WO2018195618A1 - Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico - Google Patents

Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico Download PDF

Info

Publication number
WO2018195618A1
WO2018195618A1 PCT/BR2018/050105 BR2018050105W WO2018195618A1 WO 2018195618 A1 WO2018195618 A1 WO 2018195618A1 BR 2018050105 W BR2018050105 W BR 2018050105W WO 2018195618 A1 WO2018195618 A1 WO 2018195618A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
processes
subsystem
thermodynamic
isobaric
Prior art date
Application number
PCT/BR2018/050105
Other languages
English (en)
French (fr)
Inventor
Marno Iockheck
Saulo Finco
LUIS Mauro MOURA
Original Assignee
Associação Paranaense De Cultura - Apc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Associação Paranaense De Cultura - Apc filed Critical Associação Paranaense De Cultura - Apc
Publication of WO2018195618A1 publication Critical patent/WO2018195618A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/047Controlling by varying the heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers

Definitions

  • the present invention relates to a thermal motor and its eight-process thermodynamic cycle, more specifically a thermal machine characterized by two interconnected thermodynamic subsystems, each operating a four-process but interdependent thermodynamic cycle. themselves, forming a complex cycle of eight processes operating on gas;
  • the circuit of this system is closed in differential configuration, based on the concept of hybrid thermodynamic system, this system performs a thermodynamic cycle composed of eight processes so that it executes at any moment of the cycle, two simultaneous and interdependent complementary processes, being four of these "isobaric" and four "isothermal" processes with variable mass transfer, which may be null or partial.
  • thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the laws of thermodynamics and underlie all motor cycles known to date.
  • thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the engine development.
  • the open thermodynamic system is defined as a thermodynamic system in which energy and matter can enter and leave this system.
  • Examples of an open thermodynamic system are the Otkins cycle Atkinson cycle internal combustion engines, Sabathe cycle Otto cycle diesel cycle, Brayton diesel cycle internal combustion engine, Rankine exhaust cycle from steam to the environment.
  • the materials that come into these systems are fuels and oxygen or working fluid or working gas.
  • the energy that enters these systems is heat.
  • the materials that come out of these systems are combustion or working fluid exhaust, gases, waste; The energies that come out of these systems are the working mechanical energy and part of the heat dissipated.
  • the closed thermodynamic system is defined as a thermodynamic system in which only energy can enter and leave this system.
  • Examples of closed thermodynamic systems are external combustion engines such as Stirling cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Brayton heat cycle or external combustion, Carnot cycle.
  • the energy that enters this system is heat.
  • the energies that come out of this system is the working mechanical energy and part of the heat dissipated, but no matter comes out of these systems, as occurs in the open system.
  • thermodynamic cycles composed of a series of sequential and independent processes, and a single process occurs at a time until the cycle is completed, as can be seen in the pressure / volume graph in figure 2. So are the Otto, Atkinson, Diesel, Sabathe, Rankine, Stirling, Ericsson cycle engines and Carnot's ideal theoretical cycle, and the Brayton cycle also belongs to either open or closed systems. but unlike the others, its four processes all occur simultaneously.
  • ⁇ U) represents the internal energy in "Joule”
  • n represents the mol number
  • R represents the universal constant of perfect gases
  • (7) represents the gas temperature in "Kelvin”
  • y represents the adiabatic coefficient of expansion.
  • the current state of the art up to the year 201 0, comprises a series of engine cycles, most requiring combustion, that is, the burning of some type of fuel, and therefore the need for oxygen.
  • the current state of the art up to the year 201 0, comprises a series of engine cycles, most requiring high operating temperatures, especially those of internal combustion, usually operating with working gas at temperatures above 1500 ° C. ° C.
  • External combustion engines or engines operating from external heat sources such as Rankine and Stirling cycle, are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C.
  • motors based on open and closed systems often requiring high temperatures to operate, they all have their efficiencies limited to Carnot's theorem, that is, their maximum efficiencies depend exclusively on temperatures as defined by equation (b).
  • the current state of the art up to the year 201 0, based on open and closed systems, comprises basically six engine cycles and some versions thereof: the Atkinson cycle Otto cycle, similar to the Diesel cycle Otto cycle. , Sabathe cycle, similar to the Diesel cycle, Brayton cycle, Rankine cycle, Stirling cycle, Ericsson cycle and Carnot cycle, this ideal theoretical reference for open and engine based engines. closed.
  • the latest developments in the current state of the art have been introduced through innovations by joining more than one old cycle into combined cycles, ie: new engine systems composed of a Brayton cycle machine operating on fossil fuels, gas or oil. and a heat-dependent Rankine cycle machine rejected by the Brayton cycle machine. Or the same philosophy, combining a diesel engine with a Rankine cycle engine or an Otto cycle engine, also joining it with a Rankine cycle engine.
  • the other conventional Stirling and Ericsson cycle engines are engines under the closed system concept, are from external combustion or external heat source. Because of their properties, although they have the simplest motor concepts, they are difficult to build. They require married design parameters, that is, they work well, with good efficiency, only in their specific operating regime, temperature, pressure, load, outside the central point of operation their efficiencies drop sharply, or do not operate. Therefore they are machines very little used for industrial or popular use.
  • Carnot's ideal motor figure 3, while considered the ideal motor, most perfect to date, it is in theory and within open and closed system concepts considering all ideal parameters, for example. This is the reference to date for all existing engine concepts.
  • the Carnot engine is not found in practical use because real materials do not have the properties required to make the Carnot engine a reality, the physical dimensions for the Carnot cycle to be performed as in theory would be unfeasible in a practical case. Therefore, it is an ideal Engine in the open system and closed system concepts, but in the theoretical concept.
  • the hybrid system concept is new, Carnot's ideal engine does not represent the hybrid system, only the open and closed systems.
  • thermodynamic system In 201 1, a new concept of thermodynamic system emerged.
  • the current state of the art, recently revealed some references that already meet concepts of the hybrid system, are engines that have characteristics of having two interdependent thermodynamic cycles constituting a complex cycle formed by eight processes, always with two processes operating simultaneously in a system formed. by two integrated subsystems.
  • the patent "PI 1000624-9" registered in Brazil defined as “Thermomechanical Energy Converter” consists of two subsystems operating through a thermodynamic cycle formed by four isothermal processes and four isochoric processes without regeneration.
  • PCT / BR2013 / 000222 defined as "Cycle Compliant Thermal Machine” Carnot Thermodynamic Process and Control Process "which consists of two subsystems and operates in each subsystem, a thermodynamic cycle formed by two isothermal processes of two adiabatic processes.
  • The" PCT / BR2014 / 000381 "patent registered in the United States of America as "Differential Thermal Machine with Eight Thermodynamic Transformation Cycle and Control Process” which consists of two subsystems operating a thermodynamic cycle formed by four isothermal processes of four adiabatic processes.
  • thermodynamic system provides the basis for the development of a new family of thermal motors, each engine will have its own characteristics according to the processes and phases that constitute its respective thermodynamic cycles, with
  • the Otto engine and the diesel engine both internal combustion engines, are engines based on the open thermodynamic system, but they are distinct engines and what distinguishes them are details of their thermodynamic cycles
  • the Otto engine cycle consists basically of an adiabatic compression process, an isocoric combustion process, an adiabatic expansion process and an isocoric exhaust process
  • the diesel engine cycle consists of an adiabatic compression process, an isobaric combustion process, an adiabatic expansion process and an isochoric process of exhaustion, so they differ in only one of the processes that make up their cycles, enough to give each one specific and different properties and uses.
  • the hybrid system concept provides the basis for a new family of thermal motors consisting of two subsystems and they will operate with differential cycles if the motors consist of two energy conversion subsystems, formed by processes where they will always occur. two simultaneous processes, each will have its own particularities which will characterize each of the motor cycles.
  • the aim of the invention focuses on eliminating some of the existing problems and minimizing other problems, but the major objective was to develop new motor cycles based on a new thermodynamic system concept that enables the development of sustainable motors so that engine efficiency is no longer dependent solely on temperatures and whose energy sources can be diversified and which allow engine design for even air (oxygen) environments.
  • the concept of the hybrid system the very characteristic that underlies this invention, eliminates the dependence of efficiency exclusively on temperature, the efficiency of any thermal machine depends on its potentials and its potential differentials, while open and closed systems generate potentials.
  • ( ⁇ ) is the yield
  • (T q ) is the temperature of the high temperature isothermal process
  • all temperatures in" Kelvin " (n?) is the number of moles of subsystems when they perform the high temperature isotherm corresponds to the number of moles of the isotherms (2-3) and (bc) of the graph of figure 1
  • (/ 3 ⁇ 4) is The number of moles of the subsystems when performing low temperature isotherms corresponds to the number of moles of the isotherms (4-1) and (da) in the graph in Figure 1 1.
  • thermodynamic cycles Otto, Atkinson, Diesel, Sabathe, Stirling, Ericsson, Rankine and the Carnot cycle perform one process at a time sequentially, as shown in Figure 2, referenced to the mechanical cycle of the driving force elements.
  • its control is a direct function of the power supply power
  • the hybrid system differential cycles perform two processes at a time, shown in figure 5, enabling the control of the thermodynamic cycle separated from the mechanical cycle, the cycle can be modulated and thus the mechanical cycle becomes a consequence of the thermodynamic cycle and not the other way around.
  • Differential cycle motors are characterized by having two power conversion subsystems, forming a hybrid system, represented by 21 and 23 of Figure 4, each subsystem executes a cycle referenced to the other subsystem in order to always execute two simultaneous processes. and interdependent. Otherwise, considering a hybrid system with properties of both open and closed systems simultaneously, it is said that the system performs a compound thermodynamic cycle, figure 5, that is, always performs two simultaneous processes 26 and 27 of figure 5, interdependent, including mass transfer. Therefore they are completely different motors and cycles from motors and cycles based on open or closed systems.
  • Figure 6 shows the relationship between the hybrid system and the differential thermodynamic cycle.
  • thermodynamic system The concept of hybrid thermodynamic system is new, characterized by two interdependent energy conversion subsystems and between them there is exchange of matter and energy and both provide out of bounds energy in working form and part of the energy in heat dissipated form.
  • This thermodynamic system was created in the 21st century and offers new possibilities. for the development of thermal motors.
  • the present invention brings important developments for the conversion of thermal energy to mechanical either for use in power generation or other use as mechanical force for movement and traction.
  • Some of the main advantages that can be seen are: the total flexibility as to the energy source (heat), the independence of the atmosphere, does not need atmosphere for a differential cycle motor to operate, the flexibility regarding the temperatures, the motor of Differential cycle can be designed to operate over a very wide temperature range, well above most motors based on open and closed systems, including a differential cycle motor can be designed to operate at both temperatures below zero degrees Celsius, It is sufficient that the design conditions promote the expansion and contraction of the working gas and it is sufficient that the materials chosen for its construction have the properties to perform their operational functions at design temperatures.
  • the differential system engine based on the hybrid system concept may be constructed of materials and techniques similar to conventional internal combustion engines and Stirling and Ericsson cycle engines, as it is a closed-loop gas engine, considering the complete system, that is, the complete system is formed by two integrated thermodynamic subsystems, 31 and 38, shown in figures 7, 8, 9 and 10, configuring a hybrid thermodynamic system, each subsystem is formed by a chamber, 310 and 31 1, containing working gas and each of these are formed by three sub-chambers, one heated, 310 with 33 and 31 1 with 36, one cold, 310 with 34 and 31 1 with 37, and one isolated, 310 with 32 and 31 1 with 35, connected to these two chambers is a driving force element 39, between the subsystems there is a mass transfer element 312 which participates in the thermodynamic cycle therefore the subsystems are open to each other, between the complete system and the external environment, is considered closed, these two subsystems simultaneously execute each of them, a cycle of four interdependent processes forming a differential thermodynamic cycle, indicates
  • This closed-circuit concept of working gas with respect to the external environment indicates that the system must be sealed, or in some cases leaks may be permitted provided they are compensated. Suitable materials for this technology should be noted, and are similar in this respect to the closed system Stirling and Ericsson and Brayton cycle engine design technologies.
  • the working gas depends on the project, its application and the parameters used, the gas used can be of different natures, each one will provide specific characteristics, as an example can be suggested gases: helium, hydrogen, nitrogen, dry air, neon, among others.
  • Conversion chambers items that characterize the hybrid system, may be constructed of various materials, depending on design temperatures, working gas used, pressures involved, environment and operating conditions. These cameras each have three sub-chambers and these should be designed keeping in mind the requirement of thermal insulation with each other to minimize the direct flow of energy from hot to cold areas, this condition is important for overall system efficiency.
  • These chambers have internally elements that move the working gas between the hot, cold, and insulated sub chambers, these elements can be of various geometric shapes, depending on the requirement and design parameters, could for example be in the form of discs, in cylindrical or other form allowing the working gas to be controlled in a controlled manner between the sub chambers.
  • the mass transfer element 312 of figures 7, 8, 9 and 10 interconnects the two chambers 310 and 311, this element is responsible for the transfer of part of the working gas mass between the chambers that occurs at a specific time during isobaric processes.
  • This element may be designed in various ways depending on the requirements of the project, may operate in a forced manner, for example, in the form of piston turbine or in another geometric form that allows it to perform the mass transfer of part of the working gas.
  • the driving force element 39 of figures 7, 8, 9 and 10 is responsible for performing the mechanical work and making it available for use.
  • This driving force element operates by the engine working gas forces, this element may be designed in various ways depending on the design requirements, it may for example be in the form of piston turbine, cylinder, connecting rods, crankshafts, diaphragm or other form allowing work to be performed from gas forces during thermodynamic conversions.
  • Figure 1 represents the concept of open thermodynamic system and the concept of closed thermodynamic system, the basic concept of both is identical
  • Figure 2 represents the characteristic of all thermodynamic cycles based on open and closed systems
  • Figure 3 shows the original idea of Carnot's thermal machine, conceptualized in 1824 by Nicolas Sadi Carnot;
  • Figure 4 represents the concept of hybrid thermodynamic system
  • Figure 5 represents the characteristic of differential thermodynamic cycles based on the hybrid system
  • Figure 6 shows the hybrid thermodynamic system and a differential thermodynamic cycle and the detail of the two simultaneously occurring thermodynamic processes
  • Figure 7 shows the mechanical model consisting of the two thermodynamic subsystems that form a thermal motor under the concept of hybrid system with subsystem 31 performing the isobaric process of expansion of the thermodynamic cycle and subsystem 38 performing the isobaric process of compression of the thermodynamic cycle;
  • Figure 8 shows one of the subsystems, group 31, performing the high temperature isothermal process of the thermodynamic cycle and the second subsystem, group 38, performing the low temperature isothermal process of the thermodynamic cycle;
  • Figure 9 shows one of the subsystems, group 31, performing the process isobaric compression of the thermodynamic cycle and the second subsystem, group 38, performing the isobaric process of expansion of the thermodynamic cycle;
  • Figure 10 shows in turn the first subsystem, group 31, performing its low temperature isothermal process of the thermodynamic cycle and the second subsystem, group 38, performing the high temperature isothermal process of the thermodynamic cycle;
  • Figure 11 shows the ideal differential thermodynamic cycle composed of two isobaric expansion processes, two isobaric compression processes, two expanding high temperature isothermal processes, two isothermal low compression processes;
  • Figure 12 shows, indicated at 59, in the thermodynamic cycle the detail of the mass transfer between subsystems in one of the phases of the cycle and in Figure 13 shows, indicated at 62, the detail of mass transfer between the subsystems in the other phase of the cycle. cycle;
  • Figure 14 shows the differential thermodynamic cycle in the particular condition where the mass transfer element is off, in which case the motor operates by means of a regenerative process only indicated by 64 and 65;
  • Figure 15 shows an example of motor application for an electricity generating plant having geothermal energy as its primary source
  • Figure 16 shows an example of motor application for an electricity generating plant having thermosolar energy as its primary source
  • Figure 17 shows an example of differential cycle engine application for a combined system design, forming a combined cycle with an open system internal combustion engine.
  • the differential cycle motor consisting of two isobaric expansion processes, two isobaric compression processes, two high temperature and expansion isothermal processes, two low temperature and isothermal compression processes is based on a hybrid thermodynamic system by having two interdependent thermodynamic energy conversion subsystems which each perform an interacting thermodynamic cycle and can exchange heat, work and mass as shown in figure 4.
  • the hybrid system is shown , consisting of two subsystems indicated by 21 and 23.
  • FIG. 6 shows again the hybrid thermodynamic system and the differential thermodynamic cycle, detailing in this case the processes that when in one of the subsystems, at time (t1) the cycle operates with mass (m1), number of moles. (n1) and temperature (Tq), at the same time, simultaneously, in the other subsystem, the cycle operates with mass (m2), number of mol (n2), temperature (Tf).
  • each subsystem has its thermomechanical conversion chamber, 310 and 311, an element of driving force, 39. Making connection between subsystems for mass transfer processes, there is a mass transfer element 312.
  • Figures 7, 8, 9 and 10 show how the eight processes, four isobaric and four isothermal, occur with mass transfer.
  • subsystem 31 transports the working gas into the thermally isolated chamber, indicated by 32, the working gas initiates the isobaric expansion process shown in Figure 11 by point (a) of graph 51, simultaneously the gas gains
  • the mechanical work energy of the mass transfer element carrying gas of subsystem 38 gains energy associated with the received mass of gas and may also gain energy from a regenerator, which is not indicated in the engine drawings, but may be a regenerator.
  • passive, heat exchanger, or active the gas in subsystem 31 will have its temperature increased to ⁇ Tb) which tends to approach the hot temperature (Tq) of the power source.
  • Figure 13 shows the detail of mass transfer from subsystem 38 to subsystem 31, indicated by 62. If the engine is operating without mass transfer, ie with mass transfer element 31 2 off, energy should be regenerative only by means of a regenerator as shown in graph 63 of figure 14, the heat transfer to the regenerator is indicated by 65 which occurs during the isobaric compression process and the regeneration, heating of the gas, occurs during the isobaric expansion process indicated by 64 in figure 14.
  • subsystem 31 carries the working gas into the heated chamber, indicated by 33, the working gas initiates the isothermal expansion process at high temperature, shown in Figure 11 starting from point (b), executing the expansion path (bc) of graph 51, simultaneously the gas gains energy from the hot source that powers the engine, indicated by 56 of graph 51.
  • subsystem 38 transports the working gas into the cold chamber, indicated by 37, the working gas initiates the isothermal low temperature compression process, shown in figure 11 starting at point (3), running the flow path. compression (3-4) of graph 51, simultaneously the gas dissipates energy to the cold gas cooling source indicated by 57 of graph 51.
  • the motor is composed of two thermodynamic energy conversion subsystems, 31 and 38, configuring a hybrid thermodynamic system, where each subsystem is formed by a chamber, 310 and 31. 1, containing working gas, and each of these two chambers are formed by three sub-chambers, one heated, composed of composition 310 with 33 of subsystem 31, and 31 1 with 36 of subsystem 38, one cooled, 310 with 34 of subsystem 31, and 31 1 with 37 of subsystem 38, and one isolated, 310 with 32 of subsystem 31 and 31 1 with 35 of subsystem 38, connected to these two chambers is a driving force element 39 for generating useful work, thermodynamically interconnecting the two subsystems there is a mass transfer element 312 connecting chambers 310 and 311, these two subsystems 31 and 38 simultaneously execute each other, a cycle of four interdependent processes forming a different thermodynamic cycle al, 51, single, of eight processes, four of them isobaric, (ab), (1-2), (cd) and (3-4), four is
  • Figures 11, 12, 13 and 14 show graphs of pressure and volumetric displacement, and curves indicating each of the processes that form the differential cycle.
  • Figure 11 indicated by 51 shows in detail 55 the isobaric cycle expansion process (abcda) indicated by 53 simultaneously shown in detail 54 the isobaric cycle compression process (1 -2-3-4-1) 52.
  • Isothermal processes (bc) and (2-3) are high temperature through which the energy indicated by 56.
  • the dissipation of energy, heat, not used to generate work occurs in the low temperature compression isotherms of the cycle (da) and (4-1).
  • the temperatures (Tb, Tc, T 2 and T 3 ) are equal and considering ideal cycle, is equal to the temperature of the hot source (Tq).
  • Figure 12 indicated by 58, shows in detail 59 how mass transfer occurs from cycle (abcda) to cycle (1 -2-3-4-1) from compression isobaric (cd) to expansion isobaric (1 -2).
  • Figure 13 indicated by 61, shows in detail 62 how mass transfer occurs from cycle (1 -2-3-4-1) to cycle (abcda) from compression isobaric (3- 4) for isobaric expansion (ab).
  • cycle (1 -2-3-4-1) shows in detail 62 how mass transfer occurs from cycle (1 -2-3-4-1) to cycle (abcda) from compression isobaric (3- 4) for isobaric expansion (ab).
  • the sum of the working gas mass of the two subsystems that make up the engine is always constant.
  • Figure 14 shows the differential cycle at zero mass transfer condition, ie with the mass transfer element off, in this case the gas mass of each of the subsystems is equal and constant.
  • Table 1 shows process by process forming the differential cycle of eight heat engine processes shown step by step, with four isobaric processes, four isothermal processes and mass transfer steps.
  • the 4-step differential cycle is composed of four adiabatic processes and four isothermal processes composing eight thermodynamic transformations, also processes, which form the engine differential cycle, being an isobaric expansion (ab) process or transformation of one of the subsystems occurring simultaneously with another process or isobaric compression transformation (3-4) of the other subsystem, and a process or high temperature isothermal expansion (bc) transformation of one subsystem that occurs simultaneously with another low temperature isothermal compression (4-1) process or transformation of the other subsystem, and an isobaric compression (cd) process or transformation of one of the subsystems occurring simultaneously to another isobaric expansion process or transformation (1-2) of the other subsystem, and a low-temperature isothermal compression process (or transformation) of one of the subsystems occurring simultaneously to another process or transformation of isothermal expansion (2-3) of the other subsystem, and a process of associated with mass 59 and 62 which occurs simultaneously with isobaric processes.
  • Hybrid based differential cycle motors operate on heat, do not require combustion, although they can be used, do not require fuel burning, although they can be used, so they can operate in environments with or without atmosphere.
  • the thermodynamic cycle does not require physical phase change of the working gas. Due to their properties set forth in this description, differential cycle motors can be designed to operate over a wide temperature range, superior to most existing open or closed system based motor cycles. Differential cycle motors are fully flexible in terms of their energy source (heat).
  • Figure 15 shows an application for the use of differential cycle motors for power generation from geothermal sources.
  • Figure 15 shows a ground heat transfer system 76 for a manifold 74, formed basically by a pump 77 that injects a fluid, usually water, through the duct 73.
  • the heat in the manifold 74 is transferred to the differential cycle motor 71 , which discards part of the energy to the outside through the heat exchanger 75 and converts another part of the energy into work by operating a generator 72 which produces electricity.
  • FIG 16 shows another useful application for the differential cycle motor for producing heat from the sun's heat.
  • the sun's rays are collected through concentrator 83, the energy (heat) is transferred to the element 84 which directs the heat to the differential cycle motor 81 which converts part of the energy into useful work to operate an electricity generator 82 part of the energy is discharged to the external environment through the exchanger 85.
  • FIG. 17 shows another useful application for the differential cycle engine to improve the efficiency of internal combustion engines by forming combined cycles with them.
  • the heat rejected by the exhaust, 96, of the internal combustion engines, indicated by 92, fuel-fed, 97, Brayton cycle, Diesel cycle, Sabathe cycle, Otto cycle, Atkinson cycle, is channeled to the input of energy (heat). from the differential cycle engine 91 via a changer 93 promoting a heat flow 91 1 from the internal combustion engine 92 towards the differential cycle engine 91 and this converts part of this energy into useful mechanical force, 913 which may be integrated with the mechanical force of the internal combustion engine, 912 generating a single mechanical force, 98, or directed to produce electrical energy.
  • Discarding energy not converted by the differential cycle engine goes to the external environment indicated by 910. This application allows you to recover some of the energy that internal combustion engine cycles cannot use to perform useful work and thus improve overall efficiency. of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Refere-se a presente invenção a um motor térmico e seu ciclo termodinâmico de oito processos, mais especificamente trata-se de uma máquina térmica caracterizada por dois subsistemas termodinâmicos interligados, cada um, opera um ciclo termodinâmico de quatro processos, porém interdependentes entre si, formando um ciclo complexo de oito processos, opera com gás, o circuito deste sistema é fechado em configuração diferencial, baseado no conceito de sistema termodinâmico híbrido, este sistema realiza um ciclo termodinâmico composto por oito processos de forma que o mesmo executa em qualquer momento do ciclo, dois processos simultâneos e interdependentes, complementares, sendo quatro destes processos "isobáricos" e quatro "isotérmicos" com transferência de massa variável, podendo esta ser nula ou parcial.

