WO2018192162A1 - 一种动态硫化抗菌tpv复合材料及其制备方法和应用 - Google Patents

一种动态硫化抗菌tpv复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2018192162A1
WO2018192162A1 PCT/CN2017/101938 CN2017101938W WO2018192162A1 WO 2018192162 A1 WO2018192162 A1 WO 2018192162A1 CN 2017101938 W CN2017101938 W CN 2017101938W WO 2018192162 A1 WO2018192162 A1 WO 2018192162A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
antibacterial agent
parts
tpv composite
agent
Prior art date
Application number
PCT/CN2017/101938
Other languages
English (en)
French (fr)
Inventor
郭建兵
何玮頔
周登凤
Original Assignee
贵州省材料产业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州省材料产业技术研究院 filed Critical 贵州省材料产业技术研究院
Priority to ZA2018/06327A priority Critical patent/ZA201806327B/en
Publication of WO2018192162A1 publication Critical patent/WO2018192162A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the invention relates to the technical field of materials science, in particular to a dynamic vulcanization antibacterial TPV composite material and a preparation method thereof.
  • TPV is the abbreviation of Thermoplastic Vulcanizate.
  • the Chinese name is thermoplastic EPDM dynamic vulcanized elastomer or thermoplastic EPDM dynamic vulcanized rubber. It is a high-vulcanized ethylene propylene diene monomer EPDM microparticle dispersed in continuous polypropylene PP phase.
  • Molecular elastomer material The physical properties and functions of TPV at room temperature are similar to those of thermosetting rubber. It exhibits the characteristics of thermoplastics at high temperatures, and can be processed quickly, economically and conveniently. It is widely used in various earphone cords and earphone cord connectors. However, it is often contacted by human body. After a period of time, the surface is black and a large amount of bacteria is produced. Therefore, it is particularly important to develop a sulfurized antibacterial TPV composite material with excellent mechanical properties and antibacterial effect, which has a huge market. space.
  • the dynamically vulcanized TPV material has poor antibacterial properties, poor processing properties, difficulty in molding processing, and affects material properties.
  • a first object of the present invention is to provide a dynamically vulcanized antibacterial TPV composite material.
  • the antibacterial agent of the dynamic vulcanization antibacterial TPV composite material has uniform dispersion, excellent antibacterial property, good processing performance and easy processing and molding.
  • a second object of the present invention is to provide a method for preparing the dynamic vulcanization antibacterial TPV composite material, which is simple in process, convenient in operation, high in efficiency, and suitable for industrial production.
  • a third object of the present invention is to provide a dynamic vulcanization antibacterial TPV composite material for use in wire and cable, which is used as a sheath of a wire and cable, and has good processing performance and an antibacterial and antibacterial effect.
  • a dynamic vulcanization antibacterial TPV composite material prepared by the following parts by mass:
  • the dynamic vulcanization antibacterial TPV composite material of the invention is prepared by using a specific amount of polypropylene, ethylene propylene diene monomer, thermoplastic polyurethane elastomer, antibacterial agent, flow modifier, crosslinking agent, heat stabilizer and ultraviolet light absorber, and antibacterial
  • the agent is uniformly dispersed in the obtained dynamic vulcanized antibacterial TPV composite material, and the obtained dynamic vulcanized antibacterial TPV composite material has excellent antibacterial property, good processing property and easy processing and molding.
  • the dynamically vulcanized antibacterial TPV composite is prepared mainly from the following parts by mass:
  • the dynamically vulcanized antibacterial TPV composite is prepared mainly from the following parts by mass:
  • thermoplastic polyurethane elastomer has a melt flow rate of from 25 to 55 g/10 min at 200 ° C under a pressure of 2.16 kg and a Rockwell hardness of from 45 to 65.
  • the antibacterial agent comprises one or more of an inorganic antibacterial agent, an organic antibacterial agent and a natural antibacterial agent, preferably including one of polyhexamethylene monohydrochloride hydrochloride and nano silver antibacterial agent or A plurality of, and more preferably, polyhexamethylene monohydrazine hydrochloride and a nanosilver antibacterial agent are included.
  • the mass ratio of the polyhexamethylene monohydrazine hydrochloride to the nanosilver antibacterial agent is 1:0.5-2, preferably 1:0.8-1.2, further preferably 1:1.
  • the antibacterial agent comprises one or more of an inorganic antibacterial agent, an organic antibacterial agent, and a composite antibacterial agent.
  • the inorganic antibacterial agent comprises at least one of a metal ion antibacterial agent, a metal compound antibacterial agent and a photocatalytic active antibacterial agent; preferably, the inorganic antibacterial agent comprises a metal ion antibacterial agent and a metal compound antibacterial agent. At least one; preferably, the inorganic antimicrobial agent comprises a nanosilver antibacterial agent.
  • the organic antibacterial agent comprises at least one of a quaternary ammonium salt antibacterial agent, a quaternary phosphonium salt antibacterial agent, and an anthraquinone antibacterial agent; preferably, the organic antibacterial agent is an anthraquinone antibacterial agent; preferably The organic antibacterial agent is polyhexamethylene monohydrazine hydrochloride.
  • the flow modifier comprises one or more of an internal lubricant, an external lubricant, and a composite lubricant; preferably, the fluidity modifier comprises one of an internal lubricant or A plurality of; preferably, the internal lubricant comprises at least one of a higher fatty alcohol, a fatty acid ester, and a long chain polyfunctional ester.
  • the flow modifier comprises one or more of an internal lubricant, preferably comprising a long chain polyfunctional ester, further preferably comprising an AM-80 flow modifier.
  • the crosslinking agent comprises one or more of external crosslinking agents, preferably including one of bis-(tert-butylperoxyisopropyl)benzene and triallyl isocyanurate. Or more, it further preferably includes bis-(tert-butylperoxyisopropyl)benzene and triallyl isocyanurate.
  • the mass ratio of the di-(tert-butylperoxyisopropyl)benzene and the triallyl isocyanurate is 1:0.5-2, preferably 1:0.8-1.2, further preferably 1 :1.
  • the heat stabilizer comprises one or more of antioxidants, preferably including 2,6-tert-butyl-4-methylphenol, tetrakis(4-hydroxy-3,5-di-tert-butyl)
  • antioxidants preferably including 2,6-tert-butyl-4-methylphenol, tetrakis(4-hydroxy-3,5-di-tert-butyl)
  • One or more of pentaerythritol ester, pentaerythritol 3,5-di-tert-butyl-4-hydroxyphenylpropionate, triphenyl phosphite and tridecyl phenyl phosphite further It preferably comprises 2,6-tert-butyl-4-methylphenol.
  • the ultraviolet light absorber comprises one or more of a benzophenone ultraviolet light absorber, a benzotriazole ultraviolet light absorber, and a piperidine ultraviolet light absorber, preferably including 2- Hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2(2-hydroxy-3',5'-di-tert-butylphenyl)- One or more of 5-chlorobenzotriazole and bis(2,2,6,6-tetramethylpiperidine) sebacate, further preferably including 2-hydroxy-4-methoxydi Benzophenone.
  • the preparation method of the above-mentioned dynamic vulcanization antibacterial TPV composite material comprises polypropylene, ethylene propylene diene monomer, thermoplastic polyurethane elastomer, antibacterial agent, flow modifier, crosslinking agent, heat stabilizer and ultraviolet light absorption in proportion
  • the agent is thoroughly mixed and extruded to obtain a dynamically vulcanized antibacterial TPV composite.
  • the preparation method of the dynamic vulcanization antibacterial TPV composite material of the invention has the advantages of simple process, convenient operation and high benefit, and is suitable for industrial production.
  • the preparation method of the dynamic vulcanization antibacterial TPV composite material comprises:
  • the ethylene propylene diene monomer, the thermoplastic polyurethane elastomer and the antibacterial agent are kneaded in proportion, and then polypropylene, a flow modifier, a crosslinking agent, a heat stabilizer and an ultraviolet light absorber are added, and after fully mixing, extrusion is performed.
  • a dynamic vulcanization antibacterial TPV composite material is kneaded in proportion, and then polypropylene, a flow modifier, a crosslinking agent, a heat stabilizer and an ultraviolet light absorber are added, and after fully mixing, extrusion is performed.
  • a dynamic vulcanization antibacterial TPV composite material A dynamic vulcanization antibacterial TPV composite material.
  • the cross-linking agent, the polypropylene, and the flow modification are sequentially added at intervals.
  • the agent, the heat stabilizer and the ultraviolet light absorber are thoroughly mixed, wherein the interval time is 1 min or more, preferably 2-5 min, further preferably 3 min; the mixing time is 10 min or more, preferably 20-30 min, More preferably, it is 25 min.
  • the antibacterial agent is divided into three parts, