WO2018193578A1 - 飛行経路確定方法、情報処理装置、プログラム及び記録媒体 - Google Patents

飛行経路確定方法、情報処理装置、プログラム及び記録媒体 Download PDF

Info

Publication number
WO2018193578A1
WO2018193578A1 PCT/JP2017/015887 JP2017015887W WO2018193578A1 WO 2018193578 A1 WO2018193578 A1 WO 2018193578A1 JP 2017015887 W JP2017015887 W JP 2017015887W WO 2018193578 A1 WO2018193578 A1 WO 2018193578A1
Authority
WO
WIPO (PCT)
Prior art keywords
predetermined area
information
sub
flight path
information processing
Prior art date
Application number
PCT/JP2017/015887
Other languages
English (en)
French (fr)
Inventor
磊 顧
向偉 王
Original Assignee
エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスゼット ディージェイアイ テクノロジー カンパニー リミテッド filed Critical エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority to JP2019513160A priority Critical patent/JP6894970B2/ja
Priority to CN201780089470.1A priority patent/CN110622088B/zh
Priority to PCT/JP2017/015887 priority patent/WO2018193578A1/ja
Publication of WO2018193578A1 publication Critical patent/WO2018193578A1/ja
Priority to US16/657,569 priority patent/US11334095B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • G01M1/122Determining position of centre of gravity
    • G01M1/125Determining position of centre of gravity of aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0027Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the present disclosure relates to a flight path determination method, an information processing apparatus, and a method for automatically dividing a predetermined area into areas for each flying object when a plurality of flying objects are operated in a predetermined area and determining a flight path of each area,
  • the present invention relates to a program and a recording medium.
  • a flying object that performs various tasks such as performing aerial photography with an imaging device such as a camera or spraying water, agricultural chemicals, fertilizer, etc. in a predetermined area while flying on a predetermined fixed path for example, unmanned (Aircraft) is known (see, for example, Patent Document 1).
  • the flying object receives a command such as a flight route or work execution (for example, aerial photography or scattering) from the ground base, and flies according to the command to perform work.
  • a technique for generating a flight path of the unmanned air vehicle in advance is used.
  • the predetermined area is automatically divided into the flying areas where the respective flying objects work, the predetermined area is merely mechanically divided equally, and the attributes of the individual unmanned air vehicles are (E.g., starting position, work efficiency, remaining battery capacity, maximum flight distance, etc.) were not considered. For this reason, there has been a problem that work cannot be efficiently performed because a useless flight route is set or the work amount of each unmanned air vehicle is not properly distributed.
  • a flight path determination method for performing work on a predetermined area by a plurality of flying objects, the step of acquiring information on the predetermined area, the step of acquiring information on the plurality of flying bodies, The method includes a step of dividing a predetermined region into a plurality of sub-regions on which the plurality of flying objects respectively perform operations based on information on the plurality of flying vehicles, and a step of determining a flight path for each of the plurality of sub-regions.
  • the information on the plurality of flying objects includes information on the activation positions of the respective flying objects, and the step of dividing the predetermined area into the plurality of sub-areas starts work on the predetermined area based on the information on the activation positions for each flying object.
  • a step of determining the position and a step of dividing the predetermined region into a plurality of sub-regions based on the work start position of each flying object may be included.
  • the step of determining the work start position of the predetermined area based on the information on the start position is a step of determining, as the work start position, a position where a straight line connecting the start position and the center of gravity of the predetermined area intersects the outer periphery of the predetermined area; May be included.
  • the step of determining the work start position in the predetermined area based on the information on the start position may include the step of determining the position closest to the start position in the predetermined area as the work start position.
  • the step of determining the work start position of the predetermined area based on the information on the activation position is distributed radially from the activation position to the predetermined area when there are a plurality of flying objects whose activation positions are concentrated by a predetermined degree or more. Determining a position where a plurality of straight lines intersect the outer periphery of the predetermined area as a work start position of each flying object.
  • the information on the flying object further includes information on the working efficiency of the flying object, and the step of dividing the predetermined area into a plurality of sub-areas includes a plurality of areas so that the predetermined area has an area ratio corresponding to the working efficiency of each flying object. Dividing into sub-regions.
  • It may further include displaying at least one of the plurality of sub-regions after the predetermined region is divided into the plurality of sub-regions.
  • It may further include a step of displaying the flight path after the flight path is determined for each sub-region.
  • an information processing apparatus capable of communicating with a plurality of flying objects that divides a predetermined area and has a processing unit, the processing unit acquires information about the predetermined area, and information about the plurality of flying objects And the predetermined region is divided into a plurality of sub-regions on which the plurality of flying objects respectively perform operations, and the flight path is determined for each of the plurality of sub-regions.
  • the information on the plurality of flying objects includes information on the activation positions of the respective flying objects, and the processing unit determines a work start position in a predetermined area on the basis of the information on the activation positions for each flying object.
  • the predetermined area may be divided into a plurality of sub areas based on the work start position.
  • the processing unit may determine a position where a straight line connecting the starting position and the center of gravity of the predetermined area intersects the outer periphery of the predetermined area as the work start position.
  • the processing unit may determine the position closest to the activation position in the predetermined area as the work start position.
  • the processing unit takes each flight at a position where a plurality of straight lines distributed radially from the activation position to the predetermined area intersect the outer periphery of the predetermined area. You may decide as a work start position of a body.
  • the information on the flying object may further include information on the working efficiency of the flying object, and the processing unit may divide the predetermined area into a plurality of sub-regions so as to have an area ratio corresponding to the working efficiency of each flying object.
  • a display unit may be included, and the processing unit may display at least one of the plurality of sub-regions after the predetermined region is divided into the plurality of sub-regions.
  • a display unit may be included, and the processing unit may display the flight path after the flight path is determined for each sub-region.
  • the processing unit may transmit information relating to the flight path for performing the work to each of the plurality of flying objects after the flight path is determined for each sub-region.
  • an information processing apparatus capable of communicating with a plurality of flying objects that perform work on a predetermined area, a step of acquiring information about the predetermined area, a step of acquiring information about the plurality of flying objects, and a plurality of flights
  • a program for executing a step of dividing a predetermined region into a plurality of sub-regions in which a plurality of flying objects respectively perform work and a step of determining a flight path for each of the plurality of sub-regions based on information on the body.
  • an information processing device capable of communicating with a plurality of flying objects that perform work on a predetermined area, a step of acquiring information related to the predetermined area, a step of acquiring information related to the plurality of flying objects, and a plurality of flights
  • a program for executing a step of dividing a predetermined area into a plurality of sub-areas in which a plurality of flying objects respectively perform work and a step of determining a flight path for each of the plurality of sub-areas based on information on the body is stored.
  • a computer-readable storage medium capable of communicating with a plurality of flying objects that perform work on a predetermined area, a step of acquiring information related to the predetermined area, a step of acquiring information related to the plurality of flying objects, and a plurality of flights
  • the flight path determination method defines various processes (steps) in the information processing apparatus for determining the flight path of the flying object.
  • the flying object includes an aircraft (eg, drone, helicopter) that moves in the air.
  • the flying body may be an unmanned flying vehicle (UAV: Unmanned Aerial Vehicle), and flies along a flight path set in advance for performing aerial photography, water, fertilizer, pesticide spraying, and the like.
  • UAV Unmanned Aerial Vehicle
  • An information processing apparatus is a computer, and is connected to a transmitter and a transmitter for instructing remote control of various processes including, for example, movement of an unmanned air vehicle so that information and data can be input and output It is a PC, tablet, or the like that is connected to a terminal device or an unmanned air vehicle so that information and data can be input and output.
  • the unmanned air vehicle itself may be included as the information processing device.
  • the program according to the present disclosure is a program for causing the information processing apparatus to execute various processes (steps).
  • the recording medium stores a program (that is, a program for causing the information processing apparatus to execute various processes (steps)).
  • work is performed by dividing a predetermined area by a plurality of unmanned air vehicles.
  • an unmanned aerial vehicle including an imaging device performs aerial shooting work will be described as an example.
  • the present disclosure is not limited thereto, and any other work such as water or agricultural chemical spraying work is performed. May be the case.
  • the information processing apparatus can communicate with a plurality of flying objects, and can transmit information on divided areas and / or information on determined flight paths to corresponding flying objects.
  • “communication” is a broad concept including data communication in general, and includes not only a case where a wired connection is made by a cable or the like but also a case where a connection is made by wireless communication. Further, not only the case where the information processing apparatus directly communicates with the flying object but also the case where the information processing apparatus communicates indirectly via a transmitter or a storage medium is included.
  • FIG. 1 is a diagram illustrating a configuration example of a system for executing a flight path determination method according to the present disclosure.
  • the system 10 illustrated in FIG. 1 includes at least an unmanned air vehicle 100, a transmitter 50, and an information processing device 80.
  • the unmanned air vehicle 100 and the transmitter 50 can communicate information and data with each other by using wired communication or wireless communication (for example, wireless LAN (Local Area Network) or Bluetooth (registered trademark)).
  • the transmitter 50 as an example of the operation terminal is used in a state of being held by both hands of a person using the transmitter 50 (hereinafter referred to as “user”).
  • the transmitter 50 is provided with a stand for fixing the information processing apparatus 80 (for example, a smartphone).
  • the information processing apparatus 80 installed on the stand can be connected to the transmitter 50 via a USB cable (not shown) or the like.
  • information is first transmitted from the information processing device 80 to the transmitter 50, and then the transmitter 50 transmits the information to the unmanned air vehicle 100.
  • the information processing apparatus 80 is preferably a mobile terminal such as a smartphone or a tablet, but is not limited to this, and may be an apparatus having any arithmetic function such as a notebook PC or a desktop PC.
  • FIG. 2 is a diagram illustrating another configuration example of a system for executing the flight path determination method according to the present disclosure.
  • a system 10A shown in FIG. 2 includes an unmanned air vehicle 100 and an information processing apparatus 80A.
  • the information processing apparatus 80 ⁇ / b> A communicates with the unmanned air vehicle 100 without using the transmitter 50.
  • the information processing apparatus 80A and the unmanned air vehicle 100 directly perform wireless communication.
  • information is stored in a storage such as a flash memory in the information processing apparatus 80A, and data is transmitted by the flying object reading it.
  • the system for executing the flight path determination method according to the present disclosure is not limited to the configuration examples described in FIGS. 1 and 2.
  • the transmitter 50 can be the information processing apparatus 80, and in this case, the system can be configured only by the unmanned air vehicle 100 and the transmitter 50. Further, the unmanned air vehicle 100 itself can be used as the information processing device 80. In this case, the flight path determination method in the present disclosure can be executed only by the unmanned air vehicle 100.
  • the transmitter 50 can be the information processing apparatus 80, and in this case, the system can be configured only by the unmanned air vehicle 100 and the transmitter 50.
  • the unmanned air vehicle 100 itself can be used as the information processing device 80.
  • the flight path determination method in the present disclosure can be executed only by the unmanned air vehicle 100.
  • it demonstrates based on the structural example shown in FIG.
  • FIG. 3 is a diagram showing an example of the appearance of the unmanned air vehicle 100.
  • FIG. 4 is a diagram illustrating an example of a specific appearance of the unmanned air vehicle 100.
  • a side view when the unmanned air vehicle 100 flies in the moving direction STV0 is shown in FIG. 3, and a perspective view when the unmanned air vehicle 100 flies in the moving direction STV0 is shown in FIG.
  • the unmanned air vehicle 100 includes an imaging device 150, for example, and performs aerial photography.
  • the roll axis is defined in a direction parallel to the ground and along the moving direction STV0.
  • a pitch axis (see the y-axis in FIGS. 3 and 4) is defined in a direction parallel to the ground and perpendicular to the roll axis, and is further perpendicular to the ground and perpendicular to the roll axis and the pitch axis.
  • the yaw axis (z-axis in FIGS. 3 and 4) is defined.
  • the unmanned aerial vehicle 100 includes a gimbal 130, a rotary wing mechanism 140, and an imaging device 150.
  • the unmanned air vehicle 100 can move based on, for example, a remote control instruction transmitted from the transmitter 50.
  • the movement of the unmanned air vehicle 100 means a flight, and includes at least ascending, descending, left turning, right turning, left horizontal movement, and right horizontal movement.
  • the unmanned air vehicle 100 includes, for example, four rotary wing mechanisms 140.
  • the unmanned aerial vehicle 100 moves the unmanned aerial vehicle 100 by controlling the rotation of the rotary wing mechanism 140.
  • the number of rotor blades is not limited to four.
  • the unmanned air vehicle 100 may be a fixed wing aircraft that does not have rotating wings.
  • the imaging device 150 is a camera that images a subject (for example, the above-described ground shape of a building, a road, a park, etc.) included in a desired imaging range.
  • the imaging device 150 is attached to the gimbal 130, and the imaging range is adjusted by the movement of the gimbal 130.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the unmanned air vehicle 100.
  • the unmanned air vehicle 100 includes a UAV control unit 110, a memory 120, a gimbal 130, a rotary wing mechanism 140, an imaging device 150, a battery 160, a GPS receiver 170, a storage 180, and a communication interface 190. It is the composition which includes.
  • a container for storing water and agricultural chemicals and a spray nozzle may be included instead of the imaging device 150 or in addition to the imaging device 150.
  • the UAV control unit 110 is configured using, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor).
  • the UAV control unit 110 performs signal processing for overall control of operations of each unit of the unmanned air vehicle 100, data input / output processing with other units, data calculation processing, and data storage processing.
  • the UAV control unit 110 controls the flight of the unmanned air vehicle 100 according to the program stored in the memory 120 or the storage 180 and information on the flight path. Further, the UAV control unit 110 controls the movement (that is, the flight) of the unmanned air vehicle 100 in accordance with a command received from the remote transmitter 50 via the communication interface 190.
  • the memory 120 is, for example, a RAM (Random Access Memory) that temporarily stores various types of information and data used during processing by the UAV control unit 110.
  • the memory 120 may be provided inside the unmanned aerial vehicle 100 or may be detachable from the unmanned aerial vehicle 100.
  • the gimbal 130 supports the imaging device 150 rotatably around at least one axis.
  • the gimbal 130 may support the imaging device 150 rotatably about the yaw axis, the pitch axis, and the roll axis.
  • the gimbal 130 may change the imaging direction of the imaging device 150 by rotating the imaging device 150 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • the rotating blade mechanism 140 includes a plurality of rotating blades and a plurality of drive motors that rotate the plurality of rotating blades. By controlling the rotation of the rotor blades, an airflow in a specific direction is generated, and the flight (ascending, descending, horizontally moving, turning, tilting, etc.) of the unmanned air vehicle 100 is controlled.
  • the imaging device 150 captures a subject within a desired imaging range and generates captured image data.
  • the captured image may be a moving image or a still image.
  • Data obtained by imaging by the imaging device 150 is stored in the memory or the memory 120 of the imaging device 150, the storage 180, and the like.
  • the battery 160 has a function as a drive source of each part of the unmanned air vehicle 100 and supplies necessary power to each part of the unmanned air vehicle 100.
  • the GPS receiver 170 receives a plurality of signals indicating times and positions (coordinates) of each GPS satellite transmitted from a plurality of navigation satellites (that is, GPS satellites).
  • the GPS receiver 170 calculates the position of the GPS receiver 170 (that is, the position of the unmanned air vehicle 100) based on the plurality of received signals.
  • the GPS receiver 240 outputs the position information of the unmanned air vehicle 100 to the UAV control unit 110.
  • the calculation of the position information of the GPS receiver 170 may be performed by the UAV control unit 110 instead of the GPS receiver 170. In this case, the UAV control unit 110 receives information indicating the time and the position of each GPS satellite included in a plurality of signals received by the GPS receiver 170.
  • the storage 180 is a storage medium such as an HDD or a flash memory, and the UAV control unit 110 has a program and a program necessary for controlling the gimbal 130, the rotary blade mechanism 140, the imaging device 150, the battery 160, the GPS receiver 170, and the like. Information related to the flight path acquired from the information processing device 80 is stored.
  • the storage 180 may be removable from the unmanned air vehicle 100 or may be built in the unmanned air vehicle 100.
  • the communication interface 190 communicates with the transmitter 50 or the information processing apparatus 80.
  • the communication interface 190 receives various commands for the UAV control unit 110 from the remote transmitter 50.
  • the information processing apparatus 80 will be described.
  • the information processing device 80 is a smartphone attached to the transmitter 50 as shown in FIG. 1
  • the information processing device 80 is not limited to a smartphone, and for example, a tablet, a notebook PC, a desktop It may be a PC or the like.
  • the transmitter 50 and the unmanned air vehicle 100 itself may be the information processing device 80.
  • FIG. 6 is a block diagram illustrating an example of a hardware configuration of the information processing apparatus 80.
  • the information processing apparatus 80 includes a processing unit 81, a memory 82, a storage 83, a display unit 84, an operation unit 85, a wireless communication unit 86, and an interface unit 87.
  • the processing unit 81 is configured using a processor (for example, CPU, MPU, or DSP).
  • the processing unit 81 includes a memory 82, a storage 83, a display unit 84, an operation unit 85, a wireless communication unit 86, signal processing for controlling the interface unit 87, data input / output processing with each other unit, Arithmetic processing and data storage processing are performed.
  • the memory 82 is, for example, a RAM (Random Access Memory) that temporarily stores various types of information and data used during processing by the processing unit 81.
  • the memory 82 may be provided inside the information processing apparatus 80 or may be provided so as to be removable from the information processing apparatus 80.
  • the storage 83 is a storage medium such as a ROM (Read Only Memory), HDD, SSD, or USB memory in which various programs and setting value data are stored.
  • the storage 83 may be removable from the information processing apparatus 80 or may be built in the information processing apparatus 80.
  • the display unit 84 is provided to display information to the outside, and may be configured using, for example, a liquid crystal display (LCD) or a light emitting diode (LED).
  • LCD liquid crystal display
  • LED light emitting diode
  • the operation unit 85 is a keyboard, a mouse, a touch panel, or the like that accepts various inputs from the user.
  • a touch panel display can be configured by overlapping with the display which is the display unit 84.
  • the wireless communication unit 86 is, for example, an electromagnetic wave antenna or the like, and transmits / receives information to / from the outside through a wireless LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like.
  • the interface unit 87 is a USB port, for example, and is an interface for transmitting / receiving various data to / from the transmitter 50.
  • one work area is divided, and a plurality of unmanned air vehicles 100 perform work in each divided sub-area.
  • FIG. 7 is a flowchart showing the flight path determination method according to the present disclosure.
  • the information processing apparatus 80 acquires information related to a predetermined area to be worked (step S11).
  • the information regarding the predetermined area includes information indicating coordinates on the map of the predetermined area, and may include parameters of longitude and latitude, for example.
  • the information processing apparatus 80 may acquire information on the predetermined area from the wireless communication unit 86 or may receive input from the user from the operation unit 85. For example, the information processing device 80 displays a map on a touch panel display that functions as both the display unit 84 and the operation unit 85, and then relates to a predetermined area designated by a drag operation or a tap operation based on the displayed map. Information may be accepted.
  • the information processing apparatus 80 acquires information regarding a plurality of flying objects performing work (step S12).
  • the information on the flying object is information indicating the attribute of the unmanned flying object 100, and is, for example, any of the starting position of the unmanned flying object, the remaining battery level, the maximum flight distance, the flight speed, and the work efficiency (dispersion amount per unit time, etc.). One or more may be included.
  • the “starting position” is a position where the unmanned aerial vehicle 100 is waiting at the start of the operation of the flight path determination method according to the present disclosure.
  • the unmanned aerial vehicle 100 in the starting position is not necessarily in the off state, and may be in any other state such as hovering.
  • the unmanned air vehicle 100 stands by at the base, it is the position where the base exists.
  • the information processing apparatus 80 may acquire information on the flying object from each unmanned flying object 100 via the wireless communication unit 86, or may accept input from the user via the operation unit 85. . Further, when a plurality of flying objects are managed by a single management server, the information may be acquired from the server.
  • the information processing apparatus 80 is not limited to the above-described order, and may simultaneously acquire information related to a predetermined area and information related to a flying object (that is, execute steps S11 and S12 at the same time). May be acquired (that is, step S12 is executed first and then step S11 is executed).
  • the information processing apparatus 80 divides the predetermined area into a plurality of sub-areas on which the plurality of flying objects respectively perform work based on the acquired information on the plurality of flying objects (Step S13). Specifically, it may be divided so that the total load of a plurality of unmanned air vehicles becomes the smallest.
  • division method examples include, but are not limited to, division using a region growing method (Region Growing) or a K-means method (K-Means). Specific steps for dividing by the region expansion method will be described later.
  • the information processing apparatus 80 may display each divided sub area on the display unit 84 after dividing the predetermined area into a plurality of sub areas. For example, different sub-regions may be displayed using different colors or different codes.
  • the user may input conditions for determining the flight path after confirming the divided sub-regions. For example, the user may select a route that flies in the shortest distance, a route that flies in the shortest time, or a route that can save the most power.
  • the information processing device 80 determines the flight path for each divided sub-region (step S14).
  • the flight path is expressed by a set of waypoints indicating a work start position, a work end position, and a plurality of passing positions.
  • the flight path according to the condition is determined. Any specific algorithm may be used as a specific method for determining the flight path.
  • the information processing apparatus 80 may display the determined flight path on each sub-region on the display unit 84 after determining the flight path.
  • the information processing apparatus 80 may transmit information on the corresponding flight path to each unmanned air vehicle after determining the sub-regions and the flight paths on which the plurality of unmanned air vehicles 100 are working.
  • Information on the flight path may be transmitted directly to the unmanned air vehicle 100 by the information processing device 80 by a wireless or wired communication method, or after being transmitted to the transmitter 50 via the interface unit 87, the transmitter 50 transmits it.
  • the unmanned air vehicle 100 may be transmitted.
  • the information processing apparatus 80 may record the data in a storage medium such as a memory card, and transmit the storage medium by any other method such as inserting the storage medium into the unmanned air vehicle 100 and reading it.
  • the plurality of unmanned air vehicles 100 After the plurality of unmanned air vehicles 100 receive the flight paths, they work while flying along the respective flight paths.
  • the information processing apparatus 80 divides a predetermined area into a plurality of sub-areas by the area expansion method (Region Growing) when the information on the flying object includes information on the activation position will be described.
  • FIG. 8 is a diagram showing an example of the activation positions of a plurality of unmanned air vehicles and a predetermined area where work is performed. As shown in FIG. 8, the case where two unmanned air vehicles D1 and D2 waiting at different starting positions divide the area A and perform their respective operations will be described as an example. However, in the present disclosure, the shape of the region A is not limited to that illustrated in FIG. 8 and may be any other shape. Also, the work to be performed may be aerial photography, spraying of agricultural chemicals and water, and any other work.
  • the information processing apparatus 80 first determines a position (hereinafter, referred to as “work start position”) at which work is started in a fixed region based on information related to the starting position of the flying object. That is, the unmanned aerial vehicle 100 first moves from the starting position toward a predetermined area, and starts work after reaching the work start position in the predetermined area.
  • work start position a position at which work is started in a fixed region based on information related to the starting position of the flying object. That is, the unmanned aerial vehicle 100 first moves from the starting position toward a predetermined area, and starts work after reaching the work start position in the predetermined area.
  • the information processing device 80 calculates the center of gravity G of the area A by a conventional method, and a straight line connecting the activation positions of the unmanned air vehicles D1 and D2 and the center of gravity G of the predetermined area A Positions P1 and P2 that intersect the outer periphery of A may be set as work start positions in the area A. Thereby, the load until the unmanned air vehicle reaches the work start position can be reduced.
  • the method for determining the work start position is not limited to this, and for example, a position in the region A closest to the activation position may be set as the work start position.
  • the information processing apparatus 80 divides the area A into a plurality of sub-areas based on the work start positions P1 and P2.
  • specific steps of division will be described with reference to FIGS. 10A to 10G.
  • the information processing apparatus 80 divides the area A into blocks of a predetermined size.
  • the information processing apparatus 80 unitizes the area A into square blocks, but may actually be other shapes such as a rectangle or a polygon.
  • the size of the block is, for example, 1 m ⁇ 1 m, but other sizes may be set.
  • the block size is large, the load on the arithmetic processing of the information processing apparatus 80 is reduced, but the accuracy of division is rough.
  • the block size is small, the accuracy of division increases, but the load on the arithmetic processing of the information processing apparatus 80 increases.
  • it may be set flexibly based on the accuracy of operation of the unmanned air vehicle and the area that can be processed by one operation (for example, the angle of view of the camera or the range of scattering).
  • the information processing apparatus 80 marks a block to which the work start position P1 belongs as an area of the unmanned air vehicle D1, and marks a block to which the work start position P2 belongs as an area of the unmanned air vehicle D2. .
  • blocks that have already been marked as an unmanned air vehicle D1 area are marked with “ ⁇ ” before performing the described steps, and are already marked as an unmanned air vehicle D2 area. Blocks that are present are indicated by “ ⁇ ”.
  • a block marked as an unmanned air vehicle D1 area when performing the described steps is indicated as “ ⁇ ”
  • a block marked as an unmanned air vehicle D2 area is indicated as “ ⁇ ”.
  • the information processing apparatus 80 has already unmanned from among unmarked blocks adjacent to the block (see “ ⁇ ”) already selected as the area of the unmanned air vehicle D1.
  • a part of the adjacent block may be interrupted because it is in the vicinity of the boundary line of the region A. However, when the interrupted area exceeds a certain threshold (for example, 3 minutes of the block area). If one or more of the above are interrupted), the block may be discarded (that is, may be removed from the mark candidates).
  • the truncation of the block can be performed in the same manner in the steps described later, but redundant explanation is omitted for the sake of convenience.
  • the information processing apparatus 80 has already unmanned from among unmarked blocks adjacent to the block (see “ ⁇ ”) already selected as the area of the unmanned air vehicle D2.
  • a block having the highest load (for example, the farthest distance) to be moved with respect to an area composed of a set of blocks (see “ ⁇ ”) marked as an area of the flying object D1 is marked as an area of the unmanned flying object D2. (See “ ⁇ ”).
  • the information processing device 80 selects an unmarked block adjacent to an area formed by a set of blocks (see “ ⁇ ”) already selected as the area of the unmanned air vehicle D1. From among the unmanned aerial vehicle D1, the block having the highest load (for example, the farthest distance) moving to the region consisting of the set of blocks (see “ ⁇ ”) that have already been marked as the unmanned air vehicle D2 region. Mark as an area (see “ ⁇ ”).
  • the information processing apparatus 80 is configured to display an unmarked block adjacent to an area composed of a set of blocks (see “ ⁇ ”) already selected as the area of the unmanned air vehicle D2. From among the unmanned aerial vehicle D2, the block having the highest load (for example, the farthest distance) moving to the region consisting of a set of blocks (see “ ⁇ ”) already marked as the unmanned air vehicle D1 region. Marked as an area (see “ ⁇ ”).
  • the information processing apparatus 80 sequentially marks the unmarked blocks by repeatedly performing the above steps.
  • all blocks can be assigned to either the unmanned air vehicle D1 or the unmanned air vehicle D2.
  • the area A is divided into a sub-area A1 for the unmanned air vehicle D1 to work and a sub-area A2 for the unmanned air vehicle D2 to work. Can be divided.
  • the information processing apparatus 80 After the work area is divided, the information processing apparatus 80, as shown in FIG. 11, the flight path R1 for the unmanned air vehicle D1 to work in the sub-area A1, and the unmanned air vehicle D2 in the sub-area A2.
  • Each flight route R2 for work is determined.
  • the flight paths preferably start from work start positions P1 and P2, respectively. Any conventional technique may be used for route determination in the sub-region, and a specific description is omitted here.
  • the region A is divided into the sub region A1 and the sub region A2. By doing so, the load can be kept to a minimum in consideration of the work start positions P1 and P2, which contributes to the efficiency of work.
  • the unmanned air vehicle D2 is selected from among the unmarked blocks adjacent to the block already selected as the area of the unmanned air vehicle D1.
  • the sum of the load moving with respect to the area consisting of the set of blocks marked as the area and the load moving with respect to the area consisting of the set of blocks marked as the area of the unmanned air vehicle D3 is the highest (for example, distance The most distant block is marked as the area of the unmanned air vehicle D1.
  • a block having the highest total load (for example, the farthest distance) moving to an area composed of a set of blocks marked as an area of the load and the unmanned air vehicle D3 is marked as an area of the unmanned air vehicle D2.
  • the information processing apparatus 80 can assign all the blocks to any one of the unmanned air vehicles D1, D2, and D3 by repeatedly performing the above steps. Thereby, the area A can be divided into three sub-areas. In addition, the same processing can be applied to the case where the present embodiment is operated by a larger number of unmanned air vehicles.
  • Example 2 In the first embodiment, the case where the work is performed by two unmanned air vehicles having different starting positions has been described. However, when there are a plurality of flying bodies in which the activation positions are concentrated at a predetermined level or more, such as when a plurality of unmanned aircrafts are waiting on the same base, as described in the first embodiment, the activation positions and the predetermined areas When the position where the straight line connecting the center of gravity G of A intersects the outer periphery of the area A is set as the work start position, or the position in the area A closest to the start position is set as the work start position, the work start positions of a plurality of unmanned air vehicles Approaches, which is not preferable in terms of work efficiency. Therefore, in the second embodiment, a modified example in the case where there are a plurality of flying objects whose activation positions are concentrated at a predetermined level or more will be described.
  • the starting position of the unmanned air vehicle D1 is at the upper left of the area A, and the three unmanned air vehicles D2, D3, and D4 are all located at the lower right of the area A. Waiting.
  • the information processing apparatus 80 determines whether or not there are a plurality of flying objects whose activation positions are concentrated at a predetermined level or more. At this time, it is preferable to consider the area of the region A. For example, when the area of the area A is 40,000 square meters or more, if three unmanned air vehicles D2, D3, and D4 are included in the range of 100 square meters, it is determined that they are in the same base.
  • the information processing apparatus 80 sets the positions where a plurality of straight lines distributed radially from the activation position to the area A intersect the outer periphery of the area A. Confirmed as the work start position of the flying object.
  • L3 and L4 be two straight lines that divide the angle formed by the cut lines L1 and L2 from the base into the region A into three equal parts.
  • the position where the straight line that bisects the angle ⁇ 1 formed by L1 and L4 intersects the outer periphery of the region A is the work start position P2 of the unmanned air vehicle D2, and the angle ⁇ 2 formed by L4 and L3 is the second
  • the position at which the straight line to be divided intersects with the outer periphery of the region A is defined as a work start position P3 of the unmanned air vehicle D3, and the position at which the straight line that bisects the angle ⁇ 3 formed by L3 and L1 intersects with the outer periphery of the region A It may be the work start position P4 of D4.
  • the unmanned air vehicle D1 there is no other unmanned air vehicle in the vicinity thereof, so that the straight line connecting the starting position P1 and the center of gravity G of the predetermined area A intersects the outer periphery of the area A, as in the first embodiment.
  • P1 be the work start position.
  • a position in the region A that is closest to the activation position may be set as the work start position.
  • the information processing apparatus 80 After the respective work start positions P1, P2, P3, and P4 of the unmanned air vehicles D1, D2, D3, and D4 are determined, the information processing apparatus 80 performs the same steps as in the first embodiment as illustrated in FIG. Region A can be divided into four sub-regions A1, A2, A3, A4 where each unmanned air vehicle D1, D2, D3, D4 works.
  • the information processing apparatus 80 After being divided into four sub-regions A1, A2, A3, A4, the information processing apparatus 80, as shown in FIG. 14, the flight path R1 for the unmanned air vehicle D1 to work in the sub-region A1, A flight path R2 for the unmanned air vehicle D2 to work in the sub-region A2, a flight path R3 for the unmanned air vehicle D3 to work in the sub-region A3, and an unmanned air vehicle D4 to work in the sub-region A4 Each flight path R4 is determined.
  • the flight path preferably starts from each work start position P1, P2, P3, P4. Any conventional technique may be used for route determination in the sub-region, and a specific description is omitted here.
  • the activation positions of these flying objects overlap or It can be prevented from approaching and more efficient work can be expected.
  • Example 3 In the above two embodiments, a case has been described in which all of the plurality of unmanned air vehicles have the same performance. However, it is also conceivable to work using a plurality of unmanned air vehicles having different performances. Therefore, in the third embodiment, the area A is divided into a plurality of sub-areas so as to have an area ratio corresponding to the working efficiency of each flying object.
  • This embodiment is different from the first embodiment in that the unmanned air vehicle D has a work efficiency twice that of the unmanned air vehicle D2.
  • the unmanned air vehicle D1 moves at a speed of 30 km / h
  • the unmanned air vehicle D2 moves at a speed of 60 km / h.
  • the work efficiency is not limited to the speed of movement, and may be an index that reflects any efficiency such as the amount of application per unit time.
  • the information processing apparatus 80 determines the work start position by the same method as in the first embodiment. Thereafter, as shown in FIG. 15A, the area A is unitized into blocks of a predetermined size, and the block to which the work start position P1 belongs is marked as the area of the unmanned air vehicle D1 (see “ ⁇ ”). A load that moves with respect to a block (see “ ⁇ ”) selected as the area of the unmanned air vehicle D1 from among the blocks to which the work start position P2 belongs as the area of D2 and the blocks adjacent to the blocks that belong to the work start position P2. Is marked as the area of the unmanned air vehicle D2 (see “ ⁇ ”).
  • the information processing apparatus 80 has already unmanned from among unmarked blocks adjacent to the block that has already been selected as the area of the unmanned air vehicle D1 (see “ ⁇ ”). Mark the block that has the highest load (for example, the farthest distance) to the block marked as the area of the flying object D2 (see “ ⁇ ”) as the area of the unmanned flying object D1 (“ ⁇ ” reference).
  • the information processing apparatus 80 has already unmanned from among unmarked blocks adjacent to the block (see “ ⁇ ”) already selected as the area of the unmanned air vehicle D2.
  • Two blocks with the highest load (for example, the farthest distance) that move with respect to an area composed of a set of blocks (see “ ⁇ ”) marked as the area of the flying object D1 are set as the area of the unmanned flying object D2. Mark (see “ ⁇ ”).
  • the information processing apparatus 80 is configured to display an unmarked block adjacent to an area composed of a set of blocks (see “ ⁇ ”) already selected as the area of the unmanned air vehicle D1. From among the unmanned aerial vehicle D1, the block having the highest load (for example, the farthest distance) moving to the region consisting of the set of blocks (see “ ⁇ ”) that have already been marked as the unmanned air vehicle D2 region. Mark as an area (see “ ⁇ ”).
  • the information processing device 80 selects an unmarked block adjacent to an area including a set of blocks (see “ ⁇ ”) that are already selected as the area of the unmanned air vehicle D2.
  • Unmanned flight of two blocks with the highest load moving from the inside to an area consisting of a set of blocks (see “ ⁇ ”) already marked as the area of the unmanned air vehicle D1 Mark as an area of the body D2 (see “ ⁇ ”).
  • the information processing apparatus 80 repeats the above steps to sequentially mark the unmarked blocks.
  • all the blocks are unmanned flying bodies D1 and unmanned flying bodies. Can be assigned to any of D2.
  • every time one block is marked as the area of the unmanned air vehicle D1 two blocks are marked as the area of the unmanned air vehicle D2. Therefore, the number of blocks allocated to the unmanned air vehicle D2 is set to the unmanned air vehicle D1. This is twice the number of allocated blocks.
  • the information processing apparatus 80 as shown in FIG. 15G, the sub-area A1 and the unmanned air vehicle D2 for performing the work on the area A in the unmanned air vehicle D1. Can be divided into sub-regions A2. At this time, the area of the sub-region A2 is twice the area of the sub-region A1.
  • the information processing apparatus 80 After the work area is divided, the information processing apparatus 80, as shown in FIG. 16, the flight path R1 for the unmanned air vehicle D1 to work in the sub area A1 and the unmanned air vehicle D2 in the sub area A2.
  • Each flight route R2 for work is determined.
  • the flight paths preferably start from work start positions P1 and P2, respectively. Any conventional technique may be used for route determination in the sub-region, and a specific description is omitted here.
  • the unmanned air vehicle D1 and the unmanned air vehicle D2 are assigned sub-regions having an area corresponding to the work efficiency ratio, and the unmanned air vehicle with high work efficiency can perform a lot of work. Can be optimized.
  • the process executed by the information processing apparatus may be executed by another information processing apparatus such as a smartphone or a tablet, or may be executed by the unmanned air vehicle 100 itself.
  • the process (step) in the flight path determination method may be formed by a program, and may be realized by the information processing apparatus 80 executing this.
  • the program in which the process (step) in the flight route determination method is formed may be stored in the memory 64 or storage of the information processing apparatus 80.
  • the work area is rationally divided based on the individual attributes of the plurality of flying objects, so that only the burden on the user is reduced. In addition, work efficiency can be improved.
  • the flight path determination method it is possible to determine a flight path suitable for the flying body that performs the work for each divided work area, and to flexibly The flight path can be set.
  • Information processing device 81 Processing unit 84 Display unit 100 Unmanned air vehicle 110 UAV control unit 130 Gimbal 140 Rotary wing mechanism 150 Imaging device

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

本開示は、所定領域に対して複数の飛行体により作業を行わせるための飛行経路確定方法に関し、当該方法は所定領域に関する情報を取得するステップと、複数の飛行体に関する情報を取得するステップと、複数の飛行体に関する情報に基づいて所定領域を複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割するステップと、複数のサブ領域ごとに飛行経路を確定するステップとを含む。飛行体の所在する位置・飛行体の特性などの情報に基づいて合理的に作業領域を分割してから、分割されたサブ領域ごとに飛行経路を確定することにより、作業の効率化を図る。

Description

飛行経路確定方法、情報処理装置、プログラム及び記録媒体
 本開示は、複数の飛行体を所定領域内で作業するときに自動的に所定領域を飛行体ごとの領域に分割し、それぞれの領域の飛行経路を確定する飛行経路確定方法、情報処理装置、プログラム及び記録媒体に関する。
 予め設定された固定経路を飛行しながら、所定領域において、カメラ等の撮像装置により空撮を行ったり、水や農薬、肥料等を散布したりするなどの様々な作業を行う飛行体(例えば無人飛行体)が知られている(例えば特許文献1参照)。この飛行体は、地上基地から飛行経路や作業実行(例えば空撮または散布)等の命令を受け、その命令に従って飛行し、作業を行う。
 また、無人飛行体による作業を自動化するために、予め無人飛行体の飛行経路を生成する技術が用いられる。無人飛行体を用いて所定領域内の作業を行う場合は、予め生成した飛行経路に従って無人飛行体を飛行させ、無人飛行体が飛行経路中の異なる位置において作業を行う必要がある。
日本国特開2010-61216号公報
 作業の効率を高めるために、複数の無人飛行体を同時に飛行させて作業を行うことが知られている。
 しかしながら、従来は人間が手動でこれらの複数の無人飛行体のそれぞれの飛行領域を設定しなければならず、無人飛行体の数が多ければ多いほど、それぞれの無人飛行体の飛行範囲を設定することが煩雑になり、ユーザにとっては著しく大きな負担となっていた。また、手動の場合は、正確に作業領域を複数の無人飛行体の作業を行うサブ領域に分割することができず、一部の領域において作業漏れや重複作業が発生することがあった。
 また、自動的に当該所定領域をそれぞれの飛行体が作業を行う飛行領域に分割する場合であっても、単に所定領域を機械的に均等に分割するに過ぎず、個々の無人飛行体の属性(例えば起動位置、作業効率、バッテリ残量、最大飛行距離等)を考慮していなかった。このため、無駄な飛行経路が設定されたり、各無人飛行体の作業量の配分が適切でなかったりして、効率的に作業を行うことができない問題が存在していた。
 一態様において、所定領域に対して複数の飛行体により作業を行わせるための飛行経路確定方法であって、所定領域に関する情報を取得するステップと、複数の飛行体に関する情報を取得するステップと、複数の飛行体に関する情報に基づいて、所定領域を複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割するステップと、複数のサブ領域ごとに飛行経路を確定するステップと、を含む。
 複数の飛行体に関する情報は、それぞれの飛行体の起動位置に関する情報を含み、所定領域を複数のサブ領域に分割するステップは、各飛行体ごとに起動位置に関する情報に基づいて所定領域の作業開始位置を確定するステップと、各飛行体の作業開始位置に基づいて、所定領域を複数のサブ領域に分割するステップとを含んでよい。
 起動位置に関する情報に基づいて所定領域の作業開始位置を確定するステップは、起動位置と所定領域の重心点とを接続する直線が所定領域の外周に交わる位置を作業開始位置として確定するステップと、を含んでもよい。
 起動位置に関する情報に基づいて所定領域の作業開始位置を確定するステップは、所定領域における起動位置に最も接近する位置を作業開始位置として確定するステップと、を含んでもよい。
 起動位置に関する情報に基づいて所定領域の作業開始位置を確定するステップは、起動位置が所定程度以上集中する複数の飛行体が存在する場合において、当該起動位置から所定領域に対して放射状に分散する複数の直線が所定領域の外周に交わる位置をそれぞれの飛行体の作業開始位置として確定するステップと、を含んでもよい。
 飛行体に関する情報は、飛行体の作業効率に関する情報をさらに含み、所定領域を複数のサブ領域に分割するステップは、所定領域を各飛行体の作業効率に応じた面積比になるように複数のサブ領域に分割するステップと、を含んでもよい。
 所定領域が複数のサブ領域に分割された後に、複数のサブ領域のうちの少なくとも一つを表示するステップをさらに含んでもよい。
 サブ領域ごとに飛行経路が確定された後に、飛行経路を表示するステップをさらに含んでもよい。
 サブ領域ごとに飛行経路が確定された後に、複数の飛行体に対して、それぞれ作業を行う飛行経路に関する情報を送信するステップを含んでもよい。
 一態様において、所定領域を分割して作業をする複数の飛行体に通信可能な情報処理装置において、処理部を有し、処理部は、所定領域に関する情報を取得し、複数の飛行体に関する情報を取得し、複数の飛行体に関する情報に基づいて、所定領域を複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割し、複数のサブ領域ごとに飛行経路を確定する。
 複数の飛行体に関する情報は、それぞれの飛行体の起動位置に関する情報を含み、処理部は、各飛行体ごとに、起動位置に関する情報に基づいて所定領域の作業開始位置を確定し、各飛行体の作業開始位置に基づいて所定領域を複数のサブ領域に分割してよい。
 処理部は、起動位置と所定領域の重心点とを接続する直線が所定領域の外周に交わる位置を作業開始位置として確定してよい。
 処理部は、所定領域における起動位置に最も接近する位置を作業開始位置として確定してよい。
 処理部は、起動位置が所定程度以上集中する複数の飛行体が存在する場合において、当該起動位置から所定領域に対して放射状に分散する複数の直線が所定領域の外周に交わる位置をそれぞれの飛行体の作業開始位置として確定してよい。
 飛行体に関する情報は、飛行体の作業効率に関する情報をさらに含み、処理部は、所定領域を各飛行体の作業効率に応じた面積比になるように複数のサブ領域に分割してよい。
 さらに、表示部を含み、処理部は、所定領域が複数のサブ領域に分割された後に、複数のサブ領域のうちの少なくとも一つを表示させてよい。
 さらに、表示部を含み、処理部は、サブ領域ごとに飛行経路が確定された後に、飛行経路を表示させてよい。
 処理部は、サブ領域ごとに飛行経路が確定された後に、複数の飛行体に対して、それぞれ作業を行う飛行経路に関する情報を送信してよい。
 一態様において、所定領域に対して作業を行う複数の飛行体に通信可能な情報処理装置に、所定領域に関する情報を取得するステップと、複数の飛行体に関する情報を取得するステップと、複数の飛行体に関する情報に基づいて、所定領域を複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割するステップと、複数のサブ領域ごとに飛行経路を確定するステップと、を実行させるプログラムである。
 一態様において、所定領域に対して作業を行う複数の飛行体に通信可能な情報処理装置に、所定領域に関する情報を取得するステップと、複数の飛行体に関する情報を取得するステップと、複数の飛行体に関する情報に基づいて、所定領域を複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割するステップと、複数のサブ領域ごとに飛行経路を確定するステップと、を実行させるプログラムを格納するコンピュータ読み取り可能な記憶媒体である。
 なお、上記の発明の概要は、本開示の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
飛行経路確定方法を実行するためのシステムの構成例を示す図である。 飛行経路確定方法を実行するためのシステムの構成例を示す図である。 無人飛行体の外観の一例を示す図である。 無人飛行体の具体的な外観の一例を示す図である。 無人飛行体のハードウェア構成の一例を示すブロック図である。 情報処理装置のハードウェア構成の一例を示すブロック図である。 本開示における飛行経路確定方法を示すフロー図である。 無人飛行体の起動位置及び作業を行う所定領域の一例を示す図である。 所定領域における作業開始位置の確定する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 分割されたサブ領域ごとに確定された飛行経路の一例を示す図である。 所定領域における作業開始位置の確定する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 分割されたサブ領域ごとに確定された飛行経路の一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 所定領域をサブ領域に分割する一例を示す図である。 分割されたサブ領域ごとに確定された飛行経路の一例を示す図である。
 以下、発明の実施の形態を通じて本開示を説明するが、以下の実施の形態は特許請求の範囲に係る発明を限定するものではない。実施の形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須とは限らない。
 特許請求の範囲、明細書、図面、及び要約書には、著作権による保護の対象となる事項が含まれる。著作権者は、これらの書類の何人による複製に対しても、特許庁のファイル又はレコードに表示される通りであれば異議を唱えない。但し、それ以外の場合、一切の著作権を留保する。
 本開示に係る飛行経路確定方法は、飛行体の飛行経路を確定するための情報処理装置における各種の処理(ステップ)が規定されたものである。飛行体は、空中を移動する航空機(例えばドローン、ヘリコプター)を含む。飛行体は、無人飛行体(UAV:Unmanned Aerial Vehicle)であってもよく、空撮や水、肥料、農薬の散布等の作業を行うとためにあらかじめ設定された飛行経路に沿って飛行する。
 本開示に係る情報処理装置は、コンピュータであって、例えば無人飛行体の移動を含む各種処理の遠隔制御を指示するための送信機、送信機と情報やデータの入出力が可能に接続された端末装置、又は無人飛行体と情報やデータの入出力が可能に接続されたPC、タブレット等である。なお、無人飛行体自体が情報処理装置として含まれてよい。
 本開示に係るプログラムは、情報処理装置に各種の処理(ステップ)を実行させるためのプログラムである。
 本開示に係る記録媒体は、プログラム(つまり、情報処理装置に各種の処理(ステップ)を実行させるためのプログラム)が記録されたものである。
 本開示に係る各実施例において、複数の無人飛行体により所定領域を分割して作業を行う。以下において、撮像装置を備える無人飛行体が空撮作業を行う場合を例にとって説明するが、本開示はこれに限らず、例えば水や農薬の散布作業を行う場合など、他のいかなる作業を行う場合であってよい。
 本開示に係る各実施例において、情報処理装置は複数の飛行体に通信可能であり、分割された領域の情報及び/または確定された飛行経路の情報をそれぞれ対応する飛行体に伝送できる。ここにいう「通信」とは、データ通信全般を含む広い概念であり、ケーブルなどにより有線接続する場合だけでなく、無線通信によって接続する場合も含まれる。また、情報処理装置が飛行体と直接通信する場合だけでなく、送信機や記憶媒体を介して間接的に通信を行う場合も含まれる。
 図1は、本開示における飛行経路確定方法を実行するためのシステムの構成例を示す図である。図1に示すシステム10は、無人飛行体100と、送信機50と、情報処理装置80を少なくとも含む。無人飛行体100と送信機50とは、有線通信又は無線通信(例えば無線LAN(Local Area Network)、又はBluetooth(登録商標))を用いて、情報やデータを互いに通信することが可能である。操作端末の一例としての送信機50は、例えば送信機50を使用する人物(以下、「ユーザ」という)の両手で把持された状態で使用される。
 送信機50には、情報処理装置80(例えばスマートフォン)を固定するためのスタンドが設けられている。スタンドに設置された情報処理装置80は、不図示のUSBケーブルなどに送信機50に接続可能となっている。この場合、情報はまず情報処理装置80から送信機50に伝送され、その後送信機50が当該情報を無人飛行体100に伝送する。なお、情報処理装置80は、スマートフォン、タブレットなどの携帯端末が好ましいが、これに限定されるものでなく、ノート型PC、デスクトップPC等のいかなる演算機能を備える装置であってよい。
 図2は、本開示における飛行経路確定方法を実行するためのシステムのもう一つの構成例を示す図である。図2に示すシステム10Aは、無人飛行体100と、情報処理装置80Aが含まれる。この構成例では、情報処理装置80Aは送信機50を介さずに無人飛行体100と通信する。例えば、情報処理装置80Aと無人飛行体100が直接無線通信を行う。あるいは、情報処理装置80Aにおいて情報をフラッシュメモリなどのストレージに記憶し、それを飛行体が読み込むことによりデータを伝送する。
 なお、本開示における飛行経路確定方法を実行するためのシステムは、図1及び図2に記載されている構成例に限定されない。例えば、送信機50を情報処理装置80とすることもでき、この場合は無人飛行体100と送信機50のみでシステムを構成することができる。また、無人飛行体100自身を情報処理装置80とすることもできる。この場合、無人飛行体100のみで本開示における飛行経路確定方法を実行することができる。ただし、以下の説明においては、図1に示す構成例に基づいて説明する。
 図3は、無人飛行体100の外観の一例を示す図である。図4は、無人飛行体100の具体的な外観の一例を示す図である。無人飛行体100が移動方向STV0に飛行する時の側面図が図3に示され、無人飛行体100が移動方向STV0に飛行する時の斜視図が図4に示されている。無人飛行体100は、例えば撮像装置150を備えて空撮作業を行う。ここで、図3及び図4に示すように、地面と平行であって移動方向STV0に沿う方向にロール軸(図3及び図4のx軸参照)が定義されたとする。この場合、地面と平行であってロール軸に垂直な方向にピッチ軸(図3及び図4のy軸参照)が定められ、更に、地面に垂直であってロール軸及びピッチ軸に垂直な方向にヨー軸(図3及び図4のz軸)が定められる。
 無人飛行体100は、ジンバル130と、回転翼機構140と、撮像装置150とを含む構成である。無人飛行体100は、例えば送信機50から送信される遠隔制御の指示を基に移動することができる。無人飛行体100の移動は、飛行を意味し、少なくとも上昇、降下、左旋回、右旋回、左水平移動、右水平移動の飛行が含まれる。
 無人飛行体100は、例えば4つの回転翼機構140を備える。無人飛行体100は、これら回転翼機構140の回転を制御することにより無人飛行体100を移動させる。ただし、回転翼の数は、4つに限定されない。また、無人飛行体100は、回転翼を有さない固定翼機でよい。
 撮像装置150は、所望の撮像範囲に含まれる被写体(例えば上述した建物、道路、公園等の地面形状)を撮像するカメラである。撮像装置150はジンバル130に取り付けられ、ジンバル130の動きによって撮像範囲が調節される。
 次に、無人飛行体100の構成例について説明する。
 図5は、無人飛行体100のハードウェア構成の一例を示すブロック図である。無人飛行体100は、UAV制御部110と、メモリ120と、ジンバル130と、回転翼機構140と、撮像装置150と、バッテリ160と、GPS受信機170と、ストレージ180と、通信インタフェース190とを含む構成である。なお、水、農薬の散布作業を行う無人飛行体100の場合は、撮像装置150に替えて又は撮像装置150に加えて、水や農薬を格納するための容器及び散布用ノズルを含んでよい。
 UAV制御部110は、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)又はDSP(Digital Signal Processor)を用いて構成される。UAV制御部110は、無人飛行体100の各部の動作を統括して制御するための信号処理、他の各部との間のデータの入出力処理、データの演算処理及びデータの記憶処理を行う。
 UAV制御部110は、メモリ120またはストレージ180に格納されたプログラム及び飛行経路に関する情報に従って無人飛行体100の飛行を制御する。また、UAV制御部110は、通信インタフェース 190を介して遠隔の送信機50から受信した命令に従って、無人飛行体100の移動(つまり、飛行)を制御する。
 メモリ120は、例えば、UAV制御部110の処理時に使用される各種の情報やデータを一時的に保存するRAM(Random Access Memory)である。メモリ120は、無人飛行体100の内部に設けられてよいし、無人飛行体100から取り外し可能に設けられてよい。
 ジンバル130は、少なくとも1つの軸を中心に撮像装置150を回転可能に支持する。ジンバル130は、ヨー軸、ピッチ軸、及びロール軸を中心に撮像装置150を回転可能に支持してよい。ジンバル130は、ヨー軸、ピッチ軸、及びロール軸の少なくとも1つを中心に撮像装置150を回転させることで、撮像装置150の撮像方向を変更してよい。
 回転翼機構140は、複数の回転翼と、複数の回転翼を回転させる複数の駆動モータとを有する。回転翼の回転を制御することにより、特定の方向の気流を生じさせ、無人飛行体100の飛行(上昇、下降、水平移動、旋回、傾斜等)を制御する。
 撮像装置150は、所望の撮像範囲の被写体を撮像して撮像画像のデータを生成する。撮像画像は動画であってもよく、静止画であってよい。撮像装置150の撮像により得られたデータは、撮像装置150が有するメモリ又はメモリ120、ストレージ180などに格納される。
 バッテリ160は、無人飛行体100の各部の駆動源としての機能を有し、無人飛行体100の各部に必要な電源を供給する。
 GPS受信機170は、複数の航法衛星(つまり、GPS衛星)から発信された時刻及び各GPS衛星の位置(座標)を示す複数の信号を受信する。GPS受信機170は、受信された複数の信号に基づいて、GPS受信機170の位置(つまり、無人飛行体100の位置)を算出する。GPS受信機240は、無人飛行体100の位置情報をUAV制御部110に出力する。なお、GPS受信機170の位置情報の算出は、GPS受信機170の代わりにUAV制御部110により行われてよい。この場合、UAV制御部110には、GPS受信機170が受信した複数の信号に含まれる時刻及び各GPS衛星の位置を示す情報が入力される。
 ストレージ180は、例えばHDD、フラッシュメモリなどの記憶媒体であり、UAV制御部110がジンバル130、回転翼機構140、撮像装置150、バッテリ160、GPS受信機170などを制御するのに必要なプログラム及び情報処理装置80から取得した飛行経路に関する情報等を格納する。ストレージ180は無人飛行体100から取り外し可能であってもよいし、無人飛行体100に内蔵されていてよい。
 通信インタフェース190は、送信機50または情報処理装置80と通信する。通信インタフェース190は、遠隔の送信機50からUAV制御部110に対する各種の命令を受信する。
 次に、情報処理装置80について説明する。以下において、情報処理装置80が図1に示すような送信機50に装着されているスマートフォンである場合を説明するが、情報処理装置80は、スマートフォンに限らず、例えばタブレット、ノート型PC、デスクトップPCなどであってよい。また、送信機50、無人飛行体100自身が情報処理装置80となってもよい。
 図6は、情報処理装置80のハードウェア構成の一例を示すブロック図である。情報処理装置80は、処理部81と、メモリ82と、ストレージ83と、表示部84と、操作部85と、無線通信部86と、インタフェース部87と、を含む構成である。
 処理部81は、プロセッサ(例えばCPU、MPU又はDSP)を用いて構成される。処理部81は、メモリ82、ストレージ83、表示部84、操作部85、無線通信部86、インタフェース部87を制御するための信号処理、他の各部との間のデータの入出力処理、データの演算処理及びデータの記憶処理を行う。
 メモリ82は、例えば、処理部81の処理時に使用される各種の情報やデータを一時的に保存するRAM(Random Access Memory)である。メモリ82は、情報処理装置80の内部に設けられてよいし、情報処理装置80から取り外し可能に設けられてよい。
 ストレージ83は、例えば各種プログラムや設定値のデータが格納されたROM(Read Only Memory)、HDD、SSD、USBメモリなどの記憶媒体である。ストレージ83は、情報処理装置80から取り外し可能であってもよいし、情報処理装置80に内蔵されていてよい。 
 表示部84は、外部に情報を表示するために設けられ、例えば液晶ディスプレイ(LCD)又は発光ダイオード(LED)を用いて構成されてよい。
 操作部85は、ユーザからの各種入力を受け付けるキーボード、マウス、タッチパネル等である。表示部84であるディスプレイと重ねあわせてタッチパネルディスプレイを構成することもできる。
 無線通信部86は、例えば電磁波のアンテナ等であり、無線LAN、Wi-Fi(登録商標)、Bluetooth(登録商標)などにより外部と情報の送受信を行う。
 インタフェース部87は、例えばUSBポートであり、送信機50と各種データの送受信を行うためのインタフェースである。
 以下において、本開示に係る飛行経路確定方法における処理の各実施例を図面と共に説明する。本開示に係る飛行経路確定方法は、一つの作業領域を分割して、複数の無人飛行体100がそれぞれの分割されたサブ領域で作業を行う。
 図7は、本開示における飛行経路確定方法を示すフロー図である。
 まず、情報処理装置80は、作業の対象となる所定領域に関する情報を取得する(ステップS11)。例えば、所定領域に関する情報は、所定領域の地図上の座標を示す情報が含まれ、例えば経度、緯度のパラメータが含まれてよい。
 情報処理装置80は、所定領域に関する情報を無線通信部86から取得してもよいし、ユーザからの入力を操作部85から受け付けてもよい。例えば、情報処理装置80は、表示部84及び操作部85の双方として機能するタッチパネルディスプレイ上に地図を表示した後、ユーザが表示された地図に基づいてドラッグ操作又はタップ操作により指定した所定領域に関する情報を受け付けてもよい。
 次に、情報処理装置80は、作業を行う複数の飛行体に関する情報を取得する(ステップS12)。飛行体に関する情報は、無人飛行体100の属性を表す情報であり、例えば無人飛行体の起動位置、バッテリ残量、最大飛行距離、飛行速度、作業効率(単位時間の散布量等)のいずれか一つ又は複数を含んでよい。
 ここでいう「起動位置」とは、本開示における飛行経路確定方法の動作開始時に無人飛行体100が待機している位置である。ただし、起動位置にいる無人飛行体100は、必ずしも電源がオフの状態であるとは限らず、ホバリングなどの他のいかなる状態であってよい。例えば無人飛行体100が基地で待機している場合は、その基地の存在する位置である。
 また、情報処理装置80は、飛行体に関する情報を、無線通信部86を介してそれぞれの無人飛行体100から取得してもよいし、操作部85を介してユーザからの入力を受け付けてもよい。また、複数の飛行体を一つの管理用のサーバで管理している場合は、当該サーバから上記情報を取得してよい。
 なお、情報処理装置80は、上記の順序に限らず、所定領域に関する情報と飛行体に関する情報を同時に取得(すなわち、ステップS11とステップS12を同時に実行)してよいし、先に飛行体に関する情報を取得してから所定領域に関する情報を取得(すなわち、先にステップS12を実行してからステップS11を実行)してよい。
 次に、情報処理装置80は、取得した複数の飛行体に関する情報に基づいて、所定領域を複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割する(ステップS13)。具体的には、複数の無人飛行体の負荷の合計が最も小さくなるように分割してよい。
 分割の手法については、例えば領域拡張法(Region Growing)又はK平均法(K-Means)を用いて分割することが挙げられるが、これに限られない。領域拡張法によって分割する場合の具体的なステップについては、後述する。
 情報処理装置80は、所定領域を複数のサブ領域に分割した後、分割されたそれぞれのサブ領域を表示部84により表示してもよい。例えば、異なるサブ領域に対して、異なる色や異なる符号を用いて表示してよい。ユーザは分割されたサブ領域を確認した後、飛行経路を確定するための条件を入力してもよい。例えば、ユーザはサブ領域を最短距離で飛行する経路、最短時間で飛行する経路又はもっとも節電できる経路を選択してよい。
 最後に、情報処理装置80は、分割されたサブ領域ごとに飛行経路を確定する(ステップS14)。好ましくは、飛行経路は、作業開始位置、作業終了位置及び複数の通過位置を示すウェイポイントの集合で表現される。ユーザが飛行経路を確定するための条件を入力したときは、その条件に従った飛行経路を確定する。具体的な飛行経路の確定方法は、既存のいかなるアルゴリズムを使用してよい。
 情報処理装置80は、飛行経路を確定した後、表示部84においてそれぞれのサブ領域上に確定した飛行経路を表示してもよい。
 また、情報処理装置80は、複数の無人飛行体100が作業を行うサブ領域及びその飛行経路を確定した後、それぞれの無人飛行体に対してその対応する飛行経路に関する情報を送信してよい。
 飛行経路に関する情報は、情報処理装置80が無線または有線の通信方式により直接無人飛行体100に送信してよいし、インタフェース部87を介して送信機50に伝送した後、送信機50がそれを無人飛行体100伝送してよい。また、情報処理装置80においてメモリカードなどの記憶媒体に記録して、その記憶媒体を無人飛行体100に挿入して読み込ませるなどの他のいかなる方法により伝送してよい。
 複数の無人飛行体100はそれぞれ飛行経路を受信した後、それぞれの飛行経路に沿って飛行しながら作業を行う。
 以下、飛行体に関する情報に起動位置に関する情報が含まれている場合において、情報処理装置80が領域拡張法(Region Growing)により所定領域を複数のサブ領域に分割する具体的な実施例を説明する。
(実施例1)
 図8は複数の無人飛行体の起動位置及び作業を行う所定領域の一例を示す図である。図8に示すように、異なる起動位置において待機している二台の無人飛行体D1、D2が領域Aを分割してそれぞれ作業を行う場合を例にとって説明する。ただし、本開示において領域Aの形状は図8に示すものに限らず、他のいかなる形状であってよい。また、実行する作業も空撮、農薬や水の散布及びその他のいかなる作業であってよい。
 まず、情報処理装置80は、まず当該飛行体の起動位置に関する情報に基づいて、定領域において作業を開始する位置(以下、「作業開始位置」という)を確定する。すなわち、無人飛行体100は、まずこの起動位置から所定領域に向かって移動し、所定領域における作業開始位置に到着してから作業を開始する。
 情報処理装置80は、図9に示すように、領域Aの重心点Gを従来の方法により算出し、無人飛行体D1、D2の起動位置と所定領域Aの重心点Gを結ぶ直線が、領域Aの外周に交わる位置P1、P2を領域Aにおける作業開始位置としてもよい。これにより、無人飛行体が作業開始位置にたどりつくまでの負荷を低減させることができる。ただし、作業開始位置の確定方法はこれに限らず、例えば起動位置と最も接近する領域Aにおける位置を作業開始位置としてもよい。
 次に、情報処理装置80は、作業開始位置P1、P2に基づいて、領域Aを複数のサブ領域に分割する。以下、図10A~Gを用いて、分割の具体的なステップについて説明する。
 情報処理装置80は、領域Aを所定の大きさのブロックに単位化する。本実施例においては、情報処理装置80は、領域Aを正方形のブロックに単位化しているが、実際は長方形、多角形など他の形状であってもよい。ブロックの大きさは例えば1m×1mであるが、他の大きさを設定してもよい。ブロックの大きさが大きいと情報処理装置80の演算処理にかかる負荷が小さくなるが、分割する精度が荒くなる。逆に、ブロックの大きさが小さいと、分割する精度は高くなるが、情報処理装置80の演算処理にかかる負荷が大きくなる。実際は無人飛行体の操作の精度や一度の作業によって処理できる面積(例えばカメラの画角が大きさ又は散布の範囲)に基づいて柔軟に設定してよい。
 まず、情報処理装置80は、図10Aに示すように、作業開始位置P1が属するブロックを無人飛行体D1の領域としてマークし、作業開始位置P2が属するブロックを無人飛行体D2の領域としてマークする。
 説明の便宜のため、以下の説明において、説明しているステップを行う前にすでに無人飛行体D1の領域としてマークされているブロックを「★」と示し、すでに無人飛行体D2の領域としてマークされているブロックを「●」と示す。一方、説明しているステップを行う時に無人飛行体D1の領域としてマークするブロックを「☆」と示し、無人飛行体D2の領域としてマークするブロックを「○」と示す。
 次に、情報処理装置80は、図10Bに示すように、無人飛行体D1の領域としてすでに選択されているブロック(「★」を参照)に隣接するマークされていないブロックの中から、すでに無人飛行体D2の領域としてマークされているブロック(「●」を参照)に対して移動する負荷がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D1の領域としてマークする(「☆」を参照)。このとき、隣接するブロックが領域Aの境界線付近にあるために一部が途切れていることがあるが、その途切れている面積が一定の閾値以上になる場合(例えば、ブロックの面積の3分の1以上が途切れている場合)は、当該ブロックを切り捨ててもよい(すなわちマークの候補から外してもよい)。ブロックの切り捨てに関しては、後述のステップにおいても、同様に行うことができるが、便宜上重複する説明は割愛する。
 次に、情報処理装置80は、図10Cに示すように、無人飛行体D2の領域としてすでに選択されているブロック(「●」を参照)に隣接するマークされていないブロックの中から、すでに無人飛行体D1の領域としてマークされているブロック(「★」を参照)の集合からなる領域に対して移動する負荷がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D2の領域としてマークする(「○」を参照)。
 次に、情報処理装置80は、図10Dに示すように、無人飛行体D1の領域としてすでに選択されているブロック(「★」を参照)の集合からなる領域に隣接するマークされていないブロックの中から、すでに無人飛行体D2の領域としてマークされているブロック(「●」を参照)の集合からなる領域に対して移動する負荷がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D1の領域としてマークする(「☆」を参照)。
 次に、情報処理装置80は、図10Eに示すように、無人飛行体D2の領域としてすでに選択されているブロック(「●」を参照)の集合からなる領域に隣接するマークされていないブロックの中から、すでに無人飛行体D1の領域としてマークされているブロック(「★」を参照)の集合からなる領域に対して移動する負荷がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D2の領域としてマークする(「○」を参照)。
 このように、情報処理装置80は、上記のステップを繰り返し行うことにより、マークされていないブロックを順次マークしていく。その結果、図10Fのように、すべてのブロックを無人飛行体D1と無人飛行体D2のいずれかに割り当てることができる。そして、割り当てられた二種類のブロックに基づいて、図10Gのように、領域Aを無人飛行体D1が作業を行うためのサブ領域A1と無人飛行体D2が作業を行うためのサブ領域A2に分割することができる。
 作業領域が分割された後は、情報処理装置80は、図11に示すように、無人飛行体D1がサブ領域A1において作業をするための飛行経路R1と、無人飛行体D2がサブ領域A2において作業をするための飛行経路R2をそれぞれ確定する。飛行経路は、それぞれ作業開始位置P1、P2からスタートすることが好ましい。サブ領域内での経路確定は、従来のいかなる技術を用いてもよく、ここでは具体的な説明を割愛する。
 無人飛行体D1と無人飛行体D2は、移動する負荷がもっとも高いブロックを他方の無人飛行体に属するブロックとして相互に順次マークしているため、こうして領域Aをサブ領域A1とサブ領域A2を分割することにより、作業開始位置P1、P2を考慮して負荷を最小限に留めることができ、作業の効率化に寄与する。
 なお、上記では二台の無人飛行体D1、D2によって作業を行う場合を説明したが、本実施例は三台以上の無人飛行体によって作業を行う場合に適用できることは明らかである。
 例えば、三台の無人飛行体D1、D2、D3で作業を行う場合は、無人飛行体D1の領域としてすでに選択されているブロックに隣接するマークされていないブロックの中から、無人飛行体D2の領域としてマークされているブロックの集合からなる領域に対して移動する負荷と無人飛行体D3の領域としてマークされているブロックの集合からなる領域に対して移動する負荷の合計がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D1の領域としてマークする。
 次に、無人飛行体D2の領域としてすでに選択されているブロックに隣接するマークされていないブロックの中から、無人飛行体D1の領域としてマークされているブロックの集合からなる領域に対して移動する負荷と無人飛行体D3の領域としてマークされているブロックの集合からなる領域に対して移動する負荷の合計がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D2の領域としてマークする。
 次に、無人飛行体D3の領域としてすでに選択されているブロックに隣接するマークされていないブロックの中から、無人飛行体D1の領域としてマークされているブロックの集合からなる領域に対して移動する負荷と無人飛行体D2の領域としてマークされているブロックの集合からなる領域に対して移動する負荷の合計がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D3の領域としてマークする。
 情報処理装置80は、上記のステップを繰り返し行うことにより、すべてのブロックを無人飛行体D1、D2、D3のいずれか一つに割り当てることができる。これにより、領域Aを三つのサブ領域に分割することができる。また、同様の処理により、本実施例をより多くの無人飛行体によって作業する場合に適用できる。
 なお、ある無人飛行体の領域としてすでに選択されているブロックに隣接するすべてブロックがマークされている場合は、その時点で当該無人飛行体へのブロックの割り当てを中止してよい。その他の処理については、前述した二台の無人飛行体D1、D2の場合と同一であるため、重複する説明を割愛する。
(実施例2)
 実施例1では、起動位置が異なる二台の無人飛行体により作業を行う場合を説明した。しかしながら、同一の基地に複数の無人飛行体が待機しているなどの起動位置が所定程度以上集中する複数の飛行体が存在する場合は、実施例1において説明したように、起動位置と所定領域Aの重心点Gを結ぶ直線が領域Aの外周に交わる位置を作業開始位置としたり、起動位置と最も接近する領域Aにおける位置を作業開始位置したりすると、複数の無人飛行体の作業開始位置が接近してしまい、作業効率上好ましくない。そこで、実施例2では、起動位置が所定程度以上集中する複数の飛行体が存在する場合の変形例について説明する。
 実施例2では、図12に示すように、無人飛行体D1起動位置が領域Aの左上にあり、三台の無人飛行体D2、D3、D4がいずれも領域Aの右下に存在する基地において待機している。
 まず、情報処理装置80は、起動位置が所定程度以上集中する複数の飛行体が存在するか否かを判断する。このとき、領域Aの面積を考慮するのが好ましい。例えば、領域Aの面積が4万平方メートル以上である場合は、100平方メートルの範囲内に三台の無人飛行体D2、D3、D4が含まれていれば、同一の基地にいると判断する。
 起動位置が所定程度以上集中する飛行体が複数存在する場合は、情報処理装置80は、当該起動位置から領域Aに対して放射状に分散する複数の直線が領域Aの外周に交わる位置をそれぞれの飛行体の作業開始位置として確定する。図12において、基地から領域Aへの切線L1、L2によって形成される角度を三等分する二本の直線をL3、L4とする。このとき、L1とL4によって形成される角度θ1を二等分する直線が領域Aの外周に交わる位置を無人飛行体D2の作業開始位置P2とし、L4とL3によって形成される角度θ2を二等分する直線が領域Aの外周に交わる位置を無人飛行体D3の作業開始位置P3とし、L3とL1によって形成される角度θ3を二等分する直線が領域Aの外周に交わる位置を無人飛行体D4の作業開始位置P4としてよい。
 なお、無人飛行体D1に関しては、その付近に他の無人飛行体が存在しないため、実施例1と同様、起動位置P1と所定領域Aの重心点Gを結ぶ直線が領域Aの外周に交わる位置P1を作業開始位置とする。あるいは、起動位置と最も接近する領域Aにおける位置を作業開始位置としてよい。
 無人飛行体D1、D2、D3、D4のそれぞれの作業開始位置P1、P2、P3、P4が確定した後、情報処理装置80は、実施例1と同一のステップにより、図13に示すように、領域Aをそれぞれの無人飛行体D1、D2、D3、D4が作業を行う4つのサブ領域A1、A2、A3、A4に分割することができる。
 4つのサブ領域A1、A2、A3、A4に分割された後は、情報処理装置80は、図14に示すように、無人飛行体D1がサブ領域A1において作業をするための飛行経路R1と、無人飛行体D2がサブ領域A2において作業をするための飛行経路R2と、無人飛行体D3がサブ領域A3において作業をするための飛行経路R3と、無人飛行体D4がサブ領域A4において作業をするための飛行経路R4をそれぞれ確定する。飛行経路は、それぞれの作業開始位置P1、P2、P3、P4からスタートすることが好ましい。サブ領域内での経路確定は、従来のいかなる技術を用いてもよく、ここでは具体的な説明を割愛する。
 これにより、同一の基地に複数の無人飛行体が待機しているなどの起動位置が所定程度以上集中する複数の飛行体が存在する場合であっても、これらの飛行体の起動位置が重複又は接近することを防止し、より効率的な作業が期待できる。
(実施例3)
 上記の二つの実施例においては、複数の無人飛行体のすべてが同一の性能を持つ場合を説明した。しかしながら、性能が異なる複数の無人飛行体を用いて作業することも考えられる。そこで、実施例3では、領域Aを各飛行体の作業効率に応じた面積比になるように複数のサブ領域に分割する。
 以下、図15A~Gを用いて、実施例3における分割の具体的なステップについて説明する。なお、実施例1と重複する部分については適宜割愛する。
 本実施例では、無人飛行体Dが無人飛行体D2の二倍の作業効率を有する点で実施例1と異なる。例えば、無人飛行体D1は時速30Kmで移動し、無人飛行体D2は時速60Kmで移動する。作業効率は移動の速度に限らず、例えば単位時間の散布量などのいかなる効率を反映する指標であってよい。
 まず、情報処理装置80は、実施例1と同様な方法により作業開始位置を確定する。その後、図15Aに示すように、領域Aを所定の大きさのブロックに単位化し、無人飛行体D1の領域として作業開始位置P1が属するブロックをマークし(「★」を参照)、無人飛行体D2の領域として作業開始位置P2が属するブロック及び作業開始位置P2に属するブロックに隣接するブロックの中から上記無人飛行体D1の領域として選択したブロック(「★」を参照)に対して移動する負荷がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D2の領域としてマークする(「●」を参照)。
 次に、情報処理装置80は、図15Bに示すように、無人飛行体D1の領域としてすでに選択されているブロック(「★」を参照)に隣接するマークされていないブロックの中から、すでに無人飛行体D2の領域としてマークされているブロック(「●」を参照)に対して移動する負荷がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D1の領域としてマークする(「☆」を参照)。
 次に、情報処理装置80は、図15Cに示すように、無人飛行体D2の領域としてすでに選択されているブロック(「●」を参照)に隣接するマークされていないブロックの中から、すでに無人飛行体D1の領域としてマークされているブロック(「★」を参照)の集合からなる領域に対して移動する負荷がもっとも高い(例えば距離がもっとも遠い)二つのブロックを無人飛行体D2の領域としてマークする(「○」を参照)。
 次に、情報処理装置80は、図15Dに示すように、無人飛行体D1の領域としてすでに選択されているブロック(「★」を参照)の集合からなる領域に隣接するマークされていないブロックの中から、すでに無人飛行体D2の領域としてマークされているブロック(「●」を参照)の集合からなる領域に対して移動する負荷がもっとも高い(例えば距離がもっとも遠い)ブロックを無人飛行体D1の領域としてマークする(「☆」を参照)。
 次に、情報処理装置80は、図15Eに示すように、無人飛行体D2の領域としてすでに選択されているブロック(「●」を参照)の集合からなる領域に隣接するマークされていないブロックの中から、すでに無人飛行体D1の領域としてマークされているブロック(「★」を参照)の集合からなる領域に対して移動する負荷がもっとも高い(例えば距離がもっとも遠い)二つのブロックを無人飛行体D2の領域としてマークする(「○」を参照)。
 このように、情報処理装置80は、上記のステップを繰り返し行うことにより、マークされていないブロックを順次マークしていくと、図15Fのように、すべてのブロックを無人飛行体D1と無人飛行体D2のいずれかに割り当てることができる。このとき、無人飛行体D1の領域として一つのブロックをマークするごとに、無人飛行体D2の領域として二つのブロックをマークするため、無人飛行体D2に割り当てられるブロック数は、無人飛行体D1に割り当てられるブロック数の2倍となる。
 そして、情報処理装置80は、割り当てられた二種類のブロックに基づいて、図15Gのように、領域Aを無人飛行体D1が作業を行うためのサブ領域A1と無人飛行体D2が作業を行うためのサブ領域A2に分割することができる。このとき、サブ領域A2の面積は、サブ領域A1の面積の2倍となる。
 作業領域が分割された後は、情報処理装置80は、図16に示すように、無人飛行体D1がサブ領域A1において作業をするための飛行経路R1と、無人飛行体D2がサブ領域A2において作業をするための飛行経路R2をそれぞれ確定する。飛行経路は、それぞれ作業開始位置P1、P2からスタートすることが好ましい。サブ領域内での経路確定は、従来のいかなる技術を用いてもよく、ここでは具体的な説明を割愛する。
 このように、無人飛行体D1と無人飛行体D2は、作業効率の比率に応じた面積のサブ領域が割り当てられ、作業効率が高い無人飛行体には多くの作業を行わせることができ、リソースの最適化を図ることができる。
 以上において、本開示にかかる飛行経路確定方法の具体的な実施例を説明したが、本開示はこれらの構成に限らない。
 上記の各実施例において、情報処理装置で実行される処理は、スマートフォン、タブレット等の他の情報処理装置で実行されてもよく、無人飛行体100自身が実行してよい。
 飛行経路確定方法における処理(ステップ)は、情報処理装置80の処理部81おいて実行してよい。
 飛行経路確定方法における処理(ステップ)は、プログラムによって形成され、情報処理装置80がこれを実行することにより実現されてよい。
 飛行経路確定方法における処理(ステップ)が形成されているプログラムは、情報処理装置80のメモリ64又はストレージに格納されてよい。
 本開示に係る飛行経路確定方法、情報処理装置、プログラム、及び記憶媒体によれば、複数の飛行体の個々の属性に基づいて作業領域を合理的に分割するため、ユーザの負担を軽減させるだけでなく、作業の効率化を図ることができる。
 また、本開示に係る飛行経路確定方法、情報処理装置、プログラム、及び記憶媒体によれば、分割された作業領域ごとにその作業をする飛行体に適した飛行経路を確定することができ、柔軟に飛行経路を設定することができる。
 以上、本開示に係る飛行経路確定方法、情報処理装置、プログラム、及び記憶媒体の実施の形態を用いて説明したが、本開示に係る発明の技術的範囲は上述した実施の形態に記載の範囲には限定されない。上述した実施の形態に、多様な変更又は改良を加えることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載からも明らかである。
 特許請求の範囲、明細書、及び図面中において示した飛行経路確定方法、情報処理装置、プログラム、及び記憶媒体における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現可能である。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「先ず、」、「次に」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
80 情報処理装置
81 処理部
84 表示部
100 無人飛行体
110 UAV制御部
130 ジンバル
140 回転翼機構
150 撮像装置

Claims (20)

  1.  所定領域に対して複数の飛行体により作業を行わせるための飛行経路確定方法であって、
     前記所定領域に関する情報を取得するステップと、
     前記複数の飛行体に関する情報を取得するステップと、
     前記複数の飛行体に関する情報に基づいて、前記所定領域を前記複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割するステップと、
     前記複数のサブ領域ごとに飛行経路を確定するステップと、
     を含む、
     飛行経路確定方法。
  2.  前記複数の飛行体に関する情報は、それぞれの飛行体の起動位置に関する情報を含み、
     前記所定領域を複数のサブ領域に分割するステップは、
     各飛行体ごとに、前記起動位置に関する情報に基づいて前記所定領域の作業開始位置を確定するステップと、
     各飛行体の前記作業開始位置に基づいて、前記所定領域を前記複数のサブ領域に分割するステップと、
     を含む、
     請求項1に記載の飛行経路確定方法。
  3.  前記起動位置に関する情報に基づいて前記所定領域の作業開始位置を確定するステップは、
     前記起動位置と前記所定領域の重心点とを接続する直線が前記所定領域の外周に交わる位置を作業開始位置として確定するステップと、
     を含む、
     請求項2に記載の飛行経路確定方法。
  4.  前記起動位置に関する情報に基づいて前記所定領域の作業開始位置を確定するステップは、
     前記所定領域における前記起動位置に最も接近する位置を作業開始位置として確定するステップと、
     を含む、
     請求項2に記載の飛行経路確定方法。
  5.  前記起動位置に関する情報に基づいて前記所定領域の作業開始位置を確定するステップは、
     起動位置が所定程度以上集中する複数の飛行体が存在する場合において、
     当該起動位置から前記所定領域に対して放射状に分散する複数の直線が前記所定領域の外周に交わる位置をそれぞれの飛行体の作業開始位置として確定するステップと、
     を含む、
     請求項2ないし4のいずれか一項に記載の飛行経路確定方法。
  6.  前記飛行体に関する情報は、飛行体の作業効率に関する情報をさらに含み、
     前記所定領域を複数のサブ領域に分割するステップは、
     前記所定領域を各飛行体の作業効率に応じた面積比になるように複数のサブ領域に分割するステップと、
     を含む、
     請求項1ないし5のいずれか一項に記載の飛行経路確定方法。
  7.  前記所定領域が複数のサブ領域に分割された後に、
     前記複数のサブ領域のうちの少なくとも一つを表示するステップをさらに含む、
     請求項1ないし6のいずれか一項に記載の飛行経路確定方法。
  8.  前記サブ領域ごとに飛行経路が確定された後に、
     前記飛行経路を表示するステップをさらに含む、
     請求項1ないし7のいずれか一項に記載の飛行経路確定方法。
  9.  前記サブ領域ごとに飛行経路が確定された後に、
     前記複数の飛行体に対して、それぞれ作業を行う飛行経路に関する情報を送信するステップと、
     を含む、
     請求項1ないし8のいずれか一項に記載の飛行経路確定方法。
  10.  所定領域を分割して作業をする複数の飛行体に通信可能な情報処理装置において、
     処理部、を有し、
     前記処理部は、
     前記所定領域に関する情報を取得し、前記複数の飛行体に関する情報を取得し、前記複数の飛行体に関する情報に基づいて、前記所定領域を前記複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割し、前記複数のサブ領域ごとに飛行経路を確定する、
     情報処理装置。
  11.  前記複数の飛行体に関する情報は、それぞれの飛行体の起動位置に関する情報を含み、
     前記処理部は、
     各飛行体ごとに、前記起動位置に関する情報に基づいて前記所定領域の作業開始位置を確定し、各飛行体の前記作業開始位置に基づいて前記所定領域を前記複数のサブ領域に分割する、
     請求項10に記載の情報処理装置。
  12.  前記処理部は、
     前記起動位置と前記所定領域の重心点とを接続する直線が前記所定領域の外周に交わる位置を作業開始位置として確定する、
     請求項11に記載の情報処理装置。
  13.  前記処理部は、
     前記所定領域における前記起動位置に最も接近する位置を作業開始位置として確定する、
     請求項11に記載の情報処理装置。
  14.  前記処理部は、
     起動位置が所定程度以上集中する複数の飛行体が存在する場合において、
     当該起動位置から前記所定領域に対して放射状に分散する複数の直線が前記所定領域の外周に交わる位置をそれぞれの飛行体の作業開始位置として確定する、
     請求項11ないし13のいずれか一項に記載の情報処理装置。
  15.  前記飛行体に関する情報は、飛行体の作業効率に関する情報をさらに含み、
     前記処理部は、
     前記所定領域を各飛行体の作業効率に応じた面積比になるように複数のサブ領域に分割する、
     請求項10ないし14のいずれか一項に記載の情報処理装置。
  16.  さらに、表示部を含み、
     前記処理部は、
     前記所定領域が複数のサブ領域に分割された後に、前記複数のサブ領域のうちの少なくとも一つを表示させる、
     請求項10ないし15のいずれか一項に記載の情報処理装置。
  17.  さらに、表示部を含み、
     前記処理部は、
     前記サブ領域ごとに飛行経路が確定された後に、前記飛行経路を表示させる、
     請求項10ないし16のいずれか一項に記載の情報処理装置。
  18.  前記処理部は、
     前記サブ領域ごとに飛行経路が確定された後に、前記複数の飛行体に対して、それぞれ作業を行う飛行経路に関する情報を送信する、
     請求項10ないし17のいずれか一項に記載の情報処理装置。
  19.  所定領域に対して作業を行う複数の飛行体に通信可能な情報処理装置に、
     前記所定領域に関する情報を取得するステップと、
     前記複数の飛行体に関する情報を取得するステップと、
     前記複数の飛行体に関する情報に基づいて、前記所定領域を前記複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割するステップと、
     前記複数のサブ領域ごとに飛行経路を確定するステップと、
     を実行させる、プログラム。
  20.  所定領域に対して作業を行う複数の飛行体に通信可能な情報処理装置に、
     前記所定領域に関する情報を取得するステップと、
     前記複数の飛行体に関する情報を取得するステップと、
     前記複数の飛行体に関する情報に基づいて、前記所定領域を前記複数の飛行体がそれぞれ作業を行う複数のサブ領域に分割するステップと、
     前記複数のサブ領域ごとに飛行経路を確定するステップと、
     を実行させるプログラムを格納する、
     コンピュータ読み取り可能な記憶媒体。
PCT/JP2017/015887 2017-04-20 2017-04-20 飛行経路確定方法、情報処理装置、プログラム及び記録媒体 WO2018193578A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019513160A JP6894970B2 (ja) 2017-04-20 2017-04-20 飛行経路確定方法、情報処理装置、プログラム及び記録媒体
CN201780089470.1A CN110622088B (zh) 2017-04-20 2017-04-20 飞行路径确定方法、信息处理装置、程序和记录介质
PCT/JP2017/015887 WO2018193578A1 (ja) 2017-04-20 2017-04-20 飛行経路確定方法、情報処理装置、プログラム及び記録媒体
US16/657,569 US11334095B2 (en) 2017-04-20 2019-10-18 Flight path determination method, information processing device, program, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015887 WO2018193578A1 (ja) 2017-04-20 2017-04-20 飛行経路確定方法、情報処理装置、プログラム及び記録媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/657,569 Continuation US11334095B2 (en) 2017-04-20 2019-10-18 Flight path determination method, information processing device, program, and storage medium

Publications (1)

Publication Number Publication Date
WO2018193578A1 true WO2018193578A1 (ja) 2018-10-25

Family

ID=63856542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015887 WO2018193578A1 (ja) 2017-04-20 2017-04-20 飛行経路確定方法、情報処理装置、プログラム及び記録媒体

Country Status (4)

Country Link
US (1) US11334095B2 (ja)
JP (1) JP6894970B2 (ja)
CN (1) CN110622088B (ja)
WO (1) WO2018193578A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019101770A (ja) * 2017-12-04 2019-06-24 株式会社Subaru 移動体の動作制御装置、移動体の動作制御方法及び移動体の動作制御プログラム
CN111033419A (zh) * 2018-12-03 2020-04-17 深圳市大疆创新科技有限公司 飞行器的航线规划方法、控制台、飞行器系统及存储介质
WO2020209255A1 (ja) * 2019-04-08 2020-10-15 株式会社ナイルワークス ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP2021056691A (ja) * 2019-09-30 2021-04-08 株式会社トップライズ 移動体の管理システム、移動体の管理装置、及び移動体の管理方法
JP2021056692A (ja) * 2019-09-30 2021-04-08 株式会社トップライズ 移動体の管理システム、移動体の管理装置、及び移動体の管理方法
WO2022044098A1 (ja) * 2020-08-25 2022-03-03 三菱電機株式会社 移動制御装置及び移動制御方法
WO2024010281A1 (ko) * 2022-07-05 2024-01-11 에스케이텔레콤 주식회사 운행 지역에 대한 정보에 기초하여 uam의 항로를 복수의 영역들로 분할하는 방법 및 장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543836B2 (en) * 2017-04-28 2023-01-03 Optim Corporation Unmanned aerial vehicle action plan creation system, method and program
US11657437B2 (en) * 2017-11-29 2023-05-23 Angelswing Inc Method and apparatus for providing drone data by matching user with provider
CN110286670A (zh) * 2019-04-09 2019-09-27 丰疆智能科技股份有限公司 多台自动收割机的行驶路径规划系统及其方法
CN113826054A (zh) * 2020-09-28 2021-12-21 深圳市大疆创新科技有限公司 一种航线规划方法及设备
CN112783201A (zh) * 2020-12-28 2021-05-11 广州极飞科技股份有限公司 基于无人机协同作业的方法、装置、处理器及母无人装置
KR102364614B1 (ko) * 2021-11-04 2022-02-18 주식회사 디지털커브 무인 비행체들의 그룹 비행을 위한 그룹 비행 경로를 결정하고, 무인 비행체들을 제어하는 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205028A (ja) * 2004-01-23 2005-08-04 Sharp Corp 自走式掃除機
WO2016053194A1 (en) * 2014-10-03 2016-04-07 Infinium Robotics Pte Ltd System for performing tasks in an operating region and method of controlling autonomous agents for performing tasks in the operating region

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988673B2 (ja) 2008-09-01 2012-08-01 株式会社日立製作所 撮影計画作成システム
CN102419598B (zh) * 2011-12-08 2013-11-06 南京航空航天大学 一种多无人机协同侦察移动目标的方法
US9417070B1 (en) * 2013-04-01 2016-08-16 Nextgen Aerosciences, Inc. Systems and methods for continuous replanning of vehicle trajectories
US8938359B1 (en) * 2013-07-01 2015-01-20 The Boeing Company Handle bar route extension
CN105511458B (zh) * 2014-09-25 2019-06-28 中国科学院深圳先进技术研究院 自动行走设备及其路径规划方法
JP6073387B2 (ja) * 2015-01-16 2017-02-01 富士重工業株式会社 飛行経路探索装置及び飛行経路探索プログラム
US9418560B1 (en) * 2015-04-07 2016-08-16 Raytheon Company Automated sensor platform routing and tracking for observing a region of interest while avoiding obstacles
CN105739504B (zh) * 2016-04-13 2019-02-01 上海物景智能科技有限公司 一种机器人工作区域的排序方法及排序系统
CN105955294A (zh) * 2016-05-26 2016-09-21 北京大工科技有限公司 控制无人机植保作业的方法及装置
CN106227237B (zh) * 2016-09-29 2019-03-29 广州极飞科技有限公司 无人机的飞行任务的分配方法和装置
CN106502264B (zh) * 2016-10-26 2018-05-01 广州极飞科技有限公司 植保无人机的作业系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205028A (ja) * 2004-01-23 2005-08-04 Sharp Corp 自走式掃除機
WO2016053194A1 (en) * 2014-10-03 2016-04-07 Infinium Robotics Pte Ltd System for performing tasks in an operating region and method of controlling autonomous agents for performing tasks in the operating region

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019101770A (ja) * 2017-12-04 2019-06-24 株式会社Subaru 移動体の動作制御装置、移動体の動作制御方法及び移動体の動作制御プログラム
JP7076200B2 (ja) 2017-12-04 2022-05-27 株式会社Subaru 移動体の動作制御装置、移動体の動作制御方法及び移動体の動作制御プログラム
CN111033419A (zh) * 2018-12-03 2020-04-17 深圳市大疆创新科技有限公司 飞行器的航线规划方法、控制台、飞行器系统及存储介质
CN111033419B (zh) * 2018-12-03 2024-04-16 深圳市大疆创新科技有限公司 飞行器的航线规划方法、控制台、飞行器系统及存储介质
JP6994798B2 (ja) 2019-04-08 2022-01-14 株式会社ナイルワークス ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JPWO2020209255A1 (ja) * 2019-04-08 2021-12-16 株式会社ナイルワークス ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
WO2020209255A1 (ja) * 2019-04-08 2020-10-15 株式会社ナイルワークス ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP2021056692A (ja) * 2019-09-30 2021-04-08 株式会社トップライズ 移動体の管理システム、移動体の管理装置、及び移動体の管理方法
JP2021056691A (ja) * 2019-09-30 2021-04-08 株式会社トップライズ 移動体の管理システム、移動体の管理装置、及び移動体の管理方法
JP7355316B2 (ja) 2019-09-30 2023-10-03 株式会社トップライズ 移動体の管理システム、移動体の管理装置、及び移動体の管理方法
JP7355315B2 (ja) 2019-09-30 2023-10-03 株式会社トップライズ 移動体の管理システム、移動体の管理装置、及び移動体の管理方法
WO2022044098A1 (ja) * 2020-08-25 2022-03-03 三菱電機株式会社 移動制御装置及び移動制御方法
JPWO2022044098A1 (ja) * 2020-08-25 2022-03-03
JP7175430B2 (ja) 2020-08-25 2022-11-18 三菱電機株式会社 移動制御装置及び移動制御方法
WO2024010281A1 (ko) * 2022-07-05 2024-01-11 에스케이텔레콤 주식회사 운행 지역에 대한 정보에 기초하여 uam의 항로를 복수의 영역들로 분할하는 방법 및 장치

Also Published As

Publication number Publication date
CN110622088B (zh) 2023-05-16
JPWO2018193578A1 (ja) 2020-02-20
JP6894970B2 (ja) 2021-06-30
US20200050189A1 (en) 2020-02-13
CN110622088A (zh) 2019-12-27
US11334095B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2018193578A1 (ja) 飛行経路確定方法、情報処理装置、プログラム及び記録媒体
US11854413B2 (en) Unmanned aerial vehicle visual line of sight control
AU2014349144B2 (en) Unmanned vehicle searches
JP6786667B2 (ja) 飛行経路に沿った地形の表示
EP2685336A1 (en) Autonomous airspace flight planning and virtual airspace containment system
WO2017181512A1 (zh) 无人机的飞行控制方法和装置
WO2018214074A1 (zh) 无人飞行器的返航控制方法、设备及无人飞行器
US20180067493A1 (en) Intelligent gimbal assembly and method for unmanned vehicle
WO2020155425A1 (zh) 无人机的禁飞控制方法、装置、设备以及存储介质
CN104808675A (zh) 基于智能终端的体感飞行操控系统及终端设备
AU2019306742A1 (en) Method for exploration and mapping using an aerial vehicle
JP6730585B2 (ja) 無人航空機、システム、その制御方法、及びプログラム
US20240176367A1 (en) Uav dispatching method, server, dock apparatus, system, and storage medium
CN111752296A (zh) 无人机航线控制方法及相关装置
WO2017147142A1 (en) Unmanned aerial vehicle visual line of sight control
JP2018092237A (ja) 無人航空機制御システム、無人航空機制御システムの制御方法、およびプログラム
JP2020140726A (ja) 無人飛行体のフライト管理サーバ及びフライト管理システム
JP2024009938A (ja) 無人飛行体のフライト管理サーバ及びフライト管理システム
JP2018090012A (ja) 無人航空機制御システム、無人航空機制御システムの制御方法、およびプログラム
IL301217A (en) Loosely integrated distributed control over the drone and payloads carried by the drone
JP2023164746A (ja) 作業計画生成システム
US11222546B2 (en) Pairing aircraft during flight
JP6678983B1 (ja) 飛行体の管理サーバ及び管理システム
Lienkov et al. Checking the Flight Stability of a Rotary UAV in Navigation Modes for Different Firmware
KR20210064841A (ko) 지적 측량 드론 및 이를 이용한 지적 측량 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905943

Country of ref document: EP

Kind code of ref document: A1