WO2018192386A1 - 空调室内机 - Google Patents

空调室内机 Download PDF

Info

Publication number
WO2018192386A1
WO2018192386A1 PCT/CN2018/082394 CN2018082394W WO2018192386A1 WO 2018192386 A1 WO2018192386 A1 WO 2018192386A1 CN 2018082394 W CN2018082394 W CN 2018082394W WO 2018192386 A1 WO2018192386 A1 WO 2018192386A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
shaped heat
indoor unit
air conditioner
line
Prior art date
Application number
PCT/CN2018/082394
Other languages
English (en)
French (fr)
Inventor
徐�明
樊明敬
董志钢
唐波
董慧
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2018192386A1 publication Critical patent/WO2018192386A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0029Axial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to an indoor unit of an air conditioner.
  • a multi-stage evaporator is wrapped around the outer circumference of the cross-flow fan and located on the upper side of the cross-flow fan.
  • the air conditioner is running, especially under high temperature and cooling conditions, there is more condensed water on the evaporator, and water blowing may occur.
  • the use of a cross-flow fan produces a large amount of noise when the wind is supplied at a long distance.
  • the existing partial improvement technology adopts an axial flow fan instead of a cross flow fan, and a flat plate evaporator is used instead of the multi-stage evaporator.
  • a flat plate evaporator is used instead of the multi-stage evaporator.
  • An object of the present invention is to overcome at least one of the defects in the prior art, and to provide an air conditioner indoor unit which is advantageous for long-distance air supply, has no dripping phenomenon, has a large heat exchange area of a heat exchanger, and has high heat exchange efficiency.
  • a further object of the present invention is to improve the heat exchange efficiency by allowing the wind of the axial flow fan to pass through the line-shaped heat exchanger more uniformly.
  • an air conditioner indoor unit including:
  • a housing having an air inlet and an air outlet
  • a line-shaped heat exchanger disposed in the casing and connected by a plurality of rectangular plate-shaped heat exchange sections arranged up and down and extending in a lateral direction of the casing to form a polygonal line structure;
  • An axial flow fan disposed within the housing, the axis of rotation being in a horizontal plane and perpendicular to a lateral direction of the housing;
  • the angle between each adjacent two rectangular plate-shaped heat exchange segments is ⁇ , and the closest distance between the fan blades of the axial flow fan and the line-shaped heat exchanger is L in the horizontal direction, and the radial edge and axial flow of the fan blades of the axial flow fan
  • the maximum distance of the rotation axis of the fan is R, and the vertical distance between the top and bottom edges of the linear heat exchanger is H.
  • the air conditioner indoor unit is configured such that L and ⁇ satisfy the preset relationship, so that L and 2R/H satisfy the pre- Set the relationship.
  • L and ⁇ , L and 2R/H satisfy the following relationship:
  • A, a, b, and c are preset constants, the units of L, R, and H are mm, and the unit of ⁇ is rad.
  • the value of A ranges from 360 to 580, the range of a ranges from -252 to -236, the range of b ranges from 12300 to 13100, and the range of c ranges from 28.5 to 48.6.
  • all rectangular plate-shaped heat exchange sections of the line-shaped heat exchanger have the same shape.
  • the line-shaped heat exchanger is symmetrical about a horizontal plane of symmetry; and the axis of rotation of the axial fan is located within a horizontal plane of symmetry of the line-shaped heat exchanger.
  • the line-shaped heat exchanger is composed of four rectangular plate-shaped heat exchange segments, and the four rectangular plate-shaped heat exchange segments are connected into two "V"-shaped structures with openings facing the air outlet.
  • the axial flow fan is disposed between the air outlet and the linear heat exchanger.
  • the line-shaped heat exchanger extends in a strip shape along a lateral direction of the casing; the number of axial fans is plural and arranged along a lateral direction of the casing; and the number of the air outlets is equal to the number of axial fans. Match one-to-one with the axial fan.
  • the line-shaped heat exchanger is a one-piece finned heat exchanger.
  • the air-conditioning indoor unit of the present invention is provided with an axial flow fan, and the axial flow fan is completely different from the air supply principle of the cross-flow fan commonly used in the prior art, and the axial flow fan has less noise when supplied by a long distance.
  • the present invention adopts a polygonal heat exchanger, which increases the heat exchange area and improves the running performance of the air conditioner indoor unit compared to the flat heat exchanger.
  • the present invention can make the surface of the line-shaped heat exchanger after the axial flow fan is turned on by satisfying the preset relationship between the parameters L and ⁇ , L and 2R/H of the line-shaped heat exchanger and the axial flow fan.
  • the ventilation is relatively uniform, which improves the heat exchange efficiency.
  • L and ⁇ , L and 2R/H satisfy the following formula
  • the range of values of constants such as A, a, b, and c is further limited. After determining some parameters of L, ⁇ , and R and H, the preferred range of other parameters can be determined, and the wind of the axial flow fan is more uniform.
  • the ground passes through a line-shaped heat exchanger to improve heat exchange efficiency.
  • all rectangular plate-shaped heat exchange sections of the line-shaped heat exchanger have the same shape, and the line-shaped heat exchanger is symmetric about a horizontal symmetry plane, and the rotation axis of the axial flow fan is located in a line shape.
  • the horizontal symmetry plane of the heat exchanger or the line-shaped heat exchanger consists of four rectangular plate-shaped heat exchange sections, and is connected into two "V"-shaped structures with openings facing the air outlet, all for the axial flow fan The wind passes through the line-shaped heat exchanger more evenly to improve heat exchange efficiency.
  • FIG. 1 is an exploded perspective view of an indoor unit of an air conditioner according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the cooperation of the axial flow fan and the line-shaped evaporator of the air-conditioning indoor unit shown in FIG. 1.
  • the air conditioner indoor unit according to the embodiment of the present invention is described below with reference to FIG. 1 and FIG. 2, in the description of the embodiments of the present invention, "front”, “back”, “upper”, “lower”, “top”, “bottom”,
  • the orientation or positional relationship of the indications “inside”, “outside”, “transverse”, and the like is based on the orientation or positional relationship shown in the drawings, and is merely for convenience of description of the present invention and simplified description, and does not indicate or imply the indicated device or component. It must be constructed and operated in a particular orientation, and is not to be construed as limiting the invention.
  • the positive x-axis is the front
  • the y-axis direction is the lateral direction of the casing
  • the z-axis is the upper direction.
  • the air conditioning indoor unit 10 of the embodiment of the present invention may generally include a housing having an air inlet 122 and an air outlet 112, a line-shaped heat exchanger 200, and one or more axial fans 300.
  • the air conditioner indoor unit 10 and the air conditioner outdoor unit are connected by pipelines, and the steam compression refrigeration system is used for cooling/heating. The specific principle and structure of the refrigeration system need not be described here.
  • the housing may include a front panel 110, a rear housing 120, and a water receiving tray 130.
  • the air outlet 112 may be opened on the front panel 110, and the air inlet 122 may be disposed on the rear housing 120.
  • the line-shaped heat exchanger 200 is disposed in the casing, and is connected to form a polygonal line structure by a plurality of rectangular plate-shaped heat exchange sections 210 arranged up and down and extending in the lateral direction (y-axis direction) of the casing.
  • the axial flow fan 300 is disposed in the housing, and the rotation axis X1 is located in a horizontal plane and perpendicular to the lateral direction of the housing (ie, X1 is parallel to the x-axis), and the axial flow fan 300 includes the motor 310 and a plurality of fans that are driven to rotate by the motor.
  • the blade 320, the rotating shaft of the motor, is the aforementioned axis of rotation X1.
  • the surface of the device 200 exchanges heat with the refrigerant inside thereof to form a heat exchange wind, which is then blown back from the air outlet 112.
  • the condensed water on the linear heat exchanger 200 will drip on the water receiving tray 130, and then be taken out from the water receiving tray 130 to the outside, and will not be blown out by the axial flow fan 300 to cause water blowing. .
  • the angle ⁇ of each adjacent two rectangular plate-shaped heat exchange sections 210 (the angle between each adjacent two rectangular plate-shaped heat exchange sections 210 is equal), the blade 320 of the axial flow fan 300 and The closest spacing of the linear heat exchanger 200 in the horizontal direction is L, L affects the wind speed passing through the polygonal heat exchanger 200, and the radial edge of the blade 320 of the axial flow fan 300 and the rotation axis X1 of the axial flow fan 300 are the most
  • the long distance is R
  • the vertical distance between the top side and the bottom side of the line heat exchanger 200 is H (that is, the height of the line heat exchanger 200).
  • the embodiment of the present invention adopts the line-shaped heat exchanger 200, which increases the heat exchange area and improves the running performance of the air conditioner indoor unit 10 compared to the flat heat exchanger.
  • the heat transfer efficiency of the heat exchanger is closely related to whether the wind is more evenly passed through the surface of the heat exchanger. Therefore, how to make the wind pass the line heat exchanger 200 more uniformly is very important.
  • the inventors have learned through theoretical analysis that the relationship between L and ⁇ and the relationship between L and 2R/H have a large heat exchange efficiency when the folded-line heat exchanger 200 and the axial flow fan 300 are selected and installed. influences. In order to achieve better heat exchange efficiency, it is necessary to make L and ⁇ satisfy the preset relationship, so that L and 2R/H satisfy the preset relationship.
  • the inventors selected L, ⁇ , 2R/H through a large number of experiments to test the heat transfer efficiency, so that L and ⁇ , L and 2R/H satisfy the following relationship to obtain higher heat exchange efficiency:
  • A, a, b, and c are preset constants, the units of L, R, and H are mm, and the unit of ⁇ is rad.
  • the value of A may range from 360 to 580 (including the endpoints, the same below), further preferably from 480 to 520, most preferably 500; a ranges from -252 to -236, further preferably From -246 to -242, most preferably -244; b ranges from 12300 to 13100, further from 12400 to 12500, most preferably 12464; c ranges from 28.5 to 48.6, further preferably from 32.5 to 42.5 Most preferably 37.5.
  • the maximum heat exchange efficiency can be obtained with the most preferred value.
  • the shape of all of the rectangular plate-shaped heat exchange sections 210 of the line-shaped heat exchanger 200 may be the same, that is, the heat exchange area of the rectangular plate-shaped heat exchange sections 210 may be the same. It is also possible to make the line-shaped heat exchanger 200 symmetrical about a horizontal plane of symmetry such that the axis of rotation X1 of the axial fan 300 is located within the horizontal plane of symmetry of the line-shaped heat exchanger 200. The above two further improvements are also intended to pass the wind through the polygonal heat exchanger 200 as much as possible.
  • the fold-shaped heat exchanger 200 may be composed of four rectangular plate-shaped heat exchange segments 210, and the four rectangular plate-shaped heat exchange segments 210 are connected into two openings toward the air outlet 112.
  • the "V"-shaped structure, or a "W”-shaped structure causes the opening of the "V"-shaped structure to face the axial flow fan 300, which can increase the gathering effect and increase the wind speed.
  • the axial flow fan 300 can be disposed between the air outlet 112 and the line heat exchanger 200.
  • the air outlet 112 is provided on the front panel 110 of the air conditioner indoor unit 10, and the axial fan 300 is disposed in front of the line heat exchanger 200. That is, the line-shaped heat exchanger 200 is disposed on the suction side of the axial flow fan 300.
  • the suction side space forms a negative pressure so that air of various angles can flow toward the axial flow fan 300. Increases heat transfer efficiency.
  • the axial flow fan 300 can also be disposed on the rear side of the line-shaped heat exchanger 200 such that the line-shaped heat exchanger 200 is disposed on the exhaust side of the axial flow fan 300.
  • the air conditioner indoor unit 10 of the embodiment of the invention may be wall-mounted or floor-standing.
  • the air conditioner indoor unit 10 is of a wall type, and the fold line heat exchanger 200 extends in a strip shape along the lateral direction of the casing.
  • the number of axial fans 300 is plural and arranged in the lateral direction of the casing, and the number of the outlets 112 is equal to the number of the axial fans 300 to match the axial fans 300 one by one.
  • the air outlet 112 may be circular or of other shapes as shown in FIG.
  • the above-mentioned polygonal heat exchanger 200 is a one-piece finned heat exchanger, that is, formed by a single plate heat exchanger that is bent a plurality of times to simplify the manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种空调室内机(10),包括具有进风口(122)和出风口(112)的壳体;折线形换热器(200),其由多个矩形板状换热段(210)连接形成折线形结构;轴流风机(300);且每相邻两个矩形板状换热段(210)的夹角相同且记为θ,轴流风机(300)的扇叶(320)与折线形换热器(200)在水平方向的最近间距为L,轴流风机(300)的扇叶(320)径向边缘与轴流风机(300)的旋转轴线最远距离为R,折线形换热器(200)的顶边与底边的竖向间距为H,空调室内机(10)配置成使L与θ满足预设关系,使L与2R/H满足预设关系。

Description

空调室内机 技术领域
本发明涉及空调技术领域,特别涉及一种空调室内机。
背景技术
传统的空调室内机特别是壁挂式空调室内机中,多段式蒸发器包裹在贯流风机的外周,并位于贯流风机上侧。空调运行时,特别是在高温制冷工况下,蒸发器上凝结水较多,会出现吹水现象。而且,采用贯流风机在远距离送风时会产生较大噪音。
现有部分改进技术采用轴流风机代替贯流风机,采用平板式蒸发器代替多段式蒸发器,但受到空调室内机的整机体积限制,难以布置换热面积较大的平板式蒸发器,使室内机的换热效率受到很大限制。
发明内容
本发明的一个目的旨在克服现有技术中的至少一个缺陷,提供一种利于远距离送风,没有滴水现象、换热器换热面积较大,换热效率较高的空调室内机。
本发明的进一步的目的是要提使轴流风机的风能够更加均匀地通过折线形换热器,提升换热效率。
为了实现上述目的,本发明提供一种空调室内机,包括:
具有进风口和出风口的壳体;
折线形换热器,设置在壳体内,其由多个上下排列且沿壳体的横向方向延伸的矩形板状换热段连接形成折线形结构;和
轴流风机,设置在壳体内,其旋转轴线位于水平面内且垂直于壳体的横向方向;且
每相邻两个矩形板状换热段的夹角为θ,轴流风机的扇叶与折线形换热器在水平方向的最近间距为L,轴流风机的扇叶径向边缘与轴流风机的旋转轴线最远距离为R,折线形换热器的顶边与底边的竖向间距为H,空调室内机配置成使L与θ满足预设关系,使L与2R/H满足预设关系。
可选地,L与θ、L与2R/H满足以下关系:
L=1000/θ+c;
Figure PCTCN2018082394-appb-000001
式中,A、a、b和c为预设常数,L、R和H的单位为mm,θ的单位为rad。
可选地,A的取值范围为360至580,a的取值范围为-252至-236,b的取值范围为12300至13100,c的取值范围为28.5至48.6。
可选地,A=500,a=-244,b=12464,c=37.5。
可选地,折线形换热器的全部矩形板状换热段的形状相同。
可选地,折线形换热器关于一个水平对称面对称;且轴流风机的旋转轴线位于折线形换热器的水平对称面内。
可选地,折线形换热器由四个矩形板状换热段组成,四个矩形板状换热段连接成两个开口朝向出风口的“V”形结构。
可选地,轴流风机设置在出风口与折线形换热器之间。
可选地,折线形换热器沿壳体的横向方向延伸成长条状;轴流风机的数量为多个,并沿壳体的横向方向排列;且出风口的数量等于轴流风机的数量,以与轴流风机一一匹配。
可选地,折线形换热器为一体结构的翅片式换热器。
本发明的空调室内机设置了轴流风机,轴流风机与现有技术常用的贯流风机的送风原理完全不同,轴流风机远距离送风时的噪音更小。另外,本发明采用折线形换热器,相比于平板状的换热器,增大了换热面积,提升了空调室内机的运行性能。此外,本发明通过使折线形换热器与轴流风机的参数L与θ、L与2R/H满足预设关系,能够在轴流风机开启后,使折线形换热器的各处表面的通风比较均匀,提升其换热效率。
进一步地,本发明的空调室内机中,使L与θ、L与2R/H满足下述公式,
L=1000/θ+c;
Figure PCTCN2018082394-appb-000002
并进一步对A、a、b和c等常数的取值范围进行限定,在确定L、θ以及R、H的部分参数后,能够确定出其他参数的优选范围,使轴流风机的风更加均匀地通过折线形换热器,提升换热效率。
进一步地,本发明空调室内机,使折线形换热器的全部矩形板状换热段 的形状相同,使折线形换热器关于一个水平对称面对称,轴流风机的旋转轴线位于折线形换热器的水平对称面内或使折线形换热器由四个矩形板状换热段组成,且连接成两个开口朝向出风口的“V”形结构,都是为了使轴流风机的风更加均匀地通过折线形换热器,提升换热效率。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调室内机的分解示意图;
图2是图1所示空调室内机的轴流风机与折线形蒸发器的配合示意图。
具体实施方式
