WO2018196352A1 - 用于制造多层结构光纤的光纤预制棒及制造光纤的方法 - Google Patents

用于制造多层结构光纤的光纤预制棒及制造光纤的方法 Download PDF

Info

Publication number
WO2018196352A1
WO2018196352A1 PCT/CN2017/111853 CN2017111853W WO2018196352A1 WO 2018196352 A1 WO2018196352 A1 WO 2018196352A1 CN 2017111853 W CN2017111853 W CN 2017111853W WO 2018196352 A1 WO2018196352 A1 WO 2018196352A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz
optical fiber
tube
tail pipe
core rod
Prior art date
Application number
PCT/CN2017/111853
Other languages
English (en)
French (fr)
Inventor
罗文勇
柯一礼
杜城
张涛
李伟
陈超
王毕
雷琼
张洁
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Priority to RU2019111989A priority Critical patent/RU2730726C1/ru
Priority to EP17906812.7A priority patent/EP3524580B1/en
Publication of WO2018196352A1 publication Critical patent/WO2018196352A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02736Means for supporting, rotating or feeding the tubes, rods, fibres or filaments to be drawn, e.g. fibre draw towers, preform alignment, butt-joining preforms or dummy parts during feeding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/13Drawing solid optical fibre directly from a hollow preform from a hollow glass tube containing glass-forming material in particulate form, e.g. to form the core by melting the powder during drawing

Definitions

  • the present invention relates to the field of optical fiber preforms, and in particular to an optical fiber preform for manufacturing a multilayer structure optical fiber and a method of manufacturing the optical fiber.
  • optical fibers The manufacture of optical fibers is divided into two steps: the manufacture of optical fiber preforms and the fabrication of optical fibers using optical fiber preforms.
  • conventional methods for manufacturing optical fiber preforms include processes such as PCVD, MCVD, VAD, and OVD.
  • the above method usually requires the manufacture of an optical fiber core rod, and then the manufacture of the optical fiber cladding layer, and then the core rod and the cladding layer are combined to form an optical fiber preform which can be drawn into the final required optical fiber, and then The fiber preform is placed on a drawing tower and drawn into an optical fiber.
  • the above process has become a common practice for producing optical fibers.
  • an object of the present invention is to provide an optical fiber preform and an optical fiber manufacturing method for manufacturing a multilayer structure optical fiber, which can maintain good optical fiber performance and simplify the optical fiber manufacturing process to improve Fiber manufacturing efficiency.
  • the technical solution adopted by the present invention is: an optical fiber preform for manufacturing a multi-layer structure optical fiber, characterized in that the optical fiber preform comprises a core rod and a thin quartz sleeve sleeved outside the core rod. And a first quartz isolation tube disposed between the core rod and the quartz thin sleeve; between the core rod and the first quartz isolation tube, the first quartz isolation tube and The quartz thin sleeve can be separately filled with a powder for manufacturing a fiber cladding.
  • the optical fiber preform further includes a tail pipe, the tail pipe includes a tail bar, a first tail pipe sleeved outside the tail bar, and a second tail sleeved outside the first tail pipe And a sealing plug disposed at the end of the tail rod, the first tail pipe and the second tail pipe, the tail bar is connected to the mandrel at one end, and the sealing plug is connected at the other end, and the opening of one end of the first tail pipe is sealed Connecting the quartz isolation tube, the other end of the opening is sealingly connected to the sealing plug, the opening of one end of the second tail pipe is sealingly connected to the quartz thin sleeve, and the opening of the other end is sealingly connected to the sealing plug; a gap between a tail pipe, a tail bar and a sealing plug communicates with a gap between the mandrel and the first quartz isolation pipe to form a first interval; the sealing plug is provided with an internal suction port, The inner suction port is in communication with the first interval; the gap
  • the optical fiber preform further includes a sealing rotating cover and at least one first powder filling tube and at least one second powder filling tube passing through the sealing rotating cover;
  • the sealing rotating cover Nested on the outer side of the second tail pipe, and the sealing rotary cover is sealed and rotatably connected with the second tail pipe;
  • the first tail pipe is provided with the first powder filling pipe through a first annular filling opening, wherein the first powder filling tube has one end open to the sealing rotating cover, and the other end sequentially passes through the sealing rotating cover and the first annular opening and opens to the core a gap between the rod and the first quartz isolation tube; a second annular opening for the second powder filling tube to pass through the second tail tube;
  • the second powder filling tube is open at one end On the sealed rotating cover, the other end sequentially passes through the sealed rotating cover and the second annular opening and opens in a gap between the first quartz isolation tube and the quartz thin sleeve.
  • the optical fiber preform includes two first powder fillings.
  • the first powder filling tube is symmetrically disposed on the sealed rotating cover.
  • the invention also discloses a method for manufacturing a multilayer structure optical fiber by using the optical fiber preform:
  • a powder for manufacturing a fiber cladding layer is filled between the mandrel and the first quartz spacer tube, and between the first quartz spacer tube and the quartz thin sleeve, and the fiber is drawn at the same time.
  • a first powder filling tube is disposed between the mandrel and the first quartz isolation tube, and the first powder filling tube is rotatable around the circumference of the mandrel through the first powder.
  • a second powder filling tube is disposed between the first quartz isolation tube and the quartz thin sleeve, a second powder filling tube is rotatable around the circumference of the mandrel, and is filled with the second powder filling tube around the circumference of the mandrel to fill the first quartz isolation tube and the quartz thin sleeve for manufacturing the optical fiber package Layer of powder.
  • the optical fiber preform further includes a tail pipe, the tail pipe includes a tail bar, a first tail pipe sleeved outside the tail bar, and a second tail sleeved outside the first tail pipe And a sealing plug disposed at the end of the tail rod, the first tail pipe and the second tail pipe, the tail bar is connected to the mandrel at one end, and the sealing plug is connected at the other end, and the opening of one end of the first tail pipe is sealed Connecting the quartz isolation tube, the other end of the opening is sealingly connected to the sealing plug, the opening of one end of the second tail pipe is sealingly connected to the quartz thin sleeve, and the opening of the other end is sealingly connected to the sealing plug; a gap between a tail pipe, a tail bar and a sealing plug communicates with a gap between the mandrel and the first quartz isolation pipe to form a first interval; the sealing plug is provided with an internal suction port, The inner suction port is in communication with the first interval; the gap
  • the optical fiber preform further includes a sealed rotating cover, the sealed rotating cover is sleeved outside the second tail pipe, and between the sealed rotating cover and the second tail pipe Sealing the rotary connection;
  • the first tail pipe is provided with a first annular opening through which the first powder filling pipe passes, and the first powder filling pipe is open at one end to the sealed rotating cover, and the other One end sequentially passes through the sealed rotating cover and the first annular opening and opens in a gap between the core rod and the first quartz isolation tube;
  • the second tail tube is provided with the first a second annular shaped opening through which the powder filling tube passes;
  • the second powder filling tube is open at one end to the sealed rotating cover, and the other end passes through the sealed rotating cover and the second annular type in sequence Opening and opening in a gap between the first quartz isolation tube and the quartz thin sleeve;
  • the invention also discloses an optical fiber preform for manufacturing a multi-layer structure optical fiber, the optical fiber preform comprises a core rod, a quartz thin sleeve sleeved outside the core rod, and a thin sleeve sleeved on the core rod and the quartz sleeve a first quartz isolation tube; a second quartz isolation tube is further disposed between the first quartz isolation tube and the quartz thin sleeve; between the core rod and the first quartz isolation tube, the first A powder for fabricating the fiber cladding may be separately filled between the quartz isolation tube and the second quartz isolation tube, and between the second quartz isolation tube and the quartz thin sleeve.
  • the invention also discloses a method for manufacturing a multilayer structure optical fiber by using the optical fiber preform: manufacturing the optical fiber preform; between the core rod and the first quartz isolation tube, the first quartz isolation tube and Filling the second quartz isolation tube, the second quartz isolation tube and the quartz thin sleeve with powder for manufacturing the optical fiber cladding, and simultaneously performing light Fiber drawing.
  • the present invention directly places a combination of a mandrel, a first quartz isolation tube and a quartz thin sleeve on a drawing tower, through a gap between the core rod and the first quartz isolation tube during the drawing process,
  • the gap between a quartz isolation tube and a quartz thin sleeve is filled in the form of a powder for manufacturing an optical fiber to form a fiber cladding while the optical fiber is drawn, eliminating the manufacturing process of the cladding in the optical fiber preform manufacturing process, and improving the optical fiber manufacturing.
  • the isolation between the layers of the multi-layer structure fiber is effectively realized by the first quartz isolation tube, thereby avoiding interference to other layers when filling the powder for manufacturing the optical fiber, and affecting performance indexes such as attenuation of the optical fiber.
  • a first powder filling tube is disposed between the core rod and the first quartz isolation tube
  • a second powder filling tube is disposed between the first quartz isolation tube and the quartz thin tube, and is filled by the first powder.
  • the tube and the second powder-filled tube are respectively wound around the circumference of the mandrel while filling the powder for manufacturing the fiber cladding, achieving uniform filling of the powder for manufacturing the fiber cladding.
  • the end of the optical fiber preform of the present invention is provided with a combined tail pipe for filling the gap between the mandrel and the first quartz isolation tube, the gap between the first quartz isolation tube and the quartz thin sleeve.
  • the powder for manufacturing the optical fiber can achieve good solid melting when the light is drawn, and the first interval and the second interval are respectively subjected to the low-pressure control in the fiber drawing, thereby realizing the layers of the multilayer structure fiber during the light drawing. Good solid melting.
  • FIG. 1 is a schematic structural view of an optical fiber preform for manufacturing a multi-layer structure optical fiber (excluding a second quartz isolation tube) according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an optical fiber preform (including a second quartz isolation tube) for manufacturing a multilayer structure optical fiber according to an embodiment of the present invention.
  • an embodiment of the present invention provides an optical fiber preform for manufacturing a multi-layer structure optical fiber.
  • the optical fiber preform includes a core rod 1 , a quartz thin sleeve 2 sleeved outside the core rod 1 , and a sleeve
  • the first quartz isolation tube 3 between the core rod 1 and the quartz thin sleeve 2; between the core rod 1 and the first quartz isolation tube 3, between the first quartz isolation tube 3 and the quartz thin sleeve 2, respectively
  • the invention directly places the combination of the mandrel 1, the first quartz isolating tube 3 and the quartz thin sleeve 2 on the drawing tower, through the gap between the mandrel 1 and the first quartz isolating tube 3 during the drawing process.
  • the gap between the first quartz isolation tube 3 and the quartz thin sleeve 2 is filled in the form of powder for manufacturing the optical fiber, and the optical fiber cladding is formed while the optical fiber is drawn, thereby eliminating the manufacturing process of the cladding in the optical fiber preform manufacturing process.
  • the optical fiber manufacturing efficiency is improved.
  • the isolation between the layers of the multi-layer structure optical fiber is effectively realized by the first quartz isolation tube 3, thereby avoiding interference to other layers when filling the powder for manufacturing the optical fiber, and affecting performance indexes such as attenuation of the optical fiber.
  • the manufacturing process of the mandrel 1 may adopt a process such as PCVD, MCVD, OVD, VAD, etc., and the core rod 1 includes a core region and a first cladding layer.
  • the constituent material of the core region is a mixture of silicon dioxide and cerium oxide to achieve a high refractive index; when the first cladding layer of the multilayered structure fiber needs to maintain a pure silicon structure, and the second cladding layer needs to have a lower refractive index,
  • the gap between the mandrel 1 and the first quartz isolating tube 3 is filled with pure silica powder, A mixed powder of silica and fluoride is filled between a quartz isolation tube 3 and a quartz thin sleeve 2.
  • the core rod 1 and the first quartz The gap between the separator tubes 3 is filled with a mixed powder of silica and fluoride, and the first quartz separator tube 3 and the quartz thin sleeve 2 are filled with pure silica powder.
  • the pure silicon core rod 1 may be prepared by a process such as PCVD, MCVD, OVD, VAD, or the like.
  • the gap between the mandrel 1 and the first quartz isolation tube 3 is filled with a mixed powder of silicon dioxide and cerium oxide, and a mixture of silicon dioxide and cerium oxide is filled between the first quartz isolation tube 3 and the quartz thin sleeve 2.
  • the powder increases the thickness of the first quartz isolation tube 3 and the quartz thin sleeve 2, thereby providing a wider pure silicon separation between the two cladding layers of the thus drawn optical fiber, and in the second cladding layer There is a thicker pure silicon layer to meet the transmission performance requirements of the multilayer structure fiber.
  • the optical fiber preform further includes a tail pipe 5, the tail pipe 5 includes a tail bar 51, a first tail pipe 52 sleeved outside the tail bar 51, a second tail pipe 53 sleeved outside the first tail pipe 52, and a tail pipe 53
  • the rod 51, the first tail pipe 52, and the sealing plug 54 at the end of the second tail pipe 53 are connected to the mandrel 1 at one end and the sealing plug 54 at the other end, and the opening of one end of the first tail pipe 52 is sealed and connected to the quartz isolation pipe.
  • the other end of the opening is sealingly connected to the sealing plug 54, the opening of one end of the second tail pipe 53 is sealingly connected to the quartz thin sleeve 2, and the opening of the other end is sealingly connected to the sealing plug 54; the first tail pipe 52, the tail rod 51 and the sealing plug 54 The gap between the core rod 1 and the first quartz spacer tube 3 communicates with each other to form a first interval 9; the sealing plug 54 is provided with an inner suction port 55, and the inner suction port 55 is connected to the first interval 9.
  • the gap between the second tail pipe 53, the first tail pipe 52 and the sealing plug 54 communicates with the gap between the first quartz isolation tube 3 and the quartz thin sleeve 2 and together forms a second section 10; the sealing plug 54 There is an external suction port 56, The outer suction port 56 is in communication with the second section 10.
  • the end of the optical fiber preform of the present invention is provided with a combined tail pipe 5 for making a gap between the mandrel 1 and the first quartz isolation pipe 3, a gap between the first quartz isolation pipe 3 and the quartz thin casing 2
  • the filled powder for manufacturing the optical fiber can achieve good solid melting when the light is drawn, and the first interval 9 and the second interval 10 are separately pumped for low-pressure control in the fiber drawing, thereby realizing the multilayer structure when the light is drawn. Good solid melting of the layers of the fiber.
  • the optical fiber preform further includes a sealing rotary cover 6 and at least one first powder filling tube 7 and at least one second powder filling tube 8 passing through the sealing rotating cover 6, and the sealing rotating cover 6 is sleeved on the outside of the second tail tube 53.
  • the first tail pipe 52 is provided with a first annular opening 57 through which the first powder filling pipe 7 passes, and the first powder filling pipe 7
  • One end is open on the sealing rotary cover 6, and the other end passes through the sealing rotary cover 6 and the first annular opening 57 in sequence and opens in the gap between the core rod 1 and the first quartz isolation tube 3
  • the second tail tube 53 is provided with a second annular opening 58 through which the second powder filling tube 8 passes;
  • the second powder filling tube 8 is open at one end to the sealing rotary cover 6, and the other end sequentially passes through the sealing rotary cover 6 and the second
  • the annular opening 58 is opened in the gap between the first quartz spacer 3 and the quartz thin sleeve 2.
  • a first powder filling tube 7 is disposed between the core rod 1 and the first quartz isolation tube 3
  • a second powder filling tube 8 is disposed between the first quartz isolation tube 3 and the quartz thin tube 2.
  • the uniform filling of the powder for manufacturing the fiber cladding is achieved by filling the powder for manufacturing the fiber cladding while the first powder filling tube 7 and the second powder filling tube 8 are respectively rotated around the circumference of the mandrel 1.
  • the optical fiber preform includes two first powder filling tubes 7, and the two first powder filling tubes 7 are symmetrically disposed on the sealing rotary cover 6.
  • Manufacturing an optical fiber preform filling a powder for manufacturing a fiber cladding layer between the core rod 1 and the first quartz isolation tube 3, the first quartz isolation tube 3 and the quartz thin sleeve 2, and simultaneously performing fiber drawing .
  • a first powder filling tube 7 is disposed between the mandrel 1 and the first quartz isolating tube 3, and the first powder filling tube 7 is rotatable around the circumference of the mandrel 1 through the first powder filling tube 7 to the mandrel 1 and the first quartz
  • a powder for manufacturing a fiber cladding is filled between the isolation tubes 3; a second powder filling tube 8 is disposed between the first quartz isolation tube 3 and the quartz thin tube 2, and the second powder filling tube 8 is disposed around the circumference of the core rod 1. Rotating, the powder for manufacturing the fiber cladding is filled between the first quartz separator 3 and the quartz thin sleeve 2 by the second powder filling tube 8 rotating around the circumference of the mandrel 1.
  • the optical fiber preform further includes a tail pipe 5, the tail pipe 5 includes a tail bar 51, a first tail pipe 52 sleeved outside the tail bar 51, a second tail pipe 53 sleeved outside the first tail pipe 52, and a tail pipe 53
  • the rod 51, the first tail pipe 52, and the sealing plug 54 at the end of the second tail pipe 53 are connected to the mandrel 1 at one end and the sealing plug 54 at the other end, and the opening of one end of the first tail pipe 52 is sealed and connected to the quartz isolation pipe.
  • the other end of the opening is sealingly connected to the sealing plug 54, the opening of one end of the second tail pipe 53 is sealingly connected to the quartz thin sleeve 2, and the opening of the other end is sealingly connected to the sealing plug 54; the first tail pipe 52, the tail rod 51 and the sealing plug 54 The gap between the core rod 1 and the first quartz spacer tube 3 communicates with each other to form a first interval 9; the sealing plug 54 is provided with an inner suction port 55, and the inner suction port 55 is connected to the first interval 9.
  • the gap between the second tail pipe 53, the first tail pipe 52 and the sealing plug 54 communicates with the gap between the first quartz isolation tube 3 and the quartz thin sleeve 2 and together forms a second section 10; the sealing plug 54 An external suction port 56 is disposed on the upper portion, and the outer suction port 56 is in communication with the second interval 10;
  • the optical fiber preform is fixed on the drawing tower, and the first interval 9 and the second interval 10 are filled with the quartz powder, and the outer air suction port 56 and the inner air suction port 55 are respectively pumped outward to make the first interval 9 and the second interval 10
  • the air pressure reaches the preset pressure value of the user, and simultaneously Fiber drawing.
  • the optical fiber preform further includes a sealing rotating cover 6, the sealing rotating cover 6 is sleeved on the outer side of the second tail pipe 53, and the sealing rotary cover 6 and the second tail pipe 53 are sealed and connected in rotation; the first tail pipe 52 is provided with The first annular filling opening 7 through which the first powder filling tube 7 passes, the first powder filling tube 7 is open at one end to the sealing rotary cover 6, and the other end sequentially passes through the sealing rotary cover 6 and the first annular opening 57.
  • the second tail tube 53 is provided with a second annular opening 58 through which the second powder filling tube 8 passes;
  • the second powder filling tube 8 is open at one end to the sealing rotary cover 6, and the other end sequentially passes through the sealing rotary cover 6 and the second annular opening 58 and opens in the gap between the first quartz isolation tube 3 and the quartz thin sleeve 2;
  • an embodiment of the present invention further provides an optical fiber preform for manufacturing a multi-layer structure optical fiber, the optical fiber preform including a core rod 1, a quartz thin sleeve 2 and a sleeve disposed outside the core rod 1.
  • a first quartz isolation tube 3 between the core rod 1 and the quartz thin sleeve 2;
  • a second quartz isolation tube 4 is further disposed between the first quartz isolation tube 3 and the quartz thin sleeve 2;
  • the core rod 1 and the first Powders for fabricating the fiber cladding may be filled between the quartz isolation tubes 3, between the first quartz isolation tube 3 and the second quartz isolation tube 4, between the second quartz isolation tube 4 and the quartz thin sleeve 2.
  • a third powder filling tube 11 is disposed between the core rod 1 and the first quartz isolation tube 3, and a fourth powder filling tube 12 is disposed between the first quartz isolation tube 3 and the second quartz isolation tube 4, and the second quartz isolation tube
  • a fifth powder filling tube 13 is disposed between the quartz thin sleeve 2 and the quartz powder cannula 2, and the third powder filling tube 11, the fourth powder filling tube 12, and the fifth powder filling tube 13 are respectively rotated around the circumference of the mandrel 1 for filling.
  • a high proportion can be filled in the first quartz isolation tube 31.
  • a mixed powder of ceria and silica filled with a mixed powder of silica and fluoride in a region between the first quartz separator 3 and the second quartz separator 4 corresponding to the first cladding, in the second cladding
  • the area between the corresponding second quartz isolation tube 4 and the quartz thin sleeve 2 is filled with pure silica powder.
  • the first quartz isolation tube 3 can be filled with pure silica powder when the requirements of the existing conventional optical fiber process development capability are exceeded.
  • the region between the first quartz isolation tube 3 and the second quartz isolation tube 4 corresponding to the first cladding layer is filled with pure silicon dioxide powder, and the second quartz isolation tube 4 corresponding to the second cladding layer and the quartz thin sleeve
  • the area between 2 is filled with a high proportion of cerium oxide and silica mixed powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

一种用于制造多层结构光纤的光纤预制棒及采用该光纤预制棒制造多层结构光纤的方法。该光纤预制棒包括芯棒(1)、套设在芯棒外的石英薄套管(2)及套设于芯棒(1)与石英薄套管(2)之间的石英隔离管(3),石英薄套管(2)和石英隔离管(3)均由高纯二氧化硅组成,石英隔离管(3)和石英薄套管(2)之间的间隙形成第二填充空间。采用该光纤预制棒既能保持良好的光纤性能,又能简化光纤制造工艺过程,从而提升光纤制造效率。

Description

用于制造多层结构光纤的光纤预制棒及制造光纤的方法 技术领域
本发明涉及光纤预制棒技术领域,具体涉及一种用于制造多层结构光纤的光纤预制棒及制造光纤的方法。
背景技术
光纤的制造分为光纤预制棒的制造和利用光纤预制棒拉制成光纤两个步骤。目前通常的光纤预制棒的制造方法包括PCVD、MCVD、VAD、OVD等工艺方法。上述方法通常要先进行光纤芯棒的制造,然后再进行光纤包层的制造,之后再将芯棒和包层组合在一起,形成可拉制成最终所需要的光纤的光纤预制棒,再将该光纤预制棒放置在拉丝塔上拉制成光纤,上述工艺已成为生产光纤的普遍做法。
为应对日趋激烈的光纤市场的竞争要求,提高光纤的制造效率成为光纤制造领域的研发重点,亟需一种既能保持良好的光纤性能,又能简化光纤制造工艺过程以提升光纤制造效率的技术方案。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种用于制造多层结构光纤的光纤预制棒及光纤制造方法,既能保持良好的光纤性能,又能简化光纤制造工艺过程以提升光纤制造效率。
为达到以上目的,本发明采取的技术方案是:一种用于制造多层结构光纤的光纤预制棒,其特征在于:所述光纤预制棒包括芯棒、套设在芯棒外的石英薄套管及套设于芯棒与石英薄套管之间的第一石英隔离管;所述芯棒和第一石英隔离管之间、所述第一石英隔离管和 石英薄套管之间可分别填充用于制造光纤包层的粉末。
在上述技术方案的基础上,所述光纤预制棒还包括尾管,所述尾管包括尾棒、套设于尾棒外的第一尾管、套设于第一尾管外的第二尾管及设于尾棒、第一尾管、第二尾管末端的密封塞,所述尾棒一端连接所述芯棒,另一端连接所述密封塞,所述第一尾管一端的开口密封连接所述石英隔离管,另一端的开口密封连接所述密封塞,所述第二尾管一端的开口密封连接所述石英薄套管,另一端的开口密封连接所述密封塞;所述第一尾管、尾棒及密封塞之间的空隙与所述芯棒和第一石英隔离管之间的空隙相连通并共同形成第一区间;所述密封塞上设有内抽气口,所述内抽气口与所述第一区间相连通;所述第二尾管、第一尾管及密封塞之间的空隙与所述第一石英隔离管和石英薄套管之间的空隙相连通并共同形成第二区间;所述密封塞上设有外抽气口,所述外抽气口与所述第二区间相连通。
在上述技术方案的基础上,所述光纤预制棒还包括密封旋转盖及穿过所述密封旋转盖的至少一根第一粉末填充管和至少一根第二粉末填充管;所述密封旋转盖套设于所述第二尾管外侧,且所述密封旋转盖与所述第二尾管之间密封旋转连接;所述第一尾管上设有供所述第一粉末填充管穿过的第一圆环型开口,所述第一粉末填充管均一端开口于所述密封旋转盖上,另一端依次穿过所述密封旋转盖及所述第一圆环型开口并开口于所述芯棒和第一石英隔离管之间的空隙中;所述第二尾管上设有供所述第二粉末填充管穿过的第二圆环型开口;所述第二粉末填充管均一端开口于所述密封旋转盖上,另一端依次穿过所述密封旋转盖及所述第二圆环型开口并开口于所述第一石英隔离管和石英薄套管之间的空隙中。
在上述技术方案的基础上,所述光纤预制棒包括两根第一粉末填 充管,两所述第一粉末填充管对称设于所述密封旋转盖上。
本发明还公开了一种采用所述的光纤预制棒制造多层结构光纤的方法:
制造所述光纤预制棒;
向所述芯棒和第一石英隔离管之间、所述第一石英隔离管和石英薄套管之间分别填充用于制造光纤包层的粉末,并同时进行光纤拉制。
在上述技术方案的基础上,所述芯棒和第一石英隔离管之间设有第一粉末填充管,所述第一粉末填充管可绕所述芯棒圆周转动,通过所述第一粉末填充管向所述芯棒和第一石英隔离管之间填充用于制造光纤包层的粉末;所述第一石英隔离管和石英薄套管之间设有第二粉末填充管,所述第二粉末填充管可绕所述芯棒圆周转动,通过所述第二粉末填充管绕所述芯棒圆周转动的向所述第一石英隔离管和石英薄套管之间填充用于制造光纤包层的粉末。
在上述技术方案的基础上,所述光纤预制棒还包括尾管,所述尾管包括尾棒、套设于尾棒外的第一尾管、套设于第一尾管外的第二尾管及设于尾棒、第一尾管、第二尾管末端的密封塞,所述尾棒一端连接所述芯棒,另一端连接所述密封塞,所述第一尾管一端的开口密封连接所述石英隔离管,另一端的开口密封连接所述密封塞,所述第二尾管一端的开口密封连接所述石英薄套管,另一端的开口密封连接所述密封塞;所述第一尾管、尾棒及密封塞之间的空隙与所述芯棒和第一石英隔离管之间的空隙相连通并共同形成第一区间;所述密封塞上设有内抽气口,所述内抽气口与所述第一区间相连通;所述第二尾管、第一尾管及密封塞之间的空隙与所述第一石英隔离管和石英薄套管之间的空隙相连通并共同形成第二区间;所述密封塞上设有外抽气 口,所述外抽气口与所述第二区间相连通;将所述光纤预制棒固定于拉丝塔上,向第一区间和第二区间填充石英粉的同时分别通过所述外抽气口和内抽气口向外抽气使第一区间和第二区间的气压分别达到用户预设的气压值,同时进行光纤拉制。
在上述技术方案的基础上,所述光纤预制棒还包括密封旋转盖,所述密封旋转盖套设于所述第二尾管外侧,且所述密封旋转盖与所述第二尾管之间密封旋转连接;所述第一尾管上设有供所述第一粉末填充管穿过的第一圆环型开口,所述第一粉末填充管均一端开口于所述密封旋转盖上,另一端依次穿过所述密封旋转盖及所述第一圆环型开口并开口于所述芯棒和第一石英隔离管之间的空隙中;所述第二尾管上设有供所述第二粉末填充管穿过的第二圆环型开口;所述第二粉末填充管均一端开口于所述密封旋转盖上,另一端依次穿过所述密封旋转盖及所述第二圆环型开口并开口于所述第一石英隔离管和石英薄套管之间的空隙中;进行光纤拉制时,通过驱动所述密封旋转盖转动使所述第一粉末填充管和第一粉末填充管绕所述芯棒圆周转动。
本发明还公开一种用于制造多层结构光纤的光纤预制棒,所述光纤预制棒包括芯棒、套设在芯棒外的石英薄套管及套设于芯棒与石英薄套管之间的第一石英隔离管;所述第一石英隔离管与所述石英薄套管之间还设有第二石英隔离管;所述芯棒和第一石英隔离管之间、所述第一石英隔离管和所述第二石英隔离管之间、所述第二石英隔离管和石英薄套管之间可分别填充用于制造光纤包层的粉末。
本发明还公开一种采用所述的光纤预制棒制造多层结构光纤的方法:制造所述光纤预制棒;向所述芯棒和第一石英隔离管之间、所述第一石英隔离管和所述第二石英隔离管之间、所述第二石英隔离管和石英薄套管之间分别填充用于制造光纤包层的粉末,并同时进行光 纤拉制。
与现有技术相比,本发明的优点在于:
(1)本发明直接将芯棒、第一石英隔离管和石英薄套管的组合放置在拉丝塔上拉制,通过在拉丝过程中在芯棒和第一石英隔离管之间的空隙、第一石英隔离管和石英薄套管之间的空隙分别填充制造光纤的粉末的形式在光纤拉制的同时形成光纤包层,省去光纤预制棒制造工艺中的包层的制造过程,提升光纤制造效率;同时,通过第一石英隔离管有效实现多层结构光纤的各层之间的隔离,避免填充制造光纤的粉末时对其他层造成干扰,影响光纤的衰减等性能指标。
(2)本发明在芯棒和第一石英隔离管之间设有第一粉末填充管,在第一石英隔离管和石英薄套管之间设有第二粉末填充管,通过第一粉末填充管和第二粉末填充管分别绕所述芯棒圆周转动的同时填充用于制造光纤包层的粉末,实现用于制造光纤包层的粉末的均匀填充。
(3)本发明的光纤预制棒末端设有组合式的尾管,为使芯棒和第一石英隔离管之间的空隙、第一石英隔离管和石英薄套管之间的空隙中填充的制造光纤的粉末在光线拉制时能实现良好的实心熔融,光纤拉制中分别对第一区间和第二区间进行抽气进行低压控制,从而在光线拉制时实现多层结构光纤各层的良好实心熔融。
附图说明
图1为本发明实施例中用于制造多层结构光纤的光纤预制棒的(不包含第二石英隔离管)结构示意图;
图2为本发明实施例中用于制造多层结构光纤的光纤预制棒的(包含第二石英隔离管)的结构示意图。
图中:1-芯棒,2-石英薄套管,3-第一石英隔离管,4-第二石英 隔离管,5-尾管,51-尾棒,52-第一尾管,53-第二尾管,54-密封塞,55-内抽气口,56-外抽气口,57-第一圆环型开口,58-第二圆环型开口,6-密封旋转盖,7-第一粉末填充管,8-第二粉末填充管,9-第一区间,10-第二区间,11-第三粉末填充管,12-第四粉末填充管,13-第五粉末填充管。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
参见图1所示,本发明实施例提供一种用于制造多层结构光纤的光纤预制棒,光纤预制棒包括芯棒1、套设在芯棒1外的石英薄套管2及套设于芯棒1与石英薄套管2之间的第一石英隔离管3;芯棒1和第一石英隔离管3之间、第一石英隔离管3和石英薄套管2之间可分别填充用于制造光纤包层的粉末。
本发明直接将芯棒1、第一石英隔离管3和石英薄套管2的组合放置在拉丝塔上拉制,通过在拉丝过程中在芯棒1和第一石英隔离管3之间的空隙、第一石英隔离管3和石英薄套管2之间的空隙分别填充制造光纤的粉末的形式在光纤拉制的同时形成光纤包层,省去光纤预制棒制造工艺中的包层的制造过程,提升光纤制造效率;同时,通过第一石英隔离管3有效实现多层结构光纤的各层之间的隔离,避免填充制造光纤的粉末时对其他层造成干扰,影响光纤的衰减等性能指标。
在上述多层结构光纤研制中,芯棒1的制造工艺可采用PCVD、MCVD、OVD、VAD等工艺,芯棒1包括芯区和第一包层。芯区的组成材料为二氧化硅和二氧化锗的混合物,实现高折射率;当该多层结构光纤的第1包层需要保持纯硅结构,第2包层需要有较低折射率时,芯棒1和第一石英隔离管3之间的间隙填充纯二氧化硅粉末,第 一石英隔离管3和石英薄套管2之间填充二氧化硅和氟化物的混合粉末。
当该多层结构光纤的第1包层需要有很低的折射率,远超现有常规光纤工艺研制能力需求时,第2包层需要保持纯硅结构时,则芯棒1和第一石英隔离管3之间的间隙填充二氧化硅和氟化物的混合粉末,第一石英隔离管3和石英薄套管2之间填充纯二氧化硅粉末。
当该多层结构光纤要求芯区为纯硅芯,第1包层和第2包层要求由较高的折射率时,可采用PCVD、MCVD、OVD、VAD等工艺制备纯硅芯棒1,芯棒1和第一石英隔离管3之间的间隙填充二氧化硅和二氧化锗的混合粉末,第一石英隔离管3和石英薄套管2之间填充二氧化硅和二氧化锗的混合粉末,同时,加大第一石英隔离管3和石英薄套管2的厚度,从而在由此拉制的光纤的两个包层之间有较宽的纯硅隔离,并在第2包层外有较厚的纯硅层,从而满足多层结构光纤的传输性能要求。
光纤预制棒还包括尾管5,尾管5包括尾棒51、套设于尾棒51外的第一尾管52、套设于第一尾管52外的第二尾管53及设于尾棒51、第一尾管52、第二尾管53末端的密封塞54,尾棒51一端连接芯棒1,另一端连接密封塞54,第一尾管52一端的开口密封连接石英隔离管,另一端的开口密封连接密封塞54,第二尾管53一端的开口密封连接石英薄套管2,另一端的开口密封连接密封塞54;第一尾管52、尾棒51及密封塞54之间的空隙与芯棒1和第一石英隔离管3之间的空隙相连通并共同形成第一区间9;密封塞54上设有内抽气口55,内抽气口55与第一区间9相连通;第二尾管53、第一尾管52及密封塞54之间的空隙与第一石英隔离管3和石英薄套管2之间的空隙相连通并共同形成第二区间10;密封塞54上设有外抽气口56, 外抽气口56与第二区间10相连通。
本发明的光纤预制棒末端设有组合式的尾管5,为使芯棒1和第一石英隔离管3之间的空隙、第一石英隔离管3和石英薄套管2之间的空隙中填充的制造光纤的粉末在光线拉制时能实现良好的实心熔融,光纤拉制中分别对第一区间9和第二区间10进行抽气进行低压控制,从而在光线拉制时实现多层结构光纤各层的良好实心熔融。
光纤预制棒还包括密封旋转盖6及穿过密封旋转盖6的至少一根第一粉末填充管7和至少一根第二粉末填充管8,密封旋转盖6套设于第二尾管53外侧,且密封旋转盖6与第二尾管53之间密封旋转连接;第一尾管52上设有供第一粉末填充管7穿过的第一圆环型开口57,第一粉末填充管7均一端开口于密封旋转盖6上,另一端依次穿过密封旋转盖6及第一圆环型开口57并开口于芯棒1和第一石英隔离管3之间的空隙中;第二尾管53上设有供第二粉末填充管8穿过的第二圆环型开口58;第二粉末填充管8均一端开口于密封旋转盖6上,另一端依次穿过密封旋转盖6及第二圆环型开口58并开口于第一石英隔离管3和石英薄套管2之间的空隙中。
本发明实施例在芯棒1和第一石英隔离管3之间设有第一粉末填充管7,在第一石英隔离管3和石英薄套管2之间设有第二粉末填充管8,通过第一粉末填充管7和第二粉末填充管8分别绕芯棒1圆周转动的同时填充用于制造光纤包层的粉末,实现用于制造光纤包层的粉末的均匀填充。
光纤预制棒包括两根第一粉末填充管7,两第一粉末填充管7对称设于密封旋转盖6上。
本发明实施例还公开了一种采用光纤预制棒制造多层结构光纤的方法:
制造光纤预制棒;向芯棒1和第一石英隔离管3之间、第一石英隔离管3和石英薄套管2之间分别填充用于制造光纤包层的粉末,并同时进行光纤拉制。
芯棒1和第一石英隔离管3之间设有第一粉末填充管7,第一粉末填充管7可绕芯棒1圆周转动,通过第一粉末填充管7向芯棒1和第一石英隔离管3之间填充用于制造光纤包层的粉末;第一石英隔离管3和石英薄套管2之间设有第二粉末填充管8,第二粉末填充管8可绕芯棒1圆周转动,通过第二粉末填充管8绕芯棒1圆周转动的向第一石英隔离管3和石英薄套管2之间填充用于制造光纤包层的粉末。
光纤预制棒还包括尾管5,尾管5包括尾棒51、套设于尾棒51外的第一尾管52、套设于第一尾管52外的第二尾管53及设于尾棒51、第一尾管52、第二尾管53末端的密封塞54,尾棒51一端连接芯棒1,另一端连接密封塞54,第一尾管52一端的开口密封连接石英隔离管,另一端的开口密封连接密封塞54,第二尾管53一端的开口密封连接石英薄套管2,另一端的开口密封连接密封塞54;第一尾管52、尾棒51及密封塞54之间的空隙与芯棒1和第一石英隔离管3之间的空隙相连通并共同形成第一区间9;密封塞54上设有内抽气口55,内抽气口55与第一区间9相连通;第二尾管53、第一尾管52及密封塞54之间的空隙与第一石英隔离管3和石英薄套管2之间的空隙相连通并共同形成第二区间10;密封塞54上设有外抽气口56,外抽气口56与第二区间10相连通;
将光纤预制棒固定于拉丝塔上,向第一区间9和第二区间10填充石英粉的同时分别通过外抽气口56和内抽气口55向外抽气使第一区间9和第二区间10的气压分别达到用户预设的气压值,同时进行 光纤拉制。
光纤预制棒还包括密封旋转盖6,密封旋转盖6套设于第二尾管53外侧,且密封旋转盖6与第二尾管53之间密封旋转连接;第一尾管52上设有供第一粉末填充管7穿过的第一圆环型开口57,第一粉末填充管7均一端开口于密封旋转盖6上,另一端依次穿过密封旋转盖6及第一圆环型开口57并开口于芯棒1和第一石英隔离管3之间的空隙中;第二尾管53上设有供第二粉末填充管8穿过的第二圆环型开口58;第二粉末填充管8均一端开口于密封旋转盖6上,另一端依次穿过密封旋转盖6及第二圆环型开口58并开口于第一石英隔离管3和石英薄套管2之间的空隙中;进行光纤拉制时,通过驱动密封旋转盖6转动使第一粉末填充管7和第一粉末填充管7绕芯棒1圆周转动。
参见图2所示,本发明实施例还提供一种用于制造多层结构光纤的光纤预制棒,光纤预制棒包括芯棒1、套设在芯棒1外的石英薄套管2及套设于芯棒1与石英薄套管2之间的第一石英隔离管3;第一石英隔离管3与石英薄套管2之间还设有第二石英隔离管4;芯棒1和第一石英隔离管3之间、第一石英隔离管3和第二石英隔离管4之间、第二石英隔离管4和石英薄套管2之间可分别填充用于制造光纤包层的粉末。
芯棒1和第一石英隔离管3之间设有第三粉末填充管11,第一石英隔离管3和第二石英隔离管4之间设有第四粉末填充管12,第二石英隔离管4和石英薄套管2之间设有第五粉末填充管13,通过第三粉末填充管11、第四粉末填充管12和第五粉末填充管13分别绕芯棒1圆周转动的同时填充用于制造光纤包层的粉末,实现用于制造光纤包层的粉末的均匀填充。
当多层结构光纤要求中心有很高的折射率,第1包层要求较低的折射率,远超现有常规光纤工艺研制能力需求时,可在第一石英隔离管31内填充高比例的二氧化锗和二氧化硅混合粉末,在第1包层对应的第一石英隔离管3与第二石英隔离管4之间所在区域填充二氧化硅和氟化物的混合粉末,在第2包层对应的第二石英隔离管4与石英薄套管2之间的所在区域填充纯二氧化硅粉末。
当要求多层结构光纤中心为纯硅,第2包层要求有很高的折射率,远超现有常规光纤工艺研制能力需求时,可在第一石英隔离管3内填充纯二氧化硅粉末,在第1包层对应的第一石英隔离管3与第二石英隔离管4之间所在区域填充纯二氧化硅粉末,在第2包层对应的第二石英隔离管4与石英薄套管2之间的所在区域填充高比例的二氧化锗和二氧化硅混合粉末。
本发明实施例还公开了一种采用光纤预制棒制造多层结构光纤的方法:
制造光纤预制棒;向芯棒1和第一石英隔离管3之间、第一石英隔离管3和第二石英隔离管4之间、第二石英隔离管4和石英薄套管2之间分别填充用于制造光纤包层的粉末,并同时进行光纤拉制。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

  1. 一种用于制造多层结构光纤的光纤预制棒,其特征在于:所述光纤预制棒包括芯棒(1)、套设在芯棒(1)外的石英薄套管(2)及套设于芯棒(1)与石英薄套管(2)之间的第一石英隔离管(3);所述芯棒(1)和第一石英隔离管(3)之间、所述第一石英隔离管(3)和石英薄套管(2)之间可分别填充用于制造光纤包层的粉末。
  2. 如权利要求1所述的一种用于制造多层结构光纤的光纤预制棒,其特征在于:
    所述光纤预制棒还包括尾管(5),所述尾管(5)包括尾棒(51)、套设于尾棒(51)外的第一尾管(52)、套设于第一尾管(52)外的第二尾管(53)及设于尾棒(51)、第一尾管(52)、第二尾管(53)末端的密封塞(54),所述尾棒(51)一端连接所述芯棒(1),另一端连接所述密封塞(54),所述第一尾管(52)一端的开口密封连接所述石英隔离管,另一端的开口密封连接所述密封塞(54),所述第二尾管(53)一端的开口密封连接所述石英薄套管(2),另一端的开口密封连接所述密封塞(54);
    所述第一尾管(52)、尾棒(51)及密封塞(54)之间的空隙与所述芯棒(1)和第一石英隔离管(3)之间的空隙相连通并共同形成第一区间(9);所述密封塞(54)上设有内抽气口(55),所述内抽气口(55)与所述第一区间(9)相连通;
    所述第二尾管(53)、第一尾管(52)及密封塞(54)之间的空隙与所述第一石英隔离管(3)和石英薄套管(2)之间的空隙相连通并共同形成第二区间(10);所述密封塞(54)上设有外抽气口(56),所述外抽气口(56)与所述第二区间(10)相连通。
  3. 如权利要求2所述的一种用于制造多层结构光纤的光纤预制 棒,其特征在于:所述光纤预制棒还包括密封旋转盖(6)及穿过所述密封旋转盖(6)的至少一根第一粉末填充管(7)和至少一根第二粉末填充管(8);
    所述密封旋转盖(6)套设于所述第二尾管(53)外侧,且所述密封旋转盖(6)与所述第二尾管(53)之间密封旋转连接;
    所述第一尾管(52)上设有供所述第一粉末填充管(7)穿过的第一圆环型开口(57),所述第一粉末填充管(7)均一端开口于所述密封旋转盖(6)上,另一端依次穿过所述密封旋转盖(6)及所述第一圆环型开口(57)并开口于所述芯棒(1)和第一石英隔离管(3)之间的空隙中;
    所述第二尾管(53)上设有供所述第二粉末填充管(8)穿过的第二圆环型开口(58);所述第二粉末填充管(8)均一端开口于所述密封旋转盖(6)上,另一端依次穿过所述密封旋转盖(6)及所述第二圆环型开口(58)并开口于所述第一石英隔离管(3)和石英薄套管(2)之间的空隙中。
  4. 如权利要求3所述的一种用于制造多层结构光纤的光纤预制棒,其特征在于:所述光纤预制棒包括两根第一粉末填充管(7),两所述第一粉末填充管(7)对称设于所述密封旋转盖(6)上。
  5. 一种采用如权利要求1所述的光纤预制棒制造多层结构光纤的方法,其特征在于:
    制造所述光纤预制棒;
    向所述芯棒(1)和第一石英隔离管(3)之间、所述第一石英隔离管(3)和石英薄套管(2)之间分别填充用于制造光纤包层的粉末,并同时进行光纤拉制。
  6. 如权利要求5所述的一种制造多层结构光纤的方法,其特征 在于:所述芯棒(1)和第一石英隔离管(3)之间设有第一粉末填充管(7),所述第一粉末填充管(7)可绕所述芯棒(1)圆周转动,通过所述第一粉末填充管(7)向所述芯棒(1)和第一石英隔离管(3)之间填充用于制造光纤包层的粉末;
    所述第一石英隔离管(3)和石英薄套管(2)之间设有第二粉末填充管(8),所述第二粉末填充管(8)可绕所述芯棒(1)圆周转动,通过所述第二粉末填充管(8)绕所述芯棒(1)圆周转动的向所述第一石英隔离管(3)和石英薄套管(2)之间填充用于制造光纤包层的粉末。
  7. 如权利要求5所述的一种制造多层结构光纤的方法,其特征在于:
    所述光纤预制棒还包括尾管(5),所述尾管(5)包括尾棒(51)、套设于尾棒(51)外的第一尾管(52)、套设于第一尾管(52)外的第二尾管(53)及设于尾棒(51)、第一尾管(52)、第二尾管(53)末端的密封塞(54),所述尾棒(51)一端连接所述芯棒(1),另一端连接所述密封塞(54),所述第一尾管(52)一端的开口密封连接所述石英隔离管,另一端的开口密封连接所述密封塞(54),所述第二尾管(53)一端的开口密封连接所述石英薄套管(2),另一端的开口密封连接所述密封塞(54);
    所述第一尾管(52)、尾棒(51)及密封塞(54)之间的空隙与所述芯棒(1)和第一石英隔离管(3)之间的空隙相连通并共同形成第一区间(9);所述密封塞(54)上设有内抽气口(55),所述内抽气口(55)与所述第一区间(9)相连通;
    所述第二尾管(53)、第一尾管(52)及密封塞(54)之间的空隙与所述第一石英隔离管(3)和石英薄套管(2)之间的空隙相连通 并共同形成第二区间(10);所述密封塞(54)上设有外抽气口(56),所述外抽气口(56)与所述第二区间(10)相连通;
    将所述光纤预制棒固定于拉丝塔上,向第一区间(9)和第二区间(10)填充石英粉的同时分别通过所述外抽气口(56)和内抽气口(55)向外抽气使第一区间(9)和第二区间(10)的气压分别达到用户预设的气压值,同时进行光纤拉制。
  8. 如权利要求6所述的一种制造多层结构光纤的方法,其特征在于:所述光纤预制棒还包括密封旋转盖(6),所述密封旋转盖(6)套设于所述第二尾管(53)外侧,且所述密封旋转盖(6)与所述第二尾管(53)之间密封旋转连接;
    所述第一尾管(52)上设有供所述第一粉末填充管(7)穿过的第一圆环型开口(57),所述第一粉末填充管(7)均一端开口于所述密封旋转盖(6)上,另一端依次穿过所述密封旋转盖(6)及所述第一圆环型开口(57)并开口于所述芯棒(1)和第一石英隔离管(3)之间的空隙中;
    所述第二尾管(53)上设有供所述第二粉末填充管(8)穿过的第二圆环型开口(58);所述第二粉末填充管(8)均一端开口于所述密封旋转盖(6)上,另一端依次穿过所述密封旋转盖(6)及所述第二圆环型开口(58)并开口于所述第一石英隔离管(3)和石英薄套管(2)之间的空隙中;
    进行光纤拉制时,通过驱动所述密封旋转盖(6)转动使所述第一粉末填充管(7)和第一粉末填充管(7)绕所述芯棒(1)圆周转动。
  9. 一种用于制造多层结构光纤的光纤预制棒,其特征在于:所述光纤预制棒包括芯棒(1)、套设在芯棒(1)外的石英薄套管(2) 及套设于芯棒(1)与石英薄套管(2)之间的第一石英隔离管(3);所述第一石英隔离管(3)与所述石英薄套管(2)之间还设有第二石英隔离管;所述芯棒(1)和第一石英隔离管(3)之间、所述第一石英隔离管(3)和所述第二石英隔离管之间、所述第二石英隔离管和石英薄套管(2)之间可分别填充用于制造光纤包层的粉末。
  10. 一种采用如权利要求9所述的光纤预制棒制造多层结构光纤的方法,其特征在于:制造所述光纤预制棒;向所述芯棒(1)和第一石英隔离管(3)之间、所述第一石英隔离管(3)和所述第二石英隔离管之间、所述第二石英隔离管和石英薄套管(2)之间分别填充用于制造光纤包层的粉末,并同时进行光纤拉制。
PCT/CN2017/111853 2017-04-27 2017-11-20 用于制造多层结构光纤的光纤预制棒及制造光纤的方法 WO2018196352A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2019111989A RU2730726C1 (ru) 2017-04-27 2017-11-20 Преформа оптического волокна с многослойной структурой оптического волокна и способ изготовления оптического волокна
EP17906812.7A EP3524580B1 (en) 2017-04-27 2017-11-20 Optical fibre preform for manufacturing multi-layer structure optical fibre and method for manufacturing optical fibre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710289375.8 2017-04-27
CN201710289375.8A CN107098578B (zh) 2017-04-27 2017-04-27 用于制造多层结构光纤的光纤预制棒及制造光纤的方法

