WO2018198761A1 - 作業車両の制御システム、方法、及び作業車両 - Google Patents
作業車両の制御システム、方法、及び作業車両 Download PDFInfo
- Publication number
- WO2018198761A1 WO2018198761A1 PCT/JP2018/015115 JP2018015115W WO2018198761A1 WO 2018198761 A1 WO2018198761 A1 WO 2018198761A1 JP 2018015115 W JP2018015115 W JP 2018015115W WO 2018198761 A1 WO2018198761 A1 WO 2018198761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- work
- controller
- cutting edge
- terrain
- compression rate
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/261—Surveying the work-site to be treated
- E02F9/262—Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/7609—Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
- E02F3/844—Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/261—Surveying the work-site to be treated
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/264—Sensors and their calibration for indicating the position of the work tool
Definitions
- the present invention relates to a work vehicle control system, method, and work vehicle.
- Patent Document 1 discloses excavation control and leveling control.
- the blade position is automatically adjusted so that the load on the blade matches the target load.
- the position of the blade is automatically adjusted so that the blade edge of the blade moves along the final design surface indicating the target finished shape to be excavated.
- the work performed by the work vehicle includes a banking work in addition to the excavation work.
- the work vehicle cuts the soil from the cut portion by the work machine.
- a work vehicle piles up the cut-out soil in a predetermined position with a work machine.
- the soil is compacted by the work vehicle traveling on the piled soil or by another roller vehicle.
- the thickness of the compacted soil layer varies depending on the soil quality. For example, soft, low-density soil is greatly compressed by being compacted. Thus, in a soft, low density soil, the compacted soil layer is thinner than in a hard, high density soil. Therefore, it is not easy to form the soil layer to a desired thickness.
- An object of the present invention is to provide a work vehicle control system, method, and work vehicle that can perform banking work efficiently and with high quality of finish.
- the first aspect is a control system for a work vehicle having a work machine, and the control system includes a controller.
- the controller is programmed to perform the following processing.
- the controller acquires first terrain data.
- the first terrain data indicates the target terrain before the embankment work.
- the controller acquires blade edge position data.
- the cutting edge position data indicates the cutting edge position of the working machine during the embedding work.
- the controller acquires second terrain data.
- the second terrain data shows the terrain compacted after the embankment work.
- the controller determines the compression rate of the work object from the first terrain data, the blade edge position data, and the second terrain data.
- the second mode is a method executed by the controller to determine the compression rate of the work object to be filled by the work machine of the work vehicle, and includes the following processing.
- the first process is to acquire first terrain data.
- the first terrain data indicates the target terrain before the embankment work.
- the second process is to acquire cutting edge position data.
- the cutting edge position data indicates the cutting edge position of the working machine during the embedding work.
- the third process is to acquire second terrain data.
- the second terrain data shows the terrain compacted after the embankment work.
- the fourth process is to determine the compression rate of the work object from the first terrain data, the cutting edge position data, and the second terrain data.
- the third aspect is a work vehicle, and the work vehicle includes a work machine and a controller.
- the controller controls the work machine.
- the controller is programmed to perform the following processing.
- the controller acquires first terrain data.
- the first terrain data indicates the target terrain before the embankment work.
- the controller acquires blade edge position data.
- the cutting edge position data indicates the cutting edge position of the working machine during the embedding work.
- the controller acquires second terrain data.
- the second terrain data shows the terrain compacted after the embankment work.
- the controller determines the compression rate of the work object from the first terrain data, the blade edge position data, and the second terrain data.
- the controller controls the work machine based on the compression rate.
- the present invention it is possible to obtain the compression rate of the work object in the embankment work. Thereby, the quality of the finished work can be improved and the work efficiency can be improved.
- FIG. 1 is a side view showing a work vehicle 1 according to the embodiment.
- the work vehicle 1 according to the present embodiment is a bulldozer.
- the work vehicle 1 includes a vehicle body 11, a traveling device 12, and a work implement 13.
- the vehicle body 11 has a cab 14 and an engine compartment 15.
- a driver's seat (not shown) is arranged in the cab 14.
- the engine compartment 15 is disposed in front of the cab 14.
- the traveling device 12 is attached to the lower part of the vehicle body 11.
- the traveling device 12 has a pair of left and right crawler belts 16. In FIG. 1, only the left crawler belt 16 is shown. As the crawler belt 16 rotates, the work vehicle 1 travels.
- the traveling of the work vehicle 1 may be any form of autonomous traveling, semi-autonomous traveling, and traveling by an operator's operation.
- the work machine 13 is attached to the vehicle body 11.
- the work machine 13 includes a lift frame 17, a blade 18, and a lift cylinder 19.
- the lift frame 17 is attached to the vehicle body 11 so as to be movable up and down around an axis X extending in the vehicle width direction.
- the lift frame 17 supports the blade 18.
- the blade 18 is disposed in front of the vehicle body 11.
- the blade 18 moves up and down as the lift frame 17 moves up and down.
- the lift cylinder 19 is connected to the vehicle body 11 and the lift frame 17. As the lift cylinder 19 expands and contracts, the lift frame 17 rotates up and down around the axis X.
- FIG. 2 is a block diagram showing the configuration of the drive system 2 and the control system 3 of the work vehicle 1.
- the drive system 2 includes an engine 22, a hydraulic pump 23, and a power transmission device 24.
- the hydraulic pump 23 is driven by the engine 22 and discharges hydraulic oil.
- the hydraulic oil discharged from the hydraulic pump 23 is supplied to the lift cylinder 19.
- one hydraulic pump 23 is shown, but a plurality of hydraulic pumps may be provided.
- the power transmission device 24 transmits the driving force of the engine 22 to the traveling device 12.
- the power transmission device 24 may be, for example, HST (Hydro Static Transmission).
- the power transmission device 24 may be, for example, a torque converter or a transmission having a plurality of transmission gears.
- the control system 3 includes an operating device 25a, a controller 26, a control valve 27, and a storage device 28.
- the operating device 25a is a device for operating the work implement 13 and the traveling device 12.
- the operating device 25a is disposed in the cab 14.
- the operating device 25a receives an operation by an operator for driving the work machine 13 and the traveling device 12, and outputs an operation signal corresponding to the operation.
- the operation device 25a includes, for example, an operation lever, a pedal, a switch, and the like.
- the operating device 25a for the traveling device 12 is provided so as to be operable at a forward position, a reverse position, and a neutral position.
- An operation signal indicating the position of the operation device 25a is output to the controller 26.
- the controller 26 controls the traveling device 12 or the power transmission device 24 so that the work vehicle 1 moves forward when the operation position of the operating device 25a is the forward movement position.
- the controller 26 controls the travel device 12 or the power transmission device 24 so that the work vehicle 1 moves backward.
- the controller 26 is programmed to control the work vehicle 1 based on the acquired data.
- the controller 26 includes a processing device (processor) such as a CPU.
- the controller 26 acquires an operation signal from the operation device 25a.
- the controller 26 controls the control valve 27 based on the operation signal.
- the control valve 27 is a proportional control valve and is controlled by a command signal from the controller 26.
- the control valve 27 is disposed between the hydraulic actuator such as the lift cylinder 19 and the hydraulic pump 23.
- the control valve 27 controls the flow rate of hydraulic oil supplied from the hydraulic pump 23 to the lift cylinder 19.
- the controller 26 generates a command signal to the control valve 27 so that the blade 18 operates in accordance with the operation of the operation device 25a described above. Thereby, the lift cylinder 19 is controlled according to the operation amount of the operating device 25a.
- the control valve 27 may be a pressure proportional control valve.
- the control valve 27 may be an electromagnetic proportional control valve.
- the control system 3 includes a lift cylinder sensor 29.
- the lift cylinder sensor 29 detects the stroke length of the lift cylinder 19 (hereinafter referred to as “lift cylinder length L”).
- the controller 26 calculates the lift angle ⁇ lift of the blade 18 based on the lift cylinder length L.
- FIG. 3 is a schematic diagram showing the configuration of the work vehicle 1. As shown in FIG.
- the origin position of the work machine 13 is indicated by a two-dot chain line.
- the origin position of the work machine 13 is the position of the blade 18 in a state where the blade tip of the blade 18 is in contact with the ground on the horizontal ground.
- the lift angle ⁇ lift is an angle from the origin position of the work machine 13.
- the control system 3 includes a position sensor 31.
- the position sensor 31 measures the position of the work vehicle 1.
- the position sensor 31 includes a GNSS (Global Navigation Satellite System) receiver 32 and an IMU 33.
- the GNSS receiver 32 is, for example, a receiver for GPS (Global Positioning System).
- the antenna of the GNSS receiver 32 is disposed on the cab 14.
- the GNSS receiver 32 receives a positioning signal from the satellite, calculates the antenna position based on the positioning signal, and generates vehicle position data.
- the controller 26 acquires vehicle body position data from the GNSS receiver 32.
- the IMU 33 is an inertial measurement device (Inertial Measurement Unit).
- the IMU 33 acquires vehicle body tilt angle data.
- the vehicle body tilt angle data includes an angle (pitch angle) with respect to the horizontal in the vehicle longitudinal direction and an angle (roll angle) with respect to the horizontal in the vehicle lateral direction.
- the controller 26 acquires vehicle body tilt angle data from the IMU 33.
- the controller 26 calculates the cutting edge position P0 from the lift cylinder length L, the vehicle body position data, and the vehicle body inclination angle data. As shown in FIG. 3, the controller 26 calculates the global coordinates of the GNSS receiver 32 based on the vehicle body position data. The controller 26 calculates the lift angle ⁇ lift based on the lift cylinder length L. The controller 26 calculates the local coordinates of the cutting edge position P0 with respect to the GNSS receiver 32 based on the lift angle ⁇ lift and the vehicle body dimension data.
- the controller 26 calculates the traveling direction and the vehicle speed of the work vehicle 1 from the vehicle body position data.
- the vehicle body dimension data is stored in the storage device 28, and indicates the position of the work machine 13 with respect to the GNSS receiver 32.
- the controller 26 calculates the global coordinates of the cutting edge position P0 based on the global coordinates of the GNSS receiver 32, the local coordinates of the cutting edge position P0, and the vehicle body inclination angle data.
- the controller 26 acquires the global coordinates of the cutting edge position P0 as cutting edge position data. Note that the cutting edge position P0 may be directly calculated by attaching a GNSS receiver to the blade 18.
- the storage device 28 includes, for example, a memory and an auxiliary storage device.
- the storage device 28 may be a RAM or a ROM, for example.
- the storage device 28 may be a semiconductor memory or a hard disk.
- the storage device 28 is an example of a non-transitory computer-readable recording medium.
- the storage device 28 can be executed by a processor and records computer commands for controlling the work vehicle 1.
- the storage device 28 stores work site terrain data.
- the work site topography data indicates the current topography of the work site.
- the work site topographic data is, for example, a topographic survey map in a three-dimensional data format.
- Work site topographic data can be obtained, for example, by aviation laser surveying.
- the controller 26 acquires terrain data.
- the terrain data indicates the terrain 50 of the work site.
- the terrain 50 is a terrain in a region along the traveling direction of the work vehicle 1.
- the terrain data is obtained by calculation in the controller 26 from the work site terrain data and the position and traveling direction of the work vehicle 1 obtained from the position sensor 31 described above.
- FIG. 4 is a diagram showing an example of a cross section of the terrain 50.
- the terrain data includes the height of the terrain 50 at a plurality of reference points P0-Pn.
- the terrain data includes the heights Z0 to Zn of the terrain 50 at a plurality of reference points P0 to Pn in the traveling direction of the work vehicle 1.
- the plurality of reference points P0-Pn are arranged at predetermined intervals.
- the predetermined interval is 1 m, for example, but may be another value.
- the vertical axis indicates the height of the terrain
- the horizontal axis indicates the distance from the current position in the traveling direction of the work vehicle 1.
- the current position may be a position determined based on the current cutting edge position P0 of the work vehicle 1.
- the current position may be determined based on the current position of the other part of the work vehicle 1.
- the storage device 28 stores design surface data.
- the design surface data indicates a plurality of design surfaces 60 and 70 that are target trajectories of the work machine 13. As shown in FIG. 4, the design surface data includes the heights of the design surfaces 60 and 70 at a plurality of reference points P0 to Pn, similarly to the terrain data.
- the plurality of design surfaces 60 and 70 include a final design surface 70 and an intermediate target design surface 60 other than the final design surface 70.
- the final design surface 70 is the final target shape of the work site surface.
- the final design surface 70 is, for example, a civil engineering work drawing in a three-dimensional data format, and is stored in the storage device 28 in advance. In FIG. 4, the final design surface 70 has a flat shape parallel to the horizontal direction, but may have a different shape.
- At least a part of the target design surface 60 is located between the final design surface 70 and the terrain 50.
- the controller 26 can generate a desired target design surface 60, generate design surface data indicating the target design surface 60, and store the design surface data in the storage device 28.
- FIG. 5 is a flowchart showing an automatic control process of the work machine 13.
- step S101 the controller 26 acquires current position data.
- the current position data indicates the position of the work vehicle 1 measured by the position sensor 31.
- the controller 26 acquires the current cutting edge position P0 of the work machine 13 from the current position data.
- step S102 the controller 26 acquires design surface data.
- the controller 26 acquires design surface data from the storage device 28.
- step S103 the controller 26 acquires the first terrain data.
- the controller 26 acquires first terrain data indicating the current terrain 50 from the work site terrain data and the position and traveling direction of the work vehicle 1. Alternatively, as will be described later, the controller 26 acquires first terrain data indicating the terrain 50 updated as the work vehicle 1 moves on the terrain 50.
- step S104 the controller 26 determines a target design surface.
- the controller 26 generates a target design surface 60 located between the final design surface 70 and the terrain 50 from the design surface data indicating the final design surface 70 and the terrain data.
- the controller 26 determines a surface obtained by displacing the terrain 50 in the vertical direction by a predetermined distance as the target design surface 60.
- the controller 26 may correct a part of the target design surface 60 so that the inclination angle becomes gentle.
- step S105 the controller 26 corrects the target design surface 60 based on the soil compression rate.
- the correction of the target design surface 60 based on the soil compression rate will be described in detail later.
- step S106 the controller 26 controls the work machine 13.
- the controller 26 automatically controls the work machine 13 according to the target design surface 60. Specifically, the controller 26 generates a command signal to the work machine 13 so that the cutting edge position P0 of the blade 18 moves toward the target design surface 60.
- the generated command signal is input to the control valve 27. Thereby, the cutting edge position P0 of the working machine 13 moves along the target design surface 60.
- the working machine 13 fills the soil on the terrain 50.
- the terrain 50 is excavated by the work machine 13.
- the controller 26 may start control of the work implement 13 when a signal for operating the work implement 13 is output from the operation device 25a.
- the movement of the work vehicle 1 may be performed manually by an operator operating the operation device 25a. Alternatively, the work vehicle 1 may be automatically moved by a command signal from the controller 26.
- the above processing is executed when the work vehicle 1 is moving forward. For example, when the operating device 25a for the traveling device 12 is at the forward movement position, the above processing is executed and the work implement 13 is automatically controlled.
- the controller 26 stops the control of the work machine 13. For example, the controller 26 stops the control of the work implement 13 when the operating device 25a for the traveling device 12 is in the reverse drive position. Thereafter, when the work vehicle 1 starts to move forward again, the controller 26 performs the above-described processing from steps S101 to S106 again.
- the work vehicle 1 starts moving forward, and the cutting edge position of the work machine 13 is controlled to move along the target design surface 60, so that the soil is layered on the terrain 50. It is served. Then, the work vehicle 1 travels on the soil piled up in layers, so that the soil is compacted by the crawler belt 16 and a compacted soil layer is formed. When the work vehicle 1 starts moving backward, the control of the work machine 13 is stopped.
- FIG. 6 is a flowchart showing a process for determining the compression rate.
- the process shown in FIG. 6 is a process executed during one work pass.
- step S201 the controller 26 acquires blade edge position data.
- the controller 26 records the height of the cutting edge position at a plurality of reference points P1-Pn during the embedding work, and acquires cutting edge position data indicating the locus 80 of the cutting edge position.
- step S202 the controller 26 acquires second terrain data.
- the second terrain data indicates the terrain 50a compacted after the embankment work in the current work path (hereinafter referred to as “second terrain 50a”).
- the first terrain data described above indicates the terrain 50b (hereinafter referred to as “first terrain 50b”) before the embankment work in the current work path.
- the controller 26 calculates the position of the bottom surface of the crawler belt 16 from the vehicle body position data and the vehicle body dimension data. As shown in FIG. 7, the controller 26 acquires position data indicating the trajectory of the bottom surface of the crawler belt 16 as second terrain data.
- a locus of a portion of the bottom surface of the crawler belt 16 that is located immediately below the center of gravity of the work vehicle 1 in the vehicle side view is acquired as the second terrain data.
- the trajectory of the other part of the work vehicle 1 may be acquired as the second terrain data.
- step S203 the controller 26 calculates the cutting edge height.
- the blade edge height Bk indicates the height from the first topography 50b to the locus 80 of the blade edge position. That is, the blade edge height Bk indicates the height from the topography 50b before the embankment work in the current work path to the locus 80 of the blade edge position, and means the thickness of the soil accumulated by the current work path.
- the controller 26 calculates the edge height at a plurality of reference points P1-Pn from the first terrain data and the edge position data. As shown in FIG. 8, the controller 26 determines the height H_AS1 (k) of the first terrain 50b at the reference point Pk from the first terrain data. Further, the controller 26 determines the height H_BL (k) of the cutting edge position at the reference point Pk from the cutting edge position data. Then, the controller 26 determines the cutting edge height Bk at the reference point Pk by subtracting the height H_AS1 (k) of the first topography 50b from the cutting edge position height H_BL (k).
- step S204 the controller 26 calculates the stacking thickness.
- the stacking thickness Ak indicates the height from the first topography 50b to the second topography 50a. That is, the stacking thickness Ak indicates the height from the topography 50b before the embankment work in this work pass to the topography 50a compacted after the embankment work, and the thickness of the embankment layer compacted after passing the blade edge Means.
- step S205 the controller 26 performs a mask process.
- the controller 26 determines whether the cutting edge height Bk and the stacking thickness Ak at each reference point Pk are included in a predetermined effective range.
- the controller 26 determines data indicating the cutting edge height Bk and the stacking thickness Ak included in the effective range as effective data used for determining the compression ratio.
- FIG. 9 is a diagram showing the effective range of mask processing.
- the horizontal axis indicates the cutting edge height Bk
- the vertical axis indicates the stacking thickness Ak.
- the cutting edge height Bk and the stacking thickness Ak included in the hatched effective range are treated as effective data.
- the effective range is a range in which the stacking thickness Ak> the lower limit value Amin of the stacking thickness, the cutting edge height Bk> the lower limit value Bmin of the cutting edge height, and the cutting edge height Bk> the stacking thickness Ak.
- step S206 the controller 26 calculates the compression rate at each reference point Pk.
- the controller 26 calculates the compression rate using the data of the cutting edge height Bk and the stacking thickness Ak determined to be effective in step S205.
- the controller 26 calculates the compression rate Rk [%] at each reference point Pk by the following equation (1).
- Rk (Bk-Ak) / Bk * 100 (1)
- step S207 the controller 26 calculates the compression rate in the current work path.
- the controller 26 determines the compression rate for the entire current work path.
- the controller 26 determines the compression rate in the current work path using the compression rate at each reference point Pk calculated from the valid data.
- the controller 26 determines the average value of the compression rate at each reference point Pk calculated in step S206 as the compression rate in the current work path.
- a value other than the average value of the compression rate at each reference point Pk may be determined as the compression rate in the current work path.
- step S208 the controller 26 calculates the updated compression rate.
- the controller 26 calculates the updated compression ratio based on the compression ratio in the previous work path and the compression ratio in the current work path. That is, the controller 26 calculates a value of the compression rate for each of a plurality of passes of the embankment work, and updates the compression rate based on the previous value and the current value of the compression rate. For example, the controller 26 determines the average value of the previous value and the current value of the compression rate as the updated compression rate.
- the work path is executed a plurality of times, so that the compression rate can be gradually updated, and a sudden change in the compression rate can be suppressed.
- step S105 the controller 26 corrects the target design surface 60 with the updated compression rate.
- “60” indicates the initial target design surface 60 determined by the controller 26 in step S104.
- the controller 26 generates the corrected target design surface by raising the initial target design surface 60 based on the compression rate.
- “60a” indicates a corrected target design surface when the compression ratio is a predetermined value r1.
- “60b” indicates a corrected target design surface when the compression ratio is a predetermined value r2 (> r1).
- the controller 26 increases the position of the target design surface corrected with respect to the initial target design surface 60 as the compression ratio increases.
- controller 26 updates the second topography 50aa as the first topography 50bb.
- controller 26 executes the above-described processing of steps S101 to S106 based on the updated first terrain data indicating the first terrain 50bb.