下面参照图1和图2来描述本发明实施例的空调室内机,本发明实施例的描述中,“前”、“后”、“上”、“下”、“顶”、“底”、“内”、“外”“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。图中x轴正向为前方,y轴方向即壳体的横向方向,z轴正向为上方。
如图1所示,本发明实施例的空调室内机10一般性地可包括具有进风口122和出风口112的壳体、折线形换热器200以及一个或多个轴流风机300。空调室内机10与空调室外机通过管路连接,采用蒸汽压缩制冷系统实现制冷/制热,制冷系统的具体原理和结构在此无需赘述。
如图1,壳体可包括前面板110、后壳体120和接水盘130。可在前面板110上开设有前述的出风口112,后壳体120上设置有前述的进风口122。折线形换热器200设置在壳体内,其由多个上下排列且沿壳体的横向方向(y轴方向)延伸的矩形板状换热段210连接形成折线形结构。轴流风机300设置在壳体内,其旋转轴线X1位于水平面内且垂直于壳体的横向方向(即X1平行于x轴),轴流风机300包括电机310,以及受电机驱动旋转的多个扇叶320,电机的转轴即前述的旋转轴线X1。在空调室内机10运行时,轴流 风机300开启后将促使室内空气从进风口122吸入壳体内部空间,穿过折线形换热器200并与之换热(或者说是通过折线形换热器200的表面与其内部的制冷剂换热)后形成热交换风,再从出风口112处吹回室内。在空调室内机10制冷运行时,折线形换热器200上的冷凝水将滴在接水盘130上,再从接水盘130引出至室外,不会被轴流风机300吹出造成吹水现象。
图2中,每相邻两个矩形板状换热段210的夹角θ(可使每相邻两个矩形板状换热段210的夹角相等),轴流风机300的扇叶320与折线形换热器200在水平方向的最近间距为L,L影响到通过折线形换热器200的风速,轴流风机300的扇叶320径向边缘与轴流风机300的旋转轴线X1的最远距离为R,折线形换热器200的顶边与底边的竖向间距为H(也就是折线形换热器200的高度)。
本发明实施例采用折线形换热器200,相比于平板状的换热器,增大了换热面积,提升了空调室内机10的运行性能。换热器的换热效率与风能否更加均匀地通过换热器表面紧密相关。因此,如何使风更加均匀地通过折线形换热器200非常重要。发明人通过理论分析得知,在对折线形换热器200与轴流风机300进行选型和安装时,L、θ之间的关系以及L与2R/H的关系会对换热效率产生较大影响。为达到更优的换热效率,需使L与θ满足预设关系,使L与2R/H满足预设关系。
发明人通过大量实验对L、θ、2R/H进行选配,测试换热效率得知,使L与θ、L与2R/H满足以下关系可获得较高的换热效率:
L=1000/θ+c;
Figure PCTCN2018082394-appb-000003
式中,A、a、b和c为预设常数,L、R和H的单位为mm,θ的单位为rad。
发明人通过实验确认,A的取值范围可为360至580(包括端点,下同),进一步优选为480至520,最优选为500;a的取值范围为-252至-236,进一步优选为-246至-242,最优选为-244;b的取值范围为12300至13100,进一步为12400至12500,最优选为12464;c的取值范围为28.5至48.6,进一步优选为32.5至42.5,最优选为37.5。采用最优选值时能够获取最大的换热效率。
在一些实施例中,可使折线形换热器200的全部矩形板状换热段210的 形状相同,也就是使矩形板状换热段210的换热面积相同。还可使折线形换热器200关于一个水平对称面对称,使轴流风机300的旋转轴线X1位于折线形换热器200的水平对称面内。以上两个进一步改进也是为了尽量使风均匀地通过折线形换热器200。
在一些实施例中,如图2所示,可使折线形换热器200由四个矩形板状换热段210组成,四个矩形板状换热段210连接成两个开口朝向出风口112的“V”形结构,或者说形成一个“W”形结构,使“V”形结构的开口朝向轴流风机300,能够增加聚风效果,提升风速。
