WO2014000072A1 - Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle - Google Patents

Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle Download PDF

Info

Publication number
WO2014000072A1
WO2014000072A1 PCT/BR2013/000222 BR2013000222W WO2014000072A1 WO 2014000072 A1 WO2014000072 A1 WO 2014000072A1 BR 2013000222 W BR2013000222 W BR 2013000222W WO 2014000072 A1 WO2014000072 A1 WO 2014000072A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
carnot
thermodynamic
cycle
accordance
Prior art date
Application number
PCT/BR2013/000222
Other languages
English (en)
French (fr)
Inventor
Marino IOCKHECK
Original Assignee
IOCKHECK, Zulmira Teresina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IOCKHECK, Zulmira Teresina filed Critical IOCKHECK, Zulmira Teresina
Priority to US14/410,105 priority Critical patent/US20150369124A1/en
Publication of WO2014000072A1 publication Critical patent/WO2014000072A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • F02C3/16Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant
    • F02C3/165Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant the combustion chamber contributes to the driving force by creating reactive thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C5/00Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
    • F02C5/06Gas-turbine plants characterised by the working fluid being generated by intermittent combustion the working fluid being generated in an internal-combustion gas generated of the positive-displacement type having essentially no mechanical power output

Definitions

  • the present invention relates to the technical field of thermodynamic motors, more specifically to a thermal machine operating in accordance with the Carnot thermodynamic cycle and control process which, according to its general characteristics, has as its basic principle to convert energy. driving force in a motor, turbine or other driving force element.
  • thermoelectric power plants mostly operate on the Rankine cycle, created in 1859 by William John Macquorn Rankine, uses primarily fossil materials, coal and natural gas, and the combustion is external.
  • the thermodynamic transformation is four-phase with two adiabatic and two isobaric transformations plus one state transformation where water changes from liquid to vapor. Its yield is approximately 20 to 30%.
  • Jet machines operate on the Brayton cycle, created in 1872 by George Brayton, proposed earlier in 1791 by John Barber, using as a source of energy, also derived from fossil materials, kerosene, gas, combustion is internal.
  • the thermodynamic transformation is of four phases with two adiabatic transformations and two isobaric transformations. Its yield is approximately 17% for gas turbines applied in power generation.
  • Alpha-type engines such as those published in US7827789 and US20080282693, Beta type as US20100095668, Range type as US20110005220, Rotary Stirling machines such as US6195992 and US6996983, Wankel-Stirling hybrid according to US7549289. All understand the solidarity of the driving force cycle with the thermodynamic cycle and its mechanical and process characteristics, do not perform adiabatic transformations.
  • Carnot machine designed by the French scientist Nicolas Léonard Sadi Carnot in 1824. It is an ideal machine, all the other machines developed have their standard of performance and economic viability compared to the ideal machine.
  • Carnot The Carnot machine operates in accordance with the thermodynamic cycle of the same name, Carnot cycle, which has two phases with isothermal transformation and two phases with adiabatic transformation.
  • thermodynamic transformations are not well defined, as they depend on Mechanical solutions employing meats, gears, shafts, rods to assist in gas exchange in their respective zones, and others operate with essentially constant chamber volumes having one or more fully insulated chambers, considerably limiting performance.
  • the vast majority of existing solutions only operate with piston-type or quasiturbine-type motive power elements.
  • the developed technology is not an ideal machine, without loss, but it is a machine capable of performing with high precision the four transformations of Carnot's thermodynamic cycle, the from a thermal source of any nature whose energy is conveyed to the machine by means of a thermal fluid, thus having the main desired characteristics, it has benefits of practical and economical application and according to each project, power ranges and characteristics of heat sources, can perform very high yields, far exceeding the 40% of other machines considered high performance for moderate temperature sources and above 60% for high temperature sources.
  • the present invention features multidisciplinary science, use of mechanical, electronic concepts, especially processor-based systems with program logic that monitors and controls high-speed actuators that did not exist for practical applications.
  • Examples are hybrid technologies used in automobiles, where concepts of mechanics and electronics are combined with microprocessors which bring significantly better performance and make machines flexible even with different fuels and different energy concentrations.
  • Another objective of singular importance is the use of this technology in large power generation plants, flexible in terms of thermal sources, economically viable yield in relation to generated energy versus thermal source and with minimal environmental impact, such as the use of thermal sources.
  • clean thermal plants such as solar, thermosolar, low environmental impact as biofuels and economical as the use of waste and in pre-existing plants where it operates by heat loss, forming cogeneration systems, or added to other technologies forming processes more complexes called combined cycles such as forming Brayton-Carnot Combined cycle systems, using as heat source the high-temperature gases released by the Brayton, Rankine-Carnot cycle turbines, whose heat source is the steam outputs of the last stages of the steam turbines and chimney gases, Diesel-Carnot, whose heat source comes from diesel engine, Otto-Carnot, whose heat source comes from the Otto cycle machine, among others, significantly increasing performance as Brayton, Rankine, Diesel, Otto cycle thermal machine processes have many thermal losses that cannot be harnessed by their own thermodynamic cycles, requiring more efficient systems. alternatives for this
  • Figure 01 is a schematic view of the thermal machine.
  • Figures 02 and 03 represent a front and another side view of the external housing of the converter.
  • Figures 04 and 05 are a front and a side view of the housing cover.
  • Figures 06 and 07 are a front and a side view of the insulating disc with the gas passageway.
  • Figures 08 and 09 represent a front and another side view of the stator disc.
  • Figures 010 and 011 are a front and a side view of the stator extreme thermal insulating disc.
  • Figures 012 and 013 represent a front and a side view of the rotor disc.
  • Figure 014 is a top and side view of the central rotor axis.
  • Figure 015 represents the elements that make up the stator and rotor assemblies of the machine converter.
  • Figure 016 is a side sectional view of the converter containing the stator, rotor and servomotor of the thermal machine.
  • Figure 017 is a front view of the rotor disc.
  • Figure 018 is a cross-sectional view of the converter showing gas distribution channels within the transformation chambers. • 1 »s / W i » i 'U i - .. i / i /' J 3 ⁇ 4; 3 ⁇ 4 c * .if thermodynamic.
  • Figure 019 is a side cross-sectional view of the converter with thermodynamic transformation chambers and their respective channels and the position of the converter chamber stator and rotor discs.
  • Figures 020, 021, 022 and 023 represent side cross-sectional views of the converter with the thermodynamic transformation chambers, the position of the converter chamber stator and rotor disks, and a graph depicting the thermodynamic, high and low temperature isothermal transformations and expansion and contraction of the system gas.
  • Figures 024 and 025 represent schematic views of the thermal machine showing all the essential elements.
  • Fig. 026 is a schematic view of the thermal machine in full arrangement.
  • Figure 027 depicts a variant of stator heat transfer discs, rotor discs and thermal insulation discs.
  • Figure 028 is a side sectional view of the converter considering the simplified variant of the stator and rotor discs shown in figure 027, with thermodynamic transformation chambers, the position of the stator discs relative to the converter chamber rotor discs for each of the thermodynamic transformations of the cycle and a graph representing the four thermodynamic transformations of the system.
  • Figure 029 represents variants of the stator disc showing the heat exchange plates and their fluid channels.
  • Figures 030 and 031 represent a front and perspective view of the rotor disc.
  • Figure 032 is a perspective view of the metal frame supporting the stator heat exchange plates, this same frame model is also applied to support the thermal insulation plates of the converter ends.
  • Figure 033 is a perspective view of the metal frame. supporting the set thermal insulation plates and hollow plates for gas transportation during the thermodynamic transformations of the working gas.
  • Figure 034 represents the graphs with thermodynamic transformations.
  • Figures 035, 036, 037 and 038 represent a flowchart of the thermodynamic cycle control process according to the Carnot cycle.
  • Figures 039 and 040 represent schematic views of the thermal machine in a more detailed version and another in a block version showing the power and control cable connections.
  • Figures 041, 042, 043 and 044 represent schematic views of the thermal machine demonstrating combined process applications of different thermodynamic cycles.
  • thermodynamic cycle comprising a closed-loop machine (1) consisting of:
  • thermodynamic transformation converter (2) composed of a closed and thermally insulated cylindrical housing (9), in which two thermodynamic chambers (22) and (23) are disposed inside each other, each chamber containing a plurality of stator disks heat exchanger (12) and parallel insulating stator discs (13) and fixed to the housing (9), and a plurality of intermediate rotor discs (14), fixed to a central axis (15), provided with internal channels ( 15A) of passage and distribution of gas fluid between the chambers, being axis rotated by a servomotor or stepper motor (17), and angularly corrected by a precision angular positioning and rotation indicating element called motor-attached encoder (17). );
  • thermodynamic cycles a temperature sensing element (38) and (39) in each of the outlet holes of each chamber (22) and (23) performing the thermodynamic cycles;
  • a flow control module (3) provided with piping and two sets of two process control two way flow valves (41), (42), (43) and (44), which interconnect the gas outlets of working of the thermodynamic chambers (22) and (23) the outputs and inputs of the driving force element (7);
  • a compression module (4) provided with pipes and valves (45), which interconnect the chamber outlet (22) forming a stator part, to a compression element (46), called a compressor at the outlet of the second chamber ( 23) forming another part of the stator;
  • an independent driving force unit (7) which generates power to a power generator (8) by passing the thermal fluid of the thermodynamic cycle gas;
  • thermodynamic cycle machine (1) a logic control unit (5), with electronic actuators and a program containing the process of controlling all the elements that make up the thermodynamic cycle machine (1);
  • Figure 01 represents the machine (1) with its main modules, the converter (2); the valve system (3); the compression system (4); the microprocessor control unit (5) where the program controlling the process is located and especially the thermodynamic transformations; the sensor module (6), with pressure (37) and (40), and temperature (38) and (39) sensors; the driving force element (7); the power generator (8); the hot fluid reservoir (53); the cold fluid reservoir (55); the hot fluid pump (54); and the fluid pump
  • FIGS 02 and 03 two views of the housing (9) are shown in cylindrical shape, it must be of pressure resistant material, usually stainless steel. It can be whole, single piece or split lengthwise.
  • housing cover (10) may contain a central hole (10A) for housing or passage of the shaft (15), made of pressure resistant material, preferably stainless steel.
  • Figures 06 and 07 show two views of the insulating disc (11) of thermal insulating material, containing a fluid passage channel (1 IA), and a hollow central hole (UB) for engagement with the shaft and conducting the working gas from the thermodynamic transformation chamber to the outside directed towards the driving force element.
  • Figures 08 and 09 show two views of the stator disc (12) forming the heat exchange units with the working gas remaining confined in the hollow spaces of the rotor disc (14).
  • This disc (12) is formed by an outer rim (12A) and an inner rim (12B) of rigid material, usually steel, and between the rim-shaped strips (C) 12 forming a wheel shape.
  • Between the lanes are four insulating plates (12D) of thermal insulating material, in the same thickness of the hoops and lanes, two 180 degree offset heat transfer plates (12E), framed with thermal insulating material to isolate the lanes and hoops, two 180 ° offset heat absorbing plates (12F), also framed with thermal insulating material to insulate the streaks and hoops.
  • Each of the heat exchange circuitry's thermal fluid circulation circuits has its own unique power supply from the reservoir or source of cold or heat, this feature is important for machine performance and for large machine designs, as it to be fundamental.
  • the outer rim (12A) is fixed to the housing and the inner rim (12B) is not fixed to the rotor shaft as the shaft has free movement. 7 'D 0 .-' 7 / f ⁇ AA r3 ⁇ 4
  • Figures 010 and 011 show two views of the heat insulating stator disc (13) which are mounted at the ends of each chamber between the last heat transfer discs and the housing cover.
  • This disc is also constructed with two rims, one outer (13A) and one inner (13B) of rigid material, spindles (13C) connecting both wheel-forming rims, all thermally insulating plates (1) are attached to all spokes. 13D), completely filling the voids.
  • the outer rim (13A) is fixed to the housing and the inner rim (13B) is not fixed to the shaft to keep it free for rotation.
  • FIGS 012 and 013 two views are shown of the rotor disc (14) which are fixed to the shaft (15). These discs have the function of displacing the working gas between the regions that perform the 4 thermodynamic transformations.
  • the disc is constructed with an outer rim (14A) and a rigid material center (14B), eight lanes (14C) of the same material and same width of the rims, in six of the eight fractional spaces are insulated plates of thermal insulating material (14D ), keeping completely closed in two of the half circles, symmetrically, two pieces of thermal insulation material, but hollow (14E) are installed in order to create a volume, space, where the working gas of the machine will be housed.
  • FIG 014 is shown the central axis (15) to which the rotor discs are fixed, this axis is provided with two regions with hollow channels (15A), allowing the working gas to flow freely into its respective chamber, between the holes and heat exchange zones, this shaft is of rigid material and is internally coated with thermal insulating material.
  • Figure 015 shows the two chambers with the stator and rotor assemblies that form the converter (2), showing: the central axis (15); the outer housing (9); the covers (10), the thermally insulating stator discs (13); the heat exchange stator discs (12) with their respective hot, cold and insulated zones; the working gas displacement rotor discs (14); insulating discs (11) with holes (1 IA) for conducting the gas outwards; and the partition cover (16) separating the two chambers.
  • Fig. 016 is a side sectional view of the converter (2), p rr / P rj ⁇ ). i / 3 ⁇ 4 ⁇ , 'which is the module comprised of two chambers of the machine that operates according to the Carnot cycle in the complete arrangement, where the outer housing (9) is highlighted; the caps (10); the central axis (15); the servomotor (17) with aggregate encoder forming a single piece; the internal stator and rotor assemblies, composed of the thermally insulating stator discs (13); the heat exchange stator discs (12) with their respective hot, cold and insulated zones; the working gas displacement rotor discs (14); insulating discs (11) with fluid passage channels (1 IA) for conducting the gas outwards; and the disk or partition cover (16).
  • Figure 017 shows the rotor disc (14) in detail, this, together with the stator heat exchange disc, are the main elements that make the Carnot cycle possible.
  • the rotor disc (14) is formed by a wheel of rigid material, usually steel, containing an outer rim (14 A) and a center (14B) interconnected by spokes (14C) of the same material, same width, width of a few millimeters. .
  • the rotor has eight symmetrical areas, six of which are completely enclosed with thermal insulating material (14D) and two also with thermal insulating material parts, but hollow (14E) to create a volume where the working gas performs the four transformations. during the thermodynamic process.
  • Figure 018 shows the volume occupied by gas in thermodynamic transformation chambers, (18) delimits the section of one of the chambers; (19) delimit the other chamber, both operate with the Carnot cycle in a differential way.
  • Rotor discs are indicated by (14).
  • the available working gas volume is indicated at (20) in one chamber and (21) in the other chamber.
  • the gas outlet holes and channels of each chamber are indicated in (1 IA).
  • Fig. 019 is useful for understanding how this machine performs the Carnot cycle, where the converter (2) of the machine with the detail of the thermodynamic transformation chambers (22) and the representation of their respective channels (2) can be observed. 24) and (25).
  • the stator disks (12) with heat exchange plates forming the stators are all aligned so that the hot heat transfer plates (12E) are all aligned and parallel to each other throughout the machine, as well as the heat absorbing cold plates (12F) and insulating plates (12D).
  • the rotor discs (14) in position (26) are aligned with their hollow areas (14E), all exposed to the hot regions in the chamber indicated in (22), ie the areas (14E) all aligned and parallel to the plates (12E).
  • the rotor discs (14) in position (27) will have their hollow areas (14E) aligned with the cold plates (12F). In this initial condition, it is understood that the gas contained in the chamber indicated by (22) is completely exposed to heat and the gas contained in the chamber indicated by (23) is fully exposed to cold.
  • Carnot's thermodynamic cycle has four transformations, two isothermal and two adiabatic. This is the ideal machine cycle.
  • the Carnot cycle is obtained as follows and can be well understood through the simplified looping flowchart (76) that controls thermodynamic transformations. 035, 036, 037 and 038 and also the power demanded by the machine shown in the curves 74 and 75 of figure 034.
  • a feedback may be used to modulate the flow of thermal fluid by increasing the flow rate by pump 54 shown in Fig. 026 during phase C - D of the cycle.
  • the thermal fluid carries heat from the reservoir (53) to the hot plates, the working gas removes it, the thermal fluid returns to the heating system at a lower temperature than entered the machine, thus modulating the flow during the isothermal phase.
  • An increasing positive plate temperature differential is obtained, compensating for a possible drop, improving this isothermal transformation.
  • the gas moves from the chamber (22) performing work on the driving force element, usually a turbine or motor (7) and moves to the chamber (23).
  • Expansion adiabatic transformation shown in Fig. 021, defined in graph (30) by curve D - A.
  • the servomotor (17) performs an angular movement of the rotor disc (14) at position (31), at high speed, positioning the working gas volume from the hot zone to the thermally insulated region on all faces. This way the gas does not lose or receive energy from the environment.
  • the control unit opens the valve (45) and activates the compressor (46) shown in figure 024, taking advantage of the residual pressure differential of the chamber (22) or part of the power of the driving force element (7) to compress the gas of by moving it from camera (22) to camera (23).
  • the control unit closes the valve (45) and deactivates the compressor (46).
  • the microprocessor control unit (5) of figure 025 opens valves (42) and (43) allowing the gas to now receive work until the point pressure is detected by the processing unit (5).
  • B of curve A - B of graph (30) at this point the control unit (5) closes valves (42) and (43).
  • a feedback can be used to modulate the flow of thermal fluid by increasing the flow rate by pump 56 represented by Fig. 026 during phase A - B of the cycle, removing more heat. of the gas.
  • the thermal fluid carries heat from the plates off the gas and transports them to the reservoir (55), the thermal fluid returns to the cooling system at a higher temperature than entered the machine, thus modulating the flow during the isothermal phase, a decreasing negative differential in plate temperature is obtained compensating for a possible increase, improving this isothermal transformation.
  • the gas moves from the chamber (23) performing work on the driving force element (7) and moves to the chamber (22), inversely to the first high temperature isothermal transformation.
  • the servomotor (17) performs an angular movement of the rotor (14) at position (35) at high speed, positioning the working gas volume from the cold zone of the previous transformation process to the thermally insulated region on all faces. This way the gas does not lose or receive energy from the environment.
  • the control unit opens the valve (45) and activates the compressor (46) shown in figure 024, taking advantage of the residual pressure differential of the chamber (23) or part of the power of the driving force element (7) to compress the gas of moving it from camera (23) to camera (22).
  • the control unit closes the valve (45) and deactivates the compressor (46).
  • thermodynamic cycle of Carnot occurs differently, while a transformation occurs in chamber (22), a similar and inverted transformation occurs in chamber (23).
  • Figures 024 and 025 show the machine with all essential elements, pressure sensors or transmitters in (37) and (40), temperature sensors (38) and (39), flow valves (41), ( 42), (43) and (44), the expansion and compression valve (45) with the compressor (46) with an internal arrow indicating that it operates with two-way flow, the driving force element, usually turbine. , or motor (7), the microprocessor control unit (5), the sensor and actuator control lines, (47), (48), (49), (50), (51) and (52) the generator (8), the converter (2) and the servomotor (17).
  • Figure 026 shows the hot thermal fluid reservoirs (53) with their respective booster pump (54), the cold thermal fluid reservoir (55) and respective booster pump (56), the control lines of the pumps by microprocessor unit (57) and (60), and reservoir control lines (58) and (59).
  • the hot thermal fluid is heated by a thermal source of any kind, for example solar, geothermal, renewable or non-renewable fuels of atomic origin, and then transported to the thermally insulated reservoir (53), the thermal fluid.
  • the cold is cooled by a cold source, for example, running water, convection air, in the ground itself as a heat sink, among others, and then transported to the heat-insulated reservoir (55).
  • stator and rotor discs For machines that perform adiabatic transformation in the transition, ie, that do not have the unique thermal insulation plates, the stator and rotor discs have a configuration of four semicircles and no more than eight.
  • the set of components forming this new configuration is shown in Figure 027 in (61) the rigid material wheel, usually steel, with two rims interconnected by four spokes of the same material and same width.
  • the insulating disc of the last heat exchange plates with the housing is formed by a wheel as indicated by (61) filled in the four half circles by plates of thermal insulating material.
  • the Carnot Thermodynamic Cycle performed by a machine with the stator and rotor configuration as shown in Fig. 028, operates its adiabatic transitions in the transition that in some cases these transitions may have isochoric characteristics and approach the characteristics of a stirling machine.
  • the working gas exposed to heat is indicated, performing the high temperature isothermal phase according to the C - D curve of the graph (69).
  • the gas is in the transition between hot and cold regions, at this stage the gas is expanding absorbing heat, however it shifts to the cold region and performs the D - A transformation of graph (69).
  • the working gas exposed to the cold is indicated, performing the low temperature isothermal phase according to curve A - B of the graph (69).
  • the gas is in the other transition, between the cold and hot regions, at this stage the gas is in compression releasing heat, however it moves to the hot region and performs the B - C transformation of graph (69). .
  • the thermal fluid circulation channels (F) are machined directly on the heat exchange plate, usually aluminum, stainless steel or other alloys for good thermal transfer, and are machined in two. n «r W r . / 0 fl 0 2 P, 3 ⁇ 4 plates in mirror version and subsequently welded and reused externally. These boards can be fragmented into multiple segments as the project size requires.
  • FIGS 030 and 031 are shown in greater detail the rotor discs (14) formed by an outer rim (14A); an inner ring (14B); eight rays (14C); six of the eight fractionated spaces are fixed thermally insulated plates (14D), keeping completely closed; two fractionated spaces with two pieces of thermal insulating material, but cast (14E) to create a volume, space, where the working gas of the thermodynamic transformation zones will be housed; a channel (14F) for gas flow; and the internal thermal insulation (14G) of the rotor shaft (15).
  • figure 032 is shown in detail the metal structure supporting the stator heat exchange plates, indicating in (72) the holes through which the connections allowing the connection of the thermal fluid tubes to the heat exchange plates pass.
  • the thermal insulators that insulate the last stator discs with the end caps are mounted.
  • figure 033 is shown in detail the metal structure supporting the set thermal insulation plates and hollow plates for gas transportation during the thermodynamic transformations of the working gas.
  • Holes 73 pass the working gas between the hollow area and the hollow shaft segment, maintaining free communication between all hollow areas of the respective chamber.
  • Figure 034 shows the graph with thermodynamic transformations again, depicting the relationship "Pressure versus Volume”.
  • (74) the basic graph of the description of this project
  • (75) the example of an innovative feature that the aggregate electronic system, together with the decoupling of the thermodynamic cycle from the mechanical cycle offers.
  • This is a very significant evolution that systems based on the Stirling cycle, the closest system to the Carnot Machine to date, do not have, this evolution makes the technology more flexible and operative over a wide range on the power curve.
  • the control of transforma f ⁇ ⁇ 9 9 transformations, modulating in time the relationship of isothermal and adiabatic transformations, allows energy conservation when the system operates with less " demand7 " and the hatched areas indicate the work that the machine performs in each case.
  • the process of making power controllable is best understood by looking at flowchart 76, especially steps 80 and 89.
  • Figures 035, 036, 037 and 038 demonstrate a process flowchart controlling the Carnot thermodynamic cycle with two isothermal transformations and two adiabatic transformations through the flowchart 76, where the steps of:
  • the present invention proposes an intelligent control and processing unit, with process control points and measurement points of various quantities.
  • the symmetrical circular design of the rotor and stator plates, as well as the availability of heat exchange plates, allows for high flexibility along with the microprocessor control unit, allowing the machine to adjust through programming routines to the best possible performance point, enabling large machine processes with greater inertia, non-stop and processes with low inertia rotor machines with discrete and angular movement.
  • a Brayton cycle gas turbine has an internal combustion that generates gases at temperatures above 1000 ° C, converts part of the energy into mechanical force on the turbines and releases very hot gases into the environment, which are about 500 ° C. at 600 ° C or higher.
  • a Rankine cycle steam turbine generally operates at temperatures between 400 ° C and 800 ° C, lose energy in rising water temperature, phase transformation, chimneys and steam return to condensation after the last turbine stage, internal combustion Diesel and Otto cycle engines, similar to Brayton They also release gases at high temperatures that they lose to the environment through the machine's own housing that must be kept at temperatures safe by the coolants.
  • all of these can be added to the converter, subject of this patent, to create combined cycles and thus optimize the overall energy conversion performance from the primary source. This is possible because this converter operates even with low temperature differentials.
  • Fig. 044 (104) the basic diagram of a combined Otto-Carnot cycle is shown.
  • the Otto cycle motor releases after the blast phase on the piston inside the cylinder, still very hot gases whose heat is propagates to the engine casing and exhaust, this heat energy can be transferred by means of cooling fluids from the machine to the circuit that forms the thermomechanical converter, allowing for the execution of yet another force transfer thermodynamic transformation to same axis, creating a new, more efficient system called the combined Otto-Carnot cycle (104).
  • thermodynamic transformations process according to differential Carnot cycle with gas flow.
  • thermodynamic cycles independent of the mechanical cycle of the driving force allows designs that have as their driving force principle the gas pressure as well as gas flow, favoring both piston and turbine designs or other driving force element.
  • this invention proposes substantial innovation for future energy systems, now based on Sadi Carnot's thermodynamic theory, considered the ideal model for turning thermal energy into work. Its objectives are its application in power generation plants having as its basic source, thermosolar energy and as complements, thermal sources of geological origin, biofuels and also in special cases or to complement fossil and even nuclear fuels. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle, Refere-se a presente invenção, a uma "Máquina que opera em conformidade com o ciclo Termodinâmico de Carnot", que, de acordo com as suas características gerais, possui como principio básico converter energia térmica em força motriz em um elemento de força motriz, geralmente um motor ou turbina. O sistema é composto por um corpo com duas câmaras formando dois estatores com rotor e eixo concêntrico independente do elemento de força motriz, ambas realizam as quatro transformações do ciclo termodinâmico, duas transformações isotérmicas e duas adiabáticas de forma diferencial. Esta máquina possui lógicas de programa de computador, um conjunto de sensores ligados a uma unidade eletrônica a qual possui um processo que executa as quatro transformações termodinâmicas conforme o ciclo de Carnot.

Description

"MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT E PROCESSO DE CONTROLE".
Refere-se a presente invenção, ao campo técnico de motores termodinâmicos, mais especificamente a uma máquina térmica que opera em conformidade com o ciclo termodinâmico de Carnot e processo de controle que, de acordo com as suas características gerais, possui como principio básico converter energia térmica em força motriz em um motor, turbina ou outro elemento de força motriz.
As necessidades mundiais estão cada vez mais contundentes quanto ao suprimento de energia, a busca por alternativas economicamente viáveis e relativamente inofensivas ou pouco ofensivas contra a natureza vem sendo pesquisadas pela maioria dos países, especialmente os mais desenvolvidos.
Nos últimos duzentos anos foram inventadas várias máquinas térmicas para utilização na indústria e para gerar energia para a população, as tecnologias mais conhecidas e economicamente viáveis até o presente são:
Máquinas usadas em usinas termelétricas, a maioria operam pelo ciclo Rankine, criado em 1859 por William John Macquorn Rankine, utiliza como fonte de energia basicamente materiais de origem fóssil, o carvão e gás natural e a combustão é externa. A transformação termodinâmica é de quatro fases com duas transformações adiabáticas e duas transformações isobáricas e mais uma transformação de estado onde a água muda de líquido para vapor. Seu rendimento é de aproximadamente 20 a 30%.
Máquinas usadas em jatos operam pelo ciclo Brayton, criado em 1872 por George Brayton, proposto mais cedo em 1791 por John Barber, utiliza como fonte de energia, também derivados de materiais de origem fóssil, querosene, gás, a combustão é interna. A transformação termodinâmica é de quatro fases com duas transformações adiabáticas e duas transformações isobáricas. Seu rendimento é de aproximadamente 17%, para turbinas a gás, aplicadas em geração de energia.
Máquinas de combustão interna usadas em automóveis operam pelo ciclo Otto, desenvolvido por Nikolaus Otto em 1876, utiliza também combustíveis Η ΐ/ ϋ ίί -U ! O / υ u 0 ^ 2 de origem fóssil, gasolina, atualmente também de origem vegetal, o álcool. E uma máquina com transformação termodinâmica de quatro fases com duas transformações adiabáticas e duas isocóricas. Seu rendimento é de aproximadamente 26%.
Máquinas de combustão interna usadas em veículos pesados, caminhões, trens, navios e em aplicações industriais, operam pelo ciclo Diesel, desenvolvido por Rudolf Diesel em 1893, utiliza também combustíveis de origem fóssil, óleo diesel, atualmente também de origem vegetal, o biodiesel. É uma máquina com transformação termodinâmica de quatro fases com duas transformações adiabáticas, uma transformação isobárica e outra transformação isocórica. Seu rendimento é de aproximadamente 34%.
Máquinas de combustão externa, atualmente usada em projetos de energias alternativas, operam pelo ciclo Stirling, desenvolvido por Robert Stirling em 1816, utiliza várias fontes de energia, atualmente voltada para fontes menos poluentes e de menor impacto ambiental, como biomassa, fontes termais, termossolar. É uma máquina com transformação termodinâmica de quatro fases com duas transformações isotérmicas e duas transformações isocóricas. Seu rendimento é de aproximadamente 40 a 45%, variando conforme o valor e o diferencial de temperatura das fontes quente e fria.
Com o conceito de Stirling, observa-se motores tipo Alfa como as publicadas nas patentes US7827789 e US20080282693, tipo Beta como a patente US20100095668, tipo Gama como a patente US20110005220, máquinas Stirling Rotativas como as patentes US6195992 e US6996983, híbridas tipo Wankel- Stirling conforme patente US7549289. Todas compreendem a solidariedade do ciclo de força motriz com o ciclo termodinâmico e pelas suas características mecânicas e de processo, não realizam transformações adiabáticas.
Ainda com o conceito Stirling, com duas transformações termodinâmicas isotérmicas e duas transformações isocóricas, observa-se a patente PI 1000624-9 do mesmo autor, que possui diferentemente das acima citadas, o elemento motriz independente do ciclo termodinâmico. l u : i i t„u | Z. / ¾. O ¾ Í^Í ^ 9 0
A última apresentada neste texto é a máquina de Carnot, idealizada pelo cientista Francês Nicolas Léonard Sadi Carnot em 1824. Trata-se de uma máquina ideal, todas as demais máquinas desenvolvidas tem o seu padrão de desempenho e de viabilidade económica comparadas à máquina ideal de Carnot. A máquina de Carnot opera em conformidade com o ciclo termodinâmico que leva o mesmo nome, ciclo de Carnot, o qual possui duas fases com transformação isotérmica e duas fases com transformação adiabática. Literaturas exaustivamente publicadas descrevem: as fases isotérmicas, nas quais existe a realização de trabalho, uma delas com a expansão do gás e outra com a contração do gás onde que pelo enunciado de Carnot a temperatura do gás deve permanecer constante, porém fisicamente, com a expansão do gás, sua característica de condutividade térmica e geometria das máquinas torna esta fase extremamente difícil de ser conseguida mecanicamente, especialmente considerando que no processo deve haver a troca de forma instantânea e sequencial destas quatro transformações. As transformações adiabáticas, pelo enunciado de Carnot, exige que seja retirada instantaneamente as fontes de calor ou de frio sujeito ao gás de trabalho e mantê-lo em expansão ou compressão dentro de um volume isolado termicamente, sem que o mesmo forneça ou retire energia do meio, porém para criar mecanicamente uma condição física com tal característica, também é uma tarefa muito difícil. Por estas razões não se conhece até a presente data, a existência de uma máquina de Carnot real. É importante observar que mecanicamente trata-se de uma máquina milito difícil de realizar, mas pelos conceitos físicos é realizável, tanto que vale como base de avaliação de todas as demais tecnologias.
Algumas tentativas de novas soluções são encontradas, cujo objetivo está na aproximação das características da máquina ideal de Carnot, observa-se tais características em patentes como a US20100313558 definida pelo autor como máquina de ciclo de Carnot Modificada que usa como fonte fria um reservatório de gás líquido, e a patente US201 10227347 definida pelo autor como uma máquina com ciclo intermediário entre a máquina de ciclo Stirling e a máquina de ciclo de Carnot. No entanto a grande maioria permanece nas soluções fundamentadas apenas ψ p. ; r- em conceitos de ciências mecânicas, assim os projetos mais modernos ainda mantém solidários os ciclos termodinâmicos do ciclo mecânico de movimento dos elementos de força motriz, tal característica inflexibiliza as soluções, mantendo aceitável praticamente um único ponto da curva potência versus energia. Algumas outras também são encontradas com melhorias na transferência térmica, como a patente US20100287936, baseadas em rotores de movimentação do gás de trabalho entre as zonas de calor e frio, no entanto as fronteiras de trocas das transformações termodinâmicas não são bem definidas, pois dependem das soluções mecânicas com o emprego de carnes, engrenagens, eixos, hastes para auxiliar na troca do gás nas respectivas zonas, e outras operam com volumes em câmaras essencialmente constantes, tendo uma ou mais câmaras completamente isoladas, limitando consideravelmente o desempenho. Desta forma, com tais características, a grande maioria das soluções existentes, apenas operam com elementos de força motriz do tipo pistões, ou do tipo quasiturbine.
No intuito de aumentar o rendimento, alguns projetos baseados em máquinas que operam em altas temperaturas, permite combinar dois sistemas formando ciclos combinados, um exemplo é a turbina Brayton, cujo processo de transformação libera gases muito quentes de modo a permitir combinar com uma turbina do tipo Rankine, permitindo um sistema de ciclo combinado Brayton- Rankine. No entanto estes sistemas operam com combustíveis fósseis, exigem alta tecnologia de materiais para operar com câmaras de combustão acima de 1000°C.
Como observa-se acima, a maioria das tecnologias dependem de fontes de origem fóssil, altamente nocivas ao meio ambiente. Outras tecnologias de menor impacto ambiental ainda são limitadas economicamente, ou possuem limitações técnicas para larga escala, ou altas potências, ou dependem de condições geológicas ou atmosféricas muito especiais, neste último caso pode ser exemplificado as fontes eólicas e fluviais.
A tecnologia desenvolvida, tema do presente texto de patente não se trata de uma máquina ideal, sem perdas, no entanto é uma máquina capaz de realizar com alta precisão as quatro transformações do ciclo termodinâmico de Carnot, a partir de uma fonte térmica de qualquer natureza cuja energia é transportada para a máquina por meio de um fluido térmico, assim sendo, possui as principais características desejadas, a mesma trás benefícios de aplicação prática e económica e conforme cada projeto, faixas de potência e das características das fontes de calor, poderá desempenhar rendimentos muito elevados, superando muito os 40% de outras máquinas consideradas de alto desempenho para fontes de temperaturas moderadas e acima de 60% para fontes de altas temperaturas.
A presente invenção conta com ciências multidisciplinares, uso de conceitos de mecânica, eletrônica, especialmente sistemas com base em processadores dotados de lógicas de programas que monitoram e controlam atuadores de alta velocidade que a pouco tempo não existiam para aplicações práticas. Vale como exemplo as tecnologias híbridas utilizadas em automóveis, onde são combinados conceitos de mecânica e eletrônica com microprocessadores os quais trazem desempenhos significativamente melhores e tornam as máquinas flexíveis até mesmo com combustíveis distintos e diferentes concentrações energéticas.
Outro objetivo de importância singular é o emprego desta tecnologia em plantas de geração de energia de grande porte, flexíveis quanto às fontes térmicas, rendimento economicamente viável na relação energia gerada versus fonte térmica e com o mínimo impacto ambiental, como por exemplo a utilização de fontes térmicas limpas como a solar, termossolar, de baixo impacto ambiental como biocombustíveis e económicos como o uso de resíduos e em plantas pré-existentes onde o mesmo opera pelas perdas de calor, formando sistemas de cogeração, ou ainda agregado a outras tecnologias formando processos mais complexos denominados ciclos combinados como por exemplo formando sistemas de ciclo Combinado Brayton-Carnot, utilizando como fonte de calor os gases a altas temperatura liberado pelas turbinas de ciclo Brayton, Rankine-Carnot, cuja fonte de calor são as saídas de vapor dos últimos estágios das turbinas a vapor e gases das chaminés, Diesel-Carnot, cuja fonte de calor vem dos fluidos de refrigeração da máquina Diesel, Otto-Carnot, cuja fonte de calor vem dos fluidos de refrigeração da
Figure imgf000008_0001
máquina de ciclo Otto, entre outros, ampliando significativamente o desempenho, uma vez que os processos de máquinas térmicas de ciclo Brayton, Rankine, Diesel, Otto, possuem muitas perdas térmicas impossíveis de serem aproveitadas pelos seus próprios ciclos termodinâmicos, sendo necessário sistemas mais eficientes alternativos para este aproveitamento.
Os objetivos, vantagens e demais características importantes da invenção em apreço poderão ser mais facilmente compreendidas quando lidas em conjunto com as figuras em anexo, nas quais:
A figura 01 representa uma vista esquemática da máquina térmica. As figuras 02 e 03 representam uma vista frontal e outra lateral da carcaça externa do conversor.
As figuras 04 e 05 representam uma vista frontal e outra lateral da tampa da carcaça.
As figuras 06 e 07 representam uma vista frontal e outra lateral do disco isolante com o canal de passagem do gás.
As figuras 08 e 09 representam uma vista frontal e outra lateral do disco estator.
As figuras 010 e 011 representam uma vista frontal e outra lateral do disco isolante térmico extremo do estator.
As figuras 012 e 013 representam uma vista frontal e outra lateral do disco do rotor.
A figura 014 representa uma vista de topo e lateral do eixo central do rotor.
A figura 015 representa os elementos que formam os conjuntos estator e rotor do conversor da máquina.
A figura 016 representa uma vista em corte lateral do conversor, contendo o estator, o rotor e o servomotor da máquina térmica.
A figura 017 representa uma vista frontal do disco do rotor.
A figura 018 representa uma vista em corte do conversor, mostrando os canais de distribuição do gás no interior das câmaras de transformação 1» s / W i « i' U i -..i / i/ 'J ¾; ¾ c*.if termodinâmicas.
A figura 019 representa uma vista em corte lateral do conversor com as câmaras de transformações termodinâmicas e seus respectivos canais e o posicionamento dos discos estatores e rotores das câmaras do conversor.
As figuras 020, 021, 022 e 023 representam vistas em corte lateral do conversor com as câmaras de transformações termodinâmicas, o posicionamento dos discos estatores e rotores das câmaras do conversor e um gráfico que representa as transformações termodinâmicas, isotérmicas de alta e baixa temperatura e adiabáticas de expansão e contração do gás do sistema.
As figuras 024 e 025 representam vistas esquemáticas da máquina térmica onde são evidenciados todos os elementos essenciais.
A figura 026 representa uma vista esquemática da máquina térmica na disposição completa.
A figura 027 representa uma variante dos discos de transferência térmica do estator, dos discos do rotor e dos discos de isolamento térmico.
A figura 028 representa vistas em corte lateral do conversor considerando a variante simplificada dos discos do estator e rotor representados na figura 027, com as câmaras de transformações termodinâmicas, o posicionamento dos discos estatores em relação aos discos rotores das câmaras do conversor para cada uma das transformações termodinâmicas do ciclo e um gráfico que representa as quatro transformações termodinâmicas do sistema.
A figura 029 representa variantes do disco estator, evidenciando as placas de troca de calor e seus canais de fluído.
As figuras 030 e 031 representam uma vista frontal e em perspectiva do disco do rotor.
A figura 032 representa uma vista em perspectiva da estrutura metálica que sustenta as placas de troca de calor do estator, este mesmo modelo de estrutura também é aplicado para sustentar as placas de isolamento térmico das extremidades do conversor.
A figura 033 representa uma vista em perspectiva da estrutura metálica
Figure imgf000010_0001
que sustenta o conjunto placas de isolamento térmico e placas vazadas para transporte do gás durante as transformações termodinâmicas do gás de trabalho.
A figura 034 representam os gráficos com as transformações termodinâmicas.
As figuras 035, 036, 037 e 038 representam um fluxograma do processo de controle do ciclo termodinâmico conforme o ciclo de Carnot.
As figuras 039 e 040 representam vistas esquemáticas da máquina térmica em uma versão mais detalhada e outra em versão em blocos evidenciando as conexões dos cabos de força e de controle.
As figuras 041, 042, 043 e 044 representam vistas esquemáticas da máquina térmica demonstrando as aplicações com processos combinados de ciclos termodinâmicos diferentes.
Como se inferem nos desenhos em anexos que ilustram e integram o presente relatório descritivo da invenção em apreço de "Máquina Térmica que Opera em Conformidade com o ciclo Termodinâmico de Carnot e Processo de Controle", trata-se de uma máquina que opera em conformidade com o ciclo térmodinâmico de Carnot, sendo compreendido por uma máquina (1) em circuito fechado, formada por:
um conversor (2) de transformação termodinâmica, composto por uma carcaça cilíndrica (9) fechada e isolada termicamente, onde em seu interior são dispostas duas câmaras termodinâmicas (22) e (23) paralelas entre si, cada câmara contendo uma pluralidade de discos estatores de troca de calor (12) e discos estatores isolantes (13) paralelos entre si e fixados a carcaça (9), e uma pluralidade de discos rotores (14) intermediários, fixados a um eixo central (15), dotado de canais internos (15A) de passagem e distribuição do fluído de gás entre as câmaras, sendo eixo rotacionado por um servomotor ou motor de passos (17), e corrigido angularmente por um elemento de indicação de rotação e posicionamento angular de precisão denominado encoder agregado ao motor (17);
um elemento sensor de pressão ou transmissor de pressão (37) e (40) em cada um dos orifícios de saída de cada uma das câmaras (22) e (23) que realizam ;f ( 0 os ciclos termodinâmicos;
um elemento sensor de temperatura (38) e (39) em cada um dos orifícios de saída de cada uma câmaras (22) e (23) que realizam os ciclos termodinâmicos;
um módulo de controle de fluxo (3) dotado de tubulações e dois conjuntos de duas válvulas de fluxo (41), (42), (43) e (44) de duas vias de controle do processo, que interligam as saídas do gás de trabalho das câmaras termodinâmicas (22) e (23) as saídas e entradas do elemento de força motriz (7);
um módulo de compressão (4), dotado de tubulações e válvulas (45), que interligam a saída da câmara (22) que forma uma parte do estator, a um elemento de compressão (46), chamado compressor à saída da segunda câmara (23) que forma outra parte do estator;
uma unidade de força motriz (7) independente que gera força para um gerador de energia (8), através da passagem do fluído térmico do gás do ciclo termodinâmico;
uma unidade lógica de controle (5), com atuadores eletrônicos e um programa contendo o processo de controle de todos os elementos que compõe a máquina do ciclo termodinâmico (1);
uma unidade que compreende um circuito de fluido térmico quente com reservatório (53) e bomba (54), interligados as câmaras termodinâmicas (22) e (23);
uma unidade que compreende um circuito de fluido térmico frio com reservatório (55) e bomba (56), interligados as câmaras termodinâmicas (22) e (23).
A figura 01 representa a máquina (1) com os seus principais módulos, o conversor (2); o sistema de válvulas (3); o sistema de compressão (4); a unidade microprocessada de controle (5) onde se encontra o programa que controla o processo e especialmente as transformações termodinâmicas; o módulo dos sensores (6), com os sensores de pressão (37) e (40), e temperatura (38) e (39); o elemento de força motriz (7); o gerador de energia (8); o reservatório de fluido quente (53); o reservatório de fluido frio (55); a bomba do fluido quente (54); e a bomba de fluido
Figure imgf000012_0001
frio (56).
Nas figuras 02 e 03, são mostradas duas vistas da carcaça (9) em forma cilíndrica, a mesma deve ser de material resistente à pressão, normalmente em aço inoxidável. A mesma pode ser inteira, uma única peça ou bipartida longitudinalmente.
Nas figuras 04 e 05, são mostradas duas vistas da tampa da carcaça (10) a qual poderá conter um orifício central (10A) para alojamento ou passagem do eixo (15), confeccionada em material resistente a pressão, preferencialmente em aço inoxidável.
Nas figuras 06 e 07 são mostradas duas vistas do disco isolante (1 1) de material isolante térmico, contendo um canal de passagem de fluído (1 IA), e um orifício central vazado (UB), para o encaixe no eixo, e a condução do gás de trabalho da câmara de transformação termodinâmica para a parte externa dirigida para o elemento de força motriz.
Nas figuras 08 e 09 são mostrados duas vistas do disco do estator (12) que formam as unidades de troca de calor com o gás de trabalho que permanece confinado nos espaços vazados do disco do rotor (14). Este disco (12) é formado por um aro externo (12A) e um interno (12B) de material rígido, normalmente aço, e entre os aros, raias (12C) em formas de tiras dando uma forma de roda. Entre as raias são fixadas quatro placas isolantes (12D) de material isolante térmico, na mesma espessura dos aros e raias, duas placas de transferência de calor (12E) deslocadas entre si de 180 graus, emolduradas com material isolante térmico para isolar das raias e aros, duas placas de absorção de calor (12F) deslocadas entre si de 180 graus, também emolduradas com material isolante térmico para isolar as raias e aros. Cada um dos circuitos de circulação de fluido térmico das placas de troca de calor possui sua respectiva alimentação exclusiva a partir do reservatório ou fonte de frio ou calor, esta característica é importante para o desempenho da máquina e para projetos de máquinas de grande porte, passa a ser fundamental. O aro externo (12A) é fixado a carcaça e o interno (12B) não são fixados ao eixo do rotor, pois o eixo possui movimento livre. 7 'D 0 .-' 7 / f\ A A r¾
Nas figuras 010 e 011 são mostradas duas vistas do disco do estator isolante térmico (13) que são montados nas extremidades de cada câmara entre os últimos discos de transferência térmica e a tampa da carcaça. Este disco é construído também com dois aros, um externo (13 A) e um interno (13B) de material rígido, raias (13C) ligando ambos os aros dando a forma de roda, entre todas as raias são fixadas placas de isolamento térmico (13D), preenchendo completamente os vazios. O aro externo (13A) é fixado a carcaça e o interno (13B) não são fixados ao eixo para manter este livre para o giro.
Nas figuras 012 e 013 são mostradas duas vistas o disco do rotor (14) os quais são fixados no eixo (15). Estes discos tem a função de deslocar o gás de trabalho entre as regiões que executam as 4 transformações termodinâmicas. O disco é construído com um aro externo (14A) e um central (14B) de material rígido, oito raias (14C) de mesmo material e mesma largura dos aros, em seis dos oito espaços fracionados são fixadas placas de material isolante térmico (14D), mantendo completamente fechados, em dois dos semi círculos, de forma simétrica, são instalados duas peças de material isolante térmico, porém vazados (14E) de forma a criar um volume, espaço, onde se alojará o gás de trabalho da máquina.
Na figura 014 é mostrado o eixo central (15) no qual são fixados os discos do rotor, este eixo é provido de duas regiões com canais vazados (15A), permitindo que o gás de trabalho flua livremente dentro de sua respectiva câmara, entre os orifícios e zonas de troca de calor, este eixo é de material rígido e internamente é revestido com material isolante térmico.
Na figura 015 são mostradas as duas câmaras com os conjuntos estator e rotor que formam o conversor (2), sendo evidenciados: o eixo central (15); a carcaça externa (9); as tampas (10), os discos do estator isolantes térmicos (13); os discos do estator de troca de calor (12) com suas respectivas zonas quentes, frias e isoladas; os discos do rotor (14) de deslocamento do gás de trabalho; os discos isolantes (11) com os orifícios (1 IA) para a condução do gás para o lado externo; e a tampa divisória (16) que separa as duas câmaras.
A figura 016 representa uma vista em corte lateral do conversor (2), p rr/ P rj ·) . i / ¾ Λ , ' que é o módulo compreendido por duas câmaras da máquina que opera conforme o ciclo de Carnot na disposição completa, onde são evidenciados a carcaça externa (9); as tampas (10); o eixo central (15); o servomotor (17) com encoder agregado, formando uma única peça; os conjuntos internos estatores e rotores, compostos pelos discos do estator isolantes térmicos (13); os discos do estator de troca de calor (12) com suas respectivas zonas quentes, frias e isoladas; os discos do rotor (14) de deslocamento do gás de trabalho; os discos isolantes (11) com os canais de passagem de fluído (1 IA) para a condução do gás para o lado externo; e o disco ou tampa divisória (16).
A figura 017 mostra o disco do rotor (14) em detalhes, este, juntamente com o disco de troca de calor do estator, são os principais elementos que tornam possível a realização do ciclo de Carnot. O disco do rotor (14) é formado por uma roda de material rígido, normalmente aço, contendo um aro externo (14 A) e um central (14B) interligados por raias (14C) de mesmo material, mesma largura, largura de alguns milímetros. O rotor possui oito áreas simétricas, destas, seis são completamente fechadas com material isolante térmico (14D) e duas também com peças de material isolante térmico, porém vazadas (14E) de forma a criar um volume onde o gás de trabalho realiza as quatro transformações térmicas durante o processo termodinâmico.
A figura 018 mostra o volume ocupado pelo gás nas câmaras de transformação termodinâmicas, (18) delimita a seção de uma das câmaras; (19) delimita a outra câmara, ambas operam com o ciclo de Carnot de forma diferencial. Os discos de rotor são indicados por (14). O volume disponível para o gás de trabalho é indicado em (20) em uma das câmaras e em (21) na outra câmara. Os orifícios e canais de saída do gás de cada câmara são indicados em (1 IA).
A figura 019 é útil para compreender como esta máquina realiza o ciclo de Carnot, onde pode ser observado o conversor (2) da máquina com o detalhe das câmaras (22) e (23) de transformações termodinâmicas e a representação de seus respectivos canais (24) e (25). Nesta mesma figura deve ser considerado que os discos estatores (12) com placas de troca de calor que formam os estatores estejam todos alinhados de modo que as placas quentes de transferência de calor (12E) estejam todas alinhadas e paralelas entre si na máquina toda, bem como as placas frias de absorção de calor (12F) e as placas isolantes (12D). Por outro lado, os discos do rotor (14) na posição (26), estejam alinhados com suas áreas vazadas (14E), todas expostas às regiões quentes na câmara indicada em (22), ou seja, as áreas (14E) todas alinhadas e paralelas às placas (12E). De forma oposta, na câmara (23), os discos do rotor (14) na posição (27), estarão com as suas áreas vazadas (14E) alinhadas com as placas frias (12F). Nesta condição inicial, éntende-se que o gás contido na câmara indicado por (22) esteja exposto completamente ao calor e o gás contido na câmara indicado por (23) esteja exposto todo ao frio.
A partir desta condição inicial fica simples compreender como esta máquina opera, segue abaixo a descrição completa.
O ciclo Termodinâmico de Carnot possui quatro transformações, duas isotérmicas e duas adiabáticas. Este é o ciclo da máquina ideal. No projeto da máquina de Carnot proposto, com rendimento menor que 100%, obviamente com perdas térmicas, o ciclo de Carnot é obtido da seguinte forma e pode ser bem compreendido através do fluxograma simplificado (76) do "looping" que controla as transformações termodinâmicas representado nas figuras 035, 036, 037 e 038 e também a potência demandada pela máquina mostradas nas curvas (74) e (75) da figura 034.
Transformação isotérmica de alta temperatura, representada na Fig. 020, definido no gráfico (30) pela curva C - D, com a temperatura Tl. O gás de trabalho, no ponto C da curva C - D do gráfico (30), se encontra sob compressão do processo anterior na câmara indicada por (22), as válvulas de escoamento, representadas na figura 024 por (41) e (44), todas fechadas, o disco do rotor (14) na posição (28), expondo o gás completamente nas zonas quentes dos discos do estator (12), a temperatura Tl é rapidamente atingida, favorecida pela geometria da câmara de aquecimento a qual possui grande área exposta para as placas quentes, com profundidade de penetração do fluxo de calor de alguns milímetros, caracterizando um diferencial importante frente a outras geometrias existentes, as demais fronteiras do gás todas isoladas termicamente. Ao atingir a temperatura Tl, a unidade de controle microprocessada (5) da figura 025, abre as válvulas (41) e (44) permitindo o gás a realizar trabalho até que seja detectado pela unidade de processamento (5) a pressão do ponto D da curva C - D do gráfico (30), neste ponto a unidade de controle fecha as válvulas (41) e (44). Durante toda a fase de transformação isotérmica, é mantido o fluxo de calor das fontes quentes para o gás, pois caso isto não ocorresse, a temperatura cairia e a pressão cairia mais que o desejado, prejudicando o desempenho da máquina. Nos processos que se deseja alta precisão da transformação isotérmica, pode ser utilizada uma realimentação de forma a modular o fluxo de fluido térmico, aumentando a vazão pela bomba (54) representada na figura 026 durante a fase C - D do ciclo. O fluido térmico transporta calor do reservatório (53) para as placas quentes, o gás de trabalho o retira, o fluido térmico retorna para o sistema de aquecimento com temperatura menor do que entrou na máquina, assim, modulando o fluxo durante a fase isotérmica, se obtém um diferencial positivo crescente da temperatura das placas compensando uma possível queda, melhorando esta transformação isotérmica. Durante esta transformação o gás se desloca da câmara (22) realizando trabalho no elemento de força motriz, normalmente uma turbina ou motor (7) e segue para a câmara (23).
Este processo de transformação isotérmica pode ser melhor compreendido através da lei de condução de Fourier: q" = - k . ôT / dx (W/m2) ou q" = - k . (Ta - Tb) / L (W/m2)
Esta transformação isotérmica também é mostrada no fluxograma (76), nas figuras 035 e 036 é demonstrado pelas etapas (77), (78), (79), (80) e (81).
Portanto, para manter a transformação isotérmica, onde Tl do processo é igual a "Ta" da fórmula acima, basta manter o fluxo q" constante durante esta fase, a qual é facilitada pela geometria explicada logo acima, caso o sistema demandar mais energia basta modular o fluxo de fluido térmico de forma a acrescentar o valor da temperatura "Tb" nas placas de calor. O módulo de controle (5) do processo é capaz de realizar este controle.
Transformação adiabática de expansão, representada na Fig. 021, definido no gráfico (30) pela curva D - A. Neste ponto do ciclo, o servomotor (17) executa um movimento angular do disco do rotor (14) na posição (31), em alta velocidade, posicionando o volume de gás de trabalho da zona quente para a região isolada termicamente por todas as faces. Desta forma o gás não perde e nem recebe energia do ambiente. A unidade de controle abre a válvula (45) e ativa o compressor (46) representados na figura 024, aproveitando o diferencial residual da pressão da câmara (22) ou parte da energia do elemento de força motriz (7) para comprimir o gás de trabalho, deslocando-o da câmara (22) para a câmara (23). Nesta fase, com a expansão adiabática, a temperatura do gás muda de Tl para T2 e a unidade de controle (5) torna a fechar a válvula (45) e desativar o compressor (46).
Esta transformação adiabática também é mostrada no fluxograma (76), na figura 036 é demonstrado pelas etapas (82), (83), (84) e (85).
Transformação isotérmica de baixa temperatura, representada na Fig. 022, definido no gráfico (30) pela curva A - B, com a temperatura T2. O gás de trabalho, no ponto A da curva A - B do gráfico (30), se encontra na máxima expansão do processo anterior na câmara indicada por (22), as válvulas de escoamento, (42) e (43), todas fechadas, o disco do rotor (14) na posição (33), expondo o gás completamente nas zonas frias do estator (12), a temperatura T2 é rapidamente atingida, favorecida pela geometria da câmara de resfriamento a qual possui grande área exposta para as placas frias, com profundidade de penetração do fluxo de calor, agora do gás para as placas, de alguns milímetros, as demais fronteiras do gás todas isoladas termicamente. Ao atingir a temperatura T2, a unidade de controle microprocessada (5) da figura 025, abre as válvulas (42) e (43) permitindo o gás agora a receber trabalho até que seja detectado pela unidade de processamento (5) a pressão do ponto B da curva A - B do gráfico (30), neste ponto a unidade de controle (5) fecha as válvulas (42) e (43). Durante toda a fase de transformação isotérmica, é mantido o fluxo de calor do gás para as fontes frias, pois caso isto não ocorresse, a temperatura subiria e a pressão subiria mais que o desejado, prejudicando o desempenho da máquina. Nos processos que se deseja alta precisão da transformação isotérmica, pode ser utilizada uma realimentação de forma a modular o fluxo de fluido térmico, aumentando a vazão pela bomba (56) representado pela figura 026 durante a fase A - B do ciclo, retirando mais calor do gás. O fluido térmico transporta calor das placas, retirando do gás, e os transporta para o reservatório (55), o fluido térmico retorna para o sistema de resfriamento com temperatura maior do que entrou na máquina, assim, modulando o fluxo durante a fase isotérmica, se obtém um diferencial negativo decrescente da temperatura das placas compensando um possível acréscimo, melhorando esta transformação isotérmica. Durante esta transformação o gás se desloca da câmara (23) realizando trabalho no elemento de força motriz (7) e segue para a câmara (22), inversamente à primeira transformação isotérmica, de alta temperatura.
Esta transformação isotérmica também é mostrada no fluxograma (76), nas figuras 037 e 038 é demonstrado pelas etapas (86), (87), (88), (89) e (90).
Transformação adiabática de compressão representada na Fig. 023, definido no gráfico (30) pela curva B - C. Neste ponto do ciclo, o servomotor (17) executa um movimento angular do rotor (14) na posição (35) em alta velocidade, posicionando o volume de gás de trabalho da zona fria do processo de transformação anterior, para a região isolada termicamente por todas as faces. Desta forma o gás não perde e nem recebe energia do ambiente. A unidade de controle abre a válvula (45) e ativa o compressor (46) representados na figura 024, aproveitando o diferencial residual da pressão da câmara (23) ou parte da energia do elemento de força motriz (7) para comprimir o gás de trabalho, deslocando-o da câmara (23) para a câmara (22). Nesta fase, com a compressão adiabática, a temperatura do gás muda de T2 para Tl e a unidade de controle (5) torna a fechar a válvula (45) e desativar o compressor (46).
Esta transformação adiabática também é mostrada no fluxograma (76), na figura 038 é demonstrado pelas etapas (91), (92), (93) e (94).
Importante observar que nesta invenção, o ciclo Termodinâmico de Carnot ocorre de forma diferencial, enquanto ocorre uma transformação na câmara (22), ocorre também uma semelhante e invertida na câmara (23).
Nas figuras 024 e 025 é representada a máquina com todos os elementos essenciais, sensores ou transmissores de pressão em (37) e (40), os sensores de temperatura (38) e (39), as válvulas de escoamento (41), (42), (43) e (44), a válvula de expansão e compressão (45) com o compressor (46) com uma seta interna indicando que o mesmo opera com o fluxo em duas direções, o elemento de força motriz, normalmente turbina, ou motor (7), a unidade microprocessada de controle (5), as linhas de controle dos sensores e atuadores, (47), (48), (49), (50), (51) e (52) o gerador de energia elétrica (8), o conversor (2) e o servomotor (17).
Na figura 026 são mostrados os reservatórios de fluido térmico quente (53), com sua respectiva bomba de recalque (54), o reservatório de fluido térmico frio (55) e respectiva bomba de recalque (56), as linhas de controle das bombas pela unidade microprocessada (57) e (60), e as linhas de controle dos reservatórios (58) e (59). O fluido térmico quente é aquecido por uma fonte térmica de qualquer natureza, por exemplo, solar, geotérmica, por combustíveis renováveis ou não, de origem atómica, entre outras, e posteriormente transportado para o reservatório (53) com isolação térmica, o fluido térmico frio é resfriado por uma fonte fria, por exemplo, água corrente, ar por convecção, no próprio solo como dissipador de calor, entre outras e posteriormente transportado para o reservatório (55) com isolação térmica.
Para as máquinas que operam a transformação adiabática na transição, ou seja, que não tenham as placas de isolamento térmico exclusivo, os discos do estator e do rotor possuem uma configuração com quatro semicírculos e não mais com oito. O conjunto de componentes que formam este nova configuração é representado na figura 027, em (61) a roda de material rígido, normalmente de aço, com dois aros interligados por quatro raias de mesmo material e mesma largura. Em (62) o disco de isolamento das últimas placas de troca de calor com a carcaça, é formado por uma roda conforme indicado por (61) preenchidas os quatro semi círculos por placas de material isolante térmico. Em (63) o disco do estator com as C
< J/ B tt £ϋ 1 θ i) Ú V <« placas de troca de calor, com duas peças para as placas quentes isoladas da roda por meio de outra peça de material isolante térmico e com duas outras peças para as placas frias isoladas da roda por meio de outra peça de material isolante térmico. Em (64) o disco do rotor formado pela roda (61) com dois dos semi círculos preenchidos completamente por material isolante térmico e dois com material isolante térmico, porém vazados para alojar o gás de trabalho.
O ciclo Termodinâmico de Carnot realizado por uma máquina com a configuração de estator e rotor conforme representado na figura 028, opera as suas transformações adiabáticas na transição que 'em alguns casos estas transformações, na transição, poderá possuir características isocóricas e se aproximar das características de uma máquina Stirling. Em (65) é indicado o gás de trabalho exposto ao calor, realizando a fase isotérmica de alta temperatura conforme curva C - D do gráfico (69). Em (66) o gás está na transição, entre as regiões quentes e frias, nesta etapa o gás está em expansão absorvendo calor, no entanto o mesmo se desloca para a região fria e realiza a transformação D - A do gráfico (69). Em (67) é indicado o gás de trabalho exposto ao frio, realizando a fase isotérmica de baixa temperatura conforme curva A - B do gráfico (69). Em (68) o gás esta na outra transição, entre as regiões frias e quentes, nesta etapa o gás está em compressão liberando calor, no entanto o mesmo se desloca para a região quente e realiza a transformação B - C do gráfico (69).
Na figura 029 são representados novamente os discos do estator de troca de calor, (12) e (63), nas configurações com zona isolada e sem ela, para cada caso, seguem os modelos construtivos de cada placa de troca de calor por onde circula o fluido térmico, (70) para máquinas de pequeno porte, com um único canal de fluido térmico (F) por placa, e (71) para máquinas de maior porte com vários canais de fluido térmico (F) por placa. No entanto, conforme a potência o número de circuitos de circulação do fluido térmico (F) poderá ser aumentado, bem como o número de segmentos. Os canais de circulação do fluido térmico (F) são usinados diretamente na placa de troca de calor, normalmente metálica em alumínio, aço inox ou outra liga para obtenção de boa transferência térmica, e são usinadas em duas n«r W r. / 0 fl 0 2 P, ¾ placas em versão espelhada e posteriormente soldadas e reusinadas externamente. Estas placas podem ser fragmentadas em diversos segmentos conforme a dimensão do projeto requerer.
Nas figuras 030 e 031 são mostrados em maiores detalhes os discos do rotor (14) formados por um aro externo (14A); um aro interno (14B); oito raios (14C); seis dos oito espaços fracionados são fixadas placas de material isolante térmico (14D) mantendo completamente fechados; dois espaços fracionados dotados de duas peças de material isolante térmico, porém vazados (14E) de forma a criar um volume, espaço, onde se alojará o gás de trabalho das zonas de transformações termodinâmicas; um canal (14F) para o fluxo de gás; e a isolação térmica (14G) interna do eixo do rotor (15).
Na figura 032 é mostrado em detalhe a estrutura metálica que sustenta as placas de troca de calor do estator, indicando em (72) os orifícios por onde passam as conexões que permitem conectar os tubos do fluido térmico às placas de troca de calor. Em uma estrutura semelhante, não necessitando dos orifícios para as conexões, são montados os isolantes térmicos que fazem a isolação dos últimos discos do estator com as tampas das extremidades.
Na figura 033 é mostrado em detalhe a estrutura metálica que sustenta o conjunto placas de isolamento térmico e placas vazadas para transporte do gás durante as transformações termodinâmicas do gás de trabalho. Os furos 73 dão passagem ao gás de trabalho entre a área vazada e o segmento oco do eixo, mantendo a comunicação livre entre todas as áreas vazadas da respectiva câmara.
Na figura 034 são mostrados o gráfico com as transformações termodinâmicas novamente, retratando a relação "Pressão versus Volume". Em (74) o gráfico base da descrição deste projeto, em (75), o exemplo de uma característica inovadora que o sistema eletrônico agregado, juntamente com a desvinculação do ciclo termodinâmico do ciclo mecânico oferece. Trata-se de uma evolução muito significativa que os sistemas com base no ciclo Stirling, o sistema mais próximo à Máquina de Carnot até então, não possuem, esta evolução torna a tecnologia mais flexível e operante em uma larga faixa na curva de potência. O controle das ϊ f ιλ 9 9 transformações, modulando no tempo a relação das transformações isotérmicas e adiabáticas, permite a conservação da energia quando o sistema opera com menor "demandã7"ay áreas hachuradas indicam o trabalho que a máquina realiza em cada caso. O processo de como torna controlável a potência é melhor compreendida observando o fluxograma (76), especialmente as etapas (80) e (89).
As figuras 035, 036, 037 e 038 demonstram um fluxograma do processo que controla o ciclo termodinâmico de Carnot com duas transformações isotérmicas e duas transformações adiabáticas através do fluxograma (76), onde são compreendidas as etapas de:
- posicionar angularmente o rotor a 0o, expondo o gás da Câmara (22) na zona de aquecimento e o gás da Câmara (23) na zona de resfriamento (77);
- aguardar o gás da câmara (22) atingir a pressão no valor máximo programado e o gás da câmara (23) atingir a pressão no valor mínimo (78);
- abrir as válvulas de fluxo que conduzem o gás da Câmara (22) para a Câmara (23), passando pelo elemento de força motriz (79);
- verificar se existe novo parâmetro de pressão, se positivo, introduzir, se negativo, manter, aguardar a pressão da Câmara (22) atingir o valor mínimo programado e aguardar a Câmara (23) atingir a pressão máxima programada (80);
- fechar as válvulas de fluxo que conduzem o gás da Câmara (22) para a Câmara (23), passando pelo elemento de força motriz (81);
- posicionar angularmente o rotor a 90°, expondo o gás da Câmara (22) na zona isolada termicamente e o gás da Câmara (23) também na zona isolada termicamente (82);
- abrir a válvula de fluxo que conduz o gás da Câmara (22) para a Câmara (23), passando pelo compressor (83);
- aguardar a Câmara (22) atingir a pressão mínima programada e aguardar a Câmara (23) atingir a pressão máxima programada (84);
- fechar a válvula de fluxo que conduz o gás da Câmara (22) para a Câmara (23), passando pelo compressor (85);
- posicionar angularmente o rotor a 180°, expondo o gás da Câmara (22) na zona de resfriamento e o gás da Câmara (23) na zona de aquecimento (86);
- aguardar o gás da câmara (22) atingir a pressão no valor mínimo programado e o gás da câmara (23) atingir a pressão no valor máximo (87);
- abrir as válvulas de fluxo que conduzem o gás da Câmara (23) para a Câmara (22), passando pelo elemento de força motriz (88);
- verificar se existe novo parâmetro de pressão, se positivo, introduzir, se negativo, manter, aguardar a pressão da Câmara (22) atingir o valor máximo programado e aguardar a Câmara (23) atingir a pressão mínima programada (89);
- fechar as válvulas de fluxo que conduzem o gás da Câmara (23) para a Câmara (22), passando pelo elemento de força motriz (90);
- posicionar angularmente o rotor a 270°, expondo o gás da Câmara (22) na zona isolada termicamente e o gás da Câmara (23) também na zona isolada termicamente (91);
- abrir a válvula de fluxo que conduz o gás da Câmara (23) para a Câmara (22), passando pelo compressor (92);
- aguardar a Câmara (22) atingir a pressão máxima programada e aguardar a Câmara (23) atingir a pressão mínima programada (93);
- fechar a válvula de fluxo que conduz o gás da Câmara (23) para a Câmara (22), passando pelo compressor (94);
Terminado o ciclo descrito acima, o processo se repete continuamente fazendo a máquina operar conforme o ciclo de Carnot.
O melhor resultado não ocorre necessariamente com a realização precisa de cada uma das transformações das fases do ciclo de Carnot, isotérmicas e adiabáticas, mas com a melhor relação entre a energia obtida na saída do sistema e a quantidade de energia térmica fornecida a ele. Desta forma, a presente invenção propõe uma unidade de controle e processamento inteligente, com pontos de controle para o processo e pontos de medições das diversas grandezas.
O modelo circular simétrico do rotor e das placas do estator, bem como a disponibilização das placas de troca de calor, permite alta flexibilidade juntamente com a unidade microprocessada de controle, permitindo à máquina se ajustar por meio de rotinas de programação, ao melhor ponto de desempenho possível, viabilizando processos de máquinas de grande porte, com inércia maior, sem paradas e processos com máquinas com rotor de baixa inércia com movimentação discreta e precisas angularmente.
Nas figura 039 e 040, permite compreender outra característica muito importante, principalmente para aplicações aeroespaciais, na figura 039 a máquina com os elementos principais, de forma que (95) representa o conjunto reservatório de fluido quente (53) e sua respectiva bomba (54), (96) representa o conjunto reservatório de fluido frio (55) e sua respectiva bomba (56), logo abaixo na figura 040, a máquina com todos os elementos em blocos (99) preservando suas numerações de referência dos elementos principais, de modo que procura-se caracterizar que não existe nenhum elemento mecânico móvel, seja êmbolos, pistões, eixos, absolutamente nenhum elemento que faça a fronteira entre o gás de trabalho e o ambiente externo que possa gerar vazamentos. Esta é uma propriedade do sistema proposto com suas transformações termodinâmicas conforme o ciclo de Carnot diferencial, em 97 é mostrado o fluxo do gás de trabalho passando pelo elemento de força motriz, o gerador de energia elétrica (8), fixo solidariamente ao elemento de força motriz (7), todo o conjunto completamente blindado. As conexões para controle dos elementos sensores, elementos atuadores e para as saídas de energia são por meio de conexões elétricas ou tomadas blindadas (100). Indicado por (98) a tomada de saída da energia elétrica gerada.
Todas as máquinas térmicas não ideais convertem apenas uma fração da energia em força mecânica, parte da energia recebida da fonte primaria, combustível ou outra fonte térmica é liberada ao ambiente em forma de calor em maior ou menor quantidade dependendo do seu ciclo de transformações termodinâmicas, por exemplo: uma turbina a gás de ciclo Brayton possui uma combustão interna que gera gases a temperaturas superiores a 1000 °C, convertem parte da energia em força mecânica sobre as turbinas e liberam gases muito quentes ao ambiente, estes na ordem de 500°C a 600°C ou mais. Uma turbina a vapor de ciclo Rankine de modo geral operam com temperaturas entre 400°C e 800 °C, perdem energia na elevação da temperatura da água, na transformação de fase, nas chaminés e no retorno do vapor para a condensação após o último estágio da turbina, motores de ciclo Diesel e ciclo Otto, de combustão interna, de forma semelhante à de ciclo Brayton também liberam gases à altas temperaturas que perdem ao ambiente pela carcaça da própria máquina que deve ser mantida a temperaturas seguras pelos fluidos de refrigeração. Entre outras máquinas térmicas, todas estas podem ser agregadas ao conversor, tema desta patente, para criar ciclos combinados e assim otimizar o desempenho geral da conversão da energia provinda da fonte primária. Isto é possível pelo fato deste conversor operar inclusive com baixos diferenciais de temperatura.
Nas figuras 041, 042, 043 e 044, são mostradas aplicações com processos combinados de ciclos termodinâmicos diferentes, os sistemas de energia ou força formado por turbinas a gás tipo Brayton liberam na atmosfera gases muito quentes após a combustão, grandes massas de gases em temperaturas entre 500°C e 600°C aproximadamente, que representam grandes quantidades de energia desperdiçadas. O conversor termomecânico de ciclo de Carnot pode aproveitar esta energia descartada da turbina para realizar uma conversão de ciclo de Carnot adicionando potência no mesmo eixo da turbina principal elevando o rendimento do conjunto para valores superiores a 60%, assim o sistema se torna um conjunto de ciclo combinado Brayton-Carnot conforme mostrado em ( 101 ) e na figura 041.
Na figura 042, em (102) é demonstrado o diagrama básico de um ciclo combinado Rankine-Carnot, neste processo, após o último estágio de turbinas, vapores com temperaturas entre 100°C e 200°C perdem energia ao ambiente e no processo de condensação, esta energia é transferida para o conversor tema desta patente realizar uma nova conversão termomecânica adicionando potência ao mesmo eixo de força, maximizando o rendimento do conjunto, tornando-se um ciclo combinado Rankine-Carnot (102).
Na figura 043, em (103) é demonstrado o diagrama básico de um ciclo combinado Diesel-Carnot, neste processo, o motor de ciclo Diesel libera após a fase de explosão sobre o pistão no interior do cilindro, gases ainda muito quentes cujo O
Figure imgf000026_0001
calor se propaga para a carcaça do motor e para o escapamento, esta energia em forma de calor pode ser transferida por meio de fluidos de resfriamento da máquina para o circuito que forma o conversor termomecânico, permitindo a execução de mais uma transformação termodinâmica com transferência de força para o mesmo eixo, criando um novo sistema mais eficiente chamado ciclo combinado Diesel- Carnot (103).
Na figura 044, em (104) é demonstrado o diagrama básico de um ciclo combinado Otto-Carnot, neste processo, o motor de ciclo Otto libera após a fase de explosão sobre o pistão no interior do cilindro, gases ainda muito quentes cujo calor se propaga para a carcaça do motor e para o escapamento, esta energia em forma de calor pode ser transferida por meio de fluidos de resfriamento da máquina para o circuito que forma o conversor termomecânico, permitindo a execução de mais uma transformação termodinâmica com transferência de força para o mesmo eixo, criando um novo sistema mais eficiente chamado ciclo combinado Otto-Carnot (104).
As características reunidas da presente invenção que em resumo são: geometria dos elementos de transferência de calor para o gás, modelo de isolamento e de concentração do calor no interior das câmaras, processo de transformações termodinâmicas conforme o ciclo de Carnot diferencial, com fluxo do gás de trabalho passando de uma câmara à outra e um sistema de controle eletrônico microprocessado, juntamente com os elementos sensores do processo, temperatura, pressão e posição angular, confere a esta máquina um desempenho superior, permitindo projetos de máquinas de grande porte na geração de energia elétrica para suprir grandes regiões consumidoras, para uso comercial em larga escala, com o emprego de múltiplas fontes térmicas, em especial a termossolar, permitindo inclusive sistemas operantes com baixos diferenciais de temperatura entre as fontes quentes e frias a partir de aproximadamente 50 Kelvin. Pelas características da inovação proposta com o emprego de unidade de controle eletrônico e servoacionamentos, permite seu emprego em substituição a motores para uso em veículos.
Figure imgf000027_0001
Sua característica operacional de ciclos termodinâmicos independentes do ciclo mecânico da força motriz permite projetos que tenham como princípio de força motriz a pressão de gás e também fluxo de gás, favorecendo projetos tanto com pistões como com turbinas ou outro elemento de força motriz.
Conforme a descrição acima, esta invenção propõe inovação substancial para os futuros sistemas de energia, agora com base na teoria termodinâmica de Sadi Carnot, considerado o modelo ideal para transformar energia térmica em trabalho. Tem como objetivos a sua aplicação em plantas de geração de energia tendo como fonte básica, a energia termossolar e como complementos, as fontes térmicas de origem geológica, biocombustíveis e também em casos especiais ou para complemento os combustíveis de origem fóssil e até mesmo a nuclear.
Conclui-se que se trata de uma tecnologia que reúne uma flexibilidade incomum e, portanto trará benefícios em conformidade com os padrões que se buscam na atualidade.

Claims

REIVINDICAÇÕES
1.) "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" trata-se de uma invenção que utiliza os princípios básicos do ciclo termodinâmico de Carnot, sendo a máquina térmica caracterizada por compreender um circuito fechado, formado por:
um conversor de energia que realiza transformações termodinâmicas, composto por uma carcaça cilíndrica fechada e isolada termicamente, onde em seu interior são dispostas duas câmaras termodinâmicas concêntricas, porém com operações de transformações termodinâmicas diferenciais promovida pela defasagem em 180°, cada câmara contendo uma pluralidade de discos estatores de troca de calor e discos estatores isolantes paralelos entre si e fixados a carcaça, e uma pluralidade de discos intermediários vazados que formam o rotor, fixados a um eixo central, dotado de canais internos de passagem e distribuição do fluído de gás entre as áreas vazadas dos discos estatores em cada câmara, sendo eixo rotacionado por um servomotor ou motor de passos, e controlado angularmente por um elemento sensor de indicação de rotação e posicionamento angular de precisão denominado encoder agregado ao servomotor ou motor de passos;
um elemento sensor de pressão ou transmissor de pressão em cada um dos orifícios de saída de cada uma câmaras que realiza os ciclos termodinâmicos;
um elemento sensor de temperatura em cada um dos orifícios de saída de cada uma câmaras que realiza os ciclos termodinâmicos;
um módulo de controle de fluxo dotado de tubulações e dois conjuntos de válvulas de fluxo de duas vias de controle do processo, que interligam as saídas do gás de trabalho das câmaras de transformações termodinâmicas às saídas e entradas do elemento de força motriz;
um módulo de compressão, formado por dutos, compressor, válvulas, que interligam a saída de uma das câmaras à saída da segunda câmara
uma unidade de força motriz independente que gera força para um gerador de energia ou para disponibilizar força mecânica de tração, que opera através da passagem do fluído térmico do gás do ciclo termodinâmico;
Figure imgf000029_0001
I vz / / í u u te 9 (¾ uma unidade lógica de controle, com atuadores eletrônicos e um programa contendo o processo de controle de todos os elementos que compõe a máquina térmica;
uma unidade que compreende um circuito de fluido térmico quente com reservatório e bomba, interligados as câmaras termodinâmicas;
uma unidade que compreende um circuito de fluido térmico frio com reservatório e bomba, interligados as câmaras termodinâmicas.
2. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizado pelos discos rotores possuírem raias de material rígido e aros internos de fixação ao eixo e aros externos interligados pelas raias divididos em oito semi círculos simétricos, com seis deles completamente preenchidos com material isolante térmico e dois deles com material isolante térmico porém vazados de forma a criar um volume a ser tomado pelo gás de trabalho, deixando expostas as duas maiores áreas para fazer fronteiras totalmente com as zonas de transferência de calor ou de isolamento, cada uma necessária para realizar as respectivas transformações do ciclo termodinâmico.
3. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 2 é caracterizado por uma variante do disco rotor possuir raias de material rígido e aros internos de fixação ao eixo e aros externos interligados pelas raias divididos em quatro semi círculos simétricos, com dois deles completamente preenchidos com material isolante térmico e dois deles com material isolante térmico porém vazados de forma a criar um volume a ser tomado pelo gás de trabalho, deixando expostas as duas maiores áreas para fazer fronteiras totalmente com as zonas de transferência de calor, para máquinas com transitório direto entre as isotérmicas, regiões de transferência de calor quentes e frias.
4. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizado pelos canais internos do eixo central serem revestidos internamente Ρ ητ/Ç R ni 5 / 0 0 2 ? o com material isolante térmico.
5. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizada por possuir um servomotor ou motor de passos dotado de controle de rotação e de posicionamento angular de acionamento elétrico conectado no eixo do rotor.
6. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizada pelo elemento sensor ou encoder de indicação da rotação e de posição angular ser conectado ao eixo de forma direta ou indireta.
7. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com as reivindicações 1 a 6 é caracterizado pelo rotor servoacionado que é formado pelo eixo central, dois conjuntos de discos rotores, um servomotor ou motor de passos e o sensor de posição angular e rotação, permitir o controle das quatro transformações termodinâmicas de Carnot.
8. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 7 é caracterizado pelo rotor servoacionado possuir dois conjuntos de discos, cada um ocupando sua respectiva câmara que formam o sistema de dois estatores, montados defasados, assim permitindo o processo de controle das transformações termodinâmicas conforme o ciclo de Carnot de modo diferencial.
9. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizado pelos discos isolantes que formam as partes extremas dos estatores serem formados por discos com raias de material rígido e aros internos não fixados ao eixo, livres, e aros externos fixos à carcaça interligados pelas raias divididos em semi círculos simétricos, com todos os semi círculos completamente preenchidos com material isolante térmico, isolando os últimos discos de transferência de calor com as extremidades da carcaça externa da máquina. P C r /.rç p ΓΗ / o 0 0 2 2 9
10. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizada pelos discos que formam as partes de troca de calor dos estatores, serem formados por discos com raias de material rígido e aros internos não fixados ao eixo, livres, e aros externos fixos à carcaça interligados pelas raias divididos em oito semi círculos simétricos, com quatro deles completamente preenchidos com material isolante térmico, dois deles com placas de transferência térmica quente inseridos em peças de material isolante térmico os quais fazem fronteira com os aros e raias, dois deles com placas de transferência térmica fria, também inseridas em peças de material isolante térmico e estes discos possuem suas faces maiores não isoladas, completamente expostas ao gás de trabalho ou às faces de material isolante do rotor, de acordo com a posição angular das transformações termodinâmicas do processo.
1 1. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 10 é caracterizado por uma variante dos discos de troca de calor dos estatores, serem formados por discos com raias de material rígido e aros internos não fixados ao eixo, livres, e aros externos fixos à carcaça interligados pelas raias divididos em quatro semi círculos simétricos, com dois deles com placas de transferência térmica quente inseridos em peças de material isolante térmico, os quais fazem fronteira com os aros e raias, dois deles com placas de transferência térmica fria, também inseridas em peças de material isolante térmico, para máquinas com transitório direto entre as isotérmicas. E estes discos possuem suas faces maiores não isoladas, completamente expostas ao gás de trabalho, de acordo com a posição angular das transformações termodinâmicas do processo.
12. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com as reivindicações 10 e 11 é caracterizada por possuir nos discos de troca de calor dos estatores, placas de transferência de calor quentes e frias construídas em material metálico, bom condutor térmico, constituídos de um ou mais circuitos de circulação de fluido térmico e cada um destes circuitos possui alimentação exclusiva e diretamente dos respectivos reservatórios ou fontes de calor ou frio.
13. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com as reivindicações 1, 9, 10, 1 1 e 12 é caracterizada por possuir um corpo formando um sistema de dois estatores que caracterizam duas câmaras formadas por carcaça, discos de transferência de calor, discos isolantes térmicos, formando o conjunto no qual permite que o rotor execute o controle das quatro transformações termodinâmicas de Carnot de modo diferencial.
14. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizado por possuir um conjunto de válvulas, formando um sistema de controle de fluxo de gás o qual através da unidade de controle eletrônica computadorizada, possibilita o controle dos pontos de transição do processo das quatro transformações termodinâmicas do ciclo de Carnot.
15. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizada por possuir um conjunto de sensores, formando um sistema de monitoramento de pressão e temperatura o qual através da unidade de controle eletrônica computadorizada, possibilita identificar os pontos para envio de sinais de controle do sistema de válvulas e do rotor auxiliares do processo das quatro transformações termodinâmicas do ciclo de Carnot.
16. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizado pela unidade de controle eletrônica computadorizada possuir canais de entradas analógicas de leituras de pressão, temperatura, canais de entradas digitais para leitura de rotação e posição angular do rotor, canais de saída digitais para controle das válvulas, sinais de controle analógico ou por rede de sinais para o controle linear das bombas, com um programa flexível que controla o processo.
17. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O D f r > r: Γ: ο?\ " 7 / A 9 O Q
CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação l é caracterizada pelo elemento de força motriz, para máquinas de alta rotação possuir uma turbina que opera com fluxo de gás, cujo eixo e operação são independentes do rotor que opera as transformações termodinâmicas.
18. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizado pelo elemento de força motriz, para máquinas de rotação baixa e média, possuir um elemento mecânico que opera pelo processo de pressão, pistões, cujo eixo e operação são independentes do rotor que opera as transformações termodinâmicas.
19. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 é caracterizada pela máquina térmica operar com um fluido térmico que transporta calor, o qual pode operar com fontes térmicas de quaisquer naturezas, termossolar, termonuclear, geotérmica, por combustíveis renováveis, por resíduos combustíveis ou por combustíveis não renováveis, inclusive do calor expelido de outras máquinas e processos.
20. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1 e 19 é caracterizado por operar com fontes térmicas de quaisquer naturezas isoladamente ou em consórcio.
21. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1, 19 e 20 é caracterizada por operar com fontes térmicas de quaisquer naturezas, incluindo as energias térmicas expelidas ou liberadas por outras máquinas, gases a altas temperaturas liberadas por turbinas que operam por ciclo Brayton, propiciando sistemas combinados de ciclo Brayton-Camot.
22. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1, 19 e 20 é caracterizada por operar com fontes térmicas de quaisquer naturezas, P P.7 ?π ·' . / 9 9 incluindo as energias térmicas expelidas ou liberadas por outras máquinas, vapores quentes da saída dos últimos estágios das turbinas que operam por ciclo Rankine, propiciando sistemas combinados de ciclo Rankine-Carnot.
23. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1, 19 e 20 é caracterizada por operar com fontes térmicas de quaisquer naturezas, incluindo as energias térmicas expelidas ou liberadas por outras máquinas por meio de fluidos de refrigeração de motores de ciclo Diesel, propiciando sistemas combinados de ciclo Diesel-Carnot.
24. "MÁQUINA TÉRMICA QUE OPERA EM CONFORMIDADE COM O CICLO TERMODINÂMICO DE CARNOT" de acordo com a reivindicação 1, 19 e 20 é caracterizada por operar com fontes térmicas de quaisquer naturezas, incluindo as energias térmicas expelidas ou liberadas por outras máquinaspor meio de fluidos de refrigeração de motores de ciclo Otto, propiciando sistemas combinados de ciclo Otto-Carnot.
25. "PROCESSO DE CONTROLE" que controla as quatro transformações termodinâmicas, sendo duas transformações isotérmicas e duas transformações adiabáticas em conformidade com o ciclo de Carnot é caracterizado por ser controlado por um dispositivo lógico com ura programa que executa sequencialmente e sincronizadamente estas quatro transformações sendo uma transformação isotérmica de alta temperatura, onde o rotor mantém o gás exposto às placas de alta temperatura e na qual o gás expande, realizando trabalho no elemento de força motriz, normalmente uma turbina ou motor, na sequência com o movimento angular do rotor, uma transformação adiabática, onde o rotor mantém o gás exposto às placas de isolante térmico e na qual o gás não troca calor com o meio, porém baixando sua temperatura, conservando a energia, na sequência com outro movimento angular do rotor, uma transformação termodinâmica isotérmica de baixa temperatura, onde o rotor mantém o gás exposto às placas de baixa temperatura e na qual o gás se contrai, recebendo trabalho da turbina ou motor, novamente na sequência com outro movimento angular do rotor, uma transformação termodinâmica adiabática, onde o rotor mantém o gás novamente exposto às placas de isolante térmico, e na qual o gás não troca calor com o meio, porém aumentando a temperatura, conservando a energia, encerrando um ciclo completo de Carnot.
26. "PROCESSO DE CONTROLE" de acordo com a reivindicação 25 é caracterizado por possuir no processo o ciclo termodinâmico de quatro fases, duas isotérmicas e duas adiabáticas, independente do ciclo mecânico de força motriz.
27. "PROCESSO DE CONTROLE" de acordo com as reivindicações 25 e 26 é caracterizado por possuir no processo o controle do fluxo do gás de trabalho por meio de válvulas de duas vias controladas eletronicamente, abrindo as válvulas permitindo o fluxo do gás passando pelo elemento de força motriz durante o processo das transformações isotérmicas e passando pelo compressor durante o processo das transformações adiabáticas.
28. "PROCESSO DE CONTROLE" de acordo com a reivindicação 25 é caracterizado por possuir no processo, o controle de transição de cada uma das quatro fases termodinâmicas por meio eletrônico, através dos sinais de leituras dos elementos sensores de pressão e de temperatura, os quais determinam ao programa os respectivos momentos de acionamento das válvulas e do movimento do rotor servocontrolado.
29. "PROCESSO DE CONTROLE" de acordo com a reivindicação 25 é caracterizado por possuir um processo de quatro transformações termodinâmicas conforme o ciclo de Carnot, com potência controlável, modulando as transformações isotérmicas e adiabáticas, por um método de controle do tipo "duty cycle", permitindo maior fluxo de energia durante as transformações isotérmicas gerando mais trabalho ou potência, encurtando as transformações adiabáticas, ou ao contrário, encurtando as transformações isotérmicas propiciando menos trabalho ou potência e aumentando as fases das transformações adiabáticas, conservando mais energia.
30. "PROCESSO DE CONTROLE" de acordo com as reivindicações 25 e 26 é caracterizado por possuir no processo a realização de trabalho controlado eletronicamente que opera através do fluxo do gás de trabalho de uma câmara para a
Figure imgf000036_0001
outra ciclicamente, não importando se o elemento gerador de força motriz seja operante por pressão ou fluxo, como pistões ou turbina.
31. "PROCESSO DE CONTROLE" de acordo com a reivindicação 25 é caracterizado por possuir no processo o controle por meio de rotinas de lógicas de programa de controle das quatro fases do ciclo de Carnot da seguinte forma: nas fases isotérmicas do ciclo termodinâmico, o programa mantém o rotor estático expondo o gás de trabalho completamente às zonas quentes e frias respectivamente em cada uma das câmaras, permitindo o gás a realizar trabalho no motor ou turbina, porém as fases adiabáticas ocorrem durante a transição do movimento do rotor o qual neste caso desloca o gás diretamente de uma zona quente para a fria ou vice versa nas máquinas que são projetadas sem a região isolada.
PCT/BR2013/000222 2012-06-25 2013-06-21 Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle WO2014000072A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/410,105 US20150369124A1 (en) 2012-06-25 2013-06-21 Heat engine operating in accordance with carnot's thermodynamic cycle and control process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020120155540 2012-06-25
BR102012015554A BR102012015554A8 (pt) 2012-06-25 2012-06-25 Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle

Publications (1)

Publication Number Publication Date
WO2014000072A1 true WO2014000072A1 (pt) 2014-01-03

Family

ID=49781977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000222 WO2014000072A1 (pt) 2012-06-25 2013-06-21 Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle

Country Status (3)

Country Link
US (1) US20150369124A1 (pt)
BR (1) BR102012015554A8 (pt)
WO (1) WO2014000072A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195622A1 (pt) * 2017-04-25 2018-11-01 Associação Paranaense De Cultura - Apc Motor turbina de ciclo binário composto por três processos isotérmicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102013026634A2 (pt) 2013-10-16 2015-08-25 Abx En Ltda Máquina térmica diferencial com ciclo de oito transformações termodinâmicas e processo de controle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195992B1 (en) * 1999-01-21 2001-03-06 Arthur Charles Nommensen Stirling cycle engine
WO2003018986A1 (en) * 2001-08-27 2003-03-06 Michael John Vernon Cameron Stirling engine
WO2005042958A1 (ja) * 2003-10-30 2005-05-12 Japan Aerospace Exploration Agency スターリングエンジン
WO2006067429A1 (en) * 2004-12-22 2006-06-29 Microgen Energy Limited A linear free piston stirling machine
BRPI0515988A (pt) * 2004-10-12 2008-08-12 Guy Silver método e sistema para geração de energia e mecánica usando princìpios de máquina stirling
WO2009097698A1 (en) * 2008-02-07 2009-08-13 Robert Thiessen Method of externally modifying a carnot engine cycle
WO2009103871A2 (fr) * 2007-12-05 2009-08-27 Pascot, Philippe Machine thermodynamique, en particulier de type carnot et/ou stirling
WO2010048113A1 (en) * 2008-10-20 2010-04-29 Sunpower, Inc. Balanced multiple groupings of beta stirling machines
WO2010062131A2 (ko) * 2008-11-27 2010-06-03 Chae Soo Joh 열기관
WO2011005673A1 (en) * 2009-07-07 2011-01-13 Global Cooling, Inc. Gamma type free-piston stirling machine configuration
BRPI1000624A2 (pt) * 2010-03-05 2011-10-25 Zulmira Teresina Lockheck conversor de energia termomecánico

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6796123B2 (en) * 2002-11-01 2004-09-28 George Lasker Uncoupled, thermal-compressor, gas-turbine engine
US20110000206A1 (en) * 2007-01-24 2011-01-06 Torok Aprad Progressive thermodynamic system
JP5267689B2 (ja) * 2011-04-26 2013-08-21 株式会社デンソー 磁気ヒートポンプ装置
US9086013B2 (en) * 2013-03-12 2015-07-21 Ethan W Franklin Gerotor rotary Stirling cycle engine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195992B1 (en) * 1999-01-21 2001-03-06 Arthur Charles Nommensen Stirling cycle engine
WO2003018986A1 (en) * 2001-08-27 2003-03-06 Michael John Vernon Cameron Stirling engine
WO2005042958A1 (ja) * 2003-10-30 2005-05-12 Japan Aerospace Exploration Agency スターリングエンジン
BRPI0515988A (pt) * 2004-10-12 2008-08-12 Guy Silver método e sistema para geração de energia e mecánica usando princìpios de máquina stirling
BRPI0515980A (pt) * 2004-10-12 2008-08-12 Guy Silver método e sistema para a geração de energia usando princìpios do motor "stirling"
WO2006067429A1 (en) * 2004-12-22 2006-06-29 Microgen Energy Limited A linear free piston stirling machine
WO2009103871A2 (fr) * 2007-12-05 2009-08-27 Pascot, Philippe Machine thermodynamique, en particulier de type carnot et/ou stirling
WO2009097698A1 (en) * 2008-02-07 2009-08-13 Robert Thiessen Method of externally modifying a carnot engine cycle
WO2010048113A1 (en) * 2008-10-20 2010-04-29 Sunpower, Inc. Balanced multiple groupings of beta stirling machines
WO2010062131A2 (ko) * 2008-11-27 2010-06-03 Chae Soo Joh 열기관
WO2011005673A1 (en) * 2009-07-07 2011-01-13 Global Cooling, Inc. Gamma type free-piston stirling machine configuration
BRPI1000624A2 (pt) * 2010-03-05 2011-10-25 Zulmira Teresina Lockheck conversor de energia termomecánico

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195622A1 (pt) * 2017-04-25 2018-11-01 Associação Paranaense De Cultura - Apc Motor turbina de ciclo binário composto por três processos isotérmicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina

Also Published As

Publication number Publication date
BR102012015554A2 (pt) 2014-12-02
US20150369124A1 (en) 2015-12-24
BR102012015554A8 (pt) 2017-09-19

Similar Documents

Publication Publication Date Title
US7823381B2 (en) Power plant with heat transformation
US5916140A (en) Hydraulic engine powered by introduction and removal of heat from a working fluid
IL128575A (en) Thermo-hydraulic motor
CA2778101A1 (en) Power generation by pressure differential
JP5878132B2 (ja) スターリングサイクルを使用するエネルギー変換器
WO2014000072A1 (pt) Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle
US9488161B2 (en) Thermal expansion drive devices and related methods
WO2015054767A1 (pt) Máquina térmica diferencial com ciclo de oito transformações termodinãmicas e processo de controle
WO2016137442A1 (en) A turbine and method of making and using the same
US20080127648A1 (en) Energy-conversion apparatus and process
WO2018035588A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos isocóricos com regenerador ativo e processo de controle para o ciclo termodinâmico do motor trémico
WO2018195619A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
RU2582373C2 (ru) Турбомашина с нагревом проточной части
ĎURčAnSKý et al. Modelling and application of Stirling engine with renewable sources in electricity production
BR102016019857A2 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195622A1 (pt) Motor turbina de ciclo binário composto por três processos isotérmicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
WO2018195626A1 (pt) Motor turbina de ciclo binário composto por três processos politrópicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
WO2018195627A1 (pt) Motor turbina de ciclo combinado brayton e binário-isobárico-adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado
WO2018195621A1 (pt) Motor turbina de ciclo binário composto por três processos isobáricos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
WO2018195620A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195628A1 (pt) Motor turbina de ciclo combinado brayton e binário-isotérmico- adiabático e processo de controle para o ciclo termodinâmico do motor turbina de ciclo combinado
BR102018068525A2 (pt) Motor turbina de ciclo brayton integrado de circuito fechado regenerativo para geração a partir de fonte heliotérmica ou termonuclear e processo de controle para o ciclo termodinâmico do motor
WO2018195618A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico
BR102018004170A2 (pt) Motor térmico de combustão externa com ciclo composto por um processo isocórico, um processo adiabático e um processo isotérmico e processo de controle para o ciclo termodinâmico do motor térmico
WO2018035586A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isocóricos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14410105

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809470

Country of ref document: EP

Kind code of ref document: A1