- the work implement 13 is controlled along the target design surface 60.
- the soil can be thinly deposited on the terrain 50.
- the work machine 13 is controlled along the target design surface 60, so that excavation is performed while suppressing an excessive load on the work machine 13. It can be carried out. Thereby, the quality of the finished work can be improved. Moreover, the efficiency of work can be improved by automatic control.
- the controller 26 determines the soil compression ratio from the first terrain data, the cutting edge position data, and the second terrain data, and corrects the target design surface 60 based on the compression ratio. Therefore, the target design surface 60 can be corrected in accordance with the actual soil compression ratio. Thereby, the soil layer can be easily formed to a desired thickness.
- the controller 26 updates the compression rate based on the compression rate in the current work pass and the compression rate in the previous work pass. Therefore, a highly accurate compression rate can be obtained by repeating the work path a plurality of times.
- Work vehicle 1 is not limited to a bulldozer, but may be another vehicle such as a wheel loader or a motor grader.
- the work vehicle 1 may be a vehicle that can be remotely controlled. In that case, a part of the control system 3 may be arranged outside the work vehicle 1.
- the controller 26 may be disposed outside the work vehicle 1.
- the controller 26 may be located in a control center remote from the work site.
- the method for determining the compression rate is not limited to the method described above, and may be changed.
- the compression rate may be updated only by the compression rate of the current work path, regardless of the compression rate of the previous work path.
- the mask process may be changed.
- the effective range may be defined by the upper limit value Bmax of the cutting edge height Bk.
- the effective range may be defined by the upper limit value Amax of the stack thickness Ak.
- the mask process may be omitted.
- the controller 26 may display a guidance screen indicating the target design surface 60 on the display instead of controlling the work machine 13 according to the target design surface 60. In that case, an appropriate target design surface 60 can be provided to the operator by displaying the target design surface 60 corrected by the compression rate on the guidance screen.
- the controller 26 may include a plurality of controllers 26 that are separate from each other.
- the controller 26 may include a remote controller 261 disposed outside the work vehicle 1 and an in-vehicle controller 262 mounted on the work vehicle 1.
- the remote controller 261 and the vehicle-mounted controller 262 may be able to communicate wirelessly via the communication devices 38 and 39.
- a part of the functions of the controller 26 described above may be executed by the remote controller 261, and the remaining functions may be executed by the in-vehicle controller 262.
- the process of determining the target design surface 60 may be executed by the remote controller 261, and the process of outputting a command signal to the work machine 13 may be executed by the in-vehicle controller 262.
- the operating device 25a may be disposed outside the work vehicle 1. In that case, the cab may be omitted from the work vehicle 1. Alternatively, the operating device 25a may be omitted from the work vehicle 1. The work vehicle 1 may be operated only by automatic control by the controller 26 without operation by the operation device 25a.
- the topography 50 is not limited to the position sensor 31 described above, and may be acquired by another device.
- the terrain 50 may be acquired by an interface device 37 that receives data from an external device.
- the interface device 37 may receive the terrain data measured by the external measuring device 40 wirelessly.
- aviation laser surveying may be used as an external measuring device.