Description

"MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS ISOTÉRMICOS E PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO"
CAMPO TÉCNICO DA INVENÇÃO
[001 ] Refere-se a presente invenção a um motor térmico e seu ciclo termodinâmico de oito processos, mais especificamente trata-se de uma máquina térmica caracterizada por dois subsistemas termodinâmicos interligados, cada um opera um ciclo termodinâmico de quatro processos, porém interdependentes entre si, formando um ciclo complexo de oito processos, operando com gás; o circuito deste sistema é fechado em configuração diferencial, baseado no conceito de sistema termodinâmico híbrido, este sistema realiza um ciclo termodinâmico composto por oito processos de forma que o mesmo execute em qualquer momento do ciclo, dois processos simultâneos e interdependentes, complementares, sendo quatro destes processos "isobáricos" e quatro "isotérmicos" com transferência de massa variável, podendo esta ser nula ou parcial.
ANTECEDENTES DA INVENÇÃO
[002] A termodinâmica clássica define três conceitos de sistemas termodinâmicos, o sistema termodinâmico aberto, o sistema termodinâmico fechado e o sistema termodinâmico isolado. Estes três conceitos de sistemas termodinâmicos foram conceituados no século XIX nos primórdios da criação das leis da termodinâmica e fundamentam todos os ciclos motores conhecidos até o presente.
[003] O sistema termodinâmico isolado é definido como um sistema no qual nem matéria, nem energia passa através dele. Portanto, este conceito de sistema termodinâmico não oferece propriedades que permitam o desenvolvimento de motores.
[004] O sistema termodinâmico aberto é definido como um sistema termodinâmico em que energia e matéria podem entrar e sair deste sistema. São exemplos de sistema termodinâmico aberto os motores de combustão interna, de ciclo Otto, de ciclo Atkinson, semelhante ao ciclo Otto, de ciclo Diesel, de ciclo Sabathe, semelhante ao ciclo Diesel, de ciclo Brayton de combustão interna, de ciclo Rankine com exaustão do vapor ao ambiente. As matérias que entram nestes sistemas são os combustíveis e oxigénio ou fluido de trabalho ou gás de trabalho. A energia que entra nestes sistemas é o calor. As matérias que saem destes sistemas são a exaustão da combustão ou do fluido de trabalho, gases, resíduos; as energias que saem destes sistemas são a energia mecânica de trabalho e parte do calor dissipado.
[005] O sistema termodinâmico fechado é definido como um sistema termodinâmico em que apenas a energia pode entrar e sair deste sistema. São exemplos de sistema termodinâmico fechado, motores de combustão externa como o de ciclo Stirling, de ciclo Ericsson, de ciclo Rankine com fluido de trabalho em circuito fechado, de ciclo Brayton de calor ou de combustão externa, de ciclo Carnot. A energia que entra neste sistema é o calor. As energias que saem deste sistema é a energia mecânica de trabalho e parte do calor dissipado, porém não sai matéria destes sistemas, como ocorre no sistema aberto.
[006] Ambos os sistemas, aberto e fechado, como entrada eles possuem no tempo (t1) a temperatura (Tq), a massa (m1) e o número de mol (n1) e na saída, no tempo (t2), ambos possuem a temperatura (Tf), a massa (m1) e o número de mol (n1), a massa é constante, a diferença entre ambos é que no sistema aberto a massa (m1) atravessa o sistema e no sistema fechado, a massa (m1) permanece no sistema, conforme a figura 1 . O ESTADO ATUAL DA TÉCNICA
[007] Os motores conhecidos até o presente são fundamentados em sistemas termodinâmicos aberto ou sistemas termodinâmicos fechado, eles possuem seus ciclos termodinâmicos compostos por uma série de processos sequenciais e independentes, e ocorre um único processo por vez até que o ciclo se complete, como pode ser observado no gráfico pressão/volume na figura 2. Assim são os motores de ciclo Otto, Atkinson, Diesel, Sabathe, Rankine, Stirling, Ericsson e o ciclo teórico ideal de Carnot e o ciclo Brayton também pertence aos sistemas ou aberto ou fechado, porém diferente dos demais, seus quatro processos ocorrem todos simultaneamente.
[008] A energia interna do gás de trabalho dos motores baseados nos sistemas aberto e fechado não é constante durante o seu ciclo, a equação que representa a energia interna é indicada na equação (a)
Figure imgf000005_0001
[009] Na equação (a), {U) representa a energia interna em "Joule", (n) representa o número de mol, {R) representa a constante universal dos gases perfeitos, ( 7) representa a temperatura do gás em "Kelvin" e (y) representa o coeficiente de expansão adiabática.
[01 0] Como ocorre sempre um único processo por vez na maioria dos motores projetados com o conceito de sistema aberto ou fechado, a energia interna varia com o tempo, uma vez que o produto: número de mol (rí) pela temperatura ( 7), (n.7) não é constante durante o ciclo, pois a temperatura ( 7) é uma variável nos processos e o número de mol (n) é uma constante nos processos.
[01 1 ] O atual estado da técnica que caracteriza todos os motores até o ano de 201 0 é caracterizado ainda pela propriedade onde a saída do processo, o trabalho, é uma consequência direta da entrada da energia, calor ou combustão, ou seja, quando é necessário mais trabalho, injeta-se mais calor ou se promove mais combustão, todos os processos que formam o ciclo do motor são igualmente influenciados, em outras palavras, os motores são controlados pela alimentação direta. Por exemplo, nos motores de combustão interna, Otto, Diesel, Brayton, para se obter maior potência injeta-se mais combustível, mais oxigénio e assim se produz mais trabalho, mais rotação. Para se obter maior potência com rotação constante, normalmente utilizam-se caixas de redução ou transformação de rotação. Por analogia, tais tecnologias podem ser comparadas na eletricidade a motores de corrente contínua, estes, para aumentar a potência, aumenta-se a tensão de alimentação do motor.
[012] O atual estado da técnica, até o ano de 2010, compreende uma série de motores de combustão interna e de combustão externa, a maioria destes motores exigem um segundo motor auxiliar para levá-los a partir, ao funcionamento. Os motores de combustão interna exigem a compressão, mistura de combustível com o oxigénio e uma centelha ou combustão por pressão, desta forma um motor auxiliar de partida, normalmente elétrico, é utilizado. Os motores de combustão externa, como o de ciclo Stirling ou Ericsson convencionais, por sua vez também exigem motores auxiliares e de alta potência, pois eles precisam vencer o estado de repouso sob pressão para entrar em operação. Uma exceção é o motor de ciclo Rankine, este pode partir através do comando de válvulas para fornecer a pressão do vapor aos elementos de força motriz.
[013] O atual estado da técnica, até o ano de 2010, compreende uma série de motores, a maioria deles, dependentes de condições muito específicas e especiais para operar, por exemplo, os motores de combustão interna, cada um deles exige seu combustível específico, controle fino de combustível, oxigénio e o tempo da combustão e, em alguns casos, exigem condições específicas inclusive de pressão, a flexibilidade no combustível é bem limitada. Nesta categoria, dos motores fundamentados nos sistemas aberto e fechado, o motor mais flexível é o de ciclo Rankine, de combustão externa, o Stirling ou o Ericsson, também de combustão externa, estes são mais flexíveis quanto a fonte, porém são exigentes quanto à combinação dos parâmetros de projeto.
[014] O atual estado da técnica, até o ano de 201 0, compreende uma série de ciclo motores, a maioria exige combustão, isto é, a queima de algum tipo de combustível, e, portanto, a necessidade de oxigénio.
[01 5] O estado atual da técnica, até o ano de 201 0, compreende uma série de ciclo motores, a maioria exige altas temperaturas para operação, os de combustão interna especialmente, costumam operar com o gás de trabalho em temperatura superiores a 1500 °C. Os motores de combustão externa ou operante por fontes de calor externas, como de ciclo Rankine e Stirling, normalmente são projetados para operarem com temperaturas do gás de trabalho entre 400 °C e 800 °C. Além dos motores baseados nos sistemas aberto e fechado exigirem na maioria das vezes altas temperaturas para que possam operar, todos eles possuem suas eficiências limitadas ao teorema de Carnot, isto é, suas eficiências máximas dependem exclusivamente das temperaturas conforme definido pela equação (b).
Figure imgf000007_0001
[01 6] Na equação (b), (η) é o rendimento, ( 77) é a temperatura da fonte fria e { Tq) é a temperatura da fonte quente, ambas em "Kelvin".
[01 7] O estado atual da técnica, até o ano de 201 0, baseado nos sistemas aberto e fechado, compreende basicamente seis ciclos motores e algumas versões destes: o ciclo Otto, de ciclo Atkinson, semelhante ao ciclo Otto, de ciclo Diesel, de ciclo Sabathe, semelhante ao ciclo Diesel, de ciclo Brayton, de ciclo Rankine, de ciclo Stirling, de ciclo Ericsson e o de ciclo Carnot, este referência teórica ideal para os motores fundamentados nos sistemas aberto e fechado. As últimas novidades do estado atual da técnica vem sendo apresentadas através de inovações juntando-se mais de um ciclo antigo formando ciclos combinados, isto é: novos sistemas de motores compostos por uma máquina de ciclo Brayton operante com combustíveis de origem fóssil, gás ou óleo e uma máquina de ciclo Rankine dependente do calor rejeitado pela máquina de ciclo Brayton. Ou a mesma filosofia, unindo-se um motor de ciclo Diesel com um de ciclo Rankine ou ainda um motor de ciclo Otto, também unindo-o com um motor de ciclo Rankine.
[018] O estado atual da técnica, até o ano de 2010, apresenta uma série de limitações e oferece também uma série de problemas. A maioria dos motores, como os de combustão interna, de ciclo Otto, Atkinson, Diesel, Sabathe e Brayton, exigem combustíveis específicos para cada conceito, por exemplo: gasolina, óleo diesel, gás, querosene, carvão, e de alto poder calorífico, precisam trabalhar sob altas temperaturas e por consequência, durante muitos anos, vem dependendo de combustíveis fósseis, trazendo danos graves ao clima e meio-ambiente, isto é, são caracterizados pela não sustentabilidade. O sistema termodinâmico sob os quais estes motores são projetados trazem, como limitação de eficiência o teorema de Carnot o qual, em função de seu princípio, impõe o limite da eficiência como função direta e exclusiva das temperaturas, conforme equação (b).
[019] A maioria dos motores da atualidade exigem combustíveis refinados e poluentes com efeitos nocivos ao clima, ao ambiente e, portanto, comprometem a sustentabilidade. Uma das mais recentes tecnologias desenvolvidas para minimizar o impacto, foi a junção de dois antigos conceitos de motores, o motor de ciclo Brayton e o motor de ciclo Rankine, formando um sistema composto por dois ciclos combinados, de forma tal que o rejeito de calor da primeira máquina é utilizado pela segunda máquina para melhorar a eficiência do conjunto, porém o uso de combustíveis fósseis e seus efeitos permanecem. O ciclo combinado continua a ser caracterizado por um motor sob conceito de sistema aberto e um motor sob o conceito de sistema fechado, independentes, ou seja, é classificado como sistema combinado, dois ciclos completamente independentes, não se caracteriza como sistema híbrido.
[020] Os demais motores, de ciclo Stirling e Ericsson convencionais, são motores sob o conceito de sistema fechado, são de combustão externa ou fonte de calor externo. Em função de suas propriedades, embora tenham os conceitos mais simples de motores, são difíceis de serem construídos. Exigem parâmetros de projetos casados, isto é, funcionam bem, com boa eficiência, apenas em seu regime específico de operação, temperatura, pressão, carga, fora do ponto central de operação suas eficiências caem bruscamente, ou não operam. Portanto são máquinas muito pouco utilizadas para uso industrial ou popular.
[021 ] O motor ideal de Carnot, figura 3, por sua vez, embora seja considerado o motor ideal, mais perfeito até o presente, ele o é na teoria e dentro dos conceitos de sistema aberto e fechado considerando todos os parâmetros ideais, por este motivo é a referência até hoje para todos os conceitos de motores existentes. O motor de Carnot não é encontrado no uso prático porque os materiais reais não possuem as propriedades exigidas para tornar o motor de Carnot uma realidade, as dimensões físicas para que o ciclo de Carnot possa ser executado como na teoria, seriam inviáveis em um caso prático, portanto ele é um Motor ideal nos conceitos de sistema aberto e sistema fechado, porém no conceito teórico. O conceito de sistema híbrido é novo, o motor ideal de Carnot não representa o sistema híbrido, apenas os sistemas aberto e fechado.
[022] O controle de potência, rotação e torque, dos motores existentes, de ciclo Otto, Atkinson, Diesel, Sabathe, Brayton, estes de combustão interna, são decorrentes diretamente da alimentação de combustíveis e oxigénio e como resultado oferecem maior rotação e torque simultaneamente. Para haver separação entre o torque e a rotação, eles exigem caixas de velocidade. Estas máquinas não permitem controlabilidade, ou no mínimo, oferecem dificuldades na controlabilidade através de seus ciclos termodinâmicos.
[023] O controle de potência, rotação e torque, dos motores existentes de ciclo Rankine, este de combustão externa, são decorrentes da vazão e da pressão do vapor ou gás de trabalho, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação.
[024] O controle de potência, rotação e torque, dos motores existentes de ciclo Stirling e Ericsson, de combustão externa, são decorrentes da massa ou pressão do gás de trabalho, das temperaturas, da geometria construtiva, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação. Estas máquinas possuem suas curvas de operação muito estreitas oferecendo baixa controlabilidade e uma faixa estreita de operacionalidade. Nestes casos são comuns projetos que não funcionam porque os parâmetros, nas suas interdependências podem não oferecer as condições que levam o motor a funcionar. Assim pode ser descrito o estado da técnica até o ano de 2010.
[025] Em 201 1 , surgiu um novo conceito de sistema termodinâmico. O estado atual da técnica, recentemente revelou algumas referências que já se encontram com conceitos do sistema híbrido, são motores que apresentam características de possuírem dois ciclos termodinâmicos interdependentes constituindo um ciclo complexo formado por oito processos, sempre com dois processos operando simultaneamente em um sistema formado por dois subsistemas integrados. A patente "PI 1000624-9" registrada no Brasil definida como "Conversor de energia termomecânico" é constituído por dois subsistemas que operam por meio de um ciclo termodinâmico formado por quatro processos isotérmicos e quatro processos isocóricos, sem regeneração. A patente "PCT/BR2013/000222" registrada nos Estados Unidos da América definida como "Máquina térmica que opera em conformidade com o ciclo termodinâmico de Carnot e processo de controle" a qual é constituída por dois subsistemas e opera em cada subsistema, um ciclo termodinâmico formado por dois processos isotérmicos de dois processos adiabáticos. A patente "PCT/BR2014/000381 " registrada nos Estados Unidos da América definida como "Máquina térmica diferencial com ciclo de oito transformações termodinâmicas e processo de controle" a qual é constituída por dois subsistemas que operam um ciclo termodinâmico formado por quatro processos isotérmicos de quatro processos adiabáticos. Estas referências diferem da presente invenção quanto aos processos termodinâmicos que formam seus ciclos, onde cada ciclo oferece ao motor características próprias. O conceito de sistema termodinâmico híbrido oferece a base para o desenvolvimento de uma nova família de motores térmicos, cada motor terá características próprias conforme os processos e fases que constituem os seus respectivos ciclos termodinâmicos, como por exemplo, o motor Otto e o motor Diesel, ambos de combustão interna, são motores fundamentados no sistema termodinâmico aberto, porém constituem motores distintos e o que os distingue são detalhes de seus ciclos termodinâmicos, o ciclo do motor Otto é constituído basicamente por um processo adiabático de compressão, um processo isocórico de combustão, um processo adiabático de expansão e um processo isocórico de exaustão e o ciclo do motor Diesel é constituído por um processo adiabático de compressão, um processo isobárico de combustão, um processo adiabático de expansão e um processo isocórico de exaustão, portanto eles diferem em apenas um dos processos que formam seus ciclos, o suficiente para conferir a cada um, propriedades e usos específicos e diferentes. Da mesma forma, o conceito de sistema híbrido oferece a base para uma nova família de motores térmicos constituídos por dois subsistemas e estes irão operar com ciclos ditos diferenciais caso os motores sejam constituídos por dois subsistemas de conversão de energia, formados por processos onde sempre ocorrerão dois processos simultâneos, cada um terá particularidades próprias as quais caracterizarão cada um dos ciclos-motores. OBJETIVOS DA INVENÇÃO
[026] Os grandes problemas do estado da técnica são, portanto, a dificuldade das tecnologias atuais a atender projetos sustentáveis, em função da dependência de combustíveis fósseis, poluentes, com impactos graves ao ambiente e ao clima, baixa eficiência, limitada exclusivamente às temperaturas, demonstrado pelo teorema de Carnot, baixo nível de controlabilidade em função das limitações na variabilidade dos parâmetros dos modelos fundamentados nos sistemas termodinâmicos aberto e fechado, falta de flexibilidade quanto às fontes de energia, muitos exigem combustíveis refinados e específicos, alta dependência do ar (oxigénio) para combustão e muitos deles dependem de um segundo motor para levá-los à operação (um motor de partida).
[027] O objetivo da invenção se concentra em eliminar alguns dos problemas existentes e minimizar outros problemas, porém o maior objetivo foi em desenvolver novos ciclos-motores baseados em um novo conceito de sistema termodinâmico que permita o desenvolvimento de motores sustentáveis e de forma que a eficiência dos motores não fique mais dependente exclusivamente das temperaturas e cujas fontes de energia possam ser diversificadas e que permitam projeto de motores para ambientes inclusive sem ar (oxigénio). O conceito de sistema híbrido, característica própria que fundamenta esta invenção, elimina a dependência da eficiência de forma exclusiva à temperatura, a eficiência de qualquer máquina térmica depende dos seus potenciais e de seus diferenciais de potenciais, enquanto que os sistemas aberto e fechado geram potenciais onde a massa do gás é constante e por este motivo elas se cancelam nas equações, nos sistemas híbridos a massa não necessariamente é constante, portanto não se cancelam e as suas eficiências dependem dos potenciais dos quais se originam a força motriz, isto é, das pressões. O conceito de sistema híbrido proporciona potenciais dependentes, proporcionais ao produto da massa de gás de trabalho pela temperatura. Como no sistema híbrido, diferente dos sistemas aberto e fechado, a massa é variável, a sua eficiência passa a ser uma função não exclusiva da temperatura, mas dependente da massa e para um motor de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos, com transferência de massa entre seus subsistemas durante os processos isobáricos, a eficiência é demonstrada conforme apresentado na equação (c) e figura 1 1 , que demonstra o gráfico da pressão e volume do ciclo.
Figure imgf000013_0001
[028] Na equação (c), (η) é o rendimento, ( Tq) é a temperatura do processo isotérmico de alta temperatura, ( 7» é a temperatura do processo isotérmico de baixa temperatura, todas as temperaturas em "Kelvin", (n?) é o número de moles dos subsistemas quando estes realizam as isotérmicas de alta temperatura, corresponde ao número de moles das isotérmicas (2-3) e (b-c) do gráfico da figura 1 1 , (/¾) é o número de moles dos subsistemas quando estes realizam as isotérmicas de baixa temperatura, corresponde ao número de moles das isotérmicas (4-1 ) e (d-a) do gráfico da figura 1 1 .
[029] A dependência de altas temperaturas da maioria dos motores do atual estado da técnica levam também à dependência de combustíveis com alto poder calorífico, dificultando o uso de fontes limpas as quais normalmente oferecem menor temperatura, O conceito de ciclo diferencial sob o sistema híbrido, e fluido de trabalho cujos processos não obriguem a troca de fase física, elimina esta obrigatoriedade da dependência de altas temperaturas, O conceito diferencial onde o ciclo opera sempre dois processos por vez, 26 e 27 da figura 5, simultaneamente e interdependentes, viabiliza máquinas que possam operar com baixas temperaturas e por consequência, as fontes limpas renováveis, como a termossolar, geotermal, passam a ser plenamente viáveis e suas eficiências passam a ter a massa, ou número de moles, como mostrado na equação (c), como parâmetro para a obtenção de eficiências melhores, mesmo com diferenciais de temperatura relativamente baixos.
[030] Os principais ciclos termodinâmicos conhecidos, Otto, Atkinson, Diesel, Sabathe, Stirling, Ericsson, Rankine e o ciclo Carnot executam um único processo por vez sequencialmente, conforme mostrado na figura 2, referenciado ao ciclo mecânico dos elementos de força motriz, seu controle é uma função direta da alimentação da fonte de energia, por sua vez, os ciclos diferenciais do sistema híbrido, executam dois processos por vez, mostrados na figura 5, viabilizando o controle do ciclo termodinâmico separado do ciclo mecânico, o ciclo pode ser modulado e desta forma o ciclo mecânico passa a ser uma consequência do ciclo termodinâmico e não mais o contrário.
DESCRIÇÃO DA INVENÇÃO
[031 ] Os motores de ciclos diferenciais são caracterizados por possuírem dois subsistemas de conversão de energia, formando um sistema híbrido, representado por 21 e 23 da figura 4, cada subsistema executa um ciclo referenciado ao outro subsistema de modo a executarem sempre dois processos simultâneos e interdependentes. De outra forma, considerando um sistema híbrido com propriedades dos sistemas aberto e do fechado simultaneamente, diz-se que o sistema executa um ciclo termodinâmico composto, figura 5, isto é, executa sempre dois processos por vez simultâneos 26 e 27 da figura 5, interdependentes, inclusive com transferência de massa. Portanto trata-se de motores e ciclos completamente distintos dos motores e ciclos baseados nos sistemas aberto ou fechado. Na figura 6 pode ser observada a relação entre o sistema híbrido e o ciclo termodinâmico diferencial.
[032] O conceito de sistema termodinâmico híbrido é novo, é caracterizado por dois subsistemas de conversão de energia interdependentes e entre eles há troca de matéria e energia e ambos fornecem para fora de seus limites, energia em forma de trabalho e parte da energia em forma de calor dissipada. Este sistema termodinâmico foi criado no século XXI e oferece novas possibilidades para o desenvolvimento de motores térmicos.
[033] A presente invenção trás evoluções importantes para a conversão de energia térmica em mecânica seja esta para uso em geração de energia ou outro uso, como força mecânica para movimentação e tração. Algumas das principais vantagens que podem ser constatadas são: a total flexibilidade quanto à fonte da energia (calor), a independência de atmosfera, não necessita de atmosfera para que um motor do ciclo diferencial possa operar, a flexibilidade quanto às temperaturas, o motor de ciclo diferencial pode ser projetado para funcionar em uma faixa muito extensa de temperatura, bem superior à maioria dos motores fundamentados nos sistemas aberto e fechado, inclusive, um motor de ciclo diferencial pode ser projetado para funcionar com ambas as temperaturas abaixo de zero grau Celsius, basta que as condições de projeto promovam a expansão e contração do gás de trabalho e basta que os materiais escolhidos para a sua construção tenham as propriedades para executar as suas funções operacionais nas temperaturas de projeto. Outras vantagens importantes que distinguem o motor de ciclo diferencial fundamentado no sistema híbrido é a sua controlabilidade em função da facilidade na modulação dos processos termodinâmicos e em projetos de motores que dispensam o uso de motores de partida, ou no mínimo, estes seriam de pequeno porte, em função da facilidade de gerar um torque por meio do diferencial de forças propiciado pelo sistema formado por duas câmaras de conversão de energia, isto é, dois subsistemas. Portanto as vantagens constatadas abrangem a flexibilidade das fontes, promovendo o uso de fontes limpas e renováveis como as vantagens operacionais, podendo operar teoricamente em quaisquer faixas de temperatura e sua propriedade de controle da rotação e torque.
[034] O motor de ciclo diferencial baseado no conceito de sistema híbrido poderá ser construído com materiais e técnicas semelhantes aos motores convencionais de combustão interna e motores de ciclo Stirling e Ericsson, como se trata de um motor que trabalha com gás em circuito fechado, considerando o sistema completo, isto é, o sistema completo é formado por dois subsistemas termodinâmicos integrados, 31 e 38, mostrados nas figuras 7, 8, 9 e 10, configurando um sistema termodinâmico híbrido, cada subsistema é formado por uma câmara, 310 e 31 1 , contendo gás de trabalho e cada uma destas, são formadas por três subcâmaras, uma aquecida, 310 com 33 e 31 1 com 36, uma resfriada, 310 com 34 e 31 1 com 37, e outra isolada, 310 com 32 e 31 1 com 35, conectado a estas duas câmaras há um elemento de força motriz, 39, entre os subsistemas há um elemento de transferência de massa, 312 que participa do ciclo termodinâmico, portanto os subsistemas são abertos entre si, entre o sistema completo e o meio externo, é considerado fechado, estes dois subsistemas executam simultaneamente cada um deles, um ciclo de quatro processos interdependentes formando um ciclo termodinâmico diferencial, indicado por 51 na figura 1 1 , único, de oito processos, sendo quatro deles isobáricos, (a-b), (1 -2), (c-d) e (3-4), quatro isotérmicos, (b-c), (2-3), (d-a) e (4-1 ), com transferência de massa variável que ocorre durante os processos isobáricos. Este conceito em circuito fechado de gás de trabalho com relação ao meio externo indica que o sistema deve ser vedado, ou em alguns casos, vazamentos podem ser admitidos, desde que compensados. Materiais adequados para esta tecnologia devem ser observados, são semelhantes, neste aspecto, às tecnologias de projetos de motores de ciclo Stirling e Ericsson e Brayton do sistema fechado. O gás de trabalho depende do projeto, de sua aplicação e dos parâmetros utilizados, o gás utilizado poderá ser de várias naturezas, cada um proporcionará particularidades específicas, como exemplo pode ser sugerido os gases: hélio, hidrogénio, nitrogénio, ar seco, neon, entre outros.
[035] As câmaras de conversão, itens que caracterizam o sistema híbrido, poderão ser construídas com diversos materiais, dependendo das temperaturas de projeto, do gás de trabalho utilizado, das pressões envolvidas, do ambiente e condições de operação. Estas câmaras possuem cada uma, três subcâmaras e estas devem ser projetadas observando a exigência de isolamento térmico entre si para minimizar o fluxo direto de energia a partir das áreas quentes para as frias, esta condição é importante para a eficiência geral do sistema. Estas câmaras possuem internamente elementos que movimentam o gás de trabalho entre as subcâmaras quente, fria, e isoladas, estes elementos podem ser de diversas formas geométricas, depende da exigência e dos parâmetros do projeto, poderá, por exemplo, ser em forma de discos, em forma cilíndrica ou outra que permita a movimentação do gás de trabalho de forma controlada entre as subcâmaras.
[036] O elemento de transferência de massa, 312 das figuras 7, 8, 9 e 10, interliga as duas câmaras, 310 e 31 1 , este elemento é o responsável pela transferência de parte da massa de gás de trabalho entre as câmaras que ocorre em momento específico durante os processos isobáricos. Este elemento poderá ser projetado de várias formas dependendo das exigências do projeto, poderá operar de modo forçado, por exemplo, em forma de turbina com pistões ou em outra forma geométrica que lhe permita executar a transferência de massa de parte do gás de trabalho.
[037] O elemento de força motriz, 39 das figuras 7, 8, 9 e 10, é o responsável por executar o trabalho mecânico e disponibilizá-lo para usos. Este elemento de força motriz opera pelas forças do gás de trabalho do motor, este elemento poderá ser projetado de várias formas, dependendo das exigências de projeto, poderá, por exemplo, ser em forma de turbina com pistões, cilindro, bielas, virabrequins, em forma de diafragma ou em outra forma que permita a realização de trabalho a partir das forças do gás durante as conversões termodinâmicas.
DESCRIÇÃO DOS DESENHOS
[038] As figuras anexas demonstram as principais características e propriedades dos conceitos antigos das máquinas térmicas e as inovações propostas baseadas no sistema híbrido, sendo representadas conforme segue abaixo:
A figura 1 representa o conceito de sistema termodinâmico aberto e o conceito de sistema termodinâmico fechado, o conceito básico de ambos é idêntico;
A figura 2 representa a característica de todos os ciclos termodinâmicos fundamentados nos sistemas aberto e fechado;
A figura 3 mostra a ideia original da máquina térmica de Carnot, conceituada em 1824 por Nicolas Sadi Carnot;
A figura 4 representa o conceito de sistema termodinâmico híbrido;
A figura 5 representa a característica dos ciclos termodinâmicos diferenciais fundamentados no sistema híbrido;
A figura 6 mostra o sistema termodinâmico híbrido e um ciclo termodinâmico diferencial e o detalhe dos dois processos termodinâmicos que ocorrem simultaneamente;
A figura 7 mostra o modelo mecânico constituído pelos dois subsistemas termodinâmicos que formam um motor térmico sob o conceito de sistema híbrido com o subsistema 31 realizando o processo isobárico de expansão do ciclo termodinâmico e o subsistema 38 realizando o processo isobárico de compressão do ciclo termodinâmico;
A figura 8 mostra um dos subsistemas, grupo 31 , realizando o processo isotérmico de alta temperatura do ciclo termodinâmico e o segundo subsistema, grupo 38, realizando o processo isotérmico de baixa temperatura do ciclo termodinâmico;
A figura 9 mostra um dos subsistemas, grupo 31 , realizando o processo isobárico de compressão do ciclo termodinâmico e o segundo subsistema, grupo 38, realizando o processo isobárico de expansão do ciclo termodinâmico;
A figura 10, mostra por sua vez, o primeiro subsistema, grupo 31 , realizando o seu processo isotérmico de baixa temperatura do ciclo termodinâmico e o segundo subsistema, grupo 38, realizando o processo isotérmico de alta temperatura do ciclo termodinâmico;
A figura 1 1 mostra o ciclo termodinâmico diferencial ideal composto por dois processos isobáricos de expansão, dois processos isobáricos de compressão, dois processos isotérmicos de alta temperatura em expansão, dois processos isotérmicos de baixa temperatura de compressão;
A figura 12 mostra, indicado em 59, no ciclo termodinâmico o detalhe da transferência de massa entre os subsistemas em uma das fases do ciclo e na figura 13 mostra, indicado em 62, o detalhe da transferência de massa entre os subsistemas na outra fase do ciclo;
A figura 14 mostra o ciclo termodinâmico diferencial na condição particular onde o elemento de transferência de massa se encontra desligado, neste caso, o motor opera por meio de um processo regenerativo apenas indicado por 64 e por 65;
A figura 15 mostra um exemplo de aplicação do motor para uma planta geradora de eletricidade tendo como fonte primária a energia geotermal;
A figura 16 mostra um exemplo de aplicação do motor para uma planta geradora de eletricidade tendo como fonte primária a energia termossolar;
A figura 17 mostra um exemplo de aplicação do motor de ciclo diferencial para um projeto de um sistema combinado, formando um ciclo combinado com um motor de combustão interna do sistema aberto. DESCRIÇÃO DETALHADA DO INVENTO
[039] O motor de ciclo diferencial constituído por dois processos isobáricos de expansão, dois processos isobáricos de compressão, dois processos isotérmicos de alta temperatura e expansão, dois processos isotérmicos de baixa temperatura e de compressão é fundamentado em um sistema termodinâmico híbrido por possuir dois subsistemas termodinâmicos interdependentes de conversão de energia os quais, cada um, realiza um ciclo termodinâmico que interagem-se entre si, podendo trocar calor, trabalho e massa conforme é representado na figura 4. Em 22, da figura 4, é mostrado o sistema híbrido, composto por dois subsistemas indicados por 21 e 23.
[040] Na figura 6 é mostrado novamente o sistema termodinâmico híbrido e o ciclo termodinâmico diferencial, detalhando, neste caso os processos, que quando em um dos subsistemas, no tempo (t1 ) o ciclo opera com massa (m1 ), número de mol (n1 ) e temperatura (Tq), neste mesmo instante, simultaneamente, no outro subsistema, o ciclo opera com massa (m2), número de mol (n2), temperatura (Tf). Em uma máquina baseada em um sistema híbrido, composto por dois subsistemas de conversão de energia, a soma da massa de gás de trabalho é sempre constante (m1 + m2 = cte), porém não necessariamente são constantes nos seus respectivos subsistemas, entre eles pode haver troca de massa.
[041 ] Nas figuras 7, 8, 9 e 10, é mostrado o modelo de motor baseado no sistema híbrido, contendo dois subsistemas indicado por 31 e 38. Cada subsistema possui sua câmara de conversão termomecânica, 310 e 31 1 , um elemento de força motriz, 39. Fazendo conexão entre os subsistemas para os processos de transferência de massa, há um elemento de transferência de massa 312.
[042] As figuras 7, 8, 9 e 10 mostram como ocorrem mecanicamente os oito processos, quatro isobáricos e quatro isotérmicos, com transferência de massa. Na figura 7, o subsistema 31 transporta o gás de trabalho para a câmara isolada termicamente, indicado por 32, o gás de trabalho inicia o processo isobárico de expansão mostrado na figura 1 1 pelo ponto (a) do gráfico 51 , simultaneamente o gás ganha energia do trabalho mecânico do elemento de transferência de massa que transporta massa de gás do subsistema 38, ganha energia associado à massa de gás recebida e pode ganhar ainda, energia de um regenerador, este não indicado nos desenhos do motor, porém pode ser um regenerador passivo, tipo trocador de calor, ou ativo, o gás no subsistema 31 terá sua temperatura aumentada para { Tb) a qual tende a se aproximar da temperatura quente { Tq) da fonte de energia. A figura 1 3 mostra o detalhe da transferência de massa do subsistema 38 para o subsistema 31 , indicado por 62. Caso o motor estiver operando sem transferência de massa, isto é, com o elemento de transferência de massa 31 2 desligado, a transferência de energia deverá ser apenas do tipo regenerativo por meio de um regenerador conforme mostrado no gráfico 63 da figura 14, a transferência de calor para o regenerador está indicado por 65, o qual ocorre durante o processo isobárico de compressão e a regeneração, aquecimento do gás, ocorre durante o processo isobárico de expansão indicado por 64 na figura 14.
[043] Na figura 8, o subsistema 31 transporta o gás de trabalho para a câmara aquecida, indicado por 33, o gás de trabalho inicia o processo isotérmico de expansão em alta temperatura, mostrado na figura 1 1 iniciando pelo ponto (b), executando o trajeto de expansão (b-c) do gráfico 51 , simultaneamente o gás ganha energia da fonte quente que alimenta o motor, indicado por 56 do gráfico 51 . Simultaneamente, o subsistema 38 transporta o gás de trabalho para a câmara resfriada, indicado por 37, o gás de trabalho i nicia o processo isotérmico de compressão em baixa temperatura, mostrado na figura 1 1 iniciando pelo ponto (3), executando o trajeto de compressão (3-4) do gráfico 51 , simultaneamente o gás dissipa energia para a fonte fria, de resfriamento do gás, indicado por 57 do gráfico 51 . [044] Portanto, conforme figuras 7, 8, 9 e 10, o motor é composto por dois subsistemas termodinâmicos de conversão de energia, 31 e 38, configurando um sistema termodinâmico híbrido, onde cada subsistema é formado por uma câmara, 310 e 31 1 , contendo gás de trabalho e cada uma destas duas câmaras são formadas por três subcâmaras, uma aquecida, formada pela composição 310 com 33 do subsistema 31 , e 31 1 com 36 do subsistema 38, uma resfriada, 310 com 34 do subsistema 31 , e 31 1 com 37 do subsistema 38, e outra isolada, 310 com 32 do subsistema 31 e 31 1 com 35 do subsistema 38, conectado a estas duas câmaras há um elemento de força motriz 39, para geração de trabalho útil, interligando termodinamicamente os dois subsistemas há um elemento de transferência de massa, 312 conectando as câmaras 310 e 31 1 , estes dois subsistemas, 31 e 38 executam simultaneamente cada um deles, um ciclo de quatro processos interdependentes formando um ciclo termodinâmico diferencial, 51 , único, de oito processos, sendo quatro deles isobáricos, (a-b), (1 -2), (c-d) e (3-4), quatro isotérmicos, (b-c), (2-3), (d-a) e (4- 1 ), com transferência de massa variável.
[045] As figuras 1 1 , 12, 13 e 14 mostram os gráficos da pressão e do deslocamento volumétrico, e as curvas indicando cada um dos processos que formam o ciclo diferencial. A figura 1 1 indicado por 51 , mostra no detalhe 55 o processo isobárico de expansão do ciclo (a-b-c-d-a) indicado por 53, simultaneamente, mostrado no detalhe 54 o processo isobárico de compressão do ciclo (1 -2-3-4-1 ) indicado por 52. Os processos isotérmicos (b-c) e (2-3) são de alta temperatura por onde entra a energia indicado por 56. A dissipação da energia, calor, não utilizado para gerar trabalho ocorre nas isotérmicas de compressão de baixa temperatura do ciclo (d-a) e (4-1 ). As temperaturas {Tb, Tc, T2 e T3) são iguais e considerando ciclo ideal, é igual à temperatura da fonte quente { Tq).
[046] A figura 12, indicado por 58, mostra no detalhe 59, como ocorre a transferência de massa do ciclo (a-b-c-d-a) para o ciclo (1 -2-3-4-1 ) a partir da isobárica de compressão (c-d) para a isobárica de expansão (1 -2).
[047] A figura 13, indicado por 61 , mostra no detalhe 62, como ocorre a transferência de massa do ciclo (1 -2-3-4-1 ) para o ciclo (a-b-c-d-a) a partir da isobárica de compressão (3-4) para a isobárica de expansão (a-b). A soma da massa de gás de trabalho dos dois subsistemas que formam o motor é sempre constante.
[048] A figura 14 mostra o ciclo diferencial na condição de transferência de massa zero, isto é, com o elemento de transferência de massa desligado, neste caso a massa de gás de cada um dos subsistemas são iguais e constantes.
[049] A tabela 1 mostra processo por processo que formam o ciclo diferencial de oito processos do motor térmico mostrados passo a passo, com quatro processos isobáricos, quatro processos isotérmicos e etapas de transferência de massa.
Tabela 1
Figure imgf000023_0001
[050] Portanto, conforme exposto na tabela 1 , o ciclo diferencial executado em 4 passos é composto por quatro processos adiabáticos e quatro processos isotérmicos compondo oito transformações termodinâmicas, também chamados de processos, que formam o ciclo diferencial do motor, sendo um processo ou transformação de expansão isobárica (a-b) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de compressão isobárica (3-4) do outro subsistema, e um processo ou transformação de expansão isotérmica de alta temperatura (b-c) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de compressão isotérmica de baixa temperatura (4-1 ) do outro subsistema, e um processo ou transformação de compressão isobárica (c-d) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de expansão isobárica (1 -2) do outro subsistema, e um processo ou transformação de compressão isotérmica de baixa temperatura (d-a) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de expansão isotérmica de alta temperatura (2-3) do outro subsistema, e um processo de transferência de energia associada à massa 59 e 62 que ocorre simultaneamente aos processos isobáricos.
[051 ] Este ciclo diferencial de um motor composto por dois subsistemas baseado no conceito de sistema híbrido, cuja curva da pressão e do volume é indicado nas figuras 1 1 , 12, 13 e 14 são equacionados como segue. Os processos isobáricos de expansão (a-b) e (1 -2) são representados pelas expressões (d) e (e), dois processos isobáricos de compressão (3-4) e (c-d) representados pelas expressões (f) e (g), a energia recebida do trabalho, energia cinética a partir do processo (1 -2) é representado pela expressão (h), esta energia é a mesma do processo (c-d) representado pela expressão (i), a energia recebida do trabalho, energia cinética a partir do processo (a-b) é representado pela expressão (j), esta energia é a mesma do processo (3-4) representado pela expressão (k), a energia recebida com a massa de gás a partir do processo (1 -2) é representado pela expressão (I), esta energia é a mesma associada à massa transferida do processo (c-d) representado pela expressão (m), a energia recebida com a massa de gás a partir do processo (a- b) é representado pela expressão (n), esta energia é a mesma associada à massa transferida do processo (3-4) representado pela expressão (o). As expressões consideram o sinal do sentido do fluxo das energias.
Figure imgf000025_0001
[052] O termo formado por (n2) compreende a energia cinética realizada pelo trabalho durante os processos isobáricos e suas expressões são:
Figure imgf000025_0002
[053] O termo formado por (nr - /¾) compreende a energia associada à transferência de massa que ocorre também durante os processos isobáricos e suas expressões são:
Figure imgf000025_0003
Figure imgf000026_0004
[054] Considerando que ( T2 = Tb = T3 = Tc = Tq ), o total de energia de entrada no motor é a soma das energias ) e é representada pela expressão
Figure imgf000026_0005
(p) abaixo.
Figure imgf000026_0003
[055] Considerando que ( TV = Ta = T4 = Td = Tf ), o total de energia dissipada, descartada para o meio exterior é a soma das energias
Figure imgf000026_0006
na sua forma positiva, é representada pela expressão (q) abaixo.
Figure imgf000026_0001
[056] O trabalho útil total do motor, considerando um modelo ideal sem perdas, é a diferença entre a entrada e a saída da energia e é representado pela expressão (r) abaixo.
Figure imgf000026_0002
[057] Os processos isobáricos de expansão e de compressão, mostrados pelas expressões (d) até (o) são iguais e regenerativos, a energia é transferida no processo de expansão e recuperada no processo de compressão, isto é, a energia nos processos isobáricos se conservam nos subsistemas.
[058] A demonstração final teórica da eficiência do ciclo diferencial de oito processos, quatro processos isobáricos, quatro processos isotérmicos com transferência de massa é dada pelas expressões (s) e (t), caracterizando que os ciclos diferenciais baseados no sistema termodinâmico híbrido possuem como parâmetro da eficiência, também o número de moles ou massa nos processos e portanto estes ciclos não possuem suas eficiências dependentes exclusivamente das temperaturas..
Figure imgf000027_0001
[059] No caso particular onde a equação da eficiência se simplifica
Figure imgf000027_0002
conforme apresentado abaixo em (u).
Figure imgf000027_0003
EXEMPLOS DE APLICAÇÕES
[060] Os motores de ciclo diferenciais baseados no sistema híbrido operam com calor, não exigem combustão, embora possa ser utilizada, não exige queima de combustíveis, embora possa ser utilizada, portanto podem operar em ambientes com ou sem atmosfera. O ciclo termodinâmico não exige troca de fase física do gás de trabalho. Pelas suas propriedades expostas nesta descrição, os motores de ciclo diferenciais podem ser projetados para operar em uma larga faixa de temperatura, superiores à maioria dos ciclos motores existentes baseados nos sistema aberto ou fechado. Os motores de ciclo diferenciais são totalmente flexíveis quanto à fonte da energia (calor), na figura 15 é mostrado uma aplicação para o emprego do motor de ciclo diferencial para a geração de energia a partir de fontes geotermais. A figura 15 mostra um sistema de transferência de calor do solo 76 para um coletor 74, formado basicamente por uma bomba 77 que injeta um fluido, normalmente água, pelo duto 73. O calor no coletor 74 é transferido para o motor de ciclo diferencial 71 , o qual descarta parte da energia para o meio externo através do trocador de calor 75 e converte outra parte da energia em trabalho, operando um gerador 72 o qual produz eletricidade.
[061 ] A figura 16 mostra outra aplicação útil para o motor de ciclo diferencial para a produção de energia a partir do calor do sol. Os raios solares são coletados através do concentrador 83, a energia (calor) é transferida para o elemento 84 o qual direciona o calor para o motor de ciclo diferencial 81 , este converte parte da energia em trabalho útil para operar um gerador de eletricidade, 82, parte da energia é descartada ao meio externo através do trocador 85.
[062] A figura 17 mostra outra aplicação útil para o motor de ciclo diferencial para melhorar a eficiência de motores de combustão interna, formando ciclos combinados com estes. O calor rejeitado pelas exaustões, 96, dos motores de combustão interna, indicado por 92, alimentados por combustíveis, 97, de ciclo Brayton, ciclo Diesel, ciclo Sabathe, ciclo Otto, ciclo Atkinson, são canalizados para a entrada de energia (calor) do motor de ciclo diferencial, 91 , através de um trocador 93, promovendo um fluxo de calor, 91 1 , do motor de combustão interna, 92, em direção ao motor de ciclo diferencial 91 e este converte parte desta energia em força mecânica útil, 913 que pode ser integrada à força mecânica do motor de combustão interna, 912 gerando uma força mecânica única, 98, ou direcionada a produzir energia elétrica. O descarte da energia não convertida pelo motor de ciclo diferencial segue para o meio externo indicado por 910. Esta aplicação permite recuperar parte da energia que os ciclos dos motores de combustão interna não podem utilizar para a realização de trabalho útil e assim melhorar a eficiência geral do sistema.

Claims

REIVINDICAÇÕES
1 ) "MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS ISOTÉRMICOS", caracterizado por ser composto por dois subsistemas termodinâmicos de conversão de energia, (31 ) e (38), configurando um sistema termodinâmico híbrido, onde cada subsistema é formado por uma câmara, (310) e (31 1 ), contendo gás de trabalho e cada uma destas duas câmaras é formada por três subcâmaras, uma aquecida, formada pela composição (310) com (33) do subsistema (31 ), e (31 1 ) com (36) do subsistema (38), uma resfriada, (310) com (34) do subsistema (31 ), e (31 1 ) com (37) do subsistema (38), e outra isolada, (310) com (32) do subsistema (31 ) e (31 1 ) com (35) do subsistema (38), conectado a estas duas câmaras há um elemento de força motriz, (39) para geração de trabalho útil, interligando termodinamicamente os dois subsistemas há um elemento de transferência de massa, (312) conectando as câmaras (310) e (31 1 ), estes dois subsistemas, (31 ) e (38) executam simultaneamente cada um deles, um ciclo de quatro processos interdependentes formando um ciclo termodinâmico diferencial, (51 ), único, de oito processos, sendo quatro deles isobáricos, (a-b), (1 -2), (c-d) e (3-4), quatro isotérmicos, (b-c), (2-3), (d-a) e (4-1 ), com transferência de massa variável.
2) "MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS ISOTÉRMICOS", de acordo com a reivindicação 1 , caracterizado por ser composto por dois subsistemas termodinâmicos de conversão de energia, (31 ) e (38), configurando um sistema termodinâmico híbrido.
3) "MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS ISOTÉRMICOS", de acordo com a reivindicação 1 e 2, caracterizado por cada câmara dos sistemas termodinâmicos serem compostas por três subcâmaras, uma aquecida, formada pela composição (310) com (33) do subsistema (31 ), e (31 1 ) com (36) do subsistema (38), uma resfriada, (310) com (34) do subsistema (31 ), e (31 1 ) com (37) do subsistema (38), e outra isolada, (310) com (32) do subsistema (31 ) e (31 1 ) com (35) do subsistema (38).
4) "MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS ISOTÉRMICOS", de acordo com a reivindicação 1 , caracterizado por um elemento de transferência de massa 312 conectado entre as duas câmaras 310 e 31 1 interconectando os dois subsistemas 31 e 38.
5) "MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS ISOTÉRMICOS", de acordo com a reivindicação 1 , caracterizado por um elemento de força motriz (39) pertencente aos dois subsistemas (31 ) e (38).
6) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", para efetuar o ciclo termodinâmico do motor das reivindicações 1 a 5, caracterizado por um processo composto por oito transformações termodinâmicas, também chamados de processos, que formam o ciclo diferencial do motor, sendo um processo ou transformação de expansão isobárica (a-b) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de compressão isobárica (3-4) do outro subsistema, e um processo ou transformação de expansão isotérmica de alta temperatura (b-c) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de compressão isotérmica de baixa temperatura (4- 1 ) do outro subsistema, e um processo ou transformação de compressão isobárica (c-d) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de expansão isobárica (1 -2) do outro subsistema, e um processo ou transformação de compressão isotérmica de baixa temperatura (d-a) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de expansão isotérmica de alta temperatura (2-3) do outro subsistema, e um processo de transferência de energia associada à massa (59) e (62) que ocorre simultaneamente aos processos isobáricos.
7) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 6, caracterizado por um processo ou transformação de expansão isobárica (a- b) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de compressão isobárica (3-4) do outro subsistema.
8) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 6, caracterizado por um processo ou transformação de expansão isotérmica de alta temperatura (b-c) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de compressão isotérmica de baixa temperatura (4-1 ) do outro subsistema.
9) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 6, caracterizado por um processo ou transformação de compressão isobárica (c-d) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de expansão isobárica (1 -2) do outro subsistema.
10) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 6, caracterizado por um processo ou transformação de compressão isotérmica de baixa temperatura (d-a) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de expansão isotérmica de alta temperatura (2-3) do outro subsistema.
1 1 ) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 6, caracterizado por um processo de transferência de energia associada à massa (59) e (62) que ocorre simultaneamente aos processos isobáricos.
PCT/BR2018/050105 2017-04-25 2018-04-16 Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico WO2018195618A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102017008544-9 2017-04-25
BR102017008544A BR102017008544A8 (pt) 2017-04-25 2017-04-25 Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico

Publications (1)

Publication Number Publication Date
WO2018195618A1 true WO2018195618A1 (pt) 2018-11-01

Family

ID=63917869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/050105 WO2018195618A1 (pt) 2017-04-25 2018-04-16 Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico

Country Status (2)

Country Link
BR (1) BR102017008544A8 (pt)
WO (1) WO2018195618A1 (pt)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2342103A1 (de) * 1973-08-21 1975-03-20 Hans Alexander Frhr Von Seld Regenerative waermekraftmaschine
DE3304729A1 (de) * 1983-02-11 1984-08-16 Jürgen 2804 Lilienthal Henkel Verfahren zum betreiben einer waermekraftmaschine mit einem gasfoermigen medium
US4676067A (en) * 1984-03-27 1987-06-30 Pinto Adolf P Maximized thermal efficiency crank driven hot gas engine
DE3903605C1 (en) * 1989-02-08 1990-07-12 Schwelm Anlagen & Apparate Gmbh, 5830 Schwelm, De Method and heat engine for converting thermal energy into mechanical work
JP2004084564A (ja) * 2002-08-27 2004-03-18 Toyota Motor Corp 排気熱回収装置
WO2016015575A1 (zh) * 2014-07-28 2016-02-04 龚炳新 一种热机
WO2016114683A1 (ru) * 2015-01-15 2016-07-21 Борис Львович ЕГОРОВ Двигатель внутреннего сгорания и способ работы

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2342103A1 (de) * 1973-08-21 1975-03-20 Hans Alexander Frhr Von Seld Regenerative waermekraftmaschine
DE3304729A1 (de) * 1983-02-11 1984-08-16 Jürgen 2804 Lilienthal Henkel Verfahren zum betreiben einer waermekraftmaschine mit einem gasfoermigen medium
US4676067A (en) * 1984-03-27 1987-06-30 Pinto Adolf P Maximized thermal efficiency crank driven hot gas engine
DE3903605C1 (en) * 1989-02-08 1990-07-12 Schwelm Anlagen & Apparate Gmbh, 5830 Schwelm, De Method and heat engine for converting thermal energy into mechanical work
JP2004084564A (ja) * 2002-08-27 2004-03-18 Toyota Motor Corp 排気熱回収装置
WO2016015575A1 (zh) * 2014-07-28 2016-02-04 龚炳新 一种热机
WO2016114683A1 (ru) * 2015-01-15 2016-07-21 Борис Львович ЕГОРОВ Двигатель внутреннего сгорания и способ работы

Also Published As

Publication number Publication date
BR102017008544A2 (pt) 2018-11-21
BR102017008544A8 (pt) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2018195619A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018035585A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos adiabáticos e processo de controle para o cliclo termodinâmico do motor térmico
WO2018035588A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos isocóricos com regenerador ativo e processo de controle para o ciclo termodinâmico do motor trémico
WO2018195618A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195620A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2015054767A1 (pt) Máquina térmica diferencial com ciclo de oito transformações termodinãmicas e processo de controle
WO2018035586A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isocóricos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195626A1 (pt) Motor turbina de ciclo binário composto por três processos politrópicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
WO2018152603A1 (pt) Motor térmico de ciclo diferencial composto por dois processos !socóricos, quatro processos isotérmicos e dois processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195622A1 (pt) Motor turbina de ciclo binário composto por três processos isotérmicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
WO2018195621A1 (pt) Motor turbina de ciclo binário composto por três processos isobáricos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
BR102017008545B1 (pt) Motor térmico de ciclo diferencial composto por quatro processo isobáricos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
BR102018004172A2 (pt) Motor térmico de combustão externa com ciclo composto por um processo isocórico, dois processos isotérmicos e um processo adiabático e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195634A1 (pt) Motor de ciclo combinado atkinson ou miller e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
BR102017008582A2 (pt) motor de ciclo combinado atkinson ou miller e binário-isobárico- adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
BR102018004170A2 (pt) Motor térmico de combustão externa com ciclo composto por um processo isocórico, um processo adiabático e um processo isotérmico e processo de controle para o ciclo termodinâmico do motor térmico
BR102018068525A2 (pt) Motor turbina de ciclo brayton integrado de circuito fechado regenerativo para geração a partir de fonte heliotérmica ou termonuclear e processo de controle para o ciclo termodinâmico do motor
BR102018004165A2 (pt) Motor térmico de combustão externa com ciclo modulado composto por um processo isocórico, dois processos isotérmicos e um processo adiabático e processo de controle para o ciclo termodinâmico do motor térmico
WO2020019048A1 (pt) Motor de combustão interna integrado formado por uma unidade principal a turbina e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor
BR102017008576A2 (pt) motor de ciclo combinado otto e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
BR102018015950A2 (pt) Motor de combustão interna integrado formado por uma unidade principal de ciclo otto e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor.
WO2018195627A1 (pt) Motor turbina de ciclo combinado brayton e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado
BR102018068965A2 (pt) Motor térmico de ciclo diferencial composto por dois processos isocóricos, dois processos politrópicos, dois processos adiabáticos e dois processos isotérmicos e processo do ciclo termodinâmico do motor térmico
WO2018195628A1 (pt) Motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado
WO2020024034A1 (pt) Motor de combustão interna integrado formado por uma unidade principal de ciclo diesel e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791121

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791121

Country of ref document: EP

Kind code of ref document: A1