WO2018199094A1 - ヒータ - Google Patents

ヒータ Download PDF

Info

Publication number
WO2018199094A1
WO2018199094A1 PCT/JP2018/016616 JP2018016616W WO2018199094A1 WO 2018199094 A1 WO2018199094 A1 WO 2018199094A1 JP 2018016616 W JP2018016616 W JP 2018016616W WO 2018199094 A1 WO2018199094 A1 WO 2018199094A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
ceramic body
slit
line width
heater
Prior art date
Application number
PCT/JP2018/016616
Other languages
English (en)
French (fr)
Inventor
浜田 修
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2018557959A priority Critical patent/JP6510739B2/ja
Priority to KR1020197029101A priority patent/KR102207442B1/ko
Priority to EP18790840.5A priority patent/EP3618566B1/en
Priority to CN201880025057.3A priority patent/CN110521279B/zh
Publication of WO2018199094A1 publication Critical patent/WO2018199094A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material

Definitions

  • the present disclosure relates to a heater used for fluid heating, powder heating, gas heating, an oxygen sensor, a soldering iron, and the like.
  • a ceramic body having a rod-like or cylindrical shape and having a slit-like recess extending on the outer peripheral surface from the front end toward the rear end, and a heating resistor embedded in the ceramic body,
  • a heater having a configuration including a first resistor and a second resistor in which bodies are arranged in parallel.
  • a heater according to the present disclosure includes a ceramic body having a rod-like or cylindrical shape and having a slit-like recess extending on the outer peripheral surface from the front end toward the rear end, and a heating resistor embedded in the ceramic body.
  • This heating resistor includes a first resistor and a second resistor arranged in parallel.
  • the heating resistor has a first region in which the first resistor and the second resistor are repeatedly folded back and forth in parallel along the circumferential direction between the front end and the rear end of the ceramic body. And a second region in which only the first resistor reciprocates, the region being close to the slit-shaped recess.
  • FIG. 3 is a cross-sectional view taken along line III-III shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line III-III shown in FIG.
  • the conventional heater has a configuration in which no heating resistor is disposed in the slit-like recess of the ceramic body. For this reason, when the temperature is raised, the temperature in the vicinity of the slit-shaped recess becomes lower than the temperature at the surrounding portion, and a temperature gradient is generated. And there was a problem in durability, such as a crack further progressing and there is a possibility that the heating resistor may be disconnected from the vicinity of the slit-like recess.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a heater excellent in durability in which disconnection of a heating resistor is suppressed.
  • FIG. 1 is a schematic perspective view showing an example of a heater
  • FIG. 2 is a partially broken perspective view of the heater shown in FIG. 3 is a cross-sectional view taken along line III-III shown in FIG.
  • FIG. 4 is a development view showing a pattern of the heating resistor shown in FIG.
  • the heater of the present disclosure shown in FIGS. 1 to 4 is a rod-shaped or tubular-shaped ceramic body 1 having a slit-shaped recess 11 extending from the front end toward the rear end on the outer peripheral surface, and the interior of the ceramic body 1 And a heating resistor 2 embedded in the surface.
  • the heating resistor 2 includes a first resistor 21 and a second resistor 22 arranged in parallel. Then, the heating resistor 2 has a first region 31 in which the first resistor 21 and the second resistor 22 are repeatedly folded back and forth in parallel along the circumferential direction between the front end and the rear end of the ceramic body 1. Have. Furthermore, it has the 2nd area
  • the ceramic body 1 is a rod-shaped or cylindrical member having a longitudinal direction.
  • the rod shape include a columnar shape or a prismatic shape.
  • the rod shape here includes, for example, a plate shape elongated in a specific direction.
  • examples of the cylindrical shape include a cylindrical shape and a rectangular tube shape.
  • the ceramic body 1 is cylindrical.
  • the length of the ceramic body 1 is set to 20 to 60 mm, for example.
  • the diameter is set to, for example, 2.5 to 5.5 mm.
  • the heater is used so as to heat an object to be heated in contact with the inner or outer peripheral surface of the ceramic body 1. Moreover, when the ceramic body 1 is rod-shaped, the heater is used so that an object to be heated is brought into contact with the outer peripheral surface of the ceramic body 1 and heated.
  • the ceramic body 1 is made of an insulating ceramic material.
  • the insulating ceramic material include alumina, silicon nitride, and aluminum nitride.
  • Alumina can be used in terms of oxidation resistance and easy manufacturing, silicon nitride in terms of excellent strength, toughness, high insulation and heat resistance, and aluminum nitride in terms of excellent thermal conductivity.
  • the ceramic body 1 may contain a metal element compound contained in the heating resistor 2.
  • the ceramic body 1 may contain WSi 2 or MoSi 2 may be included.
  • the ceramic body 1 has, for example, a rod-shaped or cylindrical core material 12 and a surface layer portion 13 provided so as to cover the side surface of the core material 12.
  • the ceramic body 1 has a slit-like recess 11 extending from the front end toward the rear end on the outer peripheral surface.
  • the depth of the concave portion 11 (the thickness of the surface layer portion 13) is, for example, 0.1 to 1.5 mm.
  • the opening width of the recess 11 is, for example, 0.3 to 2 mm. Note that the opening width means the length of a curve along the outer diameter of the transverse cross section of the ceramic body 1 when the ceramic body 1 has a cylindrical cross section or a circular cross section.
  • a heating resistor 2 is embedded in the ceramic body 1.
  • the heating resistor 2 is disposed between the core material 12 and the surface layer portion 13, for example.
  • the heating resistor 2 generates heat when current flows and heats the ceramic body 1.
  • the heating resistor 2 is made of a conductor whose main component is a high melting point metal such as tungsten (W), molybdenum (Mo), rhenium (Re).
  • the dimensions of the heating resistor 2 are, for example, a width of 0.3 to 2 mm and a thickness of 0.01 to 0.1 mm, and the total length of all the heating resistors 2 is set to 500 to 5000 mm. be able to. These dimensions are appropriately set depending on the heating temperature of the heating resistor 2, the voltage applied to the heating resistor 2, and the like.
  • the heating resistor 2 is arranged so as to generate the most heat at the tip side of the ceramic body 1.
