WO2019044821A1 - 作業車両の制御システム、方法、及び作業車両 - Google Patents

作業車両の制御システム、方法、及び作業車両 Download PDF

Info

Publication number
WO2019044821A1
WO2019044821A1 PCT/JP2018/031751 JP2018031751W WO2019044821A1 WO 2019044821 A1 WO2019044821 A1 WO 2019044821A1 JP 2018031751 W JP2018031751 W JP 2018031751W WO 2019044821 A1 WO2019044821 A1 WO 2019044821A1
Authority
WO
WIPO (PCT)
Prior art keywords
topography
target
controller
current
work vehicle
Prior art date
Application number
PCT/JP2018/031751
Other languages
English (en)
French (fr)
Inventor
和博 橋本
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US16/607,773 priority Critical patent/US11401697B2/en
Priority to AU2018325612A priority patent/AU2018325612B2/en
Priority to CA3061462A priority patent/CA3061462A1/en
Publication of WO2019044821A1 publication Critical patent/WO2019044821A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles

Definitions

  • the present invention relates to a control system, method, and work vehicle of a work vehicle.
  • Patent Document 1 discloses a technique of determining the magnitude of the relief of the ground and determining the digging start position according to the magnitude of the relief. Specifically, when the relief is small, the controller determines the root of the relief as the digging start position. When the relief is large, the controller determines the position between the root and the top of the relief as the digging start position.
  • the magnitude of the load that the working machine receives varies depending on whether the slope is an upslope or a downslope.
  • the above techniques can not cope with the type of gradient, and the load on the working machine may be excessive or the efficiency of the work may be reduced.
  • An object of the present invention is to provide a control system, a method, and a work vehicle of a work vehicle which can suppress an excessive load on a work machine while improving the efficiency of work.
  • a first aspect is a control system of a work vehicle having a work machine, comprising a controller.
  • the controller is programmed to perform the following processing.
  • the controller acquires current topography data indicating the current topography of the work target.
  • the controller determines a target design topography indicating a target trajectory of the work machine based on the current topography.
  • the controller determines whether the current terrain is uphill or downhill based on the current terrain data.
  • the controller changes the target design topography according to the determination result of the slope.
  • a second aspect is a method executed by a controller to set a trajectory of a work machine of a work vehicle, and includes the following processing.
  • the first process is to acquire current topography data indicating the current topography of the work target.
  • the second process is to determine a target design topography indicating a target trajectory of the work machine based on the current topography.
  • the third process is to determine whether the current topography is an upslope or a downslope based on the present topography data.
  • the fourth process is to change the target design topography according to the determination result of the gradient.
  • a third aspect is a work vehicle, comprising a work machine and a controller that controls the work machine.
  • the controller is programmed to perform the following processing.
  • the controller acquires current topography data indicating the current topography of the work target.
  • the controller determines a target design topography indicating a target trajectory of the work machine based on the current topography.
  • the controller determines whether the current terrain is uphill or downhill based on the current terrain data.
  • the controller changes the target design topography according to the determination result of the slope.
  • the controller outputs a command signal for controlling the work machine according to the target design topography.
  • the target design topography is determined based on the current topography, and the target design topography is changed in accordance with the determination result of whether the current topography is an upslope or a downslope. Therefore, it is possible to suppress an excessive load on the work machine while improving the efficiency of the work.
  • FIG. 1 is a side view showing a work vehicle 1 according to the embodiment.
  • the work vehicle 1 according to the present embodiment is a bulldozer.
  • the work vehicle 1 includes a vehicle body 11, a travel device 12, and a work implement 13.
  • the vehicle body 11 has a cab 14 and an engine room 15.
  • a driver's seat (not shown) is disposed in the driver's cab 14.
  • the engine room 15 is disposed in front of the cab 14.
  • the traveling device 12 is attached to the lower part of the vehicle body 11.
  • the traveling device 12 has a pair of right and left crawler belts 16. In FIG. 1, only the left crawler belt 16 is illustrated. As the crawler 16 rotates, the work vehicle 1 travels.
  • the traveling of the work vehicle 1 may be any of autonomous traveling, semi-autonomous traveling, and traveling by the operation of the operator.
  • the work implement 13 is attached to the vehicle body 11.
  • the working machine 13 has a lift frame 17, a blade 18 and a lift cylinder 19.
  • the lift frame 17 is mounted on the vehicle body 11 so as to be movable up and down around an axis X extending in the vehicle width direction.
  • the lift frame 17 supports the blade 18.
  • the blade 18 is disposed in front of the vehicle body 11. The blade 18 moves up and down as the lift frame 17 moves up and down.
  • the lift cylinder 19 is connected to the vehicle body 11 and the lift frame 17.
  • the lift frame 19 rotates up and down about the axis X by the expansion and contraction of the lift cylinder 19.
  • FIG. 2 is a block diagram showing the configuration of the drive system 2 of the work vehicle 1 and the control system 3.
  • the drive system 2 includes an engine 22, a hydraulic pump 23, and a power transmission 24.
  • the hydraulic pump 23 is driven by the engine 22 and discharges hydraulic oil.
  • the hydraulic oil discharged from the hydraulic pump 23 is supplied to the lift cylinder 19.
  • one hydraulic pump 23 is illustrated in FIG. 2, a plurality of hydraulic pumps may be provided.
  • the power transmission 24 transmits the driving force of the engine 22 to the traveling device 12.
  • the power transmission device 24 may be, for example, HST (Hydro Static Transmission).
  • the power transmission 24 may be, for example, a torque converter or a transmission having a plurality of transmission gears.
  • the control system 3 includes a first controller 25a and a second controller 25b.
  • the first operating device 25 a and the second operating device 25 b are disposed in the cab 14.
  • the first operating device 25 a is a device for operating the traveling device 12.
  • the first controller 25a receives an operation by an operator for driving the traveling device 12, and outputs an operation signal according to the operation.
  • the second controller 25 b is a device for operating the work machine 13.
  • the second controller 25b receives an operation by the operator for driving the work machine 13, and outputs an operation signal according to the operation.
  • the first operating device 25a and the second operating device 25b include, for example, an operating lever, a pedal, a switch, and the like.
  • the first operating device 25a is provided at an advance position, a reverse position, and a neutral position.
  • An operation signal indicating the position of the first operating device 25 a is output to the controller 26.
  • the controller 26 controls the traveling device 12 or the power transmission 24 so that the work vehicle 1 advances when the operation position of the first operating device 25a is the forward position.
  • the controller 26 controls the traveling device 12 or the power transmission 24 so that the work vehicle 1 moves backward.
  • the second operating device 25b is operably provided at the raising position, the lowering position, and the neutral position.
  • An operation signal indicating the position of the second operating device 25 b is output to the controller 26.
  • the controller 26 controls the lift cylinder 19 so that the blade 18 ascends when the operation position of the second operating device 25b is the raising position.
  • the controller 26 controls the lift cylinder 19 so that the blade 18 is lowered.
  • the control system 3 includes an input device 25c and a display 25d.
  • the input device 25c and the display 25d are, for example, a touch panel type display input device.
  • the display 25d is, for example, an LCD or an OLED. However, the display 25d may be another type of display device.
  • the input device 25c and the display 25d may be separate devices.
  • the input device 25c may be another input device such as a switch.
  • the input device 25c may be a pointing device such as a mouse or a trackball.
  • the input device 25c outputs an operation signal indicating an operation by the operator to the controller 26.
  • the control system 3 includes a controller 26, a storage device 28, and a control valve 27.
  • the controller 26 is programmed to control the work vehicle 1 based on the acquired data.
  • the controller 26 includes, for example, a processing device (processor) such as a CPU.
  • the controller 26 acquires operation signals from the operation devices 25a and 25b.
  • the controller 26 controls the control valve 27 based on the operation signal.
  • the controller 26 acquires an operation signal from the input device 25c.
  • the controller 26 outputs a signal to display a predetermined screen on the display 25 d.
  • the controller 26 is not limited to one unit, but may be divided into a plurality of controllers.
  • the control valve 27 is a proportional control valve, and is controlled by a command signal from the controller 26.
  • the control valve 27 is disposed between a hydraulic actuator such as the lift cylinder 19 and the hydraulic pump 23.
  • the control valve 27 controls the flow rate of hydraulic oil supplied from the hydraulic pump 23 to the lift cylinder 19.
  • the controller 26 generates a command signal to the control valve 27 so that the blade 18 operates in response to the operation of the second controller 25 b.
  • the lift cylinder 19 is controlled in accordance with the amount of operation of the second operating device 25b.
  • the control valve 27 may be a pressure proportional control valve.
  • the control valve 27 may be an electromagnetic proportional control valve.
  • the control system 3 includes a work machine sensor 29.
  • the work machine sensor 29 detects the position of the work machine and outputs a work machine position signal indicating the position of the work machine.
  • the work machine sensor 29 detects the stroke length of the lift cylinder 19 (hereinafter referred to as "lift cylinder length L").
  • lift cylinder length L the stroke length of the lift cylinder 19
  • the controller 26 calculates the lift angle ⁇ lift of the blade 18 based on the lift cylinder length L.
  • FIG. 3 is a schematic view showing the configuration of the work vehicle 1.
  • the origin position of the work machine 13 is indicated by a two-dot chain line.
  • the origin position of the work implement 13 is the position of the blade 18 in a state where the blade edge of the blade 18 is in contact with the ground on a horizontal ground.
  • the lift angle ⁇ lift is an angle from the origin position of the work machine 13.
  • the control system 3 includes a position sensor 31.
  • the position sensor 31 measures the position of the work vehicle 1.
  • the position sensor 31 includes a Global Navigation Satellite System (GNSS) receiver 32 and an IMU 33.
  • the GNSS receiver 32 is, for example, a receiver for GPS (Global Positioning System).
  • the antenna of the GNSS receiver 32 is arranged on the cab 14.
  • the GNSS receiver 32 receives a positioning signal from a satellite, calculates the position of the antenna based on the positioning signal, and generates vehicle position data.
  • the controller 26 acquires vehicle position data from the GNSS receiver 32.
  • the controller 26 obtains the traveling direction of the work vehicle 1 and the vehicle speed from the vehicle body position data.
  • the IMU 33 is an inertial measurement unit.
  • the IMU 33 acquires vehicle body tilt angle data.
  • the vehicle body inclination angle data includes an angle (pitch angle) to the horizontal in the longitudinal direction of the vehicle and an angle (roll angle) to the horizontal in the lateral direction of the vehicle.
  • the controller 26 acquires vehicle body tilt angle data from the IMU 33.
  • the controller 26 calculates the cutting edge position P0 from the lift cylinder length L, the vehicle position data, and the vehicle inclination angle data. As shown in FIG. 3, the controller 26 calculates global coordinates of the GNSS receiver 32 based on the vehicle position data. The controller 26 calculates the lift angle ⁇ lift based on the lift cylinder length L. The controller 26 calculates local coordinates of the cutting edge position P0 with respect to the GNSS receiver 32, based on the lift angle ⁇ lift and the vehicle body dimension data. The vehicle body size data is stored in the storage device 28 and indicates the position of the work implement 13 with respect to the GNSS receiver 32.
  • the controller 26 calculates global coordinates of the edge position P0 based on global coordinates of the GNSS receiver 32, local coordinates of the edge position P0, and vehicle body tilt angle data.
  • the controller 26 acquires global coordinates of the cutting edge position P0 as cutting edge position data.
  • the storage device 28 includes, for example, a memory and an auxiliary storage device.
  • the storage device 28 may be, for example, a RAM or a ROM.
  • the storage device 28 may be a semiconductor memory or a hard disk.
  • the storage device 28 is an example of a non-transitory computer readable recording medium.
  • the storage unit 28 stores computer instructions that can be executed by the processor and control the work vehicle 1.
  • the storage unit 28 stores design topography data and work site topography data.
  • the design topography data indicates the final design topography.
  • the final design topography is the final target shape of the work site surface.
  • the design topography data is, for example, a civil engineering construction drawing in a three-dimensional data format.
  • the work site topography data indicates the current topography of the work site.
  • the work site topography data is, for example, a current topographical survey map in a three-dimensional data format.
  • the work site topography data can be obtained, for example, by aviation laser survey.
  • the controller 26 acquires present terrain data.
  • the present topography data indicates the present topography of the work site.
  • the current topography of the work site is the actual topography of the area along the traveling direction of the work vehicle 1.
  • the present topography data is acquired by calculation in the controller 26 from work site topography data and the position and traveling direction of the work vehicle 1 obtained from the position sensor 31 described above.
  • the controller 26 automatically controls the work machine 13 based on the current topography data, the design topography data, and the cutting edge position data.
  • the automatic control of the work implement 13 may be semi-automatic control performed together with the manual operation by the operator.
  • the automatic control of the work implement 13 may be a fully automatic control performed without manual operation by the operator.
  • FIG. 4 is a flowchart showing a process of automatic control of the working machine 13 in the digging operation.
  • step S101 the controller 26 acquires current position data.
  • the controller 26 obtains the current cutting edge position P0 of the blade 18 as described above.
  • step S102 the controller 26 acquires design topography data.
  • the plurality of reference points Pn indicate a plurality of points at predetermined intervals along the traveling direction of the work vehicle 1.
  • the plurality of reference points Pn are on the traveling path of the blade 18.
  • the final design topography 60 has a flat shape parallel to the horizontal direction, but may have a different shape.
  • step S103 the controller 26 acquires present terrain data.
  • the controller 26 obtains present topography data by calculation from work site topography data obtained from the storage device 28 and position data and traveling direction data of the vehicle body obtained from the position sensor 31.
  • the current topography data is information indicating the topography located in the traveling direction of the work vehicle 1.
  • step S104 the controller 26 performs a smoothing process on the current terrain data.
  • FIG. 5 shows a cross section of the current terrain 50.
  • the vertical axis indicates the height of the terrain
  • the horizontal axis indicates the distance from the current position in the traveling direction of the work vehicle 1.
  • the present topography data includes the height Zn of the present topography 50 at a plurality of reference points Pn from the present position to a predetermined topography recognition distance dA in the traveling direction of the work vehicle 1.
  • the current position is a position determined based on the current cutting edge position P0 of the work vehicle 1.
  • the current position may be determined based on the current positions of other parts of the work vehicle 1.
  • the plurality of reference points are arranged at predetermined intervals, for example, every 1 m.
  • the present topography 50 ′ indicated by a broken line indicates present topography data before the smoothing processing.
  • the present topography 50 indicated by a solid line indicates the present topography data after the smoothing processing.
  • the smoothing means a process of smoothing the height change of the current topography 50.
  • the controller 26 smoothes the heights Zn at a plurality of points of the current topography 50 according to the following equation (1).
  • Zn_sm indicates the height of each point in the smoothed present topography 50.
  • the term "present topography 50" means the present topography 50 subjected to the smoothing process in step S104.
  • step S105 the controller 26 acquires a digging start position.
  • the controller 26 acquires a position at which the cutting edge position P0 first falls below the height Z0 of the current topography 50 as the digging start position.
  • the controller 26 may obtain the digging start position by another method.
  • the controller 26 may acquire the digging start position based on the operation of the second operating device 25b.
  • the controller 26 may obtain the digging start position by calculating the optimal digging start position from the current topography data.
  • step S106 the controller 26 acquires the movement distance of the work vehicle 1.
  • the controller 26 acquires the distance traveled from the digging start position to the current position in the advancing path of the blade 18 as the movement distance.
  • the movement distance of the work vehicle 1 may be the movement distance of the vehicle body 11.
  • the movement distance of the work vehicle 1 may be the movement distance of the blade edge of the blade 18.
  • step S107 the controller 26 determines target design topography data.
  • the target design terrain data shows the target design terrain 70 described by broken lines in FIG.
  • the target design terrain 70 shows the desired trajectory of the blade edge of the blade 18 in operation. In other words, the target design terrain 70 exhibits the desired shape as a result of the drilling operation.
  • the controller 26 determines the target displacement Z_offset and the target design topography 70 displaced downward from the present topography 50.
  • the target displacement Z_offset is a target displacement in the vertical direction at each reference point Pn.
  • the target displacement Z_offset is a target depth at each reference point Pn, and indicates the target position of the blade 18 below the current topography 50.
  • the target position of the blade 18 means the cutting edge position of the blade 18.
  • the target displacement Z_offset indicates the amount of soil per unit movement distance excavated by the blade 18. Therefore, the target design topography data indicates the relationship between the plurality of reference points Pn and the plurality of target soil volumes.
  • the target displacement Z_offset is an example of a target parameter related to the target excavation amount of the blade 18.
  • the controller 26 determines the target design topography 70 so as not to cross the final design topography 60 downward. Therefore, the controller 26 determines a target design topography 70 located above the final design topography 60 and below the current topography 50 during the digging operation.
  • the controller 26 determines the height Z of the target design topography 70 according to the following equation (2).
  • Z Zn-t1 x Z_offset (2)
  • the target displacement Z_offset is determined by referring to the target parameter data C.
  • the target parameter data C is stored in the storage device 28.
  • t1 is a correction coefficient according to the inclination parameter described later. Therefore, when the correction with the correction coefficient t1 is performed, a value obtained by multiplying Z_offset by t1 is the corrected target displacement.
  • FIG. 7 is a diagram showing an example of the target parameter data C.
  • the target parameter data C defines the relationship between the movement distance n of the work vehicle 1 and the target parameter.
  • the target parameter data C defines the relationship between the movement distance n of the work vehicle 1 and the target displacement Z_offset.
  • the target parameter data C indicates the digging depth (target displacement) Z_offset in the vertical downward direction from the ground surface of the blade 18 as a dependent variable of the movement distance n in the horizontal direction of the work vehicle 1.
  • the horizontal movement distance n of the work vehicle 1 is substantially the same value as the horizontal movement distance of the blade 18.
  • the controller 26 determines the target displacement Z_offset from the movement distance n of the work vehicle 1 with reference to the target parameter data C shown in FIG. 7.
  • the target parameter data C includes start time data c1, digging time data c2, transition time data c3, and soil unloading time data c4.
  • the start data c1 defines the relationship between the movement distance n in the excavation start area and the target displacement Z_offset.
  • the digging start area is a range from the digging start point S to the steady digging start point D.
  • a target displacement Z_offset that increases as the movement distance n increases is defined.
  • the excavation data c2 defines the relationship between the movement distance n in the excavation area and the target displacement Z_offset.
  • the excavation area is an area from the steady excavation start point D to the soil transfer start point T.
  • the target displacement Z_offset is defined to a constant value.
  • the excavation data c2 defines a constant target displacement Z_offset with respect to the movement distance n.
  • the transition time data c3 defines the relationship between the movement distance n in the soil transportation transition area and the target displacement Z_offset.
  • the soil transport transition area is an area from the steady excavation end point T to the soil transport start point P.
  • the transition time data c3 defines a target displacement Z_offset that decreases as the movement distance n increases.
  • the soil transportation time data c4 defines the relationship between the movement distance n in the soil transportation region and the target displacement Z_offset.
  • the soil transportation area is an area starting from the soil transportation start point P.
  • the target displacement Z_offset is defined to a constant value.
  • the soil transportation time data c4 defines a constant target displacement Z_offset with respect to the movement distance n.
  • the excavation area starts from the first start value b1 and ends at the first end value b2.
  • the soil transportation area is started from the second start value b3.
  • the first end value b2 is smaller than the second start value b3. Therefore, the excavation area is started when the movement distance n is smaller than the soil transportation area.
  • the target displacement Z_offset in the excavation area is constant at the first target value a1.
  • the target displacement Z_offset in the soil transportation area is constant at the second target value a2.
  • the first target value a1 is larger than the second target value a2. Therefore, in the excavation area, a target displacement Z_offset larger than that of the soil transportation area is defined.
  • the target displacement Z_offset at the digging start position is a start value a0.
  • the start value a0 is smaller than the first target value a1.
  • the start target value a0 is smaller than the second target value a2.
  • FIG. 8 is a flowchart showing the process of determining the target displacement Z_offset.
  • the traveling of the work vehicle 1 is assumed to be only forward.
  • the determination process is started when the first operating device 25a moves to the forward position.
  • the controller 26 determines whether the movement distance n is 0 or more and less than the first start value b1.
  • the controller 26 gradually increases the target displacement Z_offset from the start value a0 according to the increase of the movement distance n.
  • the start value a0 is a constant and is stored in the storage device 28.
  • the start value a0 is preferably as small as possible so that the load on the blade 18 does not become excessively large at the start of excavation.
  • the first start value b1 is obtained by calculation from the inclination c1 in the excavation start area shown in FIG. 7, the start value a0, and the first target value a1.
  • the inclination c1 is a constant and is stored in the storage device 28.
  • the inclination c1 is preferably a value that allows rapid transition from the digging start to the digging operation and that the load on the blade 18 does not become excessively large.
  • step S203 the controller 26 determines whether the moving distance n is equal to or greater than the first start value b1 and less than the first end value b2.
  • step S204 the controller 26 sets the target displacement Z_offset to the first target value a1.
  • the first target value a1 is a constant and is stored in the storage device 28.
  • the first target value a1 is preferably such a value that drilling can be efficiently performed and the load on the blade 18 does not become excessively large.
  • step S205 the controller 26 determines whether the movement distance n is equal to or greater than the first end value b2 and less than the second start value b3.
  • step S206 the controller 26 changes the target displacement Z_offset to the first target value a1 according to the increase of the movement distance n.
  • the first end value b2 is a movement distance when the current amount of soil held by the blade 18 exceeds a predetermined threshold. Therefore, the controller 26 reduces the target displacement Z_offset from the first target value a1 when the current amount of soil held by the blade 18 exceeds a predetermined threshold.
  • the predetermined threshold is determined based on, for example, the maximum capacity of the blade 18. For example, the current amount of soil held by the blade 18 may be determined by calculating the load on the blade 18 from the load. Alternatively, an image of the blade 18 may be acquired by a camera, and by analyzing the image, the present amount of soil held by the blade 18 may be calculated.
  • a predetermined initial value is set as the first end value b2.
  • the movement distance when the amount of soil held by the blade 18 exceeds a predetermined threshold is stored as an update value, and the first end value b2 is updated based on the stored update value.
  • step S207 the controller 26 determines whether the moving distance n is equal to or greater than a second start value b3. When the movement distance n is equal to or larger than the second start value b3, the controller 26 sets the target displacement Z_offset to the second target value a2 in step S208.
  • the second target value a2 is a constant and is stored in the storage device 28.
  • the second target value a2 is preferably set to a value suitable for soil transportation work.
  • the second start value b3 is calculated from the slope c2 in the soil transfer area shown in FIG. 7, the first target value a1, and the second target value a2.
  • the slope c2 is a constant and is stored in the storage device 28.
  • the inclination c2 is preferably a value such that the load can be quickly transferred from the digging operation to the soil transportation operation and the load on the blade 18 does not become excessively large.
  • the start value a0, the first target value a1, and the second target value a2 may be changed according to the condition of the work vehicle 1 or the like.
  • the first start value b1, the first end value b2, and the second start value b3 may be stored in the storage device 28 as constants.
  • FIG. 9 is a flowchart showing the process of determining the correction coefficient t1.
  • the controller 26 acquires the inclination degree parameter Svol.
  • the inclination parameter Svol is a parameter indicating the inclination of the current topography 50. The larger the absolute value of the inclination parameter Svol, the larger the inclination angle of the current topography 50.
  • the controller 26 calculates the difference between the predetermined horizontal plane 80 and the current topography 50, and determines the difference as the inclination degree parameter Svol.
  • the predetermined horizontal surface 80 is a horizontal surface passing the height of the present topography 50 at the excavation start position.
  • the horizontal surface 80 may be a horizontal surface passing through another position.
  • the horizontal surface 80 may be a horizontal surface passing the height of the current terrain 50 at the current position of the work vehicle 1.
  • the controller 26 determines the difference between the height Zn at each reference point Pn of the current topography 50 and the horizontal plane 80 as the slope parameter Svol.
  • a positive value of the slope parameter Svol indicates that the proportion of the upslope in the present topography 50 is high.
  • the inclination degree parameter Svol is a positive value, the larger the inclination degree parameter Svol, the steeper the inclination of the upslope.
  • the inclination parameter Svol according to the equation (3) may be regarded as a cross-sectional area between the current topography 50 and the horizontal surface 80, as shown in FIG. In that case, the cross-sectional area between the current topography 50 located above the horizontal surface 80 and the horizontal surface 80 is a positive value, and the cross-sectional area between the current topography 50 located below the horizontal surface 80 and the horizontal surface 80 is negative
  • the sum of the cross-sectional areas may be determined as the slope parameter Svol.
  • a negative value of the slope parameter Svol indicates that the proportion of the downslope in the present topography 50 is high. Also, when the slope parameter Svol is a negative value, the smaller the slope parameter Svol, the steeper the slope of the downslope.
  • step S302 the controller 26 determines whether the slope parameter Svol is larger than a predetermined first threshold value S1.
  • the first threshold value S1 is a value for determining that the proportion of the upward slope in the current topography 50 is high. Therefore, the controller 26 determines whether the current topography 50 is an upslope according to the slope parameter Svol. If the inclination degree parameter Svol is larger than the first threshold value S1, the process proceeds to step S303.
  • step S303 the controller 26 determines the correction coefficient t1 in accordance with the inclination degree parameter Svol.
  • the storage device 28 may store data defining the relationship between the slope parameter Svol and the correction coefficient t1.
  • the controller 26 may determine the correction coefficient t1 according to the inclination degree parameter Svol by referring to the data.
  • the correction coefficient t1 is a positive value smaller than one. Therefore, when the controller determines that the current topography 50 is an upslope, the controller reduces the amount of displacement of the target design topography 70 from the current topography 50 by multiplying the target displacement Z_offset by the correction coefficient t1. Further, when the inclination degree parameter Svol is larger than the predetermined first threshold value S1, the correction coefficient t1 is smaller as the value of the inclination degree parameter Svol is larger.
  • step S302 when the inclination degree parameter Svol is equal to or less than the first threshold value S1, the process proceeds to step S304.
  • step S304 the controller 26 determines whether the slope parameter Svol is smaller than a predetermined second threshold value S2.
  • the second threshold S2 is smaller than the first threshold S1.
  • the second threshold value S2 is a value for determining that the proportion of the downward slope in the present topography 50 is high. Therefore, the controller 26 determines whether the current topography 50 is a down slope according to the slope parameter Svol. If the inclination parameter Svol is smaller than the second threshold S2, the process proceeds to step S305.
  • step S305 the controller 26 determines the correction coefficient t1 in accordance with the inclination degree parameter Svol. If the slope parameter Svol is smaller than the second threshold S2, the correction coefficient t1 is a value larger than one. Therefore, when it is determined that the current topography 50 is a down slope, the controller multiplies the target displacement Z_offset by the correction coefficient t1 to increase the displacement amount of the target design topography 70 from the current topography 50. When the slope parameter Svol is smaller than the predetermined second threshold value S2, the correction coefficient t1 is larger as the value of the slope parameter Svol is smaller.
  • step S304 when the inclination degree parameter Svol is equal to or greater than the second threshold value S2, the process proceeds to step S306.
  • step S306 the controller 26 sets the correction coefficient t1 to one. That is, when the inclination degree parameter Svol is the first threshold S1 or less and the second threshold S2 or more, the correction of the target displacement Z_offset by the correction coefficient t1 is not performed.
  • the height Z of the target design topography 70 is determined from the above-mentioned equation (2).
  • step S108 shown in FIG. 4 the controller 26 controls the blade 18 toward the target design topography 70.
  • the controller 26 generates a command signal to the work machine 13 so that the blade edge position of the blade 18 moves toward the target design topography 70 created in step S107.
  • the generated command signal is input to the control valve 27. Thereby, the blade edge position P0 of the work machine 13 moves along the target design topography 70.
  • the target displacement Z_offset between the current topography 50 and the target design topography 70 is large compared to the other areas. Thereby, the excavation work of the present topography 50 is performed in the excavation area.
  • the target displacement Z_offset between the current topography 50 and the target design topography 70 is smaller compared to other areas. Thereby, in the soil transportation area, excavation of the ground is avoided, and the soil held by the blade 18 is transported.
  • step S109 the controller 26 updates work site topography data.
  • the controller 26 updates work site topography data with position data indicating the latest trajectory of the cutting edge position P0.
  • the controller 26 may calculate the position of the bottom surface of the crawler belt 16 from the vehicle body position data and the vehicle body size data, and update the work site topography data with position data indicating the trajectory of the bottom surface of the crawler belt 16. In this case, updating of work site topography data can be performed immediately.
  • the work site topography data may be generated from survey data measured by a surveying device outside the work vehicle 1.
  • a surveying device outside the work vehicle 1.
  • aviation laser surveying may be used as an external surveying instrument.
  • the present topography 50 may be photographed by a camera, and work site topography data may be generated from image data obtained by the camera.
  • aerial surveying with a UAV Unmanned Aerial Vehicle
  • updating of work site topography data may be performed at predetermined intervals or at any time.
  • the above process is performed when the work vehicle 1 is moving forward.
  • the first controller 25a is in the forward position, the above process is performed.
  • the work vehicle 1 moves backward a predetermined distance or more, the excavation start position, the movement distance n, and the amount of soil held by the blade 18 are initialized.
  • the controller 26 updates the current topography 50 based on the updated work site topography data, and newly determines the target design topography 70 based on the updated current topography 50.
  • the controller 26 then controls the blade 18 along the newly determined target design terrain 70. By repeating such processing, excavation is performed such that the current topography 50 approaches the final design topography 60.
  • the controller 26 repeats the processes of steps S101 to S109 every time the vehicle moves forward by a predetermined distance or at predetermined time during the forward movement.
  • the controller 26 may repeat the processing of steps S101 to S109 every predetermined distance, every reverse movement, or every predetermined time during reverse movement.
  • the controller 26 determines whether the current topography 50 is an upward slope or a downward slope based on the current topography data, and The target design topography 70 is changed according to the determination result.
  • the correction factor t1 is determined such that the amount of displacement of the target design topography 70 from the current topography 50 is reduced, whereby the target design topography 70 is changed.
  • the current topography 50 is an upward slope, the load on the work machine 13 tends to be large. Therefore, by changing the target design topography 70 as described above, it is possible to prevent the load on the working machine 13 from becoming excessive.
  • the correction coefficient t1 is determined such that the displacement amount of the target design topography 70 from the present topography 50 is increased, whereby the target design topography 70 is changed.
  • the load on the working machine 13 tends to be small. Therefore, by changing the target design topography 70 as described above, the amount of soil excavated by the work machine 13 can be increased, whereby work efficiency can be improved.
  • the correction coefficient t1 is smaller as the value of the inclination degree parameter Svol is larger.
  • a large value of the slope parameter Svol means that the slope of the upward slope is steep. Therefore, as the slope of the upslope is steeper, the amount of displacement of the target design topography 70 from the current topography 50 is smaller because the correction coefficient t1 is smaller. Thereby, the amount of displacement of the target design topography 70 can be appropriately determined in accordance with the magnitude of the slope of the upslope.
  • the correction coefficient t1 is larger as the value of the slope parameter Svol is smaller.
  • a small value of the slope parameter Svol means that the slope of the down slope is steep. Therefore, the amount of displacement of the target design topography 70 from the current topography 50 can be increased by increasing the correction coefficient t1 as the slope of the descending slope becomes steeper. Thus, the amount of displacement of the target design topography 70 can be appropriately determined in accordance with the magnitude of the slope of the downslope.
  • the work vehicle 1 is not limited to a bulldozer, but may be another vehicle such as a wheel loader or a motor grader.
  • the work vehicle 1 may be a remotely steerable vehicle. In that case, part of the control system 3 may be disposed outside the work vehicle 1.
  • the controller 26 may be disposed outside the work vehicle 1.
  • the controller 26 may be located in a control center remote from the work site.
  • the controller 26 may have a plurality of controllers 26 separate from one another.
  • the controller 26 may include a remote controller 261 disposed outside the work vehicle 1 and an onboard controller 262 mounted on the work vehicle 1.
  • the remote controller 261 and the in-vehicle controller 262 may be able to communicate wirelessly via the communication devices 38 and 39. Then, part of the functions of the controller 26 described above may be performed by the remote controller 261, and the remaining functions may be performed by the onboard controller 262.
  • the process of determining the target design topography 70 may be performed by the remote controller 261, and the process of outputting a command signal to the work machine 13 may be performed by the onboard controller 262.
  • the operating devices 25a and 25b, the input device 25c, and the display 25d may be disposed outside the work vehicle 1. In that case, the driver's cab may be omitted from the work vehicle 1. Alternatively, the operation devices 25a and 25b, the input device 25c, and the display 25d may be omitted from the work vehicle 1.
  • the work vehicle 1 may be operated only by the automatic control by the controller 26 without the operation by the operation devices 25a and 25b.
  • the present topography 50 may be acquired by other devices as well as the position sensor 31 described above.
  • the current terrain 50 may be acquired by the interface device 37 that receives data from an external device.
  • the interface device 37 may wirelessly receive the present topography data measured by the external measurement device 41.
  • the interface device 37 may be a reading device of a recording medium, and may receive current topography data measured by the external measuring device 41 via the recording medium.
  • the target parameter data is not limited to the data shown in FIG. 7 and may be changed.
  • the target parameter is a parameter related to the target excavation amount of the work machine 13 and may be another parameter without being limited to the target displacement of the above embodiment.
  • FIG. 14 is a diagram showing another example of the target parameter data.
  • the target parameter may be a target soil amount S_target for each point of flat terrain. That is, the target parameter may be the target soil amount S_target per unit distance.
  • the controller 26 can calculate the target displacement Z_offset from the target soil amount S_target and the width of the blade 18.
  • the target parameter may be a parameter different from the target soil amount S_target per unit distance.
  • the target parameter may be a parameter indicating the target value of the load on the work machine 13 at each point.
  • the controller 26 can calculate the target displacement Z_offset for each point from the target parameter. In that case, the controller 26 may increase the target displacement Z_offset in response to the increase of the target parameter.
  • the target displacement Z_offset may be multiplied by a predetermined coefficient other than t1.
  • a predetermined constant may be added to or subtracted from the target displacement Z_offset.
  • the predetermined coefficient and the predetermined constant may be changed according to the change of the control mode.
  • the average value of the height of five points is calculated.
  • the number of points used for smoothing may be less than five or more than five.
  • the number of points used for smoothing can be changed, and the operator may be able to set the desired degree of smoothing by changing the number of points used for smoothing.
  • the average value of the heights of the points to be smoothed and the points located ahead of the points to be smoothed may be calculated without being limited to the points to be smoothed and the heights of the points before and after the points. Good.
  • an average value of the heights of the point to be smoothed and the point located behind the point may be calculated.
  • not only the average value but also smoothing processing by approximation such as least square method or n-order approximation may be used.
  • the smoothing process may be omitted.
  • the inclination parameter Svol is the difference between the average value of the height of the present topography 50 and the height of the horizontal surface 80
  • the above implementation may be performed as long as it indicates the direction and size of the inclination of the gradient. It is not limited to the form.
  • the slope parameter Svol may be a volume rather than a cross-sectional area between the current topography 50 and the horizontal surface 80.
  • the inclination An of a straight line Ln connecting two arbitrary reference points of the present topography 50 is calculated by the following equation (4).
  • Nref is a value indicating the distance between two reference points. For example, when Nref is 4, the inclination An is an inclination of a straight line connecting an arbitrary one reference point and a fourth reference point in the traveling direction of the work vehicle 1 from the reference point.
  • the controller 26 may acquire current topography data within a range shorter than the predetermined topography recognition distance dA from the current position. That is, the controller 26 may acquire the present topography data for only a part of the plurality of reference points Pn.
  • the controller 26 may determine the target design topography 70 within a range shorter than the predetermined topography recognition distance dA from the current position. That is, the controller 26 may determine the target design topography 70 for only a part of the plurality of reference points Pn.
  • the target design topography is determined based on the current topography, and the target design topography is changed in accordance with the determination result of whether the current topography is an upslope or a downslope. Therefore, it is possible to suppress an excessive load on the work machine while improving the efficiency of the work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

作業車両の制御システムは、コントローラを備える。コントローラは、作業対象の現況地形を示す現況地形データを取得する。コントローラは、現況地形に基づいて、作業機の目標軌跡を示す目標設計地形を決定する。コントローラは、現況地形データに基づいて、現況地形が上り勾配であるか、又は、下り勾配であるかを判定する。コントローラは、勾配の判定結果に応じて目標設計地形を変更する。

Description

作業車両の制御システム、方法、及び作業車両
 本発明は、作業車両の制御システム、方法、及び作業車両に関する。
 作業車両によって作業が施される地面は平坦であるとは限らず、起伏が存在することが通常である。そこで、特許文献1では、地面の起伏の大きさを判定し、起伏の大きさに応じて、掘削開始位置を決定する技術が開示されている。詳細には、起伏が小さいときには、コントローラは、起伏の根元を掘削開始位置として決定する。起伏が大きいときには、コントローラは、起伏の根元と頂上部との間の位置を掘削開始位置として決定する。
米国特許公報第7,509,198号
 しかし、勾配が上り勾配であるのか、下り勾配であるのかに応じて、作業機が受ける負荷の大きさは異なる。上記の技術では、勾配の種類に対応することはできず、作業機が受ける負荷が過大となるか、或いは作業の効率が低下する虞がある。
 本発明は、作業の効率を向上させつつ、作業機への負荷が過大となることを抑えることができる作業車両の制御システム、方法、及び作業車両を提供することを目的とする。
 第1の態様は、作業機を有する作業車両の制御システムであって、コントローラを備える。コントローラは、以下の処理を行うようにプログラムされている。コントローラは、作業対象の現況地形を示す現況地形データを取得する。コントローラは、現況地形に基づいて、作業機の目標軌跡を示す目標設計地形を決定する。コントローラは、現況地形データに基づいて、現況地形が上り勾配であるか、又は、下り勾配であるかを判定する。コントローラは、勾配の判定結果に応じて目標設計地形を変更する。
 第2の態様は、作業車両の作業機の軌跡を設定するためにコントローラによって実行される方法であって、以下の処理を含む。第1の処理は、作業対象の現況地形を示す現況地形データを取得することである。第2の処理は、現況地形に基づいて、作業機の目標軌跡を示す目標設計地形を決定することである。第3の処理は、現況地形データに基づいて、現況地形が上り勾配であるか、又は、下り勾配であるかを判定することである。第4の処理は、勾配の判定結果に応じて目標設計地形を変更することである。
 第3の態様は、作業車両であって、作業機と、作業機を制御するコントローラとを備える。コントローラは、以下の処理を行うようにプログラムされている。コントローラは、作業対象の現況地形を示す現況地形データを取得する。コントローラは、現況地形に基づいて、作業機の目標軌跡を示す目標設計地形を決定する。コントローラは、現況地形データに基づいて、現況地形が上り勾配であるか、又は、下り勾配であるかを判定する。コントローラは、勾配の判定結果に応じて目標設計地形を変更する。コントローラは、目標設計地形に従って作業機を制御する指令信号を出力する。
 本発明では、現況地形に基づいて目標設計地形が決定されると共に、現況地形が上り勾配であるか、又は、下り勾配であるかの判定結果に応じて目標設計地形が変更される。そのため、作業の効率を向上させつつ、作業機への負荷が過大となることを抑えることができる。
実施形態に係る作業車両を示す側面図である。 作業車両の駆動系と制御システムとの構成を示すブロック図である。 作業車両の構成を示す模式図である。 作業機の自動制御の処理を示すフローチャートである。 平滑化処理前後の現況地形の一例を示す図である。 現況地形、最終設計地形、及び目標設計地形の一例を示す図である。 目標パラメータデータの一例を示す図である。 目標変位を決定するための処理を示すフローチャートである。 補正係数を決定するための処理を示すフローチャートである。 傾斜度パラメータの一例を示す図である。 傾斜度パラメータの定義を示す図である。 第1変形例に係る制御システムの構成を示すブロック図である。 第2変形例に係る制御システムの構成を示すブロック図である。 目標パラメータデータの他の例を示す図である。 傾斜度パラメータの他の例を示す図である。
 以下、実施形態に係る作業車両について、図面を参照しながら説明する。図1は、実施形態に係る作業車両1を示す側面図である。本実施形態に係る作業車両1は、ブルドーザである。作業車両1は、車体11と、走行装置12と、作業機13と、を備えている。
 車体11は、運転室14とエンジン室15とを有する。運転室14には、図示しない運転席が配置されている。エンジン室15は、運転室14の前方に配置されている。走行装置12は、車体11の下部に取り付けられている。走行装置12は、左右一対の履帯16を有している。なお、図1では、左側の履帯16のみが図示されている。履帯16が回転することによって、作業車両1が走行する。作業車両1の走行は、自律走行、セミ自律走行、オペレータの操作による走行のいずれの形式であってもよい。
 作業機13は、車体11に取り付けられている。作業機13は、リフトフレーム17と、ブレード18と、リフトシリンダ19と、を有する。
 リフトフレーム17は、車幅方向に延びる軸線Xを中心として上下に動作可能に車体11に取り付けられている。リフトフレーム17は、ブレード18を支持している。ブレード18は、車体11の前方に配置されている。ブレード18は、リフトフレーム17の上下動に伴って上下に移動する。
 リフトシリンダ19は、車体11とリフトフレーム17とに連結されている。リフトシリンダ19が伸縮することによって、リフトフレーム17は、軸線Xを中心として上下に回転する。
 図2は、作業車両1の駆動系2と制御システム3との構成を示すブロック図である。図2に示すように、駆動系2は、エンジン22と、油圧ポンプ23と、動力伝達装置24と、を備えている。
 油圧ポンプ23は、エンジン22によって駆動され、作動油を吐出する。油圧ポンプ23から吐出された作動油は、リフトシリンダ19に供給される。なお、図2では、1つの油圧ポンプ23が図示されているが、複数の油圧ポンプが設けられてもよい。
 動力伝達装置24は、エンジン22の駆動力を走行装置12に伝達する。動力伝達装置24は、例えば、HST(Hydro Static Transmission)であってもよい。或いは、動力伝達装置24は、例えば、トルクコンバーター、或いは複数の変速ギアを有するトランスミッションであってもよい。
 制御システム3は、第1操作装置25aと第2操作装置25bとを備える。第1操作装置25aと第2操作装置25bとは、運転室14に配置されている。第1操作装置25aは、走行装置12を操作するための装置である。第1操作装置25aは、走行装置12を駆動するためのオペレータによる操作を受け付け、操作に応じた操作信号を出力する。
 第2操作装置25bは、作業機13を操作するための装置である。第2操作装置25bは、作業機13を駆動するためのオペレータによる操作を受け付け、操作に応じた操作信号を出力する。第1操作装置25aと第2操作装置25bとは、例えば、操作レバー、ペダル、スイッチ等を含む。
 第1操作装置25aは、前進位置と後進位置と中立位置とに操作可能に設けられる。第1操作装置25aの位置を示す操作信号は、コントローラ26に出力される。コントローラ26は、第1操作装置25aの操作位置が前進位置であるときには、作業車両1が前進するように、走行装置12、或いは動力伝達装置24を制御する。第1操作装置25aの操作位置が後進位置であるときには、コントローラ26は、作業車両1が後進するように、走行装置12、或いは動力伝達装置24を制御する。
 第2操作装置25bは、上げ位置と、下げ位置と、中立位置とに操作可能に設けられる。第2操作装置25bの位置を示す操作信号は、コントローラ26に出力される。コントローラ26は、第2操作装置25bの操作位置が上げ位置であるときには、ブレード18が上昇するように、リフトシリンダ19を制御する。第2操作装置25bの操作位置が下げ位置であるときには、コントローラ26は、ブレード18が下降するように、リフトシリンダ19を制御する。
 制御システム3は、入力装置25cとディスプレイ25dとを備える。入力装置25c及びディスプレイ25dは、例えばタッチパネル式の表示入力装置である。ディスプレイ25dは、例えば、LCD、或いはOLEDである。ただし、ディスプレイ25dは、他の種類の表示装置であってもよい。入力装置25c及びディスプレイ25dとは別の装置であってもよい。例えば、入力装置25cは、スイッチ等の他の入力装置であってもよい。入力装置25cは、マウス、或いはトラックボールなどのポインティングデバイスであってもよい。入力装置25cは、オペレータによる操作を示す操作信号をコントローラ26に出力する。
 制御システム3は、コントローラ26と、記憶装置28と、制御弁27とを備える。コントローラ26は、取得したデータに基づいて作業車両1を制御するようにプログラムされている。コントローラ26は、例えばCPU等の処理装置(プロセッサ)を含む。コントローラ26は、操作装置25a,25bから操作信号を取得する。コントローラ26は、操作信号に基づいて、制御弁27を制御する。コントローラ26は、入力装置25cから操作信号を取得する。コントローラ26は、所定の画面をディスプレイ25dに表示させる信号を出力する。なお、コントローラ26は、一体に限らず、複数のコントローラに分かれていてもよい。
 制御弁27は、比例制御弁であり、コントローラ26からの指令信号によって制御される。制御弁27は、リフトシリンダ19などの油圧アクチュエータと、油圧ポンプ23との間に配置される。制御弁27は、油圧ポンプ23からリフトシリンダ19に供給される作動油の流量を制御する。コントローラ26は、第2操作装置25bの操作に応じてブレード18が動作するように、制御弁27への指令信号を生成する。これにより、リフトシリンダ19が、第2操作装置25bの操作量に応じて、制御される。なお、制御弁27は、圧力比例制御弁であってもよい。或いは、制御弁27は、電磁比例制御弁であってもよい。
 制御システム3は、作業機センサ29を備える。作業機センサ29は、作業機の位置を検出し、作業機の位置を示す作業機位置信号を出力する。詳細には、作業機センサ29は、リフトシリンダ19のストローク長さ(以下、「リフトシリンダ長L」という。)を検出する。図3に示すように、コントローラ26は、リフトシリンダ長Lに基づいてブレード18のリフト角θliftを算出する。図3は、作業車両1の構成を示す模式図である。
 図3では、作業機13の原点位置が二点鎖線で示されている。作業機13の原点位置は、水平な地面上でブレード18の刃先が地面に接触した状態でのブレード18の位置である。リフト角θliftは、作業機13の原点位置からの角度である。
 図2に示すように、制御システム3は、位置センサ31を備えている。位置センサ31は、作業車両1の位置を測定する。位置センサ31は、GNSS(Global Navigation Satellite System)レシーバ32と、IMU 33と、を備える。GNSSレシーバ32は、例えばGPS(Global Positioning System)用の受信機である。GNSSレシーバ32のアンテナは、運転室14上に配置される。GNSSレシーバ32は、衛星より測位信号を受信し、測位信号によりアンテナの位置を演算して車体位置データを生成する。コントローラ26は、GNSSレシーバ32から車体位置データを取得する。コントローラ26は、車体位置データにより、作業車両1の進行方向と車速とを得る。
 IMU 33は、慣性計測装置(Inertial Measurement Unit)である。IMU 33は、車体傾斜角データを取得する。車体傾斜角データは、車両前後方向の水平に対する角度(ピッチ角)、および車両横方向の水平に対する角度(ロール角)を含む。コントローラ26は、IMU 33から車体傾斜角データを取得する。
 コントローラ26は、リフトシリンダ長Lと、車体位置データと、車体傾斜角データとから、刃先位置P0を演算する。図3に示すように、コントローラ26は、車体位置データに基づいて、GNSSレシーバ32のグローバル座標を算出する。コントローラ26は、リフトシリンダ長Lに基づいて、リフト角θliftを算出する。コントローラ26は、リフト角θliftと車体寸法データに基づいて、GNSSレシーバ32に対する刃先位置P0のローカル座標を算出する。車体寸法データは、記憶装置28に記憶されており、GNSSレシーバ32に対する作業機13の位置を示す。コントローラ26は、GNSSレシーバ32のグローバル座標と刃先位置P0のローカル座標と車体傾斜角データとに基づいて、刃先位置P0のグローバル座標を算出する。コントローラ26は、刃先位置P0のグローバル座標を刃先位置データとして取得する。
 記憶装置28は、例えばメモリと補助記憶装置とを含む。記憶装置28は、例えば、RAM、或いはROMなどであってもよい。記憶装置28は、半導体メモリ、或いはハードディスクなどであってもよい。記憶装置28は、非一時的な(non-transitory)コンピュータで読み取り可能な記録媒体の一例である。記憶装置28は、プロセッサによって実行可能であり作業車両1を制御するためのコンピュータ指令を記録している。
 記憶装置28は、設計地形データと作業現場地形データとを記憶している。設計地形データは、最終設計地形を示す。最終設計地形は、作業現場の表面の最終的な目標形状である。設計地形データは、例えば、三次元データ形式の土木施工図である。作業現場地形データは、作業現場の現況の地形を示す。作業現場地形データは、例えば、三次元データ形式の現況地形測量図である。作業現場地形データは、例えば、航空レーザ測量で得ることができる。
 コントローラ26は、現況地形データを取得する。現況地形データは、作業現場の現況地形を示す。作業現場の現況地形は、作業車両1の進行方向に沿う領域の実際の地形である。現況地形データは、作業現場地形データと上述の位置センサ31から得られる作業車両1の位置と進行方向とからコントローラ26での演算により取得される。
 コントローラ26は、現況地形データと、設計地形データと、刃先位置データとに基づいて、作業機13を自動的に制御する。なお、作業機13の自動制御は、オペレータによる手動操作と合わせて行われる半自動制御であってもよい。或いは、作業機13の自動制御は、オペレータによる手動操作無しで行われる完全自動制御であってもよい。
 以下、コントローラ26によって実行される、掘削における作業機13の自動制御について説明する。図4は、掘削作業における作業機13の自動制御の処理を示すフローチャートである。
 図4に示すように、ステップS101では、コントローラ26は、現在位置データを取得する。ここでは、コントローラ26は、上述したように、ブレード18の現在の刃先位置P0を取得する。
 ステップS102では、コントローラ26は、設計地形データを取得する。図5に示すように、設計地形データは、作業車両1の進行方向において、複数の参照点Pn(n=0,1,2,3,...,A)での最終設計地形60の高さZdesignを含む。複数の参照点Pnは、作業車両1の進行方向に沿う所定間隔ごとの複数地点を示す。複数の参照点Pnは、ブレード18の進行パス上にある。なお、図5では、最終設計地形60は、水平方向に平行な平坦な形状であるが、これと異なる形状であってもよい。
 ステップS103では、コントローラ26は、現況地形データを取得する。コントローラ26は、記憶装置28より得られる作業現場地形データと、位置センサ31より得られる車体の位置データ及び進行方向データから演算により、現況地形データを取得する。現況地形データは、作業車両1の進行方向に位置する地形を示す情報である。
 ステップS104では、コントローラ26は、現況地形データに平滑化処理を施す。図5は、現況地形50の断面を示す。図5において、縦軸は、地形の高さを示しており、横軸は、作業車両1の進行方向における現在位置からの距離を示している。
 詳細には、現況地形データは、作業車両1の進行方向において、現在位置から所定の地形認識距離dAまでの複数の参照点Pnでの現況地形50の高さZnを含む。本実施形態において、現在位置は、作業車両1の現在の刃先位置P0に基づいて定められる位置である。ただし、現在位置は、作業車両1の他の部分の現在位置に基づいて定められてもよい。複数の参照点は、所定間隔、例えば1mごとに並んでいる。
 図5において、破線で示す現況地形50’は、平滑化処理前の現況地形データを示している。実線で示す現況地形50は、平滑化処理後の現況地形データを示している。平滑化とは、現況地形50の高さ変化をなだらかにする処理を意味する。例えば、コントローラ26は、以下の(1)式によって現況地形50の複数の地点での高さZnを平滑化する。
Figure JPOXMLDOC01-appb-I000001
Zn_smは、平滑化された現況地形50における各地点の高さを示している。なお、以下の説明において、単に「現況地形50」というときには、ステップS104において平滑化処理が施された現況地形50を意味するものとする。
 ステップS105では、コントローラ26は、掘削開始位置を取得する。例えば、コントローラ26は、刃先位置P0が、現況地形50の高さZ0を最初に下回ったときの位置を掘削開始位置として取得する。これにより、ブレード18の刃先が下げられて現況地形50を掘削し始めた位置が掘削開始位置として取得される。ただし、コントローラ26は、他の方法によって、掘削開始位置を取得してもよい。例えば、コントローラ26は、第2操作装置25bの操作に基づいて、掘削開始位置を取得してもよい。或いは、コントローラ26は、現況地形データから最適な掘削開始位置を演算することで、掘削開始位置を取得してもよい。
 ステップS106では、コントローラ26は、作業車両1の移動距離を取得する。コントローラ26は、ブレード18の進行パスにおいて掘削開始位置から現在位置まで進んだ距離を、移動距離として取得する。作業車両1の移動距離は、車体11の移動距離であってもよい。或いは、作業車両1の移動距離は、ブレード18の刃先の移動距離であってもよい。
 ステップS107では、コントローラ26は、目標設計地形データを決定する。目標設計地形データは、図6に破線で記載された目標設計地形70を示す。目標設計地形70は、作業におけるブレード18の刃先の望まれる軌跡を示す。言い換えれば、目標設計地形70は、掘削作業の結果として望まれる形状を示す。
 図6に示すように、コントローラ26は、現況地形50から、目標変位Z_offset、下方に変位した目標設計地形70を決定する。目標変位Z_offsetは、各参照点Pnでの鉛直方向における目標変位である。本実施形態において、目標変位Z_offsetは、各参照点Pnでの目標深さであり、現況地形50の下方におけるブレード18の目標位置を示す。ブレード18の目標位置とは、ブレード18の刃先位置を意味する。言い換えれば、目標変位Z_offsetは、ブレード18によって掘削される単位移動距離当たりの土量を示す。従って、目標設計地形データは、複数の参照点Pnと複数の目標土量との関係を示す。目標変位Z_offsetは、ブレード18の目標掘削量に関係する目標パラメータの一例である。
 なお、コントローラ26は、最終設計地形60を下方に越えないように、目標設計地形70を決定する。従って、コントローラ26は、掘削作業時には、最終設計地形60以上、且つ、現況地形50より下方に位置する目標設計地形70を決定する。
 詳細には、コントローラ26は、以下の(2)式により、目標設計地形70の高さZを決定する。
Z = Zn - t1 × Z_offset    (2)
 目標変位Z_offsetは、目標パラメータデータCを参照することで決定される。目標パラメータデータCは、記憶装置28に記憶されている。t1は、後述する傾斜度パラメータに応じた補正係数である。従って、補正係数t1による補正が行われる場合には、Z_offsetにt1を乗じた値が、補正された目標変位となる。
 図7は、目標パラメータデータCの一例を示す図である。目標パラメータデータCは、作業車両1の移動距離nと、目標パラメータとの関係を規定する。本実施形態では、目標パラメータデータCは、作業車両1の移動距離nと、目標変位Z_offsetとの関係を規定する。
 詳細には、目標パラメータデータCは、ブレード18の地表からの鉛直下方向への掘削深さ(目標変位)Z_offsetを、作業車両1の水平方向の移動距離nの従属変数として示す。作業車両1の水平方向の移動距離nは、ブレード18の水平方向の移動距離と実質的に同じ値である。コントローラ26は、図7に示す目標パラメータデータCを参照して、作業車両1の移動距離nから、目標変位Z_offsetを決定する。
 図7に示すように、目標パラメータデータCは、開始時データc1と、掘削時データc2と、移行時データc3と、運土時データc4とを含む。開始時データc1は、掘削開始領域での移動距離nと目標変位Z_offsetとの関係を規定する。掘削開始領域は、掘削開始点Sから定常掘削開始点Dまでの領域である。開始時データc1で示されるように、掘削開始領域では、移動距離nの増大に応じて増大する目標変位Z_offsetが規定される。
 掘削時データc2は、掘削領域での移動距離nと目標変位Z_offsetとの関係を規定する。掘削領域は、定常掘削開始点Dから運土移行開始点Tまでの領域である。掘削時データc2で示されるように、掘削領域では、目標変位Z_offsetは、一定値に規定される。掘削時データc2は、移動距離nに対して一定の目標変位Z_offsetを規定する。
 移行時データc3は、運土移行領域での移動距離nと目標変位Z_offsetとの関係を規定する。運土移行領域は、定常掘削終了点Tから運土開始点Pまでの領域である。移行時データc3は、移動距離nの増大に応じて減少する目標変位Z_offsetを規定する。
 運土時データc4は、運土領域での移動距離nと目標変位Z_offsetとの関係を規定する。運土領域は、運土開始点Pから開始される領域である。運土時データc4に示されるように、運土領域では、目標変位Z_offsetは一定値に規定される。運土時データc4は、移動距離nに対して一定の目標変位Z_offsetを規定する。
 詳細には、掘削領域は、第1開始値b1から開始され、第1終了値b2で終了する。運土領域は、第2開始値b3から開始される。第1終了値b2は、第2開始値b3よりも小さい。従って、掘削領域は、運土領域よりも、移動距離nが小さいときに開始される。掘削領域での目標変位Z_offsetは、第1目標値a1で一定である。運土領域での目標変位Z_offsetは、第2目標値a2で一定である。第1目標値a1は、第2目標値a2よりも大きい。従って、掘削領域では運土領域よりも大きな目標変位Z_offsetが規定される。
 掘削開始位置での目標変位Z_offsetは、開始値a0である。開始値a0は、第1目標値a1よりも小さい。開始目標値a0は、第2目標値a2よりも小さい。
 図8は、目標変位Z_offsetの決定処理を示すフローチャートである。説明を簡単にするため、以下に説明する決定処理では、作業車両1の走行は前進のみであるものとする。決定処理は、第1操作装置25aが前進の位置に移動すると開始される。ステップS201では、コントローラ26は、移動距離nが0以上、且つ、第1開始値b1未満であるか判定する。移動距離nが0以上、且つ、第1開始値b1未満であるときには、ステップS202において、コントローラ26は、移動距離nの増大に応じて、目標変位Z_offsetを開始値a0から徐々に増大させる。
 開始値a0は、定数であり、記憶装置28に記憶されている。開始値a0は、掘削開始時にブレード18への負荷が過剰に大きくならない程度に小さな値であることが好ましい。第1開始値b1は、図7に示す掘削開始領域での傾きc1、開始値a0、及び第1目標値a1から演算により求められる。傾きc1は、定数であり、記憶装置28に記憶されている。傾きc1は、掘削開始から掘削作業に迅速に移行可能であると共に、ブレード18への負荷が過剰に大きくならない程度の値であることが好ましい。
 ステップS203では、コントローラ26は、移動距離nが、第1開始値b1以上、且つ、第1終了値b2未満であるか判定する。移動距離nが、第1開始値b1以上、且つ、第1終了値b2未満であるときには、ステップS204において、コントローラ26は、目標変位Z_offsetを第1目標値a1に設定する。第1目標値a1は、定数であり、記憶装置28に記憶されている。第1目標値a1は、効率よく掘削を行うことができると共に、ブレード18への負荷が過剰に大きくならない程度の値であることが好ましい。
 ステップS205では、コントローラ26は、移動距離nが、第1終了値b2以上、且つ、第2開始値b3未満であるか判定する。移動距離nが、第1終了値b2以上、且つ、第2開始値b3未満であるときには、ステップS206において、コントローラ26は、移動距離nの増大に応じて、目標変位Z_offsetを第1目標値a1から徐々に低減させる。
 第1終了値b2は、ブレード18の現在の保有土量が、所定の閾値を越えるときの移動距離である。従って、ブレード18の現在の保有土量が、所定の閾値を越えたときに、コントローラ26は、目標変位Z_offsetを第1目標値a1から低減させる。所定の閾値は、例えばブレード18の最大容量に基づいて決定される。例えば、ブレード18の現在の保有土量は、ブレード18への負荷が測定され、当該負荷から演算により決定されてもよい。或いは、ブレード18の画像がカメラによって取得され、当該画像を分析することによって、ブレード18の現在の保有土量が算出されてもよい。
 なお、作業開始時には、第1終了値b2として、所定の初期値が設定される。作業開始後には、ブレード18の保有土量が所定の閾値を越えたときの移動距離が更新値として記憶され、第1終了値b2は記憶された更新値に基づいて更新される。
 ステップS207では、コントローラ26は、移動距離nが、第2開始値b3以上であるか判定する。移動距離nが、第2開始値b3以上であるかときには、ステップS208において、コントローラ26は、目標変位Z_offsetを第2目標値a2に設定する。
 第2目標値a2は、定数であり、記憶装置28に記憶されている。第2目標値a2は、運土作業に適した値に設定されることが好ましい。第2開始値b3は、図7に示す運土移行領域での傾きc2、第1目標値a1、及び第2目標値a2から演算により求められる。傾きc2は、定数であり、記憶装置28に記憶されている。傾きc2は、掘削作業から運土作業に迅速に移行可能であると共に、ブレード18への負荷が過剰に大きくならない程度の値であることが好ましい。
 なお、開始値a0、第1目標値a1、及び第2目標値a2は、作業車両1の状況等に応じて変更されてもよい。第1開始値b1、第1終了値b2、及び第2開始値b3は、定数として記憶装置28に記憶されてもよい。
 次に、傾斜度パラメータに応じた補正係数t1を決定する処理について説明する。図9は、補正係数t1の決定処理を示すフローチャートである。図9に示すように、ステップS301では、コントローラ26は、傾斜度パラメータSvolを取得する。傾斜度パラメータSvolは、現況地形50の傾斜度を示すパラメータである。傾斜度パラメータSvolの絶対値が大きいほど、現況地形50の傾斜角が大きいことを示す。
 コントローラ26は、所定の水平面80と現況地形50との差分を算出し、当該差分を傾斜度パラメータSvolとして決定する。図10に示すように、所定の水平面80は、掘削開始位置での現況地形50の高さを通る水平面である。或いは、水平面80は、他の位置を通る水平面であってもよい。例えば、水平面80は、作業車両1の現在位置での現況地形50の高さを通る水平面であってもよい。
 コントローラ26は、現況地形50の各参照点Pnでの高さZnと水平面80との差を、傾斜度パラメータSvolとして決定する。詳細には、コントローラ26は、以下の(3)式によって傾斜度パラメータSvolを算出する。
Figure JPOXMLDOC01-appb-I000002
すなわち、傾斜度パラメータSvolは、現在位置から所定の地形認識距離dAまでの複数の参照点Pn(n=0,1,...,A)での現況地形50の高さZnの平均値と水平面80の高さZ0との差である。傾斜度パラメータSvolが正の値であることは、現況地形50において上り勾配の割合が高いことを示す。また、傾斜度パラメータSvolが正の値である場合、傾斜度パラメータSvolが大きいほど、上り勾配の傾斜が急であることを意味する。
 (3)式による傾斜度パラメータSvolは、図11に示すように、現況地形50と水平面80との間の断面積ととらえてもよい。その場合、水平面80よりも上方に位置する現況地形50と水平面80との間の断面積を正の値、水平面80よりも下方に位置する現況地形50と水平面80との間の断面積を負の値として、断面積の合計が傾斜度パラメータSvolとして決定されてもよい。
 傾斜度パラメータSvolが負の値であることは、現況地形50において下り勾配の割合が高いことを示す。また、傾斜度パラメータSvolが負の値である場合、傾斜度パラメータSvolが小さいほど、下り勾配の傾斜が急であることを意味する。
 ステップS302では、コントローラ26は、傾斜度パラメータSvolが所定の第1閾値S1より大きいかを判定する。第1閾値S1は、現況地形50において上り勾配の割合が高いこと判定するための値である。従って、コントローラ26は、傾斜度パラメータSvolに応じて現況地形50が上り勾配であるのかを判定する。傾斜度パラメータSvolが第1閾値S1より大きいときには、処理はステップS303に進む。
 ステップS303では、コントローラ26は、傾斜度パラメータSvolに応じて補正係数t1を決定する。例えば、記憶装置28は、傾斜度パラメータSvolと補正係数t1との関係を規定するデータを記憶していてもよい。コントローラ26は、当該データを参照することで、傾斜度パラメータSvolに応じた補正係数t1を決定してもよい。
 補正係数t1は1より小さい正の値である。従って、コントローラは、現況地形50が上り勾配であると判定したときには、目標変位Z_offsetに補正係数t1を乗じることで、現況地形50からの目標設計地形70の変位量を減少させる。また、傾斜度パラメータSvolが所定の第1閾値S1より大きいときには、傾斜度パラメータSvolの値が大きいほど、補正係数t1は小さい。
 ステップS302において、傾斜度パラメータSvolが第1閾値S1以下であるときには、処理はステップS304に進む。ステップS304では、コントローラ26は、傾斜度パラメータSvolが所定の第2閾値S2より小さいかを判定する。第2閾値S2は、第1閾値S1より小さい。第2閾値S2は、現況地形50において下り勾配の割合が高いこと判定するための値である。従って、コントローラ26は、傾斜度パラメータSvolに応じて現況地形50が下り勾配であるのかを判定する。傾斜度パラメータSvolが第2閾値S2より小さいときには、処理はステップS305に進む。
 ステップS305では、コントローラ26は、傾斜度パラメータSvolに応じて補正係数t1を決定する。傾斜度パラメータSvolが第2閾値S2より小さい場合には、補正係数t1は1より大きい値である。従って、コントローラは、現況地形50が下り勾配であると判定したときには、目標変位Z_offsetに補正係数t1を乗じることで、現況地形50からの目標設計地形70の変位量を増大させる。また、傾斜度パラメータSvolが所定の第2閾値S2より小さいときには、傾斜度パラメータSvolの値が小さいほど、補正係数t1は大きい。
 ステップS304において、傾斜度パラメータSvolが第2閾値S2以上であるときには、処理はステップS306に進む。ステップS306では、コントローラ26は、補正係数t1を1とする。すなわち、傾斜度パラメータSvolが第1閾値S1以下、且つ、第2閾値S2以上であるときには、補正係数t1による目標変位Z_offsetの補正は行われない。
 以上のように、目標変位Z_offsetと補正係数t1が決定されることで、上述した(2)式から、目標設計地形70の高さZが決定される。
 図4に示すステップS108では、コントローラ26は、目標設計地形70に向ってブレード18を制御する。ここでは、コントローラ26は、ステップS107で作成した目標設計地形70に向ってブレード18の刃先位置が移動するように、作業機13への指令信号を生成する。生成された指令信号は、制御弁27に入力される。それにより、作業機13の刃先位置P0が目標設計地形70に沿って移動する。
 上述した掘削領域では、現況地形50と目標設計地形70との間の目標変位Z_offsetが、他の領域と比べて大きい。これにより、掘削領域では、現況地形50の掘削作業が行われる。運土領域では、現況地形50と目標設計地形70との間の目標変位Z_offsetが他の領域と比べて小さい。これにより、運土領域では、地面の掘削が控えられ、ブレード18に保持されている土砂が運搬される。
 ステップS109では、コントローラ26は、作業現場地形データを更新する。コントローラ26は、刃先位置P0の最新の軌跡を示す位置データによって作業現場地形データを更新する。或いは、コントローラ26は、車体位置データと車体寸法データとから履帯16の底面の位置を算出し、履帯16の底面の軌跡を示す位置データによって作業現場地形データを更新してもよい。この場合、作業現場地形データの更新は即時に行うことができる。
 或いは、作業現場地形データは、作業車両1の外部の測量装置によって計測された測量データから生成されてもよい。外部の測量装置として、例えば、航空レーザ測量を用いてよい。或いは、カメラによって現況地形50を撮影し、カメラによって得られた画像データから作業現場地形データが生成されてもよい。例えば、UAV(Unmanned Aerial Vehicle)による空撮測量を用いてよい。外部の測量装置又はカメラの場合、作業現場地形データの更新は、所定周期ごと、あるいは随時に行われてもよい。
 なお、上記の処理は、作業車両1が前進しているときに実行される。例えば、第1操作装置25aが前進位置であるときに、上記の処理が実行される。ただし、作業車両1が、所定距離以上、後進すると、掘削開始位置、移動距離n、及びブレード18の保有土量は、初期化される。
 そして、再び作業車両1が前進したときに、上記の処理が実行される。コントローラ26は、更新された作業現場地形データを基に現況地形50を更新し、更新された現況地形50に基づいて、目標設計地形70を新たに決定する。そして、コントローラ26は、新たに決定された目標設計地形70に沿って、ブレード18を制御する。このような処理が繰り返されることにより、現況地形50が最終設計地形60に近づくように、掘削が行われる。
 なお、上記実施形態では、コントローラ26は、所定距離、前進するごとに、或いは、前進中の所定時間ごとに、ステップS101からS109の処理を繰り返す。しかし、コントローラ26は、所定距離、後進するごとに、或いは、後進中の所定時間ごとに、ステップS101からS109の処理を繰り返してもよい。
 以上説明した本実施形態に係る作業車両1の制御システム3では、コントローラ26は、現況地形データに基づいて、現況地形50が上り勾配であるか、又は、下り勾配であるかを判定し、その判定結果に応じて目標設計地形70を変更する。
 詳細には、現況地形50が上り勾配であるときには、現況地形50からの目標設計地形70の変位量が減少するように、補正係数t1が決定され、それにより目標設計地形70が変更される。現況地形50が上り勾配であるときには、作業機13への負荷が大きくなり易い。そのため、上記のように目標設計地形70が変更されることで、作業機13への負荷が過大となることが抑えられる。
 現況地形50が下り勾配であるときには、現況地形50からの目標設計地形70の変位量が増大するように、補正係数t1が決定され、それにより目標設計地形70が変更される。現況地形50が下り勾配であるときには、作業機13への負荷が小さくなり易い。そのため、上記のように目標設計地形70が変更されることで、作業機13によって掘削される土量を増大させることができ、それにより作業の効率を向上させることができる。
 また、傾斜度パラメータSvolが第1閾値S1より大きいときには、傾斜度パラメータSvolの値が大きいほど、補正係数t1は小さい。現況地形50が上り勾配であるときには、傾斜度パラメータSvolの値が大きいことは、上り勾配の傾斜が急であることを意味する。従って、上り勾配の傾斜が急なほど、補正係数t1が小さくなることで、現況地形50からの目標設計地形70の変位量が小さくなる。これにより、上り勾配の傾斜の大きさに応じて、目標設計地形70の変位量を適切に決定することができる。
 傾斜度パラメータSvolが第2閾値S2より小さいときには、傾斜度パラメータSvolの値が小さいほど、補正係数t1は大きい。現況地形50が下り勾配であるときには、傾斜度パラメータSvolの値が小さいことは、下り勾配の傾斜が急であることを意味する。従って、下り勾配の傾斜が急であるほど、補正係数t1が大きくなることで、現況地形50からの目標設計地形70の変位量を大きくすることができる。これにより、下り勾配の傾斜の大きさに応じて、目標設計地形70の変位量を適切に決定することができる。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 作業車両1は、ブルドーザに限らず、ホイールローダ、モータグレーダ等の他の車両であってもよい。
 作業車両1は、遠隔操縦可能な車両であってもよい。その場合、制御システム3の一部は、作業車両1の外部に配置されてもよい。例えば、コントローラ26は、作業車両1の外部に配置されてもよい。コントローラ26は、作業現場から離れたコントロールセンタ内に配置されてもよい。
 コントローラ26は、互いに別体の複数のコントローラ26を有してもよい。例えば、図12に示すように、コントローラ26は、作業車両1の外部に配置されるリモートコントローラ261と、作業車両1に搭載される車載コントローラ262とを含んでもよい。リモートコントローラ261と車載コントローラ262とは通信装置38,39を介して無線により通信可能であってもよい。そして、上述したコントローラ26の機能の一部がリモートコントローラ261によって実行され、残りの機能が車載コントローラ262によって実行されてもよい。例えば、目標設計地形70を決定する処理がリモートコントローラ261によって実行され、作業機13への指令信号を出力する処理が車載コントローラ262によって実行されてもよい。
 操作装置25a,25bと、入力装置25cと、ディスプレイ25dとは、作業車両1の外部に配置されてもよい。その場合、運転室は、作業車両1から省略されてもよい。或いは、操作装置25a,25bと、入力装置25cと、ディスプレイ25dとが作業車両1から省略されてもよい。操作装置25a,25bによる操作無しで、コントローラ26による自動制御のみによって作業車両1が操作されてもよい。
 現況地形50は、上述した位置センサ31に限らず、他の装置によって取得されてもよい。例えば、図13に示すように、外部の装置からのデータを受け付けるインターフェ-ス装置37によって現況地形50が取得されてもよい。インターフェ-ス装置37は、外部の計測装置41が計測した現況地形データを無線によって受信してもよい。或いは、インターフェ-ス装置37は、記録媒体の読み取り装置であって、外部の計測装置41が計測した現況地形データを記録媒体を介して受け付けてもよい。
 目標パラメータデータは、図7に示すデータに限らず、変更されてもよい。目標パラメータは、作業機13の目標掘削量に関するパラメータであり、上記の実施形態の目標変位に限らず、他のパラメータであってもよい。例えば、図14は、目標パラメータデータの他の例を示す図である。
 図14に示すように、目標パラメータは、平坦な地形の各地点ごとの目標土量S_targetであってもよい。すなわち、目標パラメータは、単位距離当たりの目標土量S_targetであってもよい。例えば、コントローラ26は、目標土量S_targetとブレード18の幅とから、目標変位Z_offsetを算出することができる。或いは、目標パラメータは、単位距離当たりの目標土量S_targetと異なるパラメータであってもよい。例えば、目標パラメータは、各地点での作業機13への負荷の目標値を示すパラメータであってもよい。コントローラ26は、目標パラメータから各地点ごとの目標変位Z_offsetを算出することができる。その場合、コントローラ26は、目標パラメータの増大に応じて、目標変位Z_offsetを増大させてもよい。
 目標変位Z_offsetにt1以外の所定の係数が乗じられてもよい。或いは、目標変位Z_offsetに所定の定数が加算、或いは減算されてもよい。所定の係数、及び、所定の定数は、制御モードの変更に応じて変更されてもよい。
 上記の(1)式で示す平滑化処理では、5つの地点の高さの平均値を算出している。しかし、平滑化に用いる地点の数は5つより少ない、或いは5つより大きくてもよい。平滑化に用いる地点の数が変更可能であり、オペレータは、平滑化に用いる地点の数を変更することで、所望の平滑の度合いを設定可能であってもよい。
 また、平滑化の対象となる地点、及び、その前後の地点の高さに限らず、平滑化の対象となる地点、及び、その前方に位置する地点の高さの平均値が算出されてもよい。或いは、平滑化の対象となる地点、及び、その後方に位置する地点の高さの平均値が算出されてもよい。或いは、平均値に限らず、最小二乗法、或いはn次近似などの近似化による平滑化処理が用いられてもよい。或いは、平滑化処理が省略されてもよい。
 上記の実施形態では、傾斜度パラメータSvolは、現況地形50の高さの平均値と水平面80の高さとの差分であるが、勾配の傾斜の方向と大きさとを示すものであれば上記の実施形態のものに限られない。例えば、傾斜度パラメータSvolは、現況地形50と水平面80との間の断面積ではなく体積であってもよい。
 或いは、コントローラ26は、現況地形50の傾斜角を算出し、当該傾斜角を傾斜度パラメータSvolとして決定してもよい。例えば、図15に示すように、コントローラは、現況地形50の任意の2つの参照点を結ぶ直線Lnの傾きAn(n=0,1,...,A)を算出する。現況地形50の任意の2つの参照点を結ぶ直線Lnの傾きAnは以下の(4)式で算出される。
Figure JPOXMLDOC01-appb-I000003
Nrefは、2つの参照点の間隔を示す値である。例えば、Nrefが4であるときには、傾きAnは、任意の1つの参照点と、当該参照点から作業車両1の進行方向に4つめの参照点とを結ぶ直線の傾きである。コントローラ26は、現在位置から所定の地形認識距離dAまでの複数の参照点Pnに対して、上記の傾きAn(n=0,1,...,A)を求める。コントローラ26は、傾きAn(n=0,1,...,A)の最小値、最大値、或いは平均値を傾斜度パラメータSvolとして決定してもよい。
 コントローラ26は、現在位置から所定の地形認識距離dAより短い範囲内において、現況地形データを取得してもよい。すなわち、コントローラ26は、複数の参照点Pnの一部のみに対して現況地形データを取得してもよい。コントローラ26は、現在位置から所定の地形認識距離dAより短い範囲内において、目標設計地形70を決定してもよい。すなわち、コントローラ26は、複数の参照点Pnの一部のみに対して、目標設計地形70を決定してもよい。
 本発明では、現況地形に基づいて目標設計地形が決定されると共に、現況地形が上り勾配であるか、又は、下り勾配であるかの判定結果に応じて目標設計地形が変更される。そのため、作業の効率を向上させつつ、作業機への負荷が過大となることを抑えることができる。
13    作業機
1     作業車両
28    記憶装置
26    コントローラ
31    位置センサ

Claims (20)

  1.  作業機を有する作業車両の制御システムであって、
     コントローラを備え、
     前記コントローラは、
      作業対象の現況地形を示す現況地形データを取得し、
      前記現況地形に基づいて、前記作業機の目標軌跡を示す目標設計地形を決定し、
      前記現況地形データに基づいて、前記現況地形が上り勾配であるか、又は、下り勾配であるかを判定し、
      前記勾配の判定結果に応じて前記目標設計地形を変更する、
    作業車両の制御システム。
  2.  前記コントローラは、
      前記現況地形を鉛直方向に変位させることで、前記目標設計地形を決定し、
      前記現況地形が上り勾配であると判定したときには、前記現況地形からの前記目標設計地形の変位量を減少させる、
    請求項1に記載の作業車両の制御システム。
  3.  前記コントローラは、前記上り勾配の傾斜が急であるほど、前記変位量を小さくする、
    請求項2に記載の作業車両の制御システム。
  4.  前記コントローラは、
      前記現況地形を鉛直方向に変位させることで、前記目標設計地形を決定し、
      前記現況地形が下り勾配であると判定したときには、前記現況地形からの前記目標設計地形の変位量を増大させる、
    請求項1に記載の作業車両の制御システム。
  5.  前記コントローラは、前記下り勾配の傾斜が急であるほど、前記変位量を大きくする、
    請求項4に記載の作業車両の制御システム。
  6.  前記コントローラは、
      前記現況地形データに基づいて、前記現況地形の傾斜度を示す傾斜度パラメータを取得し、
      前記傾斜度パラメータの大きさに応じて、前記現況地形が上り勾配であるか、下り勾配であるかを判定する、
    請求項1に記載の作業車両の制御システム。
  7.  前記コントローラは、
      前記現況地形と所定の水平面との差分を算出し、
      前記差分を前記傾斜度パラメータとして決定する、
    請求項6に記載の作業車両の制御システム。
  8.  前記作業車両の位置を示す位置信号を出力する位置センサと、
     前記作業車両の移動距離と、前記作業機の目標掘削量に関する目標パラメータとの関係を規定する目標パラメータデータを記憶している記憶装置と、
    をさらに備え、
     前記コントローラは、
      前記位置センサから前記位置信号を受信し、
      前記位置信号から前記作業車両の移動距離を取得し、
      前記目標パラメータデータを参照して、前記作業車両の移動距離から前記目標パラメータを決定し、
      前記目標パラメータに応じた目標変位を決定し、
      前記勾配の判定結果に応じて前記目標変位を変更し、
      前記現況地形を、前記目標変位、鉛直方向に変位させることで、前記目標設計地形を決定する、
    請求項1に記載の作業車両の制御システム。
  9.  作業車両の作業機の軌跡を設定するためにコントローラによって実行される方法であって、
     作業対象の現況地形を示す現況地形データを取得することと、
     前記現況地形に基づいて、前記作業機の目標軌跡を示す目標設計地形を決定することと、
     前記現況地形データに基づいて、前記現況地形が上り勾配であるか、又は、下り勾配であるかを判定することと、
     前記勾配の判定結果に応じて前記目標設計地形を変更すること、
    を備える方法。
  10.  前記目標設計地形を決定することは、前記現況地形を鉛直方向に変位させることで、前記目標設計地形を決定することを含み、
     前記目標設計地形を変更することは、前記現況地形が上り勾配であると判定したときに、前記現況地形からの前記目標設計地形の変位量を減少させることを含む、
    請求項9に記載の方法。
  11.  前記目標設計地形を変更することは、前記上り勾配の傾斜が急であるほど、前記変位量を小さくすることを含む、
    請求項10に記載の方法。
  12.  前記目標設計地形を決定することは、前記現況地形を鉛直方向に変位させることで、前記目標設計地形を決定することを含み、
     前記目標設計地形を変更することは、前記現況地形が下り勾配であると判定したときに、前記現況地形からの前記目標設計地形の変位量を増大させることを含む、
    請求項9に記載の方法。
  13.  前記目標設計地形を変更することは、前記下り勾配の傾斜が急であるほど、前記変位量を大きくすることを含む、
    請求項12に記載の方法。
  14.  前記現況地形データに基づいて、前記現況地形の傾斜度を示す傾斜度パラメータを取得することをさらに備え、
     前記現況地形が上り勾配であるか、又は、下り勾配であるかを判定することは、前記傾斜度パラメータの大きさに応じて、前記現況地形が上り勾配であるか、下り勾配であるかを判定することを含む、
    請求項9に記載の方法。
  15.  前記傾斜度パラメータを取得することは、
      前記現況地形と所定の水平面との差分を算出することと、
      前記差分を前記傾斜度パラメータとして決定すること、
     を含む、
    請求項14に記載の方法。
  16.  作業機と、
     前記作業機を制御するコントローラと、
    を備え、
     前記コントローラは、
      作業対象の現況地形を示す現況地形データを取得し、
      前記現況地形に基づいて、前記作業機の目標軌跡を示す目標設計地形を決定し、
      前記現況地形データに基づいて、前記現況地形が上り勾配であるか、又は、下り勾配であるかを判定し、
      前記勾配の判定結果に応じて前記目標設計地形を変更し、
      前記目標設計地形に従って前記作業機を制御する指令信号を出力する、
    作業車両。
  17.  前記コントローラは、
      前記現況地形を鉛直方向に変位させることで、前記目標設計地形を決定し、
      前記現況地形が上り勾配であると判定したときには、前記現況地形からの前記目標設計地形の変位量を減少させる、
    請求項16に記載の作業車両。
  18.  前記コントローラは、前記上り勾配の傾斜が急であるほど、前記変位量を小さくする、
    請求項17に記載の作業車両。
  19.  前記コントローラは、
      前記現況地形を鉛直方向に変位させることで、前記目標設計地形を決定し、
      前記現況地形が下り勾配であると判定したときには、前記現況地形からの前記目標設計地形の変位量を増大させる、
    請求項16に記載の作業車両。
  20.  前記コントローラは、前記下り勾配の傾斜が急であるほど、前記変位量を大きくする、
    請求項19に記載の作業車両。
PCT/JP2018/031751 2017-08-29 2018-08-28 作業車両の制御システム、方法、及び作業車両 WO2019044821A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/607,773 US11401697B2 (en) 2017-08-29 2018-08-28 Control system for work vehicle, method, and work vehicle
AU2018325612A AU2018325612B2 (en) 2017-08-29 2018-08-28 Control system for work vehicle, method, and work vehicle
CA3061462A CA3061462A1 (en) 2017-08-29 2018-08-28 Control system for work vehicle, method, and work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017164216A JP6899283B2 (ja) 2017-08-29 2017-08-29 作業車両の制御システム、方法、及び作業車両
JP2017-164216 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044821A1 true WO2019044821A1 (ja) 2019-03-07

Family

ID=65525734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031751 WO2019044821A1 (ja) 2017-08-29 2018-08-28 作業車両の制御システム、方法、及び作業車両

Country Status (5)

Country Link
US (1) US11401697B2 (ja)
JP (1) JP6899283B2 (ja)
AU (1) AU2018325612B2 (ja)
CA (1) CA3061462A1 (ja)
WO (1) WO2019044821A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033788A (ja) * 2018-08-31 2020-03-05 株式会社神戸製鋼所 作業機械のブレード制御装置
JP2020166303A (ja) * 2019-03-28 2020-10-08 株式会社小松製作所 作業機械の制御システム及び方法
JP2020166302A (ja) * 2019-03-28 2020-10-08 株式会社小松製作所 作業機械の制御システム及び方法
JP2022030484A (ja) * 2020-08-07 2022-02-18 株式会社小松製作所 掘削情報処理装置、作業機械、掘削支援装置および掘削情報処理方法
US11669073B2 (en) * 2020-11-24 2023-06-06 Caterpillar Trimble Control Technologies Llc Velocity control for construction machines
DE102022211957A1 (de) 2022-11-11 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer Erdbaumaschine, Vorrichtung und Erdbaumaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615775B2 (ja) * 1986-10-20 1994-03-02 株式会社トキメック 掘削機の掘削制御装置
WO2008118027A2 (en) * 2007-03-28 2008-10-02 Caterpillar Trimble Control Technologies Llc Method for planning the path of a contour-shaping machine
WO2013051378A1 (ja) * 2011-10-06 2013-04-11 株式会社小松製作所 ブレード制御システム、建設機械及びブレード制御方法
JP2014084683A (ja) * 2012-10-26 2014-05-12 Komatsu Ltd ブレード制御装置、作業機械及びブレード制御方法
US20160076223A1 (en) * 2014-09-12 2016-03-17 Caterpillar Inc. System and Method for Controlling the Operation of a Machine
WO2017119517A1 (ja) * 2017-01-13 2017-07-13 株式会社小松製作所 作業機械の制御システム、作業機械及び作業機械の制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820041A (en) * 1986-11-12 1989-04-11 Agtek Development Co., Inc. Position sensing system for surveying and grading
US5375663A (en) * 1993-04-01 1994-12-27 Spectra-Physics Laserplane, Inc. Earthmoving apparatus and method for grading land providing continuous resurveying
US7509198B2 (en) 2006-06-23 2009-03-24 Caterpillar Inc. System for automated excavation entry point selection
DE112014000129B4 (de) * 2014-09-05 2016-03-03 Komatsu Ltd. Hydraulikbagger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615775B2 (ja) * 1986-10-20 1994-03-02 株式会社トキメック 掘削機の掘削制御装置
WO2008118027A2 (en) * 2007-03-28 2008-10-02 Caterpillar Trimble Control Technologies Llc Method for planning the path of a contour-shaping machine
WO2013051378A1 (ja) * 2011-10-06 2013-04-11 株式会社小松製作所 ブレード制御システム、建設機械及びブレード制御方法
JP2014084683A (ja) * 2012-10-26 2014-05-12 Komatsu Ltd ブレード制御装置、作業機械及びブレード制御方法
US20160076223A1 (en) * 2014-09-12 2016-03-17 Caterpillar Inc. System and Method for Controlling the Operation of a Machine
WO2017119517A1 (ja) * 2017-01-13 2017-07-13 株式会社小松製作所 作業機械の制御システム、作業機械及び作業機械の制御方法

Also Published As

Publication number Publication date
JP6899283B2 (ja) 2021-07-07
US20200131740A1 (en) 2020-04-30
JP2019039280A (ja) 2019-03-14
AU2018325612B2 (en) 2020-12-24
CA3061462A1 (en) 2019-10-24
US11401697B2 (en) 2022-08-02
AU2018325612A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6873059B2 (ja) 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
JP6934427B2 (ja) 作業車両の制御システム、及び作業機の軌跡設定方法
JP6899283B2 (ja) 作業車両の制御システム、方法、及び作業車両
JP6878317B2 (ja) 作業車両の制御システム、及び作業機の軌跡設定方法
JP2018021348A (ja) 作業車両の制御システム、制御方法、及び作業車両
JP6910450B2 (ja) 作業車両の制御システム、方法、及び作業車両
US11180903B2 (en) Control system for work vehicle, method, and work vehicle
JP2018021345A (ja) 作業車両の制御システム、制御方法、及び作業車両
JP2018021346A (ja) 作業車両の制御システム、制御方法、及び作業車両
JP2018021344A (ja) 作業車両の制御システム、制御方法、及び作業車両
JP2018021347A (ja) 作業車両の制御システム、制御方法、及び作業車両
WO2019044785A1 (ja) 作業車両の制御システム、方法、及び作業車両
JP7379281B2 (ja) 作業機械を制御するためのシステム、方法、および作業機械
JP7482806B2 (ja) 作業機械を制御するためのシステム、方法、および作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018325612

Country of ref document: AU

Date of ref document: 20180828

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850084

Country of ref document: EP

Kind code of ref document: A1