WO2022166384A1 - 基于二氧化碳气液相变的热能转化机械能储能装置 - Google Patents

基于二氧化碳气液相变的热能转化机械能储能装置 Download PDF

Info

Publication number
WO2022166384A1
WO2022166384A1 PCT/CN2021/136346 CN2021136346W WO2022166384A1 WO 2022166384 A1 WO2022166384 A1 WO 2022166384A1 CN 2021136346 W CN2021136346 W CN 2021136346W WO 2022166384 A1 WO2022166384 A1 WO 2022166384A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
carbon dioxide
storage
assembly
energy storage
Prior art date
Application number
PCT/CN2021/136346
Other languages
English (en)
French (fr)
Other versions
WO2022166384A8 (zh
Inventor
谢永慧
杨锋
汪晓勇
郭永亮
张荻
王雨琦
孙磊
王秦
Original Assignee
百穰新能源科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 百穰新能源科技(深圳)有限公司 filed Critical 百穰新能源科技(深圳)有限公司
Publication of WO2022166384A1 publication Critical patent/WO2022166384A1/zh
Publication of WO2022166384A8 publication Critical patent/WO2022166384A8/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to the technical field of energy storage, in particular to a thermal energy conversion mechanical energy energy storage device based on carbon dioxide gas-liquid phase transition.
  • the traditional compressed air energy storage system relies on burning fossil fuels to provide the input energy required for system operation, which is not in line with the trend of green energy development.
  • energy storage by compressing carbon dioxide. Its main principle is to use excess electricity to compress carbon dioxide and store it during the low electricity consumption period. During the peak period of electricity consumption, it is released and the turbine is used to drive the generator to output electricity, so as to make full use of the energy and reduce the impact of the intermittent power generation of new energy on the power grid.
  • thermal energy such as geothermal heat, solar thermal energy, biomass burning, waste incineration, etc., which are usually directly released into the environment, resulting in great waste.
  • the present invention proposes a thermal energy conversion mechanical energy storage device based on carbon dioxide gas-liquid phase transition, through which the thermal energy generated by geothermal, solar thermal, biomass combustion, waste incineration, and waste heat generated in the industrial production process can be converted and other utilization, so as to improve resource utilization and save energy.
  • Thermal energy conversion mechanical energy storage devices based on carbon dioxide gas-liquid transition including:
  • the gas storage is used for storing gaseous carbon dioxide, and the volume of the gas storage can be changed;
  • liquid storage tank is used for storing liquid carbon dioxide
  • the energy storage component is used for storing energy
  • the energy storage component is arranged between the gas storage and the liquid storage tank, and carbon dioxide is converted from a gaseous state to a liquid state through the energy storage component
  • the The energy storage assembly includes a compressor for compressing carbon dioxide
  • the energy release component is used for releasing energy, the energy release component is arranged between the gas storage and the liquid storage tank, and the carbon dioxide is converted from a liquid state to a gaseous state through the energy release component;
  • the energy storage assembly and the energy release assembly are both connected to the heat exchange assembly, and the heat exchange assembly can transfer part of the energy generated in the energy storage assembly to the energy release assembly;
  • a drive assembly the drive assembly is connected to the energy storage assembly, the drive assembly includes an energy input member and a first drive member, and part of the carbon dioxide flowing out of the compressor can be diverted to the drive assembly, and diverted to the drive
  • the carbon dioxide of the assembly can absorb external heat energy through the energy input member, and drive the first driving member to work, and the first driving member can drive the compressor to work.
  • the driving assembly further includes a second driving member, the second driving member can be connected with the compressor, and when the first driving member is not activated, the second driving member can be Drive the compressor to work.
  • the first driving member and the second driving member are arranged coaxially with the compressor.
  • a plurality of the compressors and the drive assemblies are provided in a one-to-one correspondence, and part of the carbon dioxide flowing out of the compressor can be diverted to the corresponding drive assemblies, each of the drive assemblies
  • the first driving elements in each can drive the corresponding compressor to work.
  • the drive assembly further comprises a drive recycle cooler, the energy input member is connected to the compressor, the first drive member is connected to the energy input member, the drive recycle cooler
  • the compressor is connected to the first driving member, and the compressor is connected to the driving circulation cooler, and the driving circulation cooler is used for cooling the carbon dioxide flowing into the compressor from the first driving member.
  • the energy storage assembly includes a condenser and a compression energy storage part, at least one set of the compression energy storage part is provided, and the compression energy storage part includes the compressor and the energy storage heat exchanger, The energy storage heat exchanger in each compression energy storage part is connected to the compressor, and the energy storage heat exchanger in each compression energy storage part is connected to the adjacent compression energy storage part The compressor in the compression energy storage part at the beginning is connected with the gas storage, and the energy storage heat exchanger in the compression energy storage part at the end is connected with the gas storage.
  • the condenser is connected, the liquid storage tank is connected to the condenser, the heat exchange component is connected to the energy storage heat exchanger, and the carbon dioxide part of the carbon dioxide flowing out from the compressor flows into the corresponding energy storage heat exchange A part of the energy flows into the corresponding driving assembly, and the energy storage heat exchanger can transfer part of the energy generated when the carbon dioxide is compressed by the compressor to the heat exchange assembly.
  • the energy release component includes an evaporator, an expansion energy release part and an energy release cooler, the expansion energy release part is provided with at least one set, and the expansion energy release part includes an energy release heat exchanger and an energy release cooler.
  • an expander the expander in each expansion energy release part is connected to the energy release heat exchanger, and the expander in each expansion energy release part is connected to the adjacent expansion energy release part
  • the energy release heat exchanger in the expansion part is connected to the evaporator, the evaporator is connected to the liquid storage tank, the energy release heat exchanger in the expansion energy release part at the beginning is connected to the evaporator, and the end of the heat exchanger is connected to the evaporator.
  • the expander in the expansion energy release part is connected with the energy release cooler, the gas storage is connected with the energy release cooler, the heat exchange component is connected with the energy release heat exchanger, The carbon dioxide flowing through the energy release heat exchanger can absorb the energy temporarily stored in the heat exchange assembly.
  • the heat exchange assembly includes a cold storage tank and a heat storage tank, and a heat exchange medium is arranged in the cold storage tank and the heat storage tank, and the cold storage tank and the heat storage tank are provided with a heat exchange medium.
  • a heat exchange circuit is formed between the energy storage component and the energy release component, the heat exchange medium can flow in the heat exchange circuit, and the heat exchange medium flows from the cold storage tank to the storage tank.
  • the energy release component includes an evaporator through which carbon dioxide is converted from liquid to gaseous state
  • the heat exchange component further includes a heat exchange medium cooler for cooling the carbon dioxide.
  • the heat exchange medium entering the cold storage tank is cooled, and the heat exchange medium cooler is connected to the evaporator.
  • an auxiliary heating element is provided between the cold storage tank and the heat storage tank, and part of the heat exchange medium can flow into the heat storage tank after being heated by the auxiliary heating element.
  • the energy release assembly includes a throttle expansion valve and an evaporator, through which carbon dioxide is converted from liquid state to gaseous state, and the throttle expansion valve is located between the liquid storage tank and the evaporator In between, the throttling expansion valve is used to depressurize the carbon dioxide flowing out of the liquid storage tank;
  • the energy storage assembly includes a condenser through which carbon dioxide is converted from gaseous state to liquid state, and the evaporator is connected with the condenser.
  • the energy release component includes an evaporator and an energy release cooler
  • carbon dioxide is converted from liquid to gaseous state through the evaporator
  • the energy release cooler is used for the carbon dioxide entering the gas storage.
  • the energy release cooler is connected to the evaporator.
  • the gas storage is a flexible membrane gas storage.
  • the above-mentioned thermal energy conversion mechanical energy storage device based on gas-liquid phase transition of carbon dioxide is provided with a gas storage tank and a liquid storage tank.
  • the gaseous carbon dioxide is stored in the gas storage tank, and the liquid carbon dioxide is stored in the liquid storage tank.
  • An energy storage component and an energy release component are arranged between the gas storage and the liquid storage tank, and a heat exchange component is also arranged between the energy release component and the energy storage component.
  • the carbon dioxide changes from gaseous state to liquid state when passing through the energy storage component, and changes from liquid state to gaseous state when passing through the energy releasing component.
  • the compressor is used to compress the carbon dioxide flowing out of the gas storage.
  • the compressor is used to compress the carbon dioxide flowing out of the gas storage.
  • the carbon dioxide flows out of the compressor, a part of it is diverted to the driving component.
  • this part of the carbon dioxide flows through the energy input component, it can absorb external heat energy and drive the first driving component to work.
  • the compressor can be driven to work.
  • energy such as geothermal heat, solar heat, thermal energy generated by waste incineration, and waste heat generated in the industrial production process can be used to drive the compressor to work, thereby reducing waste of resources and saving energy.
  • FIG. 1 is a schematic structural diagram of a thermal energy conversion mechanical energy storage device based on carbon dioxide gas-liquid phase transition in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of the first driving member, the second driving member and the compressor in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a thermal energy conversion mechanical energy storage device based on carbon dioxide gas-liquid phase transition in another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a thermal energy conversion mechanical energy storage device based on carbon dioxide gas-liquid phase transition in another embodiment of the present invention.
  • energy storage assembly 300 compressor 310, energy storage heat exchanger 320, condenser 330, energy storage first pipeline 340, energy storage second pipeline 350, energy storage third pipeline 360, and energy storage fourth pipeline 370;
  • Energy release assembly 400 evaporator 410, energy release heat exchanger 420, expander 430, energy release cooler 440, energy release first pipeline 450, energy release second pipeline 460, energy release third pipeline 470, energy release first Four pipelines 480, fifth pipeline 490 for releasing energy, throttling expansion valve 4100, generator 4200, sixth pipeline 4500 for releasing energy;
  • Heat exchange assembly 500 cold storage tank 510, heat storage tank 520, heat exchange medium cooler 530, first heat exchange pipe 540, second heat exchange pipe 550, third heat exchange pipe 560, fourth heat exchange pipe 570, The first circulating pump 580 for heat exchange medium and the second circulating pump 581 for heat exchange medium;
  • a pool 710 a pool 710, a first recovery pipeline 720, a second recovery pipeline 730, a third recovery pipeline 740, a fourth recovery pipeline 750, a fifth recovery pipeline 760, and a sixth recovery pipeline 770;
  • Drive assembly 900 energy input member 910, first drive member 920, drive cycle cooler 930, drive cycle first conduit 940, drive cycle second conduit 950, drive cycle third conduit 960, drive cycle fourth conduit 970, Two driving members 980 .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • FIG. 1 shows a schematic structural diagram of a thermal energy conversion mechanical energy storage device based on carbon dioxide gas-liquid phase transition in an embodiment of the present invention.
  • the thermal energy conversion mechanical energy storage device based on carbon dioxide gas-liquid phase transition provided by an embodiment of the present invention includes a gas storage 100, a liquid storage tank 200, an energy storage component 300, an energy release component 400, a heat exchange component 500, a driving component 900, etc. part.
  • Liquid carbon dioxide in a high pressure state is stored in the liquid storage tank 200 .
  • the gas storage 100 stores gaseous carbon dioxide at normal temperature and pressure, and the pressure and temperature inside the gas storage 100 are maintained within a certain range to meet the energy storage requirements.
  • a heat preservation device is provided to heat the gas storage 100, so that the temperature inside the gas storage tank 100 is maintained within a required range.
  • the pressure in the gas storage 100 can be kept constant. It should be noted that the pressure and temperature inside the gas storage 100 are maintained within a certain range, and in the above analysis, they are approximately regarded as constant values.
  • the temperature T 1 in the gas storage 100 is in the range of 15° C. ⁇ T 1 ⁇ 35° C.
  • the pressure difference between the air pressure in the gas storage 100 and the outside atmosphere is less than 1000Pa.
  • the energy storage assembly 300 is located between the gas storage 100 and the liquid storage tank 200.
  • the gaseous carbon dioxide flowing out of the gas storage 100 is converted into a liquid state through the energy storage assembly 300 and flows into the liquid storage tank 200, completing energy storage in the process.
  • the energy storage assembly 300 includes a compressor 310, and the gaseous carbon dioxide flowing out of the gas storage 100 is compressed by the compressor 310 to pressurize it.
  • the energy release assembly 400 is also located between the gas storage 100 and the liquid storage tank 200.
  • the liquid carbon dioxide flowing out from the liquid storage tank 200 is transformed into a gaseous state through the energy release assembly 400 and flows into the gas storage 100.
  • the energy stored in the energy process is released.
  • the heat exchange component 500 is disposed between the energy storage component 300 and the energy release component 400 .
  • a part of the stored energy is stored in the high-pressure liquid carbon dioxide in the form of pressure energy, and the other part is stored in the heat exchange component 500 in the form of thermal energy.
  • this part of the energy is transferred from the heat exchange component 500 to the energy release component 400, and all the stored energy is released through gaseous carbon dioxide.
  • the drive assembly 900 is connected to the energy storage assembly 300 , and a part of the carbon dioxide compressed by the compressor 310 is diverted to the drive assembly 900 .
  • the driving assembly 900 includes an energy input member 910 and a first driving member 920.
  • the energy input member 910 is connected to an external heat source and can absorb heat energy provided by the external heat source.
  • the carbon dioxide diverted to the drive assembly 900 flows through the energy input member 910 , the external thermal energy input through the energy input member 910 can be absorbed.
  • the first driving member 920 can be driven to work, and then the compressor 310 can be driven to work through the first driving member 920 .
  • the first driving member 920 may be a turbine or the like.
  • the first driving member 920 is driven to work by the increased pressure energy and thermal energy after the carbon dioxide is compressed and the external thermal energy input through the energy input member 910 , and then the compressor 310 is driven to work by the first driving member 920 .
  • the energy storage device in this embodiment realizes the transformation of carbon dioxide from a gaseous state to a liquid state through external energy sources such as geothermal heat, solar thermal energy, biomass combustion, and thermal energy generated by waste incineration, and stores energy. During the peak period of electricity consumption, this part of the energy is released to drive the generator 4200 to generate electricity. In this way, energy waste can be reduced, and the power generation burden on power plants can also be reduced.
  • carbon dioxide only changes between gaseous state and liquid state. Before energy storage, carbon dioxide is in a gaseous state and is at normal temperature and pressure. Compared with the conventional energy storage and energy release through supercritical carbon dioxide, this In the embodiment, the requirements for the gas storage 100 are relatively low, and there is no need to provide a storage component with a relatively complex structure, which can reduce the cost to a certain extent.
  • the energy storage device in this embodiment is provided with fewer components, the structure is relatively simple, and the pipeline arrangement is relatively easy.
  • the energy storage assembly 300 includes components such as a compressor 310 , an energy storage heat exchanger 320 , and a condenser 330 .
  • the compressor 310 and the gas storage 100 are connected through a first energy storage pipeline 340
  • the energy storage heat exchanger 320 and the compressor 310 are connected through an energy storage second pipeline 350
  • the condenser 330 and the energy storage heat exchanger 320 are connected They are connected through a third energy storage pipeline 360
  • the liquid storage tank 200 and the condenser 330 are connected through a fourth energy storage pipeline 370 .
  • the heat exchange assembly 500 is connected to the energy storage heat exchanger 320. Part of the energy generated when the compressor 310 compresses carbon dioxide is stored in the high-pressure carbon dioxide in the form of pressure energy, and part of the energy is transferred to the heat exchanger in the form of thermal energy through the energy storage heat exchanger 320. The thermal assembly 500 is temporarily stored.
  • One energy storage heat exchanger 320 is correspondingly connected to one compressor 310, and the two can be regarded as compression energy storage units.
  • multiple groups of compression energy storage parts connected in sequence may be arranged between the gas storage 100 and the condenser 330 .
  • the carbon dioxide is gradually pressurized by multiple stages of compression.
  • a compressor with a smaller compression ratio can be selected, and the cost of the compressor 310 is lower.
  • the compressor in the compression energy storage part at the beginning is connected to the gas storage 100
  • the energy storage heat exchanger in the compression energy storage part at the end is connected with the condenser 330, and the energy storage heat exchange in each group of compression energy storage parts
  • the compressor is connected to the compressor in the adjacent compression energy storage section.
  • the start and end here are defined by the direction from the gas storage 100 through the energy storage assembly 300 to the liquid storage tank 200 . If there is only one set of compression energy storage parts, the beginning and the end are the only one set of compression energy storage parts.
  • the energy release assembly 400 includes components such as an evaporator 410 , an energy release heat exchanger 420 , an expander 430 , and an energy release cooler 440 .
  • the evaporator 410 and the liquid storage tank 200 are connected through a first energy releasing pipeline 450
  • the energy releasing heat exchanger 420 and the evaporator 410 are connected through an energy releasing second pipeline 460
  • the expander 430 is connected with the energy releasing heat exchanger 420 They are connected by the third energy releasing pipeline 470
  • the energy releasing cooler 440 and the expander 430 are connected by the energy releasing fourth pipeline 480
  • the gas storage 100 and the energy releasing cooler 440 are connected by the energy releasing fifth pipeline 490. connect.
  • the heat exchange component 500 is connected to the energy release heat exchanger 420. During the energy release process, the heat temporarily stored in the heat exchange component 500 is transferred to the gaseous carbon dioxide flowing through the energy release heat exchanger 420 through the energy release heat exchanger 420. , the carbon dioxide absorbs this part of the heat and releases the energy through the expander 430 .
  • the energy stored in the energy storage process is released by the expander 430, and the generator 4200 is driven to generate electricity.
  • the gaseous carbon dioxide flows through the expander 430, it impacts the blades and drives the rotor to rotate to achieve energy output.
  • An expander 430 is correspondingly connected to an energy release heat exchanger 420, and the two can be regarded as an expansion energy release part.
  • multiple groups of expansion energy releasing parts connected in sequence may be arranged between the evaporator 410 and the energy releasing cooler 440 . In this way, the manufacturing requirements for the blades of the expander 430 are lower, and correspondingly, the cost is also lower.
  • the energy release heat exchanger in the expansion energy release part at the beginning is connected to the evaporator 410, the expander in the expansion energy release part at the end is connected to the energy release cooler 440, and the expander in each expansion energy release part is connected to the evaporator 410.
  • the energy release heat exchangers in the adjacent expansion energy release parts are connected.
  • the start and end here are defined by the direction from the liquid storage tank 200 through the energy release assembly 400 to the gas storage 100 . If there is only one set of expansion energy release parts, the beginning and the end are the only set of expansion energy release parts.
  • the heat exchange assembly 500 includes a cold storage tank 510 , a heat storage tank 520 and a heat exchange medium cooler 530 , and heat exchange medium is stored in the cold storage tank 510 and the heat storage tank 520 .
  • the temperature of the heat exchange medium in the cold storage tank 510 is lower, and the temperature of the heat exchange medium in the heat storage tank 520 is higher.
  • the cold storage tank 510 and the heat storage tank 520 form a heat exchange circuit between the energy storage assembly 300 and the energy release assembly 400 . When the heat exchange medium flows in the heat exchange circuit, energy can be collected and released.
  • the heat exchange medium flows from the cold storage tank 510 to the heat storage tank 520, part of the energy generated during the energy storage process is transferred to the heat exchange component 500 and stored in the heat storage tank 520, and the heat exchange medium flows from the heat storage tank 520.
  • the tank 520 flows to the cold storage tank 510, the energy temporarily stored in the heat exchange assembly 500 during the energy storage process is released again.
  • the heat exchange medium flows from the heat storage tank 520 to the cold storage tank 510, it flows through the heat exchange medium.
  • the cooler 530 performs cooling to meet the temperature requirement of the heat exchange medium stored in the cold storage tank 510 .
  • the above-mentioned heat exchange medium can be selected from materials such as molten salt or saturated water.
  • the driving assembly 900 includes components such as an energy input member 910 , a first driving member 920 and a driving circulating cooler 930 .
  • the energy input member 910 is connected with an external heat source, and the energy input member 910 is connected with the energy storage second pipeline 350 connected at the outlet of the compressor 310 through the driving cycle first pipeline 940 .
  • the first drive member 920 and the energy input member 910 are connected through the second pipeline 950 of the drive cycle, the drive cycle cooler 930 and the first drive member 920 are connected through the third pipeline 960 of the drive cycle, and the inlet of the compressor 310 is connected
  • the energy storage first pipeline 340 and the driving cycle cooler 930 are connected through the driving cycle fourth pipeline 970 .
  • the first driving member 920 is a turbine. When the carbon dioxide flows through the rotor of the turbine, it impacts the blades and pushes the rotor to rotate, thereby driving the turbine shaft to rotate to drive the compressor 310 to work.
  • the input thermal energy is converted into mechanical energy to drive the compressor 310 to work, and then the compressor 310 compresses the carbon dioxide and converts it into pressure energy and thermal energy generated during compression for storage.
  • FIG. 2 shows a schematic structural diagram of the first driving member, the second driving member and the compressor in FIG. 1 . Since the carbon dioxide flows through the driving assembly 900, the external heat energy can be absorbed to drive the compressor 310 to work. Therefore, a second driving member 980 is also provided. When the device starts to operate and no carbon dioxide flows through the driving assembly 900, the first driving member 920 cannot drive the compressor 310, and the compressor 310 is driven by the second driving member 980 at this time. 310 for compression.
  • the second driving member 980 stops working.
  • the second driving member 980 may be a driving member such as a motor.
  • the first driving member 920 and the second driving member 980 are disposed coaxially with the compressor 310 , that is, the output shafts of the first driving member 920 and the second driving member 980 are collinear.
  • the axial thrust can be balanced, the axial and radial vibrations can be reduced, and the entire device can run more smoothly and with less vibration and noise.
  • both the first driving member 920 and the compressor 310 are sealed with dry gas.
  • components such as circulating pumps are arranged on each of the above-mentioned pipelines to realize the directional flow of carbon dioxide and heat exchange medium.
  • the gaseous carbon dioxide in the normal temperature and pressure state flows out from the gas storage 100 and flows to the compressor 310 through the first energy storage pipeline 340 .
  • the gaseous carbon dioxide is compressed by the compressor 310, increasing its pressure. During the compression process, heat is generated, raising the temperature of the carbon dioxide.
  • a part flows to the energy storage heat exchanger 320 through the energy storage second pipeline 350; the other part flows from the energy storage second pipeline 350 into the driving cycle first pipeline 940, and then flows to the energy input member 910 .
  • the carbon dioxide flowing to the energy input member 910 absorbs external thermal energy through the energy input member 910, and its temperature is further increased.
  • the carbon dioxide in a high temperature and high pressure state flows to the first driving member 920 through the driving circulation second pipe 950 .
  • the first driving member 920 is a turbine, and the carbon dioxide in a high temperature and high pressure state impacts the blades of the turbine, and pushes the rotor to rotate, thereby driving the turbine shaft to rotate, so as to drive the compressor 310 to work.
  • the temperature and pressure of the carbon dioxide flowing out from the first driving member 920 have decreased, but its temperature is still too high. Therefore, the carbon dioxide flows to the driving circulation cooler 930 through the driving circulation third pipe 960, and the driving circulation cooler 930 conducts cooling on it.
  • Cooling is performed so that the temperature and pressure are not much different from the carbon dioxide flowing into the compressor 310 through the gas storage 100 .
  • this part of the carbon dioxide flows into the energy storage first pipe 340 through the driving circulation fourth pipe 970, and enters the compressor 310 again for compression.
  • the carbon dioxide flowing to the energy storage heat exchanger 320 transfers the heat generated during compression to the heat exchange assembly 500, and completes partial energy storage in the form of thermal energy.
  • the high-pressure gaseous carbon dioxide flows to the condenser 330 through the energy storage third pipeline 360, and is condensed by the condenser 330 to be converted into liquid carbon dioxide.
  • the liquid carbon dioxide flows into the liquid storage tank 200 through the fourth energy storage pipeline 370 to complete partial energy storage in the form of pressure energy.
  • the second valve 620 and the fourth valve 640 are opened, and the first valve 610 , the third valve 630 and the eighth valve 680 are closed.
  • the high-pressure liquid carbon dioxide flows out from the liquid storage tank 200, flows to the evaporator 410 through the first energy release pipeline 450, evaporates through the evaporator 410, and turns into a gaseous state.
  • the gaseous carbon dioxide flows to the energy releasing heat exchanger 420 through the energy releasing second conduit 460 .
  • the heat stored in the heat exchange assembly 500 is transferred through the energy release heat exchanger 420 to the carbon dioxide flowing through the energy release heat exchanger 420 , and the carbon dioxide absorbs this part of the heat and the temperature increases.
  • the high-temperature gaseous carbon dioxide flows to the expander 430 through the third pipeline 470 for energy release, expands in the expander 430 and performs external work to achieve energy output, and drives the generator 4200 to generate electricity.
  • the pressure and temperature of carbon dioxide after energy release are both reduced, but the temperature is still higher than the storage temperature required by the gas storage 100 . Therefore, the carbon dioxide flowing out of the expander 430 flows into the energy releasing cooler 440 through the energy releasing cooler 480 , and is cooled by the energy releasing cooler 440 so that the temperature can meet the requirements of the gas storage 100 . The cooled carbon dioxide flows into the gas storage 100 through the fifth energy release pipeline 490 to complete the entire energy release process.
  • the thermal energy stored in the heat exchange assembly 500 is merged into the high-pressure carbon dioxide, and the carbon dioxide expands in the expander 430 to release the pressure energy together with the thermal energy and convert it into mechanical energy.
  • the first circulation pump 580 of the heat exchange medium is turned on when the energy is stored, and the second circulation pump 581 of the heat exchange medium is turned on when the energy is released. Circulating flow between, realizing the temporary storage and release of energy. Specifically, the energy is temporarily stored in the heat exchange medium in the form of heat energy.
  • the low temperature heat exchange medium flows through the first heat exchange pipeline 540 to the energy storage heat exchanger 320 for heat exchange, absorbs the heat in the compressed high temperature carbon dioxide, and increases the temperature of the heat exchange medium.
  • the heated high temperature heat exchange medium flows to the heat storage tank 520 through the second heat exchange pipeline 550 , and the heat is temporarily stored in the heat storage tank 520 .
  • the high temperature heat exchange medium flows from the heat storage tank 520 to the energy release heat exchanger 420 through the third heat exchange pipeline 560 for heat exchange, and transfers the heat to the carbon dioxide flowing through the energy release heat exchanger 420, so that the Its temperature rises.
  • the temperature of the heat exchange medium decreases, and the cooled heat exchange medium flows to the heat exchange medium cooler 530 through the fourth heat exchange pipe 570 .
  • the temperature of the heat exchange medium decreases after heat exchange, its temperature is still higher than the temperature range required by the cold storage tank 510 . Therefore, when the heat exchange medium flows through the heat exchange medium cooler 530 , it is cooled again by the heat exchange medium cooler 530 , so that the temperature of the heat exchange medium reaches the requirement of the cold storage tank 510 .
  • first valve 610 , the second valve 620 , the third valve 630 , the fourth valve 640 , and the eighth valve 680 may all be opened, and the energy storage and energy release are performed simultaneously.
  • the released heat can be recycled and used for carbon dioxide evaporation to reduce energy waste and improve energy utilization.
  • the heat exchange medium cooler 530 can be connected to the evaporator 410, and the heat released when the heat exchange medium cooler 530 cools the heat exchange medium can be transferred to the evaporator 410 for use in evaporating carbon dioxide.
  • the heat exchange medium cooler 530 and the evaporator 410 may be directly connected or indirectly connected through other components.
  • an external heat source can also be used to supplement heat so that the evaporation process can proceed smoothly.
  • the supplemental external heat source may be some waste heat, for example, the heat released when castings or forgings are cooled in a foundry or forging plant, or may be the heat released during chemical reactions in some chemical plants.
  • waste heat as an external heat source can reduce energy waste and eliminate the need for additional heating, thereby reducing costs.
  • the heat released during condensation through the condenser 330 can be recycled, and during the energy release process, this part of the heat is supplied to the evaporator 410 for use in evaporating carbon dioxide to reduce energy waste, Improve energy utilization.
  • the condenser 330 can be connected to the evaporator 410 to collect the heat released when the carbon dioxide is condensed and transferred to the evaporator 410 for use in the evaporation of the carbon dioxide.
  • the condenser 330 and the evaporator 410 may be directly connected or indirectly connected through other components.
  • an external heat source can also be used to supplement heat so that the evaporation process can proceed smoothly.
  • a first energy releasing pipeline 450 and a sixth energy releasing pipeline 4500 are arranged between the evaporator 410 and the liquid storage tank 200, and a second valve 620 is arranged on the first energy releasing pipeline 450, A throttle expansion valve 4100 and a ninth valve 6200 are arranged on the sixth pipeline 4500 for releasing energy.
  • the second valve 620 is opened, and the ninth valve 6200 is closed, the first pipeline 450 for releasing energy is conducted, and when the ninth valve 6200 is opened, and the sixth pipeline 4500 for releasing energy is conducted when the second valve 620 is closed.
  • the sixth energy release pipeline 4500 is selected to be turned on, the high-pressure liquid carbon dioxide flowing out of the liquid storage tank 200 is expanded and depressurized through the throttle expansion valve 4100 , and then flows into the evaporator 410 .
  • the evaporator 410 and the condenser 330 can be combined, and the two can be combined into one component to form a phase change heat exchanger.
  • the phase change heat exchanger includes an evaporation part and a condensation part. The evaporation part and the condensation part are connected by pipes. Inside the phase change heat exchanger, the heat released during the condensation of the condensation part is transferred to the evaporation part. After the evaporator 410 and the condenser 330 are combined into one component, the heat transfer is completed inside the phase change heat exchanger, which can reduce the loss during the heat transfer and further improve the energy utilization rate. It should be noted that heat transfer can be achieved in the above manner only when energy storage and energy release are performed at the same time. If they cannot operate at the same time, the energy needs to be stored first and then supplied to the evaporator 410 when it is evaporated.
  • FIG. 3 a schematic structural diagram of a thermal energy conversion mechanical energy energy storage device based on carbon dioxide gas-liquid phase transition is shown in another embodiment of the present invention.
  • the carbon dioxide flowing from the expander 430 flows into the energy release cooler 440 through the energy release fourth pipe 480, and the energy release cooler 440 cools it down so that its temperature can reach the gas storage. 100 requirements.
  • the exothermic cooler 440 performs cooling and heat exchange, heat is released.
  • this part of the heat can be recycled and used for carbon dioxide evaporation, so as to reduce energy waste and improve energy utilization.
  • both the heat released during the condensation of carbon dioxide and the heat released by the energy releasing cooler 440 may be supplied to the evaporator 410 for use.
  • both the energy releasing cooler 440 and the condenser 330 can be connected to the evaporator 410, and the heat released by the energy releasing cooler 440 during cooling and heat exchange and the heat released by the condenser 330 during condensation are all transferred to the evaporator 410 , for use when carbon dioxide evaporates.
  • the energy releasing cooler 440 and the evaporator 410 may be directly connected or indirectly connected through other components.
  • the condenser 330 and the evaporator 410 may be directly connected or indirectly connected through other components.
  • the heat transfer between the energy-releasing cooler 440 and the evaporator 410 is achieved through the water pool 710 .
  • a first recovery pipe 720 and a second recovery pipe 730 are provided between the water pool 710 and the energy releasing cooler 440 .
  • a third recovery pipe 740 and a fourth recovery pipe 750 are provided between the water pool 710 and the evaporator 410 .
  • a fifth recovery pipeline 760 and a sixth recovery pipeline 770 are provided between the water pool 710 and the condenser 330 .
  • the pool 710 and each of the above-mentioned pipes are provided with thermal insulation materials to keep the water therein thermally insulated.
  • a part of the water in the pool 710 flows to the condenser 330 through the fifth recovery pipe 760, absorbs the heat released by the condenser 330, and after the water temperature rises, passes through the sixth recovery pipe 770 flows into pool 710.
  • a part of the water in the pool 710 flows to the energy releasing cooler 440 through the first recovery pipe 720 to absorb the heat released by the energy releasing cooler 440. After the water temperature rises, it flows to the pool 710 through the second recovery pipe 730.
  • the seventh valve 670 When evaporating, the seventh valve 670 is opened, and the water with a higher temperature in the pool 710 flows to the evaporator 410 through the third recovery pipe 740 to provide heat for the evaporation of carbon dioxide. After flowing through the evaporator 410, the water temperature decreases, cooling down The latter water flows into the pool 710 through the fourth recovery pipe 750 .
  • components such as a circulating pump are also provided on the first recovery pipeline 720, the second recovery pipeline 730, the third recovery pipeline 740, the fourth recovery pipeline 750, the fifth recovery pipeline 760 and the sixth recovery pipeline 770 to realize Circulation of water in the pool 710 .
  • the water temperature in the water pool 710 may be continuously increased.
  • the evaporator 410 continuously absorbs the heat in the water pool 710, the temperature of the water in the water pool 710 may be continuously lowered. Therefore, preferably, the pool 710 is in a constant temperature state.
  • the pool 710 is also connected with components such as a thermostat controller, a temperature sensor, a heater and a radiator.
  • the temperature of the water in the pool 710 is monitored by the temperature sensor, and the water temperature is transmitted to the thermostatic controller. If the heat released by the energy releasing cooler 440 and the condenser 330 increases the water temperature too much and exceeds the maximum set value, the thermostatic controller will The radiator is controlled to dissipate heat to the pool 710 . If the heat absorbed by the evaporator 410 reduces the water temperature too much and is lower than the minimum set value, the thermostat controller controls the heater to heat the water pool 710 .
  • the heat released by the condenser 330, the heat released by the energy release cooler 440, and the heat released by the heat exchange medium cooler 530 may all be supplied to the evaporator 410 for use.
  • the specific setting method is similar to that of the above-mentioned embodiment, and details are not repeated here.
  • the heat of the above three places can be supplied individually, or any two of them can be supplied together.
  • an external heat source can be used to supplement the heat.
  • the heat can be directly supplemented to the evaporator 410 .
  • heat can also be added to the heat exchange medium of the heat exchange circuit.
  • the external heat source may be directly connected to the evaporator 410 .
  • FIG. 4 a schematic structural diagram of a thermal energy conversion mechanical energy storage device based on carbon dioxide gas-liquid phase transition is shown in another embodiment of the present invention.
  • a heating pipe 820 can be arranged between the cold storage tank 510 and the heat storage tank 520, and an auxiliary heating element 810 is arranged on the heating pipe 820, and the heat flowing out of the cold storage tank 510 can be provided.
  • a part of the heat exchange medium flows to the auxiliary heating element 810 through the heating pipe 820, and the auxiliary heating element 810 heats this part of the heat exchange medium to absorb external heat, so that the heat reaching the heat exchange medium cooler 530 can be increased, that is, it can be The heat supplied to the evaporator 410 is increased.
  • the heat source at the auxiliary heating element 810 may be external heat energy, such as geothermal heat, solar thermal energy, biomass combustion, heat energy generated by waste incineration, waste heat generated in industrial production processes, and the like.
  • external heat energy such as geothermal heat, solar thermal energy, biomass combustion, heat energy generated by waste incineration, waste heat generated in industrial production processes, and the like.
  • multiple sets of the above-mentioned energy storage assemblies 300 , energy release assemblies 400 , heat exchange assemblies 500 and drive assemblies 900 can be arranged between the gas storage 100 and the liquid storage tank 200 , each of which is in the manner described in the foregoing embodiments. set up.
  • a component in one group fails, there are other groups that can work, which can reduce the failure downtime rate of the device and improve its working reliability.
  • each drive assembly 900 drives one compressor 310 correspondingly.
  • a part of the pressurized heat exchange medium flowing out of each compressor 310 can flow to the corresponding driving assembly 900 , and the first driving member 920 in each driving assembly 900 can drive the corresponding compressor 310 to work.
  • each compressor 310 can be driven by external thermal energy.

Abstract

本发明涉及一种基于二氧化碳气液相变的热能转化机械能储能装置,包括:储气库;储液罐;储能组件,储能组件设于储气库与储液罐之间,二氧化碳经储能组件由气态变为液态,储能组件包括压缩机;释能组件,释能组件设于储气库与储液罐之间,二氧化碳经释能组件由液态变为气态;换热组件能将储能组件中产生的部分能量转移至释能组件;驱动组件,驱动组件与储能组件连接,驱动组件包括能量输入件与第一驱动件,流出压缩机的部分二氧化碳能分流至驱动组件,分流至驱动组件的二氧化碳能经能量输入件吸收外部热能,并驱动第一驱动件工作,第一驱动件能驱动压缩机工作。该装置能将工业生产中产生的废热进行利用,从而减少热能浪费,节约能源。

Description

基于二氧化碳气液相变的热能转化机械能储能装置 技术领域
本发明涉及能源存储技术领域,特别是涉及一种基于二氧化碳气液相变的热能转化机械能储能装置。
背景技术
随着社会经济的发展,人们对于能源的需求量越来越高,但能源消耗的增加使得环境问题较为严重,且煤炭、石油等不可再生的传统能源日益枯竭。目前大力开发的太阳能、风能等新能源可以在一定程度上减缓传统能源的消耗,但由于新能源所具有的间歇性和波动性特征会对电网造成一定的冲击,导致有效利用率偏低。储能技术可以实现电网削峰填谷、补偿可再生能源波动性、提高可再生能源发电机组年利用小时数,减少弃风、弃光等现象的发生,并可存储深夜低谷电能以便用电高峰时使用,对于能源系统的优化和调节具有重大意义。
传统的压缩空气储能系统依赖燃烧化石燃料提供系统运行所需输入能量,不符合绿色能源发展的趋势。在相关技术中,存在一种通过压缩二氧化碳进行能源存储的方式。其主要原理是在用电低谷期时,用多余电力将二氧化碳进行压缩,并存储起来。当用电高峰期时,再将其释放,并通过透平驱动发电机输出电力,从而充分利用能量,同时降低新能源间歇性发电对电网带来的冲击。然而,在自然环境和工农业生产中,存在如地热、太阳能光热、生物质燃烧、垃圾焚烧等产生的热能,这些热能通常被直接释放至环境中,造成了较大的浪费。
发明内容
基于此,本发明提出一种基于二氧化碳气液相变的热能转化机械能储能装置,通过该装置能够将地热、太阳能光热、生物质燃烧、垃圾焚烧产生的热能、工业生产过程中产生的废热等利用,从而提升资源利用率节约能源。
基于二氧化碳气液相变的热能转化机械能储能装置,包括:
储气库,所述储气库用于存储气态二氧化碳,所述储气库的容积能够变化;
储液罐,所述储液罐用于存储液态二氧化碳;
储能组件,所述储能组件用于存储能量,所述储能组件设置于所述储气库与所述储液罐之间,二氧化碳经所述储能组件由气态转变为液态,所述储能组件包括压缩机,所述压缩机用于压缩二氧化碳;
释能组件,所述释能组件用于释放能量,所述释能组件设置于所述储气库与所述储液罐之间,二氧化碳经所述释能组件由液态转变为气态;
换热组件,所述储能组件、所述释能组件均与所述换热组件连接,所述换热组件能够将所述储能组件中产生的部分能量转移至所述释能组件中;
驱动组件,所述驱动组件与所述储能组件连接,所述驱动组件包括能量输入件与第一驱动件,流出所述压缩机的部分二氧化碳能够分流至所述驱动组件,分流至所述驱动组件的二氧化碳能够经所述能量输入件吸收外部热能,并驱动所述第一驱动件工作,所述第一驱动件能够驱动所述压缩机工作。
在其中一个实施例中,所述驱动组件还包括第二驱动件,所述第二驱动件能够与所述压缩机连接,当所述第一驱动件未启动时,所述第二驱动件能够驱动所述压缩机工作。
在其中一个实施例中,所述第一驱动件、所述第二驱动件与所述压缩机同 轴设置。
在其中一个实施例中,所述压缩机与所述驱动组件均设有多个且一一对应,流出所述压缩机的部分二氧化碳能够分流至对应的所述驱动组件,每个所述驱动组件中的所述第一驱动件均能够驱动对应的所述压缩机工作。
在其中一个实施例中,所述驱动组件还包括驱动循环冷却器,所述能量输入件与所述压缩机连接,所述第一驱动件与所述能量输入件连接,所述驱动循环冷却器与所述第一驱动件连接,所述压缩机与所述驱动循环冷却器连接,所述驱动循环冷却器用于对从所述第一驱动件流入所述压缩机的二氧化碳进行冷却。
在其中一个实施例中,所述储能组件包括冷凝器与压缩储能部,所述压缩储能部至少设有一组,所述压缩储能部包括所述压缩机与储能换热器,每个所述压缩储能部中的所述储能换热器与所述压缩机连接,每个所述压缩储能部中的所述储能换热器与相邻的所述压缩储能部中的所述压缩机连接,始端的所述压缩储能部中的所述压缩机与所述储气库连接,末端的所述压缩储能部中的所述储能换热器与所述冷凝器连接,所述储液罐与所述冷凝器连接,所述换热组件与所述储能换热器连接,从所述压缩机流出的二氧化碳部分流入对应的所述储能换热器,部分流入对应的所述驱动组件,所述储能换热器能够将二氧化碳经所述压缩机压缩时产生的部分能量转移至所述换热组件。
在其中一个实施例中,所述释能组件包括蒸发器、膨胀释能部与释能冷却器,所述膨胀释能部至少设有一组,所述膨胀释能部包括释能换热器与膨胀机,每个所述膨胀释能部中的所述膨胀机与所述释能换热器连接,每个所述膨胀释能部中的所述膨胀机与相邻的所述膨胀释能部中的所述释能换热器连接,所述蒸发器与所述储液罐连接,始端的所述膨胀释能部中的所述释能换热器与所述 蒸发器连接,末端的所述膨胀释能部中的所述膨胀机与所述释能冷却器连接,所述储气库与所述释能冷却器连接,所述换热组件与所述释能换热器连接,流经所述释能换热器的二氧化碳能够吸收所述换热组件中暂存的能量。
在其中一个实施例中,所述换热组件包括储冷罐与储热罐,所述储冷罐与所述储热罐内设有换热介质,所述储冷罐、所述储热罐在所述储能组件与所述释能组件之间形成换热回路,所述换热介质能够在所述换热回路中流动,所述换热介质从所述储冷罐流动至所述储热罐时,能够存储所述储能组件产生的部分能量,所述换热介质从所述储热罐流动至所述储冷罐时,能够将存储的能量转移至所述释能组件。
在其中一个实施例中,所述释能组件包括蒸发器,二氧化碳经所述蒸发器由液态转变为气态,所述换热组件还包括换热介质冷却器,所述换热介质冷却器用于对进入所述储冷罐的所述换热介质进行冷却,所述换热介质冷却器与所述蒸发器连接。
在其中一个实施例中,所述储冷罐与所述储热罐之间设有辅助加热件,部分所述换热介质能够经所述辅助加热件加热后流入所述储热罐。
在其中一个实施例中,所述释能组件包括节流膨胀阀与蒸发器,二氧化碳经所述蒸发器由液态转变为气态,所述节流膨胀阀位于所述储液罐与所述蒸发器之间,所述节流膨胀阀用于使经所述储液罐流出的二氧化碳降压;
所述储能组件包括冷凝器,二氧化碳经所述冷凝器由气态转变为液态,所述蒸发器与所述冷凝器连接。
在其中一个实施例中,所述释能组件包括蒸发器与释能冷却器,二氧化碳经所述蒸发器由液态转变为气态,所述释能冷却器用于对进入所述储气库的二氧化碳进行冷却,所述释能冷却器与所述蒸发器连接。
在其中一个实施例中,所述储气库为柔性气膜储气库。
上述基于二氧化碳气液相变的热能转化机械能储能装置,设置了储气库与储液罐,气态二氧化碳被存储于储气库中,液态二氧化碳被存储于储液罐中。在储气库与储液罐之间设有储能组件与释能组件,在释能组件与储能组件之间还设有换热组件。二氧化碳经过储能组件时由气态变为液态,经过释能组件时由液态变为气态。二氧化碳从储气库经过储能组件到达储液罐时,完成能量存储,部分能量被存储于二氧化碳中,部分能量存储于换热组件中,并转移至释能组件,通过释能组件完成能量释放。压缩机用于对流出储气库的二氧化碳进行压缩,二氧化碳从压缩机流出时,一部分分流至驱动组件,这部分二氧化碳流经能量输入件时,能够吸收外部热能,并驱动第一驱动件工作,当第一驱动件工作时,能够驱动压缩机工作。上述装置中,可以利用地热、光热、垃圾焚烧产生的热能、工业生产过程中产生的废热等能源驱动压缩机工作,从而减少资源浪费,节约能源。
附图说明
图1为本发明一实施例中的基于二氧化碳气液相变的热能转化机械能储能装置的结构示意图;
图2为图1中第一驱动件、第二驱动件与压缩机间的结构示意图;
图3为本发明另一实施例中的基于二氧化碳气液相变的热能转化机械能储能装置的结构示意图;
图4为本发明又一实施例中的基于二氧化碳气液相变的热能转化机械能储能装置的结构示意图。
附图标记:
储气库100;
储液罐200;
储能组件300、压缩机310、储能换热器320、冷凝器330、储能第一管道340、储能第二管道350、储能第三管道360、储能第四管道370;
释能组件400、蒸发器410、释能换热器420、膨胀机430、释能冷却器440、释能第一管道450、释能第二管道460、释能第三管道470、释能第四管道480、释能第五管道490、节流膨胀阀4100、发电机4200、释能第六管道4500;
换热组件500、储冷罐510、储热罐520、换热介质冷却器530、换热第一管道540、换热第二管道550、换热第三管道560、换热第四管道570、换热介质第一循环泵580、换热介质第二循环泵581;
第一阀门610、第二阀门620、第三阀门630、第四阀门640、第五阀门650、第六阀门660、第七阀门670、第八阀门680、第九阀门6200;
水池710、第一回收管道720、第二回收管道730、第三回收管道740、第四回收管道750、第五回收管道760、第六回收管道770;
辅助加热件810、加热管道820;
驱动组件900、能量输入件910、第一驱动件920、驱动循环冷却器930、驱动循环第一管道940、驱动循环第二管道950、驱动循环第三管道960、驱动循环第四管道970、第二驱动件980。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发 明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右” 以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1,图1示出了本发明一实施例中的基于二氧化碳气液相变的热能转化机械能储能装置的结构示意图。本发明一实施例提供的基于二氧化碳气液相变的热能转化机械能储能装置包括储气库100、储液罐200、储能组件300、释能组件400、换热组件500与驱动组件900等部件。
储液罐200内存储有处于高压状态的液态二氧化碳。储气库100内存储有处于常温常压状态的气态二氧化碳,储气库100内部的压力与温度维持在一定范围内,以满足储能要求。具体的,设置保温装置对储气库100进行保温,使其内部的温度维持在所需范围内。根据理想气体状态方程PV=nRT,当温度与压力恒定,体积与物质的量成正比。因此,储气库100采用气膜储气库,其容积能够变化,当有二氧化碳充入时,储气库100的容积增大,当有二氧化碳流出时,储气库100的容积减小,以此来实现储气库100内压力的恒定。需要说明的是,储气库100内部的压力与温度维持在一定范围内,在上述分析中,将其近似看作恒定值。
具体的,储气库100内的温度T 1的范围为15℃≤T 1≤35℃,储气库100内的气压与外界大气的气压差小于1000Pa。
储能组件300位于储气库100与储液罐200之间,从储气库100流出的气态二氧化碳经过储能组件300转变为液态,并流入储液罐200,在该过程中完成能量存储。储能组件300包括压缩机310,通过压缩机310对从储气库100流出的气态二氧化碳进行压缩,使其增压。
释能组件400也位于储气库100与储液罐200之间,从储液罐200流出的液态二氧化碳经过释能组件400转变为气态,并流入储气库100,在该过程中,将储能过程中存储的能量释放出去。
换热组件500设置于储能组件300与释能组件400之间。在储能过程中,存储的能量一部分以压力能的形式存储于高压状态的液态二氧化碳中,另一部分以热能的形式存储于换热组件500中。在释能过程中,这部分能量从换热组件500转移至释能组件400中,并通过气态二氧化碳将存储的所有能量释放出去。
驱动组件900与储能组件300连接,经压缩机310压缩后的二氧化碳中,其中一部分分流至驱动组件900处。驱动组件900包括能量输入件910与第一驱动件920,能量输入件910与外部热源连接,能够吸收外部热源提供的热能。当分流至驱动组件900的二氧化碳流经能量输入件910时,能够吸收通过能量输入件910输入的外部热能。当其继续流动至第一驱动件920时,能够驱动第一驱动件920工作,进而通过第一驱动件920驱动压缩机310工作。第一驱动件920可以为透平等部件。
综上,通过二氧化碳被压缩后增加的压力能、热能以及通过能量输入件910输入的外部热能一起来驱动第一驱动件920工作,进而通过第一驱动件920驱动压缩机310工作。
本实施例中的储能装置,通过地热、太阳能光热、生物质燃烧、垃圾焚烧产生的热能等外部能源实现二氧化碳从气态到液态的转变,将能量存储起来。待用电高峰期时,将这部分能量释放出去,带动发电机4200产生电能。如此,可以减少能源浪费,还能减轻发电厂的发电量负担。
本实施例中的储能装置,二氧化碳仅在气态与液态之间转变,在储能之前,二氧化碳处于气态,且为常温常压,相较于常规的通过超临界二氧化碳进行储能释能,本实施例中对于储气库100的要求较低,无需设置结构较为复杂的存储部件,一定程度上能够降低成本。
本实施例中的储能装置,其设置了较少的组件,结构相对简单,管路布置较为容易。
在一些实施例中,储能组件300包括压缩机310、储能换热器320与冷凝器330等部件。压缩机310与储气库100之间通过储能第一管道340连接,储能换热器320与压缩机310之间通过储能第二管道350连接,冷凝器330与储能换热器320之间通过储能第三管道360连接,储液罐200与冷凝器330之间通过储能第四管道370连接。
换热组件500与储能换热器320连接,压缩机310压缩二氧化碳时产生的部分能量以压力能的形式存储于高压二氧化碳中,部分能量以热能的形式通过储能换热器320转移至换热组件500暂存。
一个储能换热器320对应的与一个压缩机310连接,可以将二者看作压缩储能部。优选的,可以在储气库100与冷凝器330之间设置多组依次相连的压缩储能部。如此,通过多级压缩来使二氧化碳逐渐增压。设置多个压缩机310时,可以选用压缩比更小的压缩机,压缩机310的成本更低。其中,始端的压缩储能部中的压缩机与储气库100连接,末端的压缩储能部中的储能换热器与冷凝器330连接,每组压缩储能部中的储能换热器与相邻的压缩储能部中的压缩机连接。此处的始端与末端是以从储气库100经过储能组件300到达储液罐200的方向来定义的。若仅有一组压缩储能部时,则始端与末端均为仅有的这一组压缩储能部。
在一些实施例中,释能组件400包括蒸发器410、释能换热器420、膨胀机430与释能冷却器440等部件。蒸发器410与储液罐200之间通过释能第一管道450连接,释能换热器420与蒸发器410之间通过释能第二管道460连接,膨胀机430与释能换热器420之间通过释能第三管道470连接,释能冷却器440与膨胀机430之间通过释能第四管道480连接,储气库100与释能冷却器440之间通过释能第五管道490连接。
换热组件500与释能换热器420连接,在释能过程中,暂存于换热组件500中的热量通过释能换热器420转移至流经释能换热器420的气态二氧化碳中,二氧化碳吸收这部分热量,并通过膨胀机430将能量释放出去。
释能组件400中,通过膨胀机430将储能过程中存储的能量释放出去,带动发电机4200进行发电。气态二氧化碳流过膨胀机430时冲击叶片,推动转子转动,以实现能量输出。
一个膨胀机430对应的与一个释能换热器420连接,可以将二者看作膨胀释能部。优选的,可以在蒸发器410与释能冷却器440之间设置多组依次相连的膨胀释能部。如此,对于膨胀机430的叶片制造要求更低,相应的,成本也更低。其中,始端的膨胀释能部中的释能换热器与蒸发器410连接,末端的膨胀释能部中的膨胀机与释能冷却器440连接,每个膨胀释能部中的膨胀机与相邻的膨胀释能部中的释能换热器连接。此处的始端与末端是以从储液罐200经过释能组件400到达储气库100的方向来定义的。若仅有一组膨胀释能部时, 则始端与末端均为仅有的这一组膨胀释能部。
在一些实施例中,换热组件500包括储冷罐510、储热罐520与换热介质冷却器530,储冷罐510与储热罐520内存储有换热介质。储冷罐510内的换热介质的温度较低,储热罐520内的换热介质的温度较高。储冷罐510与储热罐520在储能组件300与释能组件400之间形成换热回路。换热介质在换热回路中流动时,能够实现能量的收集与释放。
具体的,换热介质从储冷罐510流动至储热罐520时,将储能过程中产生的部分能量转移至换热组件500,并存储于储热罐520内,换热介质从储热罐520流动至储冷罐510时,将储能过程中暂存于换热组件500中的能量再释放出去,换热介质从储热罐520流动至储冷罐510时,流经换热介质冷却器530进行冷却,以达到储冷罐510内存储的换热介质的温度要求。上述的换热介质可以选用熔融盐或饱和水等物质。
驱动组件900包括能量输入件910、第一驱动件920与驱动循环冷却器930等部件。能量输入件910与外部热源连接,且能量输入件910与压缩机310的出口处连接的储能第二管道350之间通过驱动循环第一管道940连接。第一驱动件920与能量输入件910之间通过驱动循环第二管道950连接,驱动循环冷却器930与第一驱动件920之间通过驱动循环第三管道960连接,压缩机310的入口处连接的储能第一管道340与驱动循环冷却器930之间通过驱动循环第四管道970连接。
从压缩机310流出的二氧化碳中,一部分流动至储能换热器320,一部分流动至驱动组件900。第一驱动件920为透平,二氧化碳流过透平的转子时冲击叶片,推动转子转动,从而驱动透平轴转动,以驱动压缩机310工作。
在上述过程中,通过输入的热能转换为机械能,驱动压缩机310工作,进而通过压缩机310对二氧化碳压缩,将其转换为压力能与压缩时产生的热能进行存储。
参阅图1与图2,图2示出了图1中第一驱动件、第二驱动件与压缩机间的结构示意图。由于二氧化碳流经驱动组件900时,才能吸收外部热能来驱动压缩机310工作。因此,还设有第二驱动件980,在装置刚开始运行,没有二氧化 碳流经驱动组件900时,第一驱动件920还无法驱动压缩机310,此时通过第二驱动件980来驱动压缩机310进行压缩。待压缩机310开始工作,通过压缩机310加压后的二氧化碳流动至驱动组件900,并通过能量输入件910吸收外部热能以使得第一驱动件920能够驱动压缩机310继续保持工作状态时,第二驱动件980停止工作。第二驱动件980可以为电机等驱动部件。
优选的,第一驱动件920、第二驱动件980与压缩机310同轴设置,即第一驱动件920、第二驱动件980的输出轴共线。如此,可以平衡轴向推力,减小轴向和径向振动,使整个装置运行时更加平稳,振动噪音也更小。
优选的,第一驱动件920与压缩机310处均采用干气密封。
此外,在上述的各个管路上均设有循环泵等部件,用以实现二氧化碳、换热介质的定向流动。
进行储能时,打开第一阀门610、第三阀门630与第八阀门680,关闭第二阀门620与第四阀门640,并启动第二驱动件980,通过第二驱动件980驱动压缩机310工作。处于常温常压状态的气态二氧化碳从储气库100中流出,经储能第一管道340流动至压缩机310。通过压缩机310对气态二氧化碳进行压缩,增加其压力。在压缩过程中,会产生热量,使二氧化碳的温度升高。二氧化碳经压缩机310压缩后,一部分经储能第二管道350流动至储能换热器320;另一部分从储能第二管道350处流入驱动循环第一管道940,进而流动至能量输入件910。
流动至能量输入件910的二氧化碳通过能量输入件910吸收外部热能,其温度进一步升高。高温高压状态的二氧化碳经驱动循环第二管道950流动至第一驱动件920。第一驱动件920为透平,高温高压状态的二氧化碳冲击透平的叶片,推动转子转动,从而驱动透平轴转动,以驱动压缩机310工作。从第一驱动件920流出的二氧化碳的温度与压力有所降低,但其温度仍然过高,因此,经驱动循环第三管道960流动至驱动循环冷却器930,通过驱动循环冷却器930对其进行冷却降温,使其温度压力等与经储气库100流入压缩机310的二氧化碳相差不大。经驱动循环冷却器930降温后,这部分二氧化碳经驱动循环第四管道970汇入储能第一管道340,并再次进入压缩机310进行压缩。
流动至储能换热器320的二氧化碳将压缩时产生的热量传递至换热组件500,以热能的形式完成部分能量存储。实现换热后,高压的气态二氧化碳经储能第三管道360流动至冷凝器330,经冷凝器330进行冷凝,转变为液态二氧化碳。液态二氧化碳经储能第四管道370流入储液罐200中,以压力能的形式完成部分能量存储。
进行释能时,打开第二阀门620与第四阀门640,关闭第一阀门610、第三阀门630与第八阀门680。高压的液态二氧化碳从储液罐200中流出,经释能第一管道450流动至蒸发器410,经蒸发器410蒸发,转变为气态。气态二氧化碳经释能第二管道460流动至释能换热器420。储能过程中存储于换热组件500中的热量经释能换热器420转移至流经释能换热器420的二氧化碳,二氧化碳吸收这部分热量,温度升高。高温的气态二氧化碳经释能第三管道470流动至膨胀机430,在膨胀机430内膨胀并对外做功,实现能量输出,带动发电机4200进行发电。
释能后的二氧化碳压力与温度均降低,但其温度仍高于储气库100所要求的存储温度。因此,从膨胀机430流出的二氧化碳经释能第四管道480流入释能冷却器440,通过释能冷却器440对其进行降温,使其温度能够达到储气库100的要求。降温后的二氧化碳流经释能第五管道490进入储气库100,完成整个释能流程。
在上述过程中,存储于换热组件500中的热能汇入高压的二氧化碳中,二氧化碳在膨胀机430内膨胀,将压力能与热能一起释放出去,转变为机械能。
在上述储能与释能过程中,储能时打开换热介质第一循环泵580,释能时打开换热介质第二循环泵581,换热介质在储冷罐510与储热罐520之间循环流动,实现能量的暂存与释放。具体的,能量以热能的形式暂存于换热介质中。在储能过程中,低温的换热介质经换热第一管道540流动至储能换热器320进行换热,吸收被压缩后的高温二氧化碳中的热量,使换热介质的温度升高。升温后的高温换热介质经换热第二管道550流动至储热罐520,热量被暂存于储热罐520内。待开始释能时,高温换热介质从储热罐520内经换热第三管道560流动至释能换热器420进行换热,将热量传递给流经释能换热器420的二氧化碳, 使其温度升高。完成换热后,换热介质的温度降低,降温后的换热介质经换热第四管道570流动至换热介质冷却器530。虽然经过换热后,换热介质的温度降低,但其温度仍高于储冷罐510所要求的温度范围。因此,换热介质流经换热介质冷却器530时,通过换热介质冷却器530对其再次进行降温,使其温度达到储冷罐510的要求。
另外,在一些实施例中,也可以将第一阀门610、第二阀门620、第三阀门630、第四阀门640、第八阀门680全部打开,储能与释能同时进行。
优选的,在一些实施例中,通过换热介质冷却器530对换热介质降温后,放出的这部分热量可以被回收利用,供二氧化碳蒸发时使用,以减少能量浪费,提高能量利用率。
具体的,可以将换热介质冷却器530与蒸发器410连接,将换热介质冷却器530对换热介质降温时放出的热量转移至蒸发器410,供二氧化碳蒸发时使用。换热介质冷却器530与蒸发器410之间可以是直接连接,也可以通过其他部件间接连接。
当然,若仅使用换热介质冷却器530对换热介质降温时放出的热量进行蒸发,可能存在热量不足的情况。因此,也可以使用外部热源补充热量,以使蒸发过程能够顺利进行。
优选的,补充的外部热源可以是一些废热,例如,铸造厂或锻造厂的铸件或锻件冷却时放出的热量,或者,可以是一些化工厂进行化学反应时放出的热量。使用废热作为外部热源,可以减少能量浪费,且无需另外进行加热,能降低成本。
在一些实施例中,储能过程中,经过冷凝器330冷凝时放出的热量可以回收利用,在释能过程中,将这部分热量供给蒸发器410,供二氧化碳蒸发时使用,以减少能量浪费,提高能量利用率。
具体的,可以将冷凝器330与蒸发器410连接,将二氧化碳冷凝时放出的热量收集,并转移至蒸发器410,供二氧化碳蒸发时使用。冷凝器330与蒸发器410之间可以是直接连接,也可以通过其他部件间接连接。
当然,若仅使用冷凝器330放出的热量进行蒸发,可能存在热量不足的情 况。因此,也可以使用外部热源补充热量,以使蒸发过程能够顺利进行。
优选的,在一些实施例中,在蒸发器410与储液罐200之间设置有释能第一管道450与释能第六管道4500,释能第一管道450上设有第二阀门620,释能第六管道4500上设有节流膨胀阀4100与第九阀门6200。打开第二阀门620,关闭第九阀门6200时,释能第一管道450导通,打开第九阀门6200,关闭第二阀门620时,释能第六管道4500导通。释能过程中,若选择导通释能第六管道4500,从储液罐200流出的高压液态二氧化碳经过节流膨胀阀4100进行膨胀降压,然后再流入蒸发器410中。
与仅通过升温来使二氧化碳从液态转变为气态相比,设置节流膨胀阀4100进行降压有利于二氧化碳从液态转变为气态。
优选的,在使用节流膨胀阀4100时,可以将蒸发器410与冷凝器330结合,将二者合并为一个部件,形成相变换热器。相变换热器中,包括蒸发部与冷凝部两部分,蒸发部与冷凝部之间通过管道连接,在相变换热器内部,将冷凝部冷凝时放出的热量转移至蒸发部。将蒸发器410与冷凝器330合并为一个部件后,热量转移在相变换热器内部完成,能够减少在热量转移时的损失,进一步提高能量利用率。需要说明的是,当储能与释能同时进行时,才能以上述方式实现热量转移,若不能同时运行,需要先将能量存储,待蒸发时再供给蒸发器410。
参阅图3,示出了本发明又一实施例中的基于二氧化碳气液相变的热能转化机械能储能装置的结构示意图。如前所述,释能过程中,从膨胀机430流出的二氧化碳经释能第四管道480流入释能冷却器440,通过释能冷却器440对其进行降温,使其温度能够达到储气库100的要求。在释能冷却器440进行降温换热时,会放出热量。优选的,在一些实施例中,这部分热量可以回收利用,供二氧化碳蒸发时使用,以减少能量浪费,提高能量利用率。
优选的,可以将二氧化碳冷凝时放出的热量与释能冷却器440放出的热量均供给蒸发器410使用。
具体的,可以将释能冷却器440、冷凝器330均与蒸发器410连接,将释能冷却器440降温换热时放出的热量,以及冷凝器330冷凝时放出的热量均转移 至蒸发器410,供二氧化碳蒸发时使用。释能冷却器440与蒸发器410之间可以是直接连接,也可以通过其他部件间接连接。冷凝器330与蒸发器410之间可以是直接连接,也可以通过其他部件间接连接。
例如,图3中,释能冷却器440与蒸发器410之间通过水池710实现热量转移。水池710与释能冷却器440之间设有第一回收管道720与第二回收管道730。水池710与蒸发器410之间设有第三回收管道740与第四回收管道750。水池710与冷凝器330之间设置第五回收管道760与第六回收管道770。水池710以及上述各个管道处设有保温材质,对其中的水进行保温。
打开第六阀门660与第五阀门650,水池710内的一部分水经第五回收管道760流动至冷凝器330处,吸收冷凝器330放出的热量,水温升高后,再经第六回收管道770流动至水池710内。同时,水池710内的一部分水经第一回收管道720流动至释能冷却器440处,吸收释能冷却器440放出的热量,水温升高后,再经第二回收管道730流动至水池710内。
待蒸发时,打开第七阀门670,水池710内的温度较高的水经第三回收管道740流动至蒸发器410处,为二氧化碳的蒸发提供热量,流经蒸发器410后,水温降低,降温后的水再经第四回收管道750流动至水池710内。
在上述过程中,除了使用水进行热量收集,也可以使用其他物质。
此外,在第一回收管道720、第二回收管道730、第三回收管道740、第四回收管道750、第五回收管道760与第六回收管道770上还设有循环泵等部件,用以实现水池710内水的循环流动。
在释能冷却器440与冷凝器330放出的热量不断传递至水池710中时,可能会使水池710内的水温不断增高。在蒸发器410不断吸收水池710内的热量时,可能会使水池710的水温不断降低。因此,优选的,水池710为恒温状态。
具体的,水池710处还连接有恒温控制器、温度传感器、加热器与散热器等部件。通过温度传感器监测水池710内的水温,并将水温传至恒温控制器,若释能冷却器440与冷凝器330放出的热量使水温升高过多,超过最高设定值,则恒温控制器控制散热器对水池710进行散热。若蒸发器410吸收的热量使水温降低过多,低于最低设定值,则恒温控制器控制加热器对水池710进行加热。
在一些实施例中,也可以将冷凝器330放出的热量、释能冷却器440放出的热量、换热介质冷却器530放出的热量均供应给蒸发器410使用。具体设置方式与上述实施例类似,此处不再赘述。实际上,上述三处的热量可以单独供应,也可以其中任意两处一起供应。
当然,若将上述三处的热量均供应给蒸发器410后仍存在不足,可以使用外部热源补充热量。具体的,使用外部热源补充热量时,可以直接将热量补充至蒸发器410。或者,也可以将热量补充至换热回路的换热介质中。
将热量补充至蒸发器410时,直接将外部热源与蒸发器410连接即可。
参阅图4,示出了本发明又一实施例中的基于二氧化碳气液相变的热能转化机械能储能装置的结构示意图。将热量补充至换热回路的换热介质中时,可以在储冷罐510与储热罐520之间设置加热管道820,加热管道820上设置辅助加热件810,从储冷罐510中流出的一部分换热介质经加热管道820流动至辅助加热件810,辅助加热件810对这部分换热介质进行加热,使其吸收外部热量,可以使到达换热介质冷却器530处的热量增加,即能够提供给蒸发器410的热量增加。
优选的,辅助加热件810处的热量来源可以是外部热能,例如,地热、太阳能光热、生物质燃烧、垃圾焚烧产生的热能、工业生产过程中产生的废热等。使用外部热源,可以减少能量浪费,且无需另外进行加热,能降低成本。
优选的,可以在储气库100与储液罐200之间设置多组上述的储能组件300、释能组件400、换热组件500与驱动组件900,每组均按照前述实施例中的方式设置。在使用时,若其中一组中的部件出现故障,还有其他组可以工作,可以降低该装置的故障停机率,提高其工作可靠性。
优选的,设有多个驱动组件900与多个压缩机310,且每个驱动组件900对应的驱动一个压缩机310。流出每个压缩机310的增压后的换热介质中的一部分均能够流动至对应的驱动组件900处,每个驱动组件900中的第一驱动件920均能驱动对应的压缩机310工作。如此,能够使每个压缩机310均通过外部热能进行驱动。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对 上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,包括:
    储气库,所述储气库用于存储气态二氧化碳,所述储气库的容积能够变化;
    储液罐,所述储液罐用于存储液态二氧化碳;
    储能组件,所述储能组件用于存储能量,所述储能组件设置于所述储气库与所述储液罐之间,二氧化碳经所述储能组件由气态转变为液态,所述储能组件包括压缩机,所述压缩机用于压缩二氧化碳;
    释能组件,所述释能组件用于释放能量,所述释能组件设置于所述储气库与所述储液罐之间,二氧化碳经所述释能组件由液态转变为气态;
    换热组件,所述储能组件、所述释能组件均与所述换热组件连接,所述换热组件能够将所述储能组件中产生的部分能量转移至所述释能组件中;
    驱动组件,所述驱动组件与所述储能组件连接,所述驱动组件包括能量输入件与第一驱动件,流出所述压缩机的部分二氧化碳能够分流至所述驱动组件,分流至所述驱动组件的二氧化碳能够经所述能量输入件吸收外部热能,并驱动所述第一驱动件工作,所述第一驱动件能够驱动所述压缩机工作。
  2. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述驱动组件还包括第二驱动件,所述第二驱动件能够与所述压缩机连接,当所述第一驱动件未启动时,所述第二驱动件能够驱动所述压缩机工作。
  3. 根据权利要求2所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述第一驱动件、所述第二驱动件与所述压缩机同轴设置。
  4. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述压缩机与所述驱动组件均设有多个且一一对应,流出所述压缩机的部分二氧化碳能够分流至对应的所述驱动组件,每个所述驱动组件 中的所述第一驱动件均能够驱动对应的所述压缩机工作。
  5. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述驱动组件还包括驱动循环冷却器,所述能量输入件与所述压缩机连接,所述第一驱动件与所述能量输入件连接,所述驱动循环冷却器与所述第一驱动件连接,所述压缩机与所述驱动循环冷却器连接,所述驱动循环冷却器用于对从所述第一驱动件流入所述压缩机的二氧化碳进行冷却。
  6. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述储能组件包括冷凝器与压缩储能部,所述压缩储能部至少设有一组,所述压缩储能部包括所述压缩机与储能换热器,每个所述压缩储能部中的所述储能换热器与所述压缩机连接,每个所述压缩储能部中的所述储能换热器与相邻的所述压缩储能部中的所述压缩机连接,始端的所述压缩储能部中的所述压缩机与所述储气库连接,末端的所述压缩储能部中的所述储能换热器与所述冷凝器连接,所述储液罐与所述冷凝器连接,所述换热组件与所述储能换热器连接,从所述压缩机流出的二氧化碳部分流入对应的所述储能换热器,部分流入对应的所述驱动组件,所述储能换热器能够将二氧化碳经所述压缩机压缩时产生的部分能量转移至所述换热组件。
  7. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述释能组件包括蒸发器、膨胀释能部与释能冷却器,所述膨胀释能部至少设有一组,所述膨胀释能部包括释能换热器与膨胀机,每个所述膨胀释能部中的所述膨胀机与所述释能换热器连接,每个所述膨胀释能部中的所述膨胀机与相邻的所述膨胀释能部中的所述释能换热器连接,所述蒸发器与所述储液罐连接,始端的所述膨胀释能部中的所述释能换热器与所述蒸发器连接,末端的所述膨胀释能部中的所述膨胀机与所述释能冷却器连接,所述储 气库与所述释能冷却器连接,所述换热组件与所述释能换热器连接,流经所述释能换热器的二氧化碳能够吸收所述换热组件中暂存的能量。
  8. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述换热组件包括储冷罐与储热罐,所述储冷罐与所述储热罐内设有换热介质,所述储冷罐、所述储热罐在所述储能组件与所述释能组件之间形成换热回路,所述换热介质能够在所述换热回路中流动,所述换热介质从所述储冷罐流动至所述储热罐时,能够存储所述储能组件产生的部分能量,所述换热介质从所述储热罐流动至所述储冷罐时,能够将存储的能量转移至所述释能组件。
  9. 根据权利要求8所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述释能组件包括蒸发器,二氧化碳经所述蒸发器由液态转变为气态,所述换热组件还包括换热介质冷却器,所述换热介质冷却器用于对进入所述储冷罐的所述换热介质进行冷却,所述换热介质冷却器与所述蒸发器连接。
  10. 根据权利要求8所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述储冷罐与所述储热罐之间设有辅助加热件,部分所述换热介质能够经所述辅助加热件加热后流入所述储热罐。
  11. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述释能组件包括节流膨胀阀与蒸发器,二氧化碳经所述蒸发器由液态转变为气态,所述节流膨胀阀位于所述储液罐与所述蒸发器之间,所述节流膨胀阀用于使经所述储液罐流出的二氧化碳降压;
    所述储能组件包括冷凝器,二氧化碳经所述冷凝器由气态转变为液态,所述蒸发器与所述冷凝器连接。
  12. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述释能组件包括蒸发器与释能冷却器,二氧化碳经所述蒸发器由液态转变为气态,所述释能冷却器用于对进入所述储气库的二氧化碳进行冷却,所述释能冷却器与所述蒸发器连接。
  13. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能储能装置,其特征在于,所述储气库为柔性气膜储气库。
PCT/CN2021/136346 2021-02-07 2021-12-08 基于二氧化碳气液相变的热能转化机械能储能装置 WO2022166384A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110169183.XA CN112985142A (zh) 2021-02-07 2021-02-07 基于二氧化碳气液相变的热能转化机械能储能装置
CN202110169183.X 2021-02-07

Publications (2)

Publication Number Publication Date
WO2022166384A1 true WO2022166384A1 (zh) 2022-08-11
WO2022166384A8 WO2022166384A8 (zh) 2023-06-15

Family

ID=76349033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136346 WO2022166384A1 (zh) 2021-02-07 2021-12-08 基于二氧化碳气液相变的热能转化机械能储能装置

Country Status (2)

Country Link
CN (1) CN112985142A (zh)
WO (1) WO2022166384A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115406288A (zh) * 2022-08-18 2022-11-29 百穰新能源科技(深圳)有限公司 二氧化碳气液相变储能系统的存储单元、控制方法与系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985142A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的热能转化机械能储能装置
CN112985144B (zh) * 2021-02-07 2022-04-01 百穰新能源科技(深圳)有限公司 基于二氧化碳气液相变的多级压缩储能装置及方法
CN112985143B (zh) * 2021-02-07 2022-01-14 百穰新能源科技(深圳)有限公司 基于co2气液相变的热能转化机械能多级压缩储能装置
CN112985145B (zh) * 2021-02-07 2022-03-11 百穰新能源科技(深圳)有限公司 基于二氧化碳气液相变的储能装置与方法
CN112880451A (zh) * 2021-02-07 2021-06-01 深圳市博德维环境技术股份有限公司 基于补充外部能量的co2气液相变的储能装置与方法
CN114109549B (zh) * 2022-01-26 2022-04-26 百穰新能源科技(深圳)有限公司 具有冷源的二氧化碳储能系统及其控制方法
CN116447769B (zh) * 2023-06-16 2023-09-29 百穰新能源科技(深圳)有限公司 二氧化碳储能系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758690A (zh) * 2012-07-29 2012-10-31 中国科学院工程热物理研究所 高效高压液态空气储能/释能系统
US20160298498A1 (en) * 2015-04-10 2016-10-13 Sten Kreuger Energy Storage and Retrieval Systems
CN107461227A (zh) * 2017-07-26 2017-12-12 西安交通大学 一种超临界二氧化碳离心压缩机与向心透平同轴结构
CN109441741A (zh) * 2018-10-08 2019-03-08 国网陕西省电力公司电力科学研究院 一种基于超临界二氧化碳循环的可调峰储能系统及其控制方法
CN110374838A (zh) * 2019-06-14 2019-10-25 西安交通大学 一种基于lng冷量利用的跨临界二氧化碳储能系统及方法
CN111749743A (zh) * 2020-07-06 2020-10-09 全球能源互联网研究院有限公司 一种灵敏适于调频的压缩空气储能系统
CN112880451A (zh) * 2021-02-07 2021-06-01 深圳市博德维环境技术股份有限公司 基于补充外部能量的co2气液相变的储能装置与方法
CN112985144A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的多级压缩储能装置及方法
CN112985143A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于co2气液相变的热能转化机械能多级压缩储能装置
CN112985145A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的储能装置与方法
CN112985142A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的热能转化机械能储能装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676557A (zh) * 2008-09-17 2010-03-24 王栋 空气分流热力机
CN109854320B (zh) * 2019-01-03 2021-12-03 上海海事大学 一种二氧化碳储能与有机朗肯循环联合发电系统
CN109826682B (zh) * 2019-01-03 2021-12-03 上海海事大学 一种可实现冷热电联供的集成型供能系统
CN112325497A (zh) * 2020-11-23 2021-02-05 青岛科技大学 一种液化二氧化碳储能系统及其应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758690A (zh) * 2012-07-29 2012-10-31 中国科学院工程热物理研究所 高效高压液态空气储能/释能系统
US20160298498A1 (en) * 2015-04-10 2016-10-13 Sten Kreuger Energy Storage and Retrieval Systems
CN107461227A (zh) * 2017-07-26 2017-12-12 西安交通大学 一种超临界二氧化碳离心压缩机与向心透平同轴结构
CN109441741A (zh) * 2018-10-08 2019-03-08 国网陕西省电力公司电力科学研究院 一种基于超临界二氧化碳循环的可调峰储能系统及其控制方法
CN110374838A (zh) * 2019-06-14 2019-10-25 西安交通大学 一种基于lng冷量利用的跨临界二氧化碳储能系统及方法
CN111749743A (zh) * 2020-07-06 2020-10-09 全球能源互联网研究院有限公司 一种灵敏适于调频的压缩空气储能系统
CN112880451A (zh) * 2021-02-07 2021-06-01 深圳市博德维环境技术股份有限公司 基于补充外部能量的co2气液相变的储能装置与方法
CN112985144A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的多级压缩储能装置及方法
CN112985143A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于co2气液相变的热能转化机械能多级压缩储能装置
CN112985145A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的储能装置与方法
CN112985142A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的热能转化机械能储能装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115406288A (zh) * 2022-08-18 2022-11-29 百穰新能源科技(深圳)有限公司 二氧化碳气液相变储能系统的存储单元、控制方法与系统
CN115406288B (zh) * 2022-08-18 2023-09-22 百穰新能源科技(深圳)有限公司 二氧化碳气液相变储能系统的存储单元、控制方法与系统

Also Published As

Publication number Publication date
CN112985142A (zh) 2021-06-18
WO2022166384A8 (zh) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2022166384A1 (zh) 基于二氧化碳气液相变的热能转化机械能储能装置
WO2022166381A1 (zh) 基于补充外部能量的co2气液相变的储能装置与方法
WO2022166387A1 (zh) 基于二氧化碳气液相变的储能装置与方法
WO2022166392A1 (zh) 基于二氧化碳气液相变的多级压缩储能装置及方法
WO2022166391A1 (zh) 基于co2气液相变的热能转化机械能多级压缩储能装置
NO20120029A1 (no) System og fremgangsmate for termisk stryring i en eller flere insdustriprosesser
DK2627876T3 (en) A method and system for utilizing a power source of relatively low temperature
CN109026243A (zh) 能量转换系统
CN101988397A (zh) 一种低品位热流原动机、发电系统及其方法
CN107313819A (zh) 一种集成热泵和发电功能的新型热能利用系统
CN113036932B (zh) 一种co2跨临界热力循环储电系统和方法
CN201991579U (zh) 空气能发电装置
CN106677988B (zh) 一种风光储能系统
CN115234318B (zh) 配合火电厂深度调峰的二氧化碳储能系统及其控制方法
CN108757069B (zh) 气液两相流重力热机
KR101038249B1 (ko) 가스터빈의 흡기 냉각장치
CN116641769A (zh) 基于二氧化碳工质的储能利用系统
CN102191958A (zh) 低温空气能发电装置
CN102191952A (zh) 空气能发电装置
CN112303960A (zh) 冷力发动机
KR100658321B1 (ko) 열흡수식 동력발생장치
CN117232172A (zh) 基于二氧化碳气液两相循环的储能系统
Li et al. Comparative analysis and optimization of waste-heat recovery systems with large-temperature-gradient heat transfer
CN102192044A (zh) 低温空气能热泵发电装置
CN116591794A (zh) 液态二氧化碳储能发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE