WO2022166391A1 - 基于co2气液相变的热能转化机械能多级压缩储能装置 - Google Patents

基于co2气液相变的热能转化机械能多级压缩储能装置 Download PDF

Info

Publication number
WO2022166391A1
WO2022166391A1 PCT/CN2021/136442 CN2021136442W WO2022166391A1 WO 2022166391 A1 WO2022166391 A1 WO 2022166391A1 CN 2021136442 W CN2021136442 W CN 2021136442W WO 2022166391 A1 WO2022166391 A1 WO 2022166391A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
storage
heat
heat exchange
gas
Prior art date
Application number
PCT/CN2021/136442
Other languages
English (en)
French (fr)
Other versions
WO2022166391A8 (zh
Inventor
谢永慧
王秦
孙磊
王雨琦
张荻
郭永亮
汪晓勇
杨锋
Original Assignee
百穰新能源科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 百穰新能源科技(深圳)有限公司 filed Critical 百穰新能源科技(深圳)有限公司
Priority to US18/273,637 priority Critical patent/US20240084972A1/en
Priority to CA3208084A priority patent/CA3208084A1/en
Publication of WO2022166391A1 publication Critical patent/WO2022166391A1/zh
Publication of WO2022166391A8 publication Critical patent/WO2022166391A8/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0185Arrangement comprising several pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the technical field of energy storage, in particular to a thermal energy conversion mechanical energy multistage compression energy storage device based on CO2 gas-liquid phase transition.
  • the invention proposes a thermal energy conversion mechanical energy multi-stage compression energy storage device based on CO 2 gas-liquid phase transition, through which external energy such as geothermal, solar thermal, thermal energy generated by waste incineration, and waste heat generated in industrial production processes can be stored for energy storage. use, thereby reducing waste of resources and saving energy.
  • Thermal energy conversion mechanical energy multistage compression energy storage device based on CO2 gas-liquid phase transition including:
  • the gas storage is used for storing gaseous carbon dioxide, and the volume of the gas storage can be changed;
  • liquid storage tank is used for storing liquid carbon dioxide
  • the energy storage assembly is used for storing energy
  • the energy storage assembly is arranged between the gas storage and the liquid storage tank
  • the energy storage assembly includes a condenser and at least two compression energy storages part
  • the compression energy storage part includes a compressor and an energy storage heat exchanger
  • the compressor is used for compressing carbon dioxide
  • the condenser is used for condensing carbon dioxide
  • An energy release component the energy release component is arranged between the gas storage and the liquid storage tank, the energy release component includes an evaporator and at least one expansion energy release part, and the expansion energy release part includes an energy release part A heat exchanger and an expander, the evaporator is used to evaporate carbon dioxide, and the expander is used to release energy;
  • a heat exchange assembly, the energy storage heat exchanger and the energy release heat exchanger are all connected to the heat exchange assembly, and the energy storage heat exchanger can temporarily store the energy generated by the energy storage assembly to the heat exchange assembly.
  • a drive assembly includes an energy input member and a first drive member, the energy input member absorbs external heat energy to drive the first drive member to work, and the first drive member is used to drive the compressor to work.
  • the driving assembly further includes a second driving member, the second driving member can be connected with the compressor, and when the first driving member is not activated, the second driving member can be Drive the compressor to work.
  • the compressors in the plurality of compression energy storage parts are distributed along the axial direction of the output shaft of the first driving member.
  • the driving assembly further comprises a driving circulation cooler and a driving circulation pump, and a driving is formed between the energy input member, the first driving member, the driving circulation cooler and the driving circulation pump
  • a circulation circuit a driving medium is arranged in the driving circulation circuit
  • the driving circulation pump is used to drive the driving medium to circulate and flow in the driving circulation circuit
  • the driving medium absorbs external heat energy through the energy input member and
  • the first driving member is driven to work
  • the driving circulation cooler is used for cooling the driving medium flowing out of the first driving member.
  • the energy storage assembly includes a first compressor, a first energy storage heat exchanger, a second compressor, and a second energy storage heat exchanger, the first compressor and the gas storage
  • the first energy storage heat exchanger is connected to the first compressor
  • the second compressor is connected to the first energy storage heat exchanger
  • the second energy storage heat exchanger is connected to the The second compressor is connected
  • the condenser is connected with the second energy storage heat exchanger
  • the liquid storage tank is connected with the condenser.
  • the energy release assembly includes a first expander, a second expander, a first energy release heat exchanger, a second energy release heat exchanger and an energy release cooler, and the evaporator is connected to the energy release cooler.
  • the liquid storage tank is connected, the first energy release heat exchanger is connected to the evaporator, the first expander is connected to the first energy release heat exchanger, and the second energy release heat exchanger is connected to the evaporator.
  • the first expander is connected, the second expander is connected to the second energy release heat exchanger, the energy release cooler is connected to the second expander, and the gas storage is connected to the release heat exchanger.
  • An energy cooler is connected, and the energy release cooler is used for cooling the carbon dioxide entering the gas storage.
  • the energy release cooler is connected to the evaporator.
  • the energy release assembly further includes a throttle expansion valve, the throttle expansion valve is located between the liquid storage tank and the evaporator, and the throttle expansion valve is used for The carbon dioxide flowing out of the liquid storage tank is depressurized, and the evaporator is connected to the condenser.
  • the heat exchange assembly includes a cold storage tank and a heat storage tank, and a heat exchange medium is arranged in the cold storage tank and the heat storage tank, and the cold storage tank and the heat storage tank are provided with a heat exchange medium.
  • a heat exchange circuit is formed between the energy storage component and the energy release component, the heat exchange medium can flow in the heat exchange circuit, and the heat exchange medium flows from the cold storage tank to the storage tank.
  • the heat exchange assembly further includes a heat exchange medium cooler, the heat exchange medium cooler is configured to cool the heat exchange medium entering the cold storage tank, and the heat exchange medium cools connected to the evaporator.
  • an auxiliary heating element is provided between the cold storage tank and the heat storage tank, and part of the heat exchange medium can flow into the heat storage tank after being heated by the auxiliary heating element.
  • the gas storage is a flexible membrane gas storage.
  • the above-mentioned thermal energy conversion mechanical energy multi-stage compression energy storage device based on CO 2 gas-liquid phase transition is provided with a gas storage tank and a liquid storage tank.
  • the gaseous carbon dioxide is stored in the gas storage tank, and the liquid carbon dioxide is stored in the liquid storage tank.
  • An energy storage component and an energy release component are arranged between the gas storage and the liquid storage tank, and a heat exchange component is also arranged between the energy release component and the energy storage component.
  • the heat is stored in the heat exchange component and transferred to the energy release component, and the energy release is completed through the energy release component.
  • the waste heat generated in the manufacturing process can be supplied to the energy input member, so that the first driving member works, and then the compressor is driven to work through the first driving member, so as to realize the recovery of heat energy, and when the energy is released Release energy, thereby reducing waste of heat energy and saving energy.
  • FIG. 1 is a schematic structural diagram of a thermal energy conversion mechanical energy multi-stage compression energy storage device based on CO gas-liquid phase transition in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of the first driving member, the second driving member and a plurality of compressors in FIG. 1;
  • FIG. 3 is a schematic structural diagram of the thermal energy conversion mechanical energy multi-stage compression energy storage device based on CO 2 gas-liquid phase transition in another embodiment of the present invention in FIG. 1 .
  • Energy release assembly 400 evaporator 410, first energy release heat exchanger 420, first expander 430, second energy release heat exchanger 440, second expander 450, energy release cooler 460, energy release first pipeline 471.
  • Heat exchange assembly 500 cold storage tank 510, heat storage tank 520, heat exchange medium cooler 530, first heat exchange pipe 541, second heat exchange pipe 542, third heat exchange pipe 543, fourth heat exchange pipe 544, The fifth heat exchange pipeline 545, the sixth heat exchange pipeline 546, the seventh heat exchange pipeline 547, the eighth heat exchange pipeline 548, the first circulating pump 550 for the heat exchange medium, and the second circulating pump 551 for the heat exchange medium;
  • a first valve 610 a second valve 620, a third valve 630, a fourth valve 640, a fifth valve 650, a sixth valve 660, and a seventh valve 6200;
  • Drive assembly 800 energy input member 810, first drive member 820, drive cycle cooler 830, drive cycle pump 840, second drive member 850, drive cycle first conduit 861, drive cycle second conduit 862, drive cycle third Conduit 863, the fourth conduit 864 for the drive cycle.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • FIG. 1 shows a schematic structural diagram of a thermal energy conversion mechanical energy multistage compression energy storage device based on CO 2 gas-liquid phase transition in an embodiment of the present invention.
  • the multi-stage compression energy storage device for thermal energy conversion based on CO 2 gas-liquid phase transition provided by an embodiment of the present invention includes a gas storage 100, a liquid storage tank 200, an energy storage component 300, an energy release component 400, a heat exchange component 500 and Drive assembly 800 and other components.
  • Liquid carbon dioxide in a high pressure state is stored in the liquid storage tank 200 .
  • the gas storage 100 stores gaseous carbon dioxide at normal temperature and pressure, and the pressure and temperature inside the gas storage 100 are maintained within a certain range to meet the energy storage requirements.
  • a heat preservation device is provided to heat the gas storage 100, so that the temperature inside the gas storage tank 100 is maintained within a required range.
  • the pressure in the gas storage 100 can be kept constant. It should be noted that the pressure and temperature inside the gas storage 100 are maintained within a certain range, and in the above analysis, they are approximately regarded as constant values.
  • the temperature T 1 in the gas storage 100 is in the range of 15° C. ⁇ T 1 ⁇ 35° C.
  • the pressure difference between the air pressure in the gas storage 100 and the outside atmosphere is less than 1000Pa.
  • the energy storage assembly 300 is located between the gas storage 100 and the liquid storage tank 200.
  • the gaseous carbon dioxide flowing out of the gas storage 100 is converted into a liquid state through the energy storage assembly 300 and flows into the liquid storage tank 200, completing energy storage in the process.
  • the energy storage assembly 300 includes a condenser 350 and at least two compression energy storage parts
  • the compression energy storage part includes a compressor and an energy storage heat exchanger.
  • the carbon dioxide flows through the compressor, it is compressed by the compressor, increasing its pressure.
  • heat is generated, raising the temperature of the carbon dioxide.
  • the condenser 350 is used for condensing the compressed carbon dioxide to convert it into a liquid state for storage in the liquid storage tank 200 .
  • the energy release assembly 400 is also located between the gas storage 100 and the liquid storage tank 200.
  • the liquid carbon dioxide flowing out from the liquid storage tank 200 is transformed into a gaseous state through the energy release assembly 400 and flows into the gas storage 100.
  • the energy stored in the energy process is released.
  • the energy release assembly 400 includes an evaporator 410 and at least one expansion energy release part, and the expansion energy release part includes an expander and an energy release heat exchanger.
  • the carbon dioxide flows through the evaporator 410, it is evaporated and transformed into a gaseous state, and then when it flows through the energy releasing heat exchanger, it can absorb the energy temporarily stored in the heat exchange component 500 and release it through the expander.
  • the heat exchange component 500 is disposed between the energy storage component 300 and the energy release component 400 .
  • a part of the stored energy is stored in the high-pressure liquid carbon dioxide in the form of pressure energy, and the other part is stored in the heat exchange component 500 in the form of thermal energy.
  • this part of the energy is transferred from the thermal component 500 to the energy release component 400, and all the stored energy is released through carbon dioxide.
  • the drive assembly 800 is connected to the compressor in the energy storage assembly 300 , and the drive assembly 800 includes an energy input member 810 and a first drive member 820 .
  • the energy input member 810 is connected to the external heat source and can absorb the heat energy provided by the external heat source. The heat energy input from the outside can drive the first driving member 820 to work, and then the compressor is driven to work through the first driving member 820 .
  • the external input heat source can be geothermal, solar thermal, thermal energy generated by waste incineration, waste heat generated during industrial production and other energy sources.
  • energy waste can be reduced, and additional heating is not required, which can reduce costs.
  • the external heat energy is absorbed by the energy input member 810, thereby driving the first driving member 820 to work, which is then converted into mechanical energy, and drives the compressor to work.
  • the energy storage device in this embodiment realizes the transformation of carbon dioxide from a gaseous state to a liquid state by inputting thermal energy, and stores the energy. During the peak period of electricity consumption, this part of the energy is released to drive the generator to generate electricity. In this way, energy waste can be reduced, and the power generation burden on power plants can also be reduced.
  • carbon dioxide only changes between gaseous state and liquid state. Before energy storage, carbon dioxide is in a gaseous state and is at normal temperature and pressure. Compared with the conventional energy storage and energy release through supercritical carbon dioxide, this In the embodiment, the requirements for the gas storage 100 are relatively low, and there is no need to provide a storage component with a relatively complex structure, which can reduce the cost to a certain extent.
  • One energy storage heat exchanger is correspondingly connected to one compressor, and the two can be regarded as compression energy storage parts.
  • a plurality of groups of compression energy storage parts connected in sequence are arranged. In this way, the carbon dioxide is gradually pressurized by multiple stages of compression.
  • the compressor in the compression energy storage part at the beginning is connected to the gas storage 100
  • the energy storage heat exchanger in the compression energy storage part at the end is connected to the condenser 350
  • the energy storage heat exchanger in each group of compression energy storage parts is connected to the condenser 350.
  • Compressors in adjacent compression energy storage sections are connected.
  • the start and end are defined by the direction from the gas storage 100 through the energy storage assembly 300 to the liquid storage tank 200 .
  • the energy storage assembly 300 includes components such as a first compressor 310 , a first energy storage heat exchanger 320 , a second compressor 330 , a second energy storage heat exchanger 340 , and a condenser 350 .
  • the first compressor 310 and the gas storage 100 are connected through a first energy storage pipeline 361, and the first energy storage heat exchanger 320 and the first compressor 310 are connected through an energy storage second pipeline 362, and the second compressor 330 and the first energy storage heat exchanger 320 are connected through the energy storage third pipeline 363, the second energy storage heat exchanger 340 and the second compressor 330 are connected through the energy storage fourth pipeline 364, and the condenser 350 is connected to
  • the second energy storage heat exchangers 340 are connected through a fifth energy storage pipeline 365
  • the liquid storage tank 200 and the condenser 350 are connected through a sixth energy storage pipeline 366 .
  • the heat exchange assembly 500 is connected to both the first energy storage heat exchanger 320 and the second energy storage heat exchanger 340, and part of the energy generated when the first compressor 310 and the second compressor 330 compress carbon dioxide is stored in the form of pressure energy in the form of pressure energy. In the high-pressure carbon dioxide, part of the energy in the form of heat energy is transferred to the heat exchange component 500 through the first energy storage heat exchanger 320 and the second energy storage heat exchanger 340 for temporary storage.
  • the compressor with a smaller compression ratio can be selected during the two-time compression, and the cost of the compressor is lower.
  • the number of compressors can also be more than two, as long as the compressor and the energy storage heat exchanger are added as a complete set.
  • An expander is correspondingly connected with an energy release heat exchanger, and the two can be regarded as an expansion energy release part.
  • multiple groups of expansion energy releasing parts connected in sequence may be arranged between the evaporator 410 and the energy releasing cooler 460 .
  • the energy release heat exchanger in the expansion energy release part at the beginning is connected to the evaporator 410
  • the expander in the expansion energy release part at the end is connected to the energy release cooler 460
  • the expander in each expansion energy release part is connected to the evaporator 410.
  • the energy release heat exchangers in the adjacent expansion energy release parts are connected.
  • the start and end here are defined by the direction from the liquid storage tank 200 through the energy release assembly 400 to the gas storage 100 . If there is only one group of expansion energy release parts, the beginning and the end are the only group of expansion energy release parts.
  • the energy release assembly 400 includes an evaporator 410 , a first energy release heat exchanger 420 , a first expander 430 , a second energy release heat exchanger 440 , a second expander 450 , an energy release cooler 460 and other components.
  • the evaporator 410 and the liquid storage tank 200 are connected through a first energy releasing pipeline 471, the first energy releasing heat exchanger 420 and the evaporator 410 are connected through an energy releasing second pipeline 472, and the first expander 430 is connected with the first energy releasing pipeline 472.
  • the energy releasing heat exchangers 420 are connected by a third energy releasing pipeline 473, the second energy releasing heat exchanger 440 and the first expander 430 are connected by an energy releasing fourth pipeline 474, and the second expander 450 is connected with
  • the second energy releasing heat exchangers 440 are connected through the energy releasing fifth pipeline 475, the energy releasing cooler 460 and the second expander 450 are connected through the energy releasing sixth pipeline 476, and the gas storage 100 is connected with the energy releasing cooler 460 are connected by a seventh pipeline 477 for releasing energy.
  • the heat exchange component 500 is connected to the first energy release heat exchanger 420 and the second energy release heat exchanger 440. During the energy release process, the energy temporarily stored in the heat exchange component 500 passes through the first energy release heat exchanger 420. and the second energy release heat exchanger 440 is transferred to the carbon dioxide flowing through the first energy release heat exchanger 420 and the second energy release heat exchanger 440, the carbon dioxide absorbs this part of the energy, and passes through the first expander 430 and the second energy release heat exchanger 440. The expander 450 releases the energy.
  • gaseous carbon dioxide flows through the first expander 430 and the second expander 450 , it impacts the blades and drives the rotor to rotate, so as to achieve energy output and drive the generator to generate electricity.
  • the number of expanders can also be one, or more than two, as long as the expander and the energy releasing heat exchanger can be increased or decreased as a complete set.
  • the heat exchange assembly 500 includes a cold storage tank 510, a heat storage tank 520, a heat exchange medium cooler 530 and other components.
  • Heat exchange medium is stored in the cold storage tank 510 and the heat storage tank 520 .
  • the cold storage tank 510 and the heat storage tank 520 form a heat exchange circuit between the energy storage assembly 300 and the energy release assembly 400, and the heat exchange medium can circulate in the heat exchange circuit.
  • the above-mentioned heat exchange medium can be selected from materials such as molten salt or saturated water.
  • the temperature of the heat exchange medium in the cold storage tank 510 is lower, and the temperature of the heat exchange medium in the heat storage tank 520 is higher.
  • energy collection and release can be achieved. Specifically, when the heat exchange medium flows from the cold storage tank 510 to the heat storage tank 520, it absorbs part of the energy generated during the energy storage process, and when the heat exchange medium flows from the heat storage tank 520 to the cold storage tank 510, it absorbs the energy previously absorbed Then, when the heat exchange medium flows from the heat storage tank 520 to the cold storage tank 510 , it flows through the heat exchange medium cooler 530 for cooling, so as to meet the temperature requirement of the heat exchange medium stored in the cold storage tank 510 .
  • the driving assembly 800 includes an energy input member 810 , a first driving member 820 , a driving circulation cooler 830 , a driving circulation pump 840 and other components.
  • a driving circulation circuit is formed between the energy input member 810 , the first driving member 820 , the driving circulation cooler 830 and the driving circulation pump 840 , and a driving medium is arranged in the driving circulation circuit.
  • the driving circulation pump 840 can pressurize the driving medium, which is equivalent to a small-scale compressor, and the driving medium can circulate and flow in the driving circulation circuit under the driving of the driving circulation pump 840 .
  • the energy input member 810 is connected to an external heat source, and the energy input member 810 and the driving circulation pump 840 are connected through the driving circulation first pipeline 861 .
  • the first driving member 820 and the energy input member 810 are connected through the second pipeline 862 of the driving cycle, and the driving cycle cooler 830 and the first driving member 820 are connected through the third pipeline 863 of the driving cycle, and the driving cycle pump 840 is connected with the driving cycle
  • the coolers 830 are connected by a fourth pipe 864 of the driving cycle.
  • the above-mentioned driving medium can be carbon dioxide, water vapor or other organic working medium.
  • the selection of the driving medium is related to the temperature that the external heat source connected at the energy input member 810 can provide.
  • the first driving member 820 is a turbine. After the driving medium is pressurized by the driving circulating pump 840 and absorbs external heat energy, the high-temperature and high-pressure driving medium flows through the rotor of the turbine and impacts the blades, pushing the rotor to rotate, thereby driving the turbine shaft to rotate. , so as to drive the first compressor 310 and the second compressor 330 to work.
  • the input thermal energy is converted into mechanical energy to drive the first compressor 310 and the second compressor 330 to work, and then the carbon dioxide is compressed by the first compressor 310 and the second compressor 330 to convert it into pressure energy It is stored with the heat energy generated during compression.
  • FIG. 2 shows a schematic structural diagram of the first driving member, the second driving member and a plurality of compressors in FIG. 1 .
  • the energy input member 810 in the drive assembly 800 absorbs external heat energy and drives the first drive member 820 to work, it takes a certain amount of time. If the drive assembly 800 and other assemblies are activated at the same time, the first drive member 820 cannot drive the first compression member 820 when it is just started. machine 310 and second compressor 330. Therefore, a second driving member 850 is also provided, and when the device starts to operate, the first compressor 310 and the second compressor 330 are driven by the second driving member 850 to perform compression. When the externally input heat energy can drive the first driving member 820 to work, the second driving member 850 is turned off, and the first driving member 820 is used to drive the first compressor 310 and the second compressor 330 .
  • the first driving member 820, the second driving member 850, the first compressor 310 and the second compressor 330 are arranged coaxially, that is, the output shafts of the first driving member 820 and the second driving member 850 are collinear, and the first driving member 820 and the second driving member 850 are coaxial.
  • the compressor 310 and the second compressor 330 are distributed along the axial direction of the output shafts of the first driving member 820 and the second driving member 850 . In this way, the axial thrust can be balanced, the axial and radial vibrations can be reduced, and the entire device can run more smoothly and with less vibration and noise.
  • the first driving member 820 , the second driving member 850 , the first compressor 310 and the second compressor 330 are all sealed with dry gas.
  • the driving assembly 800 may be started to work in advance before the energy storage is performed, and components such as the energy storage assembly 300 may be restarted when the first driving member 820 can work. In this way, there is no need to provide the second driving member 850 .
  • components such as circulating pumps are arranged on each of the above-mentioned pipelines to realize the directional flow of carbon dioxide and heat exchange medium.
  • the carbon dioxide flowing out of the first compressor 310 can also be split, and a part of the carbon dioxide flows into the first energy storage heat exchanger 320; a part flows to the energy input member 810, and after the energy input member 810 absorbs external thermal energy, it flows into the first energy storage heat exchanger 320.
  • the first driving member 820 impacts its blades to make it work, and then drives the first compressor 310 to work through the first driving member 820 .
  • the carbon dioxide flowing out of the first driving member 820 is cooled by the driving circulation cooler 830 , and then combined with the carbon dioxide flowing out of the gas storage 100 , and flows into the first compressor 310 .
  • the carbon dioxide flowing out of the second compressor 330 may also be split, a part of which flows into the second energy storage heat exchanger 340 , and a part of which flows to the energy input member 810 .
  • the first valve 610 , the third valve 630 and the fifth valve 650 are opened, the second valve 620 and the fourth valve 640 are closed, and the second driving member 850 and the driving circulation pump 840 are activated.
  • the driving medium is pressurized by the driving circulation pump 840 and flows to the energy input member 810 through the driving circulation first pipeline 861 , and the temperature of the driving medium increases after absorbing external heat energy through the energy input member 810 .
  • the first driving member 820 is a turbine, and the driving medium in the high temperature and high pressure state flows into the first driving member 820 through the driving circulation second pipeline 862, and the driving medium impacts the blades of the turbine, pushing the rotor to rotate, thereby driving the turbine shaft to rotate to drive
  • the first compressor 310 and the second compressor 330 work.
  • the temperature and pressure of the driving medium flowing out from the first driving member 820 have decreased, but the temperature is still too high. Therefore, the driving medium flows to the driving circulation cooler 830 through the driving circulation third pipe 863, and is passed through the driving circulation cooler 830. Cooling is performed to make it meet the temperature requirement of the inlet of the driving circulation pump 840 .
  • the driving medium After being cooled by the driving circulation cooler 830, the driving medium enters the driving circulation pump 840 again through the fourth pipe 864 of the driving circulation. Repeating the above process can continue to output power to the first compressor 310 and the second compressor 330 .
  • the gaseous carbon dioxide in the normal temperature and pressure state flows out from the gas storage 100 and flows to the first compressor 310 through the first energy storage pipeline 361 .
  • the gaseous carbon dioxide is first compressed by the first compressor 310 to increase its pressure. During the compression process, heat is generated, raising the temperature of the carbon dioxide.
  • the carbon dioxide flows to the first energy storage heat exchanger 320 through the energy storage second pipeline 362 , and transfers the heat generated during compression to the first energy storage heat exchanger 320 .
  • the first energy storage heat exchanger 320 transfers heat to the heat exchange medium.
  • the carbon dioxide flowing out from the first energy storage heat exchanger 320 flows to the second compressor 330 through the energy storage third pipeline 363, and is compressed for a second time by the second compressor 330 to further increase its pressure.
  • heat is generated, raising the temperature of the carbon dioxide.
  • the carbon dioxide flows to the second energy storage heat exchanger 340 through the fourth energy storage pipeline 364 , and transfers the heat generated during compression to the second energy storage heat exchanger 340 .
  • the second energy storage heat exchanger 340 transfers heat to the heat exchange medium.
  • the high-pressure gaseous carbon dioxide flows to the condenser 350 through the fifth energy storage pipeline 365, and is condensed by the condenser 350 to be converted into liquid carbon dioxide.
  • the liquid carbon dioxide flows into the liquid storage tank 200 through the sixth energy storage pipeline 366 to complete the energy storage process.
  • the second valve 620 and the fourth valve 640 are opened, and the first valve 610 and the third valve 630 are closed.
  • the high-pressure liquid carbon dioxide flows out from the liquid storage tank 200, and flows to the evaporator 410 through the first pipeline 471 for energy release, and is evaporated through the evaporator 410 and converted into a gaseous state.
  • the gaseous carbon dioxide flows to the first energy release heat exchanger 420 via the energy release second conduit 472 .
  • part of the heat stored in the heat exchange medium is transferred to the carbon dioxide flowing through the first energy release heat exchanger 420 through the first energy release heat exchanger 420, and the carbon dioxide absorbs this part of the heat and the temperature increases.
  • the high-temperature gaseous carbon dioxide flows to the first expander 430 through the energy release third pipeline 473, expands in the first expander 430 and performs external work to achieve energy output, and drives the first generator 491 to generate electricity.
  • the carbon dioxide flows out from the first expander 430 , it flows to the second energy-releasing heat exchanger 440 through the fourth energy-discharging pipeline 474 .
  • part of the heat stored in the heat exchange medium is transferred to the carbon dioxide flowing through the second energy release heat exchanger 440 through the second energy release heat exchanger 440, and the carbon dioxide absorbs this part of the heat and the temperature increases.
  • the high-temperature gaseous carbon dioxide flows to the second expander 450 through the fifth energy release pipeline 475, expands in the second expander 450 and performs external work to achieve energy output, and drives the second generator 492 to generate electricity.
  • the pressure and temperature of carbon dioxide after energy release are both reduced, but the temperature is still higher than the storage temperature required by the gas storage 100 . Therefore, the carbon dioxide flowing from the second expander 450 flows into the energy releasing cooler 460 through the energy releasing sixth pipeline 476 , and the energy releasing cooler 460 cools it down so that its temperature can meet the requirements of the gas storage 100 . The cooled carbon dioxide flows through the seventh energy release pipeline 477 and enters the gas storage 100 to complete the entire energy release process.
  • the thermal energy stored in the heat exchange assembly 500 is merged into the high-pressure carbon dioxide, and the carbon dioxide expands in the first expander 430 and the second expander 450, releasing the pressure energy together with the thermal energy and converting it into mechanical energy.
  • the heat exchange medium circulating pump 550 , the heat exchange medium circulating pump 551 , the third valve 630 and the fourth valve 640 are turned on, and the heat exchange medium is between the cold storage tank 510 and the heat storage tank 520 Circulating flow to achieve temporary storage and release of energy. Specifically, the energy is temporarily stored in the heat exchange medium in the form of heat energy.
  • the energy storage process after the low-temperature heat exchange medium flows out of the cold storage tank 510 , a part flows into the first heat exchange pipeline 541 , and a part flows into the third heat exchange pipeline 543 .
  • the heat exchange medium in the first heat exchange pipe 541 flows to the second energy storage heat exchanger 340 for heat exchange, absorbs the heat in the carbon dioxide compressed for the second time, increases the temperature of this part of the heat exchange medium, and The heat flows into the heat storage tank 520 through the second heat exchange pipe 542 , and the heat is temporarily stored in the heat storage tank 520 .
  • the low-temperature heat exchange medium in the third heat exchange pipe 543 flows to the first energy storage heat exchanger 320 for heat exchange, absorbs the heat in the carbon dioxide compressed for the first time, and increases the temperature of this part of the heat exchange medium, The heat flows into the heat storage tank 520 through the fourth heat exchange pipe 544 , and the heat is temporarily stored in the heat storage tank 520 .
  • the heat exchange medium in the fifth heat exchange pipe 545 flows to the second energy release heat exchanger 440 for heat exchange, and transfers heat to the carbon dioxide flowing through the second energy release heat exchanger 440 to increase its temperature.
  • the temperature of the heat exchange medium decreases, and the cooled heat exchange medium flows to the cold storage tank 510 through the sixth heat exchange pipeline 546 .
  • the temperature of the heat exchange medium decreases after heat exchange, its temperature is still higher than the temperature range required by the cold storage tank 510 . Therefore, when this part of the heat exchange medium flows through the heat exchange medium cooler 530 through the heat exchange sixth pipe 546 , it is cooled again by the heat exchange medium cooler 530 to make its temperature meet the requirements of the cold storage tank 510 .
  • the heat exchange medium in the seventh heat exchange pipe 547 flows to the first energy release heat exchanger 420 for heat exchange, and transfers heat to the carbon dioxide flowing through the first energy release heat exchanger 420 to increase its temperature.
  • the temperature of the heat exchange medium decreases, and the cooled heat exchange medium flows to the cold storage tank 510 through the eighth heat exchange pipeline 548 .
  • the temperature of the heat exchange medium decreases after heat exchange, its temperature is still higher than the temperature range required by the cold storage tank 510 . Therefore, when this part of the heat exchange medium flows through the heat exchange medium cooler 530 through the heat exchange eighth pipe 548 , it is cooled again by the heat exchange medium cooler 530 to make its temperature meet the requirements of the cold storage tank 510 .
  • first valve 610 , the second valve 620 , the third valve 630 , the fourth valve 640 , and the fifth valve 650 may all be opened, and the energy storage and energy release are performed simultaneously.
  • the released heat can be recycled and used for carbon dioxide evaporation to reduce energy waste and improve energy utilization.
  • the heat exchange medium cooler 530 can be connected to the evaporator 410, and the heat released when the heat exchange medium cooler 530 cools the heat exchange medium can be transferred to the evaporator 410 for use in evaporating carbon dioxide.
  • the heat exchange medium cooler 530 and the evaporator 410 may be directly connected or indirectly connected through other components.
  • an external heat source can also be used to supplement heat so that the evaporation process can proceed smoothly.
  • the supplementary external heat source may be geothermal heat, solar heat, thermal energy generated by waste incineration, waste heat generated during industrial production, and the like.
  • an external heat source energy waste can be reduced, and additional heating is not required, which can reduce costs.
  • the heat released during condensation through the condenser 350 can be recycled. Energy waste, improve energy utilization.
  • the condenser 350 can be connected to the evaporator 410 to collect the heat released when the carbon dioxide is condensed and transferred to the evaporator 410 for use in the evaporation of the carbon dioxide.
  • the condenser 350 and the evaporator 410 may be directly connected or indirectly connected through other components.
  • an external heat source can also be used to supplement heat so that the evaporation process can proceed smoothly.
  • FIG. 3 a schematic structural diagram of a multi-stage compression energy storage device for thermal energy conversion based on CO 2 gas-liquid phase transition is shown in another embodiment of the present invention.
  • a first energy release pipeline 471 and an energy release eighth pipeline 478 are disposed between the evaporator 410 and the liquid storage tank 200 , and the energy release first pipeline 471 is provided with a second valve 620 .
  • the eighth pipeline 478 is provided with a throttle expansion valve 480 and a seventh valve 6200 .
  • the eighth energy-discharging pipeline 478 is connected.
  • the eighth energy release pipeline 478 is selected to be turned on, the high-pressure liquid carbon dioxide flowing out of the liquid storage tank 200 is expanded and depressurized through the throttle expansion valve 480 , and then flows into the evaporator 410 .
  • the evaporator 410 and the condenser 350 can be combined, and the two can be combined into one component to form a phase change heat exchanger.
  • the phase change heat exchanger includes two parts: an evaporation part and a condensation part. The evaporation part and the condensation part are connected by pipes. Inside the phase change heat exchanger, the heat released by the condensation part is transferred to the evaporation part. After the evaporator 410 and the condenser 350 are combined into one component, the heat transfer is completed inside the phase change heat exchanger, which can reduce the loss during the heat transfer and further improve the energy utilization rate.
  • the carbon dioxide flowing out from the second expander 450 flows into the energy release cooler 460 through the energy release sixth pipeline 476, and the energy release cooler 460 cools it down so that its temperature can reach the storage temperature.
  • Gas Depot 100 Requirements When the exothermic cooler 460 performs cooling and heat exchange, heat is released. Preferably, in some embodiments, this part of the heat can be recycled and used for carbon dioxide evaporation, so as to reduce energy waste and improve energy utilization.
  • both the heat released during the condensation of carbon dioxide and the heat released by the energy releasing cooler 460 may be supplied to the evaporator 410 for use.
  • both the energy releasing cooler 460 and the condenser 350 can be connected to the evaporator 410 , and the heat released by the energy releasing cooler 460 during cooling and heat exchange and the heat released when the condenser 350 is condensing are transferred to the evaporator 410 , for use when carbon dioxide evaporates.
  • the energy releasing cooler 460 and the evaporator 410 may be directly connected or indirectly connected through other components.
  • the condenser 350 and the evaporator 410 may be directly connected or indirectly connected through other components.
  • heat transfer between the exothermic cooler 460 and the evaporator 410 is achieved through a pool of water.
  • a first recovery pipeline and a second recovery pipeline are arranged between the water pool and the energy releasing cooler 460 .
  • a third recovery pipeline and a fourth recovery pipeline are provided between the pool and the evaporator 410 .
  • a fifth recovery pipeline and a sixth recovery pipeline are arranged between the pool and the condenser 350 .
  • the pool and each of the above-mentioned pipes are provided with thermal insulation materials to keep the water in them thermally insulated.
  • a part of the water in the pool flows to the condenser 350 through the fifth recovery pipe, absorbs the heat released by the condenser 350, and flows into the pool through the sixth recovery pipe after the water temperature rises.
  • a part of the water in the pool flows to the energy releasing cooler 460 through the first recovery pipe, absorbs the heat released by the energy releasing cooler 460, and then flows into the pool through the second recovery pipe after the water temperature rises.
  • the water with higher temperature in the pool flows to the evaporator 410 through the third recovery pipe to provide heat for the evaporation of carbon dioxide. After flowing through the evaporator 410, the water temperature decreases, and the cooled water is recycled through the fourth recovery pipe. The pipes flow into the pool.
  • a circulating pump and other components are also provided on the first recovery pipeline, the second recovery pipeline, the third recovery pipeline, the fourth recovery pipeline, the fifth recovery pipeline and the sixth recovery pipeline to realize the circulating flow of water in the pool .
  • the temperature of the water in the pool may be continuously increased.
  • the temperature of the water in the pool may be continuously lowered. Therefore, preferably, the pool is in a constant temperature state.
  • the pool is also connected with components such as a thermostat controller, a temperature sensor, a heater and a radiator.
  • the water temperature in the pool is monitored by the temperature sensor, and the water temperature is transmitted to the thermostatic controller. If the heat released by the energy releasing cooler 460 and the condenser 350 increases the water temperature too much and exceeds the maximum set value, the thermostatic controller controls The radiator dissipates heat from the pool. If the heat absorbed by the evaporator 410 reduces the water temperature too much and is lower than the minimum set value, the thermostat controller controls the heater to heat the pool.
  • the heat released by the condenser 350 , the heat released by the energy release cooler 460 , and the heat released by the heat exchange medium cooler 530 may all be supplied to the evaporator 410 for use.
  • the specific setting method is similar to that of the above-mentioned embodiment, and details are not repeated here.
  • the heat of the above three places can be supplied individually, or any two of them can be supplied together.
  • an external heat source can be used to supplement the heat.
  • the heat can be directly supplemented to the evaporator 410 .
  • heat can also be added to the heat exchange medium of the heat exchange circuit.
  • the external heat source may be directly connected to the evaporator 410 .
  • a heating pipe 720 may be provided between the cold storage tank 510 and the heat storage tank 520 , and an auxiliary heating element 710 may be provided on the heating pipe 720 .
  • the sixth valve 660 is opened, and a part of the heat exchange medium flowing out of the cold storage tank 510 flows to the auxiliary heating element 710 through the heating pipe 720.
  • the auxiliary heating element 710 heats this part of the heat exchange medium to absorb external heat, so that the The amount of heat reaching the heat exchange medium cooler 530 is increased, that is, the amount of heat that can be supplied to the evaporator 410 is increased.
  • the heat source at the auxiliary heating element 710 can be some waste heat, for example, the heat released when castings or forgings in a foundry or forging plant are cooled, or can be the heat released when some chemical plants perform chemical reactions.
  • waste heat as an external heat source can reduce energy waste and eliminate the need for additional heating, thereby reducing costs.
  • multiple sets of the above-mentioned energy storage components 300 , energy release components 400 , heat exchange components 500 and driving components 800 can be arranged between the gas storage 100 and the liquid storage tank 200 , and each set is in accordance with the methods in the foregoing embodiments. set up.
  • each set is in accordance with the methods in the foregoing embodiments. set up.

Abstract

一种基于CO 2气液相变的热能转化机械能多级压缩储能装置,包括:储气库(100);储液罐(200);储能组件(300),储能组件(300)包括冷凝器(350)与至少两个压缩储能部,压缩储能部包括压缩机(310,330)与储能换热器(320,340);释能组件(400),释能组件(400)包括蒸发器(410)与至少一个膨胀释能部,膨胀释能部包括释能换热器(420,440)与膨胀机(430,450);换热组件(500),储能换热器(320,340)、释能换热器(420,440)均与换热组件(500)连接,储能换热器(320,340)能将储能组件(300)产生的能量暂存至换热组件(500),释能换热器(420,440)能接收换热组件(500)暂存的能量;驱动组件(800),驱动组件(800)包括能量输入件(810)与第一驱动件(820),能量输入件(810)吸收外部热能以驱动第一驱动件(820)工作,第一驱动件(820)用于驱动压缩机(310,330)工作。通过该装置能将生产制造过程中产生的废热存储并再次利用,从而减少热能浪费,节约能源。

Description

基于CO 2气液相变的热能转化机械能多级压缩储能装置 技术领域
本发明涉及能源存储技术领域,特别是涉及基于CO 2气液相变的热能转化机械能多级压缩储能装置。
背景技术
随着社会经济的发展,人们对于能源的需求量越来越大,提升能源转换效率能够减少煤炭、石油等不可再生的传统能源消耗,带来显著的经济效益。利用高温废气余热、废汽废水余热和炉渣余热等来生产高压蒸汽发电已成为一项成熟技术。然而,针对地热、太阳能光热、生物质燃烧和垃圾焚烧等产生的热能,还需要进一步开发利用。
随着太阳能、风能等新能源的大规模使用,可以在一定程度上减缓传统能源的消耗,但其发电的间歇性和波动性特征会对电网造成一定的冲击。储能技术是解决这些问题的重要手段,对于能源系统的优化和调节具有重大意义。在相关技术中,存在一种通过压缩二氧化碳进行能源存储的方式。其主要原理是在用电低谷期时,采用多余电力将二氧化碳进行压缩,把能量存储起来;当用电高峰期时,再将其释放,通过透平驱动发电机输出电力,从而有效利用电能,同时降低新能源间歇性发电对电网带来的冲击。然而,在自然环境和工农业生产中,存在许多热能,如地热、太阳能光热、生物质燃烧、垃圾焚烧等产生的热能,这些热能通常被直接释放至环境中,造成了巨大的浪费。
发明内容
本发明提出一种基于CO 2气液相变的热能转化机械能多级压缩储能装置,通过该装置能够将地热、光热、垃圾焚烧产生的热能、工业生产过程中产生的废热等外部能源进行利用,从而减少资源浪费,节约能源。
基于CO 2气液相变的热能转化机械能多级压缩储能装置,包括:
储气库,所述储气库用于存储气态二氧化碳,所述储气库的容积能够变化;
储液罐,所述储液罐用于存储液态二氧化碳;
储能组件,所述储能组件用于存储能量,所述储能组件设置于所述储气库与所述储液罐之间,所述储能组件包括冷凝器与至少两个压缩储能部,所述压缩储能部包括压缩机与储能换热器,所述压缩机用于压缩二氧化碳,所述冷凝器用于冷凝二氧化碳;
释能组件,所述释能组件设置于所述储气库与所述储液罐之间,所述释能组件包括蒸发器与至少一个膨胀释能部,所述膨胀释能部包括释能换热器与膨胀机,所述蒸发器用于蒸发二氧化碳,所述膨胀机用于释放能量;
换热组件,所述储能换热器、所述释能换热器均与所述换热组件连接,所述储能换热器能够将所述储能组件产生的能量暂存至所述换热组件,所述释能换热器能够接收所述换热组件暂存的能量;
驱动组件,所述驱动组件包括能量输入件与第一驱动件,所述能量输入件吸收外部热能以驱动所述第一驱动件工作,所述第一驱动件用于驱动所述压缩机工作。
在其中一个实施例中,所述驱动组件还包括第二驱动件,所述第二驱动件能够与所述压缩机连接,当所述第一驱动件未启动时,所述第二驱动件能够驱动所述压缩机工作。
在其中一个实施例中,多个所述压缩储能部中的所述压缩机沿所述第一驱 动件的输出轴的轴向分布。
在其中一个实施例中,所述驱动组件还包括驱动循环冷却器与驱动循环泵,所述能量输入件、所述第一驱动件、所述驱动循环冷却器与所述驱动循环泵间形成驱动循环回路,所述驱动循环回路内设有驱动介质,所述驱动循环泵用于驱动所述驱动介质在所述驱动循环回路内循环流动,所述驱动介质通过所述能量输入件吸收外部热能并驱动所述第一驱动件工作,所述驱动循环冷却器用于对流出所述第一驱动件的驱动介质进行冷却。
在其中一个实施例中,所述储能组件包括第一压缩机、第一储能换热器、第二压缩机、第二储能换热器,所述第一压缩机与所述储气库连接,所述第一储能换热器与所述第一压缩机连接,所述第二压缩机与所述第一储能换热器连接,所述第二储能换热器与所述第二压缩机连接,所述冷凝器与所述第二储能换热器连接,所述储液罐与所述冷凝器连接。
在其中一个实施例中,所述释能组件包括第一膨胀机、第二膨胀机、第一释能换热器、第二释能换热器与释能冷却器,所述蒸发器与所述储液罐连接,所述第一释能换热器与所述蒸发器连接,所述第一膨胀机与所述第一释能换热器连接,所述第二释能换热器与所述第一膨胀机连接,所述第二膨胀机与所述第二释能换热器连接,所述释能冷却器与所述第二膨胀机连接,所述储气库与所述释能冷却器连接,所述释能冷却器用于对进入所述储气库的二氧化碳进行冷却。
在其中一个实施例中,所述释能冷却器与所述蒸发器连接。
在其中一个实施例中,所述释能组件还包括节流膨胀阀,所述节流膨胀阀位于所述储液罐与所述蒸发器之间,所述节流膨胀阀用于使经所述储液罐流出的二氧化碳降压,所述蒸发器与所述冷凝器连接。
在其中一个实施例中,所述换热组件包括储冷罐与储热罐,所述储冷罐与所述储热罐内设有换热介质,所述储冷罐、所述储热罐在所述储能组件与所述释能组件之间形成换热回路,所述换热介质能够在所述换热回路中流动,所述换热介质从所述储冷罐流动至所述储热罐时,能够存储所述储能组件产生的部分能量,所述换热介质从所述储热罐流动至所述储冷罐时,能够将存储的能量转移至所述释能组件。
在其中一个实施例中,所述换热组件还包括换热介质冷却器,所述换热介质冷却器用于对进入所述储冷罐的所述换热介质进行冷却,所述换热介质冷却器与所述蒸发器连接。
在其中一个实施例中,所述储冷罐与所述储热罐之间设有辅助加热件,部分所述换热介质能够经所述辅助加热件加热后流入所述储热罐。
在其中一个实施例中,所述储气库为柔性气膜储气库。
上述基于CO 2气液相变的热能转化机械能多级压缩储能装置,设置了储气库与储液罐,气态二氧化碳被存储于储气库中,液态二氧化碳被存储于储液罐中。在储气库与储液罐之间设有储能组件与释能组件,在释能组件与储能组件之间还设有换热组件。二氧化碳从储气库经过储能组件到达储液罐时,通过多个压缩机对流出储气库的二氧化碳进行多级压缩,压缩时,会使二氧化碳温度与压力升高,压力能被存储于二氧化碳中,热量存储于换热组件中,并转移至释能组件,通过释能组件完成能量释放。上述储能装置中,可以将生产制造过程中产生的废热供给能量输入件,以使第一驱动件工作,进而通过第一驱动件驱动压缩机进行工作,实现热能的回收,并在释能时将能量释放,从而减少热能浪费,节约能源。
附图说明
图1为本发明一实施例中的基于CO 2气液相变的热能转化机械能多级压缩储能装置的结构示意图;
图2为图1中第一驱动件、第二驱动件与多个压缩机间的结构示意图;
图3为图1中本发明另一实施例中的基于CO 2气液相变的热能转化机械能多级压缩储能装置的结构示意图。
附图标记:
储气库100;
储液罐200;
储能组件300、第一压缩机310、第一储能换热器320、第二压缩机330、第二储能换热器340、冷凝器350、储能第一管道361、储能第二管道362、储能第三管道363、储能第四管道364、储能第五管道365、储能第六管道366;
释能组件400、蒸发器410、第一释能换热器420、第一膨胀机430、第二释能换热器440、第二膨胀机450、释能冷却器460、释能第一管道471、释能第二管道472、释能第三管道473、释能第四管道474、释能第五管道475、释能第六管道476、释能第七管道477、释能第八管道478、节流膨胀阀480、第一发电机491、第二发电机492;
换热组件500、储冷罐510、储热罐520、换热介质冷却器530、换热第一管道541、换热第二管道542、换热第三管道543、换热第四管道544、换热第五管道545、换热第六管道546、换热第七管道547、换热第八管道548、换热介质第一循环泵550、换热介质第二循环泵551;
第一阀门610、第二阀门620、第三阀门630、第四阀门640、第五阀门650、第六阀门660、第七阀门6200;
辅助加热件710、加热管道720;
驱动组件800、能量输入件810、第一驱动件820、驱动循环冷却器830、驱动循环泵840、第二驱动件850、驱动循环第一管道861、驱动循环第二管道862、驱动循环第三管道863、驱动循环第四管道864。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作 用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1,图1示出了本发明一实施例中的基于CO 2气液相变的热能转化机械能多级压缩储能装置的结构示意图。本发明一实施例提供的基于CO 2气液相变的热能转化机械能多级压缩储能装置包括储气库100、储液罐200、储能组件300、释能组件400、换热组件500与驱动组件800等部件。
储液罐200内存储有处于高压状态的液态二氧化碳。储气库100内存储有处于常温常压状态的气态二氧化碳,储气库100内部的压力与温度维持在一定范围内,以满足储能要求。具体的,设置保温装置对储气库100进行保温,使其内部的温度维持在所需范围内。根据理想气体状态方程PV=nRT,当温度与压力恒定,体积与物质的量成正比。因此,储气库100采用气膜储气库,其容积能够变化,当有二氧化碳充入时,储气库100的容积增大,当有二氧化碳流出时,储气库100的容积减小,以此来实现储气库100内压力的恒定。需要说明的是,储气库100内部的压力与温度维持在一定范围内,在上述分析中,将其近似看作恒定值。
具体的,储气库100内的温度T 1的范围为15℃≤T 1≤35℃,储气库100内的气压与外界大气的气压差小于1000Pa。
储能组件300位于储气库100与储液罐200之间,从储气库100流出的气态二氧化碳经过储能组件300转变为液态,并流入储液罐200,在该过程中完成能量存储。
具体的,储能组件300包括冷凝器350与至少两个压缩储能部,压缩储能部包括压缩机与储能换热器。二氧化碳流经压缩机时,通过压缩机对其进行压缩,增加其压力。在压缩过程中,会产生热量,使二氧化碳的温度升高。压缩产生的热量随二氧化碳流经储能换热器时,通过储能换热器将能量转移至换热组件500处。冷凝器350用于对经过压缩后的二氧化碳进行冷凝,使其转变为液态,以存储至储液罐200内。
释能组件400也位于储气库100与储液罐200之间,从储液罐200流出的液态二氧化碳经过释能组件400转变为气态,并流入储气库100,在该过程中,将储能过程中存储的能量释放出去。
具体的,释能组件400包括蒸发器410与至少一个膨胀释能部,膨胀释能部包括膨胀机与释能换热器。二氧化碳流经蒸发器410时进行蒸发,转变为气态,之后流经释能换热器时,能够吸收换热组件500处暂存的能量,并经膨胀机释放。
换热组件500设置于储能组件300与释能组件400之间。在储能过程中,存储的能量一部分以压力能的形式存储于高压状态的液态二氧化碳中,另一部分以热能形式存储于换热组件500中。在释能过程中,这部分能量被从热组件500转移至释能组件400中,并通过二氧化碳将存储的所有能量释放出去。
驱动组件800与储能组件300中的压缩机连接,驱动组件800包括能量输入件810与第一驱动件820。能量输入件810与外部热源连接,能够吸收外部热源提供的热能。外部输入的热能能够驱动第一驱动件820工作,进而通过第一驱动件820驱动压缩机工作。
外部输入的热源可以是地热、光热、垃圾焚烧产生的热能、工业生产过程中产生的废热等能源。使用外部热源,可以减少能量浪费,且无需另外进行加热,能降低成本。
综上,驱动组件800中,通过能量输入件810吸收外部热能,从而驱动第 一驱动件820工作,进而转化为机械能,并驱动压缩机工作。
本实施例中的储能装置,通过输入热能,实现二氧化碳从气态到液态的转变,将能量存储起来。待用电高峰期时,将这部分能量释放出去,带动发电机产生电能。如此,可以减少能源浪费,还能减轻发电厂的发电负担。
本实施例中的储能装置,二氧化碳仅在气态与液态之间转变,在储能之前,二氧化碳处于气态,且为常温常压,相较于常规的通过超临界二氧化碳进行储能释能,本实施例中对于储气库100的要求较低,无需设置结构较为复杂的存储部件,一定程度上能够降低成本。
一个储能换热器对应的与一个压缩机连接,可以将二者看作压缩储能部。在储气库100与冷凝器350之间设置多组依次相连的压缩储能部。如此,通过多级压缩来使二氧化碳逐渐增压。始端的压缩储能部中的压缩机与储气库100连接,末端的压缩储能部中的储能换热器与冷凝器350连接,每组压缩储能部中的储能换热器与相邻的压缩储能部中的压缩机连接。此处的始端与末端是以从储气库100经过储能组件300到达储液罐200的方向来定义的。
在一些实施例中,储能组件300包括第一压缩机310、第一储能换热器320、第二压缩机330、第二储能换热器340与冷凝器350等部件。第一压缩机310与储气库100之间通过储能第一管道361连接,第一储能换热器320与第一压缩机310之间通过储能第二管道362连接,第二压缩机330与第一储能换热器320之间通过储能第三管道363连接,第二储能换热器340与第二压缩机330之间通过储能第四管道364连接,冷凝器350与第二储能换热器340之间通过储能第五管道365连接,储液罐200与冷凝器350之间通过储能第六管道366连接。
换热组件500与第一储能换热器320、第二储能换热器340均连接,第一压缩机310与第二压缩机330压缩二氧化碳时产生的部分能量以压力能的形式存储于高压二氧化碳中,部分能量以热能形式通过第一储能换热器320、第二储能换热器340转移至换热组件500暂存。
上述结构中,设置了两级压缩,通过两级压缩来使二氧化碳逐渐增压。与一次压缩到位相比,两次压缩时,可以选用压缩比更小的压缩机,压缩机的成本更低。当然,压缩机的数量也可以多于两个,只要压缩机与储能换热器成套 增加即可。
一个膨胀机对应的与一个释能换热器连接,可以将二者看作膨胀释能部。优选的,可以在蒸发器410与释能冷却器460之间设置多组依次相连的膨胀释能部。如此,对于膨胀机的叶片制造要求更低,相应的,成本也更低。其中,始端的膨胀释能部中的释能换热器与蒸发器410连接,末端的膨胀释能部中的膨胀机与释能冷却器460连接,每个膨胀释能部中的膨胀机与相邻的膨胀释能部中的释能换热器连接。此处的始端与末端是以从储液罐200经过释能组件400到达储气库100的方向来定义的。若仅有一组膨胀释能部时,则始端与末端均为仅有的这一组膨胀释能部。
释能组件400包括蒸发器410、第一释能换热器420、第一膨胀机430、第二释能换热器440、第二膨胀机450、释能冷却器460等部件。蒸发器410与储液罐200之间通过释能第一管道471连接,第一释能换热器420与蒸发器410之间通过释能第二管道472连接,第一膨胀机430与第一释能换热器420之间通过释能释能第三管道473连接,第二释能换热器440与第一膨胀机430之间通过释能第四管道474连接,第二膨胀机450与第二释能换热器440之间通过释能第五管道475连接,释能冷却器460与第二膨胀机450之间通过释能第六管道476连接,储气库100与释能冷却器460之间通过释能第七管道477连接。
换热组件500与第一释能换热器420、第二释能换热器440均连接,在释能过程中,暂存于换热组件500中的能量通过第一释能换热器420与第二释能换热器440转移至流经第一释能换热器420与第二释能换热器440的二氧化碳中,二氧化碳吸收这部分能量,并通过第一膨胀机430与第二膨胀机450将能量释放出去。
释能组件400中,气态二氧化碳流过第一膨胀机430与第二膨胀机450时冲击叶片,推动转子转动,以实现能量输出,带动发电机进行发电。
上述结构中,设置了两个膨胀机,进行两次能量释放。设置两个膨胀机一起释能能量时,对于膨胀机的叶片制造要求更低,相应的,成本也更低。当然,膨胀机的数量也可以是一个,或者多于两个,只要膨胀机与释能换热器成套增减即可。
换热组件500包括储冷罐510、储热罐520、换热介质冷却器530等部件。储冷罐510与储热罐520内存放有换热介质。储冷罐510、储热罐520在储能组件300与释能组件400之间形成换热回路,换热介质能够在换热回路内循环流动。上述的换热介质可以选用熔融盐或饱和水等物质。
储冷罐510内的换热介质的温度较低,储热罐520内的换热介质的温度较高。换热介质在储冷罐510与储热罐520之间流动时,能够实现能量的收集与释放。具体的,换热介质从储冷罐510流动至储热罐520时,吸收储能过程中产生的部分能量,换热介质从储热罐520流动至储冷罐510时,将此前吸收的能量再释放出去,换热介质从储热罐520流动至储冷罐510时,流经换热介质冷却器530进行冷却,以达到储冷罐510内存储的换热介质的温度要求。
驱动组件800包括能量输入件810、第一驱动件820、驱动循环冷却器830与驱动循环泵840等部件。能量输入件810、第一驱动件820、驱动循环冷却器830与驱动循环泵840之间形成驱动循环回路,驱动循环回路内设有驱动介质。驱动循环泵840能够对驱动介质加压,相当于一个小规格的压缩机,驱动介质能够在驱动循环泵840的驱动下在驱动循环回路内循环流动。能量输入件810与外部热源连接,且能量输入件810与驱动循环泵840之间通过驱动循环第一管道861连接。第一驱动件820与能量输入件810之间通过驱动循环第二管道862连接,驱动循环冷却器830与第一驱动件820之间通过驱动循环第三管道863连接,驱动循环泵840与驱动循环冷却器830之间通过驱动循环第四管道864连接。
上述的驱动介质可以是二氧化碳、水蒸气或其他有机工质。驱动介质的选择与能量输入件810处连接的外部热源能够提供的温度高低有关。
第一驱动件820为透平,驱动介质经驱动循环泵840加压,并吸收外部热能后,高温高压的驱动介质流过透平的转子时冲击叶片,推动转子转动,从而驱动透平轴转动,以驱动第一压缩机310与第二压缩机330工作。
在上述过程中,通过输入的热能转换为机械能,驱动第一压缩机310与第二压缩机330工作,进而通过第一压缩机310与第二压缩机330对二氧化碳压缩,将其转换为压力能与压缩时产生的热能进行存储。
参阅图1与图2,图2示出了图1中第一驱动件、第二驱动件与多个压缩机间的结构示意图。由于驱动组件800中能量输入件810吸收外部热能并驱动第一驱动件820工作需要一定的时间,若驱动组件800与其他组件同时启动,刚启动时,第一驱动件820还无法驱动第一压缩机310与第二压缩机330。因此,还设有第二驱动件850,在装置刚开始运行时,通过第二驱动件850来驱动第一压缩机310与第二压缩机330进行压缩。待外部输入的热能能够驱动第一驱动件820工作时,再将第二驱动件850关闭,使用第一驱动件820来驱动第一压缩机310与第二压缩机330。
优选的,第一驱动件820、第二驱动件850、第一压缩机310与第二压缩机330同轴设置,即第一驱动件820、第二驱动件850的输出轴共线,第一压缩机310与第二压缩机330沿第一驱动件820、第二驱动件850的输出轴的轴向分布。如此,可以平衡轴向推力,减小轴向和径向振动,使整个装置运行时更加平稳,振动噪音也更小。
优选的,第一驱动件820、第二驱动件850、第一压缩机310与第二压缩机330处均采用干气密封。
或者,可以在进行储能之前,提前使驱动组件800开始工作,当第一驱动件820能够工作时,再启动储能组件300等部件。如此,便可以无需设置第二驱动件850。
此外,在上述的各个管路上均设有循环泵等部件,用以实现二氧化碳、换热介质的定向流动。
在一些实施例中,还可以使流出第一压缩机310的二氧化碳分流,其中一部分流入第一储能换热器320;一部分流动至能量输入件810,经能量输入件810吸收外部热能后,流入第一驱动件820,冲击其叶片,使其能够工作,再通过第一驱动件820驱动第一压缩机310工作。从第一驱动件820流出的二氧化碳经驱动循环冷却器830冷却后,与储气库100处流出的二氧化碳汇合,并流入第一压缩机310内。或者,也可以使流出第二压缩机330的二氧化碳分流,其中一部分流入第二储能换热器340;一部分流动至能量输入件810。
如此,则无需另外设置驱动介质,直接使用系统内的二氧化碳作为驱动介 质即可,设置时更加方便。
进行储能时,打开第一阀门610、第三阀门630与第五阀门650,关闭第二阀门620与第四阀门640,并启动第二驱动件850与驱动循环泵840。通过驱动循环泵840对驱动介质进行加压,使其经驱动循环第一管道861流向能量输入件810,驱动介质通过能量输入件810吸收外部热能后温度升高。第一驱动件820为透平,高温高压状态的驱动介质经驱动循环第二管道862流入第一驱动件820,驱动介质冲击透平的叶片,推动转子转动,从而驱动透平轴转动,以驱动第一压缩机310与第二压缩机330工作。从第一驱动件820流出的驱动介质的温度与压力有所降低,但其温度仍然过高,因此,经驱动循环第三管道863流动至驱动循环冷却器830,通过驱动循环冷却器830对其进行冷却降温,使其达到驱动循环泵840入口的温度要求。经驱动循环冷却器830降温后,驱动介质经驱动循环第四管道864再次进入驱动循环泵840。重复上述过程,便能持续为第一压缩机310与第二压缩机330输出动力。
处于常温常压状态的气态二氧化碳从储气库100中流出,经储能第一管道361流动至第一压缩机310。通过第一压缩机310对气态二氧化碳进行第一次压缩,增加其压力。在压缩过程中,会产生热量,使二氧化碳的温度升高。二氧化碳经第一压缩机310压缩后,经储能第二管道362流动至第一储能换热器320,将压缩时产生的热量传递给第一储能换热器320。第一储能换热器320将热量传递至换热介质。从第一储能换热器320流出的二氧化碳经储能第三管道363流动至第二压缩机330,通过第二压缩机330对其进行第二次压缩,进一步增加其压力。在压缩过程中,会产生热量,使二氧化碳的温度升高。二氧化碳经第二压缩机330压缩后,经储能第四管道364流动至第二储能换热器340,将压缩时产生的热量传递给第二储能换热器340。第二储能换热器340将热量传递至换热介质。实现换热后,高压的气态二氧化碳经储能第五管道365流动至冷凝器350,经冷凝器350进行冷凝,转变为液态二氧化碳。液态二氧化碳经储能第六管道366流入储液罐200中,完成储能流程。
进行释能时,打开第二阀门620与第四阀门640,关闭第一阀门610、第三阀门630。高压的液态二氧化碳从储液罐200中流出,经释能第一管道471流动 至蒸发器410,经蒸发器410蒸发,转变为气态。气态二氧化碳经释能第二管道472流动至第一释能换热器420。储能过程中存储于换热介质中的部分热量经第一释能换热器420转移至流经第一释能换热器420的二氧化碳,二氧化碳吸收这部分热量,温度升高。高温的气态二氧化碳经释能第三管道473流动至第一膨胀机430,在第一膨胀机430内膨胀并对外做功,实现能量输出,带动第一发电机491进行发电。二氧化碳从第一膨胀机430流出后,经释能第四管道474流动至第二释能换热器440。储能过程中存储于换热介质中的部分热量经第二释能换热器440转移至流经第二释能换热器440的二氧化碳,二氧化碳吸收这部分热量,温度升高。高温的气态二氧化碳经释能第五管道475流动至第二膨胀机450,在第二膨胀机450内膨胀并对外做功,实现能量输出,带动第二发电机492进行发电。
释能后的二氧化碳压力与温度均降低,但其温度仍高于储气库100所要求的存储温度。因此,从第二膨胀机450流出的二氧化碳经释能第六管道476流入释能冷却器460,通过释能冷却器460对其进行降温,使其温度能够达到储气库100的要求。降温后的二氧化碳流经释能第七管道477进入储气库100,完成整个释能流程。
在上述过程中,存储于换热组件500中的热能汇入高压的二氧化碳中,二氧化碳在第一膨胀机430与第二膨胀机450内膨胀,将压力能与热能一起释放出去,转变为机械能。
在上述储能与释能过程中,打开换热介质循环泵550、换热介质循环泵551、第三阀门630及第四阀门640,换热介质在储冷罐510与储热罐520之间循环流动,实现能量的暂存与释放。具体的,能量以热能的形式暂存于换热介质中。在储能过程中,低温的换热介质从储冷罐510流出后,一部分流入换热第一管道541,一部分流入换热第三管道543。换热第一管道541内的换热介质流动至第二储能换热器340进行换热,吸收被第二次压缩后的二氧化碳中的热量,使这部分换热介质的温度升高,并经换热第二管道542流入储热罐520,热量被暂存于储热罐520内。换热第三管道543内的低温换热介质流动至第一储能换热器320进行换热,吸收被第一次压缩后的二氧化碳中的热量,使这部分换热介 质的温度升高,并经换热第四管道544流入储热罐520,热量被暂存于储热罐520内。
释能时,高温换热介质从储热罐520内流出后,一部分流入换热第五管道545,一部分流入换热第七管道547。换热第五管道545内的换热介质流动至第二释能换热器440进行换热,将热量传递给流经第二释能换热器440的二氧化碳,使其温度升高。完成换热后,换热介质的温度降低,降温后的换热介质经换热第六管道546流动至储冷罐510。虽然经过换热后,换热介质的温度降低,但其温度仍高于储冷罐510所要求的温度范围。因此,这部分换热介质经换热第六管道546流经换热介质冷却器530时,通过换热介质冷却器530对其再次进行降温,使其温度达到储冷罐510的要求。
换热第七管道547内的换热介质流动至第一释能换热器420进行换热,将热量传递给流经第一释能换热器420的二氧化碳,使其温度升高。完成换热后,换热介质的温度降低,降温后的换热介质经换热第八管道548流动至储冷罐510。虽然经过换热后,换热介质的温度降低,但其温度仍高于储冷罐510所要求的温度范围。因此,这部分换热介质经换热第八管道548流经换热介质冷却器530时,通过换热介质冷却器530对其再次进行降温,使其温度达到储冷罐510的要求。
另外,在一些实施例中,也可以将第一阀门610、第二阀门620、第三阀门630、第四阀门640、第五阀门650全部打开,储能与释能同时进行。
优选的,在一些实施例中,通过换热介质冷却器530对换热介质降温后,放出的这部分热量可以被回收利用,供二氧化碳蒸发时使用,以减少能量浪费,提高能量利用率。
具体的,可以将换热介质冷却器530与蒸发器410连接,将换热介质冷却器530对换热介质降温时放出的热量转移至蒸发器410,供二氧化碳蒸发时使用。换热介质冷却器530与蒸发器410之间可以是直接连接,也可以通过其他部件间接连接。
当然,若仅使用换热介质冷却器530对换热介质降温时放出的热量进行蒸发,可能存在热量不足的情况。因此,也可以使用外部热源补充热量,以使蒸 发过程能够顺利进行。
优选的,补充的外部热源可以是地热、光热、垃圾焚烧产生的热能、工业生产过程中产生的废热等。使用外部热源,可以减少能量浪费,且无需另外进行加热,能降低成本。
进一步的,在一些实施例中,储能过程中,经过冷凝器350冷凝时放出的热量可以回收利用,在释能过程中,将这部分热量供给蒸发器410,供二氧化碳蒸发时使用,以减少能量浪费,提高能量利用率。
具体的,可以将冷凝器350与蒸发器410连接,将二氧化碳冷凝时放出的热量收集,并转移至蒸发器410,供二氧化碳蒸发时使用。冷凝器350与蒸发器410之间可以是直接连接,也可以通过其他部件间接连接。
当然,若仅使用冷凝器350放出的热量进行蒸发,可能存在热量不足的情况。因此,也可以使用外部热源补充热量,以使蒸发过程能够顺利进行。
参阅图3,示出了本发明另一实施例中的基于CO 2气液相变的热能转化机械能多级压缩储能装置的结构示意图。在一些实施例中,在蒸发器410与储液罐200之间设置有释能第一管道471与释能第八管道478,释能第一管道471上设有第二阀门620,释能第八管道478上设有节流膨胀阀480与第七阀门6200。打开第二阀门620,关闭第七阀门6200时,释能第一管道471导通,打开第七阀门6200,关闭第二阀门620时,释能第八管道478导通。释能过程中,若选择导通释能第八管道478,从储液罐200流出的高压液态二氧化碳经过节流膨胀阀480进行膨胀降压,然后再流入蒸发器410中。
与仅通过升温来使二氧化碳从液态转变为气态相比,设置节流膨胀阀480进行降压有利于二氧化碳从液态转变为气态。
优选的,在使用节流膨胀阀480时,可以将蒸发器410与冷凝器350结合,将二者合并为一个部件,形成相变换热器。相变换热器中,包括蒸发部与冷凝部两部分,蒸发部与冷凝部之间通过管道连接,在相变换热器内部,将冷凝部冷凝时放出的热量转移至蒸发部。将蒸发器410与冷凝器350合并为一个部件后,热量转移在相变换热器内部完成,能够减少在热量转移时的损失,进一步提高能量利用率。需要说明的是,当储能与释能同时进行时,才能以上述方式 实现热量转移,若不能同时运行,需要先将能量存储,待蒸发时再供给蒸发器410。
如前所述,释能过程中,从第二膨胀机450流出的二氧化碳经释能第六管道476流入释能冷却器460,通过释能冷却器460对其进行降温,使其温度能够达到储气库100的要求。在释能冷却器460进行降温换热时,会放出热量。优选的,在一些实施例中,这部分热量可以回收利用,供二氧化碳蒸发时使用,以减少能量浪费,提高能量利用率。
优选的,可以将二氧化碳冷凝时放出的热量与释能冷却器460放出的热量均供给蒸发器410使用。
具体的,可以将释能冷却器460、冷凝器350均与蒸发器410连接,将释能冷却器460降温换热时放出的热量,以及冷凝器350冷凝时放出的热量均转移至蒸发器410,供二氧化碳蒸发时使用。释能冷却器460与蒸发器410之间可以是直接连接,也可以通过其他部件间接连接。冷凝器350与蒸发器410之间可以是直接连接,也可以通过其他部件间接连接。
例如,释能冷却器460与蒸发器410之间通过水池实现热量转移。水池与释能冷却器460之间设有第一回收管道与第二回收管道。水池与蒸发器410之间设有第三回收管道与第四回收管道。水池与冷凝器350之间设置第五回收管道与第六回收管道。水池以及上述各个管道处设有保温材质,对其中的水进行保温。
水池内的一部分水经第五回收管道流动至冷凝器350处,吸收冷凝器350放出的热量,水温升高后,再经第六回收管道流动至水池内。同时,水池内的一部分水经第一回收管道流动至释能冷却器460处,吸收释能冷却器460放出的热量,水温升高后,再经第二回收管道流动至水池内。
待蒸发时,水池内的温度较高的水经第三回收管道流动至蒸发器410处,为二氧化碳的蒸发提供热量,流经蒸发器410后,水温降低,降温后的水再经第四回收管道流动至水池内。
在上述过程中,除了使用水进行热量收集,也可以使用其他物质。
此外,在第一回收管道、第二回收管道、第三回收管道、第四回收管道、 第五回收管道与第六回收管道上还设有循环泵等部件,用以实现水池内水的循环流动。
在释能冷却器460与冷凝器350放出的热量不断传递至水池中时,可能会使水池内的水温不断增高。在蒸发器410不断吸收水池内的热量时,可能会使水池的水温不断降低。因此,优选的,水池为恒温状态。
具体的,水池处还连接有恒温控制器、温度传感器、加热器与散热器等部件。通过温度传感器监测水池内的水温,并将水温传至恒温控制器,若释能冷却器460与冷凝器350放出的热量使水温升高过多,超过最高设定值,则恒温控制器控制散热器对水池进行散热。若蒸发器410吸收的热量使水温降低过多,低于最低设定值,则恒温控制器控制加热器对水池进行加热。
在一些实施例中,也可以将冷凝器350放出的热量、释能冷却器460放出的热量、换热介质冷却器530放出的热量均供应给蒸发器410使用。具体设置方式与上述实施例类似,此处不再赘述。实际上,上述三处的热量可以单独供应,也可以其中任意两处一起供应。
当然,若将上述三处的热量均供应给蒸发器410后仍存在不足,可以使用外部热源补充热量。具体的,使用外部热源补充热量时,可以直接将热量补充至蒸发器410。或者,也可以将热量补充至换热回路的换热介质中。
将热量补充至蒸发器410时,直接将外部热源与蒸发器410连接即可。
将热量补充至换热回路的换热介质中时,可以在储冷罐510与储热罐520之间设置加热管道720,加热管道720上设置辅助加热件710。打开第六阀门660,从储冷罐510中流出的一部分换热介质经加热管道720流动至辅助加热件710,辅助加热件710对这部分换热介质进行加热,使其吸收外部热量,可以使到达换热介质冷却器530处的热量增加,即能够提供给蒸发器410的热量增加。
优选的,辅助加热件710处的热量来源可以是一些废热,例如,铸造厂或锻造厂的铸件或锻件冷却时放出的热量,或者,可以是一些化工厂进行化学反应时放出的热量。使用废热作为外部热源,可以减少能量浪费,且无需另外进行加热,能降低成本。
优选的,可以在储气库100与储液罐200之间设置多组上述的储能组件300、 释能组件400、换热组件500与驱动组件800,每组均按照前述实施例中的方式设置。在使用时,若其中一组中的部件出现故障,还有其他组可以工作,可以降低该装置的故障停机率,提高其工作可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,包括:
    储气库,所述储气库用于存储气态二氧化碳,所述储气库的容积能够变化;
    储液罐,所述储液罐用于存储液态二氧化碳;
    储能组件,所述储能组件用于存储能量,所述储能组件设置于所述储气库与所述储液罐之间,所述储能组件包括冷凝器与至少两个压缩储能部,所述压缩储能部包括压缩机与储能换热器,所述压缩机用于压缩二氧化碳,所述冷凝器用于冷凝二氧化碳;
    释能组件,所述释能组件设置于所述储气库与所述储液罐之间,所述释能组件包括蒸发器与至少一个膨胀释能部,所述膨胀释能部包括释能换热器与膨胀机,所述蒸发器用于蒸发二氧化碳,所述膨胀机用于释放能量;
    换热组件,所述储能换热器、所述释能换热器均与所述换热组件连接,所述储能换热器能够将所述储能组件产生的能量暂存至所述换热组件,所述释能换热器能够接收所述换热组件暂存的能量;
    驱动组件,所述驱动组件包括能量输入件与第一驱动件,所述能量输入件吸收外部热能以驱动所述第一驱动件工作,所述第一驱动件用于驱动所述压缩机工作。
  2. 根据权利要求1所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述驱动组件还包括第二驱动件,所述第二驱动件能够与所述压缩机连接,当所述第一驱动件未启动时,所述第二驱动件能够驱动所述压缩机工作。
  3. 根据权利要求1所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,多个所述压缩储能部中的所述压缩机沿所述第一驱动件 的输出轴的轴向分布。
  4. 根据权利要求1所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述驱动组件还包括驱动循环冷却器与驱动循环泵,所述能量输入件、所述第一驱动件、所述驱动循环冷却器与所述驱动循环泵间形成驱动循环回路,所述驱动循环回路内设有驱动介质,所述驱动循环泵用于驱动所述驱动介质在所述驱动循环回路内循环流动,所述驱动介质通过所述能量输入件吸收外部热能并驱动所述第一驱动件工作,所述驱动循环冷却器用于对流出所述第一驱动件的驱动介质进行冷却。
  5. 根据权利要求1所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述储能组件包括第一压缩机、第一储能换热器、第二压缩机、第二储能换热器,所述第一压缩机与所述储气库连接,所述第一储能换热器与所述第一压缩机连接,所述第二压缩机与所述第一储能换热器连接,所述第二储能换热器与所述第二压缩机连接,所述冷凝器与所述第二储能换热器连接,所述储液罐与所述冷凝器连接。
  6. 根据权利要求1所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述释能组件包括第一膨胀机、第二膨胀机、第一释能换热器、第二释能换热器与释能冷却器,所述蒸发器与所述储液罐连接,所述第一释能换热器与所述蒸发器连接,所述第一膨胀机与所述第一释能换热器连接,所述第二释能换热器与所述第一膨胀机连接,所述第二膨胀机与所述第二释能换热器连接,所述释能冷却器与所述第二膨胀机连接,所述储气库与所述释能冷却器连接,所述释能冷却器用于对进入所述储气库的二氧化碳进行冷却。
  7. 根据权利要求6所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述释能冷却器与所述蒸发器连接。
  8. 根据权利要求1所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述释能组件还包括节流膨胀阀,所述节流膨胀阀位于所述储液罐与所述蒸发器之间,所述节流膨胀阀用于使经所述储液罐流出的二氧化碳降压,所述蒸发器与所述冷凝器连接。
  9. 根据权利要求1所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述换热组件包括储冷罐与储热罐,所述储冷罐与所述储热罐内设有换热介质,所述储冷罐、所述储热罐在所述储能组件与所述释能组件之间形成换热回路,所述换热介质能够在所述换热回路中流动,所述换热介质从所述储冷罐流动至所述储热罐时,能够存储所述储能组件产生的部分能量,所述换热介质从所述储热罐流动至所述储冷罐时,能够将存储的能量转移至所述释能组件。
  10. 根据权利要求9所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述换热组件还包括换热介质冷却器,所述换热介质冷却器用于对进入所述储冷罐的所述换热介质进行冷却,所述换热介质冷却器与所述蒸发器连接。
  11. 根据权利要求9所述的基于CO 2气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述储冷罐与所述储热罐之间设有辅助加热件,部分所述换热介质能够经所述辅助加热件加热后流入所述储热罐。
  12. 根据权利要求1所述的基于二氧化碳气液相变的热能转化机械能多级压缩储能装置,其特征在于,所述储气库为柔性气膜储气库。
PCT/CN2021/136442 2021-02-07 2021-12-08 基于co2气液相变的热能转化机械能多级压缩储能装置 WO2022166391A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/273,637 US20240084972A1 (en) 2021-02-07 2021-12-08 Co2 gas-liquid phase transition-based multistage compression energy storage apparatus for converting thermal energy into mechanical energy
CA3208084A CA3208084A1 (en) 2021-02-07 2021-12-08 Co2 gas-liquid phase transition-based multistage compression energy storage apparatus for converting thermal energy into mechanical energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110169184.4 2021-02-07
CN202110169184.4A CN112985143B (zh) 2021-02-07 2021-02-07 基于co2气液相变的热能转化机械能多级压缩储能装置

Publications (2)

Publication Number Publication Date
WO2022166391A1 true WO2022166391A1 (zh) 2022-08-11
WO2022166391A8 WO2022166391A8 (zh) 2023-06-15

Family

ID=76349034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136442 WO2022166391A1 (zh) 2021-02-07 2021-12-08 基于co2气液相变的热能转化机械能多级压缩储能装置

Country Status (4)

Country Link
US (1) US20240084972A1 (zh)
CN (1) CN112985143B (zh)
CA (1) CA3208084A1 (zh)
WO (1) WO2022166391A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985142A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的热能转化机械能储能装置
CN112985144B (zh) * 2021-02-07 2022-04-01 百穰新能源科技(深圳)有限公司 基于二氧化碳气液相变的多级压缩储能装置及方法
CN112985143B (zh) * 2021-02-07 2022-01-14 百穰新能源科技(深圳)有限公司 基于co2气液相变的热能转化机械能多级压缩储能装置
CN112985145B (zh) * 2021-02-07 2022-03-11 百穰新能源科技(深圳)有限公司 基于二氧化碳气液相变的储能装置与方法
CN112880451A (zh) * 2021-02-07 2021-06-01 深圳市博德维环境技术股份有限公司 基于补充外部能量的co2气液相变的储能装置与方法
CN116447769B (zh) * 2023-06-16 2023-09-29 百穰新能源科技(深圳)有限公司 二氧化碳储能系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090293502A1 (en) * 2008-05-27 2009-12-03 Expansion Energy, Llc System and method for liquid air production power storage and power release
CN102305206A (zh) * 2011-03-30 2012-01-04 上海本家空调系统有限公司 一种利用热能驱动的压缩机
CN102758690A (zh) * 2012-07-29 2012-10-31 中国科学院工程热物理研究所 高效高压液态空气储能/释能系统
CN103452612A (zh) * 2013-08-28 2013-12-18 中国科学院工程热物理研究所 一种以二氧化碳为工质的压缩气体储能系统
CN104533556A (zh) * 2014-12-17 2015-04-22 中国科学院广州能源研究所 一种二氧化碳气液相变储能的方法和实现该方法的装置
CN107893735A (zh) * 2017-11-07 2018-04-10 西安交通大学 一种利用波浪能/风能的递进式水下压缩空气储能系统
CN110374838A (zh) * 2019-06-14 2019-10-25 西安交通大学 一种基于lng冷量利用的跨临界二氧化碳储能系统及方法
CN111749743A (zh) * 2020-07-06 2020-10-09 全球能源互联网研究院有限公司 一种灵敏适于调频的压缩空气储能系统
CN112325497A (zh) * 2020-11-23 2021-02-05 青岛科技大学 一种液化二氧化碳储能系统及其应用
CN112880451A (zh) * 2021-02-07 2021-06-01 深圳市博德维环境技术股份有限公司 基于补充外部能量的co2气液相变的储能装置与方法
CN112985143A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于co2气液相变的热能转化机械能多级压缩储能装置
CN112985144A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的多级压缩储能装置及方法
CN112985145A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的储能装置与方法
CN112985142A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的热能转化机械能储能装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203420754U (zh) * 2013-08-28 2014-02-05 中国科学院工程热物理研究所 一种以二氧化碳为工质的压缩气体储能系统
CN107461227A (zh) * 2017-07-26 2017-12-12 西安交通大学 一种超临界二氧化碳离心压缩机与向心透平同轴结构
WO2019060810A1 (en) * 2017-09-25 2019-03-28 Southern Research Institute HIGH TEMPERATURE THERMOCHEMICAL ENERGY STORAGE SYSTEM
CN111648833B (zh) * 2020-06-05 2022-08-23 全球能源互联网研究院有限公司 一种利用气体缓冲装置提升调频性能的液化空气储能系统

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090293502A1 (en) * 2008-05-27 2009-12-03 Expansion Energy, Llc System and method for liquid air production power storage and power release
CN102305206A (zh) * 2011-03-30 2012-01-04 上海本家空调系统有限公司 一种利用热能驱动的压缩机
CN102758690A (zh) * 2012-07-29 2012-10-31 中国科学院工程热物理研究所 高效高压液态空气储能/释能系统
CN103452612A (zh) * 2013-08-28 2013-12-18 中国科学院工程热物理研究所 一种以二氧化碳为工质的压缩气体储能系统
CN104533556A (zh) * 2014-12-17 2015-04-22 中国科学院广州能源研究所 一种二氧化碳气液相变储能的方法和实现该方法的装置
CN107893735A (zh) * 2017-11-07 2018-04-10 西安交通大学 一种利用波浪能/风能的递进式水下压缩空气储能系统
CN110374838A (zh) * 2019-06-14 2019-10-25 西安交通大学 一种基于lng冷量利用的跨临界二氧化碳储能系统及方法
CN111749743A (zh) * 2020-07-06 2020-10-09 全球能源互联网研究院有限公司 一种灵敏适于调频的压缩空气储能系统
CN112325497A (zh) * 2020-11-23 2021-02-05 青岛科技大学 一种液化二氧化碳储能系统及其应用
CN112880451A (zh) * 2021-02-07 2021-06-01 深圳市博德维环境技术股份有限公司 基于补充外部能量的co2气液相变的储能装置与方法
CN112985143A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于co2气液相变的热能转化机械能多级压缩储能装置
CN112985144A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的多级压缩储能装置及方法
CN112985145A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的储能装置与方法
CN112985142A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的热能转化机械能储能装置

Also Published As

Publication number Publication date
CN112985143B (zh) 2022-01-14
CN112985143A (zh) 2021-06-18
US20240084972A1 (en) 2024-03-14
WO2022166391A8 (zh) 2023-06-15
CA3208084A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2022166381A1 (zh) 基于补充外部能量的co2气液相变的储能装置与方法
WO2022166391A1 (zh) 基于co2气液相变的热能转化机械能多级压缩储能装置
WO2022166387A1 (zh) 基于二氧化碳气液相变的储能装置与方法
WO2022166384A1 (zh) 基于二氧化碳气液相变的热能转化机械能储能装置
WO2022166392A1 (zh) 基于二氧化碳气液相变的多级压缩储能装置及方法
CN110374838B (zh) 一种基于lng冷量利用的跨临界二氧化碳储能系统及方法
US8572973B2 (en) Apparatus and method for generating power and refrigeration from low-grade heat
US20090266075A1 (en) Process and device for using of low temperature heat for the production of electrical energy
DK2627876T3 (en) A method and system for utilizing a power source of relatively low temperature
CN104061710A (zh) 一种提供蒸汽动力的方法及其装置
CN109026243A (zh) 能量转换系统
CN101988397A (zh) 一种低品位热流原动机、发电系统及其方法
Meng et al. Performance evaluation of a solar transcritical carbon dioxide Rankine cycle integrated with compressed air energy storage
CN112554983A (zh) 一种耦合卡琳娜循环的液态二氧化碳储能系统及方法
CN112983585B (zh) 一种热泵太阳能汽轮发电机组热电联产循环系统
CN113036932B (zh) 一种co2跨临界热力循环储电系统和方法
CN206801634U (zh) 热能利用系统及发电站
CN116641769A (zh) 基于二氧化碳工质的储能利用系统
KR101315918B1 (ko) 저온 폐열 및 흡수식 냉동기를 이용한 orc 열병합 시스템
CN108757069B (zh) 气液两相流重力热机
CN112112694B (zh) 压缩热自消纳的液态空气储能系统及方法
CN104595707A (zh) 一种液化天然气冷量的增益回收利用系统
CN215002381U (zh) 一种高效吸收式热泵
CN111520202B (zh) 一种冷凝解耦与梯级蒸发耦合冷热电联产系统
CN107060930A (zh) 热能利用系统及发电站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3208084

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18273637

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.12.2023)