- the terrain 50 may be captured by the camera, and the terrain data may be generated from the image data obtained by the camera.
- aerial surveying by UAV Unmanned Aerial Vehicle
- the interface device 37 may be a recording medium reading device, and may accept terrain data measured by the external measuring device 40 via the recording medium.
- the second terrain data may be data indicating the terrain 50 compacted by a vehicle other than the work vehicle 1, such as a roller vehicle.
- the second terrain data may be acquired by a position sensor mounted on the roller vehicle.
- the second terrain data may be acquired by an external measurement device.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
Abstract
Description
Rk = (Bk - Ak) / Bk * 100 (1)
ステップS207では、コントローラ26は、今回の作業パスでの圧縮率を算出する。ここでは、コントローラ26は、今回の作業パス全体での圧縮率を決定する。コントローラ26は、有効なデータから算出した各参照点Pkでの圧縮率を用いて、今回の作業パスでの圧縮率を決定する。例えば、コントローラ26は、ステップS206において算出した各参照点Pkでの圧縮率の平均値を、今回の作業パスでの圧縮率として決定する。ただし、各参照点Pkでの圧縮率の平均値以外の値が今回の作業パスでの圧縮率として決定されてもよい。
3 制御システム
13 作業機
26 コントローラ
Claims (18)
- 作業機を有する作業車両の制御システムであって、
コントローラと、
を備え、
前記コントローラは、
盛土作業前の作業対象の地形を示す第1地形データを取得し、
前記盛土作業中の前記作業機の刃先位置を示す刃先位置データを取得し、
前記盛土作業後に締め固められた地形を示す第2地形データを取得し、
前記第1地形データと前記刃先位置データと前記第2地形データとから前記作業対象の圧縮率を決定する、
作業車両の制御システム。 - 前記コントローラは、
前記作業車両の進路上の複数の参照点において、前記第1地形データと前記刃先位置データとから、前記盛土作業前の地形から前記刃先位置までの高さを示す刃先高さを決定し、
複数の前記参照点において、前記第1地形データと前記第2地形データとから盛土の積層厚さを決定し、
複数の前記参照点での前記刃先高さと前記積層厚さとから、前記圧縮率を決定する、
請求項1に記載の作業車両の制御システム。 - 前記コントローラは、
複数の前記参照点での前記刃先高さと前記積層厚さとが、所定の有効範囲内に含まれるかを判定し、
前記有効範囲内に含まれる前記参照点での前記刃先高さと前記積層厚さとから、前記圧縮率を決定する、
請求項2に記載の作業車両の制御システム。 - 前記コントローラは、
前記盛土作業の複数の作業パスごとに前記圧縮率の値を算出し、
前記圧縮率の前回の値と今回の値とに基づいて前記圧縮率を更新する、
請求項1に記載の作業車両の制御システム。 - 前記コントローラは、
目標設計面を決定し、
前記圧縮率によって前記目標設計面を補正する、
請求項1に記載の作業車両の制御システム。 - 前記コントローラは、前記圧縮率が大きいほど前記目標設計面を上昇させることで前記目標設計面を補正する、
請求項5に記載の作業車両の制御システム。 - 作業車両の作業機によって盛土作業が施される作業対象の圧縮率を決定するためにコントローラによって実行される方法であって、
前記盛土作業前の前記作業対象の地形を示す第1地形データを取得することと、
前記盛土作業中の前記作業機の刃先位置を示す刃先位置データを取得することと、
前記盛土作業後に締め固められた地形を示す第2地形データを取得することと、
前記第1地形データと前記刃先位置データと前記第2地形データとから前記作業対象の圧縮率を決定すること、
を備える方法。 - 前記作業車両の進路上の複数の参照点において、前記第1地形データと前記刃先位置データとから、前記盛土作業前の地形から前記刃先位置までの高さを示す刃先高さを決定することと、
複数の前記参照点において、前記第1地形データと前記第2地形データとから盛土の積層厚さを決定することと、
をさらに備え、
前記圧縮率は、複数の前記参照点での前記刃先高さと前記積層厚さとから決定される、
請求項7に記載の方法。 - 複数の前記参照点での前記刃先高さと前記積層厚さとが、所定の有効範囲内に含まれるかを判定することをさらに備え、
前記有効範囲内に含まれる前記参照点での前記刃先高さと前記積層厚さとから、前記圧縮率が決定される、
請求項8に記載の方法。 - 前記盛土作業の複数の作業パスごとに前記圧縮率の値が算出され、
前記圧縮率の前回の値と今回の値とに基づいて前記圧縮率を更新することをさらに備える、
請求項7に記載の方法。 - 目標設計面を決定することと、
前記圧縮率によって前記目標設計面を補正することをさらに備える、
請求項7に記載の方法。 - 前記圧縮率が大きいほど前記目標設計面を上昇させることで前記目標設計面が補正される、
請求項11に記載の方法。 - 作業機と、
前記作業機を制御するコントローラと、
を備え、
前記コントローラは、
盛土作業前の作業対象の地形を示す第1地形データを取得し、
前記盛土作業中の前記作業機の刃先位置を示す刃先位置データを取得し、
前記盛土作業後に締め固められた地形を示す第2地形データを取得し、
前記第1地形データと前記刃先位置データと前記第2地形データとから前記作業対象の圧縮率を決定し、
前記圧縮率に基づいて前記作業機を制御する、
作業車両。 - 前記コントローラは、
前記作業車両の進路上の複数の参照点において、前記第1地形データと前記刃先位置データとから、前記盛土作業前の地形から前記刃先位置までの高さを示す刃先高さを決定し、
複数の前記参照点において、前記第1地形データと前記第2地形データとから盛土の積層厚さを決定し、
複数の前記参照点での前記刃先高さと前記積層厚さとから、前記圧縮率を決定する、
請求項13に記載の作業車両。 - 前記コントローラは、
複数の前記参照点での前記刃先高さと前記積層厚さとが、所定の有効範囲内に含まれるかを判定し、
前記有効範囲内に含まれる前記参照点での前記刃先高さと前記積層厚さとから、前記圧縮率を決定する、
請求項14に記載の作業車両。 - 前記コントローラは、
前記盛土作業の複数の作業パスごとに前記圧縮率の値を算出し、
前記圧縮率の前回の値と今回の値とに基づいて前記圧縮率を更新する、
請求項13に記載の作業車両。 - 前記コントローラは、
目標設計面を決定し、
前記圧縮率によって前記目標設計面を補正する、
請求項13に記載の作業車両。 - 前記コントローラは、前記圧縮率が大きいほど前記目標設計面を上昇させることで前記目標設計面を補正する、
請求項17に記載の作業車両。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2018258521A AU2018258521B2 (en) | 2017-04-27 | 2018-04-10 | Control system for work vehicle, method, and work vehicle |
JP2019514361A JP6934514B2 (ja) | 2017-04-27 | 2018-04-10 | 作業車両の制御システム、方法、及び作業車両 |
US16/482,029 US11408150B2 (en) | 2017-04-27 | 2018-04-10 | Control system for work vehicle, method, and work vehicle |
CA3049754A CA3049754A1 (en) | 2017-04-27 | 2018-04-10 | Control system for work vehicle, method, and work vehicle |
CN201880007596.4A CN110191990B (zh) | 2017-04-27 | 2018-04-10 | 作业车辆的控制系统、方法、及作业车辆 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017088190 | 2017-04-27 | ||
JP2017-088190 | 2017-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198761A1 true WO2018198761A1 (ja) | 2018-11-01 |
Family
ID=63918309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015115 WO2018198761A1 (ja) | 2017-04-27 | 2018-04-10 | 作業車両の制御システム、方法、及び作業車両 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11408150B2 (ja) |
JP (1) | JP6934514B2 (ja) |
CN (1) | CN110191990B (ja) |
AU (1) | AU2018258521B2 (ja) |
CA (1) | CA3049754A1 (ja) |
WO (1) | WO2018198761A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020094427A (ja) * | 2018-12-13 | 2020-06-18 | 株式会社小松製作所 | 作業機械、作業機械を含むシステム、および作業機械の制御方法 |
WO2020171016A1 (ja) * | 2019-02-19 | 2020-08-27 | 株式会社小松製作所 | 作業機械の制御システム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6184758U (ja) * | 1984-11-09 | 1986-06-04 | ||
JPS63210315A (ja) * | 1987-02-27 | 1988-09-01 | Komatsu Ltd | ブルド−ザのブレ−ド制御装置 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3563016A (en) * | 1967-11-08 | 1971-02-16 | Cheslav Stanislavovich Tolochk | Sensing unit for a grape harvester for enabling the cutting apparatus to follow the surface to be worked |
JPS5149238A (en) | 1974-10-25 | 1976-04-28 | Yokohama Rubber Co Ltd | Gomusoseibutsu |
US5375663A (en) * | 1993-04-01 | 1994-12-27 | Spectra-Physics Laserplane, Inc. | Earthmoving apparatus and method for grading land providing continuous resurveying |
ZA952853B (en) * | 1994-04-18 | 1995-12-21 | Caterpillar Inc | Method and apparatus for real time monitoring and co-ordination of multiple geography altering machines on a work site |
US5835874A (en) * | 1994-04-28 | 1998-11-10 | Hitachi Construction Machinery Co., Ltd. | Region limiting excavation control system for construction machine |
JP3091667B2 (ja) * | 1995-06-09 | 2000-09-25 | 日立建機株式会社 | 建設機械の領域制限掘削制御装置 |
US6169948B1 (en) * | 1996-06-26 | 2001-01-02 | Hitachi Construction Machinery Co., Ltd. | Front control system, area setting method and control panel for construction machine |
JP3306301B2 (ja) * | 1996-06-26 | 2002-07-24 | 日立建機株式会社 | 建設機械のフロント制御装置 |
US5951613A (en) * | 1996-10-23 | 1999-09-14 | Caterpillar Inc. | Apparatus and method for determining the position of a work implement |
JP3811190B2 (ja) * | 1997-06-20 | 2006-08-16 | 日立建機株式会社 | 建設機械の領域制限掘削制御装置 |
US5901793A (en) * | 1997-12-04 | 1999-05-11 | Case Corporation | Apparatus and method for automatically adjusting the pitch of a dozer blade |
WO2006128033A1 (en) * | 2005-05-25 | 2006-11-30 | University Of Florida Research Foundation, Inc. | Devices, systems, and methods for measuring and controlling compactive effort delivered to a soil by a compaction unit |
CN105386482B (zh) * | 2006-01-26 | 2019-04-09 | 沃尔沃建筑设备公司 | 用于控制车辆部件移动的方法 |
KR101757366B1 (ko) * | 2011-03-24 | 2017-07-12 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 굴삭 제어 시스템 |
JP5920953B2 (ja) * | 2011-09-23 | 2016-05-24 | ボルボ コンストラクション イクイップメント アーベー | バケットを備えた作業機械のアタック姿勢を選択する方法 |
US8548690B2 (en) | 2011-09-30 | 2013-10-01 | Komatsu Ltd. | Blade control system and construction machine |
CN103967060A (zh) * | 2013-02-06 | 2014-08-06 | 国机重工(洛阳)有限公司 | 一种轮式装载机 |
US9014925B2 (en) * | 2013-03-15 | 2015-04-21 | Caterpillar Inc. | System and method for determining a ripping path |
KR101729050B1 (ko) * | 2013-04-12 | 2017-05-02 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 건설 기계의 제어 시스템 및 제어 방법 |
CN104812965B (zh) * | 2014-04-24 | 2016-10-19 | 株式会社小松制作所 | 作业车辆 |
US9388550B2 (en) * | 2014-09-12 | 2016-07-12 | Caterpillar Inc. | System and method for controlling the operation of a machine |
JP6496182B2 (ja) * | 2015-04-28 | 2019-04-03 | 株式会社小松製作所 | 施工計画システム |
US9834905B2 (en) * | 2015-09-25 | 2017-12-05 | Komatsu Ltd. | Work machine control device, work machine, and work machine control method |
CN105874131B (zh) * | 2015-11-19 | 2017-11-14 | 株式会社小松制作所 | 作业机械以及作业机械的控制方法 |
US10584463B2 (en) * | 2016-11-29 | 2020-03-10 | Komatsu Ltd. | Control device for construction machine and method of controlling construction machine |
CA3046353A1 (en) * | 2017-03-02 | 2018-09-07 | Komatsu Ltd. | Control system for work vehicle, method for setting trajectory of work implement, and work vehicle |
-
2018
- 2018-04-10 US US16/482,029 patent/US11408150B2/en active Active
- 2018-04-10 CN CN201880007596.4A patent/CN110191990B/zh active Active
- 2018-04-10 JP JP2019514361A patent/JP6934514B2/ja active Active
- 2018-04-10 AU AU2018258521A patent/AU2018258521B2/en active Active
- 2018-04-10 CA CA3049754A patent/CA3049754A1/en not_active Withdrawn
- 2018-04-10 WO PCT/JP2018/015115 patent/WO2018198761A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6184758U (ja) * | 1984-11-09 | 1986-06-04 | ||
JPS63210315A (ja) * | 1987-02-27 | 1988-09-01 | Komatsu Ltd | ブルド−ザのブレ−ド制御装置 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7197342B2 (ja) | 2018-12-13 | 2022-12-27 | 株式会社小松製作所 | 作業機械、作業機械を含むシステム、および作業機械の制御方法 |
WO2020122044A1 (ja) * | 2018-12-13 | 2020-06-18 | 株式会社小松製作所 | 作業機械、作業機械を含むシステム、および作業機械の制御方法 |
US12006654B2 (en) | 2018-12-13 | 2024-06-11 | Komatsu Ltd. | Work machine, system including work machine, and method of controlling work machine |
KR102606721B1 (ko) * | 2018-12-13 | 2023-11-24 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 작업 기계, 작업 기계를 포함하는 시스템, 및 작업 기계의 제어 방법 |
KR20210068527A (ko) * | 2018-12-13 | 2021-06-09 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 작업 기계, 작업 기계를 포함하는 시스템, 및 작업 기계의 제어 방법 |
CN112955608A (zh) * | 2018-12-13 | 2021-06-11 | 株式会社小松制作所 | 作业机械、包括作业机械的系统以及作业机械的控制方法 |
JP2020094427A (ja) * | 2018-12-13 | 2020-06-18 | 株式会社小松製作所 | 作業機械、作業機械を含むシステム、および作業機械の制御方法 |
CN113302363A (zh) * | 2019-02-19 | 2021-08-24 | 株式会社小松制作所 | 作业机械的控制系统 |
AU2020224828B2 (en) * | 2019-02-19 | 2022-07-28 | Komatsu Ltd. | Control system for work machine |
JP7278095B2 (ja) | 2019-02-19 | 2023-05-19 | 株式会社小松製作所 | 作業機械の制御システム |
US11774242B2 (en) | 2019-02-19 | 2023-10-03 | Komatsu Ltd. | Control system for work machine |
CN113302363B (zh) * | 2019-02-19 | 2023-10-27 | 株式会社小松制作所 | 作业机械的控制系统 |
JP2020133236A (ja) * | 2019-02-19 | 2020-08-31 | 株式会社小松製作所 | 作業機械の制御システム |
WO2020171016A1 (ja) * | 2019-02-19 | 2020-08-27 | 株式会社小松製作所 | 作業機械の制御システム |
Also Published As
Publication number | Publication date |
---|---|
US20190390443A1 (en) | 2019-12-26 |
AU2018258521B2 (en) | 2020-04-30 |
JPWO2018198761A1 (ja) | 2020-02-27 |
JP6934514B2 (ja) | 2021-09-15 |
CA3049754A1 (en) | 2018-11-01 |
CN110191990B (zh) | 2021-03-02 |
CN110191990A (zh) | 2019-08-30 |
US11408150B2 (en) | 2022-08-09 |
AU2018258521A1 (en) | 2019-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7094940B2 (ja) | 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両 | |
JP7133539B2 (ja) | 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両 | |
JP2018021348A (ja) | 作業車両の制御システム、制御方法、及び作業車両 | |
WO2018179963A1 (ja) | 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両 | |
JP7418948B2 (ja) | 作業車両の制御システム、方法、及び作業車両 | |
WO2018025733A1 (ja) | 作業車両の制御システム、制御方法、及び作業車両 | |
JP7156775B2 (ja) | 作業車両の制御システム、制御方法、及び作業車両 | |
JP6910450B2 (ja) | 作業車両の制御システム、方法、及び作業車両 | |
WO2018142453A1 (ja) | 作業車両の制御システム、及び作業機の軌跡設定方法 | |
WO2018025731A1 (ja) | 作業車両の制御システム、制御方法、及び作業車両 | |
WO2018179962A1 (ja) | 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両 | |
JP2018016971A (ja) | 作業車両の制御システム、制御方法、及び作業車両 | |
WO2019187770A1 (ja) | 作業車両の制御システム、方法、及び作業車両 | |
WO2019044821A1 (ja) | 作業車両の制御システム、方法、及び作業車両 | |
WO2018021342A1 (ja) | 作業車両の制御システム、制御方法、及び作業車両 | |
WO2019187771A1 (ja) | 作業車両の制御システム、方法、及び作業車両 | |
WO2019044785A1 (ja) | 作業車両の制御システム、方法、及び作業車両 | |
WO2019187797A1 (ja) | 作業車両の制御システム、方法、及び作業車両 | |
JP6934514B2 (ja) | 作業車両の制御システム、方法、及び作業車両 | |
JP7122801B2 (ja) | 作業車両の制御システム、制御方法、及び作業車両 | |
WO2020171014A1 (ja) | 作業機械の制御システム、及び制御方法 | |
WO2022163272A1 (ja) | 作業機械を制御するためのシステム、方法、および作業機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791882 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019514361 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3049754 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2018258521 Country of ref document: AU Date of ref document: 20180410 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18791882 Country of ref document: EP Kind code of ref document: A1 |