WO2018193551A1 - 光半導体装置及びその製造方法 - Google Patents
光半導体装置及びその製造方法 Download PDFInfo
- Publication number
- WO2018193551A1 WO2018193551A1 PCT/JP2017/015712 JP2017015712W WO2018193551A1 WO 2018193551 A1 WO2018193551 A1 WO 2018193551A1 JP 2017015712 W JP2017015712 W JP 2017015712W WO 2018193551 A1 WO2018193551 A1 WO 2018193551A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor device
- semiconductor laser
- optical semiconductor
- removal portion
- thin film
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
Definitions
- the present invention relates to an optical semiconductor device and a method for manufacturing the same.
- the method of shortening the length of the active layer in the cavity direction of the semiconductor laser is the simplest.
- the active layer is shortened and the element length is shortened, it becomes difficult to handle the element with tweezers.
- the element end surface may be formed by etching rather than cleaving the element end surface by cleavage.
- a PD photodiode
- This monitor PD is generally less expensive than a semiconductor laser.
- the conventional semiconductor laser in which the end face is formed by dry etching when the etching region is made long, the emitted light is scattered on the bottom surface of the etching removal portion, so that the etching length cannot be made long (see, for example, Patent Document 1).
- the submount cost is increased because the submount is discarded when the chip is defective. Further, in the semiconductor laser in which the monitor PD is integrated, the chip cost is increased as compared with the case where an inexpensive monitor PD is used.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an optical semiconductor device and a manufacturing method thereof that can secure a sufficient monitor current and reduce the chip cost. .
- An optical semiconductor device includes a semiconductor laser having a rear end surface formed on a side surface of a first removal portion from which a part of the rear surface side has been removed, and a bottom surface of the first removal portion. And a metal thin film mirror that reflects back light emitted from the end face toward the monitor photodiode.
- the amount of light received by the monitor photodiode disposed behind the semiconductor laser can be increased by the metal thin film mirror to ensure a sufficient monitor current.
- the chip cost can be reduced.
- FIG. 1 is a cross-sectional view along the resonator direction showing the optical semiconductor device according to the first embodiment of the present invention.
- a first conductivity type InP clad layer 2 On the first conductivity type InP substrate 1, a first conductivity type InP clad layer 2, an active layer 3, a second conductivity type InP clad layer 4, and a second conductivity type contact layer 5 are sequentially laminated. Yes.
- a front electrode 6 for current injection is formed on the InP clad layer 4, and a back electrode 7 is formed on the lower surface of the InP substrate 1.
- the semiconductor laser 8 is formed.
- the semiconductor laser 8 and the semiconductor optical amplifier may be integrated.
- a front end face 10 is formed on the side surface of the removal portion 9 from which a part of the front side of the semiconductor laser 8 has been removed.
- the front end face 10 may be formed by cleavage.
- a rear end surface 12 is formed on the side surface of the removal portion 11 from which a part of the rear surface side of the semiconductor laser 8 has been removed.
- a metal thin film mirror 13 is formed on the bottom surface of the removal portion 11.
- the metal thin film mirror 13 reflects back light emitted from the rear end surface 12 toward the monitor photodiode 14.
- the length of the semiconductor laser 8 in the resonator direction is 200 ⁇ m
- the thickness of the InP cladding layer 2 is 5 ⁇ m
- the length of the removal unit 11 in the resonator direction is 50 ⁇ m
- the emission angle of the back light is 35 °.
- FIG. 2 to 9 are perspective views showing manufacturing steps of the optical semiconductor device according to the first embodiment of the present invention.
- a first conductivity type InP clad layer 2 an active layer 3, and a second conductivity type InP clad layer 4 are sequentially grown on the entire surface of the first conductivity type InP substrate 1. .
- the InP cladding layer 2, the active layer 3, and the InP cladding layer 4 are etched using the insulating film stripe as a mask to form a waveguide ridge.
- both sides of the waveguide ridge are embedded with embedded layers 15.
- the buried layer 15 is composed of a semi-insulating InP or a multilayer film of p-InP layer / n-InP layer.
- a second conductivity type contact layer 5 is grown on the entire surface.
- a mesa is formed as shown in FIG. 6 by forming an insulating film or a photoresist on the entire surface, opening both sides of the waveguide, and performing dry etching or wet etching.
- a part of the rear surface side of the semiconductor laser 8 is removed by etching to form a removed portion 11, and a rear end surface 12 is formed on the side surface of the removed portion 11.
- the front end face 10 may be formed by etching similarly to the rear end face 12, or may be formed by cleavage.
- the rear end face 12 and the front end face 10 may be perpendicular to the resonator direction, or may be acute or obtuse.
- an insulating film 16 is formed on the entire surface, and an opening is formed in the insulating film 16 on the upper surface of the mesa.
- the surface electrode 6 is formed on the contact layer 5 and the insulating film 16.
- the surface electrode 6 is connected to the contact layer 5 through the opening of the insulating film 16.
- the metal thin film mirror 13 is formed on the bottom surface of the removal portion 11.
- the metal thin film mirror 13 may be formed at the same time using the same film as the surface electrode 6 or may be formed in a different process using another film.
- the InP substrate 1 is thinned to about 100 ⁇ m by back surface polishing, and the back electrode 7 is formed on the bottom surface of the InP substrate 1.
- the optical semiconductor device according to the present embodiment is manufactured through the above steps.
- the metal thin film mirror 13 can increase the amount of light received by the monitor photodiode 14 disposed behind the semiconductor laser 8 to ensure a sufficient monitor current. Further, no special submount is required, and the integration of the monitor photodiode 14 is not necessary, so that the chip cost can be reduced.
- the length of the removal unit 11 in the resonator direction is longer than the length of the removal unit 9 in the resonator direction. As a result, the emission light from the front end face of the semiconductor laser 8 is not scattered.
- FIG. FIG. 10 is a cross-sectional view along the resonator direction showing the optical semiconductor device according to the second embodiment of the present invention.
- the bottom surface of the removing unit 11 is inclined with respect to the resonator direction.
- the bottom surface of the removal portion 9 on the front side of the semiconductor laser 8 may be similarly inclined.
- FIG. 11 to 13 are perspective views showing manufacturing steps of the optical semiconductor device according to the second embodiment of the present invention.
- the rear end face 12 of the semiconductor laser 8 is formed by etching.
- the bottom surface of the removal portion 11 is inclined with respect to the resonator direction by using a wet etching solution having anisotropy with respect to the crystal plane.
- the insulating film 16 is formed as shown in FIG. 12, and the surface electrode 6 and the metal thin film mirror 13 are simultaneously formed as shown in FIG.
- the bottom surface of the removal unit 11 is inclined with respect to the resonator direction. For this reason, the height at which the monitor photodiode 14 is attached can be made equal to the height of the semiconductor laser 8, and the mass productivity can be improved by the planar mounting.
- Other configurations and effects are the same as those of the first embodiment.
- FIG. 14 is a cross-sectional view along the resonator direction showing the optical semiconductor device according to the third embodiment of the present invention.
- FIG. 15 is a rear view showing the optical semiconductor device according to the third embodiment of the present invention.
- the bottom surface of the removal unit 11 is U-shaped.
- the bottom surface of the removal portion 9 on the front side of the semiconductor laser 8 may be similarly U-shaped.
- FIG. 16 to 18 are perspective views showing manufacturing steps of the optical semiconductor device according to the third embodiment of the present invention.
- the rear end face 12 of the semiconductor laser 8 is formed by etching.
- the bottom surface of the removal portion 11 is formed in a U shape by wet etching.
- the insulating film 16 is formed as shown in FIG. 17, and the surface electrode 6 and the metal thin film mirror 13 are simultaneously formed as shown in FIG.
- the bottom surface of the removal unit 11 is U-shaped. For this reason, the directivity of the back light can be increased, and the amount of light received by the monitor photodiode 14 can be increased to ensure a sufficient monitor current. Further, the height at which the monitor photodiode 14 is attached can be made equal to the height of the semiconductor laser 8, and the mass productivity can be improved by the planar mounting.
- FIG. 19 to 21 are perspective views showing manufacturing steps of the optical semiconductor device according to the fourth embodiment of the present invention.
- a resist 17 is formed on the semiconductor laser 8 as shown in FIG.
- An opening is formed in the resist 17 on the bottom surface of the removal portion 11.
- a metal thin film 18 is formed on the semiconductor laser 8 and the resist 17, and the metal thin film mirror 13 is formed on the bottom surface of the removal portion 11 in the opening.
- the resist 17 and the metal thin film 18 on the resist 17 are removed.
- the metal thin film mirror 13 can be formed of a metal different from the surface electrode 6. Therefore, it is possible to eliminate the occurrence of a problem that the metal adhering to the laser end face cannot be removed.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Abstract
半導体レーザ(8)の後面側の一部が除去された除去部(11)の側面に後端面(12)が形成されている。金属薄膜ミラー(13)が除去部(11)の底面に形成されている。金属薄膜ミラー(13)は、後端面(12)から出射された背面光をモニターフォトダイオード(14)に向けて反射する。
Description
本発明は、光半導体装置及びその製造方法に関する。
光通信システムにおける光源として半導体レーザを25Gbps以上の高速で動作させるために、半導体レーザの電気容量を低減する必要がある。このため、半導体レーザの共振器方向の活性層の長さを短くする方法が最も簡便である。しかし、活性層を短くし、素子長を短くすると、素子のピンセット等でのハンドリングが困難になる。素子長を例えば200μm程度のハンドリングに必要な長さに保ちつつ活性領域を短くするには、活性領域を素子端面へき開で切断するのではなく、素子端面をエッチングで短く形成すればよい。
また、半導体レーザの光出力をモニターするためにPD(フォトダイオード)を半導体レーザの後方に配置するのが一般的である。このモニターPDは一般に半導体レーザよりも安価なものを使用する。端面をドライエッチングで形成する従来の半導体レーザでは、エッチング領域を長くとると出射光がエッチング除去部の底面でけられてしまうため、エッチング長を長くとれなかった(例えば、特許文献1参照)。
また、光出力をモニターする従来の半導体レーザとして、モニターPDを形成したシリコンサブマウントを用いるもの、活性層とは別の吸収層を持つ面入射型モニターPDを集積化するもの、活性層と同じ吸収層を持つ端面入射型のモニターPDを集積化するものが報告されている(例えば、特許文献2参照)。
モニターPDを形成したサブマウントを用いた半導体レーザでは、チップが不良の場合にサブマウントごと廃却されるため、サブマウントコストが増大していた。また、モニターPDを集積化した半導体レーザでは、安価なモニターPDを使用する場合に比べてチップコストが増大していた。
本発明は、上述のような課題を解決するためになされたもので、その目的は十分なモニター電流を確保し、チップコストを低減することができる光半導体装置及びその製造方法を得るものである。
本発明に係る光半導体装置は、後面側の一部が除去された第1の除去部の側面に後端面が形成された半導体レーザと、前記第1の除去部の底面に形成され、前記後端面から出射された背面光をモニターフォトダイオードに向けて反射する金属薄膜ミラーとを備えることを特徴とする。
本発明では、金属薄膜ミラーにより、半導体レーザの後方に配置したモニターフォトダイオードの受光量を大きくして十分なモニター電流を確保することができる。また、特殊なサブマウントは必要なく、モニターフォトダイオードの集積化も不要であるため、チップコストを低減することができる。
本発明の実施の形態に係る光半導体装置及びその製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
図1は、本発明の実施の形態1に係る光半導体装置を示す共振器方向に沿った断面図である。第一導電型のInP基板1の上に、第一導電型のInPクラッド層2、活性層3、第二導電型のInPクラッド層4、及び第二導電型のコンタクト層5が順に積層されている。InPクラッド層4の上に電流注入用の表面電極6が形成され、InP基板1の下面に裏面電極7が形成されている。これにより半導体レーザ8が形成されている。なお、半導体レーザ8と半導体光増幅器を集積化させてもよい。
図1は、本発明の実施の形態1に係る光半導体装置を示す共振器方向に沿った断面図である。第一導電型のInP基板1の上に、第一導電型のInPクラッド層2、活性層3、第二導電型のInPクラッド層4、及び第二導電型のコンタクト層5が順に積層されている。InPクラッド層4の上に電流注入用の表面電極6が形成され、InP基板1の下面に裏面電極7が形成されている。これにより半導体レーザ8が形成されている。なお、半導体レーザ8と半導体光増幅器を集積化させてもよい。
半導体レーザ8の前面側の一部が除去された除去部9の側面に前端面10が形成されている。なお、前端面10は劈開により形成されていてもよい。半導体レーザ8の後面側の一部が除去された除去部11の側面に後端面12が形成されている。
金属薄膜ミラー13が除去部11の底面に形成されている。金属薄膜ミラー13は、後端面12から出射された背面光をモニターフォトダイオード14に向けて反射する。半導体レーザ8の共振器方向の長さは200μm、InPクラッド層2の厚みは5μm、除去部11の共振器方向の長さは50μm、背面光の出射角度は35°である。
図2~9は、本発明の実施の形態1に係る光半導体装置の製造工程を示す斜視図である。まず、図2に示すように、第一導電型のInP基板1の上の全面に、第一導電型のInPクラッド層2、活性層3、第二導電型のInPクラッド層4を順に成長させる。次に、図3に示すように、絶縁膜ストライプをマスクとして用いてInPクラッド層2、活性層3及びInPクラッド層4をエッチングして導波路リッジを形成する。
次に、図4に示すように、導波路リッジの両脇を埋め込み層15で埋め込む。埋め込み層15は半絶縁性InP又はp-InP層/n-InP層の多層膜等で構成される。次に、図5に示すように、第二導電型のコンタクト層5を全面に成長させる。
次に、全面に絶縁膜又はフォトレジストを形成して導波路の両側を開口してドライエッチング又はウエットエッチングを行うことで、図6に示すようにメサを形成する。この際に半導体レーザ8の後面側の一部をエッチングにより除去して除去部11を形成し、除去部11の側面に後端面12を形成する。前端面10は、後端面12と同様にエッチングにより形成してもよいし、劈開により形成してもよい。後端面12及び前端面10は共振器方向に対して垂直でも、鋭角又は鈍角でもよい。
次に、図7に示すように、全面に絶縁膜16を形成し、メサの上面で絶縁膜16に開口を形成する。次に、図8に示すように、コンタクト層5及び絶縁膜16の上に表面電極6を形成する。表面電極6は絶縁膜16の開口を介してコンタクト層5に接続されている。この表面電極6の形成と同時に、金属薄膜ミラー13を除去部11の底面に形成する。なお、金属薄膜ミラー13は表面電極6と同じ膜を用いて同時に形成してもよいし、別の膜を用いて別の工程で形成してもよい。
次に、図9に示すように、InP基板1を裏面研磨により100μm程度に薄くし、InP基板1の下面に裏面電極7を形成する。以上の工程により本実施の形態に係る光半導体装置が製造される。
本実施の形態では、金属薄膜ミラー13により、半導体レーザ8の後方に配置したモニターフォトダイオード14の受光量を大きくして十分なモニター電流を確保することができる。また、特殊なサブマウントは必要なく、モニターフォトダイオード14の集積化も不要であるため、チップコストを低減することができる。
また、除去部11の共振器方向の長さは除去部9の共振器方向の長さよりも長い。これにより、半導体レーザ8の前端面からの出射光のけられが発生しない。
実施の形態2.
図10は、本発明の実施の形態2に係る光半導体装置を示す共振器方向に沿った断面図である。除去部11の底面が共振器方向に対して傾いている。なお、半導体レーザ8の前面側の除去部9の底面も同様に傾けてもよい。
図10は、本発明の実施の形態2に係る光半導体装置を示す共振器方向に沿った断面図である。除去部11の底面が共振器方向に対して傾いている。なお、半導体レーザ8の前面側の除去部9の底面も同様に傾けてもよい。
図11~13は、本発明の実施の形態2に係る光半導体装置の製造工程を示す斜視図である。図11に示すように、半導体レーザ8の後端面12をエッチングにより形成する。その後に、結晶面に対して異方性を有するウエットエッチング液を用いることで除去部11の底面を共振器方向に対して傾けて形成する。次に、図12に示すように絶縁膜16を形成し、図13に示すように表面電極6と金属薄膜ミラー13を同時に形成する。
本実施の形態では、除去部11の底面が共振器方向に対して傾いている。このため、モニターフォトダイオード14を取り付ける高さを半導体レーザ8の高さと揃えることができ、プレーナー実装で量産性を高めることができる。その他の構成及び効果は実施の形態1と同様である。
実施の形態3.
図14は、本発明の実施の形態3に係る光半導体装置を示す共振器方向に沿った断面図である。図15は、本発明の実施の形態3に係る光半導体装置を示す後面図である。除去部11の底面がU字形状である。なお、半導体レーザ8の前面側の除去部9の底面も同様にU字形状にしてもよい。
図14は、本発明の実施の形態3に係る光半導体装置を示す共振器方向に沿った断面図である。図15は、本発明の実施の形態3に係る光半導体装置を示す後面図である。除去部11の底面がU字形状である。なお、半導体レーザ8の前面側の除去部9の底面も同様にU字形状にしてもよい。
図16~18は、本発明の実施の形態3に係る光半導体装置の製造工程を示す斜視図である。図16に示すように、半導体レーザ8の後端面12をエッチングにより形成する。後端面12の形成前後にウエットエッチングにより除去部11の底面をU字形状に形成する。次に、図17に示すように絶縁膜16を形成し、図18に示すように表面電極6と金属薄膜ミラー13を同時に形成する。
本実施の形態では、除去部11の底面がU字形状である。このため、背面光の指向性を高め、モニターフォトダイオード14の受光量を大きくして十分なモニター電流を確保することができる。また、モニターフォトダイオード14を取り付ける高さを半導体レーザ8の高さと揃えることができ、プレーナー実装で量産性を高めることができる。
実施の形態4.
図19~21は、本発明の実施の形態4に係る光半導体装置の製造工程を示す斜視図である。除去部11を形成した後に、図19に示すように、半導体レーザ8の上にレジスト17を形成する。除去部11の底面においてレジスト17に開口を形成する。次に、図20に示すように、半導体レーザ8及びレジスト17の上に金属薄膜18を成膜して、開口において除去部11の底面に金属薄膜ミラー13を形成する。次に、図21に示すように、レジスト17及びレジスト17の上の金属薄膜18を除去する。
図19~21は、本発明の実施の形態4に係る光半導体装置の製造工程を示す斜視図である。除去部11を形成した後に、図19に示すように、半導体レーザ8の上にレジスト17を形成する。除去部11の底面においてレジスト17に開口を形成する。次に、図20に示すように、半導体レーザ8及びレジスト17の上に金属薄膜18を成膜して、開口において除去部11の底面に金属薄膜ミラー13を形成する。次に、図21に示すように、レジスト17及びレジスト17の上の金属薄膜18を除去する。
このようにリフトオフ法を用いることで、金属薄膜ミラー13を表面電極6とは別の金属で形成することができる。従って、レーザ端面に付着した金属が取れなくなる不具合の発生を無くすことができる。
8 半導体レーザ、9,11 除去部、10 前端面、12 後端面、13 金属薄膜ミラー、14 モニターフォトダイオード、17 レジスト、18 金属薄膜
Claims (6)
- 後面側の一部が除去された第1の除去部の側面に後端面が形成された半導体レーザと、
前記第1の除去部の底面に形成され、前記後端面から出射された背面光をモニターフォトダイオードに向けて反射する金属薄膜ミラーとを備えることを特徴とする光半導体装置。 - 前記半導体レーザの前面側の一部が除去された第2の除去部の側面に前端面が形成され、
前記第1の除去部の共振器方向の長さは前記第2の除去部の共振器方向の長さよりも長いことを特徴とする請求項1に記載の光半導体装置。 - 前記第1の除去部の前記底面が共振器方向に対して傾いていることを特徴とする請求項1又は2に記載の光半導体装置。
- 前記第1の除去部の底面がU字形状であることを特徴とする請求項1又は2に記載の光半導体装置。
- 半導体レーザの後面側の一部をエッチングにより除去して除去部を形成し、前記除去部の側面に後端面を形成する工程と、
前記後端面からの背面光をモニターフォトダイオードに向けて反射する金属薄膜ミラーを前記除去部の底面に形成する工程とを備えることを特徴とする光半導体装置の製造方法。 - 前記除去部を形成した後に前記半導体レーザの上にレジストを形成する工程と、
前記除去部の底面において前記レジストに開口を形成する工程と、
前記半導体レーザ及び前記レジストの上に金属薄膜を成膜して、前記開口において前記除去部の底面に前記金属薄膜ミラーを形成する工程と、
前記レジスト及び前記レジストの上の前記金属薄膜を除去する工程とを備えることを特徴とする請求項5に記載の光半導体装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/015712 WO2018193551A1 (ja) | 2017-04-19 | 2017-04-19 | 光半導体装置及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/015712 WO2018193551A1 (ja) | 2017-04-19 | 2017-04-19 | 光半導体装置及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193551A1 true WO2018193551A1 (ja) | 2018-10-25 |
Family
ID=63856691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015712 WO2018193551A1 (ja) | 2017-04-19 | 2017-04-19 | 光半導体装置及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018193551A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230193A (ja) * | 1988-07-20 | 1990-01-31 | Fujitsu Ltd | 半導体レーザ装置 |
JPH03217067A (ja) * | 1990-01-22 | 1991-09-24 | Mitsubishi Electric Corp | 半導体レーザ装置 |
JPH0437082A (ja) * | 1990-05-31 | 1992-02-07 | Matsushita Electron Corp | 半導体レーザ装置 |
JPH09214055A (ja) * | 1996-02-05 | 1997-08-15 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子 |
JPH09223844A (ja) * | 1995-12-15 | 1997-08-26 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子及びその製造方法 |
JPH09307191A (ja) * | 1996-05-15 | 1997-11-28 | Furukawa Electric Co Ltd:The | レーザダイオードモジュール |
JP2001203419A (ja) * | 2000-01-21 | 2001-07-27 | Sumitomo Electric Ind Ltd | 発光装置 |
JP2010161146A (ja) * | 2009-01-07 | 2010-07-22 | Sumitomo Electric Ind Ltd | 光送信モジュール |
JP2011040552A (ja) * | 2009-08-11 | 2011-02-24 | Opnext Japan Inc | マルチビーム半導体レーザ装置 |
JP2013089791A (ja) * | 2011-10-19 | 2013-05-13 | Rohm Co Ltd | マルチビーム半導体レーザ装置 |
JP2015519008A (ja) * | 2012-05-08 | 2015-07-06 | ビノプティクス・コーポレイションBinoptics Corporation | ビーム形状の改良を伴うレーザ |
-
2017
- 2017-04-19 WO PCT/JP2017/015712 patent/WO2018193551A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230193A (ja) * | 1988-07-20 | 1990-01-31 | Fujitsu Ltd | 半導体レーザ装置 |
JPH03217067A (ja) * | 1990-01-22 | 1991-09-24 | Mitsubishi Electric Corp | 半導体レーザ装置 |
JPH0437082A (ja) * | 1990-05-31 | 1992-02-07 | Matsushita Electron Corp | 半導体レーザ装置 |
JPH09223844A (ja) * | 1995-12-15 | 1997-08-26 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子及びその製造方法 |
JPH09214055A (ja) * | 1996-02-05 | 1997-08-15 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子 |
JPH09307191A (ja) * | 1996-05-15 | 1997-11-28 | Furukawa Electric Co Ltd:The | レーザダイオードモジュール |
JP2001203419A (ja) * | 2000-01-21 | 2001-07-27 | Sumitomo Electric Ind Ltd | 発光装置 |
JP2010161146A (ja) * | 2009-01-07 | 2010-07-22 | Sumitomo Electric Ind Ltd | 光送信モジュール |
JP2011040552A (ja) * | 2009-08-11 | 2011-02-24 | Opnext Japan Inc | マルチビーム半導体レーザ装置 |
JP2013089791A (ja) * | 2011-10-19 | 2013-05-13 | Rohm Co Ltd | マルチビーム半導体レーザ装置 |
JP2015519008A (ja) * | 2012-05-08 | 2015-07-06 | ビノプティクス・コーポレイションBinoptics Corporation | ビーム形状の改良を伴うレーザ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5387671B2 (ja) | 半導体レーザ及び集積素子 | |
JP3934828B2 (ja) | 半導体レーザ装置 | |
JP2008060445A (ja) | 発光素子 | |
JP6375960B2 (ja) | 光半導体装置 | |
US6521476B2 (en) | Method for manufacturing a semiconductor optical functional device | |
JP6820671B2 (ja) | 光回路デバイスとこれを用いた光トランシーバ | |
JP3732551B2 (ja) | 半導体装置の製造方法 | |
JP2024102330A (ja) | 量子カスケードレーザ素子及び量子カスケードレーザ装置 | |
US5438208A (en) | Mirror coupled monolithic laser diode and photodetector | |
TWI737336B (zh) | 半導體光積體元件及半導體光積體元件之製造方法 | |
US10381798B2 (en) | Hybrid photon device having etch stop layer and method of fabricating the same | |
JP3223930B2 (ja) | 光デバイス | |
WO2018193551A1 (ja) | 光半導体装置及びその製造方法 | |
WO2021200583A1 (ja) | 量子カスケードレーザ素子及び量子カスケードレーザ装置 | |
JPH09129971A (ja) | 半導体レーザ | |
JPH1187840A (ja) | 半導体光素子 | |
JP6747521B2 (ja) | 半導体レーザ素子、半導体レーザ素子の製造方法 | |
JP2001267639A (ja) | 光素子搭載基板及び多波長光源 | |
JP2021163924A (ja) | 量子カスケードレーザ素子及び量子カスケードレーザ装置 | |
WO2018037450A1 (ja) | 光デバイス及び光デバイスの製造方法 | |
JP2010080707A (ja) | 半導体光機能デバイス | |
JPH10256663A (ja) | 光増幅器集積光分波器及びその製造方法 | |
JPH11145558A (ja) | 半導体光素子、送受信モジュールおよび光通信システム | |
JP2009016677A (ja) | 光半導体装置 | |
JP6435820B2 (ja) | 光半導体装置および光半導体素子の実装方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17906661 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17906661 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |