WO2018195636A1 - Motor de ciclo combinado diesel e diferencial-isobárico-isocórico regenerativo e processo de controle para o ciclo termodinâmico do motor de ciclo combinado - Google Patents
Motor de ciclo combinado diesel e diferencial-isobárico-isocórico regenerativo e processo de controle para o ciclo termodinâmico do motor de ciclo combinado Download PDFInfo
- Publication number
- WO2018195636A1 WO2018195636A1 PCT/BR2018/050133 BR2018050133W WO2018195636A1 WO 2018195636 A1 WO2018195636 A1 WO 2018195636A1 BR 2018050133 W BR2018050133 W BR 2018050133W WO 2018195636 A1 WO2018195636 A1 WO 2018195636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cycle
- differential
- isobaric
- diesel
- motor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 162
- 230000001172 regenerating effect Effects 0.000 title claims description 15
- 239000007789 gas Substances 0.000 claims description 42
- 238000002485 combustion reaction Methods 0.000 claims description 36
- 238000001816 cooling Methods 0.000 claims description 33
- 238000007906 compression Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 19
- 230000006835 compression Effects 0.000 claims description 13
- 230000010354 integration Effects 0.000 claims description 9
- 239000000567 combustion gas Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000002699 waste material Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 239000012080 ambient air Substances 0.000 claims 6
- 239000003570 air Substances 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B41/00—Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B73/00—Combinations of two or more engines, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
- F02G1/045—Controlling
- F02G1/047—Controlling by varying the heating or cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a combined cycle thermal motor formed by one unit operating with the interconnected diesel cycle and integrated with the other unit operating with the differential cycle of four isobaric processes and four isochoric processes with regenerator.
- thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the laws of thermodynamics and underlie all motor cycles known to date.
- thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the development of motors.
- the open thermodynamic system is defined as a thermodynamic system in which energy and matter can enter and leave this system.
- Examples of an open thermodynamic system are the Otkins cycle Atkinson cycle internal combustion engines, Sabathe cycle Otto cycle diesel cycle, Brayton diesel cycle internal combustion engine, Rankine exhaust cycle from steam to the environment.
- the materials that come into these systems are fuels and oxygen or fluid working gas or working gas.
- the energy that enters these systems is heat.
- the materials that come out of these systems are combustion or working fluid exhaust, gases, waste; The energies that come out of these systems are the working mechanical energy and part of the heat dissipated.
- the closed thermodynamic system is defined as a thermodynamic system in which only energy can enter and leave this system.
- Examples of closed thermodynamic systems are external combustion engines such as Stirling cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Brayton heat cycle or external combustion, Carnot cycle.
- the energy that enters this system is heat.
- the energies that come out of this system are the working mechanical energy and part of the heat dissipated, but no matter comes out of these systems, as they do in the open system.
- Combined-cycle motors known to date have been invented and designed by uniting in the same system two motor concepts conceived in the nineteenth century, based on open thermodynamic systems or closed thermodynamic systems, the best known are the combined cycles of a Brayton cycle engine with a Rankine cycle engine and the combined cycle of a Diesel cycle engine with a Rankine cycle engine.
- the basic concept of a combined cycle is a system composed of a motor operating by means of a high temperature source so that the heat waste of this motor is the energy that drives a second motor that requires a lower temperature of operation, both forming a combined system of converting thermal energy into mechanical energy for the same common purpose.
- the current state of the art reveals combined cycles formed by a Brayton or Diesel cycle main engine running on a main source with a temperature of over 1000 ° C and exhaust gases in the range between 600 ° C and 700 ° C and these gases are in turn piped to power another Rankine cycle engine, usually "organic Rankine" (ORC).
- ORC Rankine cycle engine
- the conventional Rankine cycle has water as its working fluid, the organic Rankine cycle uses organic fluids, these are more suitable for projects at lower temperatures than those with the conventional Rankine cycle, so they are usually used in combined cycles.
- thermodynamic system the so-called hybrid thermodynamic system
- this new system concept has become the basis of support for new motor cycles, motors.
- differential cycle motors and non-differential binary cycle motors so that these new motor cycles have significant advantages for the creation of new combined cycles.
- Combined cycles of a Brayton cycle engine with a differential cycle motor, Brayton cycle engine with a binary cycle engine, Diesel cycle engine with a differential cycle engine, Diesel cycle engine with a binary cycle motor can be exemplified.
- Otto cycle motor with a differential cycle motor Otto cycle motor with a binary cycle motor and some other variations.
- the aim of the invention is to eliminate some of the existing problems, minimize other problems and offer new possibilities.
- a new concept of thermal motors has become indispensable and the creation of new motor motors is necessary. engine efficiency would no longer be dependent solely on temperatures.
- the hybrid system concept and differential and binary cycles the very characteristic that underlies this new combined cycle concept, eliminates the reliance on efficiency exclusively at temperature. Eliminating the need to change the physical state of work fluids is now representative to reduce machine volume, weight and cost. Therefore, the combined cycle formed by a diesel cycle unit with a differential-isobaric-isochoric differential cycle unit constitutes an important, viable evolution for the future of combined cycle systems.
- Combined cycle motors are characterized by having two separate thermodynamic units integrated forming a system such that the energy disposed of by the main unit is the power source of the secondary unit and both have an integration of the final mechanical work.
- thermodynamic unit formed by a diesel cycle engine 31 which performs a four-process diesel cycle and a regenerative isobaric differential isobaric cycle motor 320, described in BR1020160198704, which performs a cycle of four isobaric processes and four isochoric processes with regenerator, and so that the input energy by combustion performs an isobaric expansion process in the diesel cycle unit, an isochoric cooling process when the exhaust goes straight to the environment or isobaric or adiabatic when using exchangers for other purposes which yields energy to the isobaric process of expansion of the differential cycle unit, this in turn performs an isobaric cooling process yielding to the environment the energy that the combined system has not converted into so that both cycles have a common final work conversion.
- Figure 3 shows the general concept of the invention and Figure 4 shows the graphs with the integration of both thermodynamic cycles forming the combined cycle.
- the present invention further contemplates the use of an auxiliary turbine 315 to perform work by an adiabatic process with residual energy and a compressor 314 for air pressurization in the combustion engine combustion chambers. Diesel internal.
- the present invention brings important developments for the conversion of thermal energy to mechanics by the concept of the combination of two distinct thermodynamic cycles.
- the vast majority of combined cycles have as their secondary engine a Rankine or organic Rankine cycle steam turbine engine.
- Figure 1 shows that the Rankine cycle has losses inherent in the concept of the processes that form its cycle, not allowing a significant portion of energy to be converted into work.
- the Rankine and Organic Rankine cycles require changing the physical state of the working gas, that is, there is a phase of the liquid process requiring condensation, evaporation, and auxiliary pump systems, and all these elements and processes impose losses and impossibility. to utilize the energies of these phases in conversion.
- Combined-cycle engines based on the integration of a diesel-cycle engine with a differential-cycle engine may be constructed of materials and techniques similar to conventional combined-cycle engines, such as the differential-cycle secondary unit consisting of an engine.
- this closed-circuit working gas concept with respect to the external environment indicates that the system should be sealed, or in some cases leaks may be allowed provided they are compensated.
- Suitable materials for this technology should be noted, which are similar in this respect to Brayton, Stirling or Ericsson cycle engine design technologies, all with external combustion.
- the working gas depends on the project, its application and the parameters used, the choice of gas may be diversified, each one will provide specific characteristics, as an example may be suggested the gases: helium, hydrogen, nitrogen, dry air, neon, among others. others.
- Figure 1 demonstrates in block diagram a current combined cycle system consisting of a Diesel cycle unit with a Rankine cycle unit. Plants designed with this philosophy today are used to improve mechanical and energy efficiency in traction systems, vehicles such as trucks, machines, ships.
- Figure 2 demonstrates in block diagram a combined cycle system designed on the basis of the new thermodynamic system concept consisting of a known Diesel cycle unit with a cycle unit. isobaric-isochoric differential.
- systems designed with this philosophy for mechanical power generation will have higher efficiency than combined cycle systems with Rankine or organic Rankine based on the theoretical analysis of the second machine cycle that forms the system, among the losses that cease to exist, the absence of Changing the physical state of the working fluid is a significant item; the energy conservation process provided by the conservation subsystem belonging to the differential cycle reinforces the possibilities of increasing overall efficiency.
