WO2018194241A1 - 마이크로 led 패널을 이용한 프로젝션 장치 및 그 제조방법 - Google Patents

마이크로 led 패널을 이용한 프로젝션 장치 및 그 제조방법 Download PDF

Info

Publication number
WO2018194241A1
WO2018194241A1 PCT/KR2018/000389 KR2018000389W WO2018194241A1 WO 2018194241 A1 WO2018194241 A1 WO 2018194241A1 KR 2018000389 W KR2018000389 W KR 2018000389W WO 2018194241 A1 WO2018194241 A1 WO 2018194241A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro led
led panel
light
wavelength
panel
Prior art date
Application number
PCT/KR2018/000389
Other languages
English (en)
French (fr)
Inventor
신은성
조동희
김용필
문명지
장한빛
박재순
Original Assignee
주식회사 루멘스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루멘스 filed Critical 주식회사 루멘스
Publication of WO2018194241A1 publication Critical patent/WO2018194241A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3138Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using arrays of modulated light sources

Definitions

  • the present invention relates to a projection apparatus and a method of manufacturing the same, and more particularly, to a projection apparatus and a method of manufacturing the same that can realize full color of high resolution using a micro LED panel.
  • LIGHT EMITTING DEVICE is a kind of semiconductor device that converts electrical energy into light energy.
  • the light emitting device has advantages of low power consumption, semi-permanent life, fast response speed, safety, and environmental friendliness compared to conventional light sources such as fluorescent lamps and incandescent lamps.
  • the LED chip In general, if the LED chip is made small in the order of several to several tens of micro level, it is possible to overcome the disadvantage of breaking when it is bent due to the characteristics of the inorganic material. In addition, it can be widely applied to various applications such as wearable devices, human body implantable medical devices and pico projectors.
  • a projection device (or a projector) is an optical device that shows a large number of people by simultaneously projecting a slide, a picture on the transparent paper, pictures, characters, etc. on the screen through a lens.
  • Such a projection device must have sufficient brightness to obtain the required screen brightness. Therefore, general types of projection devices have used high current consumption lamps such as metal halide lamps, high pressure mercury lamps, xenon lamps and the like to achieve such luminance.
  • conventional projection apparatuses include a DLP projection apparatus and an LCoS projection system.
  • a light source emitted from a lamp alternately passes through color wheels of various colors, and the passed light source is reflected on a DMD chip to display a screen.
  • the LCoS projection method a light source emitted from a lamp is separated through a special mirror, and the separated light source passes through three LCD panels (ie, blue / green / red LCD panels) and is reflected on the screen. That's the way it is.
  • the projection apparatus of the DLP method and the LCoS method requires a separate light source lamp, and thus, there is a problem that the flexibility of making the device is inferior and the light efficiency is lowered. Therefore, there is a need to develop a new projection apparatus that can realize a high resolution full color while having a compact structure.
  • Another object is to provide a projection device using a micro LED panel and a method of manufacturing the same.
  • Still another object is to provide a projection apparatus and a method of manufacturing the same, which may implement a red micro LED panel using a blue micro LED panel and a color conversion film.
  • Still another object is to provide a projection apparatus and a method of manufacturing the same, which may implement a red micro LED panel using a green micro LED panel and a color conversion film.
  • Still another object is to provide a projection apparatus and a method of manufacturing the same, which can implement a red micro LED panel by avoiding a sapphire bonding process.
  • a first micro LED panel for outputting light of the first wavelength using micro LED pixels of the first wavelength
  • a second micro LED panel for outputting light of a second wavelength using micro LED pixels of a second wavelength
  • a third micro LED panel for outputting light of a third wavelength by using the micro LED pixels of the first or second wavelength
  • a dichroic prism for synthesizing light output from the first to third micro LED panels, wherein the third micro LED panel is configured to transmit light having the first or second wavelength to the third light source.
  • a projection apparatus comprising a color conversion film for converting light into wavelengths.
  • the first micro LED display device for outputting the light of the first wavelength
  • the second micro LED display device for outputting the light of the second wavelength
  • the third micro LED for outputting the light of the third wavelength
  • a projection device comprising a display device, comprising: forming a GaAs substrate; Depositing a light emitting structure on the GaAs substrate; Etching the light emitting structure according to a unit pixel area to form a micro LED panel including a plurality of micro LED pixels; Flip chip bonding the micro LED panel onto a silicon substrate; And separating a GaAs substrate attached to the micro LED panel.
  • a projection device using a red micro LED panel, a green micro LED panel and a blue micro LED panel, not only can have a compact structure, but also a full resolution (HD) class.
  • the advantage is that it can provide full color.
  • red micro LED panel using a blue micro LED panel or a green micro LED panel and a color conversion film
  • red micro LED panel, green micro LED panel installed in the projector And blue micro LED panels can be manufactured in the same process.
  • FIG. 1A and 1B are views for explaining a method of operation of a conventional projection apparatus
  • FIG. 2 is a block diagram of a projection apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining a red micro LED panel, a green micro LED panel, and a blue micro LED panel included in the projection apparatus;
  • FIG. 4 is a view for explaining an operation of driving a micro LED panel via a data driver IC and a scan driver IC;
  • 5A is a cross-sectional view of a micro LED panel according to an embodiment of the present invention
  • 5 b is a cross-sectional view of a micro LED display device
  • 6A to 6G illustrate a method of manufacturing a micro LED display device according to an embodiment of the present invention
  • FIG. 7 is a block diagram of a projection apparatus according to another embodiment of the present invention.
  • FIG. 8 illustrates a red micro LED panel according to another embodiment of the present invention.
  • FIG. 11 is a block diagram of a projection apparatus according to another embodiment of the present invention.
  • FIGS. 12A to 12E are views illustrating a method of manufacturing a red micro LED display device according to an embodiment of the present invention.
  • FIGS. 13A to 13E are views illustrating a method of manufacturing a red micro LED display device according to another embodiment of the present invention.
  • module and “unit” for components used in the following description are given or used in consideration of ease of specification, and do not have distinct meanings or roles from each other.
  • the term 'part' used in the present invention refers to a hardware component such as software, FPGA or ASIC, and 'part' plays a role. But wealth is not limited to software or hardware.
  • the 'unit' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • a 'part' may include components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, procedures, Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays and variables.
  • the functionality provided within the components and 'parts' may be combined into a smaller number of components and 'parts' or further separated into additional components and 'parts'.
  • each layer (film), region, pattern or structures may be “on” or “on” the substrate, each layer (film), region, pad or pattern.
  • “on” and “under” are “directly” or “indirectly through another layer.” “Includes all that are formed.
  • the criteria for up / down or down / down each layer will be described with reference to the drawings. In the drawings, the thickness or size of each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description. In addition, the size of each component does not necessarily reflect the actual size.
  • the present invention proposes a projection apparatus and a method of manufacturing the same, which can realize full color of high resolution using a red micro LED panel, a green micro LED panel, and a blue micro LED panel.
  • FIG. 2 is a block diagram of a projection apparatus according to an embodiment of the present invention.
  • a projection device 100 includes a red micro LED panel 110, a green micro LED panel 120, a blue micro LED panel 130, an LED driver 140, The dichroic prism 150 and the projection lens 160 may be included.
  • the red micro LED panel 110 is an LED panel having an array structure in which a plurality of light emitting devices (that is, a plurality of micro LED pixels) stacked on a wafer are arranged in a matrix form. A function of outputting red light corresponding to the image signal of the device may be performed.
  • the plurality of micro LED pixels constituting the panel 110 may be configured as a red LED element.
  • the green micro LED panel 120 is an LED panel having an array structure in which a plurality of light emitting devices (that is, a plurality of micro LED pixels) stacked on a wafer are arranged in a matrix form. A function of outputting green light corresponding to the signal may be performed.
  • the plurality of micro LED pixels constituting the panel 120 may be configured as a green LED device.
  • the blue micro LED panel 130 is an LED panel having an array structure in which a plurality of light emitting devices (that is, a plurality of micro LED pixels) stacked on a wafer are arranged in a matrix form. A function of outputting blue light corresponding to the signal may be performed.
  • the plurality of micro LED pixels constituting the panel 130 may be configured as a blue LED element.
  • the red micro LED panel 110, the green micro LED panel 120, and the blue micro LED panel 130 constituting the projection apparatus 100 may include a plurality of rows 720. ) And micro LED pixels arranged in a plurality of columns 1280.
  • the size of the plurality of micro LED pixels constituting the micro LED panel 110, 120, 130 may be configured to each of the size of 8 ⁇ m * 8 ⁇ m.
  • the number and size of the pixels of the micro LED panel 110, 120, 130 may be changed and the like, depending on the use and type of the projection apparatus 100.
  • the red micro LED panel 110, the green micro LED panel 120, and the blue micro LED panel 130 constituting the projection apparatus 100 may be disposed to be perpendicular to each other adjacent to each other.
  • the green micro LED panel 120 is disposed in the left region of the dichroic prism 150
  • the red micro LED panel 110 is disposed in the upper region of the dichroic prism 150
  • the dichroic The blue micro LED panel 130 may be disposed in the lower region of the prism 150.
  • the LED driver 140 may operate to drive the red micro LED panel 110, the green micro LED panel 120, and the blue micro LED panel 130. That is, the LED driver 140 includes an R-LED driver 141 for driving the red micro LED panel 110, a G-LED driver 143 and a blue micro LED panel for driving the green micro LED panel 120. It may include a B-LED driver 145 for driving (130).
  • the R-LED driver 141, the G-LED driver 143, and the B-LED driver 145 are configured independently is not limited thereto.
  • the red micro LED panel 110, the green micro LED panel 120, and the blue micro LED panel 130 may be integrally formed with the red micro LED panel 110. That is, the R-LED driver 141, the G-LED driver 143, and the B-LED driver 145 may include the red micro LED panel 110, the green micro LED panel 120, and the blue micro LED panel 130. It may be composed of a CMOS backplane disposed in the rear direction of the.
  • the CMOS backplane may include an active matrix circuit unit having a plurality of CMOS cells for individually driving a plurality of micro LED pixels, and a common cell disposed outside the active matrix circuit unit.
  • Each of the plurality of CMOS cells included in the active matrix circuit unit is electrically connected to the corresponding micro LED pixel through bumps.
  • Each of the plurality of CMOS cells is an integrated circuit (IC) for individually driving corresponding micro LED pixels.
  • each of the plurality of CMOS cells may be a pixel driving circuit including two transistors and one capacitor, and in an equivalent circuit, when flip chip bonding a micro LED panel to a CMOS backplane using bumps, the pixel driving Each micro LED pixel may be disposed between the drain terminal of the transistor of the circuit and the common ground terminal.
  • the common cell disposed outside the active matrix circuit unit may include a data driver IC and a scan driver IC.
  • a plurality of micro LED pixels constituting the micro LED panels 110 to 130 are intersections of the plurality of scanning lines 425 and the plurality of data lines 415. Can be located in the field.
  • the plurality of scanning lines 425 input to the plurality of micro LED pixels are controlled by the scan driver IC 420, and the plurality of data lines 415 are controlled by the data driver IC 410.
  • the scan driver IC 420 scans all of the plurality of scanning lines 425 when providing image data, and then selects one or more of them.
  • the signal is turned on by inputting a high signal (H).
  • the data driver IC 410 supplies the image data to the plurality of data lines 415, the pixels turned on in the scanning line pass the image data so that the corresponding image data is transferred through the micro LED panel. To be displayed. In this way, the scanning for one frame is completed as all scanning lines are sequentially scanned.
  • the dichroic prism 150 includes red light output from the red micro LED panel 110, green light output from the green micro LED panel 120, and blue light output from the blue micro LED panel 130. Can perform a function of synthesizing light.
  • the projection lens 160 may perform a function of enlarging the composite light output from the dichroic prism 150 to radiate to the front screen.
  • the projection apparatus 100 using the red micro LED panel, the green micro LED panel, and the blue micro LED panel does not require a separate light source lamp, it is possible to improve the flexibility of the apparatus manufacturing, and the light efficiency and color Increased reproducibility enables high resolution full color.
  • FIG. 5A is a cross-sectional view of a micro LED panel according to an embodiment of the present invention
  • Figure 5b is a cross-sectional view of a micro LED display device.
  • the micro LED display device may be formed by flip chip bonding the micro LED panel and the CMOS backplane through bumps.
  • a micro LED panel 500 is an LED panel having an array structure in which a plurality of light emitting devices (that is, a plurality of micro pixels) stacked on a wafer are arranged in a matrix form.
  • the controller may perform a function of outputting light corresponding to an image signal of the image display device.
  • the micro LED panel 500 includes a substrate 510, a first conductive semiconductor layer 520 on the substrate 510, an active layer 530 on the first conductive semiconductor layer 520, and the active layer (
  • the second conductive semiconductor layer 540, the first and second conductive metal layers 560 and 550, and the passivation layer 570 may be included on the 530.
  • the substrate 510 may be formed of at least one of a light transmitting material, for example, sapphire (Al 2 O 3 ), a single crystal substrate, SiC, GaAs, GaN, ZnO, AlN, Si, GaP, InP, and Ge. It does not limit to this.
  • a light transmitting material for example, sapphire (Al 2 O 3 ), a single crystal substrate, SiC, GaAs, GaN, ZnO, AlN, Si, GaP, InP, and Ge. It does not limit to this.
  • the first conductive semiconductor layer 520 may include a compound semiconductor of a group-group element doped with an n-type dopant.
  • the first conductive semiconductor layer 520 may be a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). For example, it may be selected from InAlGaN, GaN, AlGaN, AlInN, InGaN, AlN, InN, and the like, and an n-type dopant such as Si, Ge, Sn, or the like may be doped.
  • the active layer 530 In the active layer 530, electrons (or holes) injected through the first conductive semiconductor layer 520 and holes (or electrons) injected through the second conductive semiconductor layer 540 meet each other, and thus, the active layer 430 is formed.
  • the layer emits light due to a band gap difference of an energy band according to a material forming a.
  • the active layer 530 may be formed of any one of a single quantum well structure, a multi quantum well structure (MQW), a quantum dot structure, or a quantum line structure, but is not limited thereto.
  • the active layer 530 may be formed of a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the active layer 530 may be formed by alternately stacking a plurality of well layers and a plurality of barrier layers.
  • the second conductive semiconductor layer 540 may include a compound semiconductor of a group-group element doped with a p-type dopant.
  • a second conductive metal layer (ie, a p electrode, 550) may be formed on the second conductive semiconductor layer 540, and a first conductive metal layer (ie, on the first conductive semiconductor layer 520).
  • An n electrode 560 can be formed.
  • the first and second conductive metal layers 560 and 550 provide power to a plurality of micro LED pixels formed in the micro LED panel 500.
  • the second conductive metal layer 550 is disposed on the second conductive semiconductor layer 540 corresponding to each micro LED pixel, and each of the CMOS cells 620 and bumps provided in the CMOS backplane 600 are provided. 650 may be electrically connected. Meanwhile, in another embodiment, when a reflective layer (not shown) such as a distributed bragg reflector (DBR) is present on the second conductive semiconductor layer 540, the second conductive metal layer 550 is disposed on the reflective layer. Can be.
  • DBR distributed bragg reflector
  • the first conductive metal layer 560 is disposed on the mesa etched region of the first conductive semiconductor layer 520, and may be formed to be spaced apart from the plurality of micro LED pixels by a predetermined distance.
  • the first conductive metal layer 560 may be formed on the first conductive semiconductor layer 520 to have a predetermined width along the outer side of the micro LED panel 500.
  • the height of the first conductivity type metal layer 560 may be formed to be substantially the same as the height of the plurality of micro LED pixels.
  • the first conductivity type metal layer 560 is electrically connected to the common cell 610 of the CMOS backplane 600 by bumps, and functions as a common electrode of micro LED pixels.
  • the first conductivity type metal layer 560 may be a common ground.
  • Passivation is provided on at least one side of the first conductive semiconductor layer 520, the active layer 530, the second conductive semiconductor layer 540, the second conductive metal layer 550, and the first conductive metal layer 560.
  • Layer 570 may be formed.
  • the passivation layer 570 may be formed to electrically protect the light emitting structures 520, 530, and 540.
  • SiO 2 , SiO x , SiO x N y , Si 3 N 4 , Al 2 O It may be formed of 3 , but is not limited thereto.
  • the light emitting devices thus formed may emit light having different wavelengths according to the composition ratio of the compound semiconductor.
  • the micro LED panel 500 may be a red micro LED panel 500.
  • the micro LED panel 500 may be a green micro LED panel 500.
  • the micro LED panel 500 may be a blue micro LED panel 500.
  • the micro LED display device includes a micro LED panel 500, a CMOS backplane 600, and bumps 650.
  • the CMOS backplane 600 may include an active matrix circuit unit including a plurality of CMOS cells 620, and a common cell 610 disposed outside the active matrix circuit unit.
  • the micro LED panel 500 includes a plurality of micro LED pixels, and the CMOS backplane 600 includes a plurality of CMOS cells 620 corresponding to each of the micro LED pixels to individually drive each of the plurality of micro LED pixels. It includes.
  • the pixel area of the micro LED panel 500 may correspond to the AM area of the CMOS backplane 600.
  • the bumps 650 allow each of the micro LED pixels and the corresponding CMOS cells 620 to be electrically connected with the micro LED pixels and the CMOS cells 620 disposed to face each other.
  • a plurality of bumps 650 are first disposed on the CMOS cells 620 and the common cell 610 of the CMOS backplane 600.
  • the CMOS backplane 600 and the micro LED panel 500 face each other so that the CMOS cells 620 and the micro LED pixels correspond to each other in one-to-one correspondence, and are heated.
  • the plurality of bumps 650 are melted, so that the CMOS cells 620 and the corresponding micro LED pixels are electrically connected to each other, and the common cell 610 and the corresponding micro LED panel 500 are connected.
  • the common electrode 560 is in a state of being electrically connected.
  • FIGS. 6A to 6G are views illustrating a method of manufacturing a micro LED display device according to an embodiment of the present invention.
  • the light emitting structures 520, 530, and 540 are sequentially grown on the substrate 510 by sequentially growing the first conductive semiconductor layer 520, the active layer 530, and the second conductive semiconductor layer 540. Can be formed.
  • the substrate 510 may be formed of at least one of a light transmitting material, for example, sapphire (Al 2 O 3 ), a single crystal substrate, SiC, GaAs, GaN, ZnO, AlN, Si, GaP, InP, and Ge. This is not limiting.
  • a light transmitting material for example, sapphire (Al 2 O 3 ), a single crystal substrate, SiC, GaAs, GaN, ZnO, AlN, Si, GaP, InP, and Ge. This is not limiting.
  • the first conductive semiconductor layer 520 is a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), for example InAlGaN, GaN, AlGaN, AlInN, InGaN, AlN, InN and the like may be selected, and n-type dopants such as Si, Ge, Sn, and the like may be doped.
  • the first conductivity type semiconductor layer 520 may be formed by injecting trimethyl gallium (TMGa) gas, ammonia (NH 3 ) gas, and xylene (SiH 4 ) gas together with hydrogen gas into a chamber.
  • TMGa trimethyl gallium
  • NH 3 ammonia
  • SiH 4 xylene
  • An undoped semiconductor layer (not shown) and / or a buffer layer (not shown) may be further included between the substrate 510 and the first conductivity-type semiconductor layer 520,
  • the active layer 530 may be formed of a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the active layer 530 may be formed by injecting trimethyl gallium (TMGa) gas, trimethyl indium (TMIn) gas, and ammonia (NH 3 ) gas together with hydrogen gas into the chamber.
  • TMGa trimethyl gallium
  • TMIn trimethyl indium
  • NH 3 ammonia
  • the second conductivity type semiconductor layer 540 is a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), for example InAlGaN, GaN, AlGaN, InGaN, AlInN, AlN, InN and the like may be selected, and p-type dopants such as Mg, Zn, Ca, Sr, and Ba may be doped.
  • the second conductive semiconductor layer 540 includes trimethyl gallium (TMGa) gas, ammonia (NH 3 ) gas, bicetyl cyclopentadienyl magnesium (EtCp 2 Mg) ⁇ Mg (C 2 H 5 C 5 H 4 ) 2 ⁇ Can be formed by injecting the gas with the hydrogen gas into the chamber.
  • TMGa trimethyl gallium
  • NH 3 ammonia
  • EtCp 2 Mg bicetyl cyclopentadienyl magnesium
  • Mg bicetyl cyclopentadienyl magnesium
  • a plurality of light emitting devices may be formed by performing an isolation etching process on the light emitting structures 520, 530, and 540 according to a unit pixel area.
  • the isolation etching may be performed by a dry etching method such as inductively coupled plasma (ICP).
  • ICP inductively coupled plasma
  • One top surface of the first conductivity-type semiconductor layer 520 is exposed through the isolation etching process.
  • the edge region of the first conductivity-type semiconductor layer 520 may be etched to have a predetermined width.
  • the second conductive metal layer 550 may be formed on one surface of the second conductive semiconductor layer 540, and the mesa-etched first conductive semiconductor layer 520 may be formed.
  • the first conductivity type metal layer 560 may be formed on one top surface.
  • the first and second conductive metal layers 560 and 550 may be formed by a deposition process or a plating process, but are not limited thereto.
  • the passivation layer 570 is formed on the substrate 510, the light emitting structures 520, 530, and 540, the second conductive metal layer 550, and the first conductive metal layer 560.
  • the passivation layer 570 may be selectively removed to expose one top surface of the first and second conductivity-type metal layers 560 and 550 to the outside.
  • a plurality of bumps 650 are disposed on the CMOS cells 620 and the common cell 610 of the CMOS backplane 600.
  • the micro LED panel 500 is inverted up and down so that the first and second conductivity type metal layers 560 and 550 face downward.
  • the CMOS backplane 600 and the micro LED panel 500 facing the bumps 650 are disposed to face each other, and the CMOS cells 620 and the micro LED pixels correspond to each other in close contact with each other and are heated.
  • the plurality of bumps 650 are melted, so that the CMOS cells 620 and the corresponding micro LED pixels are electrically connected, and the common cell 610 of the CMOS backplane 600 and the corresponding microstrip are electrically connected.
  • the common electrode 560 of the LED panel 500 is in a state of being electrically connected.
  • the micro LED display device may be formed by flip chip bonding the CMOS backplane 600 and the micro LED panel 500 through the bumps 650.
  • FIG. 7 is a configuration diagram of a projection apparatus according to another embodiment of the present invention.
  • a projection apparatus 700 may include a red micro LED panel 710, a green micro LED panel 720, a blue micro LED panel 730, an LED driver 740, And dichroic prism 750 and projection lens 760.
  • components other than the red micro LED panel 710 are the same as those shown in FIG. Therefore, detailed descriptions of the green micro LED panel 720, the blue micro LED panel 730, the LED driver 740, the dichroic prism 750, and the projection lens 760 illustrated in FIG. 7 will be omitted. .
  • the red micro LED panel 710 constituting the projection apparatus 700 may include a blue micro LED panel 711 and a color conversion film 713.
  • the green micro LED panel and the blue micro LED panel can be manufactured in the same process, but the red micro LED panel is formed on the GaAs substrate. An additional process is needed to separate.
  • the red micro LED panel 710 is implemented with the blue micro LED panel 711 and the color conversion film 713, all micro LED panels 710, 720, 730 of the projection apparatus 700 using the same process. ) Can be produced.
  • FIG. 8 is a diagram illustrating a red micro LED panel according to another embodiment of the present invention.
  • the red micro LED panel 710 may include a blue micro LED panel 711 and a color conversion film 713 on the blue micro LED panel 711.
  • the blue micro LED panel 711 constituting the red micro LED panel 710 is a panel having an array structure in which a plurality of micro LED pixels are arranged in a matrix form and outputs blue light corresponding to an image signal of a video display device. To perform the function.
  • the plurality of micro LED pixels constituting the panel 711 may be configured as a blue LED element.
  • the color conversion film 713 may perform a function of converting blue light emitted from the blue micro LED panel 711 into red light.
  • the color conversion film 713 may include an adhesive or an adhesive component, and may be attached to one surface of the blue micro LED panel 711 to which blue light is emitted.
  • the adhesive or the adhesive component when the adhesive or the adhesive component is not included in the color conversion film 713, there is a separate adhesive layer or adhesive sheet between the blue micro LED panel 711 and the color conversion film 713. adhesive sheets) may be formed.
  • a phosphor film and a quantum dot film may be used, but is not limited thereto.
  • the implementation of the red micro LED panel using the blue micro LED panel and the color conversion film is not limited thereto, and the red micro LED panel using the green micro LED panel and the color conversion film is not limited thereto. It will be apparent to those skilled in the art that the present invention can be implemented.
  • the red micro LED panel 710 is applied to the pico projector 700, but the present invention is not limited thereto, and a head-up display (HUD) or a head mounted display for a vehicle may be used. It will be apparent to those skilled in the art that the present invention can be applied to various display devices such as a head mounted display (HMD).
  • HUD head-up display
  • HMD head mounted display
  • 9 and 10 are diagrams illustrating a quantum dot film according to an embodiment of the present invention.
  • the quantum dot film 900 may include a polymer layer 920 in which a plurality of quantum dots 910 are dispersed.
  • the polymer layer 920 may be formed of a plastic resin.
  • the plastic resin may include various materials for forming a polymer or silicone based film, and the type of materials is not limited. In the embodiment of the present invention, the properties required for the plastic resin is sufficient to have the property to transmit light in the cured state, there is no limitation on the transmittance of light.
  • a quantum dot 910 is dispersed in the polymer layer 920 to implement color reproducibility and color purity by changing light wavelengths.
  • Quantum dots or quantum dots, 910) are semiconductor nanoparticles of several nanometers (nm) in diameter and have quantum mechanics characteristics such as quantum confinement effects or quantum confinement effects.
  • the quantum confinement effect refers to a phenomenon in which the band gap energy increases (conversely, the wavelength decreases) as the size of the semiconductor nanoparticles decreases.
  • the typical characteristic of the quantum dot 910 is that it emits light when it hits (Photo Luminescence, PL) or emits electricity when it flows (Electron Luminescence, EL).
  • the quantum dot 910 made by a chemical synthesis process can realize a desired color by simply adjusting the particle size without changing the material. For example, as shown in FIG. 10, the smaller the nanoparticle size may emit blue light having a shorter wavelength according to the quantum confinement effect, and the larger the nanoparticle size may emit red light having a longer wavelength. .
  • the diameter of the quantum dot 910 dispersed in the polymer layer 920 may range from 1 nm to 10 nm.
  • the term dot 910 according to an embodiment of the present invention may have a diameter of 5 nm to 7 nm in order to convert blue light into red light. More preferably, the quantum dot 910 may have a diameter of 6 nm.
  • the quantum dot 910 may be a II-VI, III-V or IV material, and specifically, CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, InP, GaP, GaInP2, PbS, ZnO, TiO2, AgI , AgBr, Hg12, PbSe, In2S3, In2Se3, Cd3P2, Cd3As2 or GaAs.
  • the quantum dot 910 may have a core-shell structure.
  • the core includes any one material selected from the group consisting of CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe and HgS
  • the shell is CdSe, CdTe, CdS, ZnSe, ZnTe, It may include any one material selected from the group consisting of ZnS, HgTe and HgS.
  • the quantum dot film 900 may further include a barrier layer (not shown) attached to at least one surface of the polymer layer 920.
  • FIG. 11 is a configuration diagram of a projection apparatus according to another embodiment of the present invention.
  • a projection device 1100 may include a red micro LED panel 1110, a green micro LED panel 1120, a blue micro LED panel 1130, and an LED driver 1140. , Dichroic prism 1150, and projection lens 1160.
  • components other than the red micro LED panel 1110 are the same as those shown in FIG. 2. Therefore, detailed descriptions of the green micro LED panel 1120, the blue micro LED panel 1130, the LED driver 1140, the dichroic prism 1150, and the projection lens 1160 illustrated in FIG. 11 will be omitted. .
  • the red micro LED panel 1110 constituting the projection apparatus 1100 may be manufactured through a sapphire bonding avoiding process.
  • a red micro LED panel manufacturing method using a sapphire bonding process and a red micro LED panel manufacturing method avoiding the sapphire bonding process will be described separately.
  • 12A to 12G illustrate a manufacturing method of a red micro LED display device according to an exemplary embodiment.
  • light emitting structures 1220, 1230, and 1240 may be sequentially grown on a GaAs substrate 1210 by sequentially growing a first conductive semiconductor layer 1220, an active layer 1230, and a second conductive semiconductor layer 1240. ) Can be formed.
  • the reason why the GaAs substrate is used instead of the sapphire substrate is that it has a lattice constant similar to that of the light emitting structures 1220, 1230, and 1240 that emit red light. Accordingly, when the light emitting structures 1220, 1230, and 1240 are stacked on the GaAs substrate 1210, strain due to a lattice constant difference does not occur.
  • the first sapphire substrate 1250 may be bonded to the top surface of the second conductivity-type semiconductor layer 1240.
  • the second conductive semiconductor layer 1240 and the first sapphire substrate 1250 may be bonded through an adhesive layer or an adhesive.
  • the first sapphire substrate 1250 may serve as a support layer for removing the GaAs substrate 1210.
  • the GaAs substrate 1210 attached to the bottom surface of the layer 1220 may be separated.
  • the reason why the GaAs substrate 1210 is separated is that the GaAs substrate 1210 has a property of absorbing the red wavelength emitted from the light emitting structures 1220, 1230, and 1240. Therefore, after the light emitting structures 1220, 1230, and 1240 are grown, it is necessary to replace the GaAs substrate 1210 with a sapphire substrate. At this time, the reason for using a sapphire substrate is that it is excellent in light transmittance and excellent price competitiveness compared with other board
  • a second sapphire substrate 1260 may be bonded to a bottom surface of the first conductivity type semiconductor layer 1220.
  • the first conductive semiconductor layer 1220 and the second sapphire substrate 1260 may be bonded through an adhesive layer or an adhesive.
  • the second sapphire substrate 1260 serves to change the upper and lower positions of the light emitting structures 1220, 1230, and 1240.
  • a second conductive semiconductor using a laser lift off (LLO), chemical lift off (CLO), electrical lift off (ELO), an etching method, or the like may be separated.
  • an isolation etching process is performed on the light emitting structures 1220, 1230, and 1240 according to a unit pixel area, and a positive electrode is formed on the mesa-etched light emitting structures 1220, 1230, and 1240.
  • a positive electrode is formed on the mesa-etched light emitting structures 1220, 1230, and 1240.
  • (-) electrodes may be deposited to form a plurality of light emitting devices (ie, a plurality of micro LED pixels).
  • a passivation process may be performed on the light emitting structures 1220, 1230, and 1240 to form the micro LED panel 1200.
  • a plurality of bumps 650 are disposed on the CMOS cells 620 and the common cell 610 of the CMOS backplane 600.
  • the micro LED panel 1200 is inverted up and down so that the first and second conductivity type metal layers face downward.
  • the CMOS backplane 600 and the micro LED panel 1200 facing the bumps 650 are disposed to face each other, and the CMOS cells 620 and the micro LED pixels are in close contact with each other, and are heated.
  • the plurality of bumps 650 are melted, so that the CMOS cells 620 and the corresponding micro LED pixels are electrically connected, and the common cell 610 of the CMOS backplane 600 and the corresponding microstrip are electrically connected.
  • the common electrode of the LED panel 1200 is in a state of being electrically connected.
  • the micro LED display device may be implemented by flip-chip bonding the CMOS backplane 600 and the micro LED panel 1200 through the bumps 650.
  • FIGS. 13A to 13E are views illustrating a manufacturing method of a red micro LED display device according to another exemplary embodiment.
  • the light emitting structures 1320, 1330, and 1340 may be sequentially grown on the GaAs substrate 1310 by sequentially growing the first conductive semiconductor layer 1320, the active layer 1330, and the second conductive semiconductor layer 1340. ) Can be formed. In this case, the light emitting structures 1320, 1330, and 1340 may emit red light.
  • an isolation etching process is performed on the light emitting structures 1320, 1330, and 1340 according to a unit pixel area, and a positive electrode is formed on the mesa-etched light emitting structures 1320, 1330, and 1340.
  • a positive electrode is formed on the mesa-etched light emitting structures 1320, 1330, and 1340.
  • (-) electrodes may be deposited to form a plurality of light emitting devices (ie, a plurality of micro LED pixels).
  • a passivation process may be performed on the light emitting structures 1320, 1330, and 1340 to form a micro LED panel.
  • a plurality of bumps 1360 may be disposed on the CMOS cells 1352 and the common cell 1351 of the CMOS backplane 1350.
  • the CMOS backplane 1350 and the micro LED panel facing each other with the bumps 1360 disposed therebetween are brought into close contact with each other in a one-to-one correspondence, and then heated. Then, the plurality of bumps 1360 are melted, so that the CMOS cells 1352 and the corresponding micro LED pixels are electrically connected to each other, and the common cell 1351 of the CMOS backplane 1350 and the corresponding micro LEDs are electrically connected.
  • the common electrode of the LED panel is in a state of being electrically connected.
  • a light emitting structure using a laser lift off (LLO), chemical lift off (CLO), electrical lift off (ELO), an etching method, or the like GaAs substrates 1310 attached to lower surfaces of 1320, 1330, and 1340 may be separated. Meanwhile, in another embodiment, a protection process for minimizing damage to the light emitting devices by the separation process may be added before the GaAs substrate 1310 separation process. Through this series of steps, it is possible to realize a red micro LED panel which avoids the sapphire process.
  • the red micro LED panel manufacturing method according to the present invention can significantly reduce the number of panel manufacturing process, thereby improving the product yield, and can reduce the performance degradation occurring on the manufacturing process. It can be minimized.
  • the red micro LED panel according to the present invention does not include a sapphire substrate, so that not only the light efficiency can be improved but also light scattering can be minimized.
  • the red micro LED panel is applied to the pico projector 1100, but the present invention is not limited thereto, and a head-up display (HUD) or a head mounted display for a vehicle may be used. It will be apparent to those skilled in the art that the present invention can be applied to various display devices such as Display, HMD).
  • HUD head-up display
  • HMD head mounted display

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Projection Apparatus (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

본 발명은 마이크로 LED 패널을 이용한 프로젝션 장치에 관한 것으로, 제1 파장의 마이크로 LED 픽셀들을 이용하여 제1 파장의 광을 출력하는 제1 마이크로 LED 패널; 제2 파장의 마이크로 LED 픽셀들을 이용하여 제2 파장의 광을 출력하는 제2 마이크로 LED 패널; 상기 제1 또는 제2 파장의 마이크로 LED 픽셀들을 이용하여 제3 파장의 광을 출력하는 제3 마이크로 LED 패널; 및 상기 제1 내지 제3 마이크로 LED 패널에서 출력되는 광들을 합성하는 다이크로익 프리즘(Dichroic Prizm)을 포함하고, 상기 제3 마이크로 LED 패널은, 상기 제1 또는 제2 파장의 광을 상기 제3 파장의 광으로 변환하기 위한 색 변환 필름을 구비하는 것을 특징으로 한다.

Description

마이크로 LED 패널을 이용한 프로젝션 장치 및 그 제조방법
본 발명은 프로젝션 장치 및 그 제조방법에 관한 것으로, 보다 구체적으로는, 마이크로 LED 패널을 이용하여 고 해상도의 풀 컬러(full color)를 구현할 수 있는 프로젝션 장치 및 그 제조방법에 관한 것이다.
발광 소자(LIGHT EMITTING DEVICE, LED)는 전기 에너지를 빛 에너지로 변환하는 반도체 소자의 일종이다. 발광 소자는 형광등, 백열등 등 기존의 광원에 비해 저 소비 전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경친화성의 장점을 가진다.
이에 기존의 광원을 발광 소자로 대체하기 위한 많은 연구가 진행되고 있으며, 실내 외에서 사용되는 각종 램프, 액정표시장치, 전광판, 가로등 등의 조명 장치의 광원으로서 발광 소자를 사용하는 경우가 증가하고 있다.
최근, LED 산업은 기존의 전통조명의 범위를 넘어 다양한 산업에 적용되기 위한 새로운 시도가 이루어지고 있는데, 특히 저전력 구동 플렉서블 디스플레이, 인체 모니터링을 위한 부착형 정보표시소자, 생체반응 및 DNA 센싱, 광유전학 유효검증을 위한 바이오 융합 분야, 전도성 섬유와 LED 광원이 결합한 Photonics Textile 분야 등에서 연구가 활발히 진행되고 있다.
일반적으로 LED 칩을 수 내지 수십 마이크로 수준으로 작게 제작하게 되면 무기물 재료의 특성상 휘어질 때 깨지는 단점을 극복할 수 있으며, 유연한 기판에 LED 칩을 전사함으로써 유연성(flexibility)을 부여하여 앞서 언급된 플렉서블 디스플레이 뿐만 아니라 웨어러블 기기, 인체 삽입용 의료기기, 피코 프로젝터까지 다양한 응용 분야에 광범위하게 적용될 수 있다.
한편, 프로젝션 장치(또는 프로젝터)는 영사장치의 한 가지로 슬라이드, 투명지 위의 사진, 그림, 문자 등을 렌즈를 통해서 스크린 위에 확대 투영하여 많은 사람에게 동시에 보여 주는 광학장치이다. 이러한 프로젝션 장치는 필요한 화면 밝기를 얻기 위해서 충분한 휘도를 가져야 한다. 따라서 일반적인 형태의 프로젝션 장치들은 이러한 휘도를 얻기 위해서 금속 할로겐 램프, 고압 수은 램프, 제논 램프 등과 같은 고 전류 소모성 램프를 사용해 왔다.
가령, 도 1a 및 도 1b에 도시된 바와 같이, 종래의 프로젝션 장치는 크게 DLP 방식의 프로젝션 장치와 LCoS 방식의 프로젝션 방식 등이 있다. DLP 방식의 프로젝션 장치는 램프에서 출사된 광원이 여러 색의 컬러휠을 교대로 통과하고, 통과된 광원이 DMD(Digital Micromirror Device) 칩에 반사되어 화면을 표시하는 반사형 소자를 이용하는 방식이다. 이에 반해, LCoS 방식의 프로젝션 방식은 램프에서 출사된 광원이 특수 거울을 통해 분리되고, 상기 분리된 광원이 3개의 LCD 패널(즉, 청색/녹색/적색 LCD 패널)을 각각 투과하여 스크린에 비치도록 하는 방식이다.
그런데, 이러한 DLP 방식 및 LCoS 방식의 프로젝션 장치는, 별도의 광원 램프를 필요로 하고, 그로 인해 기구 제작의 유연성이 떨어지며, 광 효율이 떨어지는 문제점들이 있다. 따라서, 컴팩트(compact)한 구조를 가지면서 고 해상도의 풀 컬러(full color)를 구현할 수 있는 새로운 프로젝션 장치를 개발할 필요가 있다.
본 발명은 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다. 또 다른 목적은 마이크로 LED 패널을 이용한 프로젝션 장치 및 그 제조방법을 제공함에 있다.
또 다른 목적은 청색 마이크로 LED 패널과 색 변환 필름을 이용하여 적색 마이크로 LED 패널을 구현할 수 있는 프로젝션 장치 및 그 제조방법을 제공함에 있다.
또 다른 목적은 녹색 마이크로 LED 패널과 색 변환 필름을 이용하여 적색 마이크로 LED 패널을 구현할 수 있는 프로젝션 장치 및 그 제조방법을 제공함에 있다.
또 다른 목적은 사파이어 본딩(Sapphire bonding) 공정을 회피하여 적색 마이크로 LED 패널을 구현할 수 있는 프로젝션 장치 및 그 제조방법을 제공함에 있다.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 제1 파장의 마이크로 LED 픽셀들을 이용하여 제1 파장의 광을 출력하는 제1 마이크로 LED 패널; 제2 파장의 마이크로 LED 픽셀들을 이용하여 제2 파장의 광을 출력하는 제2 마이크로 LED 패널; 상기 제1 또는 제2 파장의 마이크로 LED 픽셀들을 이용하여 제3 파장의 광을 출력하는 제3 마이크로 LED 패널; 및 상기 제1 내지 제3 마이크로 LED 패널에서 출력되는 광들을 합성하는 다이크로익 프리즘(Dichroic Prizm)을 포함하고, 상기 제3 마이크로 LED 패널은, 상기 제1 또는 제2 파장의 광을 상기 제3 파장의 광으로 변환하기 위한 색 변환 필름을 구비하는 것을 특징으로 하는 프로젝션 장치를 제공한다.
본 발명의 다른 측면에 따르면, 제1 파장의 광을 출력하는 제1 마이크로 LED 디스플레이 장치, 제2 파장의 광을 출력하는 제2 마이크로 LED 디스플레이 장치 및 제3 파장의 광을 출력하는 제3 마이크로 LED 디스플레이 장치를 포함하는 프로젝션 장치에서, GaAs 기판을 형성하는 단계; 상기 GaAs 기판 상에 발광 구조물을 적층하는 단계; 상기 발광 구조물을 단위 픽셀 영역에 따라 에칭 공정을 수행하여 복수의 마이크로 LED 픽셀들을 포함하는 마이크로 LED 패널을 형성하는 단계; 실리콘 기판 상에 상기 마이크로 LED 패널을 플립칩 본딩하는 단계; 및 상기 마이크로 LED 패널에 부착된 GaAs 기판을 분리하는 단계를 포함하는 제3 마이크로 LED 디스플레이 장치의 제조 방법을 제공한다.
본 발명의 실시 예들에 따른 프로젝션 장치 및 그 제조방법의 효과에 대해 설명하면 다음과 같다.
본 발명의 실시 예들 중 적어도 하나에 의하면, 적색 마이크로 LED 패널, 녹색 마이크로 LED 패널 및 청색 마이크로 LED 패널을 이용한 프로젝션 장치를 구현함으로써, 컴팩트한 구조를 가질 수 있을 뿐만 아니라 고 해상도(HD 급)의 풀 컬러(full color)를 제공할 수 있다는 장점이 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 청색 마이크로 LED 패널 또는 녹색 마이크로 LED 패널과 색 변환 필름을 이용하여 적색 마이크로 LED 패널을 구현함으로써, 프로젝터에 설치되는 적색 마이크로 LED 패널, 녹색 마이크로 LED 패널 및 청색 마이크로 LED 패널들을 동일한 공정으로 제작할 수 있다는 장점이 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 사파이어 본딩 공정을 회피하여 적색 마이크로 LED 패널을 구현함으로써, LED 패널 제조 공정을 단순화할 수 있고, 제품 수율을 향상할 수 있으며, 제조 공정 상에 발생하는 성능 저하를 최소화할 수 있다는 장점이 있다.
다만, 본 발명의 실시 예들에 따른 프로젝션 장치 및 그 제조방법이 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1a 및 도 1b는 종래 프로젝션 장치의 동작 방식을 설명하는 도면;
도 2는 본 발명의 일 실시 예에 따른 프로젝션 장치의 구성도;
도 3은 프로젝션 장치에 구비되는 적색 마이크로 LED 패널, 녹색 마이크로 LED 패널 및 청색 마이크로 LED 패널을 설명하는 도면;
도 4는 데이터 드라이버 IC와 스캔 드라이버 IC를 통해 마이크로 LED 패널을 구동하는 동작을 설명하는 도면;
도 5a는 본 발명의 일 실시 예에 따른 마이크로 LED 패널의 단면도이고, 5 b는 마이크로 LED 디스플레이 장치의 단면도;
도 6a 내지 도 6g는 본 발명의 일 실시 예에 따른 마이크로 LED 디스플레이 장치의 제조방법을 설명하는 도면;
도 7은 본 발명의 다른 실시 예에 따른 프로젝션 장치의 구성도;
도 8은 본 발명의 다른 실시 예에 따른 적색 마이크로 LED 패널을 설명하는 도면;
도 9 및 도 10은 본 발명의 일 실시 예에 따른 퀀텀닷 필름을 설명하는 도면;
도 11은 본 발명의 또 다른 실시 예에 따른 프로젝션 장치의 구성도;
도 12a 내지 도 12e는 본 발명의 일 실시 예에 따른 적색 마이크로 LED 디스플레이 장치의 제조방법을 설명하는 도면;
도 13a 내지 도 13e는 본 발명의 다른 실시 예에 따른 적색 마이크로 LED 디스플레이 장치의 제조방법을 설명하는 도면.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 즉, 본 발명에서 사용되는 '부'라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '부'는 어떤 역할들을 수행한다. 그렇지만 '부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 '부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '부'들로 결합되거나 추가적인 구성요소들과 '부'들로 더 분리될 수 있다.
또한, 본 발명에 따른 실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다. 도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명은, 적색 마이크로 LED 패널, 녹색 마이크로 LED 패널 및 청색 마이크로 LED 패널을 이용하여 고 해상도의 풀 컬러(full color)를 구현할 수 있는 프로젝션 장치 및 그 제조방법을 제안한다.
이하에서는, 본 발명의 다양한 실시 예들에 대하여, 도면을 참조하여 상세히 설명한다.
도 2는 본 발명의 일 실시 예에 따른 프로젝션 장치의 구성도이다.
도 2를 참조하면, 본 발명의 일 실시 예에 따른 프로젝션 장치(100)는 적색 마이크로 LED 패널(110), 녹색 마이크로 LED 패널(120), 청색 마이크로 LED 패널(130), LED 구동부(140), 다이크로익 프리즘(150) 및 프로젝션 렌즈(160) 등을 포함할 수 있다.
적색 마이크로 LED 패널(110)은 웨이퍼(wafer) 상에 적층된 복수의 발광 소자들(즉, 복수의 마이크로 LED 픽셀들)이 매트릭스 형태로 배열된 어레이(array) 구조를 갖는 LED 패널로서, 영상 표시 기기의 영상 신호에 대응하는 적색 광(red light)을 출력하는 기능을 수행할 수 있다. 이때, 해당 패널(110)을 구성하는 복수의 마이크로 LED 픽셀들은 적색 LED 소자로 구성될 수 있다.
녹색 마이크로 LED 패널(120)은 웨이퍼(wafer) 상에 적층된 복수의 발광 소자들(즉, 복수의 마이크로 LED 픽셀들)이 매트릭스 형태로 배열된 어레이 구조를 갖는 LED 패널로서, 영상 표시 기기의 영상 신호에 대응하는 녹색 광을 출력하는 기능을 수행할 수 있다. 이때, 해당 패널(120)을 구성하는 복수의 마이크로 LED 픽셀들은 녹색 LED 소자로 구성될 수 있다.
청색 마이크로 LED 패널(130)은 웨이퍼(wafer) 상에 적층된 복수의 발광 소자들(즉, 복수의 마이크로 LED 픽셀들)이 매트릭스 형태로 배열된 어레이 구조를 갖는 LED 패널로서, 영상 표시 기기의 영상 신호에 대응하는 청색 광을 출력하는 기능을 수행할 수 있다. 이때, 해당 패널(130)을 구성하는 복수의 마이크로 LED 픽셀들은 청색 LED 소자로 구성될 수 있다.
일 예로, 도 3에 도시된 바와 같이, 해당 프로젝션 장치(100)를 구성하는 적색 마이크로 LED 패널(110), 녹색 마이크로 LED 패널(120) 및 청색 마이크로 LED 패널(130)은, 복수의 행(720)과 복수의 열(1280)로 배열된 마이크로 LED 픽셀들을 포함할 수 있다. 또한, 마이크로 LED 패널(110, 120, 130)을 구성하는 복수의 마이크로 LED 픽셀들의 크기는 각각 8㎛ * 8㎛의 크기로 구성될 수 있다. 하지만, 프로젝션 장치(100)의 용도 및 종류 등에 따라, 마이크로 LED 패널(110, 120, 130)의 픽셀 수 및 크기 등을 변경하여 제작할 수 있음은 당업자에게 자명할 것이다.
해당 프로젝션 장치(100)를 구성하는 적색 마이크로 LED 패널(110), 녹색 마이크로 LED 패널(120) 및 청색 마이크로 LED 패널(130)들은 서로 인접하는 패널에 대해 수직 방향이 되도록 배치될 수 있다. 일 예로, 다이크로익 프리즘(150)의 좌측 영역에 녹색 마이크로 LED 패널(120)을 배치하고, 다이크로익 프리즘(150)의 상부 영역에 적색 마이크로 LED 패널(110)을 배치하며, 다이크로익 프리즘(150)의 하부 영역에 청색 마이크로 LED 패널(130)을 배치할 수 있다.
LED 구동부(140)는 적색 마이크로 LED 패널(110), 녹색 마이크로 LED 패널(120) 및 청색 마이크로 LED 패널(130)을 구동하는 동작을 수행할 수 있다. 즉, LED 구동부(140)는 적색 마이크로 LED 패널(110)을 구동하기 위한 R-LED 구동부(141), 녹색 마이크로 LED 패널(120)을 구동하기 위한 G-LED 구동부(143) 및 청색 마이크로 LED 패널(130)을 구동하기 위한 B-LED 구동부(145)를 포함할 수 있다.
한편, 본 실시 예에서는, 설명의 편의상, R-LED 구동부(141), G-LED 구동부(143) 및 B-LED 구동부(145)가 독립적으로 구성되는 예를 도시하고 있으나 이에 제한되지는 않으며, 상기 적색 마이크로 LED 패널(110), 녹색 마이크로 LED 패널(120) 및 청색 마이크로 LED 패널(130)과 일체로 형성될 수 있음은 당업자에게 자명할 것이다. 즉, R-LED 구동부(141), G-LED 구동부(143) 및 B-LED 구동부(145)은, 적색 마이크로 LED 패널(110), 녹색 마이크로 LED 패널(120) 및 청색 마이크로 LED 패널(130)의 뒤쪽 방향에 배치되는 CMOS 백플레인(backplane)으로 구성될 수 있다.
CMOS 백플레인은 복수의 마이크로 LED 픽셀들을 개별 구동시키기 위한 복수의 CMOS 셀들을 구비하는 Active Matrix 회로부와, 상기 Active Matrix 회로부의 외곽에 배치되는 공통 셀을 포함할 수 있다.
Active Matrix 회로부에 구비되는 복수의 CMOS 셀들 각각은 범프를 통해 대응되는 마이크로 LED 픽셀에 전기적으로 연결된다. 복수의 CMOS 셀들 각각은 대응되는 마이크로 LED 픽셀을 개별적으로 구동시키기 위한 집적회로(IC)이다. 따라서, 복수의 CMOS 셀들 각각은, 두 개의 트랜지스터와 하나의 커패시터를 포함하는 픽셀 구동 회로일 수 있고, 범프들을 이용하여 CMOS 백플레인에 마이크로 LED 패널을 플립칩 본딩하는 경우, 등가 회로상, 상기 픽셀 구동 회로의 트랜지스터의 드레인 단자와 공통 접지 단자 사이에 개개의 마이크로 LED 픽셀이 배치되는 형태로 구성될 수 있다.
Active Matrix 회로부의 외곽에 배치되는 공통 셀은 데이터 드라이버 IC(data driver IC)와 스캔 드라이버 IC(scan driver IC)를 포함할 수 있다. 가령, 도 4에 도시된 바와 같이, 마이크로 LED 패널(110~130)을 구성하는 복수의 마이크로 LED 픽셀들(미도시)은 복수의 스캐닝 라인(425)과 복수의 데이터 라인(415)의 교차 지점들에 위치할 수 있다. 복수의 마이크로 LED 픽셀들로 입력되는 복수의 스캐닝 라인(425)은 스캔 드라이버 IC(420)에 의해 제어되고, 복수의 데이터 라인(415)은 데이터 드라이버 IC(410)에 의해 제어된다.
이러한 CMOS 백플레인을 통한 마이크로 LED 패널(110~130)의 제어 동작을 간단히 살펴보면, 스캔 드라이버 IC(420)는, 이미지 데이터 제공 시, 복수의 스캐닝 라인(425) 모두를 스캐닝하면서 그 중 어느 하나 이상에 H(high) 신호를 입력하여 턴 온(turn on) 시킨다. 한편, 데이터 드라이버 IC(410)에서 이미지 데이터를 복수의 데이터 라인들(415)로 공급하면, 상기 스캐닝 라인에서 턴 온 상태에 놓인 픽셀들이 상기 이미지 데이터들을 통과시켜 해당 이미지 데이터가 마이크로 LED 패널을 통해 표시되도록 한다. 이러한 방식으로 모든 스캐닝 라인이 순차적으로 스캐닝되면서 한 프레임(frame)에 대한 디스플레이가 완료된다.
다이크로익 프리즘(Dichroic Prizm, 150)은 적색 마이크로 LED 패널(110)로부터 출력되는 적색 광과, 녹색 마이크로 LED 패널(120)로부터 출력되는 녹색 광과, 청색 마이크로 LED 패널(130)로부터 출력되는 청색 광을 합성하는 기능을 수행할 수 있다.
프로젝션 렌즈(160)는 다이크로익 프리즘(Dichroic Prizm, 150)으로부터 출력되는 합성 광을 확대하여 전방의 스크린으로 방사하는 기능을 수행할 수 있다.
이상 상술한 바와 같이, 적색 마이크로 LED 패널, 녹색 마이크로 LED 패널 및 청색 마이크로 LED 패널을 이용한 프로젝션 장치(100)는 별도의 광원 램프를 요구하지 않으므로 기구 제작의 유연성을 향상시킬 수 있고, 광 효율 및 색 재현성의 증가로 인해 고 해상도의 풀 컬러(full color)를 구현할 수 있다.
도 5a는 본 발명의 일 실시 예에 따른 마이크로 LED 패널의 단면도이고, 도 5 b는 마이크로 LED 디스플레이 장치의 단면도다. 여기서, 마이크로 LED 디스플레이 장치는 마이크로 LED 패널과 CMOS 백플레인을 범프를 통해 플립칩 본딩함으로써 형성될 수 있다.
도 5a를 참조하면, 본 발명에 따른 마이크로 LED 패널(500)은, 웨이퍼 상에 적층된 복수의 발광 소자들(즉, 복수의 마이크로 픽셀들)이 매트릭스 형태로 배열되는 어레이 구조를 갖는 LED 패널로서, 영상 표시 기기의 영상 신호에 대응하는 광(light)을 출력하는 기능을 수행할 수 있다.
이러한 마이크로 LED 패널(500)은 기판(510), 상기 기판(510) 상에 제1 도전형 반도체층(520), 상기 제1 도전형 반도체층(520) 상에 활성층(530), 상기 활성층(530) 상에 제2 도전형 반도체층(540), 제1 및 2 도전형 메탈층(560, 550), 패시베이션 층(570) 등을 포함할 수 있다.
기판(510)은 투광성을 갖는 재질, 예를 들어, 사파이어(Al2O3), 단 결정 기판, SiC, GaAs, GaN, ZnO, AlN, Si, GaP, InP, Ge 중 적어도 하나로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
제1 도전형 반도체층(520)은 n형 도펀트가 도핑된 족-족 원소의 화합물 반도체를 포함할 수 있다. 이러한 제1 도전형 반도체층(520)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 InAlGaN, GaN, AlGaN, AlInN, InGaN, AlN, InN 등에서 선택될 수 있으며, Si, Ge, Sn 등의 n형 도펀트가 도핑될 수 있다.
활성층(530)은 제1 도전형 반도체층(520)을 통해서 주입되는 전자(또는 정공)와 제2 도전형 반도체층(540)을 통해서 주입되는 정공(또는 전자)이 서로 만나서, 활성층(430)의 형성 물질에 따른 에너지 밴드(Energy Band)의 밴드갭(Band Gap) 차이에 의해서 빛을 방출하는 층이다. 상기 활성층(530)은 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자점 구조 또는 양자선 구조 중 어느 하나로 형성될 수 있으나, 이에 한정되는 것은 아니다. 상기 활성층(530)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 형성될 수 있다. 활성층(530)이 다중 양자 우물 구조로 형성된 경우, 상기 활성층(530)은 복수의 우물층과 복수의 장벽층이 교대로 적층되어 형성될 수 있다.
제2 도전형 반도체층(540)은 p형 도펀트가 도핑된 족-족 원소의 화합물 반도체를 포함할 수 있다. 이러한 제2 도전형 반도체층(540)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y=1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 InAlGaN, GaN, AlGaN, InGaN, AlInN, AlN, InN 등에서 선택될 수 있으며, Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑될 수 있다.
제2 도전형 반도체층(540) 상에는 제2 도전형 메탈층(즉, p 전극, 550)이 형성될 수 있고, 상기 제1 도전형 반도체층(520) 상에는 제1 도전형 메탈층(즉, n 전극, 560)이 형성될 수 있다. 상기 제1 및 제2 도전형 메탈층(560, 550)은 마이크로 LED 패널(500)에 형성된 복수의 마이크로 LED 픽셀들로 전원을 제공한다.
제2 도전형 메탈층(550)은 각각의 마이크로 LED 픽셀에 대응하는 제2 도전형 반도체층(540) 상에 배치되며, CMOS 백플레인(600)에 구비된 각각의 CMOS 셀(620)과 범프(650)를 통해 전기적으로 연결될 수 있다. 한편, 다른 실시 예로, 제2 도전형 반도체층(540) 상에 DBR(Distributed Bragg Reflector) 등과 같은 반사층(미도시)이 존재하는 경우, 상기 제2 도전형 메탈층(550)은 반사층 상에 배치될 수 있다.
제1 도전형 메탈층(560)은 제1 도전형 반도체층(520)의 메사 식각된 영역 상에 배치되며, 상기 복수의 마이크로 LED 픽셀들과 일정 거리만큼 이격되도록 형성될 수 있다. 제1 도전형 메탈층(560)은 제1 도전형 반도체층(520) 상에서 마이크로 LED 패널(500)의 외곽을 따라 소정의 폭을 갖도록 형성될 수 있다. 제1 도전형 메탈층(560)의 높이는 상기 복수의 마이크로 LED 픽셀들의 높이와 대체로 동일하게 형성될 수 있다. 제1 도전형 메탈층(560)은 범프에 의해 CMOS 백플레인(600)의 공통 셀(610)과 전기적으로 연결되어, 마이크로 LED 픽셀들의 공통 전극으로서 기능한다. 예를 들어, 제1 도전형 메탈층(560)은 공통 접지일 수 있다.
제1 도전형 반도체층(520), 활성층(530), 제2 도전형 반도체층(540), 제2 도전형 메탈층(550) 및 제1 도전형 메탈층(560)의 적어도 일 측면에는 패시베이션층(570)이 형성될 수 있다. 상기 패시베이션층(570)은 발광 구조물(520, 530, 540)을 전기적으로 보호하기 위하여 형성될 수 있으며, 예를 들어, SiO2, SiOx, SiOxNy, Si3N4, Al2O3 로 형성될 수 있으나, 이에 대해 한정하지는 않는다.
이와 같이 형성된 발광 소자들(즉, 복수의 마이크로 LED 픽셀들)은 화합물 반도체의 조성비에 따라 서로 다른 파장의 광을 방사할 수 있다. 마이크로 LED 패널(500)에 포함된 발광 소자들이 적색 LED 소자인 경우, 상기 마이크로 LED 패널(500)은 적색 마이크로 LED 패널(500)일 수 있다. 마이크로 LED 패널(500)에 포함된 발광 소자들이 녹색 LED 소자인 경우, 상기 마이크로 LED 패널(500)은 녹색 마이크로 LED 패널(500)일 수 있다. 마이크로 LED 패널(500)에 포함된 발광 소자들이 청색 LED 소자인 경우, 상기 마이크로 LED 패널(500)은 청색 마이크로 LED 패널(500)일 수 있다.
도 5b를 참조하면, 마이크로 LED 디스플레이 장치는 마이크로 LED 패널(500), CMOS 백플레인(600), 및 범프들(650)을 포함한다. 이때, CMOS 백플레인(600)은 복수 개의 CMOS 셀들(620)을 포함하는 Active Matrix 회로부와, 상기 Active Matrix 회로부의 외곽에 배치되는 공통 셀(610)을 포함할 수 있다.
마이크로 LED 패널(500)은 복수의 마이크로 LED 픽셀들을 포함하고, CMOS 백플레인(600)은, 복수의 마이크로 LED 픽셀들 각각을 개별 구동시키기 위해 마이크로 LED 픽셀들 각각에 대응하는 복수 개의 CMOS 셀들(620)을 포함한다. 이때, 마이크로 LED 패널(500)의 픽셀 영역은 CMOS 백플레인(600)의 AM 영역과 대응될 수 있다.
범프들(650)은, 마이크로 LED 픽셀들과 CMOS 셀들(620)이 마주하도록 배치된 상태에서, 마이크로 LED 픽셀들 각각과 이들 각각에 대응하는 CMOS 셀들(620)이 전기적으로 연결되도록 한다.
이러한 마이크로 LED 디스플레이 장치의 제조 공정을 간단히 살펴보면, 먼저 복수의 범프들(650)을 CMOS 백플레인(600)의 CMOS 셀들(620)과 공통 셀(610)의 상부에 배치한다. 그리고, 상기 복수의 범프들(650)이 배치된 상태의 CMOS 백플레인(600)과 마이크로 LED 패널(500)을 서로 마주보게 하여 CMOS 셀들(620)과 마이크로 LED 픽셀들을 일대일 대응시켜 밀착시킨 후 가열한다. 그러면, 상기 복수의 범프들(650)이 녹게 되고, 그에 따라 CMOS 셀들(620)과 그에 대응하는 마이크로 LED 픽셀들이 전기적으로 연결되고, 공통 셀(610)과 그에 대응하는 마이크로 LED 패널(500)의 공통 전극(560)이 전기적으로 연결되는 상태가 된다.
도 6a 내지 도 6g는 본 발명의 일 실시 예에 따른 마이크로 LED 디스플레이 장치의 제조방법을 설명하는 도면이다.
도 6a를 참조하면, 기판(510) 상에 제1 도전형 반도체층(520), 활성층(530) 및 제2 도전형 반도체층(540)을 순차적으로 성장하여 발광 구조물(520, 530, 540)을 형성할 수 있다.
기판(510)은 투광성을 갖는 재질, 예를 들어, 사파이어(Al2O3), 단 결정 기판, SiC, GaAs, GaN, ZnO, AlN, Si, GaP, InP, Ge 중 적어도 하나로 형성될 수 있으며, 이를 한정하지는 않는다.
제1 도전형 반도체층(520)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 InAlGaN, GaN, AlGaN, AlInN, InGaN, AlN, InN 등에서 선택될 수 있으며, Si, Ge, Sn 등의 n형 도펀트가 도핑될 수 있다. 이러한 제1 도전형 반도체층(520)은 트리메틸 갈륨(TMGa) 가스, 암모니아(NH3) 가스, 사일렌(SiH4) 가스를 수소 가스와 함께 챔버(chamber)에 주입하여 형성될 수 있다. 기판(510)과 제1 도전형 반도체층(520) 사이에 언도프트 반도체층(미도시) 및/또는 버퍼층(미도시)을 더 포함할 수 있으며, 이에 대해 한정하지는 않는다.
활성층(530)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 형성될 수 있다. 이러한 활성층(530)은 트리메틸 갈륨(TMGa) 가스, 트리메틸 인듐(TMIn) 가스, 암모니아(NH3) 가스를 수소 가스와 함께 챔버에 주입하여 형성될 수 있다.
제2 도전형 반도체층(540)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 InAlGaN, GaN, AlGaN, InGaN, AlInN, AlN, InN 등에서 선택될 수 있으며, Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑될 수 있다. 이러한 제2 도전형 반도체층(540)은 트리메틸 갈륨(TMGa) 가스, 암모니아(NH3) 가스, 비세틸 사이클로 펜타디에닐 마그네슘(EtCp2Mg){Mg(C2H5C5H4)2} 가스를 수소 가스와 함께 챔버에 주입하여 형성될 수 있다.
도 6b를 참조하면, 발광 구조물(520, 530, 540)을 단위 픽셀 영역에 따라 아이솔레이션 에칭(isolation etching) 공정을 수행하여 복수 개의 발광 소자들을 형성할 수 있다. 예를 들어, 상기 아이솔레이션 에칭은 ICP(Inductively Coupled Plasma)와 같은 건식 식각 방법에 의해 실시될 수 있다. 이러한 아이솔레이션 에칭 공정을 통해 제1 도전형 반도체층(520)의 일 상면이 노출된다. 이때, 공통 전극(즉, n 전극, 560)을 형성하기 위해, 제1 도전형 반도체층(520)의 테두리 영역이 소정의 폭을 갖도록 식각될 수 있다.
도 6c 및 도 6d를 참조하면, 제2 도전형 반도체층(540)의 일 상면에 제2 도전형 메탈층(550)을 형성할 수 있고, 메사 식각된 제1 도전형 반도체층(520)의 일 상면에 제1 도전형 메탈층(560)을 형성할 수 있다. 이때, 상기 제1, 2 도전형 메탈층(560, 550)은 증착 공정 또는 도금 공정에 의해 형성될 수 있으며, 이에 대해 한정하지는 않는다.
도 6e를 참조하면, 기판(510), 발광 구조물(520, 530, 540), 제2 도전형 메탈층(550) 및 제1 도전형 메탈층(560) 상에 패시베이션층(570)을 형성하고, 상기 제1 및 제2 도전형 메탈층(560, 550)의 일 상면이 외부로 노출되도록 상기 패시베이션층(570)을 선택적으로 제거할 수 있다.
도 6f 및 도 6g를 참조하면, CMOS 백플레인(600)의 CMOS 셀들(620)과 공통 셀(610)의 상부에 복수의 범프들(650)을 배치한다. 마이크로 LED 패널(500)을 상/하로 반전하여 제1 및 제2 도전형 메탈층(560, 550)이 아래 방향을 향하도록 한다. 상기 복수의 범프들(650)이 배치된 상태의 CMOS 백플레인(600)과 마이크로 LED 패널(500)을 서로 마주보게 하여 CMOS 셀들(620)과 마이크로 LED 픽셀들을 일대일 대응시켜 밀착시킨 후 가열한다. 그러면, 상기 복수의 범프들(650)이 녹게 되고, 그에 따라 CMOS 셀들(620)과 그에 대응하는 마이크로 LED 픽셀들이 전기적으로 연결되고, CMOS 백플레인(600)의 공통 셀(610)과 그에 대응하는 마이크로 LED 패널(500)의 공통 전극(560)이 전기적으로 연결되는 상태가 된다. 이처럼, 복수의 범프(650)를 통해 CMOS 백플레인(600)과 마이크로 LED 패널(500)을 플립칩 본딩하여 마이크로 LED 디스플레이 장치를 형성할 수 있다.
도 7은 본 발명의 다른 실시 예에 따른 프로젝션 장치의 구성도이다.
도 7을 참조하면, 본 발명의 다른 실시 예에 따른 프로젝션 장치(700)는 적색 마이크로 LED 패널(710), 녹색 마이크로 LED 패널(720), 청색 마이크로 LED 패널(730), LED 구동부(740), 다이크로익 프리즘(750) 및 프로젝션 렌즈(760) 등을 포함할 수 있다. 여기서, 적색 마이크로 LED 패널(710)을 제외한 나머지 구성 요소들은, 도 2에 도시된 구성 요소들과 동일하다. 따라서, 도 7에 도시된 녹색 마이크로 LED 패널(720), 청색 마이크로 LED 패널(730), LED 구동부(740), 다이크로익 프리즘(750) 및 프로젝션 렌즈(760)에 대한 자세한 설명은 생략하도록 한다.
도 2의 프로젝션 장치(100)와 달리, 해당 프로젝션 장치(700)를 구성하는 적색 마이크로 LED 패널(710)은, 청색 마이크로 LED 패널(711)과 색 변환 필름(713)으로 구성될 수 있다.
통상, 청색 LED 소자 및 녹색 LED 소자는 사파이어 기판 상에서 성장되고 적색 LED 소자는 GaAs 기판 상에서 성장되므로, 녹색 마이크로 LED 패널 및 청색 마이크로 LED 패널은 동일 공정에서 제작 가능하나, 적색 마이크로 LED 패널은 GaAs 기판을 분리하기 위한 추가 공정이 필요하다. 따라서, 청색 마이크로 LED 패널(711)과 색 변환 필름(713)으로 적색 마이크로 LED 패널(710)을 구현한다면, 동일한 공정을 사용하여 프로젝션 장치(700)의 모든 마이크로 LED 패널들(710, 720, 730)을 제작할 수 있다.
도 8은 본 발명의 다른 실시 예에 따른 적색 마이크로 LED 패널을 설명하는 도면이다.
도 8을 참조하면, 본 발명에 따른 적색 마이크로 LED 패널(710)은 청색 마이크로 LED 패널(711)과 상기 청색 마이크로 LED 패널(711) 상의 색 변환 필름(713)을 포함할 수 있다.
적색 마이크로 LED 패널(710)을 구성하는 청색 마이크로 LED 패널(711)은, 복수의 마이크로 LED 픽셀들이 매트릭스 형태로 배열된 어레이 구조를 갖는 패널로서, 영상 표시 기기의 영상 신호에 대응하는 청색 광을 출력하는 기능을 수행할 수 있다. 이때, 해당 패널(711)을 구성하는 복수의 마이크로 LED 픽셀들은 청색 LED 소자로 구성될 수 있다.
색 변환 필름(713)은 청색 마이크로 LED 패널(711)에서 방사되는 청색 광을 적색 광으로 변환하는 기능을 수행할 수 있다. 통상, 색 변환 필름(713)은 접착제 또는 접착 성분을 포함하고 있어, 청색 광이 방사되는 청색 마이크로 LED 패널(711)의 일 면에 부착될 수 있다. 한편, 다른 실시 예로, 접착제 또는 접착 성분이 색 변환 필름(713)에 포함되지 않은 경우, 청색 마이크로 LED 패널(711)과 색 변환 필름(713) 사이에는 별도의 접착층(adhesive lay) 또는 접착 시트(adhesive sheet)가 형성될 수 있다.
이러한 색 변환 필름(713)의 일 예로 형광체 필름, 퀀텀닷 필름(Quantum Dots film)이 사용될 수 있으며, 이에 한정되지는 않는다.
한편, 이상 본 실시 예에서는, 청색 마이크로 LED 패널과 색 변환 필름을 이용하여 적색 마이크로 LED 패널을 구현하는 것을 예시하고 있으나 이를 제한하지는 않으며, 녹색 마이크로 LED 패널과 색 변환 필름을 이용하여 적색 마이크로 LED 패널을 구현할 수 있음은 당업자에게 자명할 것이다.
또한, 이상 본 실시 예에서는, 상기 적색 마이크로 LED 패널(710)이 피코 프로젝터(700)에 적용되는 것을 예시하고 있으나 이를 제한하지는 않으며, 차량용 헤드업 디스플레이(Head-Up Display, HUD) 또는 헤드 마운티드 디스플레이(Head Mounted Display, HMD) 등과 같은 다양한 표시 장치에 적용될 수 있음은 당업자에게 자명할 것이다.
도 9 및 도 10은 본 발명의 일 실시 예에 따른 퀀텀닷 필름을 설명하는 도면이다.
도 9를 참조하면, 본 발명에 따른 퀀텀닷 필름(900)은 복수의 퀀텀닷(910)이 분산되어 있는 고분자층(920)을 포함할 수 있다.
고분자층(920)은 플라스틱 레진(plastic resin)으로 형성될 수 있다. 플라스틱 레진은 폴리머 또는 실리콘 계열의 필름을 형성하는 다양한 물질을 포함할 수 있으며, 물질의 종류는 한정되지 않는다. 본 발명의 실시 예에서, 플라스틱 레진에 필요한 특성은 경화된 상태에서 빛을 투과시키는 특성을 가지면 충분하며, 빛의 투과율에 대한 제한은 없다.
고분자층(920)에는 빛의 파장을 변화시켜 색 재현성 및 색 순도를 구현할 수 있는 퀀텀닷(910)이 분산되어 있다. 퀀텀닷(또는 양자점, Quantum Dot, 910)은 지름이 수 나노미터(nm)인 반도체 나노 입자로 양자구속 혹은 양자가둠 효과(Quantum Confinement Effect)와 같은 양자 역학(Quantum Mechanics)적 특성을 지니고 있다. 여기서, 양자구속 효과란 반도체 나노 입자의 크기가 작아짐에 따라 띠 간격 에너지(band gap energy)가 커지는(역으로 파장은 작아지는) 현상을 의미한다.
이와 같은 퀀텀닷(910)의 대표적 특성은, 빛이 닿으면 발광(Photo Luminescence, PL)하거나 전기를 흘리면 발광(Electron Luminescence, EL)하는 것이다. 화학 합성 공정으로 만들어지는 퀀텀닷(910)은 재료를 바꾸지 않고 입자 크기를 조절하는 것 만으로도 원하는 색상을 구현할 수 있다. 가령, 도 10에 도시된 바와 같이, 양자구속 효과에 따라 나노 입자 크기가 작을수록 짧은 파장을 갖는 청색 빛을 발광할 수 있고, 나노 입자의 크기가 클수록 긴 파장을 갖는 적색 빛을 발광할 수 있다.
고분자층(920)에 분산되어 있는 퀀텀닷(910)의 직경은 1nm 내지 10nm의 범위일 수 있다. 본 발명의 실시 예에 따른 컨텀닷(910)은, 청색 광을 적색 광으로 변환하기 위해, 5nm 내지 7nm의 직경을 가질 수 있다. 좀 더 바람직하게는, 퀀텀닷(910)은 6nm의 직경을 가질 수 있다.
퀀텀닷(910)은 Ⅱ-Ⅵ족, Ⅲ-Ⅴ족 또는 Ⅳ족 물질일 수 있으며, 구체적으로 CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, InP, GaP, GaInP2, PbS, ZnO, TiO2, AgI, AgBr, Hg12, PbSe, In2S3, In2Se3, Cd3P2, Cd3As2 또는 GaAs일 수 있다.
또한, 퀀텀닷(910)은 코어-쉘 구조(core-shell)를 가질 수 있다. 여기서, 코어(core)는 CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe 및 HgS 으로 이루어지는 그룹에서 선택된 어느 하나의 물질을 포함하고, 쉘(shell)은 CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe 및 HgS 으로 이루어지는 그룹에서 선택된 어느 하나의 물질을 포함할 수 있다.
한편, 도면에 도시되고 있지 않지만, 상기 퀀텀닷 필름(900)은 고분자층(920)의 적어도 일 면에 부착되는 베리어 층(미도시)을 추가로 포함할 수 있다.
도 11은 본 발명의 또 다른 실시 예에 따른 프로젝션 장치의 구성도이다.
도 11을 참조하면, 본 발명의 또 다른 실시 예에 따른 프로젝션 장치(1100)는 적색 마이크로 LED 패널(1110), 녹색 마이크로 LED 패널(1120), 청색 마이크로 LED 패널(1130), LED 구동부(1140), 다이크로익 프리즘(1150) 및 프로젝션 렌즈(1160) 등을 포함할 수 있다. 여기서, 적색 마이크로 LED 패널(1110)을 제외한 나머지 구성 요소들은, 도 2에 도시된 구성 요소들과 동일하다. 따라서, 도 11에 도시된 녹색 마이크로 LED 패널(1120), 청색 마이크로 LED 패널(1130), LED 구동부(1140), 다이크로익 프리즘(1150) 및 프로젝션 렌즈(1160)에 대한 자세한 설명은 생략하도록 한다.
도 2의 프로젝션 장치(100)와 달리, 해당 프로젝션 장치(1100)를 구성하는 적색 마이크로 LED 패널(1110)은, 사파이어 본딩(Sapphire Bonding) 회피 공정을 통해 제조될 수 있다. 이하에서는, 사파이어 본딩 공정을 이용한 적색 마이크로 LED 패널 제조 방법과 사파이어 본딩 공정을 회피한 적색 마이크로 LED 패널 제조 방법을 구분하여 설명하도록 한다.
도 12a 내지 도 12g는 본 발명의 일 실시 예에 따른 적색 마이크로 LED 디스플레이 장치의 제조방법을 설명하는 도면이다.
도 12a를 참조하면, GaAs 기판(1210) 상에 제1 도전형 반도체층(1220), 활성층(1230) 및 제2 도전형 반도체층(1240)을 순차적으로 성장하여 발광 구조물(1220, 1230, 1240)을 형성할 수 있다. 여기서, 사파이어 기판 대신, GaAs 기판을 사용하는 이유는, 적색 광을 방사하는 발광 구조물(1220, 1230, 1240)과 유사한 격자 상수(lattice Constant)를 가지고 있기 때문이다. 따라서, GaAs 기판(1210) 위에 발광 구조물(1220, 1230, 1240)을 적층하는 경우, 격자 상수 차이에 의한 스트레인(strain)이 발생하지 않게 된다.
도 12b를 참조하면, 제2 도전형 반도체층(1240)의 상면에 제1 사파이어 기판(1250)을 결합할 수 있다. 이때, 제2 도전형 반도체층(1240)과 제1 사파이어 기판(1250) 사이는 접착층 또는 접착제를 통해 결합될 수 있다. 여기서, 제1 사파이어 기판(1250)은 GaAs 기판(1210)을 제거하기 위한 지지층 역할을 수행할 수 있다.
도 12c를 참조하면, 레이저 리프트 오프(laser lift off, LLO), 화학적 리프트 오프(chemical lift off, CLO), 전기적 리프트 오프(electrical lift off, ELO) 또는 식각 방법 등을 사용하여 제1 도전형 반도체층(1220)의 하면에 부착된 GaAs 기판(1210)을 분리할 수 있다. 여기서, GaAs 기판(1210)를 분리하는 이유는, GaAs 기판(1210)이 발광 구조물(1220, 1230, 1240)에서 방사되는 적색 파장을 흡수하는 성질을 가지고 있기 때문이다. 따라서, 발광 구조물(1220, 1230, 1240)을 성장시킨 후, GaAs 기판(1210)을 사파이어 기판으로 교체할 필요가 있다. 이때, 사파이어 기판을 사용하는 이유는, 다른 기판에 비해 빛 투과성이 우수하고, 가격 경쟁력이 우수하기 때문이다.
도 12d를 참조하면, 제1 도전형 반도체층(1220)의 하면에 제2 사파이어 기판(1260)을 결합할 수 있다. 이때, 제1 도전형 반도체층(1220)과 제2 사파이어 기판(1260) 사이는 접착층 또는 접착제를 통해 결합될 수 있다. 여기서, 제2 사파이어 기판(1260)은 발광 구조물(1220, 1230, 1240)의 상/하 위치를 바꾸는 역할을 수행하기 위한 것이다.
도 12e를 참조하면, 레이저 리프트 오프(laser lift off, LLO), 화학적 리프트 오프(chemical lift off, CLO), 전기적 리프트 오프(electrical lift off, ELO) 또는 식각 방법 등을 사용하여 제2 도전형 반도체층(1240)의 상면에 부착된 제1 사파이어 기판(1250)을 분리할 수 있다.
도 12f를 참조하면, 발광 구조물(1220, 1230, 1240)을 단위 픽셀 영역에 따라 아이솔레이션 에칭(isolation etching) 공정을 수행하고, 메사 식각된 발광 구조물(1220, 1230, 1240) 상에 (+) 전극 및 (-) 전극을 증착하여 복수의 발광 소자들(즉, 복수 개의 마이크로 LED 픽셀들)을 형성할 수 있다. 이후, 발광 구조물(1220, 1230, 1240) 상에 패시베이션 공정을 수행하여 마이크로 LED 패널(1200)을 형성할 수 있다.
도 12g를 참조하면, CMOS 백플레인(600)의 CMOS 셀들(620)과 공통 셀(610)의 상부에 복수의 범프들(650)을 배치한다. 마이크로 LED 패널(1200)을 상/하로 반전하여 제1 및 제2 도전형 메탈층이 아래 방향을 향하도록 한다. 상기 복수의 범프들(650)이 배치된 상태의 CMOS 백플레인(600)과 마이크로 LED 패널(1200)을 서로 마주보게 하여 CMOS 셀들(620)과 마이크로 LED 픽셀들을 일대일 대응시켜 밀착시킨 후 가열한다. 그러면, 상기 복수의 범프들(650)이 녹게 되고, 그에 따라 CMOS 셀들(620)과 그에 대응하는 마이크로 LED 픽셀들이 전기적으로 연결되고, CMOS 백플레인(600)의 공통 셀(610)과 그에 대응하는 마이크로 LED 패널(1200)의 공통 전극이 전기적으로 연결되는 상태가 된다. 이처럼, 복수의 범프(650)를 통해 CMOS 백플레인(600)과 마이크로 LED 패널(1200)을 플립칩 본딩하여 마이크로 LED 디스플레이 장치를 구현할 수 있다.
하지만, 상술한 적색 마이크로 LED 패널 제조방법은, 2번의 사파이어 본딩 공정을 수행하기 때문에, 해당 패널을 구성하는 LED 칩들의 성능을 저하시킬 수 있을 뿐만 아니라, 마이크로 LED 칩들의 수율을 낮추는 문제점을 야기할 수 있다. 따라서, 사파이어 본딩 공정을 필요로 하지 않는 적색 마이크로 LED 패널 제조 방법이 필요하다. 이하 본 발명의 다른 실시 예에서는, 사파이어 본딩 공정을 회피한 적색 마이크로 LED 패널 제조 방법에 대해 설명하도록 한다.
도 13a 내지 도 13e는 본 발명의 다른 실시 예에 따른 적색 마이크로 LED 디스플레이 장치의 제조방법을 설명하는 도면이다.
도 13a를 참조하면, GaAs 기판(1310) 상에 제1 도전형 반도체층(1320), 활성층(1330) 및 제2 도전형 반도체층(1340)을 순차적으로 성장시켜 발광 구조물(1320, 1330, 1340)을 형성할 수 있다. 이때, 상기 발광 구조물(1320, 1330, 1340)은 적색 광을 방사할 수 있다.
도 13b를 참조하면, 발광 구조물(1320, 1330, 1340)을 단위 픽셀 영역에 따라 아이솔레이션 에칭(isolation etching) 공정을 수행하고, 메사 식각된 발광 구조물(1320, 1330, 1340) 상에 (+) 전극 및 (-) 전극을 증착하여 복수 개의 발광 소자들(즉, 복수 개의 마이크로 LED 픽셀들)을 형성할 수 있다. 이후, 발광 구조물(1320, 1330, 1340) 상에 패시베이션 공정을 수행하여 마이크로 LED 패널을 형성할 수 있다.
도 13c를 참조하면, CMOS 백플레인(1350)의 CMOS 셀들(1352)과 공통 셀(1351)의 상부에 복수의 범프들(1360)을 배치한다. 상기 복수의 범프들(1360)이 배치된 상태의 CMOS 백플레인(1350)과 마이크로 LED 패널을 서로 마주보게 하여 CMOS 셀들(1352)과 마이크로 LED 픽셀들을 일대일 대응시켜 밀착시킨 후 가열한다. 그러면, 상기 복수의 범프들(1360)이 녹게 되고, 그에 따라 CMOS 셀들(1352)과 그에 대응하는 마이크로 LED 픽셀들이 전기적으로 연결되고, CMOS 백플레인(1350)의 공통 셀(1351)과 그에 대응하는 마이크로 LED 패널의 공통 전극이 전기적으로 연결되는 상태가 된다.
도 13d 및 도 13e를 참조하면, 레이저 리프트 오프(laser lift off, LLO), 화학적 리프트 오프(chemical lift off, CLO), 전기적 리프트 오프(electrical lift off, ELO) 또는 식각 방법 등을 사용하여 발광 구조물(1320, 1330, 1340)의 하면에 부착된 GaAs 기판(1310)을 분리할 수 있다. 한편, 다른 실시 예로, GaAs 기판(1310) 분리 공정 전에, 상기 분리 공정에 의한 발광 소자들의 손상을 최소화하기 위한 보호 공정이 추가될 수 있다. 이러한 일련의 과정들을 통해, 사파이어 공정을 회피한 적색 마이크로 LED 패널을 구현할 수 있다.
이상, 상술한 바와 같이, 본 발명에 따른 적색 마이크로 LED 패널 제조방법은, 패널 제조 공정의 수를 획기적으로 줄일 수 있고, 그로 인해 제품 수율을 향상할 수 있으며, 제조 공정 상에 발생하는 성능 저하를 최소화할 수 있다. 또한, 본 발명에 따른 적색 마이크로 LED 패널은, 청색 및 녹색 마이크로 LED 패널과 달리, 사파이어 기판을 구비하고 있지 않으므로 광 효율을 개선할 수 있을 뿐만 아니라, 빛 산란을 최소화할 수 있다.
한편, 이상 본 실시 예에서는, 상기 적색 마이크로 LED 패널이 피코 프로젝터(1100)에 적용되는 것을 예시하고 있으나 이를 제한하지는 않으며, 차량용 헤드업 디스플레이(Head-Up Display, HUD) 또는 헤드 마운티드 디스플레이(Head Mounted Display, HMD) 등과 같은 다양한 표시 장치에 적용될 수 있음은 당업자에게 자명할 것이다.
한편 이상에서는 본 발명의 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되지 않으며, 후술 되는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (17)

  1. 제1 파장의 마이크로 LED 픽셀들을 이용하여 제1 파장의 광을 출력하는 제1 마이크로 LED 패널;
    제2 파장의 마이크로 LED 픽셀들을 이용하여 제2 파장의 광을 출력하는 제2 마이크로 LED 패널;
    상기 제1 또는 제2 파장의 마이크로 LED 픽셀들을 이용하여 제3 파장의 광을 출력하는 제3 마이크로 LED 패널; 및
    상기 제1 내지 제3 마이크로 LED 패널에서 출력되는 광들을 합성하는 다이크로익 프리즘(Dichroic Prizm)을 포함하고,
    상기 제3 마이크로 LED 패널은, 상기 제1 또는 제2 파장의 광을 상기 제3 파장의 광으로 변환하기 위한 색 변환 필름을 구비하는 것을 특징으로 하는 프로젝션 장치.
  2. 제1항에 있어서,
    상기 다이크로익 프리즘에서 출력되는 합성 광을 전방의 스크린으로 방사하는 프로젝션 렌즈를 더 포함하는 프로젝션 장치.
  3. 제1항에 있어서,
    상기 제1 파장의 광은 청색 광이고, 상기 제2 파장의 광은 녹색 광이며, 상기 제3 파장의 광은 적색 광임을 특징으로 하는 프로젝션 장치.
  4. 제1항에 있어서,
    상기 색 변환 필름은, 퀀텀닷 필름(Quantum Dot Film)임을 특징으로 하는 프로젝션 장치.
  5. 제4항에 있어서,
    상기 퀀텀닷 필름에 포함된 퀀텀닷은, 5nm 내지 7nm의 직경을 구비하며, Ⅱ-Ⅵ족, Ⅲ-Ⅴ족 및 Ⅳ족 중 어느 하나의 물질로 형성되는 것을 특징으로 하는 프로젝션 장치.
  6. 제1항에 있어서,
    상기 제1 마이크로 LED 패널을 구동하기 위한 제1 CMOS 백플레인, 상기 제2 마이크로 LED 패널을 구동하기 위한 제2 CMOS 백플레인, 및 상기 제3 마이크로 LED 패널을 구동하기 위한 제3 CMOS 백플레인을 포함하는 프로젝션 장치.
  7. 제6항에 있어서,
    상기 제1 내지 제3 CMOS 백플레인은, 각각 상기 마이크로 LED 픽셀들에 대응하는 복수의 CMOS 셀들을 구비하는 AM(Active Matrix) 회로부와, 상기 AM 회로부의 외곽에 배치되는 공통 셀을 포함하는 것을 특징으로 하는 프로젝션 장치.
  8. 제6항에 있어서,
    상기 제1 내지 제3 마이크로 LED 패널은, 각각 상기 제1 내지 제3 CMOS 백플레인 상에 플립칩 본딩(flip chip bonding)으로 결합되는 것을 특징으로 하는 프로젝션 장치.
  9. 제1항에 있어서,
    상기 제1 내지 제3 마이크로 LED 패널의 마이크로 LED 픽셀들은, 기판 상에 제1 도전형 반도체층, 활성층, 및 제2 도전형 반도체층을 순차적으로 성장시킨 후 식각되어 형성되며, 상기 마이크로 LED 픽셀들의 수직구조는, 차례대로, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하고, 상기 마이크로 LED 픽셀들이 형성되지 않은 부분은, 활성층 및 제2 도전형 반도체층이 제거되어 제1 도전형 반도체층이 노출되는 것을 특징으로 하는 프로젝션 장치.
  10. 제9항에 있어서,
    상기 마이크로 LED 픽셀들이 형성되지 않은 부분의 제1 도전형 반도체층 상에는 상기 마이크로 LED 픽셀들과 이격되게 제1 도전형 메탈층이 형성되는 것을 특징으로 하는 프로젝션 장치.
  11. 제10항에 있어서,
    상기 제1 도전형 메탈층은 상기 제 1 도전형 반도체층 상에서 상기 마이크로 LED 패널의 외곽을 따라 형성되는 것을 특징으로 하는 프로젝션 장치.
  12. 제10항에 있어서,
    상기 제1 도전형 메탈층은 상기 마이크로 LED 픽셀들의 공통 전극으로서 기능하는 것을 특징으로 하는 프로젝션 장치.
  13. 제1 파장의 광을 출력하는 제1 마이크로 LED 디스플레이 장치, 제2 파장의 광을 출력하는 제2 마이크로 LED 디스플레이 장치 및 제3 파장의 광을 출력하는 제3 마이크로 LED 디스플레이 장치를 포함하는 프로젝션 장치에서의, 상기 제3 마이크로 LED 디스플레이 장치의 제조 방법으로서,
    GaAs 기판을 형성하는 단계;
    상기 GaAs 기판 상에 발광 구조물을 적층하는 단계;
    상기 발광 구조물을 단위 픽셀 영역에 따라 에칭 공정을 수행하여 복수의 마이크로 LED 픽셀들을 포함하는 마이크로 LED 패널을 형성하는 단계;
    실리콘 기판 상에 상기 마이크로 LED 패널을 플립칩 본딩하는 단계; 및
    상기 마이크로 LED 패널에 부착된 GaAs 기판을 분리하는 단계를 포함하는 제3 마이크로 LED 디스플레이 장치의 제조 방법.
  14. 제13항에 있어서,
    상기 제3 파장의 광은 적색 광임을 특징으로 하는 제3 마이크로 LED 디스플레이 장치의 제조 방법.
  15. 제13항에 있어서,
    상기 실리콘 기판은, 상기 복수의 마이크로 LED 픽셀들에 대응하는 복수의 CMOS 셀들을 구비하는 AM(Active Matrix) 회로부와, 상기 AM 회로부의 외곽에 배치되는 공통 셀을 포함하는 것을 특징으로 하는 제3 마이크로 LED 디스플레이 장치의 제조 방법.
  16. 제15항에 있어서, 상기 플립칩 본딩 단계는,
    상기 복수의 CMOS 셀들 각각에 범프들이 형성되어, 가열에 의해 녹음으로써, 상기 복수의 CMOS 셀들 각각과 상기 복수의 CMOS 셀들 각각에 대응되는 마이크로 LED 픽셀이 전기적으로 연결되는 것을 특징으로 하는 제3 마이크로 LED 디스플레이 장치의 제조 방법.
  17. 제13항에 있어서, 상기 분리 단계는,
    레이저 리프트 오프(laser lift off, LLO), 화학적 리프트 오프(chemical lift off, CLO), 전기적 리프트 오프(electrical lift off, ELO) 및 식각 방법 중 어느 하나를 이용하여 상기 GaAs 기판을 분리하는 것을 특징으로 하는 제3 마이크로 LED 디스플레이 장치의 제조 방법.
PCT/KR2018/000389 2017-04-21 2018-01-09 마이크로 led 패널을 이용한 프로젝션 장치 및 그 제조방법 WO2018194241A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0051879 2017-04-21
KR1020170051879A KR20180118480A (ko) 2017-04-21 2017-04-21 마이크로 led 패널을 이용한 프로젝션 장치 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2018194241A1 true WO2018194241A1 (ko) 2018-10-25