  • the heating resistor 2 has a folded portion (meandering portion) provided along the circumferential direction while being repeatedly folded in the length direction on the tip side of the ceramic body 1.
  • the heating resistor 2 is a pair of linear portions on the rear end side of the folded portion, and is electrically connected to a later-described drawing portion at the rear end portion of each linear portion.
  • the shape of the cross section of the heating resistor 2 may be any shape such as a circle, an ellipse, or a rectangle.
  • the heating resistor 2 may be a pattern that repeatedly reciprocates between the front end side and the rear end side, instead of a pattern in which the folded portion that is repeatedly folded back is only on the front end side. A detailed pattern of the heating resistor 2 will be described later.
  • the heating resistor 2 may be formed using the same material for the folded portion on the front end side and the pair of linear portions on the rear end side. Further, in order to suppress unnecessary heat generation, by making the cross-sectional area of the linear portion larger than the cross-sectional area of the folded portion, or by reducing the content of the material of the ceramic body 1 included in the linear portion, The resistance value per unit length of the linear portion may be smaller than that of the folded portion.
  • the drawer part is embedded in the rear end side of the ceramic body 1.
  • the lead portion is made of, for example, a through-hole conductor, and one end is electrically connected to the rear end portion of the heating resistor 2 and the other end is drawn to the side surface on the rear end side of the ceramic body 2.
  • the lead-out part may be made of the same material as that of the heating resistor 2 or may be made of a material having a resistance value lower than that of the heating resistor 2. In FIG. 4, the drawing portion is omitted.
  • An electrode pad 5 is provided on the side surface on the rear end side of the ceramic body 1 as necessary, and is electrically connected to a lead portion embedded in the ceramic body 1.
  • a lead terminal is bonded to the electrode pad 5 and is electrically connected to an external circuit (external power source).
  • an external circuit external power source
  • FIGS. 1 to 4 there are three portions from which the lead portion is drawn, and the electrode pad 5 is provided in each portion.
  • the first pad as the common pad is connected to one end of both the first resistor 21 and the second resistor 22 via the lead portion.
  • the pad 51 is connected to the other end of the first resistor 21 via the lead portion, and is connected to the second pad 52 and the other end of the second resistor 22 via the lead portion. This is the third pad 53.
  • the electrode pad 5 may be composed of only a conductor layer made of, for example, molybdenum (Mo) or tungsten (W), and may be one in which a plating layer made of, for example, Ni—B or Au is provided on the surface of the conductor layer.
  • the electrode pad 5 has a thickness of 50 to 300 ⁇ m, for example, and a length and width of 5 to 10 mm, for example.
  • the heating resistor 2 includes a first resistor 21 and a second resistor 22 arranged in parallel. Since the heating resistor 2 includes the first resistor 21 and the second resistor 22 arranged in parallel, one heating resistor (for example, the first resistor 21) is used when the operating temperature is low. When the voltage is applied only to suppress the amount of heat generation, or when it is used at a higher temperature, the heat generation amount is obtained by simultaneously applying a voltage to a plurality of heating resistors (first resistor 21 and second resistor 22). Can be raised. That is, the calorific value can be easily adjusted.
  • the heating resistor 2 includes a first region 31 in which the first resistor 21 and the second resistor 22 are repeatedly folded back and forth in parallel along the circumferential direction between the front end and the rear end of the ceramic body 1. And a second region 32 that is close to the slit-like recess 11 and that only the first resistor 21 reciprocates.
  • the first resistor 21 is disposed on the tip side of the ceramic body 1, and the second resistor 22 is along the first resistor 21.
  • the first resistor 21 are arranged in parallel on the rear end side, and are repeatedly folded back and forth along the circumferential direction between the front end and the rear end of the ceramic body 1.
  • the pattern of the heating resistor 2 in the second region 32 only the first resistor 21 reciprocates, and together with the first resistor 21 in the first region 31, the slit-shaped recess 11.
  • the three first resistors 21 are arranged close to both sides.
  • the first resistor 21 is first heated when the temperature is raised, so that only the first resistor 21 reciprocates and the slit-shaped recess 11.
  • the temperature in the vicinity increases. Therefore, the temperature distribution on the outer peripheral surface of the heater at the time of temperature rise is made uniform, thermal stress is relaxed, and durability is improved.
  • the resistance value of the first resistor 21 may be smaller than the resistance value of the second resistor 22. If the resistance value is small, the current becomes large, so the amount of heat generated increases. Therefore, the rate of temperature increase near the slit-shaped recess 11 is increased, the temperature distribution on the outer peripheral surface of the heater is made uniform, and the thermal stress is relaxed, so that the durability is improved.
  • the line width of the first resistor 21 is the second resistor. It is possible to make the configuration thicker (wider) than the line width of 22. At this time, the line width of the second resistor 22 is, for example, 1.1 to 1.5 times the line width of the first resistor 21.
  • the line width of the thinnest (narrow) portion of the first resistor 21 is compared with the line width of the second resistor 22.
  • the line width of the second resistor 22 is not constant over the whole and the line width of the first resistor 21 is constant over the whole, the line of the thickest (widest) portion of the second resistor 22 is provided.
  • the width and the line width of the first resistor 21 are compared.
  • the line width of the narrowest part of the first resistor 21 and the second resistance Contrast with the line width of the thickest (widest) part of the body 22.
  • the specific resistance of the first resistor 21 is smaller than the specific resistance of the second resistor 22. It can also be configured. At this time, the specific resistance of the first resistor 21 is, for example, 20 to 80% of that of the second resistor 22. In order to achieve such a relationship, for example, a material such as a tungsten-molybdenum alloy can be used as the first resistor 21, and a material such as a tungsten-rhenium alloy can be used as the second resistor 22.
  • the same conductor material is used, and even if a larger amount of the same insulating material as that of the ceramic body 1 is added to the second resistor 22 than to the first resistor 21, the first resistor is more than the second resistor 22.