- Figure 3 is a diagram of a system consisting of a 31 diesel cycle engine with an isobaric differential isobaric cycle motor 320 forming the combined diesel and differential cycle.
- Figure 4 shows respectively the pressure and volume displacement graph curves of the Diesel cycle 41 and the pressure and volume displacement graph curves of the differential-isobaric-isochoric cycle 45.
- Figure 5 shows the conventional diesel cycle with one isobaric process, two adiabatic processes and one isochoric process.
- the diesel-isobaric-differential-isochoric combined-cycle engine is a system composed of an open thermodynamic system-based engine concept, a diesel-cycle internal combustion engine, designed in the 19th century, with a system-based engine hybrid thermodynamic, the isobaric differential-isobaric cycle, idealized in the 21st century, so that the energy discarded by the first, the diesel-cycle internal combustion engine, is the energy that drives the second, the differential-cycle engine.
- Figure 3 shows the system featuring a diesel-isobaric differential-isochoric combined-cycle engine.
- This system consists of a machine that operates the integrated diesel cycle, interconnected to the other This machine operates by a differential cycle and so that its thermodynamic cycles are also integrated as shown in Figure 4.
- the system of Figure 3 shows a diesel-cycle internal combustion engine 31 coupled with an isobaric-isobaric differential-cycle engine 320.
- the diesel cycle engine has its exhaust manifold 327, hot gas exhaust, connected to a 319 isobaric heat exchanger, this heat exchanger is the heat transfer element for the high temperature isobaric expansion and subchamber processes.
- differential cycle motor 320 is the exhaust manifold 327, hot gas exhaust, connected to a 319 isobaric heat exchanger, this heat exchanger is the heat transfer element for the high temperature isobaric expansion and subchamber processes.
- the differential motor 320 after performing the isobaric expansion process at high temperature, will perform an isochoric process of temperature lowering and heat transfer to one internal and mass regenerator to the other subsystem of the differential motor itself. , and then it will perform an isobaric process of compression and cooling through heat exchanger 323, which is other cooling and cooling systems and located at the coldest end of the forced air flow of the fan, that is, at the outermost point of the engine bordering the environment, and the cooling fluid of this exchanger will cool the gas. of the differential motor 320 on the internal isobaric exchanger 322 of the differential motor 320.
- the differential motor has a mainshaft 324 coupled to the mainshaft 33 of the diesel cycle unit by means of a gearbox 34 for transmission of the axle strength of the differential cycle unit summed with the main motor 31 axis 33.
- a gearbox 34 for transmission of the axle strength of the differential cycle unit summed with the main motor 31 axis 33.
- EGR exhaust gas circulation control type 312
- compressor rotor 314 which pressurizes air from the environment to the engine combustion chambers Diesel, air 317 first passes through filter 313, enters compressor rotor 314, passes through a chiller 36 and from there to mixer 39 which mixes pressurized air with part of the combustion gases and injects them into diesel engine combustion chambers 31.
- the 319 isobaric exchanger must be designed so that the pressure is isonomic pressure, ie the internal chambers of the exchanger should be designed with isonomic characteristics in the gas pressure to its full extent, allowing, of course, temperature differentials as it occurs.
- the working gas flow unlike the heat exchangers of the isothermal units, these in turn, for example, must be designed for temperature, not pressure, equality.
- Figure 3 also shows the main elements that configure a diesel engine, at 318 the engine cooling air intake and all systems requiring cooling, the heat exchanger 323 is the outermost element and is the heat exchanger. cooling chamber for compression chamber
- the low temperature isobaric differential cycle unit 322 is the most external because the efficiency of the differential cycle unit increases the lower the temperature of the isobaric process that occurs in chamber 322, unlike other diesel engine needs.
- Heat exchanger 36 is used for cooling pressurized air by compressor 314.
- Another heat exchanger, radiator 35 is the main cooling element of the diesel engine, hydraulic and electrical units.
- a 325 fan is used to force ventilation and improve heat exchange, cooling.
- a coolant, typically water, pump 37 circulates the fluid within the internal combustion engine to keep it in safe thermal conditions, aided by a thermostat-type sensor 38 for temperature control. Mixing of pressurized air with part of the exhaust gas takes place in mixer 39 and goes to a manifold 32 which injects into the combustion chambers of the diesel engine the mixture of air with part of the exhaust gas.
- Line 326 is an engine coolant return pipe.
- Line 310 is a duct that conducts part of the combustion gases from the regulator (EGR) to the mixer 39.
- the combustion waste gases are driven by line 311 from the collector 327, through the heat exchanger 319 and going to the turbine rotor 315 inlet.
- the diesel engine power shaft 33 is the main element for bringing the mechanical force to the gearbox 34.
- Figure 4 shows the graphs of pressure and volumetric displacement that in their union form the combined cycle, a process composed by the combination of two cycles, one Diesel and another isobaric-isochoric differential, where the first cycle, the cycle Diesel is formed by four processes, or also called thermodynamic transformations, being an isobaric process or transformation, two adiabatic processes and an isochoric process, which occur one by one sequentially, but with the integration with other mechanical elements, the processes may vary as in the case of this invention.
- the introduction of a turbine rotor alters the isochoric process, making it, in short, adiabatic and the final process step.
- adiabatic expansion can gain isobaric characteristics by being described as follows, the input energy into the system by combustion 42 performs an isobaric expansion process (3-4), following which the expansion proceeds taking place.
- adiabatic process (4-5 ') from this point heat transfer occurs to the exchanger 319 generating the isobaric segment (5'-5) or depending on the design or regulation parameters, this may be isothermal or adiabatic, or variable, ending the expansion with another adiabatic process (5-2) next to the 315 turbine rotor, followed by another adiabatic but compression process (2-3) ending the diesel cycle.
- the piped energy for the differential cycle motor is defined by process 5'-5 indicated by 43
- the piped energy for turbine rotor 315 is defined by process 5-2 indicated by 44.
- Differential cycle 45 is coupled, integrated with diesel cycle, 41, so that the energy disposal process (5 '-5) of the diesel cycle is the input energy of the differential cycle and all processes that form the differential cycle occur sequentially, but always in pairs.
- the energy discarded from the diesel cycle forms the isobaric expansion processes (ab) of one chamber of the differential engine and also the isobaric process (1-2) of the other chamber.
- the complete process starting from the discarded energy of the diesel cycle occurs as follows, the discarded energy of the process diesel cycle (5'-5) feeds the isobaric process (ab) of differential cycle expansion, simultaneously occurs the isobaric process of compression and cooling (3-4), starting from point (b) of the differential cycle, occurs an isocoric cooling process (bc), with heat transfer to the regenerator and gas mass to the other subsystem where another isocoric process occurs (4-4).
- differential cycle 45 the energy discarded from the differential cycle is ideally lossless, the total energy lost, indicated by 46.
- Table 1 shows the processes (3-4, 4-5 ', 5'-5, 5-2, 2-3) that form the Diesel cycle when it is integrated with the differential-isobaric-isochoric cycle, shown step by step.
- compression Table 2 shows the eight processes (ab, bc, cd, da, 1 -2, 2-3, 3-4, 4-1) that form the regenerative differential-isobaric-isochoric cycle shown step by step. , with four isobaric processes and four isochoric processes.
- Figure 5 shows the ideal diesel cycle pressure and volume graph, considering an engine without accessories, is a cycle formed by an isobaric combustion heating process (3-4), an adiabatic expansion process (4-5), an isocoric cooling process (5-2), and an adiabatic compression process (2-3).
- an isobaric combustion heating process (3-4)
- an adiabatic expansion process 4-5
- an isocoric cooling process 5-2
- an adiabatic compression process (2-3).
- the combined isobaric-isochoric differential diesel cycle is the junction of a cycle called Diesel, whose cycle is formed by one-to-one processes sequentially, with an isobaric-isochoric differential eight-cycle cycle. perform sequentially, but in pairs and this system has the energy input by combustion of Diesel, an isobaric process (3-4), as shown in Figure 4, indicated in 41, of expansion and heating represented by the expression (a) of graph 41.
- (Q ; ) represents the total system input energy, in "Joule”
- (n) represents the mol number belonging to the Diesel cycle unit
- (R) represents the universal gas constant.
- (T qc ) represents the maximum gas temperature in "Kelvin” at process point (4), Figure 4, indicated by 42, (7 “ 3 ) represents the temperature at isobaric process starting point (3), Figure 4, and (y) represents the adiabatic expansion coefficient.
- Diesel cycle machine output energy minus turbine 315 energy is equal to differential cycle machine input energy according to equation (c).
- the turbine 315 of the input power (Q f) is an adiabatic process and is represented by expression (d) of Chart 41.
- Hybrid-based engine technology brings numerous properties that are especially interesting to these designs, the flexibility when operating temperatures, the absence of a number of elements that are required in open and closed-based engines, providing volume and weight. reduced, and controllability, that is, the ability to operate over a wide range of rotation and torque. Therefore the diesel combined-cycle differential technology applies to cargo vehicles, trucks, vessels, boats, ships and rail.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Refere-se a presente invenção a um motor térmico de ciclo combinado formado por uma unidade operando com o ciclo Diesel interligado e integrado à outra unidade operando com o ciclo diferencial de quatro processos isobáricos e quatro processos isocóricos com regenerador.
Description
"MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO E PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO"
CAMPO TÉCNICO DA INVENÇÃO
[001 ] Refere-se a presente invenção a um motor térmico de ciclo combinado formado por uma unidade operando com o ciclo Diesel interligado e integrado à outra unidade operando com o ciclo diferencial de quatro processos isobáricos e quatro processos isocóricos com regenerador.
ANTECEDENTES DA INVENÇÃO
[002] A termodinâmica clássica define três conceitos de sistemas termodinâmicos, o sistema termodinâmico aberto, o sistema termodinâmico fechado e o sistema termodinâmico isolado. Estes três conceitos de sistemas termodinâmicos foram conceituados no século XIX nos primórdios da criação das leis da termodinâmica e fundamentam todos os ciclos motores conhecidos até o presente.
[003] O sistema termodinâmico isolado é definido como um sistema no qual nem matéria, nem energia passa através dele. Portanto, este conceito de sistema termodinâmico não oferece propriedades que permitam o desenvolvimento de motores.
[004] O sistema termodinâmico aberto é definido como um sistema termodinâmico em que energia e matéria podem entrar e sair deste sistema. São exemplos de sistema termodinâmico aberto os motores de combustão interna, de ciclo Otto, de ciclo Atkinson, semelhante ao ciclo Otto, de ciclo Diesel, de ciclo Sabathe, semelhante ao ciclo Diesel, de ciclo Brayton de combustão interna, de ciclo Rankine com exaustão do vapor ao ambiente. As matérias que entram nestes sistemas são os combustíveis e oxigénio ou fluido
de trabalho ou gás de trabalho. A energia que entra nestes sistemas é o calor. As matérias que saem destes sistemas são a exaustão da combustão ou do fluido de trabalho, gases, resíduos; as energias que saem destes sistemas são a energia mecânica de trabalho e parte do calor dissipado.
[005] O sistema termodinâmico fechado é definido como um sistema termodinâmico em que apenas a energia pode entrar e sair deste sistema. São exemplos de sistema termodinâmico fechado, motores de combustão externa como o de ciclo Stirling, de ciclo Ericsson, de ciclo Rankine com fluido de trabalho em circuito fechado, de ciclo Brayton de calor ou de combustão externa, de ciclo Carnot. A energia que entra neste sistema é o calor. As energias que saem deste sistema são a energia mecânica de trabalho e parte do calor dissipado, porém não sai matéria destes sistemas, como ocorrem no sistema aberto.
[006] Ambos os sistemas, aberto e fechado, toda a massa do gás de trabalho é exposta à energia de entrada, calor ou combustão e toda ela também, é exposta ao resfriamento ou arrefecimento, isto é, a massa do gás de trabalho é constante em seus processos e a diferença entre ambos é que no sistema aberto a massa de gás de trabalho atravessa o sistema e no sistema fechado, a massa permanece no sistema.
O ESTADO ATUAL DA TÉCNICA
[007] Os motores de ciclo combinado conhecidos até o presente foram inventados e projetados unindo-se no mesmo sistema dois conceitos de motores idealizados no século XIX, fundamentados em sistemas termodinâmicos aberto ou sistemas termodinâmicos fechado, os mais conhecidos são os ciclos combinados de um motor de ciclo Brayton com um motor de ciclo Rankine e o ciclo combinado de um motor de ciclo Diesel com um motor de ciclo Rankine.
[008] O conceito básico de um ciclo combinado é um sistema composto por um motor operante por meio de uma fonte de temperatura alta de forma que o rejeito de calor deste motor é a energia que move um segundo motor que requeira uma temperatura mais baixa de operação, ambos formando um sistema combinado de conversão de energia térmica em energia mecânica para um mesmo fim comum.
[009] O estado atual da técnica revela ciclos combinados formado por um motor principal de ciclo Brayton ou ciclo Diesel que funciona com uma fonte principal com temperatura superior a 1000 °C e com gases de exaustão na faixa entre 600 °C e 700 °C e estes gases por sua vez são canalizados para alimentar outro motor de ciclo Rankine, geralmente "Rankine orgânico" (ORC). O ciclo Rankine convencional tem como fluido de trabalho a água, o ciclo Rankine orgânico utiliza fluidos orgânicos, estes são mais adequados para projetos em temperaturas menores que os projetos com o ciclo Rankine convencional, portanto normalmente são utilizados nos ciclos combinados.
[010] Algumas das principais desvantagens dos ciclos combinados atuais, considerando a segunda máquina um motor de ciclo Rankine ou Rankine orgânico são a troca do estado físico do fluido de trabalho, isto é, há uma fase líquida exigida pelos processos do ciclo termodinâmico que deve ser controlada, e a energia do aquecimento da fase líquida e da fase latente, de troca de estado, não podem ser convertidas em energia útil de trabalho, são perdas impostas pelo conceito Rankine. Este sistema exige itens do motor que implicam em mais processos, mais peso, mais controle e mais perdas, são necessários reservatórios do líquido, reservatório para geração de vapor, trocador do tipo resfriador para condensação, reservatório para condensação, bomba para vazão do fluido no estado líquido, válvulas de controle dos processos de estado líquido e gasoso. Este conjunto de particularidades implicam em peso adicional, volume adicional, perdas térmicas adicionais, redução da eficiência global e por consequência, índices de poluição maiores,
custos de implementação maiores e menores índices de sustentabilidade nestes projetos.
[01 1 ] O estado atual da técnica, a partir de 201 1 , revelou um novo conceito de sistema termodinâmico, o chamado sistema termodinâmico híbrido, e este novo conceito de sistema passou a ser a base de sustentação para novos ciclos motores, os motores de ciclos diferenciais e os motores de ciclos binários não diferenciais de forma que estes novos ciclos motores possuem vantagens significativas para a criação de novos ciclos combinados. Podem ser exemplificados ciclos combinados de um motor de ciclo Brayton com um motor de ciclo diferencial, motor de ciclo Brayton com um motor de ciclo binário, motor de ciclo Diesel com um motor de ciclo diferencial, motor de ciclo Diesel com um motor de ciclo binário, motor de ciclo Otto com um motor de ciclo diferencial, motor de ciclo Otto com um motor de ciclo binário e algumas outras variações.
OBJETIVOS DA INVENÇÃO
[012] Os grandes problemas do estado da técnica, especificamente quanto aos ciclos combinados se encontram justamente na segunda unidade que formam os sistemas, este, geralmente é uma máquina de ciclo Rankine, uma máquina antiga, cujos processos termodinâmicos impõe perdas através da necessidade de troca do estado físico do fluido de trabalho, do calor de aquecimento durante o estado líquido, do calor de transformação, calor latente, das unidades mecânicas, reservatórios, sistemas de válvulas, condensadores, bombas que agregam peso, volume, perdas e custos.
[013] O objetivo da invenção se concentra em eliminar alguns dos problemas existentes, minimizar outros problemas e oferecer novas possibilidades, para alcançar estes objetivos, um novo conceito de motores térmicos passou a ser indispensável e a criação de novos ciclos-motores são necessários de forma que a eficiência dos motores não ficasse mais dependente exclusivamente das
temperaturas. O conceito de sistema híbrido e ciclos diferenciais e ciclos binários, característica própria que fundamenta este novo conceito de ciclo combinado, elimina a dependência da eficiência de forma exclusiva à temperatura. A eliminação da necessidade da troca do estado físico dos fluidos de trabalho passa a ser representativo para reduzir volume, peso e custo das máquinas. Portanto o ciclo combinado formado por uma unidade de ciclo Diesel com uma unidade de ciclo diferencial-isobárico-isocórico constitui uma evolução importante, viável para o futuro dos sistemas formados por ciclos combinados.
DESCRIÇÃO DA INVENÇÃO
[014] Os motores de ciclos combinados são caracterizados por possuírem duas unidades termodinâmicas distintas integradas formando um sistema de forma que a energia descartada pela unidade principal é a fonte de energia da unidade secundária e ambos possuem uma integração do trabalho mecânico final.
[015] O conceito presente considera uma unidade termodinâmica formada por um motor de ciclo Diesel 31 , o qual executa um ciclo Diesel de quatro processos e um motor de ciclo diferencial-isobárico-isocórico regenerativo 320, descrito na patente BR1020160198704, o qual executa um ciclo de quatro processos isobáricos e quatro processos isocóricos com regenerador, e de forma que a energia de entrada, por combustão executa um processo isobárico de expansão na unidade de ciclo Diesel, um processo de resfriamento isocórico quando a exaustão vai direto ao ambiente ou isobárico ou adiabático quando utiliza-se trocadores para outros fins o qual cede energia para o processo isobárico de expansão da unidade de ciclo diferencial, este por sua vez executa um processo de resfriamento isobárico cedendo para o ambiente a energia que o sistema em conjunto não tenha convertido em trabalho e de forma que ambos os ciclos tenham uma conversão em trabalho final comum. Portanto trata-se de motores de ciclos combinados completamente distintos dos motores
e ciclos combinados atuais, os quais são baseados única e exclusivamente nos sistemas aberto ou fechado. Na figura 3 é mostrado o conceito geral do invento e na figura 4 são mostrados os gráficos com a integração de ambos os ciclos termodinâmicos formando o ciclo combinado. Além da combinação do ciclo Diesel e diferencial, a presente invenção considera ainda o emprego de uma turbina auxiliar 315 para executar trabalho por meio de um processo adiabático com a energia residual e um compressor 314 para pressurização do ar nas câmaras de combustão do motor de combustão interna Diesel.
[016] A presente invenção trás evoluções importantes para a conversão de energia térmica em mecânica pelo conceito da combinação de dois ciclos termodinâmicos distintos. A imensa maioria de ciclos combinados tem como máquina secundária um motor turbina a vapor de ciclo Rankine ou Rankine orgânico. A figura 1 mostra que o ciclo Rankine possui perdas próprias do conceito dos processos que formam seu ciclo, não permitindo que uma parcela significativa de energia seja convertida em trabalho. Os ciclos Rankine e Rankine orgânico exigem a troca do estado físico do gás de trabalho, isto é, há uma fase do processo em estado líquido exigindo elementos de condensação, evaporação e sistemas de bombas auxiliares, e todos estes elementos e processos impõe perdas e impossibilidade de utilizar as energias destas fases na conversão. Algumas das principais vantagens do invento ciclo combinado Diesel com diferencial-isobárico-isocórico que podem ser constatadas são a inexistência de elementos de troca do estado físico do fluido de trabalho e suas perdas associadas, a inexistência de elementos de condensação e de vaporização, portanto a inexistência também de perdas associadas ao calor latente do fluido de trabalho, a inexistência de circuitos, bombas, elementos de controle destinados aos processos de troca do estado físico do fluido e suas perdas associadas e que por consequência, a inexistência do volume, materiais e massa, peso, dos elementos que compõe tais projetos. Portanto, a inovação apresentada pelo ciclo combinado Diesel com diferencial é expressiva.
[017] Os motores de ciclos combinados baseados na integração de um motor de ciclo Diesel com um motor de ciclo diferencial poderão ser construídos com materiais e técnicas semelhantes aos motores de ciclos combinados convencionais, como a unidade secundária, de ciclo diferencial consiste de um motor que trabalha com gás em circuito fechado, considerando o sistema completo, este conceito em circuito fechado de gás de trabalho com relação ao meio externo indica que o sistema deve ser vedado, ou em alguns casos, vazamentos podem ser admitidos, desde que compensados. Materiais adequados para esta tecnologia devem ser observados, são semelhantes, neste aspecto, às tecnologias de projetos de motores de ciclo Brayton, Stirling ou Ericsson, todos de combustão externa. O gás de trabalho depende do projeto, de sua aplicação e dos parâmetros utilizados, a escolha do gás poderá ser diversificada, cada um proporcionará particularidades específicas, como exemplo pode ser sugerido os gases: hélio, hidrogénio, nitrogénio, ar seco, neon, entre outros.
DESCRIÇÃO DOS DESENHOS
[018] As figuras anexas demonstram as principais características e propriedades do novo conceito de ciclo combinado, mais especificamente a um sistema formado por uma unidade de ciclo Diesel com uma unidade de ciclo diferencial-isobárico-isocórico, sendo representadas conforme segue abaixo:
A figura 1 demonstra em diagrama de blocos, um sistema de ciclo combinado atual, formado por uma unidade de ciclo Diesel com uma unidade de ciclo Rankine. Plantas projetadas com esta filosofia na atualidade são utilizadas para melhorar a eficiência mecânica e energética em sistemas de tração, veículos, como caminhões, máquinas, navios.
A figura 2 demonstra em diagrama de blocos, um sistema de ciclo combinado idealizado com base no novo conceito de sistema termodinâmico, formado por uma unidade de ciclo Diesel conhecida, com uma unidade de ciclo
diferencial-isobárico-isocórico. Teoricamente, sistemas projetados com esta filosofia para geração de força mecânica terá eficiência superior aos sistemas de ciclo combinado com Rankine ou Rankine orgânico baseado na análise teórica do ciclo da segunda máquina que forma o sistema, entre as perdas que deixam de existir, a inexistência de troca do estado físico do fluido de trabalho é item significativo, o processo de conservação de energia propiciado pelo subsistema de conservação pertencente ao ciclo diferencial, reforça as possibilidades do incremento da eficiência geral.
A figura 3 apresenta o diagrama de um sistema composto por um motor de ciclo Diesel 31 , com um motor de ciclo diferencial-isobárico-isocórico, 320 formando o ciclo combinado Diesel e diferencial.
A figura 4 mostra respectivamente as curvas do gráfico da pressão e deslocamento volumétrico do ciclo Diesel 41 e as curvas do gráfico da pressão e deslocamento volumétrico do ciclo diferencial-isobárico-isocórico 45.
A figura 5 mostra o ciclo Diesel convencional com um processo isobárico, dois processos adiabáticos e um processo isocórico.
DESCRIÇÃO DETALHADA DO INVENTO
[019] O motor de ciclo combinado Diesel e diferencial-isobárico-isocórico é um sistema composto por um conceito de motor baseado no sistema termodinâmico aberto, um motor de combustão interna de ciclo Diesel, idealizado no século XIX, com um motor baseado no sistema termodinâmico híbrido, o ciclo diferencial-isobárico-isocórico, idealizado no século XXI, de forma que a energia descartada pelo primeiro, o motor de combustão interna de ciclo Diesel, é a energia que move o segundo, o motor de ciclo diferencial.
[020] A figura 3 apresenta o sistema que caracteriza um motor de ciclo combinado Diesel e diferencial-isobárico-isocórico. Este sistema é constituído por uma máquina que opera pelo ciclo Diesel, integrada, interconectada à outra
máquina que opera por um ciclo diferencial e de forma que seus ciclos termodinâmicos sejam também integrados conforme figura 4. O sistema da figura 3 mostra um motor de combustão interna de ciclo Diesel 31 , acoplado a um motor de ciclo diferencial-isobárico-isocórico 320. O motor de ciclo Diesel possui seu coletor de descarga 327, exaustão dos gases quentes, conectado a um trocador de calor isobárico 319, este trocador de calor é o elemento de transferência de calor para as subcâmaras dos processos isobáricos de alta temperatura e de expansão do motor de ciclo diferencial 320. O motor diferencial 320, após realizar o processo isobárico de expansão em alta temperatura, executará um processo isocórico de abaixamento de temperatura e de transferência de calor a um regenerador interno e de massa para o outro subsistema do próprio motor diferencial, e na sequência executará um processo isobárico de compressão e resfriamento através do trocador de calor 323, este separado dos demais sistemas de resfriamento e arrefecimento e situado no extremo mais frio do fluxo do ar forçado da ventoinha, isto é, no ponto mais externo do motor em fronteira com o ambiente, e o fluido de resfriamento deste trocador fará o resfriamento isobárico do gás de trabalho do motor diferencial 320 no trocador isobárico interno 322, do motor diferencial 320. O motor diferencial possui um eixo de força principal 324 acoplado ao eixo mecânico principal 33, da unidade de ciclo Diesel por meio de uma caixa de engrenagens 34 para transmissão da força do eixo da unidade de ciclo diferencial somando com o eixo 33 do motor principal 31 . Fazendo parte da unidade mecânica do sistema, se encontra ainda um rotor de turbina 315, onde é executado um processo adiabático, por onde passam os gases da exaustão do motor Diesel, logo após sua passagem pelo trocador de calor 319, o gás saindo do trocador, entra no rotor de turbina 315, com a função de acionar o rotor do compressor 314, e a partir do rotor de turbina 315, o gás segue para uma unidade de controle 312, tipo (EGR), de circulação do gás de exaustão, com a função de direcionar parte dos gases de saída do rotor da turbina 315 às câmaras de combustão do motor Diesel via misturador 39, reduzindo as
emissões de óxidos nitrosos, NOx, outra parte dos gases, ao sair da unidade 312, segue para o ambiente 316. Fazendo parte também do sistema, há um rotor do compressor 314, o qual pressuriza ar do ambiente para as câmaras de combustão do motor Diesel, o ar 317 primeiramente passa pelo filtro 31 3, entra no rotor do compressor 314, passando por um resfriador 36 e deste para o misturador 39 o qual executa a mistura do ar pressurizado com parte dos gases da combustão, injetando-os para as câmaras de combustão do motor Diesel 31 .
[021 ] Existem condições necessárias para que o ciclo do motor de ciclo diferencial seja formado por processos isobáricos e isocoricos, o primeiro está relacionado aos regeneradores, estes devem ser projetados para levar o gás nos processos isocoricos partindo da temperatura alta (Tq ou Tb ou T2) final dos processos isobáricos de expansão e alta temperatura para a temperatura fria (Tf) inicial dos processos isobáricos de compressão, posteriormente, na isocórica oposta, o regenerador deve regenerar, isto é, devolver a energia ao gás, levando-o da temperatura fria (Tf ou Td ou T4) do final dos processos isobáricos de compressão para a temperatura quente (Ta ou T1 ) inicial dos processos isobáricos de expansão de alta temperatura. O trocador isobárico 319 deve ser projetado para que a pressão seja isonômica em pressão, isto é, as câmaras internas do trocador devem ser projetadas com características de isonomia na pressão do gás em toda a sua extensão, permitindo evidentemente, diferenciais da temperatura conforme ocorre o fluxo do gás de trabalho, ao contrario dos trocadores de calor das unidades isotérmicas, estes por sua vez, para exemplificar, devem ser projetados para haver isonomia na temperatura e não na pressão.
[022] A figura 3 apresenta também os principais elementos que configuram um motor Diesel, em 318 a entrada de ar de arrefecimento do motor e todos os sistemas que necessitam de resfriamento, o trocador de calor 323 é o elemento mais externo e é o trocador de resfriamento para a câmara de compressão
isobárica 322 de baixa temperatura da unidade de ciclo diferencial, é o mais externo porque a eficiência da unidade de ciclo diferencial aumenta quanto menor for a temperatura do processo isobárico que ocorre na câmara 322, diferente de outras necessidades do motor Diesel. O trocador de calor 36 é usado para resfriamento do ar pressurizado pelo compressor 314. Outro trocador de calor, radiador 35 é o principal elemento de arrefecimento do motor Diesel, unidades hidráulicas e elétricas. Uma ventoinha 325 é usada para forçar a ventilação e melhorar a troca de calor, arrefecimento. Uma bomba 37, de fluido de arrefecimento, normalmente água, circula o fluido no interior do motor a combustão interna para mantê-lo em condições térmicas seguras, auxiliado por um sensor tipo termostato 38 para o controle da temperatura. A mistura do ar pressurizado com parte do gás da exaustão ocorre no misturador 39 e segue para um distribuidor 32 o qual injeta nas câmaras de combustão do motor Diesel a mistura do ar com parte do gás da exaustão. A linha 326 é um tubo de retorno do fluido de arrefecimento do motor. A linha 310 é um duto que conduz parte dos gases da combustão a partir do regulador (EGR) para o misturador 39. Os gases, resíduos da combustão são conduzidos pela linha 31 1 a partir do coletor 327, passando pelo trocador de calor 319 e seguindo para a entrada do rotor de turbina 315. O eixo de força 33, do motor Diesel, é o principal elemento para levar a força mecânica à caixa de transmissão 34.
[023] Na figura 4 são mostrados os gráficos da pressão e deslocamento volumétrico que na união deles formam o ciclo combinado, um processo composto pela combinação de dois ciclos, um Diesel e outro diferencial- isobárico-isocórico, onde o primeiro ciclo, o ciclo Diesel é formado por quatro processos, ou também chamado de transformações termodinâmicas, sendo um processo ou transformação isobárica, dois processos adiabáticos e um processo isocórico, que ocorrem um a um sequencialmente, porém com a integração com outros elementos mecânicos, os processos podem variar como no caso deste invento. A introdução de um rotor de turbina altera o processo isocórico, tornando-o, em síntese, adiabático e a etapa final do processo
adiabático de expansão (4-5), pode ganhar características isobáricas sendo descritas da seguinte forma, a energia de entrada no sistema pela combustão, 42, executa um processo de expansão isobárica (3-4), na sequência, a expansão prossegue ocorrendo um processo adiabático (4-5'), a partir deste ponto ocorre a transferência de calor para o trocador 319 gerando o segmento isobárico (5'-5) ou dependendo dos parâmetros de projeto ou regulação, este poderá ser isotérmico ou ainda adiabático, ou variável, terminando a expansão com outro processo adiabático (5-2) junto ao rotor de turbina 315, em seguida outro processo adiabático, porém de compressão (2-3) finalizando o ciclo Diesel. A energia canalizada para o motor de ciclo diferencial é definida pelo processo (5'-5) indicado por 43, a energia canalizada para o rotor de turbina 315 é definida pelo processo (5-2) indicado por 44.
[024] O ciclo diferencial 45 é acoplado, integrado ao ciclo Diesel, 41 , de forma que o processo de descarte de energia (5' -5) do ciclo Diesel é a energia de entrada do ciclo diferencial e todos os processos que formam o ciclo diferencial ocorrem sequencialmente, porém sempre em pares. A energia descartada do ciclo Diesel formam os processos isobáricos de expansão (a-b) de uma das câmaras do motor diferencial e também o processo isobárico (1 -2) da outra câmara. O processo completo partindo da energia descartada do ciclo Diesel ocorre da seguinte forma, a energia descartada do ciclo Diesel do processo (5'- 5) alimenta o processo isobárico (a-b) de expansão do ciclo diferencial, simultaneamente ocorre o processo isobárico de compressão e resfriamento (3-4), partindo do ponto (b) do ciclo diferencial, ocorre um processo isocórico (b-c) de esfriamento, com transferência de calor para o regenerador e massa de gás para o outro subsistema onde ocorre outro processo isocórico (4-1 ) de aquecimento que ocorre simultaneamente e este é regenerativo, isto é, recebe o calor do regenerador, a partir do ponto (c), no final do processo isocórico (b- c) inicia-se um processo isobárico (c-d) de compressão e resfriamento do ciclo diferencial, simultaneamente ocorre o processo isobárico de expansão e aquecimento (1 -2), partindo do ponto (d) do ciclo diferencial, ocorre um
processo isocórico (d-a) de aquecimento regenerativo com recebimento de massa de gás do outro subsistema onde ocorre outro processo isocórico (2-3) de resfriamento que ocorre simultaneamente, finalizando o ciclo diferencial 45 formado por dois processos isobáricos de expansão e aquecimento, dois processos isobáricos de compressão e resfriamento, dois processos isocóricos de resfriamento e dois processos isocóricos regenerativos, aquecimento. Portanto, em condições ideais, sem perdas, a energia entra por combustão no ciclo Diesel, indicado por 42, parte da energia descartada 44, alimenta por um processo adiabático um rotor de turbina 315, parte restante da energia descartada 43 do ciclo Diesel alimenta o ciclo diferencial 45, a energia descartada do ciclo diferencial é, em caso ideal sem perdas, a energia total perdida, indicada por 46.
[025] A tabela 1 mostra os processos (3-4, 4-5', 5'-5, 5-2, 2-3) que formam o ciclo Diesel quando o mesmo é integrado ao ciclo diferencial-isobárico- isocórico, mostrados passo a passo.
Tabela 1
Unidade de ciclo
Passo Processo
Diesel
Entrada de energia
1 3-4 Isobárico de expansão
por combustão
Adiabático de
2 4-5'
expansão
Isobárico, isotérmico
Energia transferida
3 5'-5 ou adiabático de
para o ciclo diferencial expansão
Adiabático de Acionamento da
4 5-2
expansão turbina 315
Adiabático de
5 2-3
compressão
[026] A tabela 2 mostra os oito processos (a-b, b-c, c-d, d-a, 1 -2, 2-3, 3-4, 4-1 ) que formam o ciclo diferencial-isobárico-isocórico regenerativo, mostrados passo a passo, com quatro processos isobáricos e quatro processos isocóricos.
Tabela 2
A figura 5 mostra o gráfico da pressão e volume do ciclo Diesel ideal, considerando um motor sem acessórios, é um ciclo formado por um processo isobárico de aquecimento pela combustão (3-4), um processo adiabático de expansão (4-5), um processo isocórico de resfriamento (5-2), e um processo adiabático de compressão (2-3). Ao implantar mudanças mecânicas no motor, o acréscimo de uma turbina 315 e um trocador de calor 319, ocorre também uma alteração no ciclo termodinâmico, o processo (5-2) deixa de ser isocórico, pois há uma turbina para movimentar que em conjunto com o trocador de calor 319 e um sistema de controle, produzirá mudanças nesta região do ciclo termodinâmico e esta mudança pode ser variável em função da operação em que o motor estará funcionando. O presente documento propõe uma aproximação considerando os itens essenciais mecânicos e de processos que caracterizam a ideia.
[027] O ciclo combinado Diesel com diferencial-isobárico-isocórico é a junção de um ciclo chamado Diesel, cujo ciclo é formado por processos que se realizam um a um sequencialmente, com um ciclo diferencial-isobárico- isocórico de oito processos os quais se realizam sequencialmente, porém em pares e este sistema possui a entrada de energia pela combustão do Diesel, um processo isobárico (3-4), conforme figura 4, indicado em 41 , de expansão e aquecimento representado pela expressão (a) do gráfico 41 .
[028] Na equação (a), (Q;) representa a energia total de entrada no sistema, em "Joule", (n) representa o número de mol pertencendo à unidade ciclo Diesel, {R) representa a constante universal dos gases perfeitos, { Tqc) representa a temperatura máxima do gás em "Kelvin" no ponto (4) do processo, figura 4, indicado por 42, ( 7" 3) representa a temperatura no ponto (3), inicial do processo isobárico, figura 4, e (y) representa o coeficiente de expansão adiabática.
[029] O descarte da energia não convertida em trabalho pela máquina principal, o ciclo Diesel, é a energia de entrada da máquina secundária, de ciclo diferencial somada à energia de alimentação da turbina 315, e a expressão da energia descartada, fornecida às unidades posteriores é representada pela expressão (b) do gráfico 41 , considerando o processo (5'-5) isobárico, dependendo do controle, este processo poderá ser isotérmico ou adiabático, neste caso considerou-se isobárico na equação a seguir. n.y.R n.R
Qod = . (r5, - r5) + ■(7* 5, - 7* 2)
(y-i) (y-i) (b)
[030] A energia de entrada da máquina secundária ((¾), de ciclo diferencial é representado pela expressão (c), onde (T1 = Ta) e (T2 = Tb = Tq) do gráfico 45.
(C)
[031 ] A energia de saída da máquina de ciclo Diesel descontado a energia da turbina 315 é igual à energia de entrada da máquina de ciclo diferencial conforme equação (c).
[032] A energia de entrada da turbina 315, (Qf) é um processo adiabático e é representado pela expressão (d) do gráfico 41 .
[033] O descarte da energia não convertida em trabalho pela máquina secundária, de ciclo diferencial é representada pela expressão (e). Considerando que { T3 = Tc) e { T4 = Td = Tf) do gráfico 45.
[034] O trabalho útil total do sistema ciclo combinado, considerando um modelo ideal sem perdas, é a diferença entre a entrada e a saída da energia e é representado pela expressão (f) abaixo.
[035] A demonstração final teórica da eficiência do ciclo combinado Diesel e diferencial-isobárico-isocórico é dada pela expressão (g), caracterizando que os ciclos combinados de uma máquina fundamentada no sistema aberto ou fechado com uma máquina fundamentada no sistema híbrido possuem como parâmetro da eficiência, também o número de moles ou massa, característica herdada da máquina fundamentada no sistema híbrido, e portanto, não possuem suas eficiências dependentes exclusivamente das temperaturas.
L n (Tqc-T3) a /
EXEMPLOS DE APLICAÇÕES
[036] Os motores de ciclos combinados pela integração de uma unidade de ciclo Diesel com um motor fundamentado no sistema híbrido, por exemplo um motor de ciclo diferencial-isobárico-isocórico, possui algumas aplicações importantes, a mais óbvia é a sua aplicação em veículos de transportes que utilizam o Diesel como combustível, seja terrestre ou marítimo. A tecnologia de motores fundamentados no sistema híbrido trás inúmeras propriedades que são especialmente interessantes a estes projetos, a flexibilidade quando às temperaturas de operação, a inexistência de uma série de elementos que são obrigatórios nos motores fundamentados nos sistemas aberto e fechado, propiciando volume e peso reduzidos, e a controlabilidade, isto é, a capacidade de operar em uma larga faixa de rotação e torque. Portanto a tecnologia de ciclo combinado Diesel com diferencial se aplica a veículos de carga, caminhões, embarcações, barcos, navios e ao transporte ferroviário.
Claims
REIVINDICAÇÕES
1 ) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", caracterizado por ser constituído pela integração de duas máquinas térmicas, dois ciclos termodinâmicos, formando um sistema combinado, sendo um deles uma máquina que opera pelo ciclo Diesel (31 ) *todos os números do quadro reivindicatório devem estar entre parênteses*, integrada, interconectada a outra máquina que opera por um ciclo diferencial (320), e de forma que seus ciclos termodinâmicos sejam também integrados, gráfico (41 ) e (45), um motor de combustão interna de ciclo Diesel (31 ), acoplado a um motor de ciclo diferencial-isobárico-isocórico (320), o motor de ciclo Diesel possui um coletor de descarga (327) conectado a um trocador de calor isobárico (319), este trocador de calor é um elemento do motor diferencial e é o elemento de transferência de calor para as subcâmaras dos processos isobáricos de alta temperatura e de expansão do motor de ciclo diferencial (320), o motor de ciclo diferencial (320) possui internamente um regenerador e um elemento de transferência de massa de gás entre suas subcâmaras internas, o motor diferencial possui um trocador de calor externo (323), conectado a um trocador isobárico interno (322), o motor diferencial possui um eixo de força (324) acoplado ao eixo mecânico (33) do motor principal Diesel (31 ) por meio de uma caixa de engrenagens (34) para transmissão da força do eixo da unidade de ciclo diferencial somando com o eixo (33) do motor principal (31 ), o sistema combinado possui ainda um rotor de turbina (315) conectado na saída do trocador de calor isobárico (319), ligado ao mesmo eixo (321 ), do rotor de turbina (315), se encontra um rotor do compressor (314) com a função de pressurizar o ar ambiente para as câmaras de combustão do motor Diesel (31 ) via distribuidor (32), a saída do rotor de turbina (315) está conectada a uma unidade de controle (312), tipo (EGR), e esta está conectada a um misturador 39 o qual está ligado ao distribuidor (32) com a função de realimentar as câmaras de combustão do motor Diesel com gás da exaustão e do ar ambiente misturados, ligado à unidade de controle
(312) existe também um canal de saída (316) dos gases da exaustão para o ambiente externo, ligado ao rotor do compressor (314), há um filtro (313) pelo qual passa o ar externo antes de entrar no sistema, e a saída do rotor do compressor (314) está conectada à entrada de um resfriador (36) e este por sua vez está conectado ao misturador (39) o qual executa a mistura do ar ambiente pressurizado com parte dos gases da combustão, injetando-os para as câmaras de combustão do motor Diesel (31 ).
2) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com a reivindicação 1 , caracterizado por ser constituído pela integração de duas máquinas térmicas, dois ciclos termodinâmicos, formando um sistema combinado, sendo um deles uma máquina que opera pelo ciclo Diesel (31 ), integrada, interconectada a outra máquina que opera por um ciclo diferencial (320), e de forma que seus ciclos termodinâmicos sejam também integrados, gráfico (41 ) e (45).
3) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 e 2, caracterizado por ser constituído por um motor de combustão interna de ciclo Diesel (31 ), acoplado a um motor de ciclo diferencial-isobárico-isocórico (320).
4) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 , 2 e 3, caracterizado por ser constituído por um motor de ciclo Diesel com um coletor de descarga (327) conectado a um trocador de calor isobárico (319) interno ao motor de ciclo diferencial (320).
5) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 , 2, 3 e 4, caracterizado por ser constituído por um trocador de calor isobárico (319), o qual é o elemento de transferência de calor para as subcâmaras dos processos isobáricos de alta temperatura e de expansão do motor de ciclo diferencial
6) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 , 2, 3, 4 e
5, caracterizado por ser constituído por um o motor de ciclo diferencial (320) o qual possui internamente um regenerador e um elemento de transferência de massa de gás entre suas subcâmaras internas.
7) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 , 2, 3, 4, 5 e 6, caracterizado por ser constituído por o motor diferencial com um trocador de calor externo (323), conectado a um trocador isobárico interno (322) e este é o elemento de resfriamento para as subcâmaras dos processos isobáricos de baixa temperatura e de compressão do motor de ciclo diferencial (320).
8) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 , 2 e 3, caracterizado por ser constituído por um o motor diferencial o qual possui um eixo de força (324) acoplado ao eixo mecânico (33) do motor principal Diesel (31 ) por meio de uma caixa de engrenagens (34) para transmissão da força do eixo da unidade de ciclo diferencial somando com o eixo (33) do motor principal (31 ).
9) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 , 2, 3, 4, 5,
6, 7 e 8, caracterizado por ser constituído por um o sistema combinado do ciclo Diesel e diferencial que possui um rotor de turbina (315) conectado na saída do trocador de calor isobárico (319) da unidade de ciclo diferencial (320), e ligado ao mesmo eixo (321 ), do rotor de turbina (315), se encontra um rotor do compressor (314) com a função de pressurizar o ar ambiente para as câmaras de combustão do motor Diesel (31 ) juntamente com o gás da exaustão.
10) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 , 2, 3, 8 e 9, caracterizado por ser constituído por um distribuidor (32) de forma que a saída do rotor de turbina (315) está conectada a uma unidade de controle (312), tipo (EGR), e esta está conectada a um misturador (39) o qual está ligado ao distribuidor (32) com a função de realimentar as câmaras de combustão do motor Diesel (31 ) com gás da exaustão e do ar ambiente misturados.
1 1 ) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 , e 10 caracterizado por um canal de saída (316) dos gases da exaustão para o ambiente externo conectado à saída da unidade de controle (EGR) (312).
12) "MOTOR DE CICLO COMBINADO DIESEL E DIFERENCIAL-ISOBÁRICO- ISOCÓRICO REGENERATIVO", de acordo com as reivindicações 1 , 2, 3, 8, 9 e 10 caracterizado por um filtro (313) conectado à entrada do rotor do compressor (314), pelo qual passa o ar externo antes de entrar no sistema, e a saída do rotor do compressor (314) está conectada à entrada de um resfriador (36) e este por sua vez está conectado ao misturador (39) o qual executa a mistura do ar ambiente pressurizado com parte dos gases da combustão, injetando-os para as câmaras de combustão do motor Diesel (31 ).
13) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", caracterizado por um processo composto pela combinação de dois ciclos, um Diesel e outro diferencial-isobárico- isocórico que na união deles formam o ciclo combinado, onde o primeiro ciclo, o ciclo Diesel, com a integração com outros elementos mecânicos, os processos podem variar como no caso deste invento, a introdução de um rotor de turbina altera o processo isocórico, tornando-o, em síntese, adiabático e a etapa final do processo adiabático de expansão (4-5), pode ganhar características isobáricas sendo descritas da seguinte forma, a energia de
entrada no sistema pela combustão, (42), executa um processo de expansão isobárica (3-4), na sequência, a expansão prossegue ocorrendo um processo adiabático (4-5'), a partir deste ponto ocorre a transferência de calor para o trocador (319) gerando o segmento isobárico (5'-5) ou dependendo dos parâmetros de projeto ou regulação, este poderá ser isotérmico ou ainda adiabático, ou variável, terminando a expansão com outro processo adiabático (5-2) junto ao rotor de turbina (315), em seguida outro processo adiabático, porém de compressão (2-3) finalizando o ciclo Diesel, a energia canalizada para o motor de ciclo diferencial é definida pelo processo (5'-5) indicado por 43, a energia canalizada para o rotor de turbina (315) é definida pelo processo (5- 2) indicado por 44, o ciclo diferencial (45) é acoplado, integrado ao ciclo Diesel, (41 ), de forma que o processo de descarte de energia (5' -5) do ciclo Diesel é a energia de entrada do ciclo diferencial e todos os processos que formam o ciclo diferencial ocorrem sequencialmente, porém sempre em pares, a energia descartada do ciclo Diesel formam os processos isobáricos de expansão (a-b) de uma das câmaras do motor diferencial e também o processo isobárico (1 -2) da outra câmara, o processo completo partindo da energia descartada do ciclo Diesel ocorre da seguinte forma, a energia descartada do ciclo Diesel do processo (5'-5) alimenta o processo isobárico (a-b) de expansão do ciclo diferencial, simultaneamente ocorre o processo isobárico de compressão e resfriamento (3-4), partindo do ponto (b) do ciclo diferencial, ocorre um processo isocórico (b-c) de esfriamento, com transferência de calor para o regenerador e massa de gás para o outro subsistema onde ocorre outro processo isocórico (4-1 ) de aquecimento que ocorre simultaneamente e este é regenerativo, isto é, recebe o calor do regenerador, a partir do ponto (c), no final do processo isocórico (b-c) inicia-se um processo isobárico (c-d) de compressão e resfriamento do ciclo diferencial, simultaneamente ocorre o processo isobárico de expansão e aquecimento (1 -2), partindo do ponto (d) do ciclo diferencial, ocorre um processo isocórico (d-a) de aquecimento regenerativo com recebimento de massa de gás do outro subsistema onde
ocorre outro processo isocórico (2-3) de resfriamento que ocorre simultaneamente, finalizando o ciclo diferencial (45) formado por dois processos isobáricos de expansão e aquecimento, dois processos isobáricos de compressão e resfriamento, dois processos isocóricos de resfriamento e dois processos isocóricos regenerativos, aquecimento, e em condições ideais, sem perdas, a energia entra por combustão no ciclo Diesel, indicado por (42), parte da energia descartada (44), alimenta por um processo adiabático um rotor de turbina (315), parte restante da energia descartada (43) do ciclo Diesel (41 ) alimenta o ciclo diferencial (45), a energia descartada do ciclo diferencial é, em caso ideal sem perdas, a energia total perdida, indicada por (46).
14) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo composto pela combinação de dois ciclos, um Diesel e outro diferencial-isobárico-isocórico e com a união deles formam o ciclo combinado, onde o primeiro ciclo, o ciclo Diesel, com a integração de elementos mecânicos, rotores de turbinas e trocadores de calor, os processos se modificam de forma que o processo isocórico ganha características adiabáticas (5-2) e a etapa final do processo adiabático de expansão (4-5), obtém características isobáricas (5'-5).
15) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 13, caracterizado por um processo onde a energia de entrada no sistema pela combustão (42), executa um processo de expansão isobárica (3-4).
16) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo onde após a expansão isobárica (3-4), a expansão prossegue ocorrendo um processo adiabático (4-5'), a partir deste ponto ocorre a transferência de calor para o trocador (319) gerando o segmento isobárico (5'-5) ou dependendo dos parâmetros de projeto ou
regulação, este poderá ser isotérmico ou adiabático, ou variável assumindo propriedades de ambos dinamicamente.
17) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo onde após o processo de expansão adiabática, isotérmica ou isobárica (5'-5), a expansão prossegue, terminando a expansão com outro processo adiabático (5-2) junto ao rotor de turbina (315).
18) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo onde após o processo de expansão adiabática (5-2) junto ao rotor de turbina (315), ainda dentro do ciclo Diesel, ocorre outro processo adiabático, porém de compressão (2-3) finalizando o ciclo Diesel.
19) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo onde a energia canalizada para o motor de ciclo diferencial é definida pelo processo (5'-5) do ciclo Diesel indicado por (43).
20) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo onde a energia canalizada para o rotor de turbina (315) é definida pelo processo adiabático (5-2) indicado por (44).
21 ) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 13, caracterizado por um processo tal que o ciclo diferencial (45) é acoplado, integrado ao ciclo Diesel, (41 ), de forma que o processo de descarte de energia (5'-5) do ciclo Diesel, é a energia de entrada do ciclo diferencial (45), e formam os processos isobáricos de expansão (a-b) e (1 -2), e todos os processos que formam o ciclo diferencial ocorrem sequencialmente porém, aos pares, isto é,
sempre dois a dois.
22) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo onde juntamente ao processo isobárico (a-b) de expansão do ciclo diferencial de uma de suas subcâmaras, simultaneamente ocorre o processo isobárico de compressão e resfriamento (3-4) da outra subcâmara do motor diferencial.
23) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo onde após os processos isobáricos (a-b) e (3- 4), partindo do ponto (b) do ciclo diferencial, ocorre um processo isocórico (b-c) de esfriamento, com transferência de calor para o regenerador e massa de gás para o outro subsistema onde ocorre outro processo isocórico (4-1 ) de aquecimento que ocorre simultaneamente e este é regenerativo, isto é, recebe o calor do regenerador.
24) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo onde após os processos (b-c) e (4-1 ), a partir do ponto (c) inicia-se um processo isobárico (c-d) de compressão e resfriamento do ciclo diferencial, simultaneamente ocorre o processo isobárico de expansão e aquecimento (1 -2).
25) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 13, caracterizado por um processo onde após os processos (c-d) e (1 -2) partindo do ponto (d) do ciclo diferencial, ocorre um processo isocórico (d-a) de aquecimento regenerativo com recebimento de massa de gás do outro subsistema onde ocorre outro processo isocórico (2-3) de resfriamento que ocorre simultaneamente, finalizando o ciclo diferencial (45) formado por dois
processos isobáricos de expansão e aquecimento, dois processos isobáricos de compressão e resfriamento, dois processos isocóricos de resfriamento e dois processos isocóricos regenerativos, aquecimento.
26) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR DE CICLO COMBINADO", de acordo com a reivindicação 1 3, caracterizado por um processo que em condições ideais, sem perdas, a energia entra por combustão no ciclo Diesel, indicado por (42), parte da energia descartada (44), alimenta por um processo adiabático um rotor de turbina (315), parte restante da energia descartada (43) do ciclo Diesel (41 ) alimenta o ciclo diferencial (45), a energia descartada do ciclo diferencial é, em caso ideal sem perdas, a energia total perdida, indicada por (46).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRBR102017008590-2 | 2017-04-26 | ||
BR102017008590-2A BR102017008590A2 (pt) | 2017-04-26 | 2017-04-26 | motor de ciclo combinado diesel e diferencial-isobárico-isocórico regenerativo e processo de controle para o ciclo termodinâmico do motor de ciclo combinado |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018195636A1 true WO2018195636A1 (pt) | 2018-11-01 |
Family
ID=63917829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2018/050133 WO2018195636A1 (pt) | 2017-04-26 | 2018-04-25 | Motor de ciclo combinado diesel e diferencial-isobárico-isocórico regenerativo e processo de controle para o ciclo termodinâmico do motor de ciclo combinado |
Country Status (2)
Country | Link |
---|---|
BR (1) | BR102017008590A2 (pt) |
WO (1) | WO2018195636A1 (pt) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2091599C1 (ru) * | 1992-11-30 | 1997-09-27 | Владимир Самойлович Кукис | Силовая установка |
US6543229B2 (en) * | 2000-06-14 | 2003-04-08 | Stm Power, Inc. | Exhaust gas alternator system |
US6672063B1 (en) * | 2002-09-25 | 2004-01-06 | Richard Alan Proeschel | Reciprocating hot air bottom cycle engine |
US20060123779A1 (en) * | 2003-10-01 | 2006-06-15 | Toyota Jidosha Kabushiki Kaisha | Exhaust heat recovery apparatus |
FR2963643A1 (fr) * | 2010-08-06 | 2012-02-10 | Jean Francois Chiandetti | Moteur a combustion interne ou externe a cycle combine 2 en 1 en parallele a chaleur perdue-recyclee donnant un fort rendement et mecanisme thermique |
JP2016003638A (ja) * | 2014-06-19 | 2016-01-12 | 日野自動車株式会社 | 廃熱回収装置 |
-
2017
- 2017-04-26 BR BR102017008590-2A patent/BR102017008590A2/pt not_active Application Discontinuation
-
2018
- 2018-04-25 WO PCT/BR2018/050133 patent/WO2018195636A1/pt active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2091599C1 (ru) * | 1992-11-30 | 1997-09-27 | Владимир Самойлович Кукис | Силовая установка |
US6543229B2 (en) * | 2000-06-14 | 2003-04-08 | Stm Power, Inc. | Exhaust gas alternator system |
US6672063B1 (en) * | 2002-09-25 | 2004-01-06 | Richard Alan Proeschel | Reciprocating hot air bottom cycle engine |
US20060123779A1 (en) * | 2003-10-01 | 2006-06-15 | Toyota Jidosha Kabushiki Kaisha | Exhaust heat recovery apparatus |
FR2963643A1 (fr) * | 2010-08-06 | 2012-02-10 | Jean Francois Chiandetti | Moteur a combustion interne ou externe a cycle combine 2 en 1 en parallele a chaleur perdue-recyclee donnant un fort rendement et mecanisme thermique |
JP2016003638A (ja) * | 2014-06-19 | 2016-01-12 | 日野自動車株式会社 | 廃熱回収装置 |
Also Published As
Publication number | Publication date |
---|---|
BR102017008590A2 (pt) | 2018-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | Experimental comparison between four CO2-based transcritical Rankine cycle (CTRC) systems for engine waste heat recovery | |
US8707701B2 (en) | Ultra-high-efficiency engines and corresponding thermodynamic system | |
WO2022166384A1 (zh) | 基于二氧化碳气液相变的热能转化机械能储能装置 | |
CN103047044A (zh) | 低温冷源热机 | |
US4087974A (en) | Method and apparatus for generating steam | |
WO2018195630A1 (pt) | Motor de ciclo combinado diesel e binário-isotérmico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado | |
WO2018195633A1 (pt) | Motor de ciclo combinado atkinson ou miller e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado | |
WO2018195634A1 (pt) | Motor de ciclo combinado atkinson ou miller e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado | |
WO2018195631A1 (pt) | Motor de ciclo combinado otto e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado | |
CN210105937U (zh) | 一种lng动力船冷热电联装置 | |
US11371393B2 (en) | Arrangement for converting thermal energy from lost heat of an internal combustion engine | |
WO2018195636A1 (pt) | Motor de ciclo combinado diesel e diferencial-isobárico-isocórico regenerativo e processo de controle para o ciclo termodinâmico do motor de ciclo combinado | |
WO2018195635A1 (pt) | Motor de ciclo combinado diesel e diferencial-isotérmico-isocórico regenerativo e processo de controle para o ciclo termodinâmico do motor de ciclo combinado | |
CN109763870A (zh) | 一种低参数热回收系统 | |
WO2018195629A1 (pt) | Motor de ciclo combinado diesel e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado | |
WO2018195622A1 (pt) | Motor turbina de ciclo binário composto por três processos isotérmicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina | |
WO2018195632A1 (pt) | Motor de ciclo combinado otto e binário-isotérmico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado | |
CN209539413U (zh) | 一种低参数热回收系统 | |
WO2018195628A1 (pt) | Motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado | |
WO2018195627A1 (pt) | Motor turbina de ciclo combinado brayton e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado | |
JP2019163761A (ja) | ガスタービンシステム | |
ES2891374B2 (es) | Sistema y procedimiento para desacoplar el consumo y la produccion de energia mecanica en ciclos termodinamicos de potencia | |
JPS6239650B2 (pt) | ||
BR102018016747A2 (pt) | Transformador de potencial térmico | |
BR102018068525A2 (pt) | Motor turbina de ciclo brayton integrado de circuito fechado regenerativo para geração a partir de fonte heliotérmica ou termonuclear e processo de controle para o ciclo termodinâmico do motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791445 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18791445 Country of ref document: EP Kind code of ref document: A1 |