Family

ID=63854370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000389 WO2018194241A1 (ko) 2017-04-21 2018-01-09 마이크로 led 패널을 이용한 프로젝션 장치 및 그 제조방법

Country Status (4)

Country Link
US (1) US10281812B2 (ko)
JP (1) JP6423938B2 (ko)
KR (1) KR20180118480A (ko)
WO (1) WO2018194241A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224001A (zh) * 2019-05-07 2019-09-10 深圳信息职业技术学院 彩色化显示Micro-LED器件的制备方法
CN114005911A (zh) * 2020-07-27 2022-02-01 Tcl科技集团股份有限公司 一种显示器件及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022516256A (ja) * 2018-12-28 2022-02-25 マジック リープ, インコーポレイテッド 左眼および右眼のための共有ディスプレイを伴う拡張および仮想現実ディスプレイシステム
CN110031978A (zh) * 2019-05-28 2019-07-19 深圳市思坦科技有限公司 一种近眼显示装置
KR20210019190A (ko) 2019-08-12 2021-02-22 엘지전자 주식회사 전자 디바이스
US11508700B2 (en) * 2019-12-10 2022-11-22 Meta Platforms Technologies, Llc Left and right projectors for display device
KR20210084107A (ko) 2019-12-27 2021-07-07 삼성전자주식회사 프로젝터
US11721717B2 (en) * 2020-08-31 2023-08-08 Jade Bird Display (shanghai) Limited Optical system
TWI786470B (zh) * 2020-10-14 2022-12-11 中強光電股份有限公司 顯示單元以及投影裝置
CN114488666B (zh) * 2020-11-13 2023-06-06 中强光电股份有限公司 显示单元以及投影装置
EP4400909A1 (en) * 2021-09-24 2024-07-17 Huawei Technologies Co., Ltd. Projection optical engine, electronic device, and projection imaging method
WO2023123487A1 (en) * 2021-12-31 2023-07-06 Jade Bird Display (Shanghai) Company A micro led projector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050035324A (ko) * 2003-10-10 2005-04-18 삼성전기주식회사 질화갈륨계 반도체 발광 소자 및 그 제조방법
JP2009238847A (ja) * 2008-03-26 2009-10-15 Seiko Epson Corp 発光装置
KR20160036584A (ko) * 2013-07-26 2016-04-04 레야드 옵토일렉트로닉 컴퍼니 리미티드 발광다이오드 스크린
JP2016122704A (ja) * 2014-12-24 2016-07-07 セイコーエプソン株式会社 発光装置およびプロジェクター
JP2017016785A (ja) * 2015-06-29 2017-01-19 アルパイン株式会社 バックライト装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066301A (ja) * 1998-08-18 2000-03-03 Seiko Epson Corp 投写型表示装置
JP2009509326A (ja) * 2005-09-19 2009-03-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 可変色の発光装置及びその制御方法
JP2008205985A (ja) * 2007-02-22 2008-09-04 Oki Data Corp Led表示装置及び投射表示装置
JP2008262993A (ja) * 2007-04-10 2008-10-30 Nikon Corp 表示装置
JP4640427B2 (ja) * 2008-03-14 2011-03-02 ソニー株式会社 GaN系半導体発光素子、発光素子組立体、発光装置、GaN系半導体発光素子の製造方法、GaN系半導体発光素子の駆動方法、及び、画像表示装置
US8642363B2 (en) * 2009-12-09 2014-02-04 Nano And Advanced Materials Institute Limited Monolithic full-color LED micro-display on an active matrix panel manufactured using flip-chip technology
JP6354502B2 (ja) * 2014-09-30 2018-07-11 セイコーエプソン株式会社 光源装置およびプロジェクター
US9653642B1 (en) * 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
JP6459612B2 (ja) * 2015-02-24 2019-01-30 三菱ケミカル株式会社 電子部材用封止フィルム
JP2016175360A (ja) * 2015-03-23 2016-10-06 コニカミノルタ株式会社 積層体パネル、太陽光反射用パネル、量子ドットパネル及び有機エレクトロルミネッセンス素子パネル及び積層体パネルの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050035324A (ko) * 2003-10-10 2005-04-18 삼성전기주식회사 질화갈륨계 반도체 발광 소자 및 그 제조방법
JP2009238847A (ja) * 2008-03-26 2009-10-15 Seiko Epson Corp 発光装置
KR20160036584A (ko) * 2013-07-26 2016-04-04 레야드 옵토일렉트로닉 컴퍼니 리미티드 발광다이오드 스크린
JP2016122704A (ja) * 2014-12-24 2016-07-07 セイコーエプソン株式会社 発光装置およびプロジェクター
JP2017016785A (ja) * 2015-06-29 2017-01-19 アルパイン株式会社 バックライト装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224001A (zh) * 2019-05-07 2019-09-10 深圳信息职业技术学院 彩色化显示Micro-LED器件的制备方法
CN114005911A (zh) * 2020-07-27 2022-02-01 Tcl科技集团股份有限公司 一种显示器件及其制备方法
CN114005911B (zh) * 2020-07-27 2023-12-26 Tcl科技集团股份有限公司 一种显示器件及其制备方法

Also Published As

Publication number Publication date
US20180307129A1 (en) 2018-10-25
JP2018180505A (ja) 2018-11-15
US10281812B2 (en) 2019-05-07
JP6423938B2 (ja) 2018-11-14
KR20180118480A (ko) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2018194241A1 (ko) 마이크로 led 패널을 이용한 프로젝션 장치 및 그 제조방법
WO2018194242A1 (ko) 마이크로 led 디스플레이 장치 및 그 제조방법
WO2018199428A1 (ko) 마이크로 led 디스플레이 장치 및 그 제조방법
WO2018048131A1 (ko) 디스플레이 장치
WO2017014564A1 (ko) 디스플레이 장치 및 그의 제조 방법
WO2017126762A1 (en) Display device using semiconductor light emitting device
WO2017116136A1 (ko) 디스플레이 장치
WO2013069878A1 (en) Optical sheet, display device and light emitting device having the same
WO2013032128A1 (en) Optical member, display device, and light emitting device having the same
WO2015194804A1 (ko) 발광 소자 및 이를 포함하는 발광소자 패키지
WO2017073865A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2016080676A1 (ko) 발광소자 패키지
WO2017034100A1 (en) Light emitting device package assembly and method of fabricating the same
WO2012128551A2 (en) Display device and light conversion member
KR20180118090A (ko) 마이크로 led 디스플레이 화소 조립체 및 이의 제조방법
WO2013015532A2 (en) Optical member, display device and light emitting device having the same
WO2021112555A1 (ko) 표시 장치
US20240154067A1 (en) Unit pixel having light emitting device and displaying apparatus
WO2019004603A1 (en) LIGHT EMITTING DIODE APPARATUS AND METHOD FOR MANUFACTURING THE SAME
WO2021125606A1 (ko) Led 표시장치
WO2021141407A1 (ko) 표시 장치
WO2021006450A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020009275A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2022071679A1 (ko) 마이크로 led 및 이를 구비한 디스플레이 모듈
WO2017034355A1 (ko) 적색 형광체 및 이를 포함하는 발광장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788335

Country of ref document: EP

Kind code of ref document: A1