WO2018195628A1 - Motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado - Google Patents

Motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado Download PDF

Info

Publication number
WO2018195628A1
WO2018195628A1 PCT/BR2018/050124 BR2018050124W WO2018195628A1 WO 2018195628 A1 WO2018195628 A1 WO 2018195628A1 BR 2018050124 W BR2018050124 W BR 2018050124W WO 2018195628 A1 WO2018195628 A1 WO 2018195628A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
isothermal
brayton
energy
adiabatic
Prior art date
Application number
PCT/BR2018/050124
Other languages
English (en)
French (fr)
Inventor
Marno Iockheck
Saulo Finco
LUIS Mauro MOURA
Original Assignee
Associação Paranaense De Cultura - Apc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Associação Paranaense De Cultura - Apc filed Critical Associação Paranaense De Cultura - Apc
Publication of WO2018195628A1 publication Critical patent/WO2018195628A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a combined cycle turbine-type thermal motor formed by one unit operating with the interconnected Brayton cycle and integrated with the other unit operating with the binary cycle of three isothermal processes and four adiabatic processes.
  • thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the laws of thermodynamics and underlie all motor cycles known to date.
  • thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the development of motors.
  • the open thermodynamic system is defined as a thermodynamic system in which energy and matter can enter and leave this system.
  • open thermodynamic systems are the Atkinson cycle Otto-cycle internal combustion engines, Sabathe cycle-cycle Otto-diesel internal combustion engine, Rank-exhaustion Brayton cycle-internal combustion cycle Diesel engine from steam to the environment.
  • the materials that come into these systems are fuels and oxygen or fluid working gas or working gas.
  • the energy that enters these systems is heat.
  • the materials that come out of these systems are the combustion or working fluid exhaust, gases and waste, the energies that come out of these systems are the mechanical working energy and part of the heat dissipated.
  • the closed thermodynamic system is defined as a thermodynamic system in which only energy can enter and leave this system.
  • Examples of closed thermodynamic systems are external combustion engines such as Stirling cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Brayton heat cycle or external combustion, Carnot cycle.
  • the energy that enters this system is heat.
  • the energies that come out of this system are the mechanical working energy and part of the heat dissipated, but no matter comes out of these systems, as occurs in the open system.
  • Combined-cycle motors known to date have been invented and designed by uniting in the same system two motor concepts conceived in the nineteenth century, based on open thermodynamic systems or closed thermodynamic systems, the best known are the combined cycles of a Brayton cycle engine with a Rankine cycle engine and the combined cycle of a Diesel cycle engine with a Rankine cycle engine.
  • the basic concept of a combined cycle is a system composed of a motor operating by means of a high temperature source so that the heat waste of this motor is the energy that drives a second motor that requires a lower temperature of operation, both forming a combined system of converting thermal energy into mechanical energy for the same common purpose.
  • the current state of the art reveals combined cycles formed by a Brayton main cycle motor running on a main source with a temperature above 1000 ° C and with exhaust gases in the range between 600 ° C and 700 ° C and these gases. in turn they are channeled to power another Rankine cycle engine, usually "organic Rankine" (ORC).
  • ORC Rankine cycle engine
  • the conventional Rankine cycle has water as its working fluid, the organic Rankine cycle uses organic fluids, these are more suitable for projects at lower temperatures than those with the conventional Rankine cycle, so they are usually used in combined cycles.
  • thermodynamic system the so-called hybrid thermodynamic system
  • this new system concept has become the basis of support for new motor cycles, motors.
  • differential cycle motors and non-differential binary cycle motors so that these new motor cycles have significant advantages for the creation of new combined cycles.
  • Combined cycles of a Brayton cycle engine with a differential cycle motor, Brayton cycle engine with a binary cycle engine, Diesel cycle engine with a differential cycle engine, Diesel cycle engine with a binary cycle motor can be exemplified.
  • Otto cycle motor with a differential cycle motor Otto cycle motor with a binary cycle motor and some other variations.
  • the aim of the invention is to eliminate some of the existing problems, minimize other problems and offer new possibilities.
  • a new concept of thermal motors has become indispensable and the creation of new motor motors is necessary. so that engine efficiency would no longer be dependent solely on of temperatures.
  • the hybrid system concept and differential and binary cycles the very characteristic that underlies this new combined cycle concept, eliminates the reliance on efficiency exclusively at temperature. Eliminating the need to change the physical state of work fluids is now representative to reduce machine volume, weight and costs. Therefore the combined cycle formed by a Brayton cycle unit with a binary-isothermal-adiabatic cycle unit constitutes an important, viable evolution for the future of combined cycle systems.
  • Combined cycle motors are characterized by having two separate thermodynamic units integrated forming a system such that the energy disposed of by the main unit is the power source of the secondary unit and both have an integration of the final mechanical work.
  • thermodynamic unit formed by a Brayton 320 cycle turbine engine which performs a four process Brayton cycle and a binary isothermal-adiabatic cycle turbine engine 319 which performs a three process cycle. isothermal and four adiabatic processes, and so that the input energy, normally by combustion, performs an isobaric expansion process in the Brayton cycle unit, an also isobaric cooling process which yields energy to the isothermal expansion process of the cycle unit. This in turn performs an isothermal cooling process giving the environment energy that the system together has not converted to work and so that both cycles have a common final work conversion. So these are completely combined cycle turbine engines motors and current combined cycles, which are based solely on open or closed systems.
  • Figure 3 shows the general concept of the invention and figure 4 shows the integration of both thermodynamic cycles forming the combined cycle.
  • the present invention brings important developments for the conversion of thermal energy to mechanics by the concept of the combination of two distinct thermodynamic cycles.
  • the vast majority of combined cycles have as their secondary engine a Rankine or organic Rankine cycle steam turbine engine.
  • Figure 1 shows that the Rankine cycle has its own losses of the concept of processes that form its cycle, not allowing a significant portion of energy to be converted into work.
  • the Rankine and Organic Rankine cycle require changing the physical phase of the working gas, that is, there is a phase of the liquid process requiring condensing elements, evaporation and auxiliary pump systems, and all these elements and processes impose losses and impossibilities of utilize the energies of these phases in conversion.
  • Some of the main advantages of the Brayton-isothermal-adiabatic combined cycle invention that can be seen are the absence of physical phase shift elements of the working fluid and its associated losses, the absence of condensation and vaporization elements, therefore the no losses associated with latent heat of the working fluid, no circuits, pumps, control elements for the fluid phase change processes and their associated losses and consequently no volume, materials, mass and weight of the elements that make up such projects. Therefore, the innovation presented by the combined cycle Brayton with binary is expressive.
  • Combined cycle turbine engines based on the integration of a Brayton cycle engine with a binary cycle engine may be constructed of materials and techniques similar to conventional combined cycle engines, as the secondary binary cycle unit consists of a Closed-loop gas engine, considering the complete system, this closed-loop working gas concept with respect to the external environment indicates that the system should be sealed, or in some cases leaks may be permitted provided they are compensated. Suitable materials for this technology should be noted, they are similar in this respect to Brayton external combustion cycle engine design technologies.
  • the working gas depends on the project, its application and the parameters used, the gas may be various, each will provide specific characteristics, as the gases may be suggested: helium, hydrogen, nitrogen, dry air, neon, among others.
  • Figure 1 shows in block diagram a current combined cycle system consisting of a Brayton cycle unit with a Rankine cycle unit. Plants designed with this philosophy today are used for electricity generation and the efficiency of these combined-cycle systems today is in the range of 50% to 60%, indexes published in various media.
  • Figure 2 demonstrates in block diagram a combined cycle system designed based on the new thermodynamic system concept formed by a known Brayton cycle unit with a binary-isothermal-adiabatic cycle unit.
  • plants designed with this philosophy for electricity generation will have efficiency greater than 60%, based on the theoretical analysis of the cycle of the second machine forming the system, among the losses that cease to exist, the absence of exchange of the physical state of the fluid. Since this work is a significant item, the energy conservation process provided by the conservation subsystem belonging to the binary cycle reinforces the possibilities of increasing overall efficiency.
  • Figure 3 shown at 31 shows a diagram of a system consisting of a Brayton 320 cycle unit with a binary-isothermal-adiabatic cycle unit 319 forming the combined Brayton and binary cycle 31.
  • Figure 4 shows the Brayton cycle pressure and volumetric displacement graph curves 41 respectively, and the pressure-volumetric displacement graph curves of the binary-isothermal-adiabatic cycle 44.
  • Figure 5 shows a mechanical model of Brayton 51 cycle turbine engine with its respective thermodynamic cycle 52, a mechanical model of binary-isothermal-adiabatic cycle 53 turbine engine with its respective thermodynamic cycle 54 forming a cycle system Combined.
  • Figure 6 shows in more detail a Brayton 61 cycle turbine engine model, with its main parts, and a binary-isothermal-adiabatic cycle turbine engine model 62, with its main parts.
  • Figure 7 shows the diagram of a power generation plant with its main elements.
  • Figure 8 shows an example of applying a system formed by two cycles, together forming a combined cycle for the same purpose.
  • the combined-cycle engine is a system consisting of a motor concept based on the open thermodynamic system, the Brayton cycle, designed in the 19th century, with a motor based on the hybrid thermodynamic system, the non-differential binary-isothermal-adiabatic cycle. , idealized in the 21st century, so the energy discarded by the first, the Brayton cycle motor, is the energy that drives the second, the binary cycle motor.
  • Figure 3 shows the system that forms the combined cycle motor, which consists of the integration of two motors, each with its thermodynamic cycle, one of them being based on the open thermodynamic system and the other based on the hybrid thermodynamic system.
  • one of the Brayton cycle units is powered by the primary power source 315 and comprises a Brayton cycle motor 320 and the other unit is powered by the exhaust energy of the first and comprises a three-process isothermal and binary cycle motor.
  • Figure 4 shows the graphs of the pressure and volumetric displacement that in their union form the combined cycle, a process composed by the combination of two cycles, one Brayton and the other isothermal-adiabatic, where the first cycle, the Brayton cycle is formed by four processes, or also called thermodynamic transformations, being two isobaric processes and two adiabatic processes 41, all occurring simultaneously, and is formed in the following sequence, an isobaric expansion (1 -2) and input process 42, an adiabatic expansion process (2-3), an isobaric compression (3-4) and energy disposal process, heat 43, and an adiabatic compression process (4-1), and where the second cycle, the binary-isothermal-adiabatic cycle is formed by seven processes, or also called thermodynamic transformations, being three isothermal processes and four adiabatic processes 44, all occurring simultaneously.
  • the first cycle the Brayton cycle is formed by four processes, or also called thermodynamic transformations, being two isobaric processes and two adiabatic processes 41, all occurring simultaneously, and is formed in the following sequence, an is
  • a high temperature heating (ab) isothermal expansion process or transformation of the energy conversion and conservation systems the gas fraction ( ⁇ ) of the conservation subsystem only receiving energy from the Hot source at the start-up of the binary turbine engine, then continuously running, this gas fraction conserves its energy by alternating between heat and kinetic energy by lending itself to maintaining the engine's operating potentials, without being used to produce external work
  • a adiabatic energy conversion subsystem (bc) expansion process or transformation an adiabatic energy conservation subsystem (b-c ') expansion process or transformation
  • a low isothermal cooling (cd) compression process or transformation temperature of the power conversion subsystem a process or heat-insulated (C'-d ') isothermal compression transformation of the energy conservation subsystem, an adiabatic compression process or transformation of the energy conversion subsystem (da), an adiabatic conservation process or compression of the conservation subsystem (a-a) and a process of modulating or also called working gas mass transfer control and energy conservation via a three-way proportional control
  • Table 1 shows the four processes (1-2, 2-3, 3-4, 4-1) that form the Brayton cycle, shown step by step, with two isobaric processes and two adiabatic processes.
  • compression Table 2 shows the seven processes (ab, bc, b-c ', cd, c'-d', da, d'a) that form the non-differential binary-isothermal-adiabatic cycle shown step by step. step, with three isothermal processes and four adiabatic processes.
  • Figure 5 shows a mechanical model of Brayton cycle turbine engine 51 indicating the combustion chamber inlet (1), the combustion chamber outlet (2), the turbine outlet (3) and the air inlet in the compressor inlet, (4) and its respective thermodynamic cycle, 52, a circuit that carries heat from the Brayton cycle turbine engine exhaust to the heating chamber and from the isothermal process of the binary cycle turbine engine 53 indicating the chambers where perform the binary cycle processes and the binary cycle chart 54.
  • Figure 6 shows in more detail a Brayton 61 cycle turbine engine model with its main parts, the rotor assembly that form the compressor 63, the combustion chamber 64, the turbine rotor assembly 65 and the exhaust chamber with the heat exchanger that is the source of the power of the binary cycle turbine engine 66.
  • the same figure shows a model of the torque-isothermal-adiabatic cycle turbine motor, 62, with its main parts, the rotor assembly that forms the compressor of the power conversion unit 67, the rotor assembly that forms the compressor of the power conservation unit 68, the chamber in which the isothermal heating process 69 is performed, the three-way control valve assembly 610, the turbine rotor assembly of the power conservation system 61 1, the rotor assembly that forms the system turbine 612 and the chamber where the isothermal cooling process 613 is performed.
  • Figure 7 shows the diagram containing the essential elements of a Brayton combined-cycle power generation plant, the input of energy, heat, 71, by the combustion chamber of the Brayton cycle unit, the cooling of the binary cycle unit. 72 which occurs in the isothermal cooling compression chamber, the combustion gas exhaust 73, the electricity generator 74, the starter motor 75 and the air inlet 76 to the combustion chamber.
  • Figure 8 suggests a design of a Brayton 81 combined torque 82 propulsion system showing the combustion chamber of the Brayton unit 83, the exhaust chamber 84 with the heat exchanger for the binary unit, the chamber unit cooling fan 85 and propulsion elements 86.
  • the combined Brayton-binary-isothermal-adiabatic cycle is the junction of a cycle called Brayton of four processes that all run simultaneously with a binary-isothermal-adiabatic cycle of seven processes which also all run simultaneously and this system.
  • (Q ; ) represents the total energy input to the system, usually by combustion, in "Joule”
  • (n) represents the number of mol belonging to the Brayton cycle unit
  • (R) represents the universal constant of perfect gases
  • ⁇ T qc represents the maximum combustion temperature of the gas in "Kelvin” at process point (2)
  • (TV) represents the temperature at initial point (1) from the isobaric process
  • figure 4 represents the adiabatic expansion coefficient.

Abstract

Refere-se a presente invenção a um motor térmico tipo turbina de ciclo combinado formado por uma unidade operando com o ciclo Brayton interligado e integrado à outra unidade operando com o ciclo binário de três processos isotérmicos e quatro processos adiabáticos.

Description

"MOTOR TURBINA DE CICLO COMBINADO BRAYTON E BINÁRIO- ISOTÉRMICO-ADIABÁTICO E PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TURBINA DE CICLO COMBINADO"
CAMPO TÉCNICO DA INVENÇÃO
[001 ] Refere-se a presente invenção a um motor térmico tipo turbina de ciclo combinado formado por uma unidade operando com o ciclo Brayton interligado e integrado à outra unidade operando com o ciclo binário de três processos isotérmicos e quatro processos adiabáticos.
ANTECEDENTES DA INVENÇÃO
[002] A termodinâmica clássica define três conceitos de sistemas termodinâmicos, o sistema termodinâmico aberto, o sistema termodinâmico fechado e o sistema termodinâmico isolado. Estes três conceitos de sistemas termodinâmicos foram conceituados no século XIX nos primórdios da criação das leis da termodinâmica e fundamentam todos os ciclos motores conhecidos até o presente.
[003] O sistema termodinâmico isolado é definido como um sistema no qual nem matéria, nem energia passa através dele. Portanto, este conceito de sistema termodinâmico não oferece propriedades que permitam o desenvolvimento de motores.
[004] O sistema termodinâmico aberto é definido como um sistema termodinâmico em que energia e matéria podem entrar e sair deste sistema. São exemplos de sistemas termodinâmicos aberto, os motores de combustão interna de ciclo Otto, de ciclo Atkinson, semelhante ao ciclo Otto, de ciclo Diesel, de ciclo Sabathe, semelhante ao ciclo Diesel, de ciclo Brayton de combustão interna, de ciclo Rankine com exaustão do vapor ao ambiente. As matérias que entram nestes sistemas são os combustíveis e oxigénio ou fluido de trabalho ou gás de trabalho. A energia que entra nestes sistemas é o calor. As matérias que saem destes sistemas são a exaustão da combustão ou do fluido de trabalho, gases e resíduos, as energias que saem destes sistemas são a energia mecânica de trabalho e parte do calor dissipado.
[005] O sistema termodinâmico fechado é definido como um sistema termodinâmico em que apenas a energia pode entrar e sair deste sistema. São exemplos de sistema termodinâmico fechado, motores de combustão externa como o de ciclo Stirling, de ciclo Ericsson, de ciclo Rankine com fluido de trabalho em circuito fechado, de ciclo Brayton de calor ou de combustão externa, de ciclo Carnot. A energia que entra neste sistema é o calor. As energias que saem deste sistema são a energia mecânica de trabalho e parte do calor dissipado, porém não sai matéria destes sistemas, como ocorre no sistema aberto.
[006] Ambos os sistemas, aberto e fechado, toda a massa do gás de trabalho é exposta à energia de entrada, calor ou combustão e toda ela também, é exposta ao resfriamento ou arrefecimento, isto é, a massa do gás de trabalho é constante em seus processos e a diferença entre ambos é que no sistema aberto a massa de gás de trabalho atravessa o sistema, e no sistema fechado a massa permanece no sistema.
O ESTADO ATUAL DA TÉCNICA
[007] Os motores de ciclo combinado conhecidos até o presente foram inventados e projetados unindo-se no mesmo sistema dois conceitos de motores idealizados no século XIX, fundamentados em sistemas termodinâmicos aberto ou sistemas termodinâmicos fechado, os mais conhecidos são os ciclos combinados de um motor de ciclo Brayton com um motor de ciclo Rankine e o ciclo combinado de um motor de ciclo Diesel com um motor de ciclo Rankine. [008] O conceito básico de um ciclo combinado é um sistema composto por um motor operante por meio de uma fonte de temperatura alta de forma que o rejeito de calor deste motor é a energia que move um segundo motor que requeira uma temperatura mais baixa de operação, ambos formando um sistema combinado de conversão de energia térmica em energia mecânica para um mesmo fim comum.
[009] O estado atual da técnica revela ciclos combinados formado por um motor principal de ciclo Brayton que funciona com uma fonte principal com temperatura superior a 1000 °C e com gases de exaustão na faixa entre 600 °C e 700 °C e estes gases por sua vez são canalizados para alimentar outro motor de ciclo Rankine, geralmente "Rankine orgânico" (ORC). O ciclo Rankine convencional tem como fluido de trabalho a água, o ciclo Rankine orgânico utiliza fluidos orgânicos, estes são mais adequados para projetos em temperaturas menores que os projetos com o ciclo Rankine convencional, portanto normalmente são utilizados nos ciclos combinados.
[010] Algumas das principais desvantagens dos ciclos combinados atuais, considerando a segunda máquina um motor de ciclo Rankine ou Rankine orgânico são a troca do estado físico do fluido de trabalho, isto é, há uma fase líquida exigida pelos processos do ciclo termodinâmico que deve ser controlada, e a energia do aquecimento da fase líquida e da fase latente de troca de estado não podem ser convertidas em energia útil de trabalho, são perdas impostas pelo conceito Rankine. Este sistema exige itens do motor que implicam em mais processos, mais peso, mais controle e mais perdas, são necessários reservatórios do líquido, reservatório para geração de vapor, trocador do tipo resfriador para condensação, reservatório para condensação, bomba para vazão do fluido no estado líquido, válvulas de controle dos processos de estado líquido e gasoso. Este conjunto de particularidades implicam em peso adicional, volume adicional, perdas térmicas adicionais, redução da eficiência global e por consequência, índices de poluição maiores, custos de implementação maiores e menores índices de sustentabilidade nestes projetos.
[01 1 ] O estado atual da técnica, a partir de 201 1 , revelou um novo conceito de sistema termodinâmico, o chamado sistema termodinâmico híbrido, e este novo conceito de sistema passou a ser a base de sustentação para novos ciclos motores, os motores de ciclos diferenciais e os motores de ciclos binários não diferenciais de forma que estes novos ciclos motores possuem vantagens significativas para a criação de novos ciclos combinados. Podem ser exemplificados ciclos combinados de um motor de ciclo Brayton com um motor de ciclo diferencial, motor de ciclo Brayton com um motor de ciclo binário, motor de ciclo Diesel com um motor de ciclo diferencial, motor de ciclo Diesel com um motor de ciclo binário, motor de ciclo Otto com um motor de ciclo diferencial, motor de ciclo Otto com um motor de ciclo binário e algumas outras variações.
OBJETIVOS DA INVENÇÃO
[012] Os grandes problemas do estado da técnica, especificamente quanto aos ciclos combinados se encontram justamente na segunda unidade que formam os sistemas, este, geralmente é uma máquina de ciclo Rankine, uma máquina antiga, cujos processos termodinâmicos impõe perdas através da necessidade de troca do estado físico do fluido de trabalho, do calor de aquecimento da fase líquida, do calor de transformação, calor latente, das unidades mecânicas, reservatórios, sistemas de válvulas, condensadores, bombas que agregam peso, volume, perdas e custos.
[013] O objetivo da invenção se concentra em eliminar alguns dos problemas existentes, minimizar outros problemas e oferecer novas possibilidades, para alcançar estes objetivos, um novo conceito de motores térmicos passou a ser indispensável e a criação de novos ciclos-motores são necessários de forma que a eficiência dos motores não ficasse mais dependentes exclusivamente das temperaturas. O conceito de sistema híbrido e ciclos diferenciais e ciclos binários, característica própria que fundamenta este novo conceito de ciclo combinado, elimina a dependência da eficiência de forma exclusiva à temperatura. A eliminação da necessidade da troca do estado físico dos fluidos de trabalho passa a ser representativo para reduzir volume, peso e custos das máquinas. Portanto o ciclo combinado formado por uma unidade de ciclo Brayton com uma unidade de ciclo binário-isotérmico-adiabático constitui uma evolução importante, viável para o futuro dos sistemas formados por ciclos combinados.
DESCRIÇÃO DA INVENÇÃO
[014] Os motores de ciclos combinados são caracterizados por possuírem duas unidades termodinâmicas distintas integradas formando um sistema de forma que a energia descartada pela unidade principal é a fonte de energia da unidade secundária e ambos possuem uma integração do trabalho mecânico final.
[015] O conceito presente considera uma unidade termodinâmica formada por um motor turbina de ciclo Brayton 320, o qual executa um ciclo Brayton de quatro processos e um motor turbina de ciclo binário-isotérmico-adiabático 319, o qual executa um ciclo de três processos isotérmicos e quatro processos adiabáticos, e de forma que a energia de entrada, normalmente por combustão executa um processo isobárico de expansão na unidade de ciclo Brayton, um processo de resfriamento também isobárico o qual cede energia para o processo isotérmico de expansão da unidade de ciclo binário, este por sua vez executa um processo de resfriamento isotérmico cedendo para o ambiente a energia que o sistema em conjunto não tenha convertido em trabalho e de forma que ambos os ciclos tenham uma conversão em trabalho final comum. Portanto trata-se de motores turbina de ciclos combinados completamente distintos dos motores e ciclos combinados atuais, os quais são baseados única e exclusivamente nos sistemas aberto ou fechado. Na figura 3 é mostrado o conceito geral do invento e na figura 4 é mostrada a integração de ambos os ciclos termodinâmicos formando o ciclo combinado.
[016] A presente invenção trás evoluções importantes para a conversão de energia térmica em mecânica pelo conceito da combinação de dois ciclos termodinâmicos distintos. A imensa maioria de ciclos combinados tem como máquina secundária um motor turbina a vapor de ciclo Rankine ou Rankine orgânico. A figura 1 mostra que o ciclo Rankine possui perdas próprias do conceito dos processos que forma seu ciclo, não permitindo que uma parcela significativa de energia seja convertida em trabalho. O ciclo Rankine e Rankine orgânico exigem troca da fase física do gás de trabalho, isto é, há uma fase do processo em estado líquido exigindo elementos de condensação, evaporação e sistemas de bombas auxiliares, e todos estes elementos e processos impõe perdas e impossibilidades de utilizar as energias destas fases na conversão. Algumas das principais vantagens do invento ciclo combinado Brayton com binário-isotérmico-adiabático que podem ser constatadas são a inexistência de elementos de troca de fase física do fluido de trabalho e suas perdas associadas, a inexistência de elementos de condensação e de vaporização, portanto a inexistência também de perdas associadas ao calor latente do fluido de trabalho, a inexistência de circuitos, bombas, elementos de controle destinados aos processos de troca de fase física do fluido e suas perdas associadas e que por consequência a inexistência do volume, materiais, massa e peso dos elementos que compõe tais projetos. Portanto, a inovação apresentada pelo ciclo combinado Brayton com binário é expressiva.
[017] Os motores turbina de ciclos combinados baseados na integração de um motor de ciclo Brayton com um motor de ciclo binário poderão ser construídos com materiais e técnicas semelhantes aos motores de ciclos combinados convencionais, como a unidade secundária de ciclo binário consiste de um motor que trabalha com gás em circuito fechado, considerando o sistema completo, este conceito em circuito fechado de gás de trabalho com relação ao meio externo indica que o sistema deve ser vedado, ou em alguns casos, vazamentos podem ser admitidos, desde que compensados. Materiais adequados para esta tecnologia devem ser observados, são semelhantes neste aspecto às tecnologias de projetos de motores de ciclo Brayton de combustão externa. O gás de trabalho depende do projeto, de sua aplicação e dos parâmetros utilizados, o gás poderá ser vários, cada um proporcionará particularidades específicas, como exemplo pode ser sugerido os gases: hélio, hidrogénio, nitrogénio, ar seco, neon, entre outros.
DESCRIÇÃO DOS DESENHOS
[018] As figuras anexas demonstram as principais características e propriedades do novo conceito de ciclo combinado, mais especificamente a um sistema formado por uma unidade de ciclo Brayton com uma unidade de ciclo binário-isotérmico-adiabático, sendo representadas conforme segue abaixo:
A figura 1 demonstra em diagrama de blocos um sistema de ciclo combinado atual, formado por uma unidade de ciclo Brayton com uma unidade de ciclo Rankine. Plantas projetadas com esta filosofia na atualidade são utilizadas para geração de eletricidade e a eficiência destes sistemas de ciclo combinado da atualidade situa-se na faixa de 50% a 60%, índices estes, publicados em diversos meios de comunicação.
A figura 2 demonstra em diagrama de blocos, um sistema de ciclo combinado idealizado com base no novo conceito de sistema termodinâmico, formado por uma unidade de ciclo Brayton conhecida, com uma unidade de ciclo binário-isotérmico-adiabático. Teoricamente, plantas projetadas com esta filosofia para geração de eletricidade terá eficiência superior a 60%, baseado na análise teórica do ciclo da segunda máquina que forma o sistema, entre as perdas que deixam de existir, a inexistência de troca do estado físico do fluido de trabalho é item significativo, o processo de conservação de energia propiciado pelo subsistema de conservação pertencente ao ciclo binário, reforça as possibilidades do incremento da eficiência geral.
A figura 3, indicado em 31 , apresenta o diagrama de um sistema composto por uma unidade de ciclo Brayton 320, com uma unidade de ciclo binário-isotérmico-adiabático 319, formando o ciclo combinado Brayton e binário 31 .
A figura 4 mostra respectivamente as curvas do gráfico da pressão e deslocamento volumétrico do ciclo Brayton 41 , e as curvas do gráfico da pressão e deslocamento volumétrico do ciclo binário-isotérmico-adiabático 44.
A figura 5 mostra um modelo mecânico de motor turbina do ciclo Brayton 51 , com seu respectivo ciclo termodinâmico 52, um modelo mecânico de motor turbina do ciclo binário-isotérmico-adiabático 53, com seu respectivo ciclo termodinâmico 54, que forma um sistema de ciclo combinado.
A figura 6 mostra com maiores detalhes um modelo de motor turbina do ciclo Brayton 61 , com as suas principais partes, e um modelo de motor turbina do ciclo binário-isotérmico-adiabático 62, com suas principais partes.
A figura 7 mostra o diagrama de uma planta de geração de energia com seus principais elementos.
A figura 8 mostra um exemplo de aplicação de um sistema formado por dois ciclos, formando em conjunto um ciclo combinado para um mesmo fim.
DESCRIÇÃO DETALHADA DO INVENTO
[019] O motor de ciclo combinado é um sistema composto por um conceito de motor baseado no sistema termodinâmico aberto, o ciclo Brayton, idealizado no século XIX, com um motor baseado no sistema termodinâmico híbrido, o ciclo binário-isotérmico-adiabático não diferencial, idealizado no século XXI, de forma que a energia descartada pelo primeiro, o motor de ciclo Brayton, é a energia que move o segundo, o motor de ciclo binário.
[020] Na figura 3 é mostrado o sistema que forma o motor de ciclo combinado, o mesmo é constituído pela integração de dois motores, cada um com seu ciclo termodinâmico, sendo um deles fundamentado no sistema termodinâmico aberto e outro fundamentado no sistema termodinâmico híbrido de forma que uma das unidades, de ciclo Brayton é alimentada pela fonte primária de energia 315 e compreende um motor de ciclo Brayton 320 e a outra unidade é alimentada pela energia de exaustão da primeira e compreende um motor de ciclo binário de três processos isotérmicos e quatro processos adiabáticos 319, tendo a exaustão, energia descartada da unidade do ciclo Brayton, acoplada termicamente à entrada de energia da unidade do ciclo binário por meio de um trocador de calor isotérmico 32, com a exaustão, energia descartada da alimentação da unidade de ciclo binário, da saída do trocador de calor 32, acoplada termicamente por meio de outro trocador de calor 31 1 , transferindo parte da energia para o ar pressurizado pelo rotor de compressão 314 da unidade de ciclo Brayton, com a função de recuperar parte do calor descartado e ambos os sistemas interconectados mecanicamente pelo mesmo eixo de força 310 ou interconectados de forma indireta tendo as conversões de ambas, somadas para um mesmo fim.
[021 ] Existe condições necessárias para que o ciclo do motor de ciclo binário seja formado por processos isotérmicos e adiabáticos, o primeiro está relacionado aos rotores dos compressores da unidade de conversão e conservação, estes devem ser projetados para levar o gás nos processos adiabáticos na pressão que corresponda, no processo, o retorno do mesmo à temperatura do trocador isotérmico 32 e que o trocador de calor 32 seja projetado para que a troca de calor com o gás seja eficiente e termicamente isonômico, isto é, as câmaras internas do trocador devem ser projetadas com características de isonomia na temperatura do gás em toda a sua extensão, permitindo evidentemente, diferenciais da pressão conforme ocorre o fluxo do gás de trabalho, ao contrario dos trocadores de calor das unidades isobáricas, estes por sua vez, para exemplificar, devem ser projetados para haver isonomia na pressão e não na temperatura.
[022] Na figura 4, são mostrados os gráficos da pressão e deslocamento volumétrico que na união deles formam o ciclo combinado, um processo composto pela combinação de dois ciclos, um Brayton e outro binário- isotérmico-adiabático, onde o primeiro ciclo, o ciclo Brayton é formado por quatro processos, ou também chamado de transformações termodinâmicas, sendo dois processos isobáricos e dois processos adiabáticos 41 , que ocorrem todos simultaneamente, e é formado na seguinte sequencia, um processo isobárico de expansão (1 -2) e de entrada de energia 42, um processo adiabático de expansão (2-3), um processo isobárico de compressão (3-4) e de descarte de energia, calor 43, e um processo adiabático de compressão (4-1 ), e onde o segundo ciclo, o ciclo binário-isotérmico-adiabático é formado por sete processos, ou também chamado de transformações termodinâmicas, sendo três processos isotérmicos e quatro processos adiabáticos 44, que ocorrem todos simultaneamente, e possui a seguinte formação, um processo ou transformação de expansão isotérmica de aquecimento (a-b) de alta temperatura dos sistemas de conversão e de conservação de energia, sendo que a fração de gás (Δη) do subsistema de conservação somente recebe energia da fonte quente no início operacional do motor turbina binário, posteriormente, em funcionamento contínuo, esta fração de gás conserva a sua energia alternando entre calor e energia cinética prestando-se para manter os potenciais operacionais do motor, sem ser utilizado para produzir trabalho externo, um processo ou transformação adiabático de expansão do subsistema de conversão de energia (b-c), um processo ou transformação adiabático de expansão do subsistema de conservação de energia (b-c'), um processo ou transformação de compressão isotérmica de resfriamento (c-d) de baixa temperatura do subsistema de conversão de energia, um processo ou transformação de compressão isotérmico politropico e isolado termicamente (c'-d') do subsistema de conservação de energia, um processo ou transformação adiabático de compressão do subsistema de conversão de energia (d-a), um processo ou transformação adiabático de compressão do subsistema de conservação de energia (d'-a) e um processo de modulação ou chamado também de controle de transferência de massa de gás de trabalho e de conservação de energia através de uma válvula de controle proporcional de três vias entre os subsistemas de conversão e conservação que ocorre juntamente com os processos de expansão adiabático de ambos os subsistemas do ciclo binário, sendo que o processo isobárico de compressão do ciclo Brayton (3-4) corresponde à fonte de energia, calor, 43, que flui para o processo de expansão isotérmica de aquecimento (a-b) do ciclo binário.
[023] A tabela 1 mostra os quatro processos (1 -2, 2-3, 3-4, 4-1 ) que formam o ciclo Brayton, mostrados passo a passo, com dois processos isobáricos e dois processos adiabáticos.
Tabela 1
Unidade de ciclo
Passo Processo
Brayton
Isobárico de
1 1 -2 Entrada de energia
expansão
Adiabático de
2 2-3
expansão
Isobárico de Energia transferida
3 3-4 Descarte energia
compressão para o ciclo binário
Adiabático de
4 4-1
compressão [024] A tabela 2 mostra os sete processos (a-b, b-c, b-c', c-d, c'-d', d-a, d'-a) que formam o ciclo binário-isotérmico-adiabático não diferencial, mostrados passo a passo, com três processos isotérmicos e quatro processos adiabáticos.
Tabela 2
Figure imgf000014_0001
A figura 5 mostra um modelo mecânico de motor turbina do ciclo Brayton, 51 , indicando a entrada da câmara de combustão (1 ), a saída da câmara de combustão (2), a saída das turbinas (3) e a entrada do ar na entrada do compressor, (4) e seu respectivo ciclo termodinâmico, 52, um circuito que transporta o calor da exaustão do motor turbina de ciclo Brayton para a câmara de aquecimento e do processo isotérmico do motor turbina de ciclo binário 53 indicando as câmaras onde se realizam os processos do ciclo binário e o gráfico do ciclo binário 54.
A figura 6 mostra com maiores detalhes um modelo de motor turbina do ciclo Brayton, 61 , com as suas principais partes, o conjunto de rotores que formam o compressor 63, a câmara de combustão 64, o conjunto de rotores que formam a turbina 65 e a câmara de exaustão com o trocador de calor que é a origem da energia do motor turbina de ciclo binário 66. A mesma figura mostra um modelo de motor turbina do ciclo binário-isotérmico-adiabático, 62, com suas principais partes, o conjunto de rotores que formam o compressor da unidade de conversão de energia 67, o conjunto de rotores que formam o compressor da unidade de conservação de energia 68, a câmara onde se realiza o processo isotérmico de aquecimento 69, o conjunto de válvulas de controle de três vias 610, o conjunto de rotores que formam a turbina do sistema de conservação de energia 61 1 , o conjunto de rotores que formam a turbina do sistema de conversão de energia 612 e a câmara onde se realiza o processo isotérmico de resfriamento 613.
A figura 7 mostra o diagrama contendo os elementos essenciais de uma planta de geração de energia de ciclo combinado Brayton e binário, a entrada de energia, calor, 71 , pela câmara de combustão da unidade de ciclo Brayton, o resfriamento da unidade de ciclo binário 72 que ocorre na câmara de compressão isotérmica de resfriamento, a exaustão dos gases da combustão 73, o gerador de eletricidade 74, o motor de partida 75 e a entrada de ar 76 para a câmara de combustão.
A figura 8 sugere um projeto de um sistema de propulsão por meio de um ciclo combinado Brayton 81 com binário 82, mostrando a câmara de combustão da unidade Brayton 83, a câmara de exaustão 84 com o trocador de calor para a unidade binário, a câmara de resfriamento da unidade binário 85 e os elementos de propulsão 86.
[025] O ciclo combinado Brayton com binário-isotérmico-adiabático é a junção de um ciclo chamado Brayton de quatro processos que se realizam todos simultaneamente com um ciclo binário-isotérmico-adiabático de sete processos os quais também se realizam todos simultaneamente e este sistema possui a entrada de energia geralmente por combustão do ciclo Brayton, um processo isobárico (1 -2) de expansão e aquecimento representado pela expressão (a).
Figure imgf000016_0001
[026] Na equação (a), (Q;) representa a energia total de entrada no sistema, geralmente por combustão, em "Joule", (n) representa o número de mol pertencendo à unidade ciclo Brayton, {R) representa a constante universal dos gases perfeitos, { Tqc) representa a temperatura de combustão máxima do gás em "Kelvin" no ponto (2) do processo, figura 4, indicado por 42, ( TV) representa a temperatura no ponto (1 ), inicial do processo isobárico, figura 4, e (y) representa o coeficiente de expansão adiabática.
[027] O descarte da energia não convertida em trabalho pela máquina principal, o ciclo Brayton, é a energia de entrada da máquina secundária, de ciclo binário e a expressão da energia descartada é representada pela expressão (b).
Figure imgf000016_0002
[028] A energia de entrada da máquina secundária, de ciclo binário é representado pela expressão (c), onde { Tq) é a temperatura máxima de saída da unidade Brayton.
Figure imgf000016_0003
[029] A energia de saída da máquina de ciclo Brayton é igual à energia de entrada da máquina de ciclo binário, {Q0b = Q*)-
[030] O descarte da energia não convertida em trabalho pela máquina secundária, de ciclo binário, é representada pela expressão (d). Esta, no conceito ideal, é o total de energia descartada ao meio, a qual não realiza trabalho útil. (d)
[031 ] O trabalho útil total do sistema ciclo combinado, considerando um modelo ideal sem perdas, é a diferença entre a entrada e a saída da energia e é representado pela expressão (e) abaixo. n.y.R
. <Jqc - T - n2. R. Tf. \n^ (e)
(y-i)
[032] A demonstração final teórica da eficiência do ciclo combinado Brayton e binário-isotérmico-adiabático é dada pela expressão (f), considerando que que os ciclos combinados de uma máquina
Figure imgf000017_0001
fundamentada no sistema aberto ou fechado com uma máquina fundamentada no sistema híbrido possuem como parâmetro da eficiência, também o número de moles ou massa, característica herdada da máquina fundamentada no sistema híbrido, e portanto, não possuem suas eficiências dependentes exclusivamente das temperaturas. n = i _ Us. ílzll r ln m EXEMPLOS DE APLICAÇÕES
[033] Os motores turbina de ciclos combinados pela integração de uma unidade de ciclo Brayton com um motor fundamentado no sistema híbrido, por exemplo um motor turbina de ciclo binário-isotérmico-adiabático possuem inúmeras aplicações, a mais evidente seria para gerar energia, mostrado pela figura 7, pois tem como benefício direto a sua capacidade de converter maior quantidade de energia em trabalho, em se comparando com os ciclos combinados convencionais, pelas razões descritas anteriormente. Porém em função de outros atributos, menor massa, volume, comparando com as versões convencionais, este conceito viabiliza o desenvolvimento de sistemas de propulsão ou de tração, como sugerido na figura 8.

Claims

REIVINDICAÇÕES
1 ) "MOTOR TURBINA DE CICLO COMBINADO BRAYTON E BINÁRIO- ISOTÉRMICO-ADIABÁTICO", caracterizado por ser constituído pela integração de dois ciclos termodinâmicos formando um sistema combinado, sendo um deles fundamentado no sistema termodinâmico aberto e outro fundamentado no sistema termodinâmico híbrido de forma que uma das unidades, de ciclo Brayton é alimentada pela fonte primária de energia (315) e compreende um motor de ciclo Brayton (320) e a outra unidade é alimentada pela energia de exaustão da primeira e compreende um motor de ciclo binário de três processos isotérmicos e quatro processos adiabáticos (319), tendo a exaustão, energia descartada da unidade do ciclo Brayton, acoplada termicamente à entrada de energia da unidade do ciclo binário por meio de um trocador de calor isotérmico (32), com a exaustão, energia descartada da alimentação da unidade de ciclo binário, da saída do trocador de calor (32), acoplada termicamente por meio de outro trocador de calor (31 1 ), transferindo parte da energia para o ar pressurizado pelo rotor de compressão (314) da unidade de ciclo Brayton, com a função de recuperar parte do calor descartado e ambos os sistemas interconectados mecanicamente pelo mesmo eixo de força (310) ou interconectados de forma indireta tendo as conversões de ambas, somadas para um mesmo fim.
2) "MOTOR TURBINA DE CICLO COMBINADO BRAYTON E BINÁRIO- ISOTÉRMICO-ADIABÁTICO", de acordo com a reivindicação 1 , caracterizado por ser constituído pela integração de dois ciclos termodinâmicos formando um sistema combinado, sendo um deles fundamentado no sistema termodinâmico aberto e outro fundamentado no sistema termodinâmico híbrido, sendo uma das unidades de ciclo Brayton (320) e a outra unidade de ciclo binário de três processos isotérmicos e quatro processos adiabáticos (319).
3) "MOTOR TURBINA DE CICLO COMBINADO BRAYTON E BINÁRIO- ISOTÉRMICO-ADIABÁTICO", de acordo com as reivindicações 1 e 2, caracterizado por ser constituído pela integração de dois ciclos termodinâmicos, sendo um deles, de ciclo Brayton (320) alimentada pela fonte primária de energia (315) e a outra unidade de ciclo binário (319) é alimentada pela energia de exaustão da primeira, tendo a exaustão, energia descartada da unidade do ciclo Brayton, acoplada termicamente à entrada de energia da unidade do ciclo binário por meio de um trocador de calor isotérmico (32).
4) "MOTOR TURBINA DE CICLO COMBINADO BRAYTON E BINÁRIO- ISOTÉRMICO-ADIABÁTICO", de acordo com as reivindicações 1 , 2 e 3, caracterizado por um acoplamento térmico (32), chamado de trocador de calor isotérmico, com a função de canalizar a energia de exaustão do ciclo Brayton (320) para a entrada de energia da unidade de ciclo binário (319).
5) "MOTOR TURBINA DE CICLO COMBINADO BRAYTON E BINÁRIO- ISOTÉRMICO-ADIABÁTICO", de acordo com as reivindicações 1 , 3 e 4, caracterizado por um acoplamento térmico (31 1 ), chamado de trocador de calor, com a função de recuperar parte da energia de exaustão de saída do acoplamento térmico (32), transferindo esta energia para o ar vindo da saída do rotor do compressor (314) do sistema formado pelo ciclo Brayton, com a função de recuperar parte do calor descartado.
6) "MOTOR TURBINA DE CICLO COMBINADO BRAYTON E BINÁRIO- ISOTÉRMICO-ADIABÁTICO", de acordo com a reivindicação 1 , caracterizado por um eixo comum de força motriz que integra as conversões de energia das unidades de ciclo Brayton e ciclo binário-isotérmico-adiabático que formam o ciclo combinado.
7) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TURBINA DE CICLO COMBINADO", caracterizado por um processo composto pela combinação de dois ciclos, um Brayton e outro binário- isotérmico-adiabático, onde o primeiro ciclo, o ciclo Brayton é formado por quatro processos, ou também chamado de transformações termodinâmicas, sendo dois processos isobáricos e dois processos adiabáticos (41 ), que ocorrem todos simultaneamente, e é formado na seguinte sequencia, um processo isobárico de expansão (1 -2) e de entrada de energia (42), um processo adiabático de expansão (2-3), um processo isobárico de compressão (3-4) e de descarte de energia, calor (43), e um processo adiabático de compressão (4-1 ), e onde o segundo ciclo, o ciclo binário-isotérmico-adiabático é formado por sete processos, ou também chamado de transformações termodinâmicas, sendo três processos isotérmicos e quatro processos adiabáticos (44), que ocorrem todos simultaneamente, e possui a seguinte formação, um processo ou transformação de expansão isotérmica de aquecimento (a-b) de alta temperatura dos sistemas de conversão e de conservação de energia, sendo que a fração de gás (Δη) do subsistema de conservação somente recebe energia da fonte quente no início operacional do motor turbina binário, posteriormente, em funcionamento contínuo, esta fração de gás conserva a sua energia alternando entre calor e energia cinética prestando-se para manter os potenciais operacionais do motor, sem ser utilizado para produzir trabalho externo, um processo ou transformação adiabático de expansão do subsistema de conversão de energia (b-c), um processo ou transformação adiabático de expansão do subsistema de conservação de energia (b-c'), um processo ou transformação de compressão isotérmica de resfriamento (c-d) de baixa temperatura do subsistema de conversão de energia, um processo ou transformação de compressão isotérmico politrópico (c'-d') do subsistema de conservação de energia, um processo ou transformação adiabático de compressão do subsistema de conversão de energia (d-a), um processo ou transformação adiabático de compressão do subsistema de conservação de energia (d'-a) e um processo de modulação ou chamado também de controle de transferência de massa de gás de trabalho e de conservação de energia através de uma válvula de controle proporcional de três vias entre os subsistemas de conversão e conservação que ocorre juntamente com os processos de expansão adiabático de ambos os subsistemas do ciclo binário, sendo que o processo isobárico de compressão do ciclo Brayton (3-4) corresponde à fonte de energia, calor, (43), que flui para o processo de expansão isotérmico de aquecimento (a-b) do ciclo binário.
8) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TURBINA DE CICLO COMBINADO", de acordo com a reivindicação 7, caracterizado por um processo onde a entrada de energia, (42), do sistema que forma o ciclo combinado corresponde a uma transformação ou processo isobárico de expansão (1 -2) da unidade de ciclo Brayton.
9) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TURBINA DE CICLO COMBINADO", de acordo com a reivindicação 7, caracterizado por um processo onde o acoplamento termodinâmico entre a unidade de ciclo Brayton e a unidade de ciclo binário-isotérmico-adiabático ocorre pela transferência de calor (43), do processo isobárico de compressão da unidade de ciclo Brayton (3-4) para o processo isotérmico de expansão da unidade de ciclo binário-isotérmico-adiabático (a-b).
10) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TURBINA DE CICLO COMBINADO", de acordo com a reivindicação 7, caracterizado por um processo onde o descarte da energia não convertida (45), do sistema que forma o ciclo combinado corresponde a uma transformação ou processo isotérmico de compressão (c-d) da unidade de ciclo binário-isotérmico-adiabático.
PCT/BR2018/050124 2017-04-26 2018-04-24 Motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado WO2018195628A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102017008567-8A BR102017008567A2 (pt) 2017-04-26 2017-04-26 motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado
BRBR102017008567-8 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018195628A1 true WO2018195628A1 (pt) 2018-11-01

Family

ID=63917860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/050124 WO2018195628A1 (pt) 2017-04-26 2018-04-24 Motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado

Country Status (2)

Country Link
BR (1) BR102017008567A2 (pt)
WO (1) WO2018195628A1 (pt)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902546A (en) * 1974-06-26 1975-09-02 Airco Inc Gas fired heat/cool system
US5537823A (en) * 1994-10-21 1996-07-23 Vogel; Richard H. High efficiency energy conversion system
JPH09144560A (ja) * 1995-11-24 1997-06-03 Toshiba Corp 水素燃焼ガスタービンプラントおよびその運転方法
EP1830052A1 (fr) * 2006-03-03 2007-09-05 Hubert Antoine Cycle combiné à air
US20070256424A1 (en) * 2006-05-05 2007-11-08 Siemens Power Generation, Inc. Heat recovery gas turbine in combined brayton cycle power generation
CN104847499A (zh) * 2015-06-01 2015-08-19 国家电网公司 一种带太阳能加热的布列顿联合循环发电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902546A (en) * 1974-06-26 1975-09-02 Airco Inc Gas fired heat/cool system
US5537823A (en) * 1994-10-21 1996-07-23 Vogel; Richard H. High efficiency energy conversion system
JPH09144560A (ja) * 1995-11-24 1997-06-03 Toshiba Corp 水素燃焼ガスタービンプラントおよびその運転方法
EP1830052A1 (fr) * 2006-03-03 2007-09-05 Hubert Antoine Cycle combiné à air
US20070256424A1 (en) * 2006-05-05 2007-11-08 Siemens Power Generation, Inc. Heat recovery gas turbine in combined brayton cycle power generation
CN104847499A (zh) * 2015-06-01 2015-08-19 国家电网公司 一种带太阳能加热的布列顿联合循环发电装置

Also Published As

Publication number Publication date
BR102017008567A2 (pt) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2022166384A1 (zh) 基于二氧化碳气液相变的热能转化机械能储能装置
Wojewoda et al. Numerical model and investigations of the externally heated valve Joule engine
WO2018195628A1 (pt) Motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado
WO2018195627A1 (pt) Motor turbina de ciclo combinado brayton e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado
WO2018195633A1 (pt) Motor de ciclo combinado atkinson ou miller e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
WO2018195634A1 (pt) Motor de ciclo combinado atkinson ou miller e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
WO2018195631A1 (pt) Motor de ciclo combinado otto e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
WO2018195630A1 (pt) Motor de ciclo combinado diesel e binário-isotérmico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
CN102505973A (zh) 双级膨胀朗肯循环发电系统
WO2018195632A1 (pt) Motor de ciclo combinado otto e binário-isotérmico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
WO2018195629A1 (pt) Motor de ciclo combinado diesel e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
WO2018195635A1 (pt) Motor de ciclo combinado diesel e diferencial-isotérmico-isocórico regenerativo e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
BR102012015554A2 (pt) Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle
WO2018195636A1 (pt) Motor de ciclo combinado diesel e diferencial-isobárico-isocórico regenerativo e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
BR102018068525A2 (pt) Motor turbina de ciclo brayton integrado de circuito fechado regenerativo para geração a partir de fonte heliotérmica ou termonuclear e processo de controle para o ciclo termodinâmico do motor
WO2018195619A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018035588A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos isocóricos com regenerador ativo e processo de controle para o ciclo termodinâmico do motor trémico
BR102018015325A2 (pt) motor de combustão interna integrado formado por uma unidade principal a turbina e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor.
BR102018015947A2 (pt) Motor de combustão interna integrado formado por uma unidade principal de ciclo diesel e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor
WO2018195626A1 (pt) Motor turbina de ciclo binário composto por três processos politrópicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
WO2020026215A1 (pt) Motor de combustão interna integrado formado por uma unidade principal de ciclo otto e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor
WO2018195622A1 (pt) Motor turbina de ciclo binário composto por três processos isotérmicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
WO2018195621A1 (pt) Motor turbina de ciclo binário composto por três processos isobáricos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
WO2018195618A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico
BR102018016747A2 (pt) Transformador de potencial térmico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790584

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790584

Country of ref document: EP

Kind code of ref document: A1