WO2018152603A1 - Motor térmico de ciclo diferencial composto por dois processos !socóricos, quatro processos isotérmicos e dois processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico - Google Patents

Motor térmico de ciclo diferencial composto por dois processos !socóricos, quatro processos isotérmicos e dois processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico Download PDF

Info

Publication number
WO2018152603A1
WO2018152603A1 PCT/BR2018/000006 BR2018000006W WO2018152603A1 WO 2018152603 A1 WO2018152603 A1 WO 2018152603A1 BR 2018000006 W BR2018000006 W BR 2018000006W WO 2018152603 A1 WO2018152603 A1 WO 2018152603A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
subsystem
isothermal
processes
thermodynamic
Prior art date
Application number
PCT/BR2018/000006
Other languages
English (en)
French (fr)
Inventor
Marno Iockheck
Saulo Finco
Luis MAURO MOURA
Original Assignee
Associacao Paranaense De Cultura - Apc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Associacao Paranaense De Cultura - Apc filed Critical Associacao Paranaense De Cultura - Apc
Publication of WO2018152603A1 publication Critical patent/WO2018152603A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/047Controlling by varying the heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an external combustion thermal engine or to the combustion exhaust of any other process, and its eight process thermodynamic cycle, more specifically a thermal machine characterized by two thermodynamic subsystems. interconnected, each operates a thermodynamic cycle of four processes, but interdependent with each other, forming a complex cycle of eight processes, operates with gas, the circuit of this hybrid system is closed in different configurations, based on the concept of hybrid thermodynamic system, this system performs a thermodynamic cycle composed of eight processes so that it performs at any time of the cycle, two simultaneous and interdependent, complementary processes, two of which are “isochoric" processes, four "isothermal” processes and two "adiabatic” processes with transfer of variable mass, which may be partial or partial.
  • thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the thermodynamic elements and underlie all known motor cycles to date.
  • the isolated thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the development of motors.
  • the open thermodynamic system is defined as a thermodynamic system in which energy and matter can enter and leave this system. Examples of an open thermodynamic system are the Atkinson cycle Otto-cycle internal combustion engines, Sabathe cycle Diesel-cycle, Otto-cycle internal combustion engine, Rankine exhaust-cycle Brayton internal-combustion cycle diesel engine from steam to the environment.
  • the matter entering these systems is defined as follows: fuels and oxygen or working fluid or working gas,
  • the energy entering these systems is heat
  • the matter leaving these systems is defined as: combustion or working fluid exhaustion , gases, waste; whereas the energy that comes out of these systems is defined as follows: mechanical working energy and part of the heat dissipated.
  • the closed thermodynamic system is defined as a thermodynamic system where only energy can enter and leave this system.
  • closed thermodynamic systems external combustion engines such as Stirling cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Brayton heat cycle or external combustion, Carnot cycle.
  • the energy that comes out of this system is the mechanical working energy and part of the heat dissipated, but no matter comes out of these systems, as occurs in the open system.
  • thermodynamic cycles composed of a series of sequential and independent processes, and only one process occurs at a time until the cycle is completed, as can be seen from the pressure / volume chart in Figure 2. So are the Otto, Atkinson, Diesel, Sahathe, Rankine, Stiring, Ericsson, Camot's ideal theoretical cycle and the Brayton cycle which also belongs to systems either open or closed, but unlike the others, its four processes all occur simultaneously.
  • the current state of the art up to 2010, based on open and closed systems, comprises basically six engine cycles and some versions thereof: the Atksnson cycle eido Otto, similar to the Diesel cycle cycle Otto, Sabathe cycle, similar to the Teri cycle, Brayton cycle, Rankine cycle, Stirling cycle, Ericsson cycle and Carnot cycle, this ideal theoretical reference for motors based on open and closed systems.
  • the latest innovations in the state of the art have been presented through innovations by joining more than one old cycle forming combined cycles, ie: new engine systems composed of a Brayton cycle machine operating on fossil fuels, gas or oil. and a heat dependent Rankine cycle machine rejected by the Brayton cycle machine.
  • combining a diesel engine with a Rankine cycle engine or an Otto cycle engine also joining it with a Rankine engine.
  • the other conventional Stirf ⁇ ng and Ericsson cycle engines are engines under the closed system concept, are of external combustion or external heat source. Because of their properties, although they have the simplest motor concepts, they are difficult to build. They require parameters of married designs, that is, they work well, with good efficiency, they just err their specific operating regime, temperature, pressure, load, outside the central point of operation their efficiencies drop sharply, or do not operate. Therefore they are machines very little used for industrial or popular use.
  • Carnot's ideai motor, figure 3 in turn, although it is considered the ideal motor, most perfect to date, and that is in theory and within open and closed system concepts considering all ideal parameters, so it is the reference to date for all existing motor concepts.
  • the Carnoi engine is not found in practical use because the actual materials do not have the properties required to make the Carnot engine a reality, the physical dimensions for the Carnot cycle to be performed as in theory would be unfeasible in a practical case. therefore it is an ideal engine in open system and closed system concepts, but in the theoretical concept.
  • the hybrid system concept is new, Carnot's ideal engine does not represent the hybrid system, only open and closed systems.
  • Thermomechanical Energy Converter consists of two subsystems operating through a thermodynamic cycle formed by four isothermal processes and four isochoric processes without regeneration.
  • the patent" PCT / BR2O14 / 0OO381 "Registered in the United States of America defined as”
  • Thermodynamic Differential Thermal Cycle Machine with Control Process consists of two subsystems operating a thermodynamic cycle formed by four isothermal processes of four adiabatic processes.
  • thermodynamic cycles As for the thermodynamic processes that form its cycles, each cycle gives the engine its own characteristics.
  • Thermodynamic cycles such as the Otto engine and the Moor Diesel, both internal combustion engines, are engines based on the open thermodynamic system, but they are distinct engines and what distinguishes them are details of their thermodynamic cycles, the Otto engine cycle.
  • the hybrid system concept provides the basis for a new family of thermal motors consisting of two subsystems and they will operate with differential cycles if the motors consist of two energy conversion subsystems, formed by processes where they will always occur. two simultaneous processes, each will have its own particularities which will characterize each of the motor cycles.
  • the aim of the invention is to eliminate some of the existing problems and minimize other problems, but the major objective is to develop new motor cycles based on a new thermodynamic system concept that enables the development of sustainable motors so that engine efficiency is no longer solely temperature-dependent and whose energy sources can be diversified and allow for engine design for even air (oxygen) environments.
  • hybrid system a characteristic that underlies this invention eliminates the dependence on efficiency uniquely to the tempera, the efficiency of any thermal machine depends on its potentials and its potential differentials, whereas open and closed systems generate potentials where gas mass is constant and for this reason they cancel out in the equations, in hybrid systems the mass is not necessarily constant, so they do not cancel out and their efficiencies depend on the potentials from which the driving force originates, that is, the pressures.
  • the hybrid system concept provides dependent potentials proportional to the product of the working gas mass by temperature.
  • the mass is variable, its efficiency becomes a function not only of temperature, but dependent on the mass and for a different cycle motor composed by two isochoric heating processes, two heating isothermal processes, two isothermal cooling processes and two adiabatic expansion processes, with mass transfer between their subsystems during the adiabatic and isochoric processes, the efficiency is demonstrated as presented in equation (c) and figure 9, which demonstrates the graph of cycle pressure and volume.
  • is the yield
  • ⁇ T q ⁇ is the final heating temperature of the isochoric process and is the temperature isothermal high temperature process
  • Tf is the initial temperature of the isocoric heating process.
  • e is the temperature of the low-temperature, low-temperature isothermal process
  • Kelvin ( ⁇ is the number of moles of the subsystems when they perform the isochoric and isothermal high temperatures, corresponds to the number of isocoric moies (ab) and (1-2) and isotherms (bc) and (2-3) in graph 41 of figure 9
  • (n 2 ) is the moles number of the subsystems when they perform the cooling, low temperature, and adiabatic isotherms. expansion, corresponds to the number of moles isothermals (da), (4-1) and adiabatic (cd) and (3-4) of graph 41 of figure 9.
  • thermodynamic cycles Otto, Atkinson, Diesel, Sabathe, Stirfing, Ericsson, Rankine and the Camot cycle perform a single process at a time sequentially, as shown in Figure 2, referring to the mechanical cycle of the driving force elements.
  • its control is a direct function of the power supply power
  • the hybrid system differential cycles perform two processes at a time, shown in figure 5, enabling the control of the thermodynamic cycle separated from the mechanical cycle, the cycle can be modulated and thus the mechanical cycle becomes a consequence of the thermodynamic cycle and not the other way around.
  • Differential cycle motors are characterized by having two power conversion subsystems forming a system Hybrid, represented by 21 and 23 of Figure 4, each subsystem executes a cycle referenced to the other subsystem in order to always execute two simultaneous and interdependent processes. Otherwise, considering a hybrid system with properties of both open and closed systems simultaneously, it is said that the system performs a compound thermodynamic cycle, figure 5, that is, always performs two simultaneous processes 26 and 27 of figure 5, interdependent, including mass transfer. Therefore these are completely different motors and cycles from motors and cycles based on open or closed systems.
  • Figure 6 shows the relationship between the hybrid system and the differential thermodynamic cycle.
  • thermodynamic system The concept of hybrid thermodynamic system is new, characterized by two interdependent energy conversion subsystems and between them there is exchange of matter and energy and both provide out of bounds energy in working form and part of the energy in Heat dissipated form, This thermodynamic system was created in the 21st century and offers new possibilities for the development of thermal motors.
  • the present invention brings important developments for the conversion of thermal energy to mechanical either for use in power generation or other use as mechanical force for movement and traction.
  • Some of the main advantages that can be seen are: the total flexibility as to the energy source (heat), the independence of the atmosphere, does not require atmosphere for a differential eid motor to operate, the flexibility regarding the temperatures, the Differential cycle can be designed to operate over a very wide temperature range, well above most motors based on open and closed systems, including a differential cycle motor can be designed to operate at both temperatures below zero degrees Celsius, It is sufficient that the design conditions promote the expansion and contraction of the working gas and it is sufficient that the materials chosen for its construction have the properties to perform their operational functions at design temperatures.
  • the differential system engine based on the hybrid system concept may be constructed of materials and techniques similar to conventional internal combustion engines and Stirling and Ericsson cycle engines, as it is a closed-loop gas engine, Considering the complete system, that is, the complete system is formed by two integrated thermodynamic subsystems, 418 and 420, shown in Fig.
  • each subsystem is formed by a chamber, 423 and 424, containing working gas and each of these chambers are formed by four sub chambers, one heated by combustion 411 and 414, one heated by exhaust 412 and 413, one cold 49 and 418, and one insulated 410 and 415, connected to these two chambers is a driving force element 419 , between the subsystems there is a mass transfer element 421 that participates in the thermodynamic cycle, so the subsystems are open to each other, re the complete system and the external environment, is considered closed, these two subsystems simultaneously execute each of them, a cycle of four interdependent processes forming a differential thermodynamic cycle, indicated by 41 in figure 9, unique of eight processes, two of them isochoric exhaust heating (ab) and (1-2), two combustion heating isotherms (bc) and (2-3), two adiabatic expansion (cd) and (3-4) and two isothermal cooling processes (da) and (4- 1), with variable mass transfer occurring during adiab
  • This closed-circuit concept of working gas with respect to the external environment indicates that the system must be sealed, or in some cases leaks may be permitted provided they are compensated. Suitable materials for this technology should be noted and are similar in this respect to the closed system Stirling and Ericsson and Brayton cycle engine design technologies.
  • the working gas depends on the project, its application and the parameters used, the gas may be various, each will provide specific characteristics, as example, the following gases may be suggested: helium, hydrogen, nitrogen, dry air, neon, among others,
  • Conversion chambers items that characterize the hybrid system, may be constructed of various materials, depending on design temperatures, working gas used, pressures involved, environment and operating conditions. These chambers each have four sub-chambers and these should be designed keeping in mind the requirement of thermal insulation with each other to minimize the direct flow of energy from hot to cold areas, this condition is important for overall system efficiency.
  • These chambers have internally elements that move the working gas between the hot combustion and exhaust, cold cooling and insulated sub chambers. These elements can be of various geometric shapes, depending on the requirement and design parameters. it was disc-shaped, cylindrical or otherwise, allowing the working gas to be controlled in a controlled manner between the sub chambers.
  • the mass transfer element 421 of Figure 10 interconnects the two chambers 423 and 424, this element is responsible for the transfer of part of the working gas mass between the chambers that occurs at a specific time during the processes.
  • adiabáicos and Isocóricos This element can be designed in various ways depending on the requirements of the project, it may operate in a forced manner, for example in turbine, piston or other geometrical form allowing it to mass transfer part of the working gas, including by simple valves to allow gas to pass through by the difference in pressures.
  • the driving force element 419 of FIG. 10 is responsible for performing the mechanical work and making it available for use.
  • This driving force element operates by the working gas forces of the engine, this element may be designed in various ways, depending on the design requirements, may for example be turbine shaped, cylinder piston shaped, connecting rods, crankshafts, in the form of a diaphragm or otherwise permitting work to be performed from gas forces during thermodynamic conversions.
  • Figure 1 represents the concept of open thermodynamic system and the concept of closed thermodynamic system, the basic concept of both is identical
  • Figure 2 represents the characteristic of all thermodynamic cycles based on open and closed systems
  • Figure 3 shows the original idea of Carnot's thermal machine, conceptualized in 1824 by Nicolas Sadi Carnot;
  • Figure 4 represents the concept of hybrid thermodynamic system
  • Figure 5 represents the characteristic of differential thermodynamic cycles based on the hybrid system
  • Figure 6 shows the hybrid thermodynamic system and a differential thermodynamic cycle the detail of the two simultaneously occurring thermodynamic processes
  • Figure 7 shows the thermodynamic cycle that occurs in one of the differential engine subsystems, showing the power input by exhaust 32, the power input by combustion 33, the mass transfer 35 to the other subsystem, the mass receiving 36 from the another subsystem, cooling 34;
  • Figure 8 shows the thermodynamic cycle that occurs in the other subsystem, simultaneous and interdependent of the previous one, but sequential and outdated, showing the input of the exhaust energy 39, the input of the combustion energy 310, the mass transfer 312 to the other subsystem. mass receipt 313 from the other subsystem, cooling 311;
  • Figure 9 shows the complete thermodynamic cycle with its eight processes and the detail of the mass transfer that occurs between the subsystems during the adiabatic and isochoric processes
  • Fig. 10 shows a mechanical model depicting a differential combustion cycle engine with chambers and sub chambers capable of performing the eight mass transfer thermodynamic processes according to the cycle shown in Fig. 9;
  • Figure 11 shows in 52 the mechanical model of an engine showing the main elements with the characteristics that allows it to perform the thermodynamic cycle of two isocoric heating processes, two isothermal heating processes, two adiabatic expansion processes and two isothermal cooling processes. 51 shows how the main mechanical elements of the engine can be designed and assembled.
  • Figure 12 shows the mechanical model performing the isocoric heating process in the first subsystem and the adiabatic expansion process in the second subsystem and indicates the mass transfer that occurs during these processes and the flow direction thereof;
  • Figure 13 shows the mechanical model performing the isothermal heating process in the first subsystem and the isothermal cooling process in the second subsystem
  • Figure 14 shows the mechanical model performing the adiabatic expansion process in the first subsystem and the isocoric heating process in the second subsystem and indicates the mass transfer that occurs during these processes and the direction of flow thereof;
  • Figure 15 shows the mechanical model performing the isothermal cooling process in the first subsystem and the isothermal heating process in the second subsystem, concluding the demonstration of the eight process cycle
  • Figure 16 shows an example of differential cycle engine application for a combined system design, forming a combined cycle with an open system internal combustion engine, especially indicating how exhaust heat transfer occurs in the isothermal process and how The heat exhaustion of the final exhaust occurs in the isochoric process, demonstrating the advantage of the heat utilization that this example and combined cycle offers compared to traditional combined cycles and that, by analogy, also exemplifies the heat utilization that this cycle differentiates. offers applied to other combustion processes.
  • the differential-cycle engine consisting of two isochoric heating processes, two isothermal heating and expansion processes, two adiabatic expansion processes, and two isothermal mass transfer cooling processes between the adriatic and isochoric processes is based on one system.
  • hybrid thermodynamic by having two interdependent thermodynamic energy conversion subsystems which each perform an interacting thermodynamic cycle and can exchange heat, work and mass as shown in Figure 4.
  • Figure 4 is shown the hybrid system, consisting of two subsystems indicated by 21 and 23.
  • FIG. 6 shows again the hybrid thermodynamic system and the differential thermodynamic cycle, detailing, in this case the processes, that when in one of the subsystems, in time (t1).
  • the cycle operates with mass (m1), number of mo! (n1) and temperature (Tq), at the same time, simultaneously, in the other subsystem, the cycle operates with mass (m2), number of mo! (n2), temperature (Tf).
  • mass (m1) mass of mo! (n1) and temperature (Tq)
  • Tf temperature
  • Figures 7, 8 and 9 show how the thermodynamic cycle of the motor is formed.
  • Figure 7, 31 shows the graph of pressure and volumetric displacement (abcda) of subsystem 418, ie one of the halves of the engine thermodynamic cycle, energy 32 forms the isochoric heating process (ab), this is the energy at least source temperature, the energy 33 forms the isothermal heating process (bc), this is the highest temperature energy from the source formed by a combustion chamber or an isothermal exchange connected to the hottest segment of the combustion discharge.
  • the complete cycle is formed by two interdependent half-cycles, the second half-cycle (1-2-3-4-1) of subsystem 420 occurring simultaneously with the first, described in the previous paragraph, is indicated by 38 in figure 8, the 39 forms the isocoric heating process (1-2) that occurs simultaneously with the adiabatic process (cd) of the other semicycle, this is the lowest temperature exhaust energy of the source, the energy 310 forms the isothermal heating process (2-3) that occurs simultaneously with the isothermal process (da) of the other semicycle, this is the highest temperature energy of the source formed by a heating chamber.
  • Figure 9 shows the complete thermodynamic cycle, formed by two isocoric heating processes (ab) and (1-2) through which lower-temperature exhaust energy 42 enters, two isothermal heating and expansion processes (bc) and (2-3) at the hot temperature (Tq) through which the highest temperature energy enters 43, two adiabatic expansion processes (c- d) and (3-4) where the mass transfer phases for the isochoric processes also occur. and two isothermal cooling processes (da) and (4-1) at cold temperature (77) whereby the energy not converted to work is discarded 44.
  • the two semicyphs are performed each in its subsystem, one in subsystem 418 and the another in motor subsystem 420 shown in FIG. 10, and intertwine with mass and energy transfer.
  • FIG. 10 shows the engine model based on the hybrid thermodynamic system containing two energy conversion subsystems indicated by 418 and 420 containing working gas.
  • Each subsystem has its energy conversion chamber 423 and 424, a driving force element 419. Making connection between the subsystems for the processes of mass transfer element there is a mass transfer element 421.
  • Each chamber of each subsystem is formed by four sub-chambers, chamber 423 is formed by an isochoric heating sub-chamber 412, an isothermal heating sub-chamber 411, a sub-chamber insulated for adiabatic expansion 410 and an isothermal cooling subchamber 49 and as exhaust gas from the subsystem, ⁇ channel 422 whether or not in conjunction with the exhaust channel of the other chamber.
  • Chamber 424 is comprised of an isochoric heating subchamber 413, an isothermal heating subchamber 414, an insulated adiabatic expansion subchamber 415 and an isothermal cooling subchamber 418, and as an exhaust for the subsystem outlet, channel 422 or not with the exhaust channel of the other chamber.
  • a cooling system comprised of a heat exchanger 46, a fan, forced cooling element 417, and cooling fluid inlet and outlet ducts 47 48 perform the function of removing heat from isothermal cooling sub chambers 49 and 416.
  • Figure 11 shows the model featuring a 52-differential differential motor and 51 shows how the main elements can be geometrically drawn with the characteristics that allow it to perform the thermodynamic cycle of two isocoric heating processes and two isothermal heating processes. heating and expansion, two adiabatic expansion processes and two isothermal cooling and compression processes, with mass transfer between the subsystems during the adiabatic and isocoric processes.
  • the elements that make up each chamber are composed of an isochoric heating module 53 which constitutes the coldest segment of the tail exhaust that is connected to the outlet of the isothermal heating module 54, the hottest part, next to the isothermal heating module.
  • Module 510 is a disc so thick that the detail indicated by 511 forms a relatively large area and relatively small depth volume, depending on the requirements of each project where the working gas is housed and transported between the four sub chambers to perform.
  • Module 514 corresponds to a hermetic motor back cover and module 515 corresponds to a hermetic motor front cover through which an axis 517 runs through it to be driven by the main motor shaft 516.
  • Module 57 is the mass transfer element between the subsystems that make up the engine and this can be a valve that opens at any given time during adiabatic and isocoric processes, the second engine subsystem is represented by 518.
  • the drawing indicated by 51 represents the main elements that form each of the two subsystems that form a differential cycling motor
  • Figures 12, 13, 14 and 15 show how mechanically the eight processes occur, two heating isocoric (ab) and (1-2), two heating and expansion isotherms (bc) and (2-3), two expansion (cd) and (3-4) and two cooling and compression (da) and (4-1) isotherms with mass transfer between the adiabatic and isochoric processes.
  • subsystem 418 transports the working gas to the heated sub-chamber by the lowest combustion temperature segment indicated by 82, the working gas performs the isochoric heating process (ab) shown in graph 41 of Figure 9, simultaneously the subsystem 420 carries the gas from When working for the thermally subbed chamber indicated by 63, the working gas performs the adiabatic expansion process (3-4) and at the same time the mass transfer of gas occurs from the subchamber performing the adiabatic process to the subchamber performing the process.
  • subsystem 418 transports the working gas to the heated sub-chamber by the combustion or higher combustion temperature segment indicated by 65, the working gas performs the isothermal heating and expansion process (bc ) shown in graph 41 of figure 9 : simultaneously subsystem 420 transports the working gas to the isothermal compression and cooling sub-chamber indicated by 66, the working gas performs the isothermal cooling and compression process (4-1), following In Figure 14, subsystem 418 would transpose the working gas into the thermally insulated sub-chamber indicated by 72; The work performs the adiabatic expansion process (cd) shown in graph 41 of Fig. 9, while subsystem 420 conveys the working gas to the heated subchamber by the lower temperature segment of the.
  • the working gas performs the isocoric heating process (1-2) shown in graph 41 of Fig. 9 and at the same time mass transfer occurs from the sub-chamber performing the adiabatic process to the sub-chamber performing the process.
  • subsystem 418 transports the working gas to the isothermal cooling sub-chamber indicated by 75, the working gas performs the isothermal cooling and compression process (da>, shown in graph 41 of Figure 9, while subsystem 420 conveys the working gas to the isothermal expansion and heating sub-chamber indicated by 76, the working gas performs the isothermal heating and expansion process (2-3), ending the thermodynamic cycle.
  • Table 1 shows process by process forming the differential cycle of eight thermal motor processes shown step by step, with two isochoric processes, four isothermal processes and two are adiafoatic processes and mass transfer steps,
  • the differential cycle performed in four steps is composed of two isocoric mass-receiving heating processes, two isothermal heating processes, two adiabatic mass-transfer expansion processes and two cooling isotherms composing eight thermodynamic transformations, also called processes, that form the differentiates cycle!
  • This asymmetric hybrid motor-based cycle motor has unique features, and is suitable for applications whose power source operates by combustion or by combustion process exhaust, utilizing the hot exhaust gases through an isochoric process. thermodynamic cycle heating.
  • the first direct application of the engine is to provide stationary mechanical force for various purposes or for mechanical traction and the energy source would be by combustion of various types of fuels, with great fuel flexibility as the combustion is external ⁇ due to flexibility over wide temperature range conferred by the controllability of the cycle.
  • Figure 16 shows another useful application for different cycle motor! asymmetric to improve the efficiency of internal combustion engines, forming combined cycles with them.
  • the heat rejected by exhausts 812 and 87 of the internal combustion engines, indicated by 82, fuel-fed, 88, Brayton cycle, Diesel cycle, Sabathe cycle, Otto cycle, Atkinson cycle, are channeled to the power inputs (heat ) of the differential cycle motor, where one isothermal unit 83 supplies heat at constant temperature and another heat exchanger unit 84 provides energy (heat) between the final discharge temperatures, near ambient temperature and the temperature starts!

Abstract

Refere-se a presente invenção a um motor térmico de combustão externa ou para aproveitamento da exaustão de combustão de qualquer outro processo, e seu ciclo termodinâmico de oito processos, mais especificamente tratà-se de uma máquina térmica caracterizada por dois subsistemas termodinâmicos interligados, cada um opera um cicio termodinâmico de quatro processos, porém interdependentes entre si, formando um ciclo complexo de oito processos, opera com gás, o circuito deste sistema híbrido é fechado em configuração diferencial, baseado no conceito de sistema termodinâmico híbrido, este sistema realiza um ciclo termodinâmico composto por oito processos de forma que o mesmo executa em qualquer momento do ciclo, dois processos simultâneos e interdependentes, complementares, sendo dois destes processos "isocóricos", quatro processos "isotérmicos" e dois processos "adiabáticos" com transferência de massa variável, podendo esta ser nula ou parcial.

Description

"MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR DOIS PROCESSOS !SOCORiCOS, QUATRO PROCESSOS ISOTÉRMICOS E DOIS PROCESSOS ADIABÁTICOS E PROCESSO DE CONTROLE PARA O CÍCLO TERMODINÂMICO DO MOTOR TÉRMICO"
CAMPO TÉCNICO DA INVENÇÃO
[001] Refere-se a presente invenção a um motor térmico de combustão externa ou para aproveitamento da exaustão de combustão de qualquer outro processo, e seu ciclo termodinâmico de oito processos, mais especificamente trata-se de uma máquina térmica caracterizada por dois subsistemas termodinâmicos interligados, cada um opera um ciclo termodinâmico de quatro processos, porém interdependentes entre si, formando um ciclo complexo de oito processos, opera com gás, o circuito deste sistema híbrido é fechado em configuração diferencias, baseado no conceito de sistema termodinâmico híbrido, este sistema realiza um ciclo termodinâmico composto por oito processos de forma que o mesmo execute em qualquer momento do ciclo, dois processos simultâneos e interdependentes, complementares, sendo dois destes processos "isocóricos", quatro processos "isotérmicos" e dois processos "adiabáticos" com transferência de massa variável, podendo esta ser nuía ou parcial.
ANTECEDENTES DA INVENÇÃO
[002] A termodinâmica clássica define três conceitos de sistemas termodinâmicos, o sistema termodinâmico aberto, o sistema termodinâmico fechado e o sistema termodinâmico isolado. Estes três conceitos de sistemas termodinâmicos foram conceituados no século XIX nos primórdios da criação das íeis da termodinâmica e fundamentam todos os cicios motores conhecidos até o presente.
[003] O sistema termodinâmico isolado é definido como ura sistema no qual nem matéria, nem energia passa através dele. Portanto, este conceito de sistema termodinâmico não oferece propriedades que permitam o desenvolvimento de motores. [004] O sistema termodinâmico aberto é definido como um sistema termodinâmico em que energia e matéria podem entrar e sair deste sistema. São exemplos de sistema termodinâmico aberto os motores de combustão interna, de ciclo Otto, de cicio Atkinson, semelhante ao cicio Otto, de ciclo Diesel, de ciclo Sabathe, semelhante ao ciclo Diesel, de ciclo Brayton de combustão interna, de cicio Rankine com exaustão do vapor ao ambiente. A matéria que entra nestes sistemas está assim definida: combustíveis e oxigénio ou fluido de trabalho ou gás de trabalho, A energia que entra nestes sistemas é o calor, A matéria que sai destes sistemas está assim definida: exaustão da combustão ou do fluido de trabalho, gases, resíduos; ao passo que a energia que saí destes sistemas está assim definida: energia mecânica de trabalho e parte do calor dissipado.
[005] O sistema termodinâmico fechado é definido como um sistema termodinâmico em qu apenas a energia pode entrar e sair deste sistema. São exemplos de sistema termodinâmico fechado, motores de combustão externa como o de ciclo Stirling, de ciclo Ericsson, de ciclo Rankine com fluido de trabalho em circuito fechado, de ciclo Brayton de calor ou de combustão externa, de cicio Carnot.A energia que entra neste sistema é o calor. A energia que sai deste sistema é a energia mecânica de trabalho e parte do calor dissipado, porém não saí matéria destes sistemas, como ocorre no sistema aberto.
[006] Ambos os sistemas, aberto e fechado, como entrada eles possuem no tempo (t1) a temperatura (Tq), a massa (m1) e o número de mol (nf) e na saída, no tempo (t2), ambos possuem a temperatura (Tf), a massa (m1) e o número de mol (n1), a massa é constante, a diferença entre ambos é que no sistema aberto a massa (m1) atravessa o sistema e no sistema fechado, a massa (m1) permanece no sistema, conforme a figura 1.
O ESTADO ATUAL DA TÉCNICA
[007] Os motores conhecidos até o presente são fundamentados em sistemas termodinâmicos aberto ou sistemas termodinâmicos fechado, eles possuem seus ciclos termodinâmicos compostos por uma série de processos sequenciais e independentes, e ocorre um único processo por vez até que o ciclo se complete, como pode ser observado no gráfico pressão/voíume na figura 2. Assim são os motores de ciclo Otto, Atkinson, Diesel, Sahathe, Rankine, Stiríing, Ericsson, o ciclo teórico ideal de Camot e o ciclo Brayton o qual também pertence aos sistemas ou aberto ou fechado, porém diferente dos demais, seus quatro processos ocorrem todos simultaneamente.
[008] A energia interna do gás de trabalho dos motores baseados nos sistemas aberto e fechado não é constante durante o seu ciclo, a equação que representa a energia interna é indicada na equação (a)
U = Joule (a)
(7-1)
[009] Na equação (a), (U representa a energia interna em "Joule", (n) representa o número de mo!, (R) representa a constante universal dos gases perfeitos, (7) representa a temperatura do gás em "Kelvin" e (y) representa o coeficiente de expansão adiabática.
[010] Como ocorre sempre um único processo por vez na maioria dos motores projetados com o conceito de sistema aberto ou fechado, a energia interna varia com o tempo, uma vez que o produto:número de moí (n) pela temperatura (7), (a 7) não é constantedurante o ciclo, pois a temperatura (7) é uma variável nos processos e o número de mol (n) é uma constante nos processos,
[011] O atua! estado da técnica que caracteriza todos os motores até o ano de 201 Oé caracterizado ainda pela propriedade onde a saída do processo, o trabalho, é uma consequência direta da entrada da energia, calor ou combustão, ou seja, quando é necessário mais trabalho, injeta-se mais calor ou se promove mais combustão, todos os processos que formam o ciclo do motor são igualmente influenciados, em outras palavras, os motores são controlados pela alimentação direta. Por exemplo, nos motores de combustão interna, Otto, Diesel, Brayton, para se obter maior potência injeta-se mais combustível, mais oxigénio e assim se produz mais trabalho, mais rotação. Para se obter maior potência com rotação constante, normalmente utilizam-se caixas de redução ou transformação de rotação. Por analogia, tais tecnologias podem ser comparadas na eíetricidade a motores de corrente contínua, estes, para aumentar a potência, aumenta-se a tensão de alimentação do motor.
[0123 O a ua! estado da técnica, até o ano de 2010, compreende uma série de motores de combustão interna e de combustão externa, a maioria deste motores exigem um segundo motor auxiliar para leva-los a partir, ao funcionamento. Os motores de combustão interna exigem a compressão, mistura de combustível com o oxigénio e uma centelha ou combustão por pressão, desta forma um motor auxiliar de partida, normalmente elétrico, é utilizado. Os motores de combustão externa, como o de cicio Stirling ou Ericsson convencionais, por sua vez também exigem motores auxiliares e de alta potência, pois eles precisam vencer o estado de repouso sob pressão para entrar em operação. Uma exceção é o motor de cicio Rankine, este pode partir através do comando de válvulas para fornecer a pressão do vapor aos elementos de força motriz.
[013] O atua! estado da técnica, até o ano de 2010, compreende uma série de motores, a maioria deles, dependentes de condições muito específicas e especiais para operar, por exemplo, os motores de combustão interna, cada um deles exige seu combustível específico, controle fino de combustível, oxigénio e o tempo da combustão e em alguns casos exigem condições específicas inclusive de pressão, a flexibilidade no combustível é bem limitada. Mesta categoria, dos motores fundamentados nos sistemas aberto e fechado, o motor mais flexível é o de ciclo Rankine, de combustão externa, o Stirling ou o Ericsson, também de combustão externa, estes são mais flexíveis quanto a fonte, porém são exigentes quanto à combinação dos parâmetros de projeto.
[014] O atua! estado da técnica, até o ano de 2010, compreende uma série de ciclo motores, a maioria exige combustão, isto é, a queima de algum tipo de combustível, e, portanto, a necessidade de oxigénio.
[015] O estado atual da técnica, até o ano de 2010, compreende uma série de ciclo motores, a maioria exige altas temperaturas para operação, os de combustão interna especialmente, costumam operar com o gás de trabalho em temperatura superiores a 1000 °C. Os motores de combustão externa ou operante por fontes de calor externas, como de ciclo Rankine e Stirling, normalmente são projetados para operarem com temperaturas do gás de trabalho entre 400 °C e 800 °C. Além dos motores baseados nos sistemas aberto e fechado exigirem na maioria das vezes aítas temperaturas para que possam operar, iodos efes possuem suas eficiências limitadas ao teorema de Carnot, isto é, suas eficiências máximas dependem exclusivamente das temperaturas conforme definido pela equação (b).
1 = 1 - ¾ (b)
[016] Na equação (b), (q) é o rendimento, (T) é a temperatura da fonte fria e (Tq) é a temperatura da fonte quente, ambas em "Kelvin".
[017] O estado atual da técnica, até o ano de 2010, baseado nos sistemas aberto e fechado, compreende basicamente seis ciclos motores e algumas versões destes: o eido Otto, de cicio Atksnson, semelhante ao cicio Otto, de ciclo Diesel, de ciclo Sabathe, semelhante ao ciclo Diesei, de ciclo Brayton, de ciclo Rankine, de cicio Stirling, de cicio Ericsson e o de ciclo Carnot, este referência teórica ideal para os motores fundamentados nos sistemas aberto e fechado. As últimas novidades do estado atuai da técnica vem sendo apresentadas através de inovações juntando-se mais de um ciclo antigo formando ciclos combinados, isto é: novos sistemas de motores compostos por uma máquina de ciclo Brayton operante com combustíveis de origem fóssil, gás ou óleo e uma máquina de cicio Rankine dependente do calor rejeitado pela máquina de ciclo Brayton. Ou a mesma filosofia, unindo-se um motor de cicio Diesel com um de ciclo Rankine ou ainda um motor de ciclo Otto, também unindo-o com um motor d cicio Rankine.
[018] O estado atuai da técnica, até o ano de 2010, apresenta uma série de limitações e oferece também uma série de problemas. A maioria dos motores, como os de combustão interna, de ciclo Otto, Atkinson, Diesel, Sabathe e Brayton, exigem combustíveis específicos para cada conceito, por exemplo: gasolina, óleo diesel, gás, querosene, carvão, e de alto poder calorífico, precisam trabalhar sob altas temperaturas e por consequência, durante muitos anos, vem dependendo de combustíveis fósseis, trazendo danos graves ao clima e meio-ambsenfe, Isto é, são caracterizados pela não sustentabilidade. O sistema termodinâmico sob os quais estes motores são projetados.trazem como limitação de eficiência o teorema de Carnot o qual, em função de seu princípio, impõe o limite da eficiência como função direta e exclusiva das temperaturas, conforme equação (b).
[019] A maioria dos motores da atualidade exigem combustíveis refinados e poluentes com efeitos nocivos ao clima, ao ambiente e, portanto, comprometem a sustentabilidade. Uma das mais recentes tecnologias desenvolvidas para minimizar o impacto, foi a junção de dois antigos conceitos de motores, o motor de ciclo Brayton e o motor de ciclo Rankine, formando um sistema composto por dois ciclos combinados, de forma tal que o rejeito de calor da primeira máquina é utilizado pela segunda máquina para melhorar a eficiência do conjunto, porém o uso de combustíveis fósseis e seus efeitos permanecera. O cicio combinado continua a ser caracterizado por um motor sob conceito de sistema aberto e um motor sob o conceito de sistema fechado, independentes, ou seja, é classificado como sistema combinado, dois cicios completamente independentes, não se caracteriza como sistema híbrido.
[020] Os demais motores, de ciclo Stirfíng e Ericsson convencionais, são motores sob o conceito de sistema fechado, são de combustão externa ou fonte de calor externo. Em função de suas propriedades, embora tenham os conceito mais simples de motores, são difíceis d serem construídos. Exigem parâmetros de projetos casados, isto é, funcionam bem, com boa eficiência, apenas errí seu regime específico de operação, temperatura, pressão, carga, fora do ponto central de operação suas eficiências caem bruscamente, ou não operam. Portanto são máquinas muito pouco utilizadas para uso industrial ou popular.
[021] O motor ideai de Carnot, figura 3, por sua vez, embora seja considerado o motor ideal, mais perfeito até o presente, eíe o é na teoria e dentro dos conceitos de sistema aberto e fechado considerando todos os parâmetros ideais, por este motivo é a referência até hoje para todos os conceitos de motores existentes. O motor de Carnoí não é encontrado no uso prático porque os materiais reais não possuem as propriedades exigidas para tornar o motor de Carnot uma realidade, as dimensões físicas para que o ciclo de Carnot possa ser executado como na teoria, seriam inviáveis em um caso prático, portanto ele é um Motor ideal nos conceitos de sistema aberto e sistema fechado, porém no conceito teórico.O conceito de sistema híbrido é novo, o motor ideal de Carnot não representa o sistema híbrido, apenas os sistemas aberto e fechado.
[022] O controle de potência, rotação e íorque, dos motores existentes, de cicio Otto, Atkinson, Diesel, Sabathe, Brayton, estes de combustão interna, são decorrentes diretamente da alimentação de combustíveis e oxigénio e como resultado oferecem maior rotação & torque simultaneamente. Para haver separação entre o torque e a rotação, eles exigem caixas de velocidade. Estas máquinas não permitem controlabilidade, ou no mínimo, oferecem dificuldades na controlabilidade através de seus ciclos termodinâmicos.
[023] O controle de potência, rotação e torque, dos motores existentes de ciclo ankine, este de combustão externa, são decorrentes da vazão e da pressão do vapor ou gás de trabalho, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação,
[024] O controle de potência, rotação e torque, dos motores existentes de ciclo Stirfíng e Ericsson, estes de combustão externa, são decorrentes da massa ou pressão do gás de trabalho, das temperaturas, da geometria construtiva, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação. Estas máquinas possuem suas curvas de operação muito estreitas oferecendo baixa controlabilidade e uma faixa estreita de operacionalidade. Nestes casos são comuns projeíos que não funcionam porque os parâmetros, nas suas interdependências podem não oferecer as condições que levam o motor a funcionar.Assim pode ser descrito o estado da técnica até o ano de 2010.
[025] Em 2011, surgiu um novo conceito de sistema termodinâmico. O estado atua! da técnica, recentemente revelou algumas referências que já se encontram com conceitos do sistema híbrido, são motores que apresentam características de possuírem dois ciclos termodinâmicos interdependentes constituindo um cicio complexo formado na maioria deles poroíto processos, sempre com dois processos operando simultaneamente em um sistema formado por dois subsistemas integrados. A patente !!PI 1000824-9" registrada no Brasil definida como "Conversor de energia termomecântco" é constituído por dois subsistemas que opera por meio de um ciclo termodinâmico formado por quatro processos isotérmicos e quatro processos isocóricos, sem regeneração.A patente "PCT/BR2O14/0OO381" registrada nos Estados Unidos da América definida como "Máquina térmica diferencial com ciclo de oito transformações termodinâmicas e processo de controle" é constituída por dois subsistemas que operam um ciclo termodinâmico formado por quatro processos isotérmicos de quatro processos adiabãticos. Estas referências diferem da presente invenção quanto aos processos termodinâmicos que formam seus ciclos, cada ciclo oferece ao motor características próprias. O conceito de sistema termodinâmico híbrido oferece a base para o desenvolvimento de uma nova famíísa de motores térmicos, cada motor terá características próprias conforme os processos e fases que constituem os seus respectivos ciclos termodinâmicos, como por exemplo, o motor Otto e o moíor Diesel, ambos de combustão interna, são motores fundamentados no sistema termodinâmico aberto, porém constituem motores distintos e o que os distingue são detalhes de seus ciclos termodinâmicos, o ciclo do motor Otto é constituído basicamente por um processo adiabático de compressão, um processo isocórlco de combustão, um processo adiabático de expansão e um processo isocórico de exaustão e, o eic!o do motor Diesel é constituído por um processo adiabático de compressão, um processo isobárico de combustão, um processo adiabático de expansão e um processo isocórico de exaustão, portanto eles diferem em apenas um dos processos que formam seus ciclos, o suficiente para conferir a cada um, propriedades e usos específicos e diferentes. Da mesma forma, o conceito de sistema híbrido oferece a base para uma nova família de motores térmicos constituídos por dois subsistemas e estes irão operar com ciclos ditos diferenciais caso os motores sejam constituídos por dois subsistemas de conversão de energia, formados por processos onde sempre ocorrerão dois processos simultâneos, cada um terá particularidades próprias as quais caracterizarão cada um dos ciclos-motores.
QBJEWOS DA INVENÇÃO
[026] Os grandes problemas do estado da técnica são, portanto, a dificuldade da tecnologias atuais a atender projetos sustentáveis, em função da dependência de combustíveis fósseis, poluentes, com impactos graves ao ambiente e ao clima, baixa eficiência, limitada exclusivamente às temperaturas, demonstrado peio teorema de Carnot, baixo nívei de controla ídade em função das limitações na variabilidade dos parâmetrosdos modelos fundameníadosnos sistemas termodinâmicos aberto e fechado, falta de flexibilidade quanto às fontes de energia, muitos exigem combustíveis refinados e específicos, afta dependência do ar (oxigénio) para combustão e, muitos deles dependem de um segundo motor para leva-los à operação (um motor de partida).
[027] O objetivo da invenção se concentra em eliminar alguns dos problemas existentes e minimizar outros problemas, porém o maior objetivo é desenvolver novos ciclos-motores baseados em um novo conceito de sistema termodinâmico que permita o desenvolvimento de motores sustentáveis e de forma que a eficiência dos motores não ftque mais dependente exclusivamente das temperaturas e cujas fontes de energia possam ser diversificadas e que permitam projeto de motores para ambientes inclusive sem ar (oxigénio). O conceito de sistema híbrido, característica própria que fundamenta esta invenção, elimina a dependência da eficiência de forma exclusiva à íemperaíura, a eficiência de qualquer máquina térmica depende dos seus potenciais e de seus diferenciais de potenciais, enquanto que os sistemas aberto e fechado geram potenciais onde a massa do gás é constante e por este motivo elas se cancelam nas equações, nos sistemas híbridos a massa não necessariamente é constante, portanto não se cancelam e as suas eficiências dependem dos potenciais dos quais se originam a força motriz, isto é, das pressões. O conceito de sistema híbrido proporciona potenciais dependentes, proporcionais ao produto da massa de gás de trabalho pela temperatura. Como no sistema híbrido, diferente dos sistemas aberto e fechado, a massa é variável, a sua eficiência passa a ser uma função não exclusiva da temperatura, mas dependente da massa e para um motor de cicio diferenciai composto por dois processos isocóricos de aquecimento, dois processos isotérmicos também de aquecimento, dois processos isotérmicos de resfriamento e dois processos adiabáticos de expansão, com transferência de massa entre seus subsistemas durante os processos adiabáticos e isocóricos, a eficiência é demonstrada conforme apresentado na equação (c) e figura 9, que demonstra o gráfico da pressão e volume do ciclo.
Figure imgf000012_0001
[QZ ] Na equação (c), { ) é o rendimento, {Tq} é a temperatura final de aquecimento do processo isocórico e é a temperaturado processo isotérmico de alta temperatura, (Tf) é a temperatura iniciai do processo isocórico de aquecimento e é a temperatura do processo isotérmico deresfriamenlo, baixa íemperaíura, todas as temperaturas em "Kelvin", (ηή é o número de moles dos subsistemas quando estes realizam as isocóricas e isotérmicas de alta temperatura, corresponde ao número de moies das isocóricas (a-b) e (1-2) e das isotérmicas(b-c) e (2-3) do gráfico 41 da figura 9, (n2) é o número de moles dos subsistemas quando estes realizam as isotérmicas de resfriamento, baixa temperatura, e das adíabáítcas de expansão, corresponde ao numero de moles das isotérmicas (d-a), (4-1) e das adiabáticas (c-d) e (3-4) do gráfico 41 da figura 9.
[029] A dependência de aStas temperaturas da maioria dos motores do atua! estado da técnica levam tambémà dependência de combustíveis com alto poder calorffico, dfficuítando o uso de fontes limpas as quais normaimeníe oferecem menor temperatura, O conceito de ciclo diferenciai sob o sistema híbrido, e fluido de trabalho cujos processos não obriguem a troca de fase física, elimina esta obrigatoriedade da dependência de altas temperaturas, O conceito diferencial onde o ciclo opera sempre dois processos por vez,26 e 27 da figura 5, simultaneamente e interdependentes, viabiliza máquinas que possam operar com baixas temperaturas e por consequência, as fontes limpas renováveis, como a termossolar, geotermal, passam a ser plenamente viáveis e suas eficiências passam a ter a massa, ou número de moies, como mostrado na equação (c), como parâmetro para a obtenção de eficiências melhores, mesmo com diferenciais de temperatura relativamente baixos, e viabiliza também, máquinas a combustão com maior capacidade de aproveitamento da energia através do processo de transferência do calor da exaustão para os processos isocóricos do motor, inexistentes nas demais máquinas conhecidas,
[030] Gs principais ciclos termodinâmicos conhecidos, Otto, Atkinson, Diesel, Sabathe, Stirfíng, Ericsson, Rankine e o ciclo Camot executam um único processo por vez sequencialmente, conforme mostrado na figura 2, referenciado ao ciclo mecânico dos elementos de força motriz, seu controle é uma função direta da alimentação da fonte de energia, por sua vez, os ciclos diferenciais do sistema híbrido, executam dois processos por vez, mostrados na figura 5, viabilizando o controle do ciclo termodinâmico separado do ciclo mecânico, o ciclo pode ser modulado e desta forma o ciclo mecânico passa a ser uma consequência do ciclo termodinâmico e não mais o contrário.
DESCRIÇÃO DA INVENÇÃO
[031] Os motores de ciclos diferenciais são caracterizados por possuírem dois subsistemas de conversão de energia, formando um sistema híbrido, representado por 21 e 23 da figura 4, cada subsistema executa um ciclo referenciado ao outro subsistema de modo a executarem sempre dois processos simultâneos e interdependentes. De outra forma, considerando um sistema híbrido com propriedades dos sistemas aberto e do fechado simultaneamente, diz-se que o sistema executa um cicio termodinâmico composto, figura 5, isto é, executa sempre dois processos por vez simultâneos 26 e 27 da figura 5, interdependentes, inclusive com transferência de massa. Portanto trata-se de motores e ciclos completamente distintos dos motores e cicios baseados nos sistemas aberto ou fechado. Na figura 6 pode ser observada a relação entre o sistema híbrido e o cicio termodinâmico diferencial.
[032] O conceito de sistema termodinâmico híbrido é novo, é caracterizado por dois subsistemas de conversão de energia interdependentes e entre eles há troca de matéria e energia e ambos fornecem para fora de seus limites, energia em forma de trabalho e parte da energia em forma de calor dissipada, Este sistema termodinâmico foi criado no século XXI e oferece novas possibilidades para o desenvolvimento de motores térmicos.
[033] A presente invenção trás evoluções importantes para a conversão de energia térmica em mecânica seja esta para uso em geração de energia ou outro uso, como força mecânica para movimentação e tração. Algumas das principais vantagens que podem ser constatadas são: a total flexibilidade quanto à fonte da energia (calor), a independência de atmosfera, não necessita de atmosfera para que um motor do eido diferencial possa operar, a flexibilidade quanto às temperaturas, o motor de ciclo diferencial pode ser projetado para funcionar em uma faixa muito extensa de temperatura, bem superior à maioria dos motores fundamentados nos sistemas aberto e fechado, inclusive, um motor de ciclo diferencial pode ser projetado para funcionar com ambas as temperaturas abaixo de zero grau Celsius, basta que as condições de projeto promovam a expansão e contração do gás de trabalho e basta que os materiais escolhidos para a sua construção tenham as propriedades para executar as suas funções operacionais nas temperaturas de projeto. Outras vantagens importantes que distinguem o motor de eido diferencial fundamentado no sistema híbrido é a sua controlabiiidade em função da facilidade na modulação dos processos termodinâmicos e em projetos de motores que dispensam o uso de motores de partida, ou no mínimo, estes seriam de pequeno porte, em função da facilidade de gerar um torque por meio do diferencial de forças propiciado pelo sistema formado por duas câmaras de conversão de energia, isto é, dois subsistemas. Portanto as vantagens constatadas abrangem a flexibilidade das fontes, promovendo o uso de fontes limpas e renováveis como as vantagens operacionais, podendo operar teoricamente em quaisquer faixas de temperatura e sua propriedade de controle da rotação e torque.
[034] O motor de ciclo diferencial baseado no conceito de sistema híbrido poderá ser construído com materiais e técnicas semelhantes aos motores convencionais de combustão interna e motores de ciclo Stirling e Ericsson, como se trata de um motor que trabalha com gás em circuito fechado, considerando o sistema completo, isto é, o sistema completo é formado por dois subsistemas termodinâmicos integrados, 418 e 420, mostrados na fíguralO, configurando um sistema termodinâmico híbrido, cada subsistema é formado por uma câmara, 423 e 424, contendo gás de trabalho e cada uma destas câmaras, são formadas por quatro subcâmaras, uma aquecida pela combustão411 e 414, uma aquecida peia exaustão 412 e 413, uma resfriada49 e 418, e outra isolada 410 e 415,conectado a estas duas câmaras hã um elemento de força motriz 419, entre os subsistemas há um elemento de transferência de massa 421 que participa do cicio termodinâmico, portanto os subsistemas são abertos entre si, entre o sistema completo e o meio externo, é considerado fechado, estes dois subsistemas executam simultaneamente cada um deles, um cicio de quatro processos interdependentes formando um cicio termodinâmico diferencial, indicado por41 na figura 9, único, de oito processos, sendo dois deles isocóricos de aquecimento pela exaustão(a-b) e (1-2), dois isotérmicos de aquecimento pela combustão (b-c) e (2-3), dois adíabátícos de expansão (c-d) e (3-4) e dois processos isotérmicos de resfriamento (d-a) e (4- 1), com transferência de massa variável que ocorre durante os processos adiabáíicos e isocóricos. Este conceito em circuito fechado de gás de trabalho com relação ao meio externo indica que o sistema deve ser vedado, ou em alguns casos, vazamentos podem ser admitidos, desde que compensados. Materiais adequados para esta tecnologia devem ser observados, são semelhantes, neste aspecto, às tecnologias de projetos de motores de ciclo Stirlíng e Ericsson e Brayton do sistema fechado. O gás de trabalho depende do projeto, de sua aplicação e dos parâmetros utilizados, o gás poderá ser vários, cada um proporcionará particularidades específicas, como exemplo,os seguintes gases podem ser sugeridos: hélio, hidrogénio, nitrogénio, ar seco, neon, entre outros,
[035] As câmaras de conversão, itens que caracterizam o sistema híbrido, poderão ser construídas cora diversos materiais, dependendo das temperaturas de projeto, do gás de trabalho utilizado, das pressões envolvidas, do ambiente e condições de operação. Estas câmaras possuem cada uma, quatrosubcâmaras e estas devem ser projetadas observando a exigência de isolamento térmico entre si para minimizar o fiuxo direto de energia a partir das áreas quentes para as frias, esta condição é importante para a eficiência geral do sistema. Estas câmaras possuem internamente elementos que movimentam o gás de trabalho entre as subcâmaras quentes da combustão e exaustão, fria do resfriamento e isoladas, estes elementos podem ser de diversas formas geométricas, depende da exigência e dos parâmetros do projeto, poderá, por exemplo, ser era forma de discos, em forma cilíndrica ou outra que permita a movimentação do gás de trabalho de forma controlada entre as subcâmaras.
[036] O elemento de transferência de massa, 421 da figura 10, interliga as duas câmaras, 423 e 424, este elemento é o responsável pela transferência de parte da massa de gás de trabalho entre as câmaras que ocorre em momento específico durante os processos adiabáíicos e Isocóricos. Este elemento poderá ser projetado de várias formas dependendo das exigências do projeto, poderá operar de modo forçado, por exemplo, em forma de turbina, em forma de pistões ou em outra forma geométrica que lhe permita executar a transferência de massa de parte do gás de trabaiho, inclusive por simples válvulas de forma a permitir a passagem do gás pela diferença de pressões.
[037] O elemento de força motriz, 419 da figura 10 é o responsável por executar o trabalho mecânico e disponibilizá-lo para usos. Este elemento de força motriz opera pelas forças do gás de trabalho do motor, este elemento poderá ser projetado de várias formas, dependendo das exigências de projeto, poderá, por exemplo, ser em forma de turbina, em forma de pistões com cilindro, bielas, virabrequíns, em forma de diafragma ou em outra forma que permita a realização de trabaiho a partir das forças do gás durante as conversões termodinâmicas.
DESCRIÇÃO DOS DESENHOS
[038] As figuras anexas demonstram as principais características e propriedades dos conceitos antigos das máquinas térmicas e as inovações propostas baseadas no sistema híbrido, sendo representadas conforme segue abaixo:
A figura í representa o conceito de sistema termodinâmico aberto e o conceito de sistema termodinâmico fechado, o conceito básico de ambos é idêntico;
A figura 2 representa a característica de todos os ciclos termodinâmicos fundamentados nos sistemas aberto e fechado;
A figura 3 mostra a ideia originai da máquina térmica de Carnot, conceituada em 1824 por Nicolas Sadi Carnot;
A figura 4 representa o conceito de sistema termodinâmico híbrido;
A figura 5 representa a característica dos cicios termodinâmicos diferenciais fundamentados no sistema híbrido;
A figura 6 mostra o sistema termodinâmico híbrido e um ciclo termodinâmico diferencial o detalhe dos dois processos termodinâmicos que ocorrem simultaneamente; A figura 7 mostra o ciclo termodinâmico que ocorre em um dos subsistemas do motor diferenciai, mostrando a entrada de energia pela exaustão 32, a entrada de energia pela combustão 33, a transferência de massa 35 para o outro subsistema, o recebimento de massa 36 do outro subsistema, o resfriamento 34;
A figura 8 mostra o ciclo termodinâmico que ocorre no outro subsistema, simultâneo e interdependente do anterior, porém sequencial e defasado, mostrando a entrada d energia peia exaustão 39, a entrada de energia pela combustão 310, a transferência de massa 312 para o outro subsistema, o recebimento de massa 313 do outro subsistema, o resfriamento 311 ;
A figura 9 mostra o ciclo termodinâmico completo com seus oito processos e o detalhe da transferência de massa que ocorre entre os subsistemas durantes os processos adiabáticos e isocóricos;
A figura 10 mostra um modelo mecânico que representa um motor de ciclo diferencial a combustão, com câmaras e subcâmaras capaz de realizar os oito processos termodinâmicos com transferência de massa conforme o ciclo mostrado na figura 9;
A figura 11 mostra em 52 o modelo mecânico de um motor mostrando os principais elementos com as características que lhe permite executar o ciclo termodinâmico de dois processos isocóricos de aquecimento dois processos isotérmicos de aquecimento, dois processos adiabáticos de expansão e dois processos isotérmicos de resfriamento e em 51 mostra exemplificando como os principais elementos mecânicos do motor podem ser projetados e montados;
A figura 12 mostra o modelo mecânico realizando o processo isocórico de aquecimento no primeiro subsistema e o processo adiabático de expansão no segundo subsistema e indica a transferência de massa que ocorre durante estes processos e o sentido do fluxo do mesmo;
A figura 13 mostra o modelo mecânico realizando o processo isotérmico de aquecimento no primeiro subsistema e o processo isotérmico de resfriamento no segundo subsistema; A figura 14 mostra o modelo mecânico realizando o processo adiabático de expansão no primeiro subsistema e o processo isocórico de aquecimento no segundo subsistema e indica a transferência de massa que ocorre durante estes processos e o sentido do fluxo do mesmo;
A figura 15 mostra o modelo mecânico realizando o processo isotérmico de resfriamento no primeiro subsistema e o processo isotérmico de aquecimento no segundo subsistema, finalizando a demonstração do cicio de oito processos;
A figura 16 mostra um exemplo de aplicação do motor de ciclo diferencial para um projeto de um sistema combinado, formando um ciclo combinado com um motor de combustão interna do sistema aberto, indicando especialmente como ocorre a transferência de calor da exaustão no processo isotérmico e como ocorre o aproveitamento do calor da exaustão final, no processo isocórico, demonstrando a vantagem do aproveitamento do calor que este exemplo e ciclo combinado oferece em comparação com os ciclos combinados tradicionais e que, por analogia, exemplifica também o aproveitamento do calor que este ciclo diferenciai oferece se aplicado a outros processos a combustão.
DESCRIÇÃO DETALHADA DO INVENTO
[039] O motor de ciclo diferencial constituído por dois processos isocóricos de aquecimento, dois processos isotérmicos de aquecimento e expansão, dois processos adíabáticos de expansão e dois processos isotérmicos de resfriamento com transferência de massa entre os processos adíabáticos e isocóricos ê fundamentado em um sistema termodinâmico híbrido por possuir dois subsistemas termodinâmicos interdependentes de conversão de energia os quais cada um realiza um ciclo termodinâmico que interagem-se entre si, podendo trocar calor, trabalho e massa conforme ê representado na figura 4. Em 22, na figura 4, é mostrado o sistema híbrido, composto por dois subsistemas indicados por 21 e 23.
[040] Na figura 6 é mostrado novamente o sistema termodinâmico híbrido e o ciclo termodinâmico diferencial, detalhando, neste caso os processos, que quando em um dos subsistemas, no tempo (t1). o ciclo opera com massa (m1), número de mo! (n1) e temperatura (Tq), neste mesmo instante, simultaneamente, no outro subsistema, o ciclo opera com massa (m2), número de mo! (n2), temperatura (Tf). Êm uma máquina baseada em um sistema híbrido, composto por dois subsistemas de conversão de energia, a soma da massa de gás de trabalho é sempre constante (m1 + m2 = cie), porém não necessariamente são constantes nos seus respectivos subsistemas, entre eles pode haver troca de massa.
[041] Âs figuras 7, 8 e 9 mostram como o cicio termodinâmico do motor é formado. Na figura 7, 31 mostra o gráfico da pressão e deslocamento volumétrico dosemícicio (a-b-c-d-a) do subsistema 418, isto é, uma das metades do cicio termodinâmico do motor, a energia 32 forma o processo isocórico (a-b) de aquecimento, esta é a energia de exaustão de meno temperatura da fonte, a energia 33 forma o processo isotérmico (b-c) de aquecimento, esta é a energia de maior temperatura da fonte formada por uma câmara de combustão ou por um trocado isotérmico conectado no segmento mais quente da descarga de combustão de uma fonte de calor normalmente por combustão, após o processo isotérmico de aquecimento ocorre o processo adiabático de expansão (c-d) e simultaneamente ocorre uma fase de transferência demassa de gás 35 de um dos subsistemas para o outro subsistema, no detalhe 313, onde neste instante estará ocorrendo o processo isocórico de aquecimento, na sequência ocorre o processo isotérmico de resfriamento e compressão (d-a) cuja energia retirada é indicada por 34 e assim são concluídos os processos do primeiro semiciclo,
[042] O cicio completo é formado por dois semicíclos interdependentes, o segundo semiciclo (1-2-3-4-1) do subsistema 420 que ocorre simultaneamente ao primeiro, descrito do parágrafo anterior, é indicado por 38 na figura 8, a energia 39 forma o processo isocórico (1-2) de aquecimento que ocorre simultaneamente ao processo adiabático (c-d) do outro semiciclo, esta é a energia de exaustão de menor temperatura da fonte, a energia 310 forma o processo isotérmico (2-3) de aquecimento que ocorre simultaneamente ao processo isotérmico (d-a) do outro semiciclo, esta é a energia de maior temperatura da fonte formada por uma câmara de combustão ou por um trocador isotérmico conectado no segmento mais quente da descarga de combustão de uma fonte de calor normalmente por combustão, após o processo isotérmico de aquecimento ocorre o processo adiabáíico de expansão (3-4) e simultaneamente ocorre uma fase de transferência de massa de gás 312 deste subsistema para o outro subsistema, no detalhe 36, onde neste instante, estará ocorrendo o processo isocórico de aquecimento (a-b) indicado por 32, na sequência ocorre o processo isotérmico de resfriamento e compressão (4-1 ) que ocorre simultaneamente ao processo isotérmico (b-c) do outro semiciclo, cuja energia retirada é indicada por 31 1 e assim são concluídos os processos do segundo semiciclo,
[043] A figura 9 mostra o ciclo termodinâmico completo, formado por dois processos isocóricos de aquecimento (a-b) e (1 -2) por onde entra energia 42 da exaustão de menor temperatura, dois processos de aquecimento e expansão isotérmicos (b-c) e (2-3) na temperatura quente (Tq) por onde entra a energia de maior temperatura 43, dois processos de expansão adiabáticos (c- d) e (3-4) onde ocorrem também as fases de transferência de massa para os processos isocóricos e dois processos isotérmicos de resfriamento (d-a) e (4-1 ) na temperatura fria (77) por onde a energia não convertida em trabalho é descartada 44. Os dois semícicfos são realizados cada um no seu subsistema, um no subsistema 418 e o outro no subsistema 420 do motor 45 mostrado na figura 10, e ínteragem-se entre si com transferência de massa e de energia.
[044] A figura 10 mostra o modelo de motor baseado no sistema termodinâmico híbrido, contendo dois subsistemas de conversão de energia indicado por 418 e 420 contendo gás de trabalho. Cada subsistema possui sua câmara de conversão de energia423 e 424, um elemento de força motriz 419. Fazendo conexão entre os subsistemas para os processos de transferência, de massa há um elemento de transferência de massa 421. Cada uma das câmaras de cada um dos subsistemas é formada por quatro subeâmaras, a câmara 423 é formada por uma subcâmara de aquecimento isocórico 412, uma subcâmara de aquecimento isotérmico 411 , uma subcâmara isolada para expansão adiabátiça 410 e uma subcâmara de resfriamento isotérmico 49 e como exaustão dos gases de saída do subsistema, σ canal 422 conjugado ou não com o canal de exaustão da outra câmara. A câmara 424 é formada por uma subcâmara de aquecimento isocórico 413, uma subcâmara de aquecimento isotérmico 414, uma subcâmara isolada para expansão adiabátiça 415 e uma subcâmara de resfriamento isotérmico 418 e como exaustão dos gases de saída do subsistema, o canal 422 conjugado ou não com o canal de exaustão da outra câmara. Um sistema de resfriamento formado por um trocador de calor 46, uma ventoinha, elemento de resfriamento forçado 417 e dutos de entrada e saída de fluido de resfriamento 47 48 desempenham a função de retirar o calor das subeâmaras de resfriamento isotérmico 49 e 416.
[045] A figura 11 mostra o modelo que caracteriza um motor de ciclo diferencial em 52 e em 51 mostra como podem ser desenhados geometricamente os principais elementos com as características que lhe permite executar o ciclo termodinâmico de dois processos isocóricos de aquecimento dois processos isotérmicos de aquecimento e expansão, dois processos adiabáticos de expansão e dois processos isotérmicos de resfriamento e compressão, com transferência de massa entre os subsistemas durantes os processos adiabáticos e isocóricos. Os elementos que formam cada câmara são compostos por um móduio de aquecimento isocórico 53 o qual constitui o segmento mais frio da exaustão do caior que é conectado à saída do módulo de aquecimento isotérmico 54, a parte mais quente, ao lado do móduio de aquecimento isotérmico se encontra o módulo isolado 56 onde ocorre o processo adiabático e ao lado do módulo isolado se encontra o móduio de resfriamento isotérmico 55 o qual também se encontra ao lado do módulo de aquecimento isocórico formando um disco geométrico. Junío ao módulo de aquecimento isotérmico se encontra uma câmara de combustão 59, esta em alguns casos pode ser formada por um trocador de outro processo por combustão, uma saída da exaustão de gases quentes de outro motor a combustão, por exemplo. Em 513 é indicado a alimentação de combustível, caso o motor for projetado para operar por combustão e em 58 é indicado a exaustão de gases quentes conectado à saída do módulo de aquecimento isocórico. O módulo 510 é um disco com espessura tal de modo que o detalhe indicado por 511 forma um volume com área relativamente grande e profundidade relativamente pequena, dependendo dos requisitos de cada projeto onde o gás de trabalho é alojado e transportado entres as quatro subcâmaras para executar os processos que formam o ciclo termodinâmico do motor. O módulo 514 corresponde a uma tampa posterior hermética do motor e o módulo 515 corresponde a uma tampa frontal hermética do motor por onde um eixo 517 o transpassa para ser acíonado pelo eixo principal do motor 516. O módulo 57 é o elemento de transferência de massa de gás entre os subsistemas que formam o motor e este pode ser uma válvula que é aberta em determinado instante durante os processos adiabáticos e isocóricos, o segundo subsistema do motor está sendo representado por 518. O desenho indicado por 51 representa os elementos principais que forma cada um dos dois subsistemas que formam um motor d cicio diferencial
[046] As figuras 12, 13, 14 e15 mostram como ocorrem mecanicamente os oito processos, dois isocóricos de aquecimento (a-b) e (1-2), dois isotérmicos de aquecimento e expansão (b-c) e (2-3), dois adiabáticos de expansão (c-d) e (3-4) e dois isotérmicos de resfriamento e compressão (d-a) e (4-1) com transferência de massa entre os processos adiabáticos e isocóricos. Na figura 12, o subsistema 418 transporta o gás de trabalho para a subcâmara aquecida pelo segmento de menor temperatura da combustão indicado por 82, o gás de trabalho executa o processo isocórico de aquecimento (a-b) mostrado no gráfico 41 da figura 9, simultaneamente o subsistema 420 transporta o gás de trabalho para a subcâmara solada termicamente indicado por 63, o gás de trabalho executa o processo adiabático de expansão (3-4) e simultaneamente ocorre a transferência de massa de gás da subcâmara que está executando o processo adiabático para a subcâmara que está executando o processo isocórico indicado por 67, na sequência na figura 13 o subsistema 418 transporta o gás de trabalho para a subcâmara aquecida peio segmento de combustão ou de maior temperatura da combustão indicado por 65, o gás de trabalho executa o processo isotérmico de aquecimento e expansão (b-c) mostrado no gráfico 41 da figura 9: simultaneamente o subsistema 420 transporta o gás de trabalho para a subcâmara de resfriamento e compressão isotérmica indicado por 66, o gás de trabalho executa o processo isotérmico de resfriamento e compressão (4-1), na sequência na figura 14 o subsistema 418 transporia o gás de trabalho para a subcâmara isolada termicamente indicado por 72, o gás de trabalho executa o processo adiabático de expansão (c-d) mostrado no gráfico 41 da figura 9, simultaneamente o subsistema 420 transporta o gás de trabalho para a subcâmara aquecida pelo segmento de menor temperatura da. combustão indicado por 73, o gás de trabalho executa o processo isocórico de aquecimento (1-2) mostrado no gráfico 41 da figura 9 e simultaneamente ocorre a transferência de massa da subcâmara que está executando o processo adiabático para a subcâmara que está executando o processo isocórico, indicado por 77, na sequência na figura 15 o subsistema 418 transporta o gás de trabalho para a subcâmara de resfriamento isotérmico indicado por 75, o gás de trabalho executa o processo isotérmico de resfriamento e compressão (d-a>, mostrado no gráfico 41 da figura 9, simultaneamente o subsistema 420 transporta o gás de trabalho para a subcâmara de aquecimento e expansão isotérmica indicado por 76, o gás de trabalho executa o processo isotérmico de aquecimento e expansão (2-3), finalizando o ciclo termodinâmico,
[047] A tabela 1 mostra processo por processo que formam o ciclo diferencial de oito processos do motor térmico mostrados passo a passo, com dois processos isocóricos, quatro processos isotérmicos ecfois processos adiafoáticos e etapas de transferência de massa,
Tabela 1
Figure imgf000025_0001
[048] Portanto, conforme exposto na tabela 1 , o cicio diferenciai executado em quatro passos é composto por dois processos isocóricos de aquecimento com recebimento de massa, dois processos isotérmicos também de aquecimento, dois processos adiabátícos de expansão com transferência de massa e dois processos isotérmicos de resfriamento compondo oito transformações termodinâmicas, também chamados de processos, que formam o ciclo diferencia! do motor, sendo um processo ou transformação de aquecimento isocórico (a-b) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de expansão adiabática (3-4) do outro subsistema, havendo transferência de massa neste processo, e um processo ou transformação de aquecimento e expansão isotérmica de alta temperatura (b-c) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de resfriamento e compressão isotérmica de baixa temperatura (4-1 ) do outro subsistema, e um processo ou transformação de expansão adiabática (c-d) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de aquecimento isocórico (1-2) do outro subsistema, havendo transferência de massa neste processo, e um processo ou transformação de resfriamento e compressão isotérmica de baixa temperatura (d-a) de um dos subsistemas que ocorre simultaneamente a outro processo ou transformação de aquecimento e expansão isotérmica de alta temperatura (2-3) do outro subsistema, e dois processos de transferência de energia associada à massa 35 e 312 que ocorrem simultaneamente aos processos adiabáticos e isocóricos,
[049] Este cicio diferenciai de um motor composto por dois subsistemas baseado no conceito de sistema híbrido, cuja curva da pressão e do volume é Indicado nas figuras?, 8, e 9 são equacionados como segue. Os processos isocóricos de entrada de energia, aquecimento (a-b) e (1-2) são realizados com (n1) mot de gás, porém apenas (r?2) mol de gás recebe energia externa e são representados pelas expressões (d) e (e), dois processos isotérmicos de entrada de energia e expansão (b-c) e (2-3) são representados pelas expressões (f) e (g) porém com (n1) mol de gás, os processos adiabáticos de expansão (c-d) e (3-4) são realizados com (n2) mol, pois parte da massa de gás é transferida para o processo isocórico do outro subsistema, e são representados peias expressões ( ) e (i), a energia descartada, liberada ao ambiente, ocorre por meio de dois processos isotérmicos de resfriamento e compressão (d-a) e (4-1) e são representados pelas expressões (j) e (k). As expressões revelam que parte da energi associada à massa, é conservada e produz o efeito de manter o diferenciai de potencial responsável por gerar trabalho e, portanto, esta fração não pode ser utilizada para gerar trabalho, portanto fic claro que se a fração d massa e sua energia associada for utilizada para gerar trabalho, ela não poderá ser usada para o diferenciai de potencial e a eficiência cairá. As expressões consideram o sinal do sentido do fluxo das energias.
=~¾.(7 ~¾ (d)
Figure imgf000026_0001
<?r 0 ln(¾) (f)
Q(2-3) =: l. R. TqAn& (g) rtz-R
½ (h)
(r-i)
n2.R
Q(4-i) - ¾. i?. r . ln(J) (k)
[050] Uma fração da energia associada a (Hf - n2) corresponde à energia conservada e é usada no ciclo para manter o diferenciai de potencial, não realiza trabalho, esta fração foi suprimida das expressões (d), (e), (h) e (í), suas energias associadas são demonstradas pelas expressões (!) e (m):
(ní~nz).R
-b ~~ í ίr,,-, ,i)ι - l c 0)
Figure imgf000027_0001
[051] Considerando que (Ta = Ta- Ti - T4 = Tf e 7 = Tc~ T2 ~ T3 = Tq), o total de energia de entrada no motor é a soma das energias Q(a-t>), Q(i-2). Q( -c). Q{2-3), e é representada pela expressão (n) abaixo:
Figure imgf000027_0002
[052] O total de energia dissipada, descartada para o meio exterior é a soma das energias Q(4-1) e Q^y e na sua forma positiva, é representada pela expressão (o) abaixo.
Q0 = 2. n2. R. Tf. ln& (o)
[053] O trabalho útil total do motor, considerando um modelo ideai sem perdas, é a diferença entre a entrada e a salda da energia e é representado peia expressão (p) abaixo.
Wu = f¾~ . (Γ, ~ 7» + 2. ¾. R. Tq. Ιηξ) - 2. nz. R. Tf, \n(~) (p)
[054] Portanto, demonstra-se assim que neste ciclo-motor, os processos adiabáticos de expansão realizam trabalho efetivamente, a energia não é regenerada no processo isocórico, o objeíivo é o aproveitamento máximo do calor da combusíão ou de urna exaustão de um processo de combustão, portanto os processos isocõricos são de aquecimento através dos gases de exaustão liberados do processo de combustão que não teria, aproveitamento caso o processo adiabático fosse regenerativo. Desta forma, o ciclo assimétrico formado por dois processos isocóricos de aquecimento, dois processos isotérmicos de aquecimento, dois processo adiabãticos de expansão e trabalho esterno e dois processo isotérmicos de resfriamento constitui um conceito muito importante e vantajoso para a conversão de energia a partir de fontes por combustão ou por energias provindas de processos de combustão cuja massa de gás quente é desperdiçada peia maioria dos ciclos motores atuais.
[055] A demonstração finai teórica da eficiência do ciclo diferencia! de oito processos, dois processos isocóricos de aquecimento, dois processos isotérmicos de aquecimento* dois processos adiabáticos de expansão é dois processos Isotérmicos de resfriamento com transferência de massa é dada pelas expressões (q) e (r), caracterizando que os ciclos diferenciais baseados no sistema termodinâmico híbrido possuem como parâmetro da eficiência, também o número de moles ou massa nos processos e portanto estes cicios não possuem suas eficiências dependentes exclusivamente das temperaturas.
Qi-Qo (q) Qi
Figure imgf000028_0001
EXEMPLOS DE APLICAÇÕES
[056] Este ciclo-motor assimétrico, baseado no sistema híbrido possui particuiaridades exclusivas, ele é próprio para aplicações cuja fonte de energia opera peia combustão ou pela exaustão de processos de combustão, aproveitando os gases quentes da exaustão final por meio de um processo isocórico de aquecimento do ciclo termodinâmico.
[057] A primeira aplicação dsreta do motor é para oferecer força mecânica do tipo estacionária para diversos fins ou para tração mecânica e a fonte de energia seria pela combustão de diversos tipos de combustíveis, com grande flexibilidade de combustíveis em função da combustão ser externa β em função da flexibilidade quanto à operacionalidade em larga faixa de temperatura conferida pela controlabílidade do ciclo.
[058] A figura 16 mostra outra aplicação útil para o motor de ciclo diferencia! assimétrico para melhorar a eficiência de motores de combustão interna, formando ciclos combinados com estes. O calor rejeitado pelas exaustões, 812 e 87 dos motores de combustão interna, indicado por 82, alimentados por combustíveis, 88, de cicio Brayton, ciclo Diesel, ciclo Sabathe, ciclo Otto, ciclo Atkínson, são canalizados para as entradas de energia (calor) do motor de cicio diferenciai, onde uma unidade isotérmica 83 fornece calor à temperatura constante e outra unidade trocadora de calor 84 fornece energia (calor) entre as temperaturas finais de descarga, próxima ã temperatura do ambiente e a temperatura inicia! de descarga, próxima à temperatura das isotérmicas, promovendo um fluxo de caior 812 e 87 respectivamente alimentando os processos isotérmicos e isocóricos do motor de ciclo diferencial 81 e este converte parte desta energia em força mecânica útil, 814 que pode ser integrada à força mecânica do motor de combustão interna 813 gerando uma força mecânica única, 89, ou direcionada a produzir energia elétrica, O descarte da energia não convertida pelo motor de ciclo diferencial segue para o meio externo indicado por 815. Esta aplicação permite recuperar parte da energia que os ciclos dos motores de combustão interna não podem utilizar para a realização de trabalho útil e assim melhorar a eficiência geral do sistema com vantagens frente às tecnologias conhecidas.

Claims

REIVINDICAÇÕES
1} "MOTOR TÉRMICO DE CICLO DIFERENCIAL", caracterizado por ser composto por dois subsisíemas termodinâmicos d conversão de energia{418) e (420) contendo gás de trabalho configurando um sistema termodinâmico híbrido, cada subsistema possui sua câmara de conversão de energia (423) e (424), um elemento de força motriz (419), fazendo conexão entre os subsistemas para os processos de transferência de massa há um elemento de transferência de massa (421), cada uma das câmaras de cada um dos subsistemas é formada por quatro subcâmaras, a câmara (423) é formada por uma subcâmara de aquecimento isocórico (412), uma subcâmara de aquecimento e expansão ísoíérmica(411), uma subcâmara isolada para expansão adiabática (410) e uma subcâmara de resfriamento e compressão isotérmica(49) e como exaustão dos gases de saída do subsistema há o canal (422) conjugado ou não com o canal de exaustão da câmara(424), a câmara (424) é formada por uma subcâmara de aquecimento isocórico (413), uma subcâmara de aquecimento e expansão isotérmica(414), uma subcâmara isolada para expansão adiabática (415) e uma subcâmara de resfriamento e compressão isotérmica(416) e como exaustão dos gases de saída do subsistema há o canal (422) conjugado ou não com o canal de exaustão da câmara(423), um sistema de resfriamento formado por um trocador de calor (48), uma ventoinha, elemento de resfriamento forçado (417) e d tos de entrada e saída de fluido de resfriamento (47) e (48) desempenham a função de retirar o calor das subcâmaras de resfriamento e compressão isotérmica(49) e (416).
2) "MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 1 , caracterizado por ser composto por dois subsistemas termodinâmicos de conversão de energia, (4 8) e (420), configurando um sistema termodinâmico híbrido.
3) "MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 1 e 2, caracterizado por cada uma das câmaras de cada um dos subsistemas ser formada por quatro subcâmaras, uma subcâmara de aquecimento isocoríco {412} e (413), uma subcâmara de aquecimento e expansão isotérmica (411) e (414), uma subcâmara isolada para expansão adiafoáiica (410) e (415) e uma subcâmara de resfriamento e compressão isotérmica (49) e (416).
4) "MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 1 , caracterizado por um elemento de transferência de massa
(421) conectado entre as duas câmaras (423) e (424) interconectando os dois subsistemas (418) e (420).
5) "MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 1 , caracterizado por um elemento de força motriz (419) pertencente aos dois subsistemas (418) e (420).
6) "MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 1 , caracterizado por um sistema de resfriamento formado por um trocador de calor (48), uma ventoinha, elemento de resfriamento forçado (417) e dutos de entrada e saída de fíuido de resfriamento (47) e (48) que desempenham a função de retirar o calor das subcâmaras de resfriamento e compressão isotérmica (49) e (416).
7) "MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 1 , caracterizado por um canal de exaustão de gases quentes
(422) de saída das subcâmaras de aquecimento isocoríco (412) e (413).
8) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", para o controle do ciclo termodinâmico do motor térmico das reivindicações 1 a 7, caracterizado por um processo composto por oito transformações termodinâmicas, também chamados de processos, que formam o ciclo diferenciai do motor, sendo um processo isocórico de aquecimento (a-b) no subsistema (418), simultaneamente ocorre um processo adiabático de expansão (3-4) no subsistema 420 e simultaneamente ocorre a transferência de massa de gás da subcâmara que está executando o processo adiabático para a subcâmara que está executando o processo isocóricó Indicado por (67), na sequência ocorre um processo isotérmico de aquecimento e expansão (b-c) no subsistema (418), simuítaneamente ocorre um processo isotérmico de resfriamento e compressão (4-1) no subsistema (420), na sequência ocorre um processo adiabátsco de expansão (ç-d) rio subsistema (418), simultaneamente ocorre um processo isocóricó de aquecimento (1-2) no subsistema (420) e simultaneamente ocorre a transferência de massa da subcâmara que está executando o processo adiabático para a subcâmara que está executando o processo isocóricó, indicado por (77), na sequência ocorreum processo isotérmico de resfriamento e compressão (d-a) no subsistema (418), simultaneamente ocorre um processo isotérmico de aquecimento e expansão (2-3) no subsistema (420), finalizando o ciclo termodinâmico.
9) "PROCESSO DE CONTROLE PARA O CICLO TÊRMQDiNÂMfCO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 8, caracterizado por um processo ou transformaçãoisocórico de aquecimento (a-b) no subsistema (418), simuítaneamente ocorre um processo adiabátsco de expansão (3-4) no subsistema (420) e simultaneamente ocorre a transferência de massa de gás da subcâmara que está executando o processo adiabático para a subcâmara que está executando o processo isocóricó indicado por (67).
10) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 8, caracterizado por um processo ou transformação isotérmico de aquecimento e expansão (b-c) no subsistema (418), simultaneamente ocorre um processo isotérmico de resfriamento e compressão (4-1) no subsistema (420).
11) "PROCESSO DE CONTROLE PARA O CíCLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 8, caracterizado por um processo ou transformação adiabático de expansão (c-d) no subsistema (418), simultaneamente ocorre um processo isocóricó de aquecimento (1-2) no subsistema (420) e simultaneamente ocorre a transferência de massa da subcâmara que está executando o processo adiabático para a subcâmara que está executando o processo isocórico, indicado por (77).
12) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com a reivindicação 8, caracterizado por ura processo ou transformação isotérmico de resfriamento e compressão (d-a) no subsistema (4 8), simultaneamente ocorre um processo isotérmico de aquecimento e expansão (2-3) no subsistema (420), finalizando o ciclo termodinâmico.
13) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO DE CICLO DIFERENCIAL", de acordo com as reivindicações 8, 9 e 11 , caracterizado por um processo de transferência de energia associada à massa que ocorre simultaneamente aos processos adiabáíicos e ísocó ricos.
PCT/BR2018/000006 2017-02-23 2018-02-23 Motor térmico de ciclo diferencial composto por dois processos !socóricos, quatro processos isotérmicos e dois processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico WO2018152603A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102017003822A BR102017003822A8 (pt) 2017-02-23 2017-02-23 Motor térmico de ciclo diferencial composto por dois processos isocóricos, quatro processos isotérmicos e dois processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico
BR102017003822-0 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018152603A1 true WO2018152603A1 (pt) 2018-08-30

Family

ID=63253440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/000006 WO2018152603A1 (pt) 2017-02-23 2018-02-23 Motor térmico de ciclo diferencial composto por dois processos !socóricos, quatro processos isotérmicos e dois processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico

Country Status (2)

Country Link
BR (1) BR102017003822A8 (pt)
WO (1) WO2018152603A1 (pt)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2342103A1 (de) * 1973-08-21 1975-03-20 Hans Alexander Frhr Von Seld Regenerative waermekraftmaschine
RU2131532C1 (ru) * 1997-07-21 1999-06-10 Петров Сергей Иванович Способ работы двигателя внешнего нагрева
US20050268607A1 (en) * 2002-09-02 2005-12-08 Jurgen Kleinwachter Thermohydrodynamic power amplifier
WO2006079551A2 (de) * 2005-01-27 2006-08-03 Misselhorn Juergen K Kraftwerk mit wärmeauskopplung
WO2008031939A2 (fr) * 2006-09-11 2008-03-20 Thevenod Frederic Moteur thermique à source chaude externe
US20110167825A1 (en) * 2008-04-01 2011-07-14 Sylvain Mauran Plant for producing cold, heat and/or work
FR2963643A1 (fr) * 2010-08-06 2012-02-10 Jean Francois Chiandetti Moteur a combustion interne ou externe a cycle combine 2 en 1 en parallele a chaleur perdue-recyclee donnant un fort rendement et mecanisme thermique
BR102013026634A2 (pt) * 2013-10-16 2015-08-25 Abx En Ltda Máquina térmica diferencial com ciclo de oito transformações termodinâmicas e processo de controle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2342103A1 (de) * 1973-08-21 1975-03-20 Hans Alexander Frhr Von Seld Regenerative waermekraftmaschine
RU2131532C1 (ru) * 1997-07-21 1999-06-10 Петров Сергей Иванович Способ работы двигателя внешнего нагрева
US20050268607A1 (en) * 2002-09-02 2005-12-08 Jurgen Kleinwachter Thermohydrodynamic power amplifier
WO2006079551A2 (de) * 2005-01-27 2006-08-03 Misselhorn Juergen K Kraftwerk mit wärmeauskopplung
WO2008031939A2 (fr) * 2006-09-11 2008-03-20 Thevenod Frederic Moteur thermique à source chaude externe
US20110167825A1 (en) * 2008-04-01 2011-07-14 Sylvain Mauran Plant for producing cold, heat and/or work
FR2963643A1 (fr) * 2010-08-06 2012-02-10 Jean Francois Chiandetti Moteur a combustion interne ou externe a cycle combine 2 en 1 en parallele a chaleur perdue-recyclee donnant un fort rendement et mecanisme thermique
BR102013026634A2 (pt) * 2013-10-16 2015-08-25 Abx En Ltda Máquina térmica diferencial com ciclo de oito transformações termodinâmicas e processo de controle

Also Published As

Publication number Publication date
BR102017003822A8 (pt) 2022-12-20
BR102017003822A2 (pt) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2018152603A1 (pt) Motor térmico de ciclo diferencial composto por dois processos !socóricos, quatro processos isotérmicos e dois processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195619A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018035588A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos isocóricos com regenerador ativo e processo de controle para o ciclo termodinâmico do motor trémico
WO2018035585A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos adiabáticos e processo de controle para o cliclo termodinâmico do motor térmico
WO2018195618A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195620A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018035586A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isocóricos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195626A1 (pt) Motor turbina de ciclo binário composto por três processos politrópicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
BR102018004172A2 (pt) Motor térmico de combustão externa com ciclo composto por um processo isocórico, dois processos isotérmicos e um processo adiabático e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195622A1 (pt) Motor turbina de ciclo binário composto por três processos isotérmicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
WO2018195621A1 (pt) Motor turbina de ciclo binário composto por três processos isobáricos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
BR102018004170A2 (pt) Motor térmico de combustão externa com ciclo composto por um processo isocórico, um processo adiabático e um processo isotérmico e processo de controle para o ciclo termodinâmico do motor térmico
BR102018004165A2 (pt) Motor térmico de combustão externa com ciclo modulado composto por um processo isocórico, dois processos isotérmicos e um processo adiabático e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195634A1 (pt) Motor de ciclo combinado atkinson ou miller e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
WO2018195633A1 (pt) Motor de ciclo combinado atkinson ou miller e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
WO2014000072A1 (pt) Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle
BR102017008545B1 (pt) Motor térmico de ciclo diferencial composto por quatro processo isobáricos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
BR102018068525A2 (pt) Motor turbina de ciclo brayton integrado de circuito fechado regenerativo para geração a partir de fonte heliotérmica ou termonuclear e processo de controle para o ciclo termodinâmico do motor
BR102018015325A2 (pt) motor de combustão interna integrado formado por uma unidade principal a turbina e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor.
BR102017008576A2 (pt) motor de ciclo combinado otto e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor de ciclo combinado
BR102018015950A2 (pt) Motor de combustão interna integrado formado por uma unidade principal de ciclo otto e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor.
BR102018068965A2 (pt) Motor térmico de ciclo diferencial composto por dois processos isocóricos, dois processos politrópicos, dois processos adiabáticos e dois processos isotérmicos e processo do ciclo termodinâmico do motor térmico
WO2018195627A1 (pt) Motor turbina de ciclo combinado brayton e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado
WO2018195628A1 (pt) Motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado
BR102018015947A2 (pt) Motor de combustão interna integrado formado por uma unidade principal de ciclo diesel e uma unidade secundária a pistões e processo de controle para o ciclo termodinâmico do motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757801

Country of ref document: EP

Kind code of ref document: A1