Publications (1)

Publication Number Publication Date
WO2018196352A1 true WO2018196352A1 (zh) 2018-11-01

Family

ID=59656400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111853 WO2018196352A1 (zh) 2017-04-27 2017-11-20 用于制造多层结构光纤的光纤预制棒及制造光纤的方法

Country Status (4)

Country Link
EP (1) EP3524580B1 (zh)
CN (1) CN107098578B (zh)
RU (1) RU2730726C1 (zh)
WO (1) WO2018196352A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133609A (zh) * 2018-11-15 2019-01-04 江苏亨通智能科技有限公司 一种光纤拉丝净化装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107098578B (zh) * 2017-04-27 2019-06-25 烽火通信科技股份有限公司 用于制造多层结构光纤的光纤预制棒及制造光纤的方法
CN111635127B (zh) * 2020-05-08 2023-06-09 江苏永鼎光纤科技有限公司 含有功能性石英包层的光纤预制棒及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1989078A (zh) * 2004-04-27 2007-06-27 达特怀勒光纤光学股份有限公司 用于制造光纤的方法、用于制造光纤的预制件、光纤和设备
EP2261181A1 (en) * 2009-05-21 2010-12-15 Silitec Fibers SA Method for fabricating and processing a preform, preform and optical fiber
CN102325730A (zh) * 2009-02-22 2012-01-18 西里特克光纤公司 用于生产和加工预制件的方法、预制件和光纤
US20160257599A1 (en) * 2015-03-06 2016-09-08 Ofs Fitel, Llc Easy removal of a thin-walled tube in a powder-in-tube (pit) process
CN107098578A (zh) * 2017-04-27 2017-08-29 烽火通信科技股份有限公司 用于制造多层结构光纤的光纤预制棒及制造光纤的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU895012A1 (ru) * 1980-08-25 1996-02-27 Г.И. Шаповал Установка для вытягивания и упрочнения световодного волокна
SU1766854A1 (ru) * 1991-01-11 1992-10-07 Институт химии высокочистых веществ АН СССР Способ получени волоконных световодов
BR9808072A (pt) * 1997-03-27 2000-03-28 Samsung Electronics Co Ltd Aparelho para sobre-revestimento de uma haste de fibra ótica e processos para sobre-revestimento de uma haste de pré forma de fibra ótica e para estiramento de fibra ótica
CN1295169C (zh) * 1998-04-10 2007-01-17 纤维管有限公司 制造光纤预型件的方法
US6481721B1 (en) * 1999-07-15 2002-11-19 Lucent Technologies Inc. Method and apparatus for overcladding a glass rod
US6460378B1 (en) * 2000-02-29 2002-10-08 Xiaoyuan Dong Collapsing a multitube assembly and subsequent optical fiber drawing in the same furnace
US20040159124A1 (en) * 2003-02-14 2004-08-19 Atkins Robert M. Optical fiber manufacture
NL1025476C2 (nl) * 2004-02-12 2005-08-15 Draka Fibre Technology Bv Werkwijze ter vervaardiging van een vormdeel voor optische vezels.
CN102730960B (zh) * 2012-06-11 2014-12-03 烽火通信科技股份有限公司 多孔光纤预制棒的制造方法
CN104355532A (zh) * 2014-10-30 2015-02-18 江苏通鼎光电股份有限公司 光纤预制棒的制造方法
CN104788014B (zh) * 2015-04-12 2017-11-24 久智光电子材料科技有限公司 一种光纤预制棒制备及光纤拉丝的方法
CN105198201B (zh) * 2015-10-21 2019-02-12 长飞光纤光缆股份有限公司 一种石英玻璃预制件的制备方法
CN106007355B (zh) * 2016-05-19 2019-02-15 中天科技精密材料有限公司 一种制备纯硅芯包层掺氟的超低损耗光纤预制棒的方法及其设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1989078A (zh) * 2004-04-27 2007-06-27 达特怀勒光纤光学股份有限公司 用于制造光纤的方法、用于制造光纤的预制件、光纤和设备
CN102325730A (zh) * 2009-02-22 2012-01-18 西里特克光纤公司 用于生产和加工预制件的方法、预制件和光纤
EP2261181A1 (en) * 2009-05-21 2010-12-15 Silitec Fibers SA Method for fabricating and processing a preform, preform and optical fiber
US20160257599A1 (en) * 2015-03-06 2016-09-08 Ofs Fitel, Llc Easy removal of a thin-walled tube in a powder-in-tube (pit) process
CN107098578A (zh) * 2017-04-27 2017-08-29 烽火通信科技股份有限公司 用于制造多层结构光纤的光纤预制棒及制造光纤的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3524580A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133609A (zh) * 2018-11-15 2019-01-04 江苏亨通智能科技有限公司 一种光纤拉丝净化装置

Also Published As

Publication number Publication date
CN107098578A (zh) 2017-08-29
EP3524580A1 (en) 2019-08-14
EP3524580A4 (en) 2020-05-20
RU2730726C1 (ru) 2020-08-25
CN107098578B (zh) 2019-06-25
EP3524580B1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
WO2018196352A1 (zh) 用于制造多层结构光纤的光纤预制棒及制造光纤的方法
CN1989078B (zh) 用于制造光纤的方法、用于制造光纤的预制件、光纤和设备
CN104271521B (zh) 用于制造单烧结步骤、复杂折射率分布光纤的压制多层二氧化硅烟炱预成形件
CN106007355B (zh) 一种制备纯硅芯包层掺氟的超低损耗光纤预制棒的方法及其设备
JPS6236035A (ja) 光フアイバ母材の製造方法
US20150329403A1 (en) Method of manufacturing preforms for optical fibres having low water peak
JP5203262B2 (ja) 光ファイバの製造方法
WO2018196353A1 (zh) 用于制造单模光纤的光纤预制棒及制造单模光纤的方法
CN109133607A (zh) 一种套管法制造特种光纤预制棒外包层的方法
CN103760634B (zh) 一种单模光纤
US9416045B2 (en) Method of manufacturing preforms for optical fibres having low water peak
WO2018103763A1 (zh) 一种低氧含量半导体芯复合材料光纤预制棒的制备方法
JP5783712B2 (ja) 光ファイバ母材の製造方法及び光ファイバの製造方法
WO2020119244A1 (zh) 光纤及其制备方法
CN105607182B (zh) 一种低损耗光子晶体光纤的制备方法
WO2021223326A1 (zh) 含有功能性石英包层的光纤预制棒及其制备方法
CN211078918U (zh) 粉末棒沉积设备
CN108545925B (zh) 一种预制棒轴向超薄层外包工艺
CN115010360B (zh) 一种光纤预制棒的制备方法、光纤预制棒及光纤
JP3900881B2 (ja) 光ファイバ母材の製造方法、及び製造装置
JPS5992935A (ja) 偏波面保存光フアイバの製造方法
WO2022016700A1 (zh) 一种压应力光纤及其制造工艺
CN106680931A (zh) 低损耗光纤及其生产方法
CN115140932B (zh) 一种弯曲不敏感单模光纤及其制备方法
US11053157B2 (en) Optical fiber and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017906812

Country of ref document: EP

Effective date: 20190506

NENP Non-entry into the national phase

Ref country code: DE