WO2018193932A1 - 情報処理装置、術具、情報処理方法及びプログラム - Google Patents

情報処理装置、術具、情報処理方法及びプログラム Download PDF

Info

Publication number
WO2018193932A1
WO2018193932A1 PCT/JP2018/015228 JP2018015228W WO2018193932A1 WO 2018193932 A1 WO2018193932 A1 WO 2018193932A1 JP 2018015228 W JP2018015228 W JP 2018015228W WO 2018193932 A1 WO2018193932 A1 WO 2018193932A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
surgical instrument
information processing
information
tomographic image
Prior art date
Application number
PCT/JP2018/015228
Other languages
English (en)
French (fr)
Inventor
芳男 相馬
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/603,835 priority Critical patent/US20200129056A1/en
Priority to EP18788415.0A priority patent/EP3603484B1/en
Priority to JP2019513575A priority patent/JP7040520B2/ja
Publication of WO2018193932A1 publication Critical patent/WO2018193932A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/20Surgical microscopes characterised by non-optical aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Vascular Medicine (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Endoscopes (AREA)
  • Surgical Instruments (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】術具が樹脂によって構成された場合でも、断層画像において、術具の位置又は姿勢を正確に検出することができる技術を提供すること。 【解決手段】本技術に係る情報処理装置は、制御部を具備する。前記制御部は、マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得し、前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出する。

Description

情報処理装置、術具、情報処理方法及びプログラム
 本技術は、眼の施術時において表示される眼の断層画像に関する処理を実行する情報処理装置等の技術に関する。
 近年、眼に対する施術において、手術顕微鏡装置が広く用いられるようになってきている。この手術顕微鏡装置は、顕微鏡を介して取得された眼の画像や、OCT(Optical Coherence Tomography:光干渉断層計)等によって取得された眼の断層画像を表示させ、ユーザは、これらの画像を参照しながら、眼の施術を行う。これにより、施術ミスの発生が防止され、また、施術の精度が向上される
 OCTは、眼に対して近赤外線を照射し、眼の各組織による反射光を再構成して像を生成する技術であり、特定の断層面における眼の断層画像を得ることができる。施術中においては、断層画像には、眼だけでなく、眼を施術するための術具が写り込む。
 術具は一般的に金属で構成されている。従って、OCTにおいて、眼に対して照射された近赤外線が、術具によって反射されてしまい、術具の下側においては、眼からの反射光を得ることができない。従って、断層画像において、術具の下側は無信号となって影になってしまう。また、術具が金属で構成されていることに起因して、断層画像において、術具の周囲にアーチファクトが発生してしまう場合もある。
 このような問題に関連する技術として、下記非特許文献1が開示されている。非特許文献1には、術具の先端部分が、近赤外線を透過する樹脂材料で構成されることや、このような術具を用いることによって、断層画像において、影やアーチファクトの発生を抑制されることなどが記載されている。
 しかしながら、術具が樹脂によって構成されると、断層画像において、術具が低信号で検出されてしまい、ユーザが、断層画像内の術具の位置や姿勢を認識することが困難となってしまうといった問題がある。
 以上のような事情に鑑み、本技術の目的は、術具が樹脂によって構成された場合でも、断層画像において、術具の位置又は姿勢を正確に検出することができる技術を提供することにある。
 上記目的を達成するため、本技術に係る情報処理装置は、制御部を具備する。前記制御部は、マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得し、前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出する。
 これにより、断層画像において、術具の位置又は姿勢を正確に検出することができる。
 上記情報処理装置において、前記制御部は、検出された前記術具の位置又は姿勢に基づいて、術具の位置又は姿勢をユーザに提示するための術具の位置又は姿勢情報を生成してもよい。
 これにより、ユーザは、提示される術具の位置又は姿勢情報によって、術具の位置又は姿勢を正確に認識することができる。
 上記情報処理装置において、前記制御部は、前記術具の位置又は姿勢情報を、前記断層画像内に配置してもよい。
 これにより、ユーザは、術具の位置又は姿勢を正確に認識することができる。
 上記情報処理装置において、前記制御部は、前記術具の位置又は姿勢情報を、眼の正面画像内に配置してもよい。
 これにより、ユーザは、術具の位置又は姿勢を正確に認識することができる。
 上記情報処理装置において、前記制御部は、検出された前記術具の位置又は姿勢に基づいて、前記断層画像を取得するための断層面に対する、前記術具の位置又は姿勢のずれ量を検出してもよい。
 これにより、断層面に対する、術具の位置又は姿勢のずれ量を正確に検出することができる。
 上記情報処理装置において、前記制御部は、検出された前記ずれ量に基づいて、前記ずれ量をユーザに提示するためのずれ量情報を生成してもよい。
 これにより、ユーザは、提示されるずれ量情報によって、ずれ量を正確に認識することができる。
 上記情報処理装置において、前記制御部は、前記マーカ部の情報に基づいて、前記ずれ量情報を生成してもよい。
 これにより、ユーザに提示するための適切なずれ量情報を生成することができる。
 上記情報処理装置において、前記制御部は、検出された前記ずれ量に基づいて、前記断層面を変更してもよい。
 これにより、術具に対して適切な位置に断層面を設定することができる。
 上記情報処理装置において、前記マーカ部は、特定の幾何学パターンによって構成されていてもよい。
 上記情報処理装置において、前記マーカ部は、第1のマーカと、第2のマーカとを有していてもよい。この場合、前記第1のマーカ及び前記第2のマーカは、前記術具の長手方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記長手方向における前記第1のマーカと、前記第2のマーカとの間の距離が異なるように、前記樹脂部に配置されてもよい。
 これにより、断層画像において、術具の位置又は姿勢を正確に検出することができる。
 上記情報処理装置において、前記マーカ部が、第1のマーカと、第2のマーカとを有している場合、前記第1のマーカ及び前記第2のマーカは、前記術具の長さ方向に直交する方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記軸回りの前記第1のマーカと、前記第2のマーカとの間の角度が異なるように、前記樹脂部に配置されてもよい。
 これにより、断層画像において、術具の位置又は姿勢を正確に検出することができる。
 本技術に係る術具は、マーカ部を含む樹脂部を有する。前記マーカ部は、術具によって施術される眼の断層画像において、前記術具の位置又は姿勢を検出するために設けられる。
 上記術具において、前記マーカ部は、特定の幾何学パターンによって構成されていてもよい。
 上記術具において、前記マーカ部が、第1のマーカと、第2のマーカとを有している場合、前記第1のマーカ及び前記第2のマーカは、前記術具の長手方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記長手方向における前記第1のマーカと、前記第2のマーカとの間の距離が異なるように、前記樹脂部に配置されてもよい。
 上記術具において、前記マーカ部が、第1のマーカと、第2のマーカとを有している場合、前記第1のマーカ及び前記第2のマーカは、前記術具の長さ方向に直交する方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記軸回りの前記第1のマーカと、前記第2のマーカとの間の角度が異なるように、前記樹脂部に配置されてもよい。
 本技術に係る情報処理方法は、マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得し、前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出する。
 本技術に係るプログラムは、マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得ステップと、前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出するステップとをコンピュータに実行させる。
 以上のように、本技術によれば、術具が樹脂によって構成された場合でも、断層画像において、術具の位置又は姿勢を正確に検出することができる技術を提供することができる。
第1実施形態に係る手術顕微鏡装置の構成を示すブロック図である。 白内障手術のプロセスを示す模式図である。 白内障手術のプロセスを示す模式図である。 術具の一例を示す図である。 マーカ部を示す拡大図である。 マーカ部を示す展開図である。 図5においてA-Aで示されているX'Z'平面を断層面とした場合における断層画像に写る樹脂部及びマーカ部を示す図である。 マーカ部を示す拡大図である。 マーカ部を示す展開図である。 図8においてB-Bで示されているX'Z'平面を断層面とした場合における断層画像に写る樹脂部及びマーカ部を示す図である。 図8においてC-Cで示されているY'Z'平面を断層面とした場合における断層画像に写る樹脂部及びマーカ部を示す図である。 制御部の処理を示すフローチャートである。 正面画像取得部によって取得された正面画像の一例を示す図である。 断層画像取得部によって取得された断層画像の一例を示す図である。 正面画像に対して、術具の位置、姿勢情報が重畳されたときの様子を示す図である。 断層画像に対して、術具の位置、姿勢情報が重畳されたときの様子を示す図である。 第2実施形態に係る処理を示すフローチャートである。 断層面がユーザに入力されたときの一例を示す図である。 術具が断層面に対してずれてしまったときの様子を示す図である。 術具が断層面に対してずれてしまったときの様子を示す図である。 術具が断層面に対してずれてしまったときの様子を示す図である。 ユーザに提示されるずれ量情報の一例を示す図である。 ユーザに提示されるずれ量情報の一例を示す図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
≪第1実施形態≫
<手術用顕微鏡装置の構成>
 図1は、第1実施形態に係る手術顕微鏡装置10の構成を示すブロック図である。図1に示すように、手術顕微鏡装置10(情報処理装置)は、制御部1と、正面画像取得部2と、断層画像取得部3と、記憶部4と、表示部5と、入力部6とを備えている。
 なお、本実施形態の説明において、眼の奥行き方向をZ軸方向、Z軸方向に直交する平面内において、直交する2軸をX軸方向、Y軸方向とする(後述の図2、図3等を参照)。
 正面画像取得部2は、例えば、カメラ付き顕微鏡装置、ステレオカメラ付き顕微鏡装置等によって構成される。正面画像取得部2は、施術対象としての眼を正面から撮像して、正面画像を取得し、制御部1へと出力する。
 断層画像取得部3は、本実施形態では、OCTによって構成される。なお、断層画像取得部3は、シャインプルーフカメラによって構成されてもよい。断層画像取得部3は、眼に対して、近赤外線を照射し、眼からの反射光と、参照光との光干渉を利用して、眼の奥行き方向(Z軸方向)のスキャンを実行する。
 断層画像は、奥行き方向に非常に細長い矩形の画像(以下、矩形画像)が、平面方向(XY方向)における任意の方向に沿って並べられることによって構成される。従って、断層画像取得部3は、奥行き方向のスキャンだけでなく、少なくとも平面方向における任意の1つの方向へスキャン可能に構成されている。
 断層画像取得部3は、各種のパラメータに基づいて、断層画像を取得する。ここで、各種のパラメータとは、計測位置、計測領域、スキャン密度、断層面などである。
 計測位置は、OCTによる計測が行われる位置であり、計測領域は、OCTによる計測が行われる平面方向の領域(平面方向においてスキャンが行われる領域)である。
 ここで、計測領域は、眼を上方(Z軸方向)から見たときに線状(スキャンライン)に設定されていてもよく、眼を上方から見たときに面状に設定されていてもよい。計測領域が面状に設定されている場合、眼のボリュームデータ(3次元データ)を得ることができる。
 計測領域は、本実施形態では、固定とされている。なお、計測領域は、ユーザの指示に応じて設定されてもよい。スキャン密度は、平面方向におけるスキャンの密度(平面方向において、どの程度の間隔でOCTによる計測が行われるかを示す値)である。
 また、断層面は、断層画像を生成するときの基準となる面である。つまり、矩形画像が、断層面を基準として、断層面の方向に沿うように並べられて断層画像が生成される。断層面は、ユーザによって指定されてもよいし、術具7(図2、3参照)の位置に基づいて決定されてもよい。
 なお、計測領域が線状(スキャンライン)に設定されている場合、断層面の方向は、線状の計測領域に一致する。この場合、取得された矩形画像を単純に並べるだけで、断層画像が生成される。一方、計測領域が面状に設定されている場合、面状の計測領域において取得された矩形画像のうち、断層面に沿う方向に位置する矩形画像がピックアップされ、ピックアップされた矩形画像が並べられて断層画像が生成される。
 表示部5は、液晶ディスプレイ、有機ELディスプレイ(EL:Electro Luminescence)等によって構成される。表示部5は、正面画像取得部2によって取得された眼の正面画像や、断層画像取得部3によって取得された眼の断層画像を画面上に表示させる。なお、断層画像取得部3がボリュームデータを取得可能な場合、眼の断層画像だけでなく、眼の3次元画像が表示部5上に表示されてもよい。
 入力部6は、例えば、キーボードや、マウス、表示部5の画面上に設けられたタッチセンサ等によって構成される。入力部6は、ユーザによる操作信号を入力し、制御部1へと出力する。
 制御部11は、CPU(Central Processing Unit)等により構成されている。制御部11は、記憶部42に記憶された各種のプログラムに基づき種々の演算を実行し、手術顕微鏡装置10の各部を統括的に制御する。なお、制御部11の処理については、動作説明の欄において後に詳述する。
 記憶部42は、制御部11の処理に必要な各種のプログラムや、各種のデータが記憶される不揮発性のメモリと、制御部11の作業領域として用いられる揮発性のメモリとを含む。なお、記憶部42に記憶される各種のプログラムは、光ディスク、半導体メモリなどの可搬性の記録媒体から読み取られてもよいし、ネットワーク上のサーバ装置からダウンロードされてもよい。
 <眼科手術の概要>
 次に、手術顕微鏡装置10の利用が可能な白内障手術の概要について説明する。図2、図3は、白内障手術のプロセスを示す模式図である。これらの図に示すように、眼球は、角膜20、虹彩21、水晶体23及び強膜24等の組織で構成されている。水晶体23における前方側の表面には、前嚢25が形成されており、水晶体23の後方側の表面には後嚢26が形成されている。水晶体23よりも奥側には、硝子体(不図示)が位置している。また、水晶体23の表面において虹彩21の間が瞳孔22である。
 図2に示すように、白内障手術においては、ナイフ等の術具7によって角膜20に創口30が形成される。次に、創口30から術具7が挿入されて、水晶体23における前嚢25が術具7によって切開された後、図3に示すように、吸引用の術具7によって、水晶体23の内部(核や皮質)が吸引、除去される。その後、水晶体23を除去した位置に眼内レンズが挿入され、手術が完了する。
 なお、ここに示した白内障手術は、手術顕微鏡装置10の利用が可能な眼科手術の例であり、手術顕微鏡装置10は各種の眼科手術において利用することが可能である。
 <術具7の構成>
 次に、術具7の構成について詳細に説明する。図4は、術具7の一例を示す図である。図4に示すように、術具7は、長手方向に長い形状を有している。
 なお、本明細書の説明において、術具7の長手方向をX'軸方向、術具7の長手方向に直交する平面内において、直交する2軸をY'軸方向、Z'軸方向とする。また、X'軸回りの方向をθ方向とする。
 術具7は、ユーザによって把持される把持部11と、把持部11に設けられ、術具7の先端側に位置する樹脂部12と、樹脂部12に設けられ、術具7の先端に位置する施術部13とを有している。
 把持部11は、典型的には、金属材料によって構成されるが、樹脂などの材料によって構成されもよく、把持部11の材質については特に限定されない。把持部11は、ユーザが手に持ちやすい大きさ及び形状とされている。
 施術部13は、典型的には、金属によって構成されるが、樹脂などの材料によって構成されもよく、把持部11の材質については特に限定されない。施術部13は、眼を構成する各組織における切開、剥離、吸引、除去などの施術を行う部分であり、この施術部13は、例えば、ナイフ形状、ピンセット形状、円筒状等の各種の形状により構成される。
 樹脂部12は、OCTに用いられる近赤外線を透過可能な樹脂材料によって構成される。本実施形態において、樹脂部12は、長手方向に長い円柱形状を有している。なお、樹脂部12の形状については、多角柱形状などであってもよく、形状については特に限定されない。また、樹脂部12は、長手方向に沿って所定の間隔を開けて複数個所に配置されていてもよい。
 本実施形態では、樹脂部12が、OCTに用いられる近赤外線を透過可能な樹脂材料によって構成されているため、断層画像において、影やアーチファクトの発生を防止することができる。
 一方、樹脂部12において何ら対策を講じないと、断層画像において、術具7における樹脂部12が低信号で検出されてしまい、ユーザが、断層画像内の術具7の位置や姿勢を認識することが困難となってしまう場合がある。これは、施術ミスの原因となってしまう虞がある。また、断層画像に基づいて画像認識が行われる場合、術具7における樹脂部12と、背景部分(眼)とのコントラストが小さくなってしまうので、術具7領域を検出することが困難となる。
 そこで、本実施形態においては、樹脂部12において特定の幾何学パターンを有するマーカ部15を配置することとしている。マーカ部15は、OCTにおける断層画像の取得において、樹脂部12よりも高信号で検出可能な材料によって構成される。
 例えば、マーカ部15は、金属、樹脂及び金属の混合物、塗料などによって構成される。マーカ部15が、樹脂部12よりも高信号で検出可能な材料によって構成されることで、断層画像において、マーカ部15の位置を正確に検出することができる。
 マーカ部15は、施術中に断層画面にマーカ部15が写り込むように、位置が調整されている。以下、マーカ部15の構成について詳細に説明する。
 [マーカ部15の構成(1)]
 図5は、マーカ部15aを示す拡大図である。図6は、マーカ部15aを示す展開図である。なお、図5及び図6において右側が先端側である(後述の図7も同様)。また、図6においては、縦方向がθ方向(X'軸回りの方向)であり、横方向がX'軸方向(長手方向)である。
 これらの図に示すように、マーカ部15aは、第1のマーカ16と、第2のマーカ17とを有している。第1のマーカ16は、樹脂部12に対して、θ方向で特定の向きに1周分、螺旋状に巻回されている。また、第2のマーカ17は、樹脂部12において、θ方向で上記特定の向きとは逆向きに1周分、螺旋状に巻回されている。
 なお、第1のマーカ16の最も先端側の位置から最も後端側の位置までのX'軸方向の距離、並びに、第2のマーカ17の最も先端側の位置から最も後端側の位置までのX'軸方向の距離は、それぞれ等しくkとされている。
 図7は、図5においてA-Aで示されているX'Z'平面を断層面とした場合における断層画像に写る樹脂部12及びマーカ部15aを示す図である。
 図7における断層画像においては、樹脂部12に巻回された第1のマーカ16は、X'Z'平面に対して、樹脂部12の上側及び下側でそれぞれ1点ずつ、合計2点で交わる。このときの上側の点をp(θ)とし、下側の点をp(θ)とする。
 同様に、樹脂部12に巻回された第2のマーカ17は、X'Z'平面に対して、樹脂部12の上側及び下側でそれぞれ1点ずつ、合計2点で交わる。このときの上側の点をq(θ)とし、下側の点をq(θ)とする
 なお、X'軸方向において、第1のマーカ16の最も先端側の位置を原点(つまり、0)とし、この原点から、後方側に向かう方向を正方向とする。また、θの値は、第1のマーカ16における最も先端側の位置及び第2のマーカ17における最も後端側の位置が、X'Z'平面と交わるときに0となるとし、樹脂部12におけるX'軸回りの角度は、このときの角度を基準とするものとする。また、樹脂部12を先端側から見て時計回りの方向をθ方向における正方向とする。
 このとき、p(θ)、p(θ)、q(θ)及びq(θ)の各点は、それぞれ、以下の式によって表される。なお、式中、kの値は、第1のマーカ16の最も先端側の位置から最も後端側の位置までのX'軸方向の距離であり、また、第2のマーカ17の最も先端側の位置から最も後端側の位置までのX'軸方向の距離である。
 p(θ)=kθ/2π
 p(θ)=k(θ+π)/2π・・・(0≦θ<π)
      =k(θ-π)/2π・・・(π≦θ<2π)
 q(θ)=-kθ/2π+2k
 q(θ)=k(θ+π)/2π+2k・・・(0≦θ<π)
      =k(θ-π)/2π+2k・・・(π≦θ<2π)
 従って、p(θ)と、q(θ)との間のX'軸方向の距離l(θ)、並びに、p(θ)と、q(θ)との間のX'軸方向の距離l(θ)は、それぞれ、以下の式によって表される。
 l(θ)=q(θ)-p(θ)=-kθ/π+2k
 l(θ)=q(θ)-p(θ)=-kθ/π+k・・・・(0≦θ<π)
                  =-kθ/π+3k・・・(π≦θ<2π)
 なお、0≦θ<πの場合、l(θ)>l(θ)であり、π≦θ<2πの場合、l(θ)<l(θ)である。
 以上の説明から理解されるように、断層画像におけるマーカ部15aから取得可能な距離l(θ)及び距離l(θ)は、術具7のX'軸回りの角度θの関数であり、距離l(θ)及び距離l(θ)のうち少なくとも1つが決まれば、θが1つ決まる。
 一例として、例えば、距離l(θ)がkであったとする。この場合、-kθ/π+2k=kであり、この式からθ=πとなる。このように、距離l(θ)及び距離l(θ)のうち少なくとも一方から、樹脂部12におけるX'軸回りの角度θを検出することが可能である。つまり、マーカ部15aの情報に基づいて、術具7におけるX'軸回りの角度θ(姿勢)を検出することができる。
 また、術具7のX'軸回りの角度θが決まれば、術具7の先端の位置を復元可能である。一例として、例えば、θがπであったとする。この場合、X'軸方向において、p(θ)の位置がk/2となり、p(θ)の位置から-k/2の位置に原点(第1のマーカ16の最も先端側の位置)が存在することになる。
 ここで、X'軸方向において、原点の位置と、術具7の先端の位置との間の距離がDであるとすると、原点の位置から、さらに、-Dの位置に術具7の先端が存在することになる。このように、マーカ部15aの情報に基づいて、術具7の先端端の位置も検出することができる。
 なお、第1のマーカ16及び第2のマーカ17は、術具7の長手方向(X'軸方向)に沿う断層画像において、術具7がX'軸回りに回転されたとき、この回転に応じて、X'軸方向における第1のマーカ16と、第2のマーカ17との間の距離l(θ)、l(θ)が異なるように、樹脂部12に配置されていればよい。
 [マーカ部15の構成(2)]
 次に、マーカ部15の構成についての他の例について説明する。図8は、マーカ部15bを示す拡大図である。図9は、マーカ部15bを示す展開図である。なお、図8及び図9において右側が先端側である(後述の図10も同様)。また、図9においては、縦方向がθ方向(X'軸回りの方向)であり、横方向がX'軸方向(長手方向)である。
 これらの図に示すように、マーカ部15bは、1本の第1のマーカ18と、2本の第2のマーカ19とを有している。第1のマーカ18は、樹脂部12に対して、θ方向で特定の向きに1周分、螺旋状に巻回されている。また、2本の第2のマーカ19は、樹脂部12において、上記特定の向きと同じ向きに半周分、それぞれ、位相がπずらされて螺旋状に巻回されている。
 なお、第1のマーカ18の最も先端側の位置から最も後端側の位置までのX'軸方向の距離、並びに、2本の第2のマーカ19の最も先端側の位置から最も後端側の位置までのX'軸方向の距離は、それぞれ等しくkとされている。
 図10は、図8においてB-Bで示されているX'Z'平面を断層面とした場合における断層画像に写る樹脂部12及びマーカ部15bを示す図である。
 図10における断層画像においては、樹脂部12に巻回された第1のマーカ18は、X'Z'平面に対して、樹脂部12の上側及び下側でそれぞれ1点ずつ、合計2点で交わる。このときの上側の点をp(θ)とし、下側の点をq(θ)とする。
 同様に、樹脂部12に巻回された2本の第2のマーカ19は、X'Z'平面に対して、樹脂部12の上側及び下側でそれぞれ1点ずつ、合計2点で交わる。このときの上側の点をq(θ)とし、下側の点をp(θ)とする
 なお、X'軸方向において、第1のマーカ18の最も先端側の位置を原点(つまり、0)とし、この原点から、後方側に向かう方向を正方向とする。また、θの値は、第1のマーカ18における最も先端側の位置が、X'Z'平面と交わるときに0となるとし、樹脂部12におけるX'軸回りの角度は、このときの角度を基準とするものとする。また、樹脂部12を先端側から見て時計回りの方向をθ方向における正方向とする。
 このとき、p(θ)、p(θ)、q(θ)及びq(θ)の各点は、それぞれ、以下の式によって表される。なお、式中、kの値は、第1のマーカ18の最も先端側の位置から最も後端側の位置までのX'軸方向の距離であり、また、2本の第2のマーカ19の最も先端側の位置から最も後端側の位置までのX'軸方向の距離である。
 p(θ)=kθ/2π
 q(θ)=kθ/π・・・・・・(0≦θ<π)
      =k(θ-π)/π・・(π≦θ<2π)
 p(θ)=kθ/π・・・・・・(0≦θ<π)
      =k(θ-π)/π・・(π≦θ<2π)
 q(θ)=k(θ+π)/2π・(0≦θ<π)
      =k(θ-π)/2π・(π≦θ<2π)
 従って、p(θ)と、q(θ)との間のX'軸方向の距離l(θ)、並びに、p(θ)と、q(θ)との間のX'軸方向の距離l(θ)は、それぞれ、以下の式によって表される。
 l(θ)=q(θ)-p(θ)=kθ/2π・・・・・・(0≦θ<π)
      =p(θ)-q(θ)=-kθ/2π+k・・・(π≦θ<2π)
 l(θ)=q(θ)-p(θ)=-kθ/2π+k/2・(0≦θ<π)
      =p(θ)-q(θ)=kθ/2π-k/2・・(π≦θ<2π)
 以上の説明から理解されるように、断層画像におけるマーカ部15bから取得可能な距離l(θ)及び距離l(θ)は、術具7のX'軸回りの角度θの関数である。そして、距離l(θ)及び距離l(θ)のうち少なくとも1つが決まれば、θが1つ決まるか、または、θが2つの候補に絞られる。
 一例として、例えば、距離l(θ)がk/2であったとする。この場合、kθ/2π=k/2か、-kθ/2π+k=k/2であり、これらの式からθ=πとなりθが1つ決まる(なお、前者の式は、(0≦θ<π)の条件があるので、後者の式が採用)。
 通常は、このようにθは、1つに決まらず、2つの候補に絞られる。一例として、例えば、距離l(θ)が、k/4であったとする。この場合、kθ/2π=k/4か、-kθ/2π+k=k/4であり、これらの式からθ=π/2か、θ=3π/2となりθが2つの候補に絞られる。
 この場合には、樹脂部12の上側の2点p(θ)、q(θ)のうち、値が小さい方sと、下側の2点p(θ)、q(θ)のうち値が小さい方sとが比較される。そして、s≦sであれば、0≦θ<πであり、s>sであれば、π≦θ<2πである。
 このように、距離l(θ)及び距離l(θ)のうち少なくとも一方の値や、s1、等の値から、樹脂部12におけるX'軸回りの角度θを検出することが可能である。つまり、マーカ部15bの情報に基づいて、術具7におけるX'軸回りの角度θ(姿勢)を検出することができる。
 また、術具7のX'軸回りの角度θが決まれば、術具7の先端の位置を復元可能である。一例として、例えば、θがπであったとする。この場合、X'軸方向において、p(θ)の位置がk/2となり、p(θ)の位置から-k/2の位置に原点(第1のマーカ18の最も先端側の位置)が存在することになる。
 ここで、X'軸方向において、原点の位置と、術具7の先端の位置との間の距離がDであるとすると、原点の位置から、さらに、-Dの位置に術具7の先端が存在することになる。このように、マーカ部15bの情報に基づいて、術具7の先端の位置も検出することができる。
 なお、この例においても、第1のマーカ18及び第2のマーカ19は、術具7の長手方向(X'軸方向)に沿う断層画像において、術具7がX'軸回りに回転されたとき、この回転に応じて、X'軸方向における第1のマーカ18と、第2のマーカ19との間の距離l(θ)、l(θ)が異なるように、樹脂部12に配置されている。
 図11は、図8においてC-Cで示されているY'Z'平面を断層面とした場合における断層画像に写る樹脂部12及びマーカ部15bを示す図である。
 図11における断層画像においては、樹脂部12に巻回された第1のマーカ18は、Y'Z'平面に対して、1点で交わる。このときの点をθ(d)とする。同様に、樹脂部12に巻回された2本の第2のマーカ19は、Y'Z'平面に対して、それぞれ1点ずつで交わる。このときの点を、それぞれ、θ(d)、θ(d)とする。
 このとき、2本の第2のマーカ19によるθ(d)、θ(d)は、断層面をX'軸方向に移動させたとしても、常に向かい合う。それぞれの点の位置は、θ(d)=2πd/k、θ(d)=πd/k、θ(d)=πd/k+πとなる。なお、dは、X'軸方向において、原点0から断層面までの距離である。
 ここで、2本の第2のマーカ19によるθ(d)、θ(d)を直線で結び、この直線と、第1のマーカ18によるθ(d)との角度をθ'(d)(0<θ'<π/2)とする。この場合、θ'(d)=θ(d)-θ(d)、あるいは、θ'(d)=θ(d)-θ(d)である。この場合、θ'(d)=πd/kとなる。
 以上の説明から理解されるように、断層画像におけるマーカ部15bから取得可能なθ'(d)は、術具7の長手方向(X'軸方向)における距離dの関数である。従って、この距離dからX'軸方向における原点の位置が検出可能であり、上記と同様にして、術具7の先端位置を検出することができる。
 なお、第1のマーカ18及び第2のマーカ19は、術具7の長さ方向に直交する方向に沿う断層画像において、術具7がX'軸回りに回転されたとき、この回転に応じて、X'軸回りの第1のマーカ18と、第2のマーカ19との間の角度が異なるように、樹脂部12に配置されていればよい。
 なお、ここでの例に係る第1のマーカ18及び第2のマーカ19は、断層画像が、術具7の長手方向に沿う方向の断層画像であっても、この方向に直交する方向の断層画像であっても、適切に対応することができる。
 <動作説明>
 次に、手術顕微鏡装置10における制御部1の処理について説明する。図12は、制御部1の処理を示すフローチャートである。図12に示すように、まず、制御部1は、正面画像取得部2を制御して、眼の正面画像を撮像し、撮像された眼の正面画像を正面画像取得部2から取得する(ステップ101)。
 図13は、正面画像取得部2によって取得された正面画像の一例を示す図である。図13に示す正面画像では、白内障手術において、吸引用の術具7によって水晶体23の内部が吸引、除去されているときの様子が示されている。
 制御部1は、正面画像を取得すると、正面画像において画像認識を実行し、術具7の先端位置を検出する(ステップ102)。なお、術具7の位置や、姿勢は、後にマーカ部15を検出することによって正確に検出されるので、このステップにおける術具7の先端位置の検出は、おおまかな位置を検出するものとして実行される。
 制御部1は、画像認識によって、術具7の先端位置を検出することができなかった場合(ステップ103のNO)、ステップ101へ戻り、再び、正面画像を取得する。
 一方、術具7の先端位置が検出できた場合(ステップ103のYES)、制御部1は、術具7の先端が含まれるように、断層画像におけるスキャンを実行するための計測領域(線状、あるいは面状)を設定する(ステップ104)。
 計測領域を設定すると、制御部1は、断層画像取得部3により、計測領域においてスキャンを実行し、断層画像を取得する(ステップ105)。
 図14は、断層画像取得部3によって取得された断層画像の一例を示す図である。図14に示す断層画像では、白内障手術において、吸引用の術具7によって水晶体23の内部が吸引、除去されているときの様子が示されている。
 図14に示すように、本実施形態では、術具7の先端側が樹脂部12によって構成されているため、術具7の下側に影が発生してしまったり、術具7の周りにアーチファクトが発生してしまったりすることが防止される。一方、断層画像において樹脂部12が暗く表示されており、術具7の位置が分かりづらくなっているが、樹脂部12に設けられたマーカ部15は高信号で検出される。
 断層画像を取得すると、制御部1は、断層画像に基づいて、マーカ部15の検出処理を実行する(ステップ106)。マーカ部15の検出処理においては、制御部1は、検出されたマーカ部15の情報に基づいて、上述したような方法によって、術具7の位置、姿勢を検出する([マーカ部15の構成(1)]、[マーカ部15の構成(2)]参照)。このように、断層画像内のマーカ部15に基づいて、術具7の位置、姿勢を検出することで、術具7の位置、姿勢を正確に検出することができる。
 マーカ部15を検出することができなかった場合(ステップ107のNO)制御部1は、ステップ101へ戻って、再び、正面画像を取得する。一方、マーカ部15を検出することができた場合(ステップ107のYES)、制御部1は、検出された術具7の位置、姿勢に基づいて、術具7の位置、姿勢をユーザに提示するための術具7の位置、姿勢情報を生成する(ステップ108)。
 次に、制御部1は、生成された術具7の位置、姿勢情報を正面画像に重畳する(ステップ109)。図15は、正面画像に対して、術具7の位置、姿勢情報が重畳されたときの様子を示す図である。図15に示す例では、術具7の先端の位置に、術具7の先端位置を示すマーク31が位置、姿勢情報として配置されたときの様子が示されている。
 次に、制御部1は、生成された術具7の位置、姿勢情報を断層画像に重畳する(ステップ110)。図16は、断層画像に対して、術具7の位置、姿勢情報が重畳されたときの様子を示す図である。図16に示す例では、術具7の輪郭に対応する位置に、術具7の輪郭を現すマーク32が位置、姿勢情報として配置されたときの様子が示されている。
 断層画像に術具7の位置、姿勢情報を重畳すると、次に、制御部1は、術具7の位置、姿勢情報を重畳された正面画像及び断層画像を表示部5に表示させる(ステップ111)。なお、正面画像及び断層画像は、同じ表示部5上に表示されてもよいし、別々の表示部5上に表示されてもよい。
 次に、制御部1は、ユーザにより終了の指示が入力されたかどうかを判定する(ステップ112)。終了の指示が入力されていない場合(ステップ112のNO)、制御部1は、ステップ101へ戻り、一方、終了の指示が入力された場合(ステップ112のYES)、処理を終了する。
<作用等>
 以上説明したように、本実施形態では、制御部1により、マーカ部15を含む樹脂部12を有する術具7によって施術される眼の断層画像に写っているマーカ部15の情報が取得され、マーカ部15の情報に基づいて、術具7の位置、姿勢が検出される。これにより、術具7が樹脂によって構成された場合でも、制御部1により、断層画像において、術具7の位置、姿勢を正確に検出することができる。
 また、本実施形態では、検出された術具7の位置、姿勢に基づいて、術具7の位置、姿勢をユーザに提示するための術具7の位置、姿勢情報が生成され、この位置、姿勢情報が正面画像及び断層画像内に配置される。ユーザは、位置、姿勢情報を視認しながら眼の施術を行うことができるので、施術ミスが発生してしまうことを防止することができる。
 特に、本実施形態においては、断層画像において樹脂部12が暗く表示されてしまい、術具7の位置が分かりにくいような場合でも、ユーザは、術具7の位置、姿勢情報を視認することで、術具7の位置、姿勢を明確に認識することができる。
 また、上述のように、本実施形態では、術具7の位置、姿勢を正確に検出することができるので、ユーザに提示するための術具7の位置、姿勢情報も正確に生成することができる。従って、ユーザは、術具7の位置、姿勢を正確に認識することができる。
 また、本実施形態では、上述のように、マーカ部15が、適切な形状の幾何学パターンとして、符号化されているので、術具7の位置、姿勢の検出や、ユーザに提示される術具7の位置、姿勢情報がさらに正確になる。
≪第2実施形態≫
 次に、本技術の第2実施形態について説明する。図17は、第2実施形態に係る処理を示すフローチャートである。
 まず、制御部1は、断層面がユーザに入力されたかどうかを判定する(ステップ201)。図18は、断層面がユーザに入力されたときの一例を示す図である。図18に示すように、例えば、ユーザは、表示部5上に表示された眼の正面画像を視認しながら、入力部6を介して、断層面(太線参照)を入力する。この断層面は、術具7を位置合わせするための目標として設定される。
 断層面がユーザにより入力された場合(ステップ201のYES)、制御部1は、入力された断層面に応じて、断層画像取得部3により断層画像を取得する(ステップ202)。次に、制御部1は、取得された断層画像に基づいて、マーカ部15の検出処理を実行する(ステップ203)。
 マーカ部15が検出されなかった場合(ステップ204のNO)、制御部1は、ステップ202へ戻り、断層画像を取得する。一方、マーカ部15が検出された場合(ステップ204のYES)、制御部1は、検出されたマーカ部15の情報に基づいて(術具7の位置、姿勢に基づいて)、術具7の断層面に対するずれ量を算出する。
 図19~図21は、それぞれ、術具7が断層面に対してずれてしまったときの様子を示す図である。図19~図21では、上側に、断層面に対する術具7の姿勢が示されており、下側に、上側の図における断層面で断層画像が取得された場合のマーカ部15の位置が示されている。
 なお、図19、図20では、マーカ部15aが用いられた場合の一例が示されており、図21では、マーカ部15bが用いられたときの様子が示されている。
 図19の上側を参照して、この例では、術具7の長手方向(X'軸方向)が、断層面の方向に平行でなく、ずれてしまっている。この場合、図19の下側に示すように、断層画像内におけるマーカ部15による4点p'(θ)、p'(θ)、q'(θ)、q'(θ)の位置が、本来の4点の位置と比べてずれてしまっている。
 つまり、本来、この4点は、樹脂部12の上端及び下端の位置に平行に2点ずつ位置するはずであるが、樹脂部12の上端及び下端に位置してもいないし、平行でもない。この場合、制御部1は、ずれ量εを、式ε=cos(ρ)により算出する。なお、ρは、上側の2点を結んだ直線と、下側の2点を結んだ直線とが成す角である。
 図20の上側を参照して、この例では、術具7の長手方向(X'軸方向)は、断層面の方向と平行となっているが、術具7におけるY'軸方向の位置が断層面に対してずれてしまっている。
 この場合、図20の下側に示すように、断層画像内におけるマーカ部15による4点p'(θ)、p'(θ)、q'(θ)、q'(θ)の位置が、本来の4点の位置と比べてずれてしまっている。つまり、本来、この4点は、樹脂部12の上端及び下端に位置するはずであるが、樹脂部12の上端及び下端に位置していない(平行ではある)。
 この場合、制御部1は、ずれ量εを、式ε=r-r'により算出する。なお、rは、樹脂部12の半径であり、r'は、中心軸から検出された点までの距離である。
 図21の上側を参照して、この例では、術具7の長手方向(X'軸方向)は、断層面の方向に垂直になっておらず、ずれてしまっている。
 この場合、図21の下側に示すように、断層画像内におけるマーカ部15による3点θ'(d)、θ'(d)、θ'(d)の位置が、本来の3点の位置と比べてずれてしまっている。つまり、本来、この3点を結ぶと円形になるはずであるが、楕円形となってしまっている。
 この場合、制御部1は、ずれ量εを、式ε=2(r'-r)により算出する。なお、2rは、樹脂部12の半径であり、r'は、3点から推定される楕円の長軸である。
 図17へ戻り、制御部1は、ずれ量を算出すると、次に、ユーザにずれ量を提示するためのずれ量情報を生成する(ステップ206)。そして、制御部1は、生成されたずれ量情報をユーザに提示し(ステップ207)、終了の指示があった場合には(ステップ208のYES)、処理を終了する。
 図22、図23は、ユーザに提示されるずれ量情報の一例を示す図である。図22、23に示すように、ずれ量の情報は、断層画像内に配置される。このずれ量情報は、断層画像におけるマーカ部15の位置に基づいて生成されており、樹脂部12の上側における2点を結ぶ直線33と、下側における2点を結ぶ直線33とを含む2本の直線によって構成されている。
 図22では、2本の直線33が平行でなく、術具7の位置合わせが適切でない場合の一例が示されている。一方、図23では、2本の直線33が平行であり、術具7の位置合わせが適切である場合の一例が示されている。
 なお、ずれ量情報は、図22、図23に示した例に限られない。例えば、ずれ量情報は、グラフや、インジケータ等であってもよく、ユーザがずれ量を認識可能なものであればどのようなものであってもかまわない。また、ずれ量情報は、断層画像に限られず、正面画像に配置されてもよい。
 第2実施形態では、断層画像を取得するための断層面に対する、術具7の位置、姿勢のずれ量が検出され、検出されたずれ量に基づいて、ずれ量をユーザに提示するためのずれ量情報が生成される。従って、ユーザは、提示されたずれ量を参照することによって、術具7を正確な位置に位置決めすることができる。
 また、ずれ量は、マーカ部15によって検出されるので、断層面に対する、術具7の位置、姿勢のずれ量を正確に検出することができ、ユーザに正確なずれ情報を提示することができる。また、図22、図23に示すように、ユーザに提示するためずれ量を、マーカ部15の位置に基づいて生成することで、適切なずれ量情報を生成することができる
 第2実施形態の説明では、断層面を基準として、ユーザが術具7の位置を合わせる場合について説明した。一方、術具7を基準として、断層面の位置が決定されてもよい。
 この場合、まず、制御部1は、正面画像を画像認識することで、大まかな術具7の先端位置を取得し、この術具7の先端を基準として断層面を設定し、断層画像を取得する。そして、得られた断層画像におけるマーカ部15の情報に基づいて、術具7における正確な先端の位置を検出する。
 そして、制御部1は、正確に検出された術具7の先端の位置に基づいて、断層面と、術具7の先端の位置とのずれ量を算出し、ずれ量に基づいて、ずれ量が小さくなるように、断層面を変更する。このような処理により、術具7の位置、姿勢に応じて、適切な位置に、断層面を設定することができる。
 ≪各種変形例≫
 以上の説明では、マーカ部15が樹脂部12の表面に設けられる場合について説明したが、マーカ部15は、樹脂部12の内部に配置されていてもよい。
 以上の説明では、手術顕微鏡装置10における制御部1が上記した各種の処理を実行する場合について説明した。一方、上記した各種の処理は、ネットワーク上のサーバ装置(情報処理装置)の制御部1によって実行されてもよい。
 本技術は以下の構成をとることもできる。
 (1)マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得し、前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出する制御部
 を具備する情報処理装置。
(2) 上記(1)に記載の情報処理装置であって、
 前記制御部は、検出された前記術具の位置又は姿勢に基づいて、術具の位置又は姿勢をユーザに提示するための術具の位置又は姿勢情報を生成する
 情報処理装置。
(3) 上記(2)に記載の情報処理装置であって、
 前記制御部は、前記術具の位置又は姿勢情報を、前記断層画像内に配置する
 情報処理装置。
(4) 上記(2)又は(3)に記載の情報処理装置であって、
 前記制御部は、前記術具の位置又は姿勢情報を、眼の正面画像内に配置する
 情報処理装置。
(5) 上記(1)~(4)のうちいずれか1つに記載の情報処理装置であって、
 前記制御部は、検出された前記術具の位置又は姿勢に基づいて、前記断層画像を取得するための断層面に対する、前記術具の位置又は姿勢のずれ量を検出する
 情報処理装置。
(6) 上記(5)に記載の情報処理装置であって、
 前記制御部は、検出された前記ずれ量に基づいて、前記ずれ量をユーザに提示するためのずれ量情報を生成する
 情報処理装置。
(7) 上記(6)に記載の情報処理装置であって、
 前記制御部は、前記マーカ部の情報に基づいて、前記ずれ量情報を生成する
 情報処理装置。
(8) 上記(5)に記載の情報処理装置であって、
 前記制御部は、検出された前記ずれ量に基づいて、前記断層面を変更する
 情報処理装置。
(9) 上記(1)~(8)のうちいずれか1つに記載の情報処理装置であって、
 前記マーカ部は、特定の幾何学パターンによって構成される
 情報処理装置。
(10) 上記(9)に記載の情報処理装置であって、
 前記マーカ部は、第1のマーカと、第2のマーカとを有し、
 前記第1のマーカ及び前記第2のマーカは、前記術具の長手方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記長手方向における前記第1のマーカと、前記第2のマーカとの間の距離が異なるように、前記樹脂部に配置される
 情報処理装置。
(11)上記(9)又は(10)に記載の情報処理装置であって、
 前記マーカ部は、第1のマーカと、第2のマーカとを有し、
 前記第1のマーカ及び前記第2のマーカは、前記術具の長さ方向に直交する方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記軸回りの前記第1のマーカと、前記第2のマーカとの間の角度が異なるように、前記樹脂部に配置される
 情報処理装置。
(12) 術具によって施術される眼の断層画像において、前記術具の位置又は姿勢を検出するために設けられたマーカ部を含む樹脂部を有する
 術具。
(13) 上記(12)に記載の術具であって、
 前記マーカ部は、特定の幾何学パターンによって構成される
 術具。
(14) 上記(13)に記載の術具であって、
 前記マーカ部は、第1のマーカと、第2のマーカとを有し、
 前記第1のマーカ及び前記第2のマーカは、前記術具の長手方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記長手方向における前記第1のマーカと、前記第2のマーカとの間の距離が異なるように、前記樹脂部に配置される
 術具。
(15) 上記(13)又は(14)に記載の術具であって、
 前記マーカ部は、第1のマーカと、第2のマーカとを有し、
 前記第1のマーカ及び前記第2のマーカは、前記術具の長さ方向に直交する方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記軸回りの前記第1のマーカと、前記第2のマーカとの間の角度が異なるように、前記樹脂部に配置される
 術具。
(16)マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得し、
 前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出する
 情報処理方法。
(17)マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得ステップと、
 前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出するステップと
 をコンピュータに実行させるプログラム。
 1…制御部
 2…正面画像取得部
 3…断層画像取得部
 7…術具
 10…手術顕微鏡装置
 12…樹脂部
 15…マーカ部
 16、18…第1のマーカ
 17、19…第2のマーカ

Claims (17)

  1.  マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得し、前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出する制御部
     を具備する情報処理装置。
  2.  請求項1に記載の情報処理装置であって、
     前記制御部は、検出された前記術具の位置又は姿勢に基づいて、術具の位置又は姿勢をユーザに提示するための術具の位置又は姿勢情報を生成する
     情報処理装置。
  3.  請求項2に記載の情報処理装置であって、
     前記制御部は、前記術具の位置又は姿勢情報を、前記断層画像内に配置する
     情報処理装置。
  4.  請求項2に記載の情報処理装置であって、
     前記制御部は、前記術具の位置又は姿勢情報を、眼の正面画像内に配置する
     情報処理装置。
  5.  請求項1に記載の情報処理装置であって、
     前記制御部は、検出された前記術具の位置又は姿勢に基づいて、前記断層画像を取得するための断層面に対する、前記術具の位置又は姿勢のずれ量を検出する
     情報処理装置。
  6.  請求項5に記載の情報処理装置であって、
     前記制御部は、検出された前記ずれ量に基づいて、前記ずれ量をユーザに提示するためのずれ量情報を生成する
     情報処理装置。
  7.  請求項6に記載の情報処理装置であって、
     前記制御部は、前記マーカ部の情報に基づいて、前記ずれ量情報を生成する
     情報処理装置。
  8.  請求項5に記載の情報処理装置であって、
     前記制御部は、検出された前記ずれ量に基づいて、前記断層面を変更する
     情報処理装置。
  9.  請求項1に記載の情報処理装置であって、
     前記マーカ部は、特定の幾何学パターンによって構成される
     情報処理装置。
  10.  請求項9に記載の情報処理装置であって、
     前記マーカ部は、第1のマーカと、第2のマーカとを有し、
     前記第1のマーカ及び前記第2のマーカは、前記術具の長手方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記長手方向における前記第1のマーカと、前記第2のマーカとの間の距離が異なるように、前記樹脂部に配置される
     情報処理装置。
  11.  請求項9に記載の情報処理装置であって、
     前記マーカ部は、第1のマーカと、第2のマーカとを有し、
     前記第1のマーカ及び前記第2のマーカは、前記術具の長さ方向に直交する方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記軸回りの前記第1のマーカと、前記第2のマーカとの間の角度が異なるように、前記樹脂部に配置される
     情報処理装置。
  12.  術具によって施術される眼の断層画像において、前記術具の位置又は姿勢を検出するために設けられたマーカ部を含む樹脂部を有する
     術具。
  13.  請求項12に記載の術具であって、
     前記マーカ部は、特定の幾何学パターンによって構成される
     術具。
  14.  請求項13に記載の術具であって、
     前記マーカ部は、第1のマーカと、第2のマーカとを有し、
     前記第1のマーカ及び前記第2のマーカは、前記術具の長手方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記長手方向における前記第1のマーカと、前記第2のマーカとの間の距離が異なるように、前記樹脂部に配置される
     術具。
  15.  請求項13に記載の術具であって、
     前記マーカ部は、第1のマーカと、第2のマーカとを有し、
     前記第1のマーカ及び前記第2のマーカは、前記術具の長さ方向に直交する方向に沿う前記断層画像において、前記術具が前記長手方向に沿う軸回りに回転されたとき、前記回転に応じて、前記軸回りの前記第1のマーカと、前記第2のマーカとの間の角度が異なるように、前記樹脂部に配置される
     術具。
  16.  マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得し、
     前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出する
     情報処理方法。
  17.  マーカ部を含む樹脂部を有する術具によって施術される眼の断層画像に写っている前記マーカ部の情報を取得ステップと、
     前記マーカ部の情報に基づいて、前記術具の位置又は姿勢を検出するステップと
     をコンピュータに実行させるプログラム。
PCT/JP2018/015228 2017-04-21 2018-04-11 情報処理装置、術具、情報処理方法及びプログラム WO2018193932A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/603,835 US20200129056A1 (en) 2017-04-21 2018-04-11 Information processing apparatus, surgical tool, information processing method, and program
EP18788415.0A EP3603484B1 (en) 2017-04-21 2018-04-11 Information processing device, surgical tool, information processing method, and program
JP2019513575A JP7040520B2 (ja) 2017-04-21 2018-04-11 情報処理装置、術具、情報処理方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084675 2017-04-21
JP2017084675 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018193932A1 true WO2018193932A1 (ja) 2018-10-25

Family

ID=63856788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015228 WO2018193932A1 (ja) 2017-04-21 2018-04-11 情報処理装置、術具、情報処理方法及びプログラム

Country Status (4)

Country Link
US (1) US20200129056A1 (ja)
EP (1) EP3603484B1 (ja)
JP (1) JP7040520B2 (ja)
WO (1) WO2018193932A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11722644B2 (en) * 2018-09-18 2023-08-08 Johnson & Johnson Surgical Vision, Inc. Live cataract surgery video in phacoemulsification surgical system
DE102021202384B3 (de) 2021-03-11 2022-07-14 Carl Zeiss Meditec Ag Mikroskopsystem, medizinisches Instrument sowie Kalibrierverfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201682A (ja) * 2008-02-27 2009-09-10 Hitachi Ltd 回転状態検出方法および装置
US20120184846A1 (en) * 2011-01-19 2012-07-19 Duke University Imaging and visualization systems, instruments, and methods using optical coherence tomography
US20140221822A1 (en) * 2013-02-04 2014-08-07 The Cleveland Clinic Foundation Instrument depth tracking for oct-guided procedures
WO2015189227A1 (en) * 2014-06-13 2015-12-17 Novartis Ag Oct transparent surgical instruments and methods
JP2016073409A (ja) * 2014-10-03 2016-05-12 ソニー株式会社 情報処理装置、情報処理方法及び手術顕微鏡装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3971268B2 (ja) * 2002-08-07 2007-09-05 株式会社日立メディコ 磁気共鳴イメージング装置
US9597009B2 (en) * 2013-12-19 2017-03-21 Novartis Ag Marker-based tool tracking
WO2017035592A1 (en) * 2015-09-01 2017-03-09 Cryptych Pty Ltd Bone screw and instruments for probing position of bone screw

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201682A (ja) * 2008-02-27 2009-09-10 Hitachi Ltd 回転状態検出方法および装置
US20120184846A1 (en) * 2011-01-19 2012-07-19 Duke University Imaging and visualization systems, instruments, and methods using optical coherence tomography
US20140221822A1 (en) * 2013-02-04 2014-08-07 The Cleveland Clinic Foundation Instrument depth tracking for oct-guided procedures
WO2015189227A1 (en) * 2014-06-13 2015-12-17 Novartis Ag Oct transparent surgical instruments and methods
JP2016073409A (ja) * 2014-10-03 2016-05-12 ソニー株式会社 情報処理装置、情報処理方法及び手術顕微鏡装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3603484A4 *

Also Published As

Publication number Publication date
EP3603484B1 (en) 2022-08-17
JPWO2018193932A1 (ja) 2020-02-27
JP7040520B2 (ja) 2022-03-23
US20200129056A1 (en) 2020-04-30
EP3603484A4 (en) 2020-03-25
EP3603484A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP5820154B2 (ja) 眼科装置、眼科システム及び記憶媒体
US10537389B2 (en) Surgical system, image processing device, and image processing method
US20210311295A1 (en) Information processing apparatus, information processing method, and operation microscope apparatus
US11490986B2 (en) System and method for improved electronic assisted medical procedures
US10682051B2 (en) Surgical system having an OCT device
US20210290315A1 (en) System method and computer program product, for computer aided surgery
Zhou et al. Precision needle tip localization using optical coherence tomography images for subretinal injection
JP7040520B2 (ja) 情報処理装置、術具、情報処理方法及びプログラム
US20220125518A1 (en) Tool for inserting an implant and method of using same
US20240081921A1 (en) System and method for verification of conversion of locations between coordinate systems
JP7408504B2 (ja) 少なくとも1つのトロカールポイントの相対位置を提供するための眼科外科手術システム及びコンピュータ実装方法
JP5570673B2 (ja) 眼科装置
US20160296376A1 (en) Control device and method for calibrating a laser system
KR101020893B1 (ko) 안구의 변위 측정 방법, 안구의 변위 측정 방법을 기록한 기록매체 및 안구의 변위 측정 장치
JP6634768B2 (ja) 光断層像撮影装置
US20240138916A1 (en) Laser trajectory marker
EP4322878A1 (en) System and method for lidar-based anatomical mapping
JP2022510018A (ja) 眼科手術用医療装置
JP2022009300A (ja) 眼科手術中、患者データを管理するシステム及び方法
CN113855232A (zh) 用于训练和使用植入计划评估模型的系统和方法
JP2021058284A (ja) 検出装置、プログラム及び検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018788415

Country of ref document: EP

Effective date: 20191024