  • the specific resistance of 21 can be reduced.
  • the first resistor 21 may have a line width that is gradually or gradually narrowed (closed) as it approaches the slit-like recess 11. If there is a portion with a narrow line width (a portion with a small cross-sectional area) in the first resistor 21, the amount of heat generated in the portion with the narrow line width is smaller than that in other portions. growing. Thereby, the temperature in the vicinity of the second region 31 where only the first resistor 21 reciprocates and the slit-like recess 11 is increased, the temperature distribution on the outer peripheral surface of the heater is made uniform, the thermal stress is relaxed, and the durability is increased. Improves.
  • each part means the part in the circumferential direction of the ceramic body 1, and when the position of the circumferential part is the same and the line width changes along the length direction, The line width at the tip in the vertical direction, the line width at the center, and the line width at the rear end are measured and averaged to determine the line width of the part in the circumferential direction.
  • the line width of the second resistor 22 is substantially constant over the whole, and the first resistor 21 located on the side close to the slit-shaped recess 11 in the second region 32.
  • the line width is narrower than the line width of the first resistor 21 located on the side far from the slit-like recess 11. Even the line width of the thinnest portion of the first resistor 21 is thicker (wider) than the line width of the second resistor 22. Thereby, the amount of heat generated in the vicinity of the slit-like recess 11 can be further increased.
  • the form in which the line width becomes narrower (narrow) gradually or stepwise as the first resistor 21 approaches the slit-like recess 11 is not limited to the form shown in FIG. This may be applied when the line width of the body 21 is narrower (narrower) than the line width of the second resistor 22. At this time, the line width of the first resistor 21 may be thinner (narrower) than the line width of the second resistor 22 throughout. Further, the portion of the first resistor 21 farthest from the slit-like recess 11 (the central portion in FIG.
  • the first resistance A configuration may be employed in which the line width is narrower (narrower) than that of the second resistor 22 in a portion (a portion where the line width is the narrowest) in the body 21 that is close to the slit-like recess 11.
  • the distance between the patterns may be gradually or gradually reduced as the slit 21 approaches the slit-like recess 11.
  • the first resistors 21 are densely arranged, and the amount of heat generated in this region increases. Even in this configuration, the temperature in the vicinity of the second region 31 where only the first resistor 21 reciprocates and the slit-like recess 11 is increased, the temperature distribution on the outer peripheral surface of the heater is made uniform, and the thermal stress is alleviated. And durability is improved.
  • the ceramic body 1 made of an alumina ceramic mainly composed of Al 2 O 3
  • the ceramic body 1 was prepared by adding a sintering aid such as SiO 2 , CaO, MgO, ZrO 2 to Al 2 O 3 .
  • the ceramic slurry is formed into a sheet shape to produce a ceramic green sheet that becomes the surface layer portion 13 of the ceramic body 1.
  • a resistor paste pattern to be the heating resistor 2 is formed on one main surface of the ceramic green sheet using a technique such as screen printing. Further, a conductive paste to be the electrode pad 5 is formed in a predetermined pattern shape on the surface of the ceramic green sheet opposite to the surface on which the heat generating resistor 2 is formed in the same manner as the heat generating resistor 2 is formed. Moreover, the ceramic green sheet is filled with a conductor paste for forming a through-hole conductor as a lead portion and a hole for electrically connecting the heating resistor 2 and the electrode pad 5.
  • a pattern of a plurality of resistors (including the first resistor 21 and the second resistor) is arranged in parallel from the common pad 51, The first region 31 that reciprocates up and down is provided, and the second region 32 is formed so as to reciprocate up and down only the pattern of the outermost resistor (first resistor 21).
  • Resistor paste and conductor paste can be prepared by mixing and kneading a ceramic raw material, a binder, an organic solvent, etc. with a high melting point metal such as W, Mo, Re, etc., which can be prepared by simultaneous firing with a ceramic body.
  • the heating position of the heating resistor 2 can be changed by changing the length of the resistor paste or conductive paste pattern, the distance / interval of the folded pattern, and the line width of the pattern depending on the application of the heater.
  • the resistance value can be set to a desired value.
  • a columnar or cylindrical alumina ceramic molded body to be the core material 12 is molded by extrusion molding.
  • an adhesive liquid in which alumina ceramics having the same composition is dispersed is applied to the core material 12, and the alumina ceramic green sheet to be the surface layer portion 13 is wound and brought into close contact, whereby the ceramic body 1 is obtained.
  • An alumina-based integral molded body can be obtained.
  • the edge and end of the alumina ceramic green sheet (surface layer part 13) wound around the core material 12 are provided.
  • a gap may be provided between the two.
  • the alumina-based integrally molded body thus obtained is fired at, for example, 1500 to 1600 ° C. in a non-oxidizing gas atmosphere such as hydrogen gas or a mixed gas of nitrogen gas and hydrogen gas (forming gas), and the outer periphery of the ceramic body 1
  • a non-oxidizing gas atmosphere such as hydrogen gas or a mixed gas of nitrogen gas and hydrogen gas (forming gas)
  • forming gas nitrogen gas and hydrogen gas
  • An Ni-plated film is provided on the electrode pad 5 on the surface, for example, by electrolytic plating to produce an alumina-based sintered body.
  • a lead terminal made of, for example, Ni as a power feeding portion is joined to the electrode pad 5 using Ag brazing, solder or the like as the brazing material.
  • the lead terminal coated with an insulating material in advance may be removed from the insulating material only at a portion necessary for bonding, and the removed portion may be connected to the electrode pad 5. Further, after connecting the Ni wire to the electrode pad 5, an insulating tube may be provided on the Ni wire.
  • the heater of this embodiment is obtained by the above method.
  • Ceramic body 11 Slit-shaped recess 12: Core material 13: Surface layer part 2: Heating resistor 21: First resistor 22: Second resistor 31: First region 32: Second region 5 : Electrode pad 51: First pad 52: Second pad 53: Third pad

Landscapes

  • Resistance Heating (AREA)

Abstract

本開示のヒータは、棒状または筒状であって外周面に先端から後端に向かって伸びているスリット状の凹部(11)を有するセラミック体(1)と、セラミック体(1)の内部に埋設された発熱抵抗体(2)とを備える。そして、発熱抵抗体(2)は並列に配置された第1の抵抗体(21)および第2の抵抗体(22)を含んでいる。また、発熱抵抗体(2)はセラミック体(1)の先端と後端との間で周方向に沿って第1の抵抗体(21)および第2の抵抗体(22)が並行に繰り返し折り返して往復する第1領域(31)を有しているとともに、スリット状の凹部(11)に近接する領域であって第1の抵抗体(21)のみが往復する第2領域(32)を有している。

Description

ヒータ
 本開示は、流体加熱,粉体加熱,気体加熱,酸素センサ,半田ゴテ等に用いられるヒータに関する。
 従来、棒状または筒状であって外周面に先端から後端に向かって伸びているスリット状の凹部を有するセラミック体と、このセラミック体の内部に埋設された発熱抵抗体とを備え、発熱抵抗体が並列に配置された第1の抵抗体および第2の抵抗体を含む構成となっているヒータが知られている。
特開2013-134880号公報 特開2012-067468号公報
 本開示のヒータは、棒状または筒状であって外周面に先端から後端に向かって伸びているスリット状の凹部を有するセラミック体と、このセラミック体の内部に埋設された発熱抵抗体とを備える。この発熱抵抗体は並列に配置された第1の抵抗体および第2の抵抗体を含んでいる。また、発熱抵抗体は前記セラミック体の前記先端と前記後端との間で周方向に沿って前記第1の抵抗体および前記第2の抵抗体が並行に繰り返し折り返して往復する第1領域を有しているとともに、前記スリット状の凹部に近接する領域であって前記第1の抵抗体のみが往復する第2領域を有している。
ヒータの一例を示す概略斜視図である。 図1に示すヒータの一部破断斜視図である。 図1に示すIII-III線で切断した断面図である。 図1に示す発熱抵抗体のパターンを示す展開図である。 ヒータの他の例の発熱抵抗体のパターンを示す展開図である。 ヒータの他の例の発熱抵抗体のパターンを示す展開図である。 ヒータの他の例の発熱抵抗体のパターンを示す展開図である。
 従来のヒータは、セラミック体のスリット状の凹部に発熱抵抗体を配置していない構成であった。このため、昇温時にスリット状の凹部付近の温度が周りの部位の温度よりも低くなって温度勾配が生じ、熱サイクルを加えると熱応力によりセラミック体にマイクロクラックが発生するおそれがあった。そして、クラックがさらに進展して、スリット状の凹部付近を起点に発熱抵抗体が断線してしまうおそれがあるなど、耐久性に問題があった。
 また近年、昇温速度がより速いヒータが求められており、ヒータの耐久性をさらに向上させる必要がある。
 本開示は、上記事情に鑑みてなされたもので、発熱抵抗体の断線が抑制され、耐久性に優れたヒータを提供することを目的とする。
 以下、本実施形態のヒータの一例について図面を参照して説明する。
  図1はヒータの一例を示す概略斜視図、図2は図1に示すヒータの一部破断斜視図である。また、図3は図1に示すIII-III線で切断した断面図である。また、図4は図1に示す発熱抵抗体のパターンを示す展開図である。
 図1~図4に示す本開示のヒータは、棒状または筒状であって外周面に先端から後端に向かって伸びているスリット状の凹部11を有するセラミック体1と、セラミック体1の内部に埋設された発熱抵抗体2とを備える。また、発熱抵抗体2は並列に配置された第1の抵抗体21および第2の抵抗体22を含んでいる。そして、発熱抵抗体2はセラミック体1の先端と後端との間で周方向に沿って第1の抵抗体21および第2の抵抗体22が並行に繰り返し折り返して往復する第1領域31を有している。そしてさらに、スリット状の凹部11に近接する領域であって第1の抵抗体21のみが往復する第2領域32を有している。
 セラミック体1は、長手方向を有する棒状または筒状の部材である。棒状としては、例えば円柱状または角柱状等が挙げられる。なお、ここでいう棒状とは、例えば特定の方向に長く伸びた板状も含んでいる。また、筒状としては、例えば円筒状または角筒状が挙げられる。本例のヒータにおいては、セラミック体1は円筒状である。セラミック体1の長さは、例えば20~60mmに設定される。セラミック体1が断面円筒状の外径または断面円形状の場合の直径は、例えば2.5~5.5mmに設定される。
 セラミック体1が筒状(円筒状)である場合には、ヒータはセラミック体1の内周面または外周面に被加熱物を接触させて加熱するように用いられる。また、セラミック体1が棒状の場合は、ヒータはセラミック体1の外周面に被加熱物を接触させて加熱するように用いられる。
 セラミック体1は、絶縁性のセラミック材料から成る。絶縁性のセラミック材料としては、例えばアルミナ,窒化珪素または窒化アルミニウムが挙げられる。耐酸化性があって製造しやすいという点ではアルミナ、高強度,高靱性,高絶縁性および耐熱性に優れるという点では窒化珪素、熱伝導性に優れるという点では窒化アルミニウムを用いることができる。なお、セラミック体1には発熱抵抗体2に含まれる金属元素の化合物が含まれていてもよく、例えば発熱抵抗体2にタングステンまたはモリブデンが含まれている場合は、セラミック体1にWSi2またはMoSi2が含まれていてもよい。
 また、セラミック体1は、例えば、棒状または筒状の芯材12と、芯材12の側面を覆うように設けられた表層部13とを有している。また、セラミック体1は、外周面に先端から後端に向かって伸びているスリット状の凹部11を有している。ここで、凹部11の深さ(表層部13の厚み)は例えば0.1~1.5mmとされる。また、凹部11の開口幅は例えば0.3~2mmとされる。なお、開口幅とは、セラミック体1が断面円筒状または断面円形状の場合は、セラミック体1の横断面における外径に沿った曲線の長さのことを意味する。
 セラミック体1の内部には発熱抵抗体2が埋設されている。セラミック体が芯材12と表層部13とからなる構成の場合、発熱抵抗体2は例えば芯材12と表層部13との間に配置される。
 発熱抵抗体2は、電流が流れることによって発熱してセラミック体1を加熱するものである。発熱抵抗体2は、例えばタングステン(W),モリブデン(Mo),レニウム(Re)等の高融点の金属を主成分とした導電体からなる。発熱抵抗体2の寸法は、例えば、幅を0.3~2mm、厚みを0.01~0.1mmとされ、全ての発熱抵抗体2の長さを合わせた全長が500~5000mmと設定することができる。これらの寸法は、発熱抵抗体2の発熱温度および発熱抵抗体2に加える電圧等によって適宜設定される。
 また、発熱抵抗体2は、セラミック体1の先端側で最も発熱するように配置される。図1~図4に示す例では、発熱抵抗体2は、セラミック体1の先端側において長さ方向に繰り返して折り返しながら周方向に沿って設けられた折返し部(蛇行部)を有している。また、発熱抵抗体2は、折返し部の後端側においては一対の直線状部となっていて、それぞれの直線状部の後端部において後述する引出部と電気的に接続されている。発熱抵抗体2の横断面の形状は、円、楕円、矩形などいずれの形状でもよい。発熱抵抗体2は、繰り返して折り返す折返し部が先端側だけにあるパターンではなく、先端側と後端側との間を繰り返して往復するパターンであってもよい。なお、発熱抵抗体2の詳しいパターンについては、後述する。
 発熱抵抗体2は、先端側の折返し部と後端側の一対の直線状部とが同様の材料を用いて形成されてもよい。また、不要な発熱を抑えるために、直線状部の断面積を折返し部の断面積よりも大きくしたり、直線状部に含まれるセラミック体1の材料の含有量を少なくしたりすることによって、折返し部よりも直線状部の単位長さ当たりの抵抗値を小さくしてもよい。
 セラミック体1の後端側には引出部が埋設されている。引出部は、例えばスルーホール導体からなるもので、一端が発熱抵抗体2の後端部と電気的に接続されているとともに他端がセラミック体2の後端側の側面に引き出されている。引出部は、発熱抵抗体2と同様の材料からなるものでもよく、発熱抵抗体2よりも抵抗値の低い材料からなるものでもよい。なお、図4では、引出部は省略している。
 セラミック体1の後端側の側面には、必要により電極パッド5が設けられて、セラミック体1の内部に埋設された引出部と電気的に接続されている。そして、電極パッド5にリード端子が接合されて、外部回路(外部電源)と電気的に接続されている。図1~図4に示す例では、引出部が引き出される部位が3箇所あって、それぞれの部位において電極パッド5が設けられている。ここで、図4における3箇所の電極パッド5のうち、第1の抵抗体21および第2の抵抗体22の両方の一端に引出部を介して接続されているのが共通パッドとしての第1パッド51であり、第1の抵抗体21の他端に引出部を介して接続されているのが第2パッド52、第2の抵抗体22の他端に引出部を介して接続されているのが第3パッド53である。
 電極パッド5は、例えばモリブデン(Mo)またはタングステン(W)からなる導体層のみからなるものでもよく、当該導体層の表面に例えばNi-BまたはAuからなるメッキ層が設けられたものでもよい。この電極パッド5は、例えば50~300μmの厚みとされ、長さおよび幅は例えば5~10mmとされる。
 そして、図4に示すように、発熱抵抗体2は並列に配置された第1の抵抗体21および第2の抵抗体22を含んでいる。発熱抵抗体2が並列に配置された第1の抵抗体21および第2の抵抗体22を含んでいることにより、使用温度が低い場合は一方の発熱抵抗体(例えば第1の抵抗体21)のみに電圧を印加して発熱量を抑えたり、より高温で使用する場合は、複数の発熱抵抗体(第1の抵抗体21および第2の抵抗体22)を同時に電圧印加することで発熱量を上げたりすることができる。すなわち、発熱量を容易に調整できる。
 さらに、発熱抵抗体2は、セラミック体1の先端と後端との間で周方向に沿って第1の抵抗体21および第2の抵抗体22が並行に繰り返し折り返して往復する第1領域31を有しているとともに、スリット状の凹部11に近接する領域であって第1の抵抗体21のみが往復する第2領域32を有している。
 このとき、第1領域31における発熱抵抗体2のパターンとしては、第1の抵抗体21がセラミック体1の先端側に配置され、第2の抵抗体22がこの第1の抵抗体21に沿って後端側に並行に配置されており、セラミック体1の先端と後端との間で周方向に沿って繰り返し折り返して往復している。また、第2領域32における発熱抵抗体2のパターンとしては、第1の抵抗体21のみが往復していて、第1領域31にある第1の抵抗体21とあわせて、スリット状の凹部11の両サイドにそれぞれ近接して3本の第1の抵抗体21が配置されていることになる。
 スリット状の凹部11に近接する領域において第1の抵抗体21のみが往復する構成となっていない従来の構造にあっては、昇温時に第1の抵抗体21を先に加熱しても、スリット状の凹部11に近接する領域から離れた領域で第1の抵抗体21が往復しているため、スリット状の凹部11付近の温度が低く、当該スリット状の凹部11付近から離れた領域の温度が高くなって、ヒータの外周面の温度分布が均一化されにくかった。
 これに対し、本開示のヒータによれば、昇温時に第1の抵抗体21を先に加熱することで、当該第1の抵抗体21のみが往復する第2領域31およびスリット状の凹部11付近の温度が高くなる。したがって、昇温時のヒータの外周面の温度分布が均一化され、熱応力が緩和されて耐久性が向上する。
 また、この構成によれば、図4に示すように共通パッドとしての第1パッド51から供給される電流が最初に到達する第1の抵抗体21における折返し部と第2の抵抗体22における折返し部との距離が遠くなるため、それぞれの折返し部にかかる熱応力を分散できるので、ヒータの耐久性が向上する。
 ここで、第1の抵抗体21の抵抗値が第2の抵抗体22の抵抗値よりも小さくなっていてもよい。抵抗値が小さいと電流が大きくなるため、発生する熱量が大きくなる。したがって、スリット状の凹部11付近の昇温速度が速くなり、ヒータの外周面の温度分布が均一化され、熱応力が緩和されるため、耐久性が向上する。
 第1の抵抗体21の抵抗値を第2の抵抗体22の抵抗値よりも小さくする方法としては、例えば図5に示すように、第1の抵抗体21の線幅が第2の抵抗体22の線幅よりも太い(広い)構成とすることができる。このとき、第2の抵抗体22の線幅は第1の抵抗体21の線幅の例えば1.1~1.5倍とされる。なお、このような構成になっているかどうかを判別するときに、第1の抵抗体21の線幅が全体にわたって一定ではなく、第2の抵抗体22の線幅が全体にわたって一定の場合は、第1の抵抗体21の最も細い(狭い)部位の線幅と、第2の抵抗体22の線幅とを対比する。また、第2の抵抗体22の線幅が全体にわたって一定ではなく、第1の抵抗体21の線幅が全体にわたって一定の場合は、第2の抵抗体22の最も太い(広い)部位の線幅と、第1の抵抗体21の線幅とを対比する。また、第1の抵抗体21および第2の抵抗体22の線幅がともに全体にわたって一定ではない場合は、第1の抵抗体21の最も細い(狭い)部位の線幅と、第2の抵抗体22の最も太い(広い)部位の線幅と対比する。
 また、第1の抵抗体21の抵抗値を第2の抵抗体22の抵抗値よりも小さくする方法として、第1の抵抗体21の比抵抗が第2の抵抗体22の比抵抗よりも小さい構成とすることもできる。このとき、第1の抵抗体21の比抵抗は第2の抵抗体22の例えば20~80%とされる。このような関係とするために、例えば、第1の抵抗体21としてタングステン-モリブデン合金などの材料を用い、第2の抵抗体22としてタングステン-レニウム合金などの材料を用いることができる。また、導体材料は同じで、第1の抵抗体21よりも第2の抵抗体22にセラミック体1と同じ絶縁材料を多く添加しても、第2の抵抗体22よりも第1の抵抗体21の方の比抵抗を小さくできる。
 また、図6に示すように、第1の抵抗体21は、スリット状の凹部11に近づくにしたがって次第にまたは段階的に線幅が細く(狭く)なっていてもよい。第1の抵抗体21のうちで線幅が細くなっている部分(断面積が小さくなっている部分)があると、この線幅が細くなっている部分で他の部分よりも発生する熱量が大きくなる。これにより、第1の抵抗体21のみが往復する第2領域31およびスリット状の凹部11付近の温度が高くなって、ヒータの外周面の温度分布が均一化され、熱応力が緩和されて耐久性が向上する。
 このような構成となっているかどうかは、例えば、スリット状の凹部11から最も離れた部位(図6における中央部)と、第1領域31および第2領域32の境界に位置する部位と、スリット状の凹部11に近接する部位とで、第1の抵抗体21の線幅を対比することで、判別することができる。このとき、それぞれの部位とはセラミック体1の周方向における部位のことを意味し、周方向の部位の位置が同じであって長さ方向に沿って線幅が変化している場合は、長さ方向の先端の線幅,中央の線幅および後端の線幅を測定して平均化したものをその周方向における部位の線幅とするものとして判別する。
 なお、図6においては、第2の抵抗体22の線幅が全体にわたってほぼ一定であるとともに、第2領域32において、スリット状の凹部11に近接する側に位置する第1の抵抗体21の線幅が、スリット状の凹部11から遠い側に位置する第1の抵抗体21の線幅よりも細くなっている。そして、第1の抵抗体21の最も細い部位の線幅であっても、第2の抵抗体22の線幅より太い(広い)構成になっている。これにより、スリット状の凹部11付近において発生する熱量をより大きくすることができる。
 ただし、第1の抵抗体21がスリット状の凹部11に近づくにしたがって次第にまたは段階的に線幅が細く(狭く)なっている形態としては、図6に示す形態に限られず、第1の抵抗体21の線幅が第2の抵抗体22の線幅よりも細い(狭い)場合に適用されてもよい。このとき、第1の抵抗体21の線幅が全体にわたって第2の抵抗体22の線幅よりも細く(狭く)なっていてもよい。また、第1の抵抗体21におけるスリット状の凹部11から最も離れた部位(図6における中央部)では第2の抵抗体22よりも太い(広い)線幅となっていて、第1の抵抗体21におけるスリット状の凹部11に近接する部位(最も線幅が細くなる部位)で第2の抵抗体22よりも細い(狭い)線幅となるような構成であってもよい。
 また、図7に示すように、第1の抵抗体21は、スリット状の凹部11に近づくにしたがって次第にまたは段階的にパターン間の間隔が狭くなっていてもよい。パターン間の間隔が狭くなると、第1の抵抗体21が密に配置されることとなり、この領域で発生する熱量が大きくなる。この構成によっても、第1の抵抗体21のみが往復する第2領域31およびスリット状の凹部11付近の温度が高くなって、ヒータの外周面の温度分布が均一化され、熱応力が緩和されて耐久性が向上する。
 次に、ヒータの製造方法の一例について説明する。なお、本例ではセラミック体がアルミナ質セラミックスからなる場合について説明する。
 まず、Al23を主成分とするアルミナ質セラミックスからなるセラミック体1を作製するため、Al23にSiO2,CaO,MgO,ZrO2等の焼結助剤を含有させて調製したセラミックスラリーをシート状に成形して、セラミック体1の表層部13となるセラミックグリーンシートを作製する。
 このセラミックグリーンシートの一方の主面に、発熱抵抗体2となる抵抗体ペーストのパターンをスクリーン印刷等の手法を用いて形成する。また、セラミックグリーンシートの発熱抵抗体2を形成する面とは反対側の面に、電極パッド5となる導体ペーストを発熱抵抗体2の形成と同様に所定のパターン形状で形成する。また、セラミックグリーンシートには、発熱抵抗体2と電極パッド5とを電気的に接続するための孔加工および引出部としてのスルーホール導体を形成するための導体ペーストの充填を行う。
 ここで、発熱抵抗体2のパターンは、例えば図4に示すように共通パッド51から複数の抵抗体(第1の抵抗体21および第2の抵抗体を含む)のパターンを並列に配置し、上下に繰り返して往復する第1領域31を設けるとともに、最も外側の抵抗体(第1の抵抗体21)のパターンのみを上下に往復するように第2領域32を設けるようにパターン形成する。
 抵抗体ペーストおよび導体ペーストは、セラミック体との同時焼成によって作製が可能なW,Mo,Re等の高融点金属にセラミック原料,バインダー,有機溶剤等を調合し混練することで作製できる。このとき、ヒータの用途に応じて、抵抗体となる抵抗体ペーストまたは導電性ペーストのパターンの長さや折り返しパターンの距離・間隔やパターンの線幅を変更することにより、発熱抵抗体2の発熱位置や抵抗値を所望の値に設定することができる。
 一方、押し出し成型にて、芯材12となる円柱状または円筒状のアルミナ質セラミック成型体を成型する。
 そして、この芯材12に同一の組成のアルミナ質セラミックスを分散させた密着液を塗布し、前述の表層部13となるアルミナ質セラミックグリーンシートを巻きつけて密着させることで、セラミック体1となるアルミナ質一体成型体を得ることができる。
 なお、セラミック体1の外周面(側面)に長手方向に延びるスリット状の凹部11(溝部)を設けるには、芯材12に巻き付けたアルミナ質セラミックグリーンシート(表層部13)の端と端との間に隙間を設けるようにすればよい。
 こうして得られたアルミナ質一体成型体を水素ガス、または窒素ガスと水素ガスとの混合ガス(フォーミングガス)等の非酸化性ガス雰囲気中で例えば1500~1600℃で焼成し、セラミック体1の外周面の電極パッド5上に例えば電解メッキにてNiメッキ膜を設けて、アルミナ質一体焼結体を作製する。
 さらに、ロウ材としてAgロウ,はんだ等を用いて、給電部としての例えばNiからなるリード端子を電極パッド5に接合する。リード端子は、予め絶縁材がコートされたものを、接合に必要な部分だけ絶縁材を除去し、その除去した部分を電極パッド5に接続するようにしてもよい。また、Ni線を電極パッド5に接続後、絶縁チューブをNi線に設けるようにしてもよい。
 以上の方法により本実施形態のヒータが得られる。
1:セラミック体
11:スリット状の凹部
12:芯材
13:表層部
2:発熱抵抗体
21:第1の抵抗体
22:第2の抵抗体
31:第1の領域
32:第2の領域
5:電極パッド
51:第1パッド
52:第2パッド
53:第3パッド

Claims (6)

  1.  棒状または筒状であって外周面に先端から後端に向かって伸びているスリット状の凹部を有するセラミック体と、該セラミック体の内部に埋設された発熱抵抗体とを備え、
     該発熱抵抗体は並列に配置された第1の抵抗体および第2の抵抗体を含み、前記セラミック体の前記先端と前記後端との間で周方向に沿って前記第1の抵抗体および前記第2の抵抗体が並行に繰り返し折り返して往復する第1領域を有しているとともに、前記スリット状の凹部に近接する領域であって前記第1の抵抗体のみが往復する第2領域を有しているヒータ。
  2.  前記第1の抵抗体の抵抗値が前記第2の抵抗体の抵抗値よりも小さい請求項1に記載のヒータ。
  3.  前記第1の抵抗体の線幅が前記第2の抵抗体の線幅よりも太い請求項1または請求項2に記載のヒータ。
  4.  前記第1の抵抗体の比抵抗が前記第2の抵抗体の比抵抗よりも小さい請求項1または請求項2に記載のヒータ。
  5.  前記第1の抵抗体は、前記スリット状の凹部に近づくにしたがって次第にまたは段階的に線幅が細くなる請求項1乃至請求項4のうちのいずれかに記載のヒータ。
  6.  前記第1の抵抗体は、前記スリット状の凹部に近づくにしたがって次第にまたは段階的にパターン間の間隔が狭くなる請求項1乃至請求項5のうちのいずれかに記載のヒータ。
PCT/JP2018/016616 2017-04-26 2018-04-24 ヒータ WO2018199094A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018557959A JP6510739B2 (ja) 2017-04-26 2018-04-24 ヒータ
KR1020197029101A KR102207442B1 (ko) 2017-04-26 2018-04-24 히터
EP18790840.5A EP3618566B1 (en) 2017-04-26 2018-04-24 Heater
CN201880025057.3A CN110521279B (zh) 2017-04-26 2018-04-24 加热器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087327 2017-04-26
JP2017087327 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018199094A1 true WO2018199094A1 (ja) 2018-11-01

Family

ID=63918354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016616 WO2018199094A1 (ja) 2017-04-26 2018-04-24 ヒータ

Country Status (5)

Country Link
EP (1) EP3618566B1 (ja)
JP (1) JP6510739B2 (ja)
KR (1) KR102207442B1 (ja)
CN (1) CN110521279B (ja)
WO (1) WO2018199094A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115726036A (zh) * 2021-08-31 2023-03-03 银川隆基硅材料有限公司 一种加热器及单晶炉热场

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097741A (ja) * 1995-06-20 1997-01-10 Ngk Spark Plug Co Ltd セラミックヒータ
JPH10214675A (ja) * 1997-01-31 1998-08-11 Kyocera Corp セラミックヒータ
JP2001102161A (ja) * 1999-09-29 2001-04-13 Ibiden Co Ltd セラミックヒーター
JP2001221504A (ja) * 2000-02-04 2001-08-17 Toto Ltd 温水装置
US20020038799A1 (en) * 2000-08-18 2002-04-04 Keith Laken Formable thermoplastic laminate heating assembly useful in heating cheese and hot fudge
JP2012067468A (ja) 2010-09-21 2012-04-05 Toto Ltd 熱交換器及び人体洗浄装置
JP2013134880A (ja) 2011-12-26 2013-07-08 Valeo Japan Co Ltd セラミックヒータ及びそれを用いた電気発熱式温水加熱装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121588A (ja) * 1982-01-12 1983-07-19 日本特殊陶業株式会社 筒状セラミツクヒ−タ−
JP3691649B2 (ja) * 1997-10-28 2005-09-07 日本特殊陶業株式会社 セラミックヒータ
JP2000277240A (ja) * 1999-03-26 2000-10-06 Ibiden Co Ltd セラミックヒーター
CN100536621C (zh) * 2004-05-27 2009-09-02 京瓷株式会社 陶瓷加热器和采用其的氧传感器及烫发剪
GB2432093B (en) * 2004-07-28 2008-07-30 Kyocera Corp Ceramic heater and heating iron using the same
JP4514653B2 (ja) * 2005-05-27 2010-07-28 京セラ株式会社 セラミックヒーター及びこれを用いた加熱用こて
JP5911179B2 (ja) * 2013-08-21 2016-04-27 信越化学工業株式会社 立体形状のセラミックスヒーター
CN211831183U (zh) * 2020-03-04 2020-10-30 安徽省宁国市天成科技发展有限公司 一种ptc陶瓷加热器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097741A (ja) * 1995-06-20 1997-01-10 Ngk Spark Plug Co Ltd セラミックヒータ
JPH10214675A (ja) * 1997-01-31 1998-08-11 Kyocera Corp セラミックヒータ
JP2001102161A (ja) * 1999-09-29 2001-04-13 Ibiden Co Ltd セラミックヒーター
JP2001221504A (ja) * 2000-02-04 2001-08-17 Toto Ltd 温水装置
US20020038799A1 (en) * 2000-08-18 2002-04-04 Keith Laken Formable thermoplastic laminate heating assembly useful in heating cheese and hot fudge
US20020038801A1 (en) * 2000-08-18 2002-04-04 Keith Laken Formable thermoplastic laminate heating tray assembly suitable for heating frozen food
JP2012067468A (ja) 2010-09-21 2012-04-05 Toto Ltd 熱交換器及び人体洗浄装置
JP2013134880A (ja) 2011-12-26 2013-07-08 Valeo Japan Co Ltd セラミックヒータ及びそれを用いた電気発熱式温水加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618566A4 *

Also Published As

Publication number Publication date
JP6510739B2 (ja) 2019-05-08
KR20190124764A (ko) 2019-11-05
EP3618566A4 (en) 2021-01-06
CN110521279B (zh) 2021-11-23
CN110521279A (zh) 2019-11-29
EP3618566B1 (en) 2021-11-03
KR102207442B1 (ko) 2021-01-26
JPWO2018199094A1 (ja) 2019-06-27
EP3618566A1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP4818922B2 (ja) セラミックヒータの製造方法
CN108476558B (zh) 加热器
WO2013146777A1 (ja) 管状ヒーター
KR101713876B1 (ko) 히터
JP2024045746A (ja) ヒータ
JP2005315447A (ja) セラミックヒーターおよびグロープラグ
WO2018199094A1 (ja) ヒータ
JP6818886B2 (ja) ヒータ
JP6829022B2 (ja) ヒータ
JP6835946B2 (ja) ヒータ
JP6791636B2 (ja) セラミックヒータ
JP6803396B2 (ja) ヒータ
JP6940443B2 (ja) ヒータ
JP2019061876A (ja) ヒータ
JPWO2020075703A1 (ja) 熱交換ユニットおよびこれを備えた洗浄装置
JP6711708B2 (ja) ヒータ
JP6693811B2 (ja) ヒータ
WO2022249794A1 (ja) ヒータ
JP6798812B2 (ja) ヒータ
JP6075781B2 (ja) ヒータ
JP6100633B2 (ja) ヒータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557959

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197029101

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018790840

Country of ref document: EP

Effective date: 20191126