WO2018193668A1 - 不飽和炭化水素の製造方法及び脱水素触媒の再生方法 - Google Patents

不飽和炭化水素の製造方法及び脱水素触媒の再生方法 Download PDF

Info

Publication number
WO2018193668A1
WO2018193668A1 PCT/JP2017/046968 JP2017046968W WO2018193668A1 WO 2018193668 A1 WO2018193668 A1 WO 2018193668A1 JP 2017046968 W JP2017046968 W JP 2017046968W WO 2018193668 A1 WO2018193668 A1 WO 2018193668A1
Authority
WO
WIPO (PCT)
Prior art keywords
dehydrogenation
dehydrogenation catalyst
regeneration
catalyst
reaction
Prior art date
Application number
PCT/JP2017/046968
Other languages
English (en)
French (fr)
Inventor
信啓 木村
瀬川 敦司
竜也 一條
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to US16/606,018 priority Critical patent/US20200038852A1/en
Publication of WO2018193668A1 publication Critical patent/WO2018193668A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/10Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using elemental hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for producing unsaturated hydrocarbons and a method for regenerating a dehydrogenation catalyst.
  • a method for producing a conjugated diene for example, a method for producing a conjugated diene by direct dehydrogenation of n-butane using a dehydrogenation catalyst (Patent Document 1) or a conjugated diene by an oxidative dehydrogenation reaction of n-butene. Methods for producing dienes (Patent Documents 2 to 4) are known.
  • An object of the present invention is to provide a method for regenerating a dehydrogenation catalyst that can efficiently remove coke deposited on the dehydrogenation catalyst while sufficiently maintaining the catalytic activity of the dehydrogenation catalyst.
  • the present invention provides an unsaturated process capable of realizing the efficiency of the entire process by efficiently removing the coke deposited on the dehydrogenation catalyst while sufficiently maintaining the catalytic activity of the dehydrogenation catalyst. It aims at providing the manufacturing method of hydrocarbon.
  • a feed gas containing at least one hydrocarbon selected from the group consisting of alkanes and olefins is brought into contact with a dehydrogenation catalyst containing a Group 14 metal element and Pt, so that the olefin and conjugated diene are used.
  • the dehydrogenation catalyst that has passed through the dehydrogenation step is regenerated under specific conditions, thereby efficiently removing the coke deposited on the dehydrogenation catalyst while maintaining the catalytic activity of the dehydrogenation catalyst sufficiently.
  • the dehydrogenation catalyst having high catalytic activity can be recovered while obtaining unsaturated hydrocarbons, so that the efficiency of the entire process can be improved.
  • the dehydrogenation catalyst may contain Sn as a Group 14 metal element.
  • the dehydrogenation catalyst may be a catalyst in which a group 14 metal element and Pt are supported on a carrier using a metal source that does not contain a chlorine atom.
  • the source gas may contain an alkane having 2 to 10 carbon atoms.
  • the source gas may contain an olefin having 4 to 10 carbon atoms.
  • Another aspect of the present invention is a method for regenerating a dehydrogenation catalyst containing a Group 14 metal element and Pt used in a hydrocarbon dehydrogenation reaction, wherein the dehydrogenation catalyst has a temperature of 310 to 450 ° C.
  • the present invention relates to a method for regenerating a dehydrogenation catalyst, comprising a regeneration step in which a regeneration gas containing molecular oxygen is brought into contact under temperature conditions.
  • At least one unsaturated hydrocarbon selected from the group consisting of olefins and conjugated dienes is obtained by dehydrogenating alkanes using the dehydrogenation catalyst regenerated by the above regeneration method. It is related with the manufacturing method of unsaturated hydrocarbon provided with the process to obtain.
  • Still another aspect of the present invention relates to a method for producing an unsaturated hydrocarbon, comprising a step of performing a olefin dehydrogenation reaction using the dehydrogenation catalyst regenerated by the above regeneration method to obtain a conjugated diene.
  • a method for regenerating a dehydrogenation catalyst that can efficiently remove coke deposited on the dehydrogenation catalyst while sufficiently maintaining the catalytic activity of the dehydrogenation catalyst.
  • a method for producing unsaturated hydrocarbons is provided.
  • a source gas containing at least one hydrocarbon selected from the group consisting of alkanes and olefins is brought into contact with a dehydrogenation catalyst containing a Group 14 metal element and Pt.
  • the dehydrogenation catalyst regenerated in the regeneration step may be reused in the dehydrogenation step or may be used in other steps.
  • the raw material gas contains at least one hydrocarbon selected from the group consisting of alkanes and olefins.
  • the dehydrogenation step may be a step of obtaining at least one unsaturated hydrocarbon selected from the group consisting of an olefin and a conjugated diene by an alkane dehydrogenation reaction.
  • the dehydrogenation step may be a step of obtaining a conjugated diene by an olefin dehydrogenation reaction.
  • the source gas may contain either one of alkane or olefin, or may contain both.
  • the carbon number of the hydrocarbon contained in the raw material gas may be the same as the carbon number of the target unsaturated hydrocarbon.
  • the number of carbons in the alkane may be 2 or more, for example, 3 or more, or 4 or more.
  • carbon number of alkane may be 10 or less, for example, and may be 6 or less.
  • the number of carbon atoms in the olefin may be 4 or more.
  • carbon number of an olefin may be 10 or less, for example, and 6 or less.
  • the alkane may be, for example, a chain or a ring.
  • Examples of the chain alkane include butane, pentane, hexane, heptane, octane, decane, and the like.
  • examples of the linear alkane include n-butane, n-pentane, n-hexane, n-heptane, n-octane, and n-decane.
  • Examples of the branched alkane include isobutane, isopentane, 2-methylpentane, 3-methylpentane, 2,3-dimethylpentane, isoheptane, isooctane, and isodecane.
  • cyclic alkane examples include cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, and methylcyclohexane.
  • the source gas may contain one kind of alkane or two or more kinds.
  • the olefin may be, for example, a chain or a ring.
  • the chain olefin may be at least one selected from the group consisting of butene, pentene, hexene, heptene, octene, nonene and decene, for example.
  • the chain olefin may be linear or branched.
  • the linear olefin may be at least one selected from the group consisting of n-butene, n-pentene, n-hexene, n-heptene, n-octene, n-nonene and n-decene, for example.
  • the branched olefin may be at least one selected from the group consisting of isopentene, 2-methylpentene, 3-methylpentene, 2,3-dimethylpentene, isoheptene, isooctene, isononene and isodecene, for example.
  • the source gas may contain one of the above olefins alone or may contain two or more.
  • the hydrocarbon partial pressure may be 1.0 MPa or less, 0.1 MPa or less, or 0.01 MPa or less. By reducing the hydrocarbon partial pressure of the source gas, the conversion rate of the hydrocarbon can be further improved.
  • the partial pressure of hydrocarbon in the raw material gas is preferably 0.001 MPa or more, and more preferably 0.005 MPa or more, from the viewpoint of reducing the reactor size with respect to the raw material flow rate.
  • the raw material gas may further contain an inert gas such as nitrogen or argon.
  • the source gas may further contain steam.
  • the steam content is preferably 1.0 times mol or more, more preferably 1.5 times mol or more with respect to the hydrocarbon. Inclusion of steam in the raw material gas may suppress a decrease in catalyst activity.
  • content of steam may be 50 times mole or less with respect to hydrocarbon, for example, Preferably it is 10 times mole or less.
  • the raw material gas may further contain other components such as hydrogen, oxygen, carbon monoxide, carbon dioxide gas and dienes in addition to the above.
  • the product gas contains at least one unsaturated hydrocarbon selected from the group consisting of olefins and conjugated dienes.
  • the carbon number of the olefin and the conjugated diene may be the same as the carbon number of the hydrocarbon in the raw material gas.
  • the olefin contained in the product gas may have 2 or more carbon atoms, 3 or more carbon atoms, or 4 or more carbon atoms.
  • the carbon number of the olefin contained in the product gas may be 10 or less, for example, or 6 or less.
  • the carbon number of the conjugated diene contained in the product gas may be, for example, 4 to 10, or 4 to 6.
  • olefins examples include ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, and decene, and these may be any isomer.
  • conjugated dienes include 1,3-butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 1,3-heptadiene, 1,3-octadiene, 1,3-nonadiene, 1,3-decadiene.
  • the product gas may contain one kind of unsaturated hydrocarbon, and may contain two or more kinds of unsaturated hydrocarbons.
  • the product gas may include olefins and conjugated dienes.
  • the dehydrogenation catalyst is a solid catalyst containing a Group 14 metal element and Pt.
  • the dehydrogenation catalyst may be, for example, a catalyst in which a support metal containing a Group 14 metal element and Pt is supported on a support.
  • the carrier is preferably an inorganic oxide carrier.
  • the inorganic oxide carrier include inorganic oxides such as alumina, alumina magnesia, magnesia, titania, silica, silica alumina, silica magnesia, ferrite, and spinel structure (magnesium spinel, iron spinel, zinc spinel, manganese spinel).
  • carrier containing is mentioned.
  • a carrier containing aluminum (Al) is preferable.
  • the content of Al in the support may be 25% by mass or more based on the total mass of the support, and is preferably 50% by mass or more.
  • the carrier is preferably a spinel structure having a spinel structure, such as magnesium spinel (MgAl 2 O 4 ).
  • a spinel structure such as magnesium spinel (MgAl 2 O 4 ).
  • the dehydrogenation catalyst carries a supported metal containing a Group 14 metal element and Pt.
  • the Group 14 metal element may be at least one selected from the group consisting of Ge, Sn, and Pb, and is preferably Sn.
  • the dehydrogenation catalyst can be suitably used as a dehydrogenation catalyst using alkane as a raw material.
  • alkane as a raw material.
  • at least one unsaturated hydrocarbon selected from the group consisting of olefins and conjugated dienes is obtained from alkanes.
  • the dehydrogenation catalyst can also be suitably used as a dehydrogenation catalyst using olefin as a raw material.
  • a conjugated diene is obtained from an olefin.
  • the supported amount of the group 14 metal element in the dehydrogenation catalyst may be, for example, 1% by mass or more based on the total mass of the dehydrogenation catalyst, and 1.3% by mass. % Or more, preferably 9% by mass or less, and preferably 7% by mass or less.
  • the supported amount of the group 14 metal element in the dehydrogenation catalyst may be, for example, 5% by mass or more based on the total mass of the dehydrogenation catalyst, and 7% by mass or more It is preferable that it may be 25 mass% or less, and it is preferable that it is 18 mass% or less.
  • the amount of Pt supported in the dehydrogenation catalyst may be, for example, 0.1% by mass or more based on the total mass of the dehydrogenation catalyst, and preferably 0.5% by mass or more. This further improves the catalytic activity of the dehydrogenation catalyst. Further, the amount of Pt supported in the dehydrogenation catalyst may be, for example, 5% by mass or less based on the total mass of the dehydrogenation catalyst, and preferably 2% by mass or less. Thereby, in the dehydrogenation catalyst, the dispersibility of Pt is improved, and the activity per supported amount tends to be improved.
  • the loading amount of the Group 14 metal element and Pt in the dehydrogenation catalyst can be measured by emission spectroscopic analysis using a high frequency inductively coupled plasma (ICP) as a light source.
  • ICP inductively coupled plasma
  • the sample solution is atomized and introduced into Ar plasma, the light emitted when the excited element returns to the ground state is dispersed, the element is qualitatively determined from its wavelength, and the element is determined from its intensity. I do.
  • the Group 14 metal element and Pt may interact, for example, an alloy may be formed. This tends to improve the durability of the dehydrogenation catalyst.
  • the dehydrogenation catalyst can be suitably used as a catalyst for dehydrogenation reaction using alkane as a raw material or a catalyst for dehydrogenation reaction using olefin as a raw material.
  • the dehydrogenation catalyst can be used for applications other than these, for example, a catalyst for dehydrogenation reaction of oxygen-containing compounds such as alcohol, aldehyde, ketone, carboxylic acid, and hydrogenation which is a reverse reaction of the dehydrogenation reaction. It can also be used as a catalyst for the reaction.
  • the dehydrogenation catalyst regenerated in the regeneration step described later may be applied to any of these reactions.
  • the dehydrogenation catalyst may be used for the reaction after being subjected to a reduction treatment.
  • the reduction treatment can be performed, for example, by holding the dehydrogenation catalyst at 40 to 600 ° C. in a reducing gas atmosphere.
  • the holding time may be, for example, 0.05 to 24 hours.
  • the reducing gas may be, for example, hydrogen or carbon monoxide.
  • the dehydrogenation catalyst may further contain a molding aid from the viewpoint of improving moldability.
  • the molding aid may be, for example, a thickener, a surfactant, a water retention material, a plasticizer, a binder material, or the like.
  • the shape of the dehydrogenation catalyst is not particularly limited, and may be, for example, a pellet shape, a granule shape, a honeycomb shape, a sponge shape, or the like.
  • the method for supporting the supported metal on the carrier is not particularly limited, and examples thereof include an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, and a pore filling method.
  • Pt may be supported after supporting the Group 14 metal element on the carrier. Further, after supporting Pt on the carrier, a Group 14 metal element may be supported. Moreover, you may carry
  • a solution in which a metal source containing the supported metal is dissolved is prepared, the support is impregnated with this solution, dried and fired, and the 14th group metal element is applied to the support.
  • supporting is mentioned.
  • the metal source including the supported metal may be, for example, a metal salt or a complex.
  • the metal salt of the supported metal may be, for example, an inorganic salt, an organic acid salt, or a hydrate thereof.
  • Inorganic salts may be, for example, sulfates, nitrates, chlorides, phosphates, carbonates and the like.
  • the organic acid salt may be, for example, acetate, oxalate and the like.
  • the supported metal complex may be, for example, an alkoxide complex, an ammine complex, or the like.
  • a metal source containing no chlorine atom is preferably used.
  • a dehydrogenation catalyst in which a group 14 metal element and Pt are supported on a carrier using a metal source that does not contain a chlorine atom tends to suppress the decrease in catalytic activity in the regeneration step more remarkably.
  • a metal source not containing a chlorine atom and containing a Group 14 metal element sodium stannate, potassium stannate, tin sulfate, tin oxide, tin oxalate, tin acetate, metastannic acid, tin chloride and the like can be mentioned. It is done.
  • tetraammineplatinum (II) acid for example, tetraammineplatinum (II) acid, tetraammineplatinum (II) acid salt (for example, nitrate), tetraammineplatinum (II) acid hydroxide solution
  • tetraammineplatinum (II) acid salt for example, nitrate
  • tetraammineplatinum (II) acid hydroxide solution examples thereof include a dinitrodiammine platinum (II) nitric acid solution, a hexahydroxoplatinum (IV) acid nitric acid solution, and a hexahydroxoplatinum (IV) acid ethanolamine solution.
  • the dehydrogenation step is a step in which a raw material gas is brought into contact with a dehydrogenation catalyst to perform a hydrocarbon dehydrogenation reaction to obtain a product gas containing unsaturated hydrocarbons.
  • the dehydrogenation step may be performed, for example, by using a reactor filled with a dehydrogenation catalyst and circulating a raw material gas through the reactor.
  • a reactor various reactors used for a gas phase reaction with a solid catalyst can be used. Examples of the reactor include a fixed bed reactor, a radial flow reactor, and a tubular reactor.
  • the reaction type of the dehydrogenation reaction may be, for example, a fixed bed type, a moving bed type, or a fluidized bed type.
  • the fixed bed type is preferable from the viewpoint of equipment cost.
  • the reaction temperature of the dehydrogenation reaction may be 300 to 800 ° C. or 500 to 700 ° C. from the viewpoint of reaction efficiency. If reaction temperature is 500 degreeC or more, there exists a tendency for the production amount of unsaturated hydrocarbon to increase further. If reaction temperature is 700 degrees C or less, there exists a tendency for high activity to be maintained over a long period of time.
  • the reaction pressure that is, the atmospheric pressure in the reactor may be 0.01 to 1 MPa, 0.05 to 0.8 MPa, or 0.1 to 0.5 MPa.
  • the reaction pressure is in the above range, the dehydrogenation reaction is more likely to proceed, and a further excellent reaction efficiency tends to be obtained.
  • the weight space velocity (hereinafter referred to as “WHSV”) may be 0.1 h ⁇ 1 or more, and 1.0 h it may also be -1 or more, may be at 100h -1 or less, may be 30h -1 or less.
  • WHSV is the ratio (F / W) of the feed rate (feed rate / time) F of the raw material gas to the mass W of the dehydrogenation catalyst in a continuous reactor.
  • the usage amount of the raw material gas and the catalyst may be appropriately selected in a more preferable range according to the reaction conditions, the activity of the catalyst, etc., and WHSV is not limited to the above range.
  • the reactor may be filled with two or more kinds of catalysts.
  • the reactor includes a first dehydrogenation catalyst having excellent catalytic activity for dehydrogenation reaction from alkane to olefin, and a second dehydration having excellent catalytic activity for dehydrogenation reaction from olefin to conjugated diene.
  • An elementary catalyst may be charged.
  • the source gas contains alkane, and the conjugated diene can be efficiently obtained from the alkane.
  • At least one of the first dehydrogenation catalyst and the second dehydrogenation catalyst may be the above-described dehydrogenation catalyst, and the other may be another dehydrogenation catalyst.
  • dehydrogenation catalysts include noble metal catalysts, catalysts containing Fe and K, catalysts containing Mo, and the like.
  • both the first dehydrogenation catalyst and the second dehydrogenation catalyst may be the above-described dehydrogenation catalyst.
  • one of the first dehydrogenation catalyst and the second dehydrogenation catalyst may be subjected to a regeneration step described later, or both may be subjected to a regeneration step described later.
  • the regeneration step is a step of bringing a regeneration gas containing molecular oxygen into contact with the dehydrogenation catalyst used in the dehydrogenation step under a temperature condition of 310 to 450 ° C.
  • the regeneration gas only needs to contain molecular oxygen.
  • the regeneration gas may be a mixed gas of an oxygen gas and an inert gas (for example, nitrogen, helium, argon, etc.), or may be air.
  • the concentration of molecular oxygen in the regeneration gas is not particularly limited, but may be, for example, 0.05% by volume or more, 0.1% by volume or more, and 0.5% by volume or more. Increasing the concentration of molecular oxygen in the regeneration gas tends to shorten the time required for coke combustion on the catalyst.
  • the concentration of molecular oxygen in the regeneration gas may be, for example, 20% by volume or less, 10% by volume or less, or 5% by volume or less.
  • the temperature condition during regeneration is preferably 310 ° C. or higher, more preferably 330 ° C. or higher. Moreover, the temperature condition at the time of reproduction
  • Coke is deposited on the dehydrogenation catalyst used in the regeneration process.
  • the amount of coke deposited before regeneration may be, for example, 0.1 parts by mass or more and 0.5 parts by mass or more with respect to 100 parts by mass of the dehydrogenation catalyst. Further, the amount of coke deposited before regeneration may be, for example, 20 parts by mass or less and 10 parts by mass or less with respect to 100 parts by mass of the dehydrogenation catalyst.
  • the coke deposited on the dehydrogenation catalyst is removed by combustion.
  • the amount of coke deposited after regeneration is, for example, preferably 1.0 part by mass or less, more preferably 0.5 part by mass or less, and 0 part by mass with respect to 100 parts by mass of the dehydrogenation catalyst. It is particularly preferred.
  • the dehydrogenation catalyst after regeneration can be suitably used as, for example, a catalyst for dehydrogenation reaction using alkane as a raw material or a catalyst for dehydrogenation reaction using olefin as a raw material.
  • the dehydrogenation catalyst after regeneration can be used, for example, as a catalyst for dehydrogenation reaction of oxygen-containing compounds such as alcohol, aldehyde, ketone, carboxylic acid, a catalyst for hydrogenation reaction that is the reverse reaction of dehydrogenation reaction, etc. Can be used.
  • the dehydrogenation catalyst after regeneration may be reused in the dehydrogenation process described above. Moreover, the dehydrogenation catalyst after reproduction
  • the present invention has been described above, but the present invention is not limited to the above embodiment.
  • the present invention has been described above as a method for producing unsaturated hydrocarbons, the present invention is not limited to this.
  • One aspect of the present invention may be a regeneration method for regenerating a dehydrogenation catalyst used in a hydrocarbon dehydrogenation reaction.
  • This regeneration method may be a method of regenerating the dehydrogenation catalyst by the regeneration process described above.
  • Another aspect of the present invention is to perform alkane dehydrogenation using the dehydrogenation catalyst regenerated by the above regeneration method to obtain at least one unsaturated hydrocarbon selected from the group consisting of olefins and conjugated dienes. It may be a method for producing an unsaturated hydrocarbon, comprising a dehydrogenation step.
  • the dehydrogenation step in this production method may be the same as the dehydrogenation step described above, except that the regenerated dehydrogenation catalyst is used as the dehydrogenation catalyst.
  • Yet another aspect of the present invention is a method for producing an unsaturated hydrocarbon, comprising a dehydrogenation step of performing a olefin dehydrogenation reaction using the dehydrogenation catalyst regenerated by the above regeneration method to obtain a conjugated diene. It's okay.
  • the dehydrogenation step in this production method may be the same as the dehydrogenation step described above, except that the regenerated dehydrogenation catalyst is used as the dehydrogenation catalyst.
  • Example A-1 ⁇ Preparation of dehydrogenation catalyst A-1>
  • Commercially available ⁇ - alumina (Mizusawa Industrial Chemicals Ltd., Neobido GB-13) water and 20.0 g, magnesium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Mg (NO 3) 2 ⁇ 6H 2 O) and 25.1g
  • the aqueous solution dissolved in (about 150 ml) was mixed, and water was removed at about 50 ° C. with an evaporator. Thereafter, the film was dried at 130 ° C. overnight, baked at 550 ° C. for 3 hours, and then baked at 800 ° C. for 3 hours.
  • ⁇ Dehydrogenation test (1)> 1.0 g of dehydrogenation catalyst A-1 was charged into a flow reactor having an inner diameter of 10 mm ⁇ , and hydrogen reduction was performed at 550 ° C. for 3 hours. Then, butane was dehydrogenated at a reaction temperature of 550 ° C. and normal pressure. . Butane was used as the raw material, and the raw material gas composition was butane: nitrogen: water 1.0: 5.3: 3.2 (molar ratio). The WHSV was set to 1.0 h- 1 . Four hours after the start of the reaction, each product gas was collected and analyzed with a gas chromatograph (Agilent GC-6850, FID + TCD detector) to determine the butane conversion rate. As a result, the butane conversion rate was 52%.
  • ⁇ Dehydrogenation test (2)> 0.9g of the dehydrogenation catalyst A-1 after the regeneration test was taken, filled in a flow reactor with an inner diameter of 10mm ⁇ , hydrogen reduced at 550 ° C for 3 hours, and then butane dehydrated at a reaction temperature of 550 ° C and normal pressure. An elementary reaction was performed. Butane was used as the raw material, and the raw material gas composition was butane: nitrogen: water 1.0: 5.3: 3.2 (molar ratio). The WHSV was set to 1.0 h- 1 . Four hours after the start of the reaction, each product gas was collected and analyzed with a gas chromatograph (Agilent GC-6850, FID + TCD detector) to determine the butane conversion rate. As a result, the butane conversion rate was 43%. The ratio of the butane conversion rate in the dehydrogenation reaction test (2) to the butane conversion rate in the dehydrogenation reaction test (1) was 0.83.
  • Example A-2 A regeneration test and a dehydrogenation reaction test (2) were conducted in the same manner as in Example A-1, except that the regeneration temperature in the regeneration test was changed to 400 ° C.
  • the butane conversion rate in the dehydrogenation reaction test (2) was 52%, and the ratio to the butane conversion rate in the dehydrogenation reaction test (1) was 1.0.
  • Example a-1 A regeneration test and a dehydrogenation reaction test (2) were conducted in the same manner as in Example A-1, except that the regeneration temperature in the regeneration test was changed to 550 ° C.
  • the butane conversion rate in the dehydrogenation reaction test (2) was 26%, and the ratio to the butane conversion rate in the dehydrogenation reaction test (1) was 0.50.
  • Example a-2 A regeneration test and a dehydrogenation reaction test (2) were performed in the same manner as in Example A-1, except that the regeneration temperature in the regeneration test was changed to 500 ° C.
  • the butane conversion rate in the dehydrogenation reaction test (2) was 34%, and the ratio to the butane conversion rate in the dehydrogenation reaction test (1) was 0.65.
  • Example a-3 The regeneration test was performed in the same manner as in Example A-1 except that the regeneration temperature in the regeneration test was changed to 300 ° C., but the accumulation of coke was confirmed on the dehydrogenation catalyst, and the coke could not be removed sufficiently. .
  • Example B-1 ⁇ Preparation of dehydrogenation catalyst B-1>
  • Commercially available ⁇ - alumina Mozusawa Industrial Chemicals Ltd., Neobido GB-13
  • 10.0 g, sodium stannate (Showa Kako Ltd., Na 2 SnO 3 ⁇ 3H 2 O) was dissolved 1.65g of water about 50ml aqueous solution
  • an aqueous solution of tetraammineplatinum (II) nitrate (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., [Pt (NH 3 ) 4 ] (NO 3 ) 2 ) is used to impregnate and carry platinum so that the platinum carrying amount is about 1% by mass. And dried at 130 ° C. overnight and calcined at 550 ° C. for 3 hours to obtain a dehydrogenation catalyst B-1.
  • ⁇ Dehydrogenation test (1)> 1.0 g of dehydrogenation catalyst B-1 was charged into a flow reactor having an inner diameter of 10 mm ⁇ and subjected to hydrogen reduction at 550 ° C. for 3 hours. Then, butane was dehydrogenated at a reaction temperature of 550 ° C. and normal pressure. . Butane was used as the raw material, and the raw material gas composition was butane: nitrogen: water 1.0: 5.3: 3.2 (molar ratio). The WHSV was set to 1.0 h- 1 . Four hours after the start of the reaction, each product gas was collected and analyzed with a gas chromatograph (Agilent GC-6850, FID + TCD detector) to determine the butane conversion rate. As a result, the butane conversion rate was 59%.
  • Butane was used as the raw material, and the raw material gas composition was butane: nitrogen: water 1.0: 5.3: 3.2 (molar ratio).
  • each product gas was collected and analyzed with a gas chromatograph (Agilent GC-6850, FID + TCD detector) to determine the butane conversion rate. As a result, the butane conversion rate was 48%.
  • the ratio of the butane conversion rate in the dehydrogenation reaction test (2) to the butane conversion rate in the dehydrogenation reaction test (1) was 0.81.
  • Example C-1 ⁇ Preparation of dehydrogenation catalyst C-1> An alumina-magnesia carrier was prepared in the same manner as in Example A-1. Obtained alumina - magnesia carrier 3.0 g, was added an aqueous solution prepared by dissolving H 2 PtCl 6 ⁇ 2H 2 O of 79.6mg of water 16 mL. The obtained mixed solution was stirred at 40 ° C. and 0.015 MPaA for 30 minutes using a rotary evaporator, and stirred at 40 ° C. and normal pressure for 30 minutes. Thereafter, water was removed under reduced pressure while stirring the mixture. The resulting solid was dried in an oven at 130 ° C. overnight.
  • the dried solid was calcined at 550 ° C. for 3 hours under air flow.
  • a solution obtained by dissolving 0.311 g of SnCl 2 .2H 2 O in 20 mL of EtOH was added to the obtained solid.
  • the resulting mixture was stirred at 40 ° C. and normal pressure for 1 hour using a rotary evaporator, and then EtOH was removed under reduced pressure.
  • the resulting solid was dried in an oven at 130 ° C. overnight.
  • the dried solid was calcined at 550 ° C. for 3 hours under air flow. Further, hydrogen reduction was performed at 550 ° C. for 2 hours to obtain a dehydrogenation catalyst C-1.
  • ⁇ Dehydrogenation test (1)> 1.0 g of dehydrogenation catalyst C-1 was charged into a flow reactor having an inner diameter of 10 mm ⁇ , and after hydrogen reduction at 550 ° C. for 3 hours, butane was dehydrogenated at a reaction temperature of 550 ° C. and normal pressure. . Butane was used as the raw material, and the raw material gas composition was butane: nitrogen: water 1.0: 5.3: 3.2 (molar ratio). The WHSV was set to 1.0 h- 1 . Four hours after the start of the reaction, each product gas was collected and analyzed with a gas chromatograph (Agilent GC-6850, FID + TCD detector) to determine the butane conversion rate. As a result, the butane conversion rate was 60%.
  • ⁇ Dehydrogenation test (2)> 0.9g of the dehydrogenation catalyst C-1 after the regeneration test was taken, filled in a flow reactor with an inner diameter of 10mm ⁇ , hydrogen reduced at 550 ° C for 3 hours, and then butane dehydrated at a reaction temperature of 550 ° C and normal pressure An elementary reaction was performed. Butane was used as the raw material, and the raw material gas composition was butane: nitrogen: water 1.0: 5.3: 3.2 (molar ratio). The WHSV was set to 1.0 h- 1 . Four hours after the start of the reaction, each product gas was collected and analyzed with a gas chromatograph (Agilent GC-6850, FID + TCD detector) to determine the butane conversion rate. As a result, the butane conversion rate was 39%. The ratio of the butane conversion rate in the dehydrogenation reaction test (2) to the butane conversion rate in the dehydrogenation reaction test (1) was 0.65.
  • Example D-1 ⁇ Preparation of dehydrogenation catalyst D-1> An alumina-magnesia carrier was prepared in the same manner as in Example A-1. An aqueous solution prepared by dissolving 3.7 g of sodium stannate (Na 2 SnO 3 .3H 2 O) in about 100 ml of water was mixed with 10.0 g of the obtained alumina-magnesia support, and the mixture was mixed with an evaporator. Water was removed at 50 ° C. Then, it dried at 130 degreeC overnight and baked at 550 degreeC for 3 hours.
  • sodium stannate Na 2 SnO 3 .3H 2 O
  • the WHSV was set to 1.0 h- 1 .
  • coke deposited on the dehydrogenation catalyst can be efficiently removed while sufficiently maintaining the catalytic activity of the dehydrogenation catalyst. Further, according to the method for producing unsaturated hydrocarbon according to the present invention, the coke deposited on the dehydrogenation catalyst is efficiently removed while maintaining the catalytic activity of the dehydrogenation catalyst sufficiently, thereby improving the efficiency of the entire process. Can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

アルカン及びオレフィンからなる群より選択される少なくとも一種の炭化水素を含む原料ガスを、第14属金属元素及びPtを含む脱水素触媒に接触させて、オレフィン及び共役ジエンからなる群より選択される少なくとも一種の不飽和炭化水素を含む生成ガスを得る脱水素工程と、脱水素工程を経た脱水素触媒に、310~450℃の温度条件下で、分子状酸素を含む再生ガスを接触させる再生工程と、を備える、不飽和炭化水素の製造方法。

Description

不飽和炭化水素の製造方法及び脱水素触媒の再生方法
 本発明は、不飽和炭化水素の製造方法及び脱水素触媒の再生方法に関する。
 近年のアジアを中心としたモータリゼーションによって、ブタジエンをはじめとする共役ジエンは、合成ゴムの原料等として需要の増加が見込まれている。共役ジエンの製造方法としては、例えば、脱水素触媒を用いたn-ブタンの直接脱水素化反応により共役ジエンを製造する方法(特許文献1)やn-ブテンの酸化的脱水素化反応により共役ジエンを製造する方法(特許文献2~4)が知られている。
特開2014-205135号公報 特開昭57-140730号公報 特開昭60-1139号公報 特開2003-220335号公報
 不飽和炭化水素の需要増加に伴って、製造装置の要求特性、運転コスト、反応効率等の特色の異なる、多様な不飽和炭化水素の製造方法の開発が求められている。
 アルカン又はオレフィンの脱水素反応によって不飽和炭化水素を得る方法では、脱水素反応に用いた触媒上にコークが堆積し、徐々に反応効率が低下する。このコークを除去するために、定期的に焼成等によって触媒再生を行うが、再生後の触媒は触媒活性が著しく低下する場合があった。
 本発明は、脱水素触媒の触媒活性を十分に維持しつつ、脱水素触媒上に堆積したコークを効率良く除去することが可能な、脱水素触媒の再生方法を提供することを目的とする。また、本発明は、脱水素触媒の触媒活性を十分に維持しつつ、脱水素触媒上に堆積したコークを効率良く除去することによって、プロセス全体の効率化を実現することが可能な、不飽和炭化水素の製造方法を提供することを目的とする。
 本発明の一側面は、アルカン及びオレフィンからなる群より選択される少なくとも一種の炭化水素を含む原料ガスを、第14属金属元素及びPtを含む脱水素触媒に接触させて、オレフィン及び共役ジエンからなる群より選択される少なくとも一種の不飽和炭化水素を含む生成ガスを得る脱水素工程と、脱水素工程を経た脱水素触媒に、310~450℃の温度条件下で、分子状酸素を含む再生ガスを接触させる再生工程と、を備える、不飽和炭化水素の製造方法に関する。
 上記製造方法では、脱水素工程を経た脱水素触媒を特定の条件で再生することにより、脱水素触媒の触媒活性を十分に維持しつつ、脱水素触媒上に堆積したコークを効率良く除去することができる。すなわち、上記製造方法では、不飽和炭化水素を得つつ、高い触媒活性を有する脱水素触媒を回収できるため、プロセス全体の効率化を図ることができる。
 一態様において、脱水素触媒は、第14属金属元素としてSnを含んでいてよい。
 一態様において、脱水素触媒は、塩素原子を含まない金属源を用いて第14属金属元素及びPtを担体に担持させた触媒であってよい。
 一態様において、原料ガスは、炭素数2~10のアルカンを含んでいてよい。
 一態様において、原料ガスは、炭素数4~10のオレフィンを含んでいてよい。
 本発明の他の一側面は、炭化水素の脱水素反応に使用された、第14属金属元素及びPtを含む脱水素触媒を再生する方法であって、脱水素触媒に、310~450℃の温度条件下で、分子状酸素を含む再生ガスを接触させる再生工程を備える、脱水素触媒の再生方法に関する。
 上記再生方法によれば、脱水素触媒の触媒活性を十分に維持しつつ、脱水素触媒上に堆積したコークを効率良く除去することができる。
 本発明の更に他の一側面は、上記再生方法で再生された脱水素触媒を用いてアルカンの脱水素反応を行い、オレフィン及び共役ジエンからなる群より選択される少なくとも一種の不飽和炭化水素を得る工程を備える、不飽和炭化水素の製造方法に関する。
 本発明の更に他の一側面は、上記再生方法で再生された脱水素触媒を用いてオレフィンの脱水素反応を行い、共役ジエンを得る工程を備える、不飽和炭化水素の製造方法に関する。
 本発明によれば、脱水素触媒の触媒活性を十分に維持しつつ、脱水素触媒上に堆積したコークを効率良く除去することが可能な、脱水素触媒の再生方法が提供される。また、本発明によれば、脱水素触媒の触媒活性を十分に維持しつつ、脱水素触媒上に堆積したコークを効率良く除去することによって、プロセス全体の効率化を実現することが可能な、不飽和炭化水素の製造方法が提供される。
 以下、本発明の好適な一実施形態について説明する。
 本実施形態に係る脱水素触媒の製造方法は、アルカン及びオレフィンからなる群より選択される少なくとも一種の炭化水素を含む原料ガスを、第14属金属元素及びPtを含む脱水素触媒に接触させて、オレフィン及び共役ジエンからなる群より選択される少なくとも一種の不飽和炭化水素を含む生成ガスを得る脱水素工程と、脱水素工程を経た脱水素触媒に、310~450℃の温度条件下で、分子状酸素を含む再生ガスを接触させる再生工程と、を備える。
 本実施形態に係る製造方法では、脱水素工程において不飽和炭化水素を得つつ、再生工程において使用済みの脱水素触媒を効率良く再生することができる。再生工程で再生された脱水素触媒は、脱水素工程に再利用してよく、他の工程に利用してもよい。
 本実施形態において、原料ガスは、アルカン及びオレフィンからなる群より選択される少なくとも一種の炭化水素を含む。原料ガスがアルカンを含む場合、脱水素工程は、アルカンの脱水素反応により、オレフィン及び共役ジエンからなる群より選択される少なくとも一種の不飽和炭化水素を得る工程であってよい。また、原料ガスがオレフィンを含む場合、脱水素工程は、オレフィンの脱水素反応により、共役ジエンを得る工程であってよい。原料ガスは、アルカン及びオレフィンのうちいずれか一方を含むものであってよく、両方を含むものであってもよい。
 原料ガスに含まれる炭化水素の炭素数は、目的とする不飽和炭化水素の炭素数と同じであってよい。アルカンの炭素数は、2以上であればよく、例えば3以上であってよく、4以上であってもよい。また、アルカンの炭素数は、例えば10以下であってよく、6以下であってもよい。オレフィンの炭素数は、4以上であればよい。また、オレフィンの炭素数は、例えば10以下であってよく、6以下であってもよい。
 アルカンは、例えば、鎖状であってよく、環状であってもよい。鎖状アルカンとしては、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン等が挙げられる。より具体的には、直鎖状アルカンとしては、n-ブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン等が挙げられる。また、分岐状アルカンとしては、イソブタン、イソペンタン、2-メチルペンタン、3-メチルペンタン、2、3-ジメチルペンタン、イソヘプタン、イソオクタン、イソデカン等が挙げられる。環状アルカンとしては、例えば、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、メチルシクロヘキサン等が挙げられる。原料ガスは、アルカンを一種含むものであってよく、二種以上含むものであってもよい。
 オレフィンは、例えば、鎖状であってよく、環状であってもよい。鎖状のオレフィンは、例えば、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン及びデセンからなる群より選択される少なくとも一種であってよい。鎖状のオレフィンは、直鎖状であってもよいし、分岐状であってもよい。直鎖状のオレフィンは、例えば、n-ブテン、n-ペンテン、n-ヘキセン、n-ヘプテン、n-オクテン、n-ノネン及びn-デセンからなる群より選択される少なくとも一種であってよい。分岐状のオレフィンは、例えば、イソペンテン、2-メチルペンテン、3-メチルペンテン、2,3-ジメチルペンテン、イソヘプテン、イソオクテン、イソノネン及びイソデセンからなる群より選択される少なくとも一種であってよい。原料ガスは、上記オレフィンの一種を単独で含むものであってよく、二種以上を含むものであってもよい。
 原料ガスにおいて、炭化水素の分圧は1.0MPa以下としてよく、0.1MPa以下としてもよく、0.01MPa以下としてもよい。原料ガスの炭化水素分圧を小さくすることで炭化水素の転化率が一層向上しやすくなる。
 また、原料ガスにおける炭化水素の分圧は、原料流量に対する反応器サイズを小さくする観点から、0.001MPa以上とすることが好ましく、0.005MPa以上とすることがより好ましい。
 原料ガスは、窒素、アルゴン等の不活性ガスを更に含有していてもよい。また、原料ガスは、スチームを更に含有していてもよい。
 原料ガスがスチームを含有するとき、スチームの含有量は、炭化水素に対して1.0倍モル以上とすることが好ましく、1.5倍モル以上とすることがより好ましい。スチームを原料ガスに含有させることで、触媒の活性低下が抑制される場合がある。なお、スチームの含有量は、例えば、炭化水素に対して50倍モル以下であってよく、好ましくは10倍モル以下である。
 原料ガスは、上記以外に水素、酸素、一酸化炭素、炭酸ガス、ジエン類等の他の成分を更に含有していてもよい。
 本実施形態において、生成ガスは、オレフィン及び共役ジエンからなる群より選択される少なくとも一種の不飽和炭化水素を含む。オレフィン及び共役ジエンの炭素数は、いずれも原料ガス中の炭化水素の炭素数と同じであってよい。例えば、生成ガスに含まれるオレフィンの炭素数は、2以上であってよく、3以上であってもよく、4以上であってもよい。また、生成ガスに含まれるオレフィンの炭素数は、例えば10以下であってよく、6以下であってもよい。また、生成ガスに含まれる共役ジエンの炭素数は、例えば4~10であってよく、4~6であってもよい。
 オレフィンとしては、例えば、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン等が挙げられ、これらはいずれの異性体であってもよい。共役ジエンとしては、例えば、1,3-ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、1,3-ヘプタジエン、1,3-オクタジエン、1,3-ノナジエン、1,3-デカジエン等が挙げられる。生成ガスは、不飽和炭化水素を一種含むものであってよく、二種以上の不飽和炭化水素を含むものであってよい。例えば、生成ガスは、オレフィン及び共役ジエンを含むものであってよい。
 以下に、本実施形態における脱水素触媒について詳述する。
 脱水素触媒は、第14属金属元素及びPtを含む固体触媒である。脱水素触媒は、例えば、担体に、第14属金属元素及びPtを含む担持金属を担持させた触媒であってよい。
 担体は、無機酸化物担体であることが好ましい。無機酸化物担体としては、例えば、アルミナ、アルミナマグネシア、マグネシア、チタニア、シリカ、シリカアルミナ、シリカマグネシア、フェライト、スピネル型構造物(マグネシウムスピネル、鉄スピネル、亜鉛スピネル、マンガンスピネル)等の無機酸化物を含む担体が挙げられる。
 担体としては、アルミニウム(Al)を含む担体が好ましい。担体におけるAlの含有量は、担体の全質量基準で25質量%以上であってよく、50質量%以上であることが好ましい。
 担体は、スピネル型構造を有するスピネル型構造体、例えばマグネシウムスピネル(MgAl)であることが好ましい。これにより、担体の酸性度が小さくなり、炭素析出が抑制されるという効果が奏される。
 脱水素触媒には、第14族金属元素及びPtを含む担持金属が担持されている。第14族金属元素は、Ge、Sn及びPbからなる群より選択される少なくとも一種であってよく、Snであることが好ましい。
 脱水素触媒は、アルカンを原料とする脱水素反応の触媒として、好適に利用することができる。この脱水素反応では、アルカンから、オレフィン及び共役ジエンからなる群より選択される少なくとも1種の不飽和炭化水素が得られる。
 また、脱水素触媒は、オレフィンを原料とする脱水素反応の触媒としても好適に利用することができる。この脱水素反応では、オレフィンから共役ジエンが得られる。
 アルカンを原料とする脱水素反応用とする場合、脱水素触媒における第14属金属元素の担持量は、例えば、脱水素触媒の全質量基準で1質量%以上であってよく、1.3質量%以上であることが好ましく、9質量%以下であってよく、7質量%以下であることが好ましい。このような担持量とすることで、アルカンを原料とする脱水素反応における脱水素能が向上するとともに、該脱水素反応におけるコークの析出を抑制して触媒の長寿命化を図ることができる。
 オレフィンを原料とする脱水素反応用とする場合、脱水素触媒における第14属金属元素の担持量は、例えば、脱水素触媒の全質量基準で5質量%以上であってよく、7質量%以上であることが好ましく、25質量%以下であってよく、18質量%以下であることが好ましい。このような担持量とすることで、オレフィンを原料とする脱水素反応における脱水素能が向上するとともに、該脱水素反応におけるコークの析出を抑制して触媒の長寿命化を図ることができる。
 脱水素触媒におけるPtの担持量は、例えば、脱水素触媒の全質量基準で0.1質量%以上であってよく、0.5質量%以上であることが好ましい。これにより脱水素触媒の触媒活性が一層向上する。また、脱水素触媒におけるPtの担持量は、例えば、脱水素触媒の全質量基準で5質量%以下であってよく、2質量%以下であることが好ましい。これにより脱水素触媒においてPtの分散性が向上し、担持量当たりの活性が向上する傾向がある。
 なお、脱水素触媒における第14属金属元素及びPtの担持量は、高周波誘導結合プラズマ(ICP)を光源とする発光分光分析法により測定できる。測定では、試料溶液を霧状にしてArプラズマに導入し、励起された元素が基底状態に戻る際に放出される光を分光し、その波長から元素の定性を行い、その強度から元素の定量を行う。
 脱水素触媒では、第14属金属元素とPtとが相互作用していてよく、例えば合金を形成していてよい。これにより脱水素触媒の耐久性が向上する傾向がある。
 脱水素触媒は、上述のように、アルカンを原料とする脱水素反応用の触媒、又は、オレフィンを原料とする脱水素反応用の触媒として、好適に用いることができる。なお、脱水素触媒は、これら以外の用途に用いることもでき、例えば、アルコール、アルデヒド、ケトン、カルボン酸等の含酸素化合物の脱水素反応用の触媒、脱水素反応の逆反応である水素化反応用の触媒等として、用いることもできる。後述する再生工程で再生された脱水素触媒は、これらのいずれの反応に適用してもよい。
 脱水素触媒は、還元処理を施してから反応に使用してよい。還元処理は、例えば、還元ガス雰囲気下、40~600℃に脱水素触媒を保持することで行うことができる。保持時間は、例えば0.05~24時間であってよい。還元性ガスは、例えば、水素、一酸化炭素等であってよい。
 脱水素触媒は、成形性を向上させる観点から、成形助剤を更に含有していてもよい。成形助剤は、例えば、増粘剤、界面活性剤、保水材、可塑剤、バインダー原料等であってよい。
 脱水素触媒の形状は特に限定されず、例えば、ペレット状、顆粒状、ハニカム状、スポンジ状等の形状であってよい。
 脱水素触媒の製造方法に関し、担体へ担持金属を担持させる方法は特に限定されず、例えば、含浸法、沈着法、共沈法、混練法、イオン交換法、ポアフィリング法が挙げられる。
 本実施形態では、例えば、担体に第14属金属元素を担持させた後に、Ptを担持させてよい。また、担体にPtを担持させた後に、第14属金属元素を担持させてもよい。また、担体に第14属金属元素とPtとを同時に担持させてもよい。
 担体に担持金属を担持させる方法として、例えば、担持金属を含む金属源を溶解させた溶液を準備し、担体にこの溶液を含浸させ、乾燥及び焼成することで、担体に第14属金属元素を担持させる方法が挙げられる。
 担持金属を含む金属源は、例えば、金属塩又は錯体であってよい。担持金属の金属塩は、例えば、無機塩、有機酸塩又はこれらの水和物であってよい。無機塩は、例えば、硫酸塩、硝酸塩、塩化物、リン酸塩、炭酸塩等であってよい。有機酸塩は、例えば、酢酸塩、しゅう酸塩等であってよい。また、担持金属の錯体は、例えば、アルコキシド錯体、アンミン錯体等であってよい。
 金属源としては、塩素原子を含まない金属源が好適に用いられる。塩素原子を含まない金属源を用いて第14属金属元素及びPtを担体に担持させた脱水素触媒は、再生工程における触媒活性の低下がより顕著に抑制される傾向がある。
 例えば、塩素原子を含まず、第14属金属元素を含む金属源としては、スズ酸ナトリウム、スズ酸カリウム、硫酸スズ、酸化スズ、シュウ酸スズ、酢酸スズ、メタ錫酸、塩化スズ等が挙げられる。
 また、塩素原子を含まず、Ptを含む金属源としては、例えば、テトラアンミン白金(II)酸、テトラアンミン白金(II)酸塩(例えば、硝酸塩等)、テトラアンミン白金(II)酸水酸化物溶液、ジニトロジアンミン白金(II)硝酸溶液、ヘキサヒドロキソ白金(IV)酸硝酸溶液、ヘキサヒドロキソ白金(IV)酸エタノールアミン溶液等が挙げられる。
 次いで、本実施形態における脱水素工程について詳述する。
 脱水素工程は、原料ガスを脱水素触媒に接触させて炭化水素の脱水素反応を行い、不飽和炭化水素を含む生成ガスを得る工程である。
 脱水素工程は、例えば、脱水素触媒を充填した反応器を用い、当該反応器に原料ガスを流通させることにより実施してよい。反応器としては、固体触媒による気相反応に用いられる種々の反応器を用いることができる。反応器としては、例えば、固定床型反応器、ラジアルフロー型反応器、管型反応器等が挙げられる。
 脱水素反応の反応形式は、例えば、固定床式、移動床式又は流動床式であってよい。これらのうち、設備コストの観点からは固定床式が好ましい。
 脱水素反応の反応温度、すなわち反応器内の温度は、反応効率の観点から300~800℃であってよく、500~700℃であってよい。反応温度が500℃以上であれば、不飽和炭化水素の生成量が一層多くなる傾向がある。反応温度が700℃以下であれば、高い活性がより長期にわたって維持される傾向がある。
 反応圧力、すなわち反応器内の気圧は0.01~1MPaであってよく、0.05~0.8MPaであってよく、0.1~0.5MPaであってよい。反応圧力が上記範囲にあると、脱水素反応がより進行し易くなり、一層優れた反応効率が得られる傾向がある。
 脱水素工程を、原料ガスを連続的に供給する連続式の反応形式で行う場合、重量空間速度(以下、「WHSV」という。)は、0.1h-1以上であってよく、1.0h-1以上であってもよく、100h-1以下であってよく、30h-1以下であってもよい。ここで、WHSVとは、連続式の反応装置における、脱水素触媒の質量Wに対する原料ガスの供給速度(供給量/時間)Fの比(F/W)である。なお、原料ガス及び触媒の使用量は、反応条件、触媒の活性等に応じて更に好ましい範囲を適宜選定してよく、WHSVは上記範囲に限定されるものではない。
 脱水素工程では、反応器に2種以上の触媒が充填されていてもよい。
 例えば、本実施形態では、反応器に、アルカンからオレフィンへの脱水素反応の触媒活性に優れる第一の脱水素触媒と、オレフィンから共役ジエンへの脱水素反応の触媒活性に優れる第二の脱水素触媒とが充填されていてよい。この態様では、原料ガスをアルカンを含むものとし、アルカンから効率良く共役ジエンを得ることができる。
 本実施形態では、第一の脱水素触媒及び第二の脱水素触媒の少なくとも一方が、上述した脱水素触媒であればよく、他方は他の脱水素触媒であってよい。他の脱水素触媒としては、例えば、貴金属触媒、Fe及びKを含有する触媒、Mo等を含有する触媒等が挙げられる。
 また、本実施形態では、第一の脱水素触媒及び第二の脱水素触媒の両方が上述した脱水素触媒であってもよい。このとき、第一の脱水素触媒及び第二の脱水素触媒のいずれか一方が後述の再生工程に供されてよく、両方が後述の再生工程に供されてもよい。
 次いで、本実施形態における再生工程について詳述する。
 再生工程では、脱水素工程で用いられた脱水素触媒に、310~450℃の温度条件下で、分子状酸素を含む再生ガスを接触させる工程である。
 再生ガスは、分子状酸素を含んでいればよく、例えば、酸素ガスと不活性ガス(例えば、窒素、ヘリウム、アルゴン等)との混合ガスであってよく、空気であってもよい。
 再生ガス中の分子状酸素の濃度は特に限定されないが、例えば0.05体積%以上であってよく、0.1体積%以上であってよく、0.5体積%以上であってもよい。再生ガス中の分子状酸素の濃度を高くすることで、触媒上のコーク燃焼に要する時間が短くなる傾向がある。また、再生ガス中の分子状酸素の濃度は、例えば20体積%以下であってよく、10体積%以下であってよく、5体積%以下であってもよい。
 再生時の温度条件は、好ましくは310℃以上であり、より好ましくは330℃以上である。また、再生時の温度条件は、好ましくは450℃以下であり、より好ましくは430℃以下である。
 再生工程に供される脱水素触媒には、コークが堆積されている。再生前のコークの堆積量は、例えば脱水素触媒100質量部に対して、0.1質量部以上であってよく、0.5質量部以上であってもよい。また、再生前のコークの堆積量は、例えば脱水素触媒100質量部に対して、20質量部以下であってよく、10質量部以下であってもよい。
 再生工程では、脱水素触媒上に堆積したコークが燃焼により除去される。再生後のコークの堆積量は、例えば脱水素触媒100質量部に対して、1.0質量部以下であることが好ましく、0.5質量部以下であることがより好ましく、0質量部であることが特に好ましい。
 再生後の脱水素触媒は、例えば、アルカンを原料とする脱水素反応用の触媒、又は、オレフィンを原料とする脱水素反応用の触媒として、好適に用いることができる。また、再生後の脱水素触媒は、例えば、アルコール、アルデヒド、ケトン、カルボン酸等の含酸素化合物の脱水素反応用の触媒、脱水素反応の逆反応である水素化反応用の触媒等としても用いることができる。
 再生後の脱水素触媒は、上述した脱水素工程に再利用されてよい。また、再生後の脱水素触媒は、上述した脱水素工程以外の工程に利用されてもよい。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記では、不飽和炭化水素の製造方法として本発明を説明したが、本発明はこれに限定されるものではない。
 本発明の一側面は、炭化水素の脱水素反応に使用された脱水素触媒を再生する再生方法であってよい。この再生方法は、上述した再生工程によって脱水素触媒を再生する方法であってよい。
 本発明の他の一側面は、上記再生方法で再生された脱水素触媒を用いてアルカンの脱水素反応を行い、オレフィン及び共役ジエンからなる群より選択される少なくとも一種の不飽和炭化水素を得る脱水素工程を備える、不飽和炭化水素の製造方法であってよい。この製造方法における脱水素工程は、脱水素触媒として再生後の脱水素触媒を用いること以外は、上述した脱水素工程と同様であってよい。
 本発明の更に他の一側面は、上記再生方法で再生された脱水素触媒を用いてオレフィンの脱水素反応を行い、共役ジエンを得る脱水素工程を備える、不飽和炭化水素の製造方法であってよい。この製造方法における脱水素工程は、脱水素触媒として再生後の脱水素触媒を用いること以外は、上述した脱水素工程と同様であってよい。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
(実施例A-1)
<脱水素触媒A-1の調製>
 市販のγ-アルミナ(水澤化学工業製、ネオビードGB-13)20.0gと、硝酸マグネシウム六水和物(和光純薬工業製、Mg(NO・6HO)25.1gを水(約150ml)に溶解した水溶液とを混合し、エバポレータにて約50℃で水を除去した。その後、130℃で一晩乾燥させ、550℃で3時間焼成を行い、続けて800℃で3時間焼成を行った。得られた焼成物と、硝酸マグネシウム六水和物(和光純薬工業製、Mg(NO・6HO)25.1gを水(約150ml)に溶解した水溶液とを混合し、エバポレータにて約50℃で水を除去した。その後、130℃で一晩乾燥させ、550℃で3時間焼成を行い、続けて800℃で3時間焼成を行った。これにより、スピネル型構造を有するアルミナ-マグネシア担体を得た。なお、得られたアルミナ-マグネシア担体は、X線回折測定により、2θ=36.9、44.8、59.4、65.3degにMgスピネルに由来する回折ピークが確認された。
 上記アルミナ-マグネシア担体10.0gに対し、ジニトロジアンミン白金(II)の硝酸溶液(田中貴金属工業製、[Pt(NH(NO]/HNO)を用いて、白金担持量が約1質量%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3時間焼成を行った。次いで、スズ酸ナトリウム(昭和化工製、NaSnO・3HO)0.62gを約30mlの水に溶解した水溶液と混合し、エバポレータにて約50℃で水を除去した。その後、130℃で一晩乾燥させ、550℃で3時間焼成を行い、脱水素触媒A-1を得た。
<脱水素反応試験(1)>
 1.0gの脱水素触媒A-1を内径10mmφの流通式リアクターに充填し、550℃にて3時間の水素還元した後、反応温度550℃、常圧にてブタンの脱水素反応を行った。原料にはブタンを用い、原料ガス組成はブタン:窒素:水=1.0:5.3:3.2(モル比)とした。WHSVは、1.0h-1とした。反応開始から4時間後に、それぞれ生成ガスを採取し、ガスクロマトグラフ(Agilent社GC-6850、FID+TCD検出器)にて分析し、ブタン転化率を求めた。その結果、ブタン転化率は52%であった。
<再生試験>
 1.0gの脱水素触媒A-1を内径10mmφの流通式リアクターに充填し、450℃にて40分間の水素還元した後、反応温度570℃、常圧にて1-ブテンを4.5g/h、窒素を20cc/minで30分間フィードした。その後、窒素に切り替えて450℃まで降温した後、空気と窒素の混合ガスを90分間流して再生を行った。この操作を5回繰り返した後の脱水素触媒A-1のコーク量を熱重量天秤にて測定した。なお、熱重量天秤で窒素下300℃、10分間保持した後、空気下で600℃に昇温して10分間保持した後の重量(W)に対する、空気下で減少した重量(w)の比率をコーク量(%)とした。再生後の脱水素触媒A-1のコーク量は0%であった。
<脱水素反応試験(2)>
 再生試験後の脱水素触媒A-1を0.9g取り、内径10mmφの流通式リアクターに充填し、550℃にて3時間の水素還元した後、反応温度550℃、常圧にてブタンの脱水素反応を行った。原料にはブタンを用い、原料ガス組成はブタン:窒素:水=1.0:5.3:3.2(モル比)とした。WHSVは、1.0h-1とした。反応開始から4時間後に、それぞれ生成ガスを採取し、ガスクロマトグラフ(Agilent社GC-6850、FID+TCD検出器)にて分析し、ブタン転化率を求めた。その結果、ブタン転化率は43%であった。また、脱水素反応試験(1)におけるブタン転化率に対する脱水素反応試験(2)におけるブタン転化率の比は、0.83であった。
(実施例A-2)
 再生試験における再生温度を400℃に変更したこと以外は、実施例A-1と同様にして、再生試験及び脱水素反応試験(2)を行った。脱水素反応試験(2)におけるブタン転化率は52%であり、脱水素反応試験(1)におけるブタン転化率に対する比は1.0であった。
(比較例a-1)
 再生試験における再生温度を550℃に変更したこと以外は、実施例A-1と同様にして、再生試験及び脱水素反応試験(2)を行った。脱水素反応試験(2)におけるブタン転化率は26%であり、脱水素反応試験(1)におけるブタン転化率に対する比は0.50であった。
(比較例a-2)
 再生試験における再生温度を500℃に変更したこと以外は、実施例A-1と同様にして、再生試験及び脱水素反応試験(2)を行った。脱水素反応試験(2)におけるブタン転化率は34%であり、脱水素反応試験(1)におけるブタン転化率に対する比は0.65であった。
(比較例a-3)
 再生試験における再生温度を300℃に変更したこと以外は実施例A-1と同様にして再生試験を行ったが、脱水素触媒上にコークの堆積が確認され、コークを十分に除去できなかった。
(実施例B-1)
<脱水素触媒B-1の調製>
 市販のγ-アルミナ(水澤化学工業製、ネオビードGB-13)10.0gと、スズ酸ナトリウム(昭和化工製、NaSnO・3HO)1.65gを約50mlの水に溶解した水溶液とを混合し、エバポレータにて約50℃で水を除去した。その後、130℃で一晩乾燥させ、550℃で3時間焼成を行った。次いで、テトラアンミン白金(II)硝酸塩の水溶液(田中貴金属工業製、[Pt(NH](NO)を用いて、白金担持量が約1質量%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3時間焼成を行い、脱水素触媒B-1を得た。
<脱水素反応試験(1)>
 1.0gの脱水素触媒B-1を内径10mmφの流通式リアクターに充填し、550℃にて3時間の水素還元した後、反応温度550℃、常圧にてブタンの脱水素反応を行った。原料にはブタンを用い、原料ガス組成はブタン:窒素:水=1.0:5.3:3.2(モル比)とした。WHSVは、1.0h-1とした。反応開始から4時間後に、それぞれ生成ガスを採取し、ガスクロマトグラフ(Agilent社GC-6850、FID+TCD検出器)にて分析し、ブタン転化率を求めた。その結果、ブタン転化率は59%であった。
<再生試験>
 1.0gの脱水素触媒B-1を内径10mmφの流通式リアクターに充填し、450℃にて40分間の水素還元した後、反応温度570℃、常圧にて1-ブテンを4.5g/h、窒素を20cc/minで30分間フィードした。その後、窒素に切り替えて400℃まで降温した後、空気と窒素の混合ガスを90分間流して再生を行った。この操作を5回繰り返した後の脱水素触媒B-1のコーク量を熱重量天秤にて測定したところ、コーク量は0%であった。
<脱水素反応試験(2)>
 再生試験後の脱水素触媒B-1を0.9g取り、内径10mmφの流通式リアクターに充填し、550℃にて3時間の水素還元した後、反応温度550℃、常圧にてブタンの脱水素反応を行った。原料にはブタンを用い、原料ガス組成はブタン:窒素:水=1.0:5.3:3.2(モル比)とした。WHSVは、1.0h-1とした。反応開始から4時間後に、それぞれ生成ガスを採取し、ガスクロマトグラフ(Agilent社GC-6850、FID+TCD検出器)にて分析し、ブタン転化率を求めた。その結果、ブタン転化率は48%であった。また、脱水素反応試験(1)におけるブタン転化率に対する脱水素反応試験(2)におけるブタン転化率の比は、0.81であった。
(実施例C-1)
<脱水素触媒C-1の調製>
 実施例A-1と同様にしてアルミナ-マグネシア担体を調製した。得られたアルミナ-マグネシア担体3.0gに、79.6mgのHPtCl・2HOを16mLの水に溶解させた水溶液を加えた。得られた混合液を、ロータリーエバポレーターを用いて、40℃、0.015MPaAで30分間撹拌し、40℃、常圧で30分間撹拌した。その後、混合液を撹拌しながら減圧下で水を除去した。得られた固体を130℃のオーブン中で一晩乾燥させた。次に、乾燥後の固体を、空気流通下、550℃で3時間焼成した。得られた固体に0.311gのSnCl・2HOを20mLのEtOHに溶解させた溶液を加えた。得られた混合液を、ロータリーエバポレーターを用いて、40℃、常圧で1時間撹拌し、その後減圧下でEtOHを除去した。得られた固体を130℃のオーブン中で一晩乾燥させた。次に、乾燥後の固体を、空気流通下、550℃で3時間焼成した。更に550℃で2時間の水素還元を行い、脱水素触媒C-1を得た。
<脱水素反応試験(1)>
 1.0gの脱水素触媒C-1を内径10mmφの流通式リアクターに充填し、550℃にて3時間の水素還元した後、反応温度550℃、常圧にてブタンの脱水素反応を行った。原料にはブタンを用い、原料ガス組成はブタン:窒素:水=1.0:5.3:3.2(モル比)とした。WHSVは、1.0h-1とした。反応開始から4時間後に、それぞれ生成ガスを採取し、ガスクロマトグラフ(Agilent社GC-6850、FID+TCD検出器)にて分析し、ブタン転化率を求めた。その結果、ブタン転化率は60%であった。
<再生試験>
 1.0gの脱水素触媒C-1を内径10mmφの流通式リアクターに充填し、450℃にて40分間の水素還元した後、反応温度570℃、常圧にて1-ブテンを4.5g/h、窒素を20cc/minで30分間フィードした。その後、窒素に切り替えて400℃まで降温した後、空気と窒素の混合ガスを90分間流して再生を行った。この操作を5回繰り返した後の脱水素触媒C-1のコーク量を熱重量天秤にて測定したところ、コーク量は0%であった。
<脱水素反応試験(2)>
 再生試験後の脱水素触媒C-1を0.9g取り、内径10mmφの流通式リアクターに充填し、550℃にて3時間の水素還元した後、反応温度550℃、常圧にてブタンの脱水素反応を行った。原料にはブタンを用い、原料ガス組成はブタン:窒素:水=1.0:5.3:3.2(モル比)とした。WHSVは、1.0h-1とした。反応開始から4時間後に、それぞれ生成ガスを採取し、ガスクロマトグラフ(Agilent社GC-6850、FID+TCD検出器)にて分析し、ブタン転化率を求めた。その結果、ブタン転化率は39%であった。また、脱水素反応試験(1)におけるブタン転化率に対する脱水素反応試験(2)におけるブタン転化率の比は、0.65であった。
(実施例D-1)
<脱水素触媒D-1の調製>
 実施例A-1と同様にしてアルミナ-マグネシア担体を調製した。得られたアルミナ-マグネシア担体10.0gに対し、スズ酸ナトリウム(昭和化工製、NaSnO・3HO)3.7gを約100mlの水に溶解した水溶液を混合し、エバポレータにて約50℃で水を除去した。その後、130℃で一晩乾燥させ、550℃で3時間焼成を行った。次いで、ジニトロジアンミン白金(II)の硝酸溶液(田中貴金属工業製、[Pt(NH(NO]/HNO)を用いて、白金担持量が約1質量%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3時間焼成を行い、脱水素触媒D-1を得た。
<脱水素反応試験(1)>
 1.0gの脱水素触媒D-1を内径10mmφの流通式リアクターに充填し、550℃にて3時間の水素還元した後、反応温度600℃、常圧にてブテンの脱水素反応を行った。原料には2-ブテン(trans-2-ブテンとcis-2-ブテンの混合物)を用い、原料ガス組成は2-ブテン:窒素:水=1.0:5.3:3.2(モル比)とした。WHSVは、1.0h-1とした。反応開始から4時間後に、それぞれ生成ガスを採取し、ガスクロマトグラフ(Agilent社GC-6850、FID+TCD検出器)にて分析し、ブテン転化率を求めた。その結果、ブテン転化率は38%であった。
<再生試験>
 1.0gの脱水素触媒D-1を内径10mmφの流通式リアクターに充填し、450℃にて40分間の水素還元した後、反応温度600℃、常圧にて1-ブテンを4.5g/hで60分間フィードした。その後、窒素に切り替えて400℃まで降温した後、空気と窒素の混合ガスを90分間流して再生を行った。この操作を5回繰り返した後の脱水素触媒D-1のコーク量を熱重量天秤にて測定したところ、コーク量は0%であった。
<脱水素反応試験(2)>
 再生試験後の脱水素触媒D-1を0.9g取り、内径10mmφの流通式リアクターに充填し、550℃にて3時間の水素還元した後、反応温度600℃、常圧にてブテンの脱水素反応を行った。原料には2-ブテン(trans-2-ブテンとcis-2-ブテンの混合物)を用い、原料ガス組成は2-ブテン:窒素:水=1.0:5.3:3.2(モル比)とした。WHSVは、1.0h-1とした。反応開始から4時間後に、それぞれ生成ガスを採取し、ガスクロマトグラフ(Agilent社GC-6850、FID+TCD検出器)にて分析し、ブテン転化率を求めた。その結果、ブタン転化率は38%であった。また、脱水素反応試験(1)におけるブタン転化率に対する脱水素反応試験(2)におけるブタン転化率の比は、1.0であった。
 本発明に係る脱水素触媒の再生方法によれば、脱水素触媒の触媒活性を十分に維持しつつ、脱水素触媒上に堆積したコークを効率良く除去することができる。また、本発明に係る不飽和炭化水素の製造方法によれば、脱水素触媒の触媒活性を十分に維持しつつ、脱水素触媒上に堆積したコークを効率良く除去することによって、プロセス全体の効率化を実現することができる。

Claims (8)

  1.  アルカン及びオレフィンからなる群より選択される少なくとも一種の炭化水素を含む原料ガスを、第14属金属元素及びPtを含む脱水素触媒に接触させて、オレフィン及び共役ジエンからなる群より選択される少なくとも一種の不飽和炭化水素を含む生成ガスを得る脱水素工程と、
     前記脱水素工程を経た前記脱水素触媒に、310~450℃の温度条件下で、分子状酸素を含む再生ガスを接触させる再生工程と、
    を備える、不飽和炭化水素の製造方法。
  2.  前記第14属金属元素がSnを含む、請求項1に記載の製造方法。
  3.  前記脱水素触媒が、塩素原子を含まない金属源を用いて前記第14属金属元素及びPtを担体に担持させた触媒である、請求項1又は2に記載の製造方法。
  4.  前記原料ガスが、炭素数2~10のアルカンを含む、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記原料ガスが、炭素数4~10のオレフィンを含む、請求項1~4のいずれか一項に記載の製造方法。
  6.  炭化水素の脱水素反応に使用された、第14属金属元素及びPtを含む脱水素触媒を再生する方法であって、
     前記脱水素触媒に、310~450℃の温度条件下で、分子状酸素を含む再生ガスを接触させる再生工程を備える、脱水素触媒の再生方法。
  7.  請求項6に記載の再生方法で再生された脱水素触媒を用いてアルカンの脱水素反応を行い、オレフィン及び共役ジエンからなる群より選択される少なくとも一種の不飽和炭化水素を得る工程を備える、不飽和炭化水素の製造方法。
  8.  請求項6に記載の再生方法で再生された脱水素触媒を用いてオレフィンの脱水素反応を行い、共役ジエンを得る工程を備える、不飽和炭化水素の製造方法。
PCT/JP2017/046968 2017-04-21 2017-12-27 不飽和炭化水素の製造方法及び脱水素触媒の再生方法 WO2018193668A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/606,018 US20200038852A1 (en) 2017-04-21 2017-12-27 Unsaturated hydrocarbon production method and dehydrogenation catalyst regeneration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084567 2017-04-21
JP2017084567A JP2018177750A (ja) 2017-04-21 2017-04-21 不飽和炭化水素の製造方法及び脱水素触媒の再生方法

Publications (1)

Publication Number Publication Date
WO2018193668A1 true WO2018193668A1 (ja) 2018-10-25

Family

ID=63856517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046968 WO2018193668A1 (ja) 2017-04-21 2017-12-27 不飽和炭化水素の製造方法及び脱水素触媒の再生方法

Country Status (3)

Country Link
US (1) US20200038852A1 (ja)
JP (1) JP2018177750A (ja)
WO (1) WO2018193668A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188602A1 (ja) * 2018-03-30 2019-10-03 Jxtgエネルギー株式会社 p-キシレンの製造方法
WO2019188605A1 (ja) * 2018-03-30 2019-10-03 Jxtgエネルギー株式会社 p-キシレンの製造方法
US20220274901A1 (en) * 2020-03-06 2022-09-01 Exxonmobil Chemical Patents Inc. Processes for Upgrading Alkanes and Alkyl Aromatic Hydrocarbons
US20220282165A1 (en) * 2020-03-06 2022-09-08 Exxonmobil Chemical Patents Inc. Processes for Upgrading Alkanes and Alkyl Aromatic Hydrocarbons
TWI780590B (zh) * 2020-03-06 2022-10-11 美商艾克頌美孚化學專利股份有限公司 將烷類及烷基芳族烴類升級之方法
US11760702B2 (en) * 2020-03-06 2023-09-19 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons
TWI836626B (zh) 2020-03-06 2024-03-21 美商艾克頌美孚化學專利股份有限公司 將烷類及烷基芳族烴類升級之方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620784B (zh) * 2021-07-26 2022-09-27 武汉工程大学 一种耦合烷烃脱氢和木质素基醚类加氢反应工艺
WO2024043330A1 (ja) * 2022-08-26 2024-02-29 花王株式会社 内部オレフィンの製造方法、及び触媒の活性を再生する方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300433A (ja) * 1994-04-28 1995-11-14 Inst Fr Petrole C4〜C5のn−パラフィンの脱水素異性化における触媒の使用法
JPH09313952A (ja) * 1996-05-22 1997-12-09 Mitsubishi Chem Corp 白金−スズ系触媒の再生方法
JP2000317310A (ja) * 1999-04-26 2000-11-21 Inst Fr Petrole 優れたアクセシビリティーを有する、第8、9または10族の元素を含む触媒、およびパラフィン脱水素方法におけるその使用
JP2001519771A (ja) * 1996-12-27 2001-10-23 ビーエーエスエフ アクチェンゲゼルシャフト 脱水素によるオレフィン、特にプロピレンの製造方法
JP2012527339A (ja) * 2009-05-20 2012-11-08 ビーエーエスエフ ソシエタス・ヨーロピア モノリス触媒とその使用方法
JP2014511258A (ja) * 2011-01-25 2014-05-15 ビーエーエスエフ ソシエタス・ヨーロピア 自熱式のプロパンの脱水素用であって、噴霧火炎合成により得られる触媒
WO2017179708A1 (ja) * 2016-04-15 2017-10-19 Jxtgエネルギー株式会社 脱水素触媒の製造方法、不飽和炭化水素の製造方法、及び共役ジエンの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725277Y1 (ja) * 1969-07-25 1972-08-07
US3692701A (en) * 1970-07-15 1972-09-19 Phillips Petroleum Co Group viii metals on tin-containing supports dehydrogenation catalysts
US4431750A (en) * 1982-05-19 1984-02-14 Phillips Petroleum Company Platinum group metal catalyst on the surface of a support and a process for preparing same
US4902849A (en) * 1989-02-06 1990-02-20 Phillips Petroleum Company Dehydrogenation process
US5219816A (en) * 1991-12-20 1993-06-15 Exxon Research & Engineering Company Dehydrogenation catalysts and process for preparing the catalysts
WO1993012879A1 (en) * 1991-12-20 1993-07-08 Exxon Research And Engineering Company Dehydrogenation catalysts and process for using same
NO179131C (no) * 1993-06-14 1996-08-14 Statoil As Katalysator, fremgangsmåte for dens fremstilling og fremgangsmåte for dehydrogenering av lette paraffiner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300433A (ja) * 1994-04-28 1995-11-14 Inst Fr Petrole C4〜C5のn−パラフィンの脱水素異性化における触媒の使用法
JPH09313952A (ja) * 1996-05-22 1997-12-09 Mitsubishi Chem Corp 白金−スズ系触媒の再生方法
JP2001519771A (ja) * 1996-12-27 2001-10-23 ビーエーエスエフ アクチェンゲゼルシャフト 脱水素によるオレフィン、特にプロピレンの製造方法
JP2000317310A (ja) * 1999-04-26 2000-11-21 Inst Fr Petrole 優れたアクセシビリティーを有する、第8、9または10族の元素を含む触媒、およびパラフィン脱水素方法におけるその使用
JP2012527339A (ja) * 2009-05-20 2012-11-08 ビーエーエスエフ ソシエタス・ヨーロピア モノリス触媒とその使用方法
JP2014511258A (ja) * 2011-01-25 2014-05-15 ビーエーエスエフ ソシエタス・ヨーロピア 自熱式のプロパンの脱水素用であって、噴霧火炎合成により得られる触媒
WO2017179708A1 (ja) * 2016-04-15 2017-10-19 Jxtgエネルギー株式会社 脱水素触媒の製造方法、不飽和炭化水素の製造方法、及び共役ジエンの製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188602A1 (ja) * 2018-03-30 2019-10-03 Jxtgエネルギー株式会社 p-キシレンの製造方法
WO2019188605A1 (ja) * 2018-03-30 2019-10-03 Jxtgエネルギー株式会社 p-キシレンの製造方法
US11208367B2 (en) 2018-03-30 2021-12-28 Eneos Corporation Production method for p-xylene
US20220274901A1 (en) * 2020-03-06 2022-09-01 Exxonmobil Chemical Patents Inc. Processes for Upgrading Alkanes and Alkyl Aromatic Hydrocarbons
US20220282165A1 (en) * 2020-03-06 2022-09-08 Exxonmobil Chemical Patents Inc. Processes for Upgrading Alkanes and Alkyl Aromatic Hydrocarbons
TWI780590B (zh) * 2020-03-06 2022-10-11 美商艾克頌美孚化學專利股份有限公司 將烷類及烷基芳族烴類升級之方法
US11680029B2 (en) * 2020-03-06 2023-06-20 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons
US11760702B2 (en) * 2020-03-06 2023-09-19 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons
US11760703B2 (en) 2020-03-06 2023-09-19 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons
US11859136B2 (en) 2020-03-06 2024-01-02 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons
TWI836626B (zh) 2020-03-06 2024-03-21 美商艾克頌美孚化學專利股份有限公司 將烷類及烷基芳族烴類升級之方法

Also Published As

Publication number Publication date
JP2018177750A (ja) 2018-11-15
US20200038852A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2018193668A1 (ja) 不飽和炭化水素の製造方法及び脱水素触媒の再生方法
US10786804B2 (en) Method for producing dehydrogenation catalyst, method for producing unsaturated hydrocarbon, and method for producing conjugated diene
EP2300157A2 (en) Catalyst for dehydrogenation of hydrocarbons
JP2000317310A (ja) 優れたアクセシビリティーを有する、第8、9または10族の元素を含む触媒、およびパラフィン脱水素方法におけるその使用
JP2017210461A (ja) 不飽和炭化水素の製造方法
EP3496850B1 (en) Catalytically active compositions of matter
WO2017159371A1 (ja) 共役ジエンの製造方法
WO2015152160A1 (ja) 不飽和炭化水素の製造方法
KR20200091014A (ko) 촉매 담체의 제조방법 및 탈수소 촉매
KR102478028B1 (ko) 원-폿으로 합성된 전이금속-귀금속 복합산화물 탈수소화 촉매 및 이의 용도
JP6300281B2 (ja) 共役ジエンの製造方法及び反応装置
KR101485697B1 (ko) 알칼리금속으로 개질된 노말-부탄의 탈수소화 및 탈수소 이성화 반응용 촉매 및 이를 이용하여 노말-부탄으로부터 노말-부텐 대 이소부텐 생성비가 조절된 노말-부텐, 1,3-부타디엔 및 이소부텐의 혼합물을 제조하는 방법
WO2017138667A1 (ja) 不飽和炭化水素の製造方法及び共役ジエンの製造方法
KR20120134191A (ko) 직접 탈수소화 반응용 지르코니아계 촉매, 이의 제조방법, 및 이를 이용한 부텐의 제조방법
JP7064897B2 (ja) 不飽和炭化水素の製造方法
JP7064896B2 (ja) 不飽和炭化水素の製造方法
CN114425372A (zh) 一种烷烃异构化催化剂及其制备方法
US10723674B2 (en) Unsaturated hydrocarbon production method and conjugated diene production method
JP2016183126A (ja) 共役ジエンの製造方法
EP3846935A1 (en) Vanadium oxide supported catalyst for alkane dehydrogenation
KR20210077020A (ko) 탈수소화 촉매
JP6883286B2 (ja) 不飽和炭化水素の製造方法
CN111569861B (zh) 一种将异构烷烃转化为正构烷烃的反应用催化剂及其制备方法
JP2018197215A (ja) 不飽和炭化水素の製造方法
Chatterjee et al. Porous Inorganic Nanomaterials as Heterogeneous Catalysts for the Dehydrogenation of Paraffin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906222

Country of ref document: EP

Kind code of ref document: A1