than 2
  • the Al content is higher and the metal properties become stronger, so that the reflectivity is high and it is difficult to perform the function of the above-mentioned conductive layer.
  • the thickness of the conductive layer may range from 5 nm to 500 nm.
  • the term “thickness” refers to a “normal distance between a point on a layer that meets a normal and an opposite point of the layer” when an imaginary normal is drawn from the ground to an element, or “one side of the layer to be measured and Mean normal distance between two opposing faces ”.
  • the conductive layer may have bending or irregularities.
  • the cross-sectional shape of the bend or irregularities is not particularly limited and may be, for example, part of a circle, triangle or part of a quadrilateral. When bending or irregularities are repeated, interference of various paths may occur, so that the conductive layer may give a pattern of various colors to the electrochromic device.
  • one surface of the conductive layer may have a regular or irregular pattern.
  • the form of the pattern is not particularly limited. By a regular or irregular pattern, interference of various paths may occur in the conductive layer, and accordingly, the conductive layer may give a pattern of various colors to the electrochromic device.
  • the conductive layer may have a refractive index in the range of 0 to 3.
  • the extinction coefficient value k of the conductive layer may range from 0.2 to 2.5. More specifically, the conductive layer may have an extinction coefficient in the range of 0.2 to 1.5 or 0.2 to 0.8.
  • the extinction coefficient k also called the absorption coefficient, is a measure of how much a structure can absorb light or light at a particular wavelength. For example, when k is less than 0.2, since it is transparent, the extent which absorbs light is insignificant. On the contrary, when the content of the metal component of the conductive layer increases, the reflection characteristic becomes predominant, and the k value exceeds 2.5.
  • the extinction coefficient of the above range the conductive layer has an appropriate light absorption and reflectivity, it is possible to efficiently perform the interference effect intended in the present application.
  • the specific resistance of the conductive layer may be 5 ⁇ 10 -4 ⁇ ⁇ cm or less. In the case of having a specific resistance in the above range, the electrochromic speed can be improved. In the present specification, the resistance, the specific resistance or the sheet resistance can be measured using a known sheet resistor according to the 4-point probe method.
  • the sheet resistance is measured by measuring the current (I) and the voltage (V) with four probes and measuring the resistance value (V / I), and then adding the area (cross section, W) of the sample to the distance between the electrodes for measuring the resistance ( L) is used to obtain the sheet resistance (V / I x W / L), and the resistance correction factor (RCF) is multiplied to calculate the sheet resistance unit in ohms / square.
  • the resistance correction coefficient may be calculated using the size of the sample, the thickness of the sample, and the temperature at the measurement, which may be calculated by the Poisson equation.
  • the sheet resistance of the entire laminate may be measured and calculated on the laminate itself, and the sheet resistance of each layer is measured before forming or forming a layer made of the remaining materials except the target layer to be measured on the entire laminate, or After removing the layer made of the remaining material except the target layer to be measured, or by analyzing the material of the target layer, it can be measured after forming the layer under the same conditions as the target layer.
  • the method for providing the conductive layer is not particularly limited.
  • the conductive layer can be formed using a known wet or dry method. More specifically, the conductive layer may be formed by sputtering, chemical vapor deposition (CVD), or electron beam (e-beam).
  • CVD chemical vapor deposition
  • e-beam electron beam
  • the electrochromic layer may include a color change material whose optical properties, ie, colors, are changed through a reversible oxidation / reduction reaction.
  • the type of discoloration material is not particularly limited.
  • the electrochromic layer may include a reducing discoloration material that is colored when a reduction reaction occurs.
  • the type of the reducing discoloration material is not particularly limited.
  • the reducing discoloration material may be WO 3 , MoO. It may be an oxide of Ti, Nb, Mo, Ta or W, such as 3 , Nb 2 O 5 , Ta 2 O 5 or TiO 2 .
  • the electrochromic layer may include a material having a color development characteristic different from that of the reducing color change material, that is, an oxidative color change material.
  • oxidative color change material is also not particularly limited, for example, oxidative color change material, such as LiNiOx, IrO 2, NiO, V 2 O 5, LixCoO 2, Rh 2 O 3 or CrO 3, Cr, Mn, Fe, Oxides of Co, Ni, Rh, or Ir; Hydroxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; And one or more materials selected from prussian blue.
  • the electrochromic layer may be provided using known methods, for example, various types of wet or dry coating methods.
  • the thickness of the electrochromic layer may range from 30 nm to 500 nm.
  • the electrolyte layer is configured to provide the electrochromic layer with electrolyte ions involved in the electrochromic reaction.
  • the kind of the electrolyte is not particularly limited.
  • liquid electrolytes, gel polymer electrolytes or inorganic solid electrolytes can be used without limitation.
  • the specific composition of the electrolyte used in the electrolyte layer is not particularly limited.
  • the electrolyte layer may comprise a metal salt capable of providing electrolyte ions such as H + , Li + , Na + , K + , Rb + , or Cs + . More specifically, the electrolyte layer is LiClO 4 , LiBF 4 , LiAsF 6 , or LiPF 6 It may include a lithium salt compound, such as, or a sodium salt compound such as NaClO 4 .
  • the electrolyte layer may further include a carbonate compound as a solvent. Since a carbonate type compound has high dielectric constant, ionic conductivity can be improved.
  • a solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC) or ethylmethyl carbonate (EMC) may be used as the carbonate-based compound.
  • the counter electrode layer may be transmissive.
  • the term “transmittance” may mean, for example, a case in which the transmittance to visible light is 60% or more, specifically, 60% to 95%.
  • the visible light may mean light in a wavelength range of 380 nm to 780 nm, specifically, light having a wavelength of about 550 nm.
  • the transmittance can be measured by known methods or apparatuses, for example by haze meters.
  • the transmittance may be equally applied to the electrolyte layer.
  • the kind of material which can be used for a counter electrode layer is not specifically limited.
  • a transparent conductive oxide having translucency, a metal mesh, or an odxide / metal / oxide (OMO) may be used as the counter electrode layer.
  • OMO odxide / metal / oxide
  • transparent conductive oxide examples include, for example, indium tin oxide (ITO), indium oxide (In 2 O 3 ), indium galium oxide (IGO), fluor doped tin oxide (FTO), and aluminum doped (AZO).
  • ITO indium tin oxide
  • IGO indium galium oxide
  • FTO fluor doped tin oxide
  • AZO aluminum doped
  • Zinc oxide, gallium doped zinc oxide (GZO), antimony doped tin oxide (ATO), indium doped zinc oxide (IZO), niobium doped titanium oxide (NTO) or zinc oxide (ZnO) may be used.
  • the metal mesh usable in the counter electrode layer may have a lattice form including Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni, or an alloy thereof.
  • the materials usable for the metal mesh are not limited to the metal materials listed above.
  • OMO usable for the counter electrode layer may include a top layer, a bottom layer, and a metal layer therebetween.
  • the top and bottom layers are at least one metal oxide selected from the group consisting of Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn and Zr. It may include.
  • the metal layer of the OMO may include a metal such as Ag, Cu, Zn, Au, or Pd.
  • the counter electrode layer may have a thickness of 50 nm to 400 nm or less.
  • the electrochromic device of the present application may further include an ion storage layer between the electrolyte layer and the counter electrode layer.
  • the ion storage layer may refer to a layer formed to balance a charge balance with the electrochromic layer in an oxidation and reduction reaction for electrochromic.
  • the ion storage layer may include an electrochromic material having a color development characteristic different from that of the electrochromic material used in the electrochromic layer.
  • the electrochromic layer may include a reducing electrochromic material
  • the ion storage layer may include an oxidative discoloring material and vice versa.
  • the electrochromic device of the present application may further include a passivation layer.
  • the passivation layer can prevent deterioration due to side reactions between the electrolyte ions and the metal components included in the conductive layer.
  • the passivation layer may include a transparent conductive oxide.
  • the transparent conductive oxide the above-mentioned materials can be used.
  • the passivation layer may be located on the outer side of the conductive layer, for example between the translucent substrate and the conductive layer described below, or between the electrochromic layer and the conductive layer, or between the electrochromic layer and the electrolyte layer. Can be.
  • the electrochromic device may further include a translucent substrate on the outermost side of the device.
  • the light transmissive substrate may be located on an outer surface of the conductive layer and / or the counter electrode layer.
  • the transmittance of the light transmissive substrate may be the same as that of the counter electrode layer described above.
  • the type of the light transmissive substrate is not particularly limited, but glass or polymer resin may be used, for example. More specifically, a polyester film such as polycarbonate (PC), polyethylene (phthalene naphthalate) (PEN) or polyethylene (ethylene terephthalate) (PET), an acrylic film such as poly (methyl methacrylate) (PMMA), or polyethylene (PE) Or a polyolefin film such as PP (polypropylene) may be used as the light transmitting substrate.
  • a polyester film such as polycarbonate (PC), polyethylene (phthalene naphthalate) (PEN) or polyethylene (ethylene terephthalate) (PET), an acrylic film such as poly (methyl methacrylate) (PMMA), or polyethylene (PE)
  • a polyolefin film such as PP (polypropylene) may be used as the light transmitting substrate.
  • the electrochromic device may further include a power source.
  • the manner of electrically connecting the power source to the device is not particularly limited and may be appropriately made by those skilled in the art.
  • the present application relates to an apparatus, apparatus or apparatus comprising the device.
  • the type of device or device is not particularly limited, but may be, for example, a jacket of a computer or a mobile phone, a wearable device such as a smart watch or smart clothing, or a building material such as a window.
  • the device can be used as a decorative film in these devices, devices or appliances.
  • an electrochromic device capable of embodying a variety of aesthetics, colors, or three-dimensional colors, and at the same time having excellent durability, and an apparatus or device including the same may be provided.
  • the laminate was prepared in the same manner.
  • the numerical value related to the experiment was measured using the following method or apparatus.
  • a film in which a 250 nm thick WO 3 layer was laminated was prepared.
  • An electrolytic solution (LiClO 4 (1M) + propylene carbonate (PC)) and a potentiostat device were prepared, and a voltage of ⁇ 1 V was applied for 50 seconds to color WO 3 .
  • the film was bonded to a Prussian blue (PB) / ITO laminate via a gel polymer electrolyte (GPE) to prepare a film having a lamination structure of AlO x N y / WO 3 / GPE / PB / ITO.
  • PB Prussian blue
  • GPE gel polymer electrolyte
  • the discoloration rate was measured while repeatedly applying a bleaching voltage and a coloration voltage to the produced film at regular intervals.
  • the bleaching voltage and the coloring voltage per cycle were applied for 50 seconds with a magnitude of ( ⁇ ) 1.2 V, respectively. The result is shown in FIG.
  • An electrochromic device was manufactured by the same method and configuration except that Al (metal layer) having the same thickness was used instead of the conductive layer of Example 1, and the driving characteristics were observed by the same method.
  • the electrochromic device of Comparative Example 1 using a metal electrode has a significantly smaller number of cycles that can be driven compared to the embodiment device using a metal oxynitride.
  • the present application can provide a unique aesthetic by using a conductive layer material having both excellent reflectivity and light absorbency while ensuring excellent durability by preventing deterioration of electrode material generated when using a pure metal layer. It can be seen.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

본 출원은 전기변색소자에 관한 것이다. 상기 전기변색소자는, 반사성과 흡광성을 동시에 갖는 도전층을 갖는다. 본 출원의 소자는 다양한 미감, 색감 또는 입체 색상의 패턴을 구현할 수 있고, 동시에 내구성이 우수하다.

Description

전기변색소자
관련 출원과의 상호 인용
본 출원은 2017년 4월 27일 자 한국 특허 출원 제10-2017-0054316호 및 2018년 4월 19일 자 한국 특허 출원 제10-2018-0045414호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 출원은 전기변색소자에 관한 것이다.
전기변색이란 전기화학적 산화 또는 환원 반응에 의하여 전기변색물질의 광학적 성질이 변하는 현상을 말하며, 상기 현상을 이용한 소자를 전기변색소자라 한다. 전기변색소자는 일반적으로 작업전극, 상대전극, 및 전해질을 포함하며, 전기화학적 반응에 의해 각 전극의 광학적 성질이 가역적으로 변화할 수 있다. 예를 들어, 작업전극 또는 상대전극은 투명 도전성 물질과 전기변색물질을 각각 소자형태로 포함할 수 있는데, 소자에 전위가 인가될 경우 전해질 이온이 전기변색물질 함유 소자에 삽입되거나 이로부터 탈리되고, 동시에 외부 회로를 통해 전자가 이동하게 되면서 전기변색물질의 광학적 성질변화가 나타나게 된다.
일반적인 전기변색소자의 경우, 소자가 구현하는 색이 오로지 전기변색물질에만 의존하기 때문에, 다양한 색상이나 우수한 미감에 대한 시장의 요구를 충족시키지 못하는 부분이 있다.
본 출원의 일 목적은 다양한 색감 또는 입체 색상의 패턴을 구현할 수 있는 반사형 전기변색소자를 제공하는 것이다.
본 출원의 다른 목적은 내구성이 우수한 반사형 전기변색소자를 제공하는 것이다.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의해 모두 해결될 수 있다.
본 출원에 관한 일례에서, 본 출원은 전기변색소자에 관한 것이다. 상기 전기변색소자는 소위 「반사형」 전기변색소자로서, 소자의 양쪽 외측면 모두에 투광성 전극 재료와 투광성 기재를 포함하는 일반적인 투과형 전기변색소자와는 그 구성을 달리한다. 구체적으로, 본 출원의 일 구체예에 따르면, 본 출원은 투광성 대신, 흡광성과 반사성을 동시에 갖는 도전층을 사용할 수 있다. 흡광성을 갖는 도전층은 우수한 미감과 색상 구현 특성을 전기변색소자에 제공한다. 예를 들어, 전기변색층에 상응하는 구성만을 포함하는 종래 변색소자의 경우에는, 소자의 광학 특성 변화가 전기변색물질이 발현하는 고유한 색 자체에 의존하는 것이 일반적이다. 그러나, 전기변색층 외에, 광에 대한 반사성과 흡수성을 동시에 갖는 도전층을 포함하는 본 출원의 소자는, 전기변색층에 의한 색상 변화 외에 추가적인 광학 특성 변화를 제공할 수 있다.
본 출원의 반사형 전기변색소자는 도전층, 전기변색층, 전해질층 및 투광성 상대 전극층을 순차로 포함할 수 있다.
하나의 예시에서, 상기 도전층은 투광성 보다는 광 흡수성이 우수한 흡광층임과 동시에, 금속보다는 반사성이 낮지만 적절한 반사성을 갖는 반사층의 특성을 동시에 가질 수 있다. 상기 도전층은, 착색 또는 탈색된 전기변색층이 보여주는 색 또는 색감을 변경, 조절 또는 변화시킬 수 있다. 이러한 변경, 조절 또는 변화는 도전층에 의한 광학 간섭에 의해 구현되는 것으로 생각된다. 구체적으로, 본 출원의 도전층은 그 흡광성으로 인해 광의 입사 경로와 반사 경로 모두에서 광을 흡수한다. 또한, 도전층은 적절한 반사성을 갖기 때문에 상기 도전층의 표면 및 인접 층과의 계면 모두에서는 반사가 일어난다. 따라서, 반사광 사이에 일어나는 보강 간섭과 상쇄 간섭에 의해 추가적인 색상 변화 또는 미감이 부가될 수 있다. 그에 따라, 본 출원의 전기변색소자는, 전기변색층에서 발현되는 색과는 상이한 색상, 색감 또는 색 패턴이 사용자에게 시인될 수 있도록 한다
상기 도전층은 금속 산화물, 금속 질화물, 또는 금속 산질화물을 포함할 수 있다. 하나의 예시에서, 상기 도전층은 금속 산화물, 금속 질화물, 또는 금속 산질화물을 포함하는 단일층 구조를 가질 수 있다. 상기 물질을 포함하는 도전층은 적절한 흡광성과 반사성을 가질 수 있다. 도전층의 반사 특성과 그에 따른 간섭효과를 고려하여, 도전층 재료로서 순수 금속을 사용하는 것을 고려할 수도 있지만, 순수 금속 재료는 전해질 이온에 의한 열화 정도가 크기 때문에, 소자의 내구성이 저하될 수 있다.
하나의 예시에서, 상기 도전층은 니켈(Ni), 크롬(Cr), 철(Fe), 코발트(Co), 티타늄(Ti), 바나듐(V), 알루미늄(Al), 금(Au), 구리(Cu), 은(Ag), 몰리브덴(Mo) 및 이들의 합금 중에서 1 이상의 금속을 함유하는 산화물, 질화물 또는 산질화물을 포함할 수 있다. 보다 구체적으로, 상기 도전층은 몰리브덴(Mo), 티타늄(Ti), 알루미늄(Al), 및 구리(Cu) 중에서 선택되는 1 이상을 포함하는 질화물 또는 산질화물을 포함할 수 있다.
하나의 예시에서, 도전층은 CuOxNy(0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+y > 0)를 포함할 수 있다. 이때, x 및 y는 구리(Cu) 1 원자에 대한 산소(O) 및 질소(N) 각각의 원자 수의 비를 의미할 수 있다.
또 하나의 예시에서, 상기 도전층은 몰리브덴과 티타늄을 모두 함유하는 질화물 또는 산질화물을 포함할 수 있다. 보다 구체적으로, 도전층은 MoTiaOxNy(0 < a ≤ 2, 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, x+y > 0)을 포함할 수 있다. 이때, a, x 및 y는, 몰리브덴(Mo) 1원자에 대한 티타늄(Ti), 산소(O) 및 질소(N) 각각의 원자 수의 비를 의미한다.
또 하나의 예시에서, 상기 도전층은 알루미늄(Al)의 질화물 또는 산질화물을 포함할 수 있다. 보다 구체적으로, 상기 도전층은 하기 관계식을 만족하는 AlOxNy (0 ≤ x ≤ 1.5, 0 ≤ y ≤ 1, x+y > 0)을 포함할 수 있다.
[관계식]
Figure PCTKR2018004667-appb-I000001
단, AlOxNy에서, x 및 y는 Al 1 원자에 대한 각각의 O 및 N의 원자 수의 비를 의미한다. 그리고, 상기 관계식에서 AlOxNy에 포함되는 모든 원소의 함량 100%를 기준으로 (알루미늄 원소 함량)은 Al의 원소함량(atomic%)을 나타내고, (산소 원소 함량)은 O의 원소함량(atomic%)을 나타내고, (질소원소 함량)은 N의 원소함량(atomic%)을 나타낸다.
상기 관계식은 XPS(X-ray Photoelectron Spectroscopy)로 측정한 원소함량(atomic%)과 화학적 가수를 고려한 식이다. Al의 화학적 가수는 3이고, O의 화학적 가수는 2이며, N의 화학적 가수는 3이다. 상기 관계식의 값이 1보다 크면 Al, O 및 N 중에서 Al이 풍부한 것을 의미하며, 1 이하이면 Al, O 및 N 중에서 Al이 부족한 것을 의미한다. 예를 들어, 화학양론적으로 Al2O3 또는 AlN의 경우는 비교적 투명한 상을 나타내며, 관계식의 값은 1이 된다. 이러한 경우, 상기 언급된 도전층의 기능을 수행하기 어렵다. 한편, 상기 관계식에서 얻어진 값이 2 보다 크면 Al의 함량이 더욱 높아져서 금속 특성이 강해지기 때문에, 반사성이 높아지고 상기 언급된 도전층의 기능을 수행하기 어렵다.
특별히 제한되지는 않으나, 상기 도전층의 두께는 5 nm 내지 500 nm 범위일 수 있다. 본 출원에서 「두께」란, 지면으로부터 소자를 향하여 가상의 법선을 그은 경우, “법선과 만나는 층의 어느 지점과 해당 층의 반대 일면 지점 간의 법선 거리”, 또는 “측정 대상 층의 일 면과 그에 대향하는 다른 일 면 사이의 평균 법선 거리”를 의미할 수 있다.
하나의 예시에서, 상기 도전층은, 굴곡 또는 요철을 가질 수 있다. 굴곡 또는 요철의 단면 형상은 특별히 제한되지 않으며, 예를 들어, 원의 일부, 삼각형 또는 사변형의 일부일 수 있다. 굴곡 또는 요철이 반복될 경우, 다양한 경로의 간섭이 일어날 수 있기 때문에, 상기 도전층은 전기변색소자에 다양한 색상의 패턴을 부여할 수 있다.
또, 하나의 예시에서, 상기 도전층의 일면은 규칙 또는 불규칙의 패턴을 가질 수 있다. 패턴의 형태는 특별히 제한되지 않는다. 규칙 또는 불규칙 패턴에 의해, 상기 도전층에서는 다양한 경로의 간섭이 일어날 수 있고, 그에 따라, 상기 도전층은 전기변색소자에 다양한 색상의 패턴을 부여할 수 있다.
하나의 예시에서, 상기 도전층은 0 내지 3 범위의 굴절률을 가질 수 있다.
하나의 예시에서, 상기 도전층의 소멸계수(extinctin coefficient) 값 k는 0.2 내지 2.5 범위일 수 있다. 보다 구체적으로, 도전층은 0.2 내지 1.5 또는 0.2 내지 0.8 범위의 소멸계수(extinctin coefficient)를 가질 수 있다. 소멸계수 k는 흡수 계수(absorption coefficient)라고도 불리며, 구조체가 특정 파장에서 광 또는 빛을 얼마나 흡수할 수 있는 지를 판단하는 척도이다. 예를 들어 k가 0.2 미만일 경우에는 투명하기 때문에, 광을 흡수하는 정도가 미미하다. 반대로, 도전층의 금속 성분 함량이 많아지는 경우에는 반사 특성이 우세해지고, k값은 2.5를 초과하게 된다. 상기 범위의 소멸 계수를 갖는 경우, 상기 도전층은 적절한 흡광성과 반사성을 갖기 때문에, 본 출원에서 의도하는 간섭 효과를 효율적으로 수행할 수 있다.
하나의 예시에서, 상기 도전층의 비저항은 5 × 10-4 Ω·cm 이하일 수 있다. 상기 범위의 비저항을 갖는 경우, 전기변색속도가 개선될 수 있다. 본 명세서에 있어서, 저항, 비저항 또는 면저항은 4-point probe 방식에 따라 공지의 면 저항기를 이용하여 측정될 수 있다. 면저항은 4개의 탐침으로 전류(I)와 전압(V)을 측정하여 저항값(V/I)을 측정한 후, 여기에 샘플의 면적(단면적, W)과 저항을 측정하기 위한 전극 간의 거리(L)을 이용하여 면저항을 구하고(V/I x W/L), 면저항 단위인 오옴/스퀘어로 계산하기 위하여 저항보정계수(RCF)를 곱한다. 저항보정계수는 샘플의 사이즈, 샘플의 두께 및 측정시 온도를 이용하여 산출될 수 있으며, 이는 포아슨 방정식에 의하여 산출될 수 있다. 전체 적층체의 면저항은 적층체 자체에서 측정 및 산출될 수 있고, 각 층의 면저항은 전체 적층체에서 측정하고자 하는 대상층을 제외한 나머지 재료로 이루어진 층을 형성하거 전에 측정되거나, 전체 적층체에서 측정하고자 하는 대상층을 제외한 나머지 재료로 이루어진 층을 제거한 후 측정되거나, 대상층의 재료를 분석하여, 대상층과 동일한 조건으로 층을 형성한 후 측정될 수 있다.
상기 도전층을 마련하는 방법은 특별히 제한되지 않는다. 예를 들어, 공지된 습식 또는 건식 방법을 이용하여 도전층을 형성할 수 있다. 보다 구체적으로, 스퍼터링(sputtering), CVD(chemical vapor deposition) 또는 전자빔(e-beam)을 이용하여 도전층을 형성할 수 있다.
상기 전기변색층은 가역적인 산화··환원 반응을 통해 광학적 특성, 즉 색이 변화하는 변색물질을 포함할 수 있다. 변색물질의 종류는 특별히 제한되지 않는다.
하나의 예시에서, 전기변색층은, 환원반응이 일어날 경우 착색되는 환원성 변색물질을 포함할 수 있다, 환원성 변색 물질의 종류는 특별히 제한되지 않으나, 예를 들어, 상기 환원성 변색물질은 WO3, MoO3, Nb2O5, Ta2O5 또는 TiO2 등과 같이, Ti, Nb, Mo, Ta 또는 W의 산화물일 수 있다.
또 하나의 예시에서, 전기변색층은, 환원성 변색물질과는 발색 특성이 상이한 물질, 즉 산화성 변색물질을 포함할 수 있다. 산화성 변색물질의 종류 역시 특별히 제한되지 않으나, 예를 들어, 산화성 변색물질은 LiNiOx, IrO2, NiO, V2O5, LixCoO2, Rh2O3 또는 CrO3 등과 같이, Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir 의 산화물; Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir 의 수산화물; 및 프러시안 블루(prussian blue) 중에서 선택되는 하나 이상의 물질일 수 있다.
상기 전기변색층은 공지된 방법, 예를 들어, 다양한 종류의 습식 또는 건식 코팅 방식을 이용하여 제공될 수 있다.
특별히 제한되지는 않으나, 전기변색층의 두께는 30 nm 내지 500 nm 범위일 수 있다.
전해질층은 전기변색 반응에 관여하는 전해질 이온을 전기변색층에 제공하는 구성이다. 상기 전해질의 종류는 특별히 제한되지 않는다. 예를 들어, 액체 전해질, 겔 폴리머 전해질 또는 무기 고체 전해질이 제한없이 사용될 수 있다.
전기변색층 또는 하기 설명되는 이온저장층으로 변색에 관여하는 전해질 이온을 제공할 수 있다면, 전해질층에 사용되는 전해질의 구체적인 조성은 특별히 제한되지 않는다. 하나의 예시에서, 전해질층은 H+, Li+, Na+, K+, Rb+, 또는 Cs+ 와 같은 전해질 이온을 제공할 수 있는 금속염을 포함할 수 있다. 보다 구체적으로, 전해질층은 LiClO4, LiBF4, LiAsF6, 또는 LiPF6 와 같은 리튬염 화합물이나, NaClO4와 같은 나트륨염 화합물을 포함할 수 있다.
하나의 예시에서, 상기 전해질층은, 용매로서 카보네이트 화합물을 추가로 포함할 수 있다. 카보네이트계 화합물은 유전율이 높기 때문에, 이온 전도도를 높일 수 있다. 비제한적인 일례로서, PC(propylene carbonate), EC(ethylene carbonate), DMC(dimethyl carbonate), DEC(diethyl carbonate) 또는 EMC(ethylmethyl carbonate) 와 같은 용매가 카보네이트계 화합물로 사용될 수 있다.
상기 상대 전극층은 투광성을 가질 수 있다. 본 출원에서 「투광성」이란, 예를 들어, 가시광에 대한 투과율이 60% 이상, 구체적으로는 60% 내지 95% 범위인 경우를 의미할 수 있다. 이때, 가시광이란 380 nm 내지 780 nm 파장 범위의 광, 구체적으로는 약 550 nm 파장의 광을 의미할 수 있다. 상기 투과율은 공지된 방법이나 장치, 예를 들어, 헤이즈 미터에 의해 측정될 수 있다. 상기 투과율은 전해질층에 대해서도 동일하게 적용될 수 있다.
투광성을 갖는다면, 상대 전극층에 사용 가능한 재료의 종류는 특별히 제한되지 않는다. 예를 들어, 상대 전극층에는 투광성을 갖는 투명 도전성 산화물이나, 메탈메쉬 또는 OMO(odxide/metal/oxide)가 사용될 수 있다. 이때, OMO는 ITO로 대표되는 투명 도전성 산화물 대비 좀 더 낮은 면 저항을 제공할 수 있기 때문에, 소자의 변색 속도 개선에 기여할 수 있다.
상대 전극층에 사용 가능한 투명 도전성 산화물로는, 예를 들어, ITO(Indium Tin Oxide), In2O3(Indium Oxide), IGO(Indium Galium Oxide), FTO(Fluor doped Tin Oxide), AZO(Aluminium doped Zinc Oxide), GZO(Galium doped Zinc Oxide), ATO(Antimony doped Tin Oxide), IZO(Indium doped Zinc Oxide), NTO(Niobium doped Titanium Oxide) 또는 ZnO(Zink Oxide)이 사용될 수 있다.
상대 전극층에 사용 가능한 메탈메쉬는 Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni 또는 이들의 합금을 포함하는 격자 형태를 가질 수 있다. 그러나, 메탈메쉬에 사용가능한 재료가 상기 나열된 금속 재료로 제한되는 것은 아니다.
상대 전극층에 사용 가능한 OMO는 상부층, 하부층, 및 이들 사이에 금속층을 포함할 수 있다. 하나의 예시에서, 상부층 및 하부층은 Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn 및 Zr로 이루어진 군에서 선택되는 1 이상의 금속 산화물을 포함할 수 있다. 또한, OMO의 금속층은 Ag, Cu, Zn, Au, 또는 Pd와 같은 금속을 포함할 수 있다.
특별히 제한되지는 않으나, 상기 상대 전극층은 50 nm 내지 400 nm 이하의 두께를 가질 수 있다.