在一些实施例中,可使轴流风机300设置在出风口112与折线形换热器200之间。如图2所示,出风口112设置在空调室内机10的前面板110上,轴流风机300设置在折线形换热器200的前方。也就是说,折线形换热器200设置在轴流风机300的抽风侧,如此,在轴流风机300开启后,抽风侧空间形成负压使其中各个角度的空气都能朝轴流风机300流动,提升了换热效率。
当然,在一些替代性的实施例中,轴流风机300也可设置在折线形换热器200的后侧,即使得折线形换热器200设置在轴流风机300的排风侧。
本发明实施例的空调室内机10可为壁挂式也可为落地式。在图1至图2所示的实施例中,空调室内机10为壁挂式,其折线形换热器200沿壳体的横向方向延伸成长条状。与之相对应的,轴流风机300的数量为多个,并沿壳体的横向方向排列,且使出风口112的数量等于轴流风机300的数量,以与轴流风机300一一匹配。出风口112可如图2所示为圆形或者为其他形状。
在一些实施例中,上述折线形换热器200为一体结构的翅片式换热器,也就是由一个整体的板状换热器经多次弯折形成,以简化制作工艺。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调室内机,包括:
    具有进风口和出风口的壳体;
    折线形换热器,设置在所述壳体内,其由多个上下排列且沿所述壳体的横向方向延伸的矩形板状换热段连接形成折线形结构;和
    轴流风机,设置在所述壳体内,其旋转轴线位于水平面内且垂直于所述壳体的横向方向;且
    每相邻两个所述矩形板状换热段的夹角为θ,所述轴流风机的扇叶与所述折线形换热器在水平方向的最近间距为L,所述扇叶的径向边缘与所述轴流风机的旋转轴线最远距离为R,所述折线形换热器的顶边与底边的竖向间距为H,所述空调室内机配置成使L与θ满足预设关系,使L与2R/H满足预设关系。
  2. 根据权利要求1所述的空调室内机,其中
    L与θ、L与2R/H满足以下关系:
    L=1000/θ+c;
    Figure PCTCN2018082394-appb-100001
    式中,A、a、b和c为预设常数,L、R和H的单位为mm,θ的单位为rad。
  3. 根据权利要求2所述的空调室内机,其中
    A的取值范围为360至580,a的取值范围为-252至-236,b的取值范围为12300至13100,c的取值范围为28.5至48.6。
  4. 根据权利要求3所述的空调室内机,其中
    A=500,a=-244,b=12464,c=37.5。
  5. 根据权利要求1所述的空调室内机,其中
    所述折线形换热器的全部所述矩形板状换热段的形状相同。
  6. 根据权利要求1所述的空调室内机,其中
    所述折线形换热器关于一个水平对称面对称;且
    所述轴流风机的旋转轴线位于所述折线形换热器的水平对称面内。
  7. 根据权利要求6所述的空调室内机,其中
    所述折线形换热器由四个所述矩形板状换热段组成,四个所述矩形板状换热段连接成两个开口朝向所述出风口的“V”形结构。
  8. 根据权利要求7所述的空调室内机,其中
    所述轴流风机设置在所述出风口与所述折线形换热器之间。
  9. 根据权利要求1所述的空调室内机,其中
    所述折线形换热器沿所述壳体的横向方向延伸成长条状;
    所述轴流风机的数量为多个,并沿所述壳体的横向方向排列;且
    所述出风口的数量等于所述轴流风机的数量,以与所述轴流风机一一匹配。
  10. 根据权利要求1所述的空调室内机,其中
    所述折线形换热器为一体结构的翅片式换热器。
PCT/CN2018/082394 2017-04-18 2018-04-09 空调室内机 WO2018192386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710252902.8 2017-04-18
CN201710252902.8A CN107036166B (zh) 2017-04-18 2017-04-18 空调室内机

Publications (1)

Publication Number Publication Date
WO2018192386A1 true WO2018192386A1 (zh) 2018-10-25

Family

ID=59535508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082394 WO2018192386A1 (zh) 2017-04-18 2018-04-09 空调室内机

Country Status (2)

Country Link
CN (1) CN107036166B (zh)
WO (1) WO2018192386A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036166B (zh) * 2017-04-18 2020-02-04 青岛海尔空调器有限总公司 空调室内机
CN108168334B (zh) 2017-12-27 2019-10-22 珠海格力电器股份有限公司 换热组件和换热设备
CN108692373A (zh) * 2018-07-27 2018-10-23 青岛海尔空调器有限总公司 壁挂式空调室内机
CN111197816B (zh) * 2018-11-20 2022-07-19 珠海格力电器股份有限公司 一种换热风机组件及空调器
CN109823355B (zh) * 2019-01-11 2020-05-19 珠海格力电器股份有限公司 风机系统及其控制方法、机组
CN112984795B (zh) * 2019-12-18 2022-10-18 青岛海尔新能源电器有限公司 室内热泵机组及热泵热水器
CN114623504B (zh) * 2020-12-11 2023-07-14 广东美的白色家电技术创新中心有限公司 空调室内机和空调器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650742A (zh) * 2016-03-28 2016-06-08 广东美的制冷设备有限公司 壁挂式空调室内机及空调器
EP3104087A1 (en) * 2015-04-17 2016-12-14 Mitsubishi Electric Corporation Indoor unit for air conditioner
WO2017026013A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 空気調和機の室内機
CN107036166A (zh) * 2017-04-18 2017-08-11 青岛海尔空调器有限总公司 空调室内机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204141712U (zh) * 2014-09-04 2015-02-04 海信(山东)空调有限公司 一种空调室内机及空调器
CN204345809U (zh) * 2014-12-11 2015-05-20 江苏风神空调集团股份有限公司 超薄型低噪音高效除雾风机盘管机组
CN204494921U (zh) * 2014-12-23 2015-07-22 珠海格力电器股份有限公司 换热组件及空调系统
RS57552B1 (sr) * 2015-02-24 2018-10-31 Milivoj Pejin Elektro konvektor sa orebreno perforiranim limovima
JP6363033B2 (ja) * 2015-02-27 2018-07-25 日立ジョンソンコントロールズ空調株式会社 空気調和機の室内機およびこれを備えた空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3104087A1 (en) * 2015-04-17 2016-12-14 Mitsubishi Electric Corporation Indoor unit for air conditioner
WO2017026013A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 空気調和機の室内機
CN105650742A (zh) * 2016-03-28 2016-06-08 广东美的制冷设备有限公司 壁挂式空调室内机及空调器
CN107036166A (zh) * 2017-04-18 2017-08-11 青岛海尔空调器有限总公司 空调室内机

Also Published As

Publication number Publication date
CN107036166B (zh) 2020-02-04
CN107036166A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2018192386A1 (zh) 空调室内机
US10480817B2 (en) Duct-type indoor unit of air conditioner
JP6488886B2 (ja) ダクト型空気調和機
JP6578907B2 (ja) 天井埋込型空気調和機
JP6520185B2 (ja) 空気調和装置
US9791165B2 (en) Air conditioner units having improved condensate removal assemblies
CN106524306A (zh) 一种风管机
JP5295321B2 (ja) 送風機、室外機及び冷凍サイクル装置
KR20160111687A (ko) 공기조화기용 실외기
WO2016041289A1 (zh) 空调室外机
JP5860752B2 (ja) 空気調和機
CN105588196A (zh) 一种空调室内机
JP5287549B2 (ja) 空気調和装置の室内機
CN210014452U (zh) 吊顶式空调室内机
CN209819688U (zh) 吊顶式空调室内机
KR102522048B1 (ko) 천장형 공기조화기
CN206094301U (zh) 换热器及空调室内机
CN209744534U (zh) 吊顶式空调室内机
JPWO2019116838A1 (ja) 熱交換ユニット及びこれを搭載する空気調和装置
CN210638183U (zh) 窗式空调器
CN109114690A (zh) 一种空调室外机及空调器
CN209819689U (zh) 吊顶式空调室内机
JP5558449B2 (ja) 送風機、室外機及び冷凍サイクル装置
CN209840266U (zh) 吊顶式空调室内机
JP2018189330A (ja) 空気調和機の室外機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787348

Country of ref document: EP

Kind code of ref document: A1