WO2015054767A1 - Máquina térmica diferencial com ciclo de oito transformações termodinãmicas e processo de controle - Google Patents

Máquina térmica diferencial com ciclo de oito transformações termodinãmicas e processo de controle Download PDF

Info

Publication number
WO2015054767A1
WO2015054767A1 PCT/BR2014/000381 BR2014000381W WO2015054767A1 WO 2015054767 A1 WO2015054767 A1 WO 2015054767A1 BR 2014000381 W BR2014000381 W BR 2014000381W WO 2015054767 A1 WO2015054767 A1 WO 2015054767A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformations
thermodynamic
chamber
differential
cycle
Prior art date
Application number
PCT/BR2014/000381
Other languages
English (en)
French (fr)
Inventor
Marno Iockheck
Original Assignee
Abx Energie Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abx Energie Ltda filed Critical Abx Energie Ltda
Priority to CA2926567A priority Critical patent/CA2926567C/en
Priority to JP2016523313A priority patent/JP2016535192A/ja
Priority to EP14854290.5A priority patent/EP3059428B1/en
Priority to CN201480056715.7A priority patent/CN105793548B/zh
Priority to US15/030,080 priority patent/US10018149B2/en
Publication of WO2015054767A1 publication Critical patent/WO2015054767A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/05Controlling by varying the rate of flow or quantity of the working gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/02Single-acting two piston engines
    • F02G2244/06Single-acting two piston engines of stationary cylinder type
    • F02G2244/10Single-acting two piston engines of stationary cylinder type having cylinders in V-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • F02G2250/09Carnot cycles in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/90Valves

Definitions

  • the present invention relates to the technical field of thermodynamic motors, more specifically to a differential-cycle closed-gas gas thermal machine which is characterized by performing an eight-transformation thermodynamic cycle, or otherwise to explain, it performs simultaneously two thermodynamic cycles, each with four complementary interdependent transformations, two of which are “isothermal” and two "adiabatic” with mass transfer.
  • the present machine operates in accordance with the principles of thermodynamics, more specifically according to the foundations of Nicolas Léonard Sadi Carnot, or commonly “Carnot”, whose secular and accepted utterance in the scientific world does not change.
  • a system must cycle between hot and cold sources continuously.In each cycle, a certain amount of heat is removed from the hot source (useful energy), which is partially converted to work, and the remainder is rejected for the cold source. (energy dissipated) "
  • Rankine Cycle Machines created in 1859 by William John Macquorn Rankine, machines used in jays and also in energy generation operate by the Brayton Cycle, created in 1872 by George Brayton, proposed earlier in 1791 by John Barber, uses as a power source. , also derived from materials of fossil origin, kerosene, gas. Internal combustion engines used in automobiles operate on the Otto cycle, developed by Nikolaus Otto in 1876, also uses fossil fuels, gasoline, currently also of plant origin, alcohol.
  • thermodynamic cycle are referenced to the neighborhood and this is the environment, which can be the atmosphere, the space they are in, for example:
  • Internal combustion engines after working on a mechanical force element, piston, turbine, the gases are released into the environment, so the gas forces push the motive force elements towards their respective surroundings, ie the environment.
  • their thermodynamic cycle of four transformations, two isothermal and two isochoric occurs with the gas always confined in the same environment and the driving force occurs through the displacement of an element, for example a piston, against its vicinity, the external environment or other pressurized or vacuum chamber.
  • the technology described in the present description presents a closed-loop machine, but it is not composed of a four-transformation cycle but a new concept in a differential configuration so that it performs an eight-transformation cycle, always in pairs, two by two, with mass transfer, maintaining and following Carnot's concepts of thermodynamics, however, it requires considering the mass variation in the equations, providing a possibility not considered in the current thermal machines, that is, the The concept of the present technology offers a new condition that influences throughput, enabling the design of more efficient machines where the yield limit no longer requires the sole and exclusive dependence on temperature, but instead considers the mass transfer rate between the chambers. conversion so that the income equation has a new factor.
  • the developed technology which is the subject of this patent text, is not an ideal lossless machine, but it is a machine capable of performing the eight thermodynamic cycle transformations with high precision from a thermal source of any kind, therefore, it has the main characteristics currently desired for powertrain machine designs or power generation plants. It has benefits of practical and economical application and depending on each project, power ranges and characteristics of heat sources, can perform very high yields, surpassing the performance of the vast majority of other machines considered high performance, because it does not have its efficiency. solely dependent on temperature.
  • Another objective of singular importance is the use of this technology in flexible power generation plants in terms of thermal sources, economically viable yield in relation to generated energy versus thermal source and with minimal environmental impact, such as the use of clean thermal sources such as solar, thermosolar, low environmental impact as biofuels and economical as the use of waste and in pre-existing plants where it operates by heat loss, forming cogeneration systems, or combined with other technologies forming more complex processes called combined cycles such as forming Brayton-Differential Combined cycle systems, using as heat source the high temperature gases released by Brayton, Rankine-Differential cycle turbines, whose heat source is the steam outputs of the last stages of the steam turbines and chimney gases, Diesel-Differential, whose heat source comes from of the Otto-Differential diesel engine coolants, whose heat source comes from the Otto cycle machine coolants, among others, significantly enhancing performance as Brayton, Rankine, Diesel cycle thermal machine processes , Otto, have many thermal losses that cannot be harnessed by their own high temperature dependent thermodynamic cycles, requiring
  • Figure 01 shows the original Carnot machine (1), the flow diagram of the Carnot machine and other thermal machines operating with four thermodynamic transformations cycle (2), the Carnot machine cycle graph with its four transformations. (3).
  • Figure 02 shows the Differential Machine (4), composed of two thermodynamic transformation chambers (5) and (6), each chamber with three sections, respectively (8), (9), (10) and (11), (12), (13) each section has its movable, controllable piston, each chamber with a gas volume (18) and (19), working gas flow channels (20) and (21), gas mass transfer (17), control valve assembly (14) and (15), drive power element inertial operation release valve (16), driving force element (7), power element pistons (22) and (23), crankshaft shaft of the driving force element (24).
  • Three-section chambers may be constituted in various forms, are already in the state of the art, may be by plungers, as exemplified, this model was used to facilitate understanding of the technology described herein, may be in the form of disks contained in a circular housing which provides advantages for the pressure balance, as contained in the state of the art, as well as actuators for moving pistons or three-section chambers, which may be electric by means of motors, servomotors, tires or even by direct mechanical means.
  • the working gas never changes physical state in any of the eight transformations of the cycle, it will always be in the gaseous state and can be chosen according to project due to its properties, the main ones are Helium, Hydrogen, Neon, Nitrogen and dry air. of the atmosphere.
  • Figure 03 shows again the differential machine (4), the heat flow diagram of the differential machine (25) and the comparative graph of the thermodynamic cycles of the differential machine and Carnot machine (26).
  • Figure 4 shows the differential machine (4) with a chamber containing the working gas in the heated section performing its high temperature isothermal transformation shown in graph (27), while the other chamber also containing working gas in the cooled section performing its low temperature isothermal transformation, shown in graph (28). These transformations occur from one to the other, so it is called “Differential”.
  • the mass transfer elements (17) and valve for releasing the inertial operation of the driving force element (16) are closed, the control valves
  • figure 05 is shown the differential machine (4) with a chamber containing the working gas in the insulated section performing its mass transfer adiabatic transformation (29) to the second chamber, simultaneously to another chamber also containing working gas in the isolated section performing its transformation also adiabatic, but compression (30), receiving working gas from the first chamber.
  • the mass transfer element (17) transfers gas particles from the first high temperature chamber to the second low temperature chamber, the valve for releasing the inertial operation of the driving force element (16). allowing the crankshaft (24) to continue to rotate from the driving force (7), the control valves (14) and
  • figure 06 is shown the differential machine (4) now with the first chamber containing the working gas in the cooled section performing its low temperature isothermal transformation shown in graph (31), simultaneously to another chamber in turn, also containing gas of work in the heated section performing its high temperature isothermal transformation, shown in graph (32).
  • the mass transfer elements (17) and valve for releasing the inertial operation of the driving force element (16) are closed, the control valves (14) and (15) are open allowing gas to work on the driving force element (7).
  • FIG 07 is shown the differential machine (4) with a camera containing the working gas in the isolated section performing its adiabatic compression transformation (33) receiving gas mass from the second chamber, simultaneously to another chamber also containing working gas in the isolated section performing its also adiabatic but expanding transformation (34), with working gas transfer to the first chamber.
  • the mass transfer element (17) transfers gas particles from the second chamber, now in the high temperature condition, to the first low temperature chamber, the valve for releasing the inertial operation of the driving force element (16) Open allowing the crankshaft (24) to continue to rotate from the driving force element (7), the control valves (14) and (15) are closed to perform adiabatic processes.
  • Fig. 08 shows the graph of the yield of the "Eight Closed-Loop Differential Thermal Machine with Gas Mass Transfer between Chambers for different gas mass transfer rates, to be explained in the present patent text.
  • thermodynamic cycle is a reference of four transformations shown in (3) still in figure 01, composed by two isothermal and two adiabatic transformations.
  • T 2 is the cold source temperature and T (the hot source temperature, and the efficiency of this machine tends to 100% at the limit where T 2 tends to "zero".
  • thermodynamic cycles no longer occur with reference to the environment, but with reference to another simultaneous and lagged thermodynamic cycle and all calculations become one with reference to the other, creating new possibilities.
  • Figure 02 shows the "Eight Thermodynamic Transformation Closed-Loop Differential Thermal Machine with Mass Transfer between Chambers”.
  • figure 02 indicates a chamber composed of three sections, one heated, one isolated and one cooled, the gas will always occupy only one of the sections in each of the tennodynamic transformations.
  • this chamber four of the eight transformations that occur in the same cycle are processed, the gas during each transformation phase is transported to the sections through the pistons indicated in the same figure.
  • the other chamber identical to the first one, which processes the other four transformations completing the thermodynamic cycle of eight transformations, both are connected to each other in a differential configuration by means of the ducts (20) and (21), including a driving force element (7), a gas mass transfer element (17), a control valve assembly (14) and (15), a valve for releasing inertial operation of the driving force element (16).
  • the driving force element consists of pistons (22) and (23) and crankshaft shaft (24) which depending on the system characteristics, the driving force element may differ and even be known market shares such as turbines, diaphragms, rotors that operate by gas flow.
  • the elements (8) and (11) show respectively the heated sections of the chambers (5) and (6)
  • the elements (9) and (12) respectively show the isolated sections of the chambers (5) and (6)
  • elements (10) and (13) show respectively the cooled sections of chambers (5) and (6)
  • thermo-dynamic cycle the performance of a machine in the differential gas particle transfer configuration with a 8-transformation thermo-dynamic cycle.
  • T 2 is the cold source temperature
  • the hot source temperature and the particle transfer rate between chambers and the efficiency of this machine tends to 100% under two possible conditions, where T 2 tends to "zero" and at the limit where l / k tends to zero as can be seen in graph (35), specifically at point (36) shown in figure 08.
  • the mass transfer differential cycle consists of the passage of a certain amount of gas particles from the chamber that has completed its high isothermal transformation to the chamber that has completed its low isothermal transformation, but this transfer occurs during adiabatic transformations. causing an extension of the curves as shown in graph (26) of figure 03. While one of the chambers suffers the effect of pressure drop, density reduction (volume increase) observed in (a) of graph (26), in the other pressure increases, density increases (volume reduction) observed in (c) of graph (26). This length of the curve increases the area of the cycle, ie the work done.
  • Differential thermal machines perform simultaneous thermodynamic transformations, shown by the arrows on the high (cd) and low (ab) isotherms in the graph (26) of figure 03, as they are differential there are two chambers simultaneously performing their own thermodynamic cycle, but one with reference to the other. This property allows the transfer of matter between them in order to reduce the energy supplied to the cold source.
  • the fundamentals of differential thermal machines are the same as other thermal machines, with the Carnot machine as a general reference.
  • the Differential Machine with eight thermodynamic transformations cycle performed two by two simultaneously has a performance that can be demonstrated mathematically as follows:
  • thermodynamic cycle with the particles it contains. It would therefore be an integrated system with two simultaneous thermodynamic cycles, lagged by 180 °, or a thermodynamic cycle with 8 transformations occurring in pairs, lagged and interdependent because they exchange mass with each other and the expansions are carried out alternately and not against each other. environment.
  • Mass transfer occurs during adiabatic processes after one of the chambers performs work against the other in the high isotherm, the control system would enable particle passage through the high chamber element (17) to the low chamber, until the pressure balance is reached or forced. In this way a smaller number of gas particles will be available in the low isotherm, reducing energy loss to the cold source. This conserved energy will be circulating between the two chambers of the machine, shown in the flow diagram (25) of Fig. 03, providing increased efficiency and this energy fraction cannot be used to generate work.
  • the total amount of energy associated with the job is:
  • T 2 is the cold source temperature and Ti is the hot source temperature.
  • this invention proposes substantial innovation for future power systems as it has the property of operating with any thermal source. Its objectives are its application in power generation plants having as its basic source, thermosolar energy and as complements, thermal sources of geological origin, biofuels and also in special cases or to complement fossil and even nuclear fuels. . Exemplifying the application fields of this technology follows:
  • thermosolar sources with mirrors and concentrators
  • these plants can be Large generating plants having as source of heat the use of the fall from the depths of the soil, obtained by passing a circulating thermal fluid to obtain the heat from the depths, transporting it to the surface and thus being used in the chambers. of conversion.
  • Small and medium sized generating plants for distributed generation having as source of heat small solar concentrators or small boilers for burning agro-industrial waste or garbage waste.
  • high power generation is included to meet the needs of space propulsion ion motors.
  • AIP submarine power generation systems "Air Independent Propulsion", using heat source as fuel cells.
  • Machines for generating mechanical force of vehicular traction are Machines for generating mechanical force of vehicular traction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Refere-se a presente invenção, ao campo técnico de motores termodinâmicos, mais especificamente a uma máquina térmica que opera com gás em ciclo fechado em configuração diferencial a qual é caracterizada por realizar um ciclo termodinâmico de oito transformações, ou de outra forma a explicar, a mesma realiza simultaneamente dois ciclos termodinâmicos, cada um com quatro transformações interdependentes, complementares, sendo duas destas transformações "isotérmicas" e duas "adiabáticas" com transferência de massa nas fases de transformações adiabáticas de forma a proporcionar uma nova curva de rendimento não mais dependente exclusivamente da temperatura, mas da taxa de transferência de massa a qual permite a construção de máquinas com rendimentos altos e baixos diferenciais térmicos.

Description

MÁQUINA TÉRMICA DIFERENCIAL COM CICLO DE OITO TRANSFORMAÇÕES TERMODINÂMICAS E PROCESSO DE CONTROLE
Refere-se a presente invenção, ao campo técnico de motores termodinâmicos, mais especificamente a uma máquina térmica que opera com gás em ciclo fechado em configuração diferencial a qual é caracterizada por realizar um ciclo termodinâmico de oito transformações, ou de outra forma a explicar, a mesma realiza simultaneamente dois ciclos termodinâmicos, cada um com quatro transformações interdependentes, complementares, sendo duas destas transformações "isotérmicas" e duas "adiabáticas" com transferência de massa.
A presente máquina opera em conformidade com os princípios da termodinâmica, mais especificamente de acordo com os fundamentos de Nicolas Léonard Sadi Carnot, ou comumente "Carnot", cujo enunciado secular e aceito no meio científico não se altera, "Para haver conversão contínua de calor em trabalho, um sistema deve realizar ciclos entre fontes quentes e frias, continuamente. Em cada ciclo, é retirada uma certa quantidade de calor da fonte quente (energia útil), que é parcialmente convertida em trabalho, sendo o restante rejeitado para a fonte fria (energia dissipada)"
No presente, as necessidades mundiais por energia e força mecânica de tração se tornaram desafios cujas soluções vem trazendo implicações climáticas devastadoras. Os estudos desenvolvidos por organismos internacionais como a ONU revelam impactos de extrema gravidade ao planeta. A utilização de combustíveis fósseis, petróleo, gás, carvão, dos quais dependem a economia mundial, vem causando o aquecimento do planeta, redução das camadas de gelo polares, alterações do clima, altas concentrações de gases que geram o efeito estufa, entre outros problemas. Outras fontes de energia, como a atómica, utilizadas pelas nações mais desenvolvidas, por sua vez estão sujeitas a gerar graves acidentes por falhas de diversas ordens, entre estas se encontram as próprias mudanças climáticas que intensificam eventos como tempestades, furacões, entre outros.
Nos últimos duzentos anos foram inventadas várias máquinas térmicas para utilização na indústria e para gerar energia para a população, as tecnologias mais conhecidas e economicamente viáveis até o presente São: Máquinas de ciclo Rankine, criado em 1859 por William John Macquorn Rankine, máquinas usadas em jaíos e também em geração de enegia operam pelo ciclo Brayton, criado em 1872 por George Brayton, proposto mais cedo em 1791 por John Barber, utiliza como fonte de energia, também derivados de materiais de origem fóssil, querosene, gás. Máquinas de combustão interna usadas em automóveis operam pelo ciclo Otto, desenvolvido por Nikolaus Otto em 1876, utiliza também combustíveis de origem fóssil, gasolina, atualmente também de origem vegetal, o álcool. Máquinas de combustão interna usadas em veículos pesados, caminhões, trens, navios e em aplicações industriais, operam pelo ciclo Diesel, desenvolvido por Rudolf Diesel em 1893, utiliza também combustíveis de origem fóssil, óleo diesel, atualmente também de origem vegetal, o biodiesel. Máquinas de combustão externa, atualmente usada em projetos de energias alternativas, operam pelo ciclo Stirling, desenvolvido por Robert Stirling em 1816, utiliza várias fontes de energia, atualmente voltada para fontes menos poluentes e de menor impacto ambiental, como biomassa, fontes termais, termossolar.
Todas as tecnologias apresentadas acima são máquinas térmicas com ciclos termodinâmicos de quatro transformações e todas elas são referenciais, ou seja seu ciclo termodinâmico são referenciados à vizinhança e esta é o ambiente, podendo ser a atmosfera, ao espaço em que se encontram, por exemplo: as máquinas de combustão interna, após a realização do trabalho sobre um elemento de força mecânica, pistão, turbina, os gases são liberados ao ambiente, portanto as forças dos gases empurram os elementos de força motriz indo em direção às suas respectivas vizinhanças, ou seja o ambiente. No caso das máquinas Stirling, seu ciclo termodinâmico de quatro transformações, duas isotérmicas e duas isocóricas, ocorre com o gás sempre confinado no mesmo ambiente e a força motriz ocorre através do deslocamento de um elemento, por exemplo, um pistão, contra sua vizinhança, o ambiente externo ou outra câmara pressurizada ou com vácuo.
Entre as máquinas térmicas de circuito fechado, as que se assemelham à presente tecnologia por este motivo, ou seja, apenas por serem em circuito fechado se encontram as máquinas Stirling, observa-se motores tipo Alfa como as publicadas nas patentes US7827789 e US20080282693, tipo Beta como a patente US20100095668, tipo Gama como a patente US20110005220, máquinas Stirling Rotativas como as patentes OS6195992 e VS6996983, híbridas tipo Wankel -Stirling conforme patente US7549289 e outras referências como: PI0515980-6 A a qual trata de um método com princípio Stirling, PI0515988-1 A, da mesma forma trata de um método com princípio Stirling, a WO03018996 Al, a qual é uma máquina de ciclo Stirling rotativa, a WO2005042958 Al, uma máquina de ciclo Stirling tipo Beta, a WO2006067429A1, uma máquina de ciclo Stirling de pistão livre, a W02009097698 Al, trata de um método para máquina térmica de ciclo de Carnot modificado, a WO2009103871A2, que é uma máquina de ciclo Stirling ou de Carnot, a WO2010048113A1, uma máquina de ciclo Stirling balanceada, a WO201006213 A2, definida como uma máquina de calor de ciclo Stirling, a WO2011005673 Al, a qual trata de um modelo de máquina de ciclo Stirling do tipo Gama. Todas as referências definem modelos, métodos e inovações em máquinas térmicas de circuito fechado de ciclo Stirling o qual constitui de duas transformações isotérmicas e duas isocóricas ocorrendo uma após a outra sequencialmente.
Por outro lado, a tecnologia descrita no presente descritivo, apresenta uma máquina de circuito fechado, porém não é composta por um ciclo de quatro transformações e sim por um novo conceito numa configuração diferencial de modo que a mesma realiza um ciclo de oito transformações, sempre em pares, duas a duas, com transferência de massa, mantendo e seguindo os conceitos da termodinâmica, de Carnot, porém a mesma obriga a considerar a variação de massa nas equações, propiciando uma possibilidade não considerada nas máquinas térmicas atuais, ou seja, o conceito da presente tecnologia oferece uma nova condição que influencia o rendimento, permitindo o projeto de máquinas mais eficientes onde o limite de rendimento não exige mais a dependência única e exclusiva da temperatura, mas passa a considerar a taxa de transferência de massa entre as câmaras de conversão de modo que a equação do rendimento passa a ter um novo fator.
As inovações apresentadas no presente texto de patente são evoluções das patentes anteriores, P1000624-9 denominada de "Conversor de Energia Tennomecânico" e BR1020120155540 denominada de "Máquina Térmica que Opera em Conformidade com o Ciclo Termodinâmico de Carnot" de autoria do mesmo autor da presente patente.
A tecnologia desenvolvida, tema do presente texto de patente não trata de uma máquina ideal, sem perdas, no entanto é uma máquina capaz de realizar com alta precisão de modo diferencial as oito transformações do ciclo termodinâmico a partir de uma fonte térmica de qualquer natureza, assim sendo, possui as principais características desejadas atualmente para projetos de máquinas para força motriz ou em plantas de geração de energia. A mesma trás benefícios de aplicação prática e económica e conforme cada projeto, faixas de potência e das características das fontes de calor, poderá desempenhar rendimentos muito elevados, superando o rendimento da grande maioria das demais máquinas consideradas de alto desempenho, por não possuir seu rendimento dependente exclusivamente da temperatura.
Outro objetivo de importância singular é o emprego desta tecnologia em plantas de geração de energia flexíveis quanto às fontes térmicas, rendimento economicamente viável na relação energia gerada versus fonte térmica e com o mínimo impacto ambiental, como por exemplo a utilização de fontes térmicas limpas como a solar, termossolar, de baixo impacto ambiental como biocombustíveis e económicos como o uso de resíduos e em plantas pré-existentes onde o mesmo opera pelas perdas de calor, formando sistemas de cogeração, ou ainda agregado a outras tecnologias formando processos mais complexos denominados ciclos combinados como por exemplo formando sistemas de ciclo Combinado Brayton-Diferencial, utilizando como fonte de calor os gases a altas temperaturas liberado pelas turbinas de ciclo Brayton, Rankine-Diferencial, cuja fonte de calor são as saídas de vapor dos últimos estágios das turbinas a vapor e gases das chaminés, Diesel-Diferencial, cuja fonte de calor vem dos fluidos de refrigeração da máquina Diesel, Otto-Diferencial, cuja fonte de calor vem dos fluidos de refrigeração da máquina de ciclo Otto, entre outros, ampliando significativamente o desempenho, uma vez que os processos de máquinas térmicas de ciclo Brayton, Rankine, Diesel, Otto, possuem muitas perdas térmicas impossíveis de serem aproveitadas pelos seus próprios ciclos termodinâmicos dependentes de altas temperaturas, sendo necessário sistemas mais eficientes alternativos para este aproveitamento. Para facilitar o entendimento da presente tecnologia, serão apresentadas equações, demonstrações que fundamentam e sustentam a patente, desenhos e gráficos os quais permitirão uma compreensão plena do proposto.
Na figura 01 é mostrada a máquina original de Carnot (1), o diagrama de fluxo da máquina de Carnot e demais máquinas térmicas que operam com ciclo de quatro transformações termodinâmicas (2), o gráfico do ciclo da máquina de Carnot com suas quatro transformações (3).
Na figura 02 é mostrada a Máquina Diferencial (4), composta por duas câmaras de transformações termodinâmicas (5) e (6), cada câmara com três seções, respectivamente (8), (9), (10) e (11), (12), (13), cada seção possui seu êmbolo móvel, controlável, cada câmara com um volume de gás (18) e (19), canais para o fluxo do gás de trabalho (20) e (21), elemento de transferência de massa de gás (17), conjunto de válvulas de controle (14) e (15), válvula para liberação da operação inercial do elemento de força motriz (16), elemento de força motriz (7), pistões do elemento de força motriz (22) e (23), eixo tipo virabrequim do elemento de força motriz (24).
Câmaras com três seções podem ser constituídas de várias formas, já se encontram no estado da técnica, podem ser por êmbolos, como exemplificado, usou- se este modelo para facilitar a compreensão da tecnologia aqui descrita, pode ser em - forma de discos contidos em uma carcaça circular o qual trás vantagens para o equilíbrio das pressões, item contido no estado da técnica, bem como os atuadores para movimentar os êmbolos ou câmaras de três seções, os quais podem ser elétricos por meio de motores, servomotores, pneumáticos ou mesmo por meio mecânico direto.
O gás de trabalho nunca muda de estado físico em nenhuma das oito transformações do ciclo, sempre estará no estado gasoso e poderá ser escolhido conforme projeto em função de suas propriedades, os principais são o gás Hélio, Hidrogénio, Neônio, Nitrogénio e o ar seco da atmosfera.
Na figura 03 é mostrada novamente a máquina diferencial (4), o diagrama de fluxo de calor da máquina diferencial (25) e o gráfico comparativo dos ciclos termodinâmicos da máquina diferencial e da máquina de Carnot (26). Na figura 04 é mostrada a máquina diferencial (4) com uma câmara contendo o gás de trabalho na seção aquecida realizando sua transformação isotérmica de alta temperatura mostrado no gráfico (27), simultaneamente a outra câmara contendo também gás de trabalho na seção resfriada realizando sua transformação isotérmica de baixa temperatura, mostrado no gráfico (28). Estas transformações ocorrem uma referenciada à outra, por este motivo é chamada "Diferencial". Nesta fase os elementos de transferência de massa (17) e válvula para liberação da operação inercial do elemento de força motriz (16) estão fechados, as válvulas de controle
(14) e (35) estão abertas permitindo a realização de trabalho do gás sobre o elemento de força motriz (7).
Na figura 05 é mostrada a máquina diferencial (4) com uma câmara contendo o gás de trabalho na seção isolada realizando sua transformação adiabática de expansão (29) com transferência de massa para a segunda câmara, simultaneamente a outra câmara contendo também gás de trabalho na seção isolada realizando sua transformação também adiabática, porém de compressão (30), recebendo gás de trabalho da primeira câmara. Nesta fase o elemento de transferência de massa (17) executa a transferência de partículas de gás da primeira câmara, de alta temperatura, para a segunda câmara, de baixa temperatura, a válvula para liberação da operação inercial do elemento de força motriz (16) aberta permitindo a continuidade do giro do virabrequim (24) do elemento dê força motriz (7), as válvulas de controle (14) e
(15) estão fechadas para cumprir os processos adiabáticos.
Na figura 06 é mostrada a máquina diferencial (4) agora com a primeira câmara contendo o gás de trabalho na seção resfriada realizando sua transformação isotérmica de baixa temperatura mostrado no gráfico (31), simultaneamente a outra câmara por sua vez, contendo também gás de trabalho na seção aquecida realizando sua transformação isotérmica de alta temperatura, mostrado no gráfico (32). Nesta fase os elementos de transferência de massa (17) e válvula para liberação da operação inercial do elemento de força motriz (16) estão fechados, as válvulas de controle (14) e (15) estão abertas permitindo a realização de trabalho do gás sobre o elemento de força motriz (7).
Na figura 07 é mostrada a máquina diferencial (4) com uma câmara contendo o gás de trabalho na seção isolada realizando sua transformação adiabática de compressão (33) recebendo massa de gás da segunda câmara, simultaneamente a outra câmara contendo também gás de trabalho na seção isolada realizando sua transformação também adiabática, porém de expansão (34), com transferência de gás de trabalho para a primeira câmara. Nesta fase o elemento de transferência de massa (17) executa a transferência de partículas de gás da segunda câmara, agora na condição de alta temperatura, para a primeira câmara, com baixa temperatura, a válvula para liberação da operação inercial do elemento de força motriz (16) aberta permitindo a continuidade do giro do virabrequim (24) do elemento de força motriz (7), as válvulas de controle (14) e (15) estão fechadas para cumprir os processos adiabáticos.
Observando o processo descrito acima, fica óbvio entender que com a configuração diferencial com transferência de massa, a transformação isotérmica de alta temperatura sempre terá mais partículas de gás do que a transformação isotérmica de baixa temperatura.
Na figura 08 é mostrado o gráfico do rendimento da "Máquina Térmica Diferencial com Ciclo Fechado de Oito Transformações Termodinâmicas com Transferência de massa de Gás entre Câmaras para diferentes taxas de transferência de massa de gás, a ser explicado no presente texto de patente de invenção.
Os fundamentos da presente tecnologia serão inicialmente demonstrados a partir da apresentação da equação do rendimento original de Carnot:
Figure imgf000009_0001
Esta equação é muito conhecida no meio científico, ela é utilizada e aceita como referência limite para a obtenção do rendimento de uma máquina térmica. Ela é fundamentada no desenho original idealizado por Carnot e indicado na figura 01 em (1), na figura 01 em (2) é indicado o diagrama do fluxo de calor da máquina de Carnot, deixando claro que há uma fonte quente de onde parte o calor e o fluxo El segue, parte dele gera o trabalho W e a parte restante segue para a fonte fria E2. O ciclo termodinâmico é referencial de quatro transformações mostrado em (3) ainda na figura 01, composta por duas transformações isotérmicas e duas adiabáticas. Na equação acima, T2 é a temperatura da fonte fria e T( a temperatura da fonte quente, e o rendimento desta máquina tende a 100% no limite onde T2 tende a "zero".
Não há dúvidas que os fundamentos de Carnot estão corretos, da mesma forma não há dúvidas sobre os limites de rendimentos regidos pela fórmula idealizada acima. Porém as máquinas conhecidas são desenhadas de modo a realizar seus ciclos mecânicos e termodinâmicos de modo referencial, ou seja, realizam trabalho e transformações termodinâmicas referenciais à sua vizinhança, à atmosfera quando aplicadas no nosso meio, ao vácuo quando no espaço ou referenciadas a uma câmara sob determinada condição fixa. O trabalho de Nicolas Leonard Sadi Carnot considera estes referenciais como o são e a equação do rendimento respeita estas referências.
Saindo da linha de raciocínio referenciais dos modelos existentes, mantendo os mesmos fundamentos de Carnot, as novas máquinas térmicas podem ser desenhadas em uma configuração diferencial. Desta forma os ciclos termodinâmicos não ocorrem mais com referência ao meio, mas com referência a outro ciclo termodinâmico de forma simultânea e defasadas e todos os cálculos passam ser um com referência ao outro, criando novas possibilidades.
Na figura 02 é apresentada a "Máquina Térmica Diferencial com Ciclo Fechado de Oito Transformações Termodinâmicas com Transferência de Massa entre Câmaras".
Na figura 02, (5) indica uma câmara composta por três seções, uma aquecida, uma isolada e uma resfriada, o gás sempre ocupará apenas uma das seções em cada uma das transformações tennodinâmicas. Nesta câmara se processa quatro das oito transformações que ocorrem no mesmo ciclo, o gás durante cada fase de transformação é transportado para as seções através dos êmbolos indicados na mesma figura. Na mesma figura, em (6) é mostrado a outra câmara, idêntica à primeira, a qual processa as outras quatro transformações completando o ciclo termodinâmico de oito transformações, ambas são conectadas entre si em uma configuração diferencial por meio dos dutos (20) e (21), estando entre elas um elemento de força motriz (7), um elemento de transferência de massa de gás (17), um conjunto de válvulas de controle (14) e (15), uma válvula para liberação da operação inercial do elemento de força motriz (16). O elemento de força motriz é composto por pistões (22) e (23) e eixo tipo virabrequim (24) que em função das características do sistema, o elemento de força motriz pode ser diferente e inclusive serem partes de mercado conhecido, como turbinas, diafragmas, rotores que operam por fluxo de gás. Nesta mesma figura, os elementos (8) e (11) mostram respectivamente as seções aquecidas das câmaras (5) e (6), os elementos (9) e (12) mostram respectivamente as seções isoladas das câmaras (5) e (6), os elementos (10) e (13) mostram respectivamente as seções resfriadas das câmaras (5) e (6),
Na tecnologia apresentada neste texto, o enunciado de Carnot não se altera,
"Para haver conversão contínua de calor em trabalho, um sistema deve realizar ciclos entre fontes quentes e frias, continuamente. Em cada ciclo, é retirada uma certa quantidade de calor da fonte quente (energia útil), que é parcialmente convertida em trabalho, sendo o restante rejeitado para a fonte fria (energia dissipada)"
Assim, o rendimento de uma máquina na configuração diferencial com transferência de partículas de gás, com um ciclo teraiodinâmico de 8 transformações será:
Figure imgf000011_0001
Onde T2 é a temperatura da fonte fria, Ί a temperatura da fonte quente e k a taxa de transferência de partículas entre câmaras, e o rendimento desta máquina tende a 100% em duas condições possíveis, no limite onde T2 tende a "zero" e no limite onde l/k tende a zero conforme pode ser observado no gráfico (35), especificamente no ponto (36) apresentado na figura 08.
O rendimento de uma máquina térmica é um fator de extrema importância, juntamente com a temperatura de operação, ambos são fatores fundamentais para a geração de energia, aproveitamento de fontes alternativas de baixo ou nenhum impacto ambiental. Tal evidência pode ser constatada na figura 08, na curva onde k = kl = 1, representa a curva da máquina ideal de Carnot, e k = 1 porque na máquina de Carnot o gás sempre permanece no mesmo compartimento, o número de partículas nunca se altera, por outro lado, uma configuração diferencial permite controlar esta condição, fazendo k4 > k3 > k2 > kl =1 e assim é possível obter uma máquina térmica de alto rendimento com baixos diferenciais térmicos tornando viáveis projetos de plantas de força e de geração de energia com base em fontes limpas, renováveis como do sol e geotermais, de menor impacto ambiental utilizando combustíveis orgânicos, e também de menor impacto com a própria utilização de fontes fósseis e atómicas pelo simples fato de produzir mais energia com menor consumo do combustível. Fisicamente o ciclo diferencial com transferência de massa consiste na passagem de uma certa quantidade de partículas de gás da câmara que tenha concluído sua transformação isotérmica de alta para a câmara que tenha concluída a sua transformação isotérmica de baixa, porém esta transferência ocorre durante as transformações adiabáticas, provocando uma extensão nas curvas conforme mostrado no gráfico (26) da figura 03. Enquanto uma das câmaras sofre o efeito da queda de pressão, redução da densidade (aumento do volume) observado em (a) do gráfico (26), na outra ocorre o aumento da pressão, aumento da densidade, (redução do volume) observado em (c) do gráfico (26). Esta extensão da curva aumenta a área do ciclo, ou seja, o trabalho realizado.
É importante observar que não se trata de uma máquina Stirling, não se trata de uma máquina de Carnot, ambas são referenciais, o que se está apresentando é uma máquina diferencial. Os fundamentos termodinâmicos são absolutamente os mesmos.
As máquinas térmicas diferenciais realizam transformações termodinâmicas simultâneas, mostrado pelas setas nas isotérmicas de alta (c-d) e de baixa (a-b) no gráfico (26) da figura 03, como são diferenciais existem duas câmaras realizando simultaneamente seu próprio ciclo termodinâmico, porém uma com referência à outra. Esta propriedade admite a transferência de matéria entre elas de modo a reduzir a energia fornecida à fonte fria.
Os fundamentos das máquinas térmicas diferenciais são os mesmos das demais máquinas térmicas, tendo a máquina de Carnot como referência geral. A Máquina Diferencial com ciclo de oito transformações termodinâmicas realizadas duas a duas simultaneamente, possui um rendimento que pode ser demonstrado matematicamente da seguinte forma:
Partindo do desenho original da máquina de Carnot idealizada por Nicolas Léonard Sadi Carnot, por volta de 1820, porém em uma configuração "diferencial", como sendo duas máquinas conectadas entre si, defasadas em 180°, com transferência de massa durante as transformações adiabáticas, o referencial de uma máquina não mais seria o ambiente, e sim a outra máquina, tanto sobre o sistema mecânico que realiza trabalho, como ao sistema termodinâmico.
O sistema formado por estas duas câmaras de transferência de calor (energia), cada uma executaria seu próprio ciclo termodinâmico com as partículas que nelas contém. Seria, portanto um sistema integrado com dois ciclos termodinâmicos simultâneos, defasados em 180°, ou um ciclo termodinâmico com 8 transformações ocorrendo em pares, defasadas e interdependentes porque trocam massa entre si e as expansões são realizadas uma sobre a outra alternadamente e não contra o ambiente.
A transferência de massa ocorre durante os processos adiabáticos após uma das câmaras realizar trabalho contra a outra, na isotérmica de alta, o sistema de controle habilitaria a passagem de partículas por meio do elemento (17) da câmara de alta para a câmara de baixa, até atingir o equilíbrio de pressões ou de modo forçado. Desta forma um número menor de partículas de gás estará disponível na isotérmica de baixa, reduzindo a perda de energia para a fonte fria. Esta energia conservada ficará circulando entre as duas câmaras da máquina, mostrado do diagrama de fluxo (25) da figura 03, proporcionando o aumento do rendimento e esta fração de energia não poderá ser utilizada para gerar trabalho.
Desta forma a curva do rendimento de uma máquina numa configuração diferencial com um ciclo de oito transformações formado por isotérmicas e adiabáticas com transferência de massa, é mais eficiente que uma máquina na configuração referencial de Carnot, embora no limite com a temperatura T2 tendendo a "zero", ambas terão o mesmo rendimento mostrado na figura 08.
Sob os mesmos fundamentos de Carnot:
Figure imgf000014_0003
Pela equação geral dos gases:
Figure imgf000014_0004
E a energia em a - b é representada por:
Figure imgf000014_0005
Pela equação geral dos gases:
Figure imgf000014_0001
A quantidade total de energia associada ao trabalho é:
Figure imgf000014_0002
Os processos d-a e b-c são adiabáticos e a energia interna depende apenas da temperatura, as temperaturas iniciais e finais deste processo- são iguais e opostas, o número de partículas trocadas também é idêntico, assim:
E:
Figure imgf000015_0003
E o rendimento da máquina em conformidade com os princípios da termodinâmica em uma configuração diferencial será:
Figure imgf000015_0004
Substituindo pelas equações de trabalho:
Figure imgf000015_0001
Considerando que é um sistema fechado, reversível, a razão:
Figure imgf000015_0005
Pelas propriedades dos logaritmos:
Figure imgf000015_0002
Simplificando:
Então:
Figure imgf000015_0006
Observando agora, numa configuração diferencial com transferência de partículas de gás, não corrompendo nenhum dos fundamentos termodinâmicos, com a transferência de partículas entre as câmaras nas adiabáticas:
Fazendo:
Figure imgf000016_0001
Então o rendimento de uma máquina na configuração diferencial com transferência de partículas de gás, com um ciclo de oito transformações ou em outras palavras, dois ciclos termodinâmicos simultâneos e interdependentes em conformidade com o ciclo de Carnot é:
Figure imgf000016_0002
Onde T2 é a temperatura da fonte fria e Ti a temperatura da fonte quente. E o rendimento desta máquina tende a 100% em duas condições possíveis, no limite onde T2 tende a "zero" e no limite onde l/k tende a zero, observado então, no gráfico (35) da figura 08, e esta máquina diferencial com ciclo de oito transformações termodinâmicas se iguala à máquina de Carnot a qual é uma máquina com ciclo de quatro transformações termodinâmicas na condição da não transferência de massa de gás, ou seja, somente quando k = 1.
Conforme a descrição acima, esta invenção propõe inovação substancial para os futuros sistemas de energia, pois tem a propriedade de operar com qualquer fonte térmica. Tem como objetivos a sua aplicação em plantas de geração de energia tendo como fonte básica, a energia termossolar e como complementos, as fontes térmicas de origem geológica, biocombustíveis e também em casos especiais ou para complemento os combustíveis de origem fóssil e até mesmo a nuclear. Exemplificando os campos de aplicações desta tecnologia, segue:
Plantas geradoras de energia elétrica de grande porte utilizando fontes termossolares com concentradores e coíetores espelhados, estas plantas podem ser Plantas geradoras de grande porte tendo como fonte de calor o uso ao caiui proveniente das profundezas do solo, obtido por meio da passagem de um fluido térmico com fluxo circulante obtendo o calor das profundezas, transportando-o para a superfície e assim sendo utilizado nas câmaras de conversão.
Plantas geradoras de grande porte tendo como fonte de calor a combustão de biocombustíveis, biomassa, resíduos de lixo e demais derivados orgânicos.
Plantas geradoras de grande porte tendo como fonte de calor a utilização de combustíveis fósseis tradicionais.
Plantas geradoras de pequeno e médio porte para geração distribuída, tendo como fonte de calor, pequenos concentradores solares ou pequenas caldeiras para queima de resíduos agroindustriais ou resíduos do lixo.
Sistemas de geração de energia para naves, sondas e satélites espaciais tendo como fonte de calor concentradores solares ou fontes nucleares, especialmente para exploração no espaço profundo. Para esta aplicação, inclui-se a geração de energia de alta potência para suprir as necessidades de motores iónicos de propulsão no espaço.
Sistemas de geração de energia para submarinos do tipo AIP, "Air Independent Propulsion", tendo como fonte de calor, células combustíveis.
Plantas de geração de energia em objetos espaciais que possuam alguma fonte de calor, planetas, satélites naturais e outros corpos, como a lua, por exemplo, onde o calor poderá vir de concentradores solares ou de fontes termonucleares.
Máquinas para gerar força mecânica de tração veicular.
Conclui-se que se trata de uma tecnologia que reúne uma flexibilidade incomum e, pode operar com qualquer fonte térmica, isto significa que permite projetos a combustão ou a simples fluxo de calor, sua configuração diferencial com transferência de massa exclui a dependência da temperatura com o rendimento, permitindo máquinas de alto rendimento, superiores às atuais, sua independência de oxigénio confere aplicações para naves espaciais e submarinos, portanto trará benefícios em conformidade com os padrões que se buscam na atualidade e para o futuro.

Claims

REIVINDICAÇÕES
1. ) "MÁQUINA TÉRMICA DIFERENCIAL COM CICLO DE OITO
TRANSFORMAÇÕES TERMODINÂMICAS", caracterizada por compreender duas câmaras de transformações termodinâmicas cada uma com três seções, uma aquecida, uma isolada, uma resfriada, conectadas em configuração diferencial por meio de dutos ou canais, um elemento de força motriz, um elemento de transferência de massa de gás, uma válvula para liberação da operação inercial do elemento de força motriz e um conjunto de válvulas de controle.
2. ) "MÁQUINA TÉRMICA DIFERENCIAL COM CICLO DE OITO
TRANSFORMAÇÕES TERMODINÂMICAS", de acordo com a reivindicação 1 é caracterizada por possuir duas câmaras contendo gás de trabalho cada uma com três seções, uma aquecida, uma isolada, uma resfriada, conectadas em configuração diferencial, de forma que em operação as mesmas possuem 3 posições possíveis no processo, enquanto na primeira fase na primeira câmara o gás se encontra na seção aquecida, na segunda câmara o mesmo se encontra na seção resfriada, na segunda fase ambas as câmaras se encontram na seção isolada, na terceira fase a primeira câmara o gás se encontra na seção resfriada, na segunda câmara o mesmo se encontra na seção aquecida e na quarta fase novamente em ambas o gás se encontram na seção isolada, constituindo assim as oito transformações termodinâmicas diferencial.
3. ) "MÁQUINA TÉRMICA DIFERENCIAL COM CICLO DE OITO
TRANSFORMAÇÕES TERMODINÂMICAS", de acordo com a reivindicação 1 é caracterizada por possuir um elemento de transferência de massa de gás entre as câmaras durante as fases adiabáticas.
4. ) "MÁQUINA TÉRMICA DIFERENCIAL COM CICLO DE OITO
TRANSFORMAÇÕES TERMODINÂMICAS", de acordo com a reivindicação 1 é caracterizada por possuir um elemento de força motriz que opera pela força do gás de trabalho gerado nas câmaras de transformações, conectado entre as duas câmaras de transformações termodinâmicas executando trabalho útil durante as transformações isotérmicas e mantendo o movimento pela força ínercial durante as transformações adiabáticas.
5. ) "MÁQUINA TÉRMICA DIFERENCIAL COM CICLO DE OITO
TRANSFORMAÇÕES TERMODINÂMICAS", de acordo com a reivindicação 1 e 4 é caracterizada por possuir uma válvula para liberação da operação inercial do elemento de força motriz durantes as transformações adiabáticas.
6. ) "MÁQUINA TÉRMICA DIFERENCIAL COM CICLO DE OITO
TRANSFORMAÇÕES TERMODINÂMICAS", de acordo com a reivindicação 1 é caracterizada por possuir um conjunto de válvulas de controle que fornece a passagem do gás de trabalho entre as câmaras de transformações e o elemento de força motriz.
7. ) "PROCESSO DE CONTROLE DE MÁQUINA TÉRMICA
DIFERENCIAL", de acordo com as reivindicações 1 e 2 é caracterizada por um processo executado pelas duas câmaras contendo gás de trabalho dotado de controle do deslocamento da massa de gás sincronizados os quais executam cada uma, simultaneamente, transformações termodinâmicas na seguinte sequência, na primeira fase são executadas uma transformação isotérmica de alta temperatura pela primeira câmara, simultaneamente na outra câmara uma isotérmica de baixa temperatura, na segunda fase são executadas uma transformação adiabática de expansão pela primeira câmara com transferência de massa para a outra câmara, na segunda câmara uma transformação adiabática de compressão com recepção de massa de gás da primeira, na terceira fase são executadas uma transformação isotérmica de baixa temperatura na primeira câmara, simultaneamente na outra uma isotérmica de alta temperatura, na quarta fase são executadas uma transformação adiabática de compressão com recepção de massa pela primeira câmara, na segunda câmara uma transformação adiabática de expansão com transferência de massa de gás para a primeira, concluindo-se o ciclo termodinâmico de oito transformações em configuração diferencial.
8. ) "PROCESSO DE CONTROLE DE MÁQUINA TÉRMICA
DIFERENCIAL", de acordo com as reivindicações 1,2,3 e 7 é caracterizada por um processo de controle de transferência de massa de gás entre as câmaras durante as fases de transformações adiabáticas.
9. ) "PROCESSO DE CONTROLE DE MÁQUINA TÉRMICA
DIFERENCIAL", de acordo com as reivindicações 1,2, 3, 7 e 8 é caracterizada por um processo de controle que mantém uma energia circulante conservada no interior da máquina sendo transferida alternadamente entre as duas câmaras de modo a limitar a energia descarregada nas transformações isotérmicas de baixa temperatura as quais eliminam a dependência exclusiva do rendimento da máquina com a temperatura.
10. ) "PROCESSO DE CONTROLE DE MÁQUINA TÉRMICA
DIFERENCIAL", de acordo com as reivindicações 1,2, 3, 4, 5, 6, 7, 8 e 9 é caracterizada por um processo de controle o qual modula as oito transformações, quatro de cada câmara, controlando o ciclo completo dentro do período, definindo um tempo para as isotérmicas, um tempo para as adiabáticas e a transferência de massa entre câmaras e assim resultando no controle pleno da rotação, torque e o rendimento do sistema.
PCT/BR2014/000381 2013-10-16 2014-10-16 Máquina térmica diferencial com ciclo de oito transformações termodinãmicas e processo de controle WO2015054767A1 (pt)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2926567A CA2926567C (en) 2013-10-16 2014-10-16 Thermal differential machine with eight changes of thermodynamic cycle and process control
JP2016523313A JP2016535192A (ja) 2013-10-16 2014-10-16 過程制御及び熱力学サイクルの八つの変化を有する差動熱機械
EP14854290.5A EP3059428B1 (en) 2013-10-16 2014-10-16 Differential thermodynamic machine with a cycle of eight thermodynamic transformations, and control method
CN201480056715.7A CN105793548B (zh) 2013-10-16 2014-10-16 具有热力学循环的八次转换的热差速机
US15/030,080 US10018149B2 (en) 2013-10-16 2014-10-16 Differential thermodynamic machine with a cycle of eight thermodynamic transformations, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020130266345 2013-10-16
BRBR102013026634-5A BR102013026634A2 (pt) 2013-10-16 2013-10-16 Máquina térmica diferencial com ciclo de oito transformações termodinâmicas e processo de controle

Publications (1)

Publication Number Publication Date
WO2015054767A1 true WO2015054767A1 (pt) 2015-04-23

Family

ID=52827485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2014/000381 WO2015054767A1 (pt) 2013-10-16 2014-10-16 Máquina térmica diferencial com ciclo de oito transformações termodinãmicas e processo de controle

Country Status (7)

Country Link
US (1) US10018149B2 (pt)
EP (1) EP3059428B1 (pt)
JP (1) JP2016535192A (pt)
CN (1) CN105793548B (pt)
BR (1) BR102013026634A2 (pt)
CA (1) CA2926567C (pt)
WO (1) WO2015054767A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035588A1 (pt) * 2016-08-26 2018-03-01 Associaos Paranaense De Cultura - Apc Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos isocóricos com regenerador ativo e processo de controle para o ciclo termodinâmico do motor trémico

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018152603A1 (pt) * 2017-02-23 2018-08-30 Associacao Paranaense De Cultura - Apc Motor térmico de ciclo diferencial composto por dois processos !socóricos, quatro processos isotérmicos e dois processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico
FR3105303B1 (fr) * 2019-12-21 2022-06-17 Pierre Lecanu Moteur Stirling à double tours

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195992B1 (en) 1999-01-21 2001-03-06 Arthur Charles Nommensen Stirling cycle engine
WO2003018996A2 (de) 2001-08-17 2003-03-06 Robert Bosch Gmbh Piezoelektrisches aktormodul
WO2005042958A1 (ja) 2003-10-30 2005-05-12 Japan Aerospace Exploration Agency スターリングエンジン
US6996983B2 (en) 2001-08-27 2006-02-14 Michael John Vernon Cameron Stirling engine
WO2006067429A1 (en) 2004-12-22 2006-06-29 Microgen Energy Limited A linear free piston stirling machine
US7549289B2 (en) 2005-05-02 2009-06-23 John Alexander Herring Hybrid engine
WO2009097698A1 (en) 2008-02-07 2009-08-13 Robert Thiessen Method of externally modifying a carnot engine cycle
WO2009103871A2 (fr) 2007-12-05 2009-08-27 Pascot, Philippe Machine thermodynamique, en particulier de type carnot et/ou stirling
WO2010006213A1 (en) 2008-07-11 2010-01-14 Qualcomm Mems Technologies, Inc. Stiction mitigation with integrated mech micro-cantilevers through vertical stress gradient control
US20100095668A1 (en) 2008-10-20 2010-04-22 Sunpower, Inc. Balanced multiple groupings of beta stirling machines
US20110005220A1 (en) 2009-07-07 2011-01-13 Global Cooling, Inc. Gamma type free-piston stirling machine configuration
BRPI1000624A2 (pt) * 2010-03-05 2011-10-25 Zulmira Teresina Lockheck conversor de energia termomecánico
DE102012015554A1 (de) 2012-08-08 2014-02-13 Fahrzeugbau Kempf Gmbh Muldenkipper mit einer Kippermulde
BR102012015554A2 (pt) * 2012-06-25 2014-12-02 Zulmira Teresina Lockheck Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730006B2 (ja) * 1990-06-21 1998-03-25 運輸省船舶技術研究所長 カルノ―サイクルに従って動作する往復動外燃機関
US20070193266A1 (en) * 2006-02-17 2007-08-23 Stirling Cycles, Inc. Multi-cylinder free piston stirling engine
WO2009069128A2 (en) * 2007-11-29 2009-06-04 Gilbert Gal Ben Lolo A closed thermodynamic system for producing electric power
DE202008001920U1 (de) * 2008-02-11 2008-04-24 Pasemann, Lutz, Dr. Stirlingmaschine mit Gegenstrom-Wärmeübertrager
DE102008023793B4 (de) * 2008-05-15 2010-03-11 Maschinenwerk Misselhorn Gmbh Wärmekraftmaschine
DE102008048641B4 (de) * 2008-09-24 2010-10-07 Raimund WÜRZ Druckerzeuger
EP2574739A1 (de) * 2011-09-29 2013-04-03 Siemens Aktiengesellschaft Anlage zur Speicherung thermischer Energie und Verfahren zu deren Betrieb

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195992B1 (en) 1999-01-21 2001-03-06 Arthur Charles Nommensen Stirling cycle engine
WO2003018996A2 (de) 2001-08-17 2003-03-06 Robert Bosch Gmbh Piezoelektrisches aktormodul
US6996983B2 (en) 2001-08-27 2006-02-14 Michael John Vernon Cameron Stirling engine
US20080282693A1 (en) 2003-10-30 2008-11-20 Takeshi Hoshino Stirling Engine
WO2005042958A1 (ja) 2003-10-30 2005-05-12 Japan Aerospace Exploration Agency スターリングエンジン
US7827789B2 (en) 2004-12-22 2010-11-09 Microgen Energy Limited Linear free piston stirling machine
WO2006067429A1 (en) 2004-12-22 2006-06-29 Microgen Energy Limited A linear free piston stirling machine
US7549289B2 (en) 2005-05-02 2009-06-23 John Alexander Herring Hybrid engine
WO2009103871A2 (fr) 2007-12-05 2009-08-27 Pascot, Philippe Machine thermodynamique, en particulier de type carnot et/ou stirling
US20100287936A1 (en) * 2007-12-05 2010-11-18 Serge Klutchenko Thermodynamic machine, particular of the carnot and/or stirling type
WO2009097698A1 (en) 2008-02-07 2009-08-13 Robert Thiessen Method of externally modifying a carnot engine cycle
WO2010006213A1 (en) 2008-07-11 2010-01-14 Qualcomm Mems Technologies, Inc. Stiction mitigation with integrated mech micro-cantilevers through vertical stress gradient control
WO2010048113A1 (en) 2008-10-20 2010-04-29 Sunpower, Inc. Balanced multiple groupings of beta stirling machines
US20100095668A1 (en) 2008-10-20 2010-04-22 Sunpower, Inc. Balanced multiple groupings of beta stirling machines
US20110005220A1 (en) 2009-07-07 2011-01-13 Global Cooling, Inc. Gamma type free-piston stirling machine configuration
WO2011005673A1 (en) 2009-07-07 2011-01-13 Global Cooling, Inc. Gamma type free-piston stirling machine configuration
BRPI1000624A2 (pt) * 2010-03-05 2011-10-25 Zulmira Teresina Lockheck conversor de energia termomecánico
BR102012015554A2 (pt) * 2012-06-25 2014-12-02 Zulmira Teresina Lockheck Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle
DE102012015554A1 (de) 2012-08-08 2014-02-13 Fahrzeugbau Kempf Gmbh Muldenkipper mit einer Kippermulde

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035588A1 (pt) * 2016-08-26 2018-03-01 Associaos Paranaense De Cultura - Apc Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos isocóricos com regenerador ativo e processo de controle para o ciclo termodinâmico do motor trémico

Also Published As

Publication number Publication date
US10018149B2 (en) 2018-07-10
EP3059428B1 (en) 2021-01-27
US20160252047A1 (en) 2016-09-01
JP2016535192A (ja) 2016-11-10
EP3059428A1 (en) 2016-08-24
CA2926567A1 (en) 2015-04-23
BR102013026634A2 (pt) 2015-08-25
CA2926567C (en) 2019-11-26
CN105793548B (zh) 2018-03-16
EP3059428A4 (en) 2017-06-21
CN105793548A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
Antonelli et al. Liquid air energy storage: Potential and challenges of hybrid power plants
WO2015054767A1 (pt) Máquina térmica diferencial com ciclo de oito transformações termodinãmicas e processo de controle
Ajimotokan A study of trilateral flash cycles for low-grade waste heat recovery-to-power generation
Buliński et al. Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy
Kusterer et al. Comparative study of solar thermal Brayton cycles operated with helium or argon
WO2018195622A1 (pt) Motor turbina de ciclo binário composto por três processos isotérmicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
US20150369124A1 (en) Heat engine operating in accordance with carnot's thermodynamic cycle and control process
Liu et al. Performance evaluation of a moonbase energy system using in-situ resources to enhance working time
WO2018035588A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos isocóricos com regenerador ativo e processo de controle para o ciclo termodinâmico do motor trémico
WO2018195619A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
BR102016019857B1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico
Zhang et al. Second law analysis and parametric study for combined Brayton and two parallel inverse Brayton cycles
ĎURčAnSKý et al. Modelling and application of Stirling engine with renewable sources in electricity production
BR102017008545B1 (pt) Motor térmico de ciclo diferencial composto por quatro processo isobáricos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195621A1 (pt) Motor turbina de ciclo binário composto por três processos isobáricos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
Whitaker James and William Thomson: the creation of thermodynamics
WO2018195626A1 (pt) Motor turbina de ciclo binário composto por três processos politrópicos, quatro processos adiabáticos e processo de controle para o ciclo termodinâmico do motor turbina
BR102016019870A2 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isocóricos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
Alshammari et al. Optimization of Combined Thermal Power Plant and Performance Analysis using Matlab/Simulink using Real Data: Kuwait as a Case Study
BR102017008544B1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico
BR102017008548A2 (pt) motor térmico de ciclo diferencial composto por quatro processos isotérmicos, quatro processos politrópicos com regenerador e processo de controle para o ciclo termodinâmico do motor térmico
WO2018195618A1 (pt) Motor térmico de ciclo diferencial composto por quatro processos isobáricos, quatro processos isotérmicos e processo de controle para o ciclo termodinâmico do motor térmico
BR102017003822B1 (pt) Motor térmico de ciclo diferencial composto por dois processos isocóricos, quatro processos isotérmicos e dois processos adiabáticos e processo de controle para o ciclo termodinâmico do motor térmico
BR102018004170A2 (pt) Motor térmico de combustão externa com ciclo composto por um processo isocórico, um processo adiabático e um processo isotérmico e processo de controle para o ciclo termodinâmico do motor térmico
BR102018004165A2 (pt) Motor térmico de combustão externa com ciclo modulado composto por um processo isocórico, dois processos isotérmicos e um processo adiabático e processo de controle para o ciclo termodinâmico do motor térmico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2926567

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016523313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15030080

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014854290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854290

Country of ref document: EP