하나의 예시에서, 본 출원의 전기변색소자는 전해질층과 상대 전극층 사이에 이온저장층을 추가로 포함할 수 있다. 이온저장층은, 전기변색을 위한 산화 및 환원 반응시, 전기변색층과의 전하 균형(charge balance)을 맞추기 위해 형성된 층을 의미할 수 있다.
상기 이온저장층은, 상기 전기변색층에 사용되는 전기변색물질과는 발색 특성이 상이한 전기변색물질을 포함할 수 있다. 예를 들어, 전기변색층이 환원성 전기변색물질을 포함하는 경우, 이온저장층은 산화성 변색물질을 포함할 수 있고, 그 반대의 경우도 가능하다.
하나의 예시에서, 본 출원의 전기변색소자는 부동화층(passivation layer)을 더 포함할 수 있다. 상기 부동화층은, 전해질 이온과 도전층에 포함되는 금속 성분 간의 부반응으로 인한 열화를 방지할 수 있다.
하나의 예시에서, 상기 부동화층은 투명 도전성 산화물을 포함할 수 있다. 투명 도전성 산화물로는 상기 언급된 재료가 사용될 수 있다.
하나의 예시에서, 상기 부동화층은 도전층의 외측면, 예를 들어 하기 설명되는 투광성 기재와 도전층 사이에 위치하거나, 전기변색층과 도전층 사이, 또는 전기변색층과 전해질층 사이에 위치할 수 있다.
하나의 예시에서, 상기 전기변색소자는 소자의 가장 외측에 투광성 기재를 추가로 포함할 수 있다. 예를 들어, 상기 투광성 기재는 도전층 및/또는 상대 전극층의 외측면에 위치할 수 있다. 상기 투광성 기재의 투과율은, 상기 설명된 상대 전극층의 그것과 동일할 수 있다.
하나의 예시에서, 투광성 기재의 종류는 특별히 제한되지 않지만, 예를 들어 유리 또는 고분자 수지가 사용될 수 있다. 보다 구체적으로, PC(Polycarbonate), PEN(poly(ethylene naphthalate)) 또는 PET(poly(ethylene terephthalate))와 같은 폴리에스테르 필름, PMMA(poly(methyl methacrylate))와 같은 아크릴 필름, 또는 PE(polyethylene) 또는 PP(polypropylene)와 같은 폴리올레핀 필름 등이 투광성 기재로서 사용될 수 있다.
또 하나의 예시에서, 상기 전기변색소자는 전원을 더 포함할 수 있다. 전원을 소자에 전기적으로 연결하는 방식은 특별히 제한되지 않으며, 당업자에 의해 적절히 이루어질 수 있다.
본 출원에 관한 일례에서, 본 출원은 상기 소자를 포함하는 장치, 기기 또는 기구에 관한 것이다. 상기 장치 또는 기기의 종류는 특별히 제한되지 않으나, 예를 들어, 컴퓨터나 휴대폰의 외피, 스마트 워치나 스마트 의류와 같은 웨어러블 기기, 또는 창문과 같은 건축용 자재일 수 있다. 상기 소자는, 이들 장치, 기기 또는 기구에서, 장식용 필름으로 사용될 수 있다.
본 출원의 일례에 따르면, 다양한 미감, 색감 또는 입체 색상의 패턴을 구현할 수 있고, 동시에 내구성이 우수한 전기변색 소자, 및 이를 포함하는 장치 또는 기기가 제공될 수 있다.
도 1은 실시예와 비교예의 구동 특성을 기록한 그래프이다.
이하, 실시예를 통해 본 출원을 상세히 설명한다. 그러나, 본 출원의 보호범위가 하기 설명되는 실시예에 의해 제한되는 것은 아니다.
실험례 1: 도전층의 색상 발현 확인
제조예 1
스퍼터링 증착을 이용하여, 54.6 nm 두께를 갖는 AlOxNy층이 투명 PET와 적층된 적층체를 제조하였다. 적층체가 갖는 비저항과 시인되는 색은 표 1과 같다.
제조예 2 내지 3
AlOxNy층의 두께를 하기 표 1과 같이 달리한 것을 제외하고, 동일하게 적층체를 제조하였다.
[표 1]
Figure PCTKR2018004667-appb-I000002
실험례 2: 소자의 구동 특성 확인
실험과 관련된 수치는 다음의 방법 또는 장치를 이용하여 측정하였다.
<전하량 측정>
구동 사이클을 증가시키면서, 포텐쇼스탯(potentiostat) 장치를 이용한 전위 스텝 시간대 전류법(potential step chrono amperometry, PSCA)을 이용하여, 실시예와 비교예 각 소자의 전하량 변화를 측정하였다.
실시예 1
제조예 3의 도전층 상에, 250 nm 두께의 WO3층이 적층된 필름을 제조하였다. 전해액(LiClO4(1M) + 프로필렌카보네이트(PC)) 및 포텐셔스탯(potentiostat) 장치를 준비하고, - 1V의 전압을 50 초간 인가하여, WO3를 착색시켰다.
겔 폴리머 전해질(GPE)을 매개로, 상기 필름을 프러시안 블루(PB)/ITO 적층체와 합착하여, AlOxNy/WO3/GPE/PB/ITO의 적층구조를 갖는 필름을 제조하였다.
제조된 필름에, 탈색(bleaching) 전압과 착색(coloration) 전압을 일정 주기로 반복 인가하면서, 변색 속도를 측정하였다. 1 주기(cycle)당 탈색 전압과 착색 전압은 각각 (±) 1.2 V 크기로 50 초간 인가되었다. 그 결과는 도 1과 같다.
비교예 1
실시예 1의 도전층 대신 두께가 동일한 Al(금속층)을 사용한 것을 제외하고, 동일한 방법과 구성으로 전기변색소자를 제조하고, 동일한 방법으로 구동 특성을 관찰하였다.
도 1로부터, 금속 전극을 사용하는 비교예 1의 전기변색소자는, 금속 산질화물을 사용하는 실시예 소자 대비 구동 가능 사이클 수가 현저히 작다는 것을 알 수 있다. 상기 실시예로부터, 본 출원은 순수 금속층 사용시 발생하는 전극 재료의 열화를 방지함으로써 우수한 내구성을 확보함과 동시에, 적절한 반사성과 흡광성을 동시에 갖는 도전층 재료를 사용함으로써 특유의 미감을 제공할 수 있음을 알 수 있다.

Claims (15)

  1. 금속 산화물, 금속 질화물 또는 금속 산질화물을 포함하는 도전층; 전기변색층; 전해질층; 및 투광성 상대 전극층을 포함하는 반사형 전기변색소자.
  2. 제1항에 있어서, 상기 도전층은 금속 산화물, 금속 질화물 또는 금속 산질화물의 단일층인 반사형 전기변색소자.
  3. 제1항에 있어서, 상기 도전층은 몰리브덴(Mo), 티타늄(Ti), 알루미늄(Al), 및 구리(Cu) 중에서 선택되는 1 이상의 금속을 포함하는 산화물, 질화물 또는 산질화물을 포함하는 반사형 전기변색소자.
  4. 제3항에 있어서, 상기 도전층은 CuOxNy(0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+y > 0); MoTiaOxNy(0 < a ≤ 2, 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, x+y > 0); 또는 하기 관계식을 만족하는 AlOxNy(0 ≤ x ≤ 1.5, 0 ≤ y ≤ 1, x+y > 0)을 포함하는 반사형 전기변색소자:
    [관계식]
    Figure PCTKR2018004667-appb-I000003
    단, AlOxNy에서, x 및 y는 Al 1 원자에 대한 각각의 O 및 N의 원자 수의 비를 의미하고, AlOxNy에 포함되는 모든 원소의 함량 100%를 기준으로 상기 관계식에서 (알루미늄 원소 함량)은 Al의 원소함량(atomic%)을 나타내고, (산소 원소 함량)은 O의 원소함량(atomic%)을 나타내고, (질소원소 함량)은 N의 원소함량(atomic%)을 나타낸다.
  5. 제1항에 있어서, 상기 도전층의 두께는 5 nm 내지 500 nm 범위인 반사형 전기변색소자.
  6. 제5항에 있어서, 상기 도전층은 두께 구배(gradient)를 갖는 반사형 전기변색소자.
  7. 제5항에 있어서, 상기 도전층은 요철을 갖는 반사형 전기변색소자.
  8. 제5항에 있어서, 상기 도전층은 패턴을 갖는 반사형 전기변색소자.
  9. 제1항에 있어서, 상기 도전층의 소멸계수는 0.2 내지 2.5인 반사형 전기변색소자.
  10. 제1항에 있어서, 상기 도전층의 비저항은 5 × 10-4 Ω·cm 이하인 반사형 전기변색소자.
  11. 제1항에 있어서, 상기 전기변색층은 환원성 변색물질 또는 산화성 변색물질을 포함하는 반사형 전기변색소자.
  12. 제1항에 있어서, 상기 환원성 변색물질은 Ti, Nb, Mo, Ta 또는 W의 산화물을 포함하고,
    상기 산화성 변색물질은 Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir의 산화물; Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir의 수산화물; 및 프러시안 블루(prussian blue) 중에서 어느 하나 이상을 포함하는 반사형 전기변색소자.
  13. 제11항에 있어서, 상기 전해질층과 투광성 상대 전극층 사이에 이온저장층을 더 포함하고, 상기 이온저장층은 전기변색층에 포함되는 변색물질과는 발색 특성이 상이한 변색물질을 포함하는 반사형 전기변색소자.
  14. 제1항에 있어서, 상기 도전층과 전기변색층 사이에 부동화층(passivation layer)을 더 포함하고, 상기 부동화층은 투명 도전성 산화물을 포함하는 반사형 전기변색소자.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 전기변색소자를 포함하는 장치.
PCT/KR2018/004667 2017-04-27 2018-04-23 전기변색소자 WO2018199567A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019558519A JP7158410B2 (ja) 2017-04-27 2018-04-23 電気変色素子
EP18790856.1A EP3617791A4 (en) 2017-04-27 2018-04-23 ELECTROCHROME DEVICE
US16/604,496 US11835833B2 (en) 2017-04-27 2018-04-23 Electrochromic device
CN201880026885.9A CN110573955B (zh) 2017-04-27 2018-04-23 电致变色装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0054316 2017-04-27
KR20170054316 2017-04-27
KR1020180045414A KR102078403B1 (ko) 2017-04-27 2018-04-19 전기변색소자
KR10-2018-0045414 2018-04-19

Publications (1)

Publication Number Publication Date
WO2018199567A1 true WO2018199567A1 (ko) 2018-11-01

Family

ID=63918369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004667 WO2018199567A1 (ko) 2017-04-27 2018-04-23 전기변색소자

Country Status (1)

Country Link
WO (1) WO2018199567A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138454A (ja) * 1997-07-15 1999-02-12 Nippon Oil Co Ltd エレクトロクロミックミラー
JP2005070590A (ja) * 2003-08-27 2005-03-17 Victor Co Of Japan Ltd 反射型液晶表示素子
KR20060092362A (ko) * 2005-02-17 2006-08-23 주식회사 엘지화학 전기변색소자 및 그 제조방법
KR20080040439A (ko) * 2006-11-03 2008-05-08 주식회사 엘지화학 에너지 절약형 스마트 윈도우 및 그 제조 방법
KR20140041117A (ko) * 2012-09-27 2014-04-04 엘지이노텍 주식회사 전기변색미러 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138454A (ja) * 1997-07-15 1999-02-12 Nippon Oil Co Ltd エレクトロクロミックミラー
JP2005070590A (ja) * 2003-08-27 2005-03-17 Victor Co Of Japan Ltd 反射型液晶表示素子
KR20060092362A (ko) * 2005-02-17 2006-08-23 주식회사 엘지화학 전기변색소자 및 그 제조방법
KR20080040439A (ko) * 2006-11-03 2008-05-08 주식회사 엘지화학 에너지 절약형 스마트 윈도우 및 그 제조 방법
KR20140041117A (ko) * 2012-09-27 2014-04-04 엘지이노텍 주식회사 전기변색미러 및 그 제조 방법

Similar Documents

Publication Publication Date Title
KR20180119121A (ko) 전기변색필름 및 이를 포함하는 전기변색소자
WO2018199568A1 (ko) 전기변색필름
KR102078402B1 (ko) 전기변색소자
KR102078403B1 (ko) 전기변색소자
WO2018199567A1 (ko) 전기변색소자
JP6956802B2 (ja) エレクトロクロミックフィルム
KR20180119120A (ko) 도전성 적층체 및 이를 포함하는 전기변색소자
KR102651653B1 (ko) 전기변색시트 및 이를 포함하는 소자
WO2018199566A1 (ko) 전기변색소자
WO2018199570A1 (ko) 투광성 필름 및 이를 포함하는 전기변색소자
KR102202928B1 (ko) 투광성 필름 및 이를 포함하는 전기변색소자
WO2018199569A1 (ko) 전기변색필름 및 이를 포함하는 전기변색소자
KR102126683B1 (ko) 전기변색소자의 구동방법
WO2018199572A1 (ko) 도전성 적층체 및 이를 포함하는 전기변색소자
WO2018174440A1 (ko) 전기변색소자
KR20180118863A (ko) 전기변색필름, 전기변색소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018790856

Country of ref document: EP

Effective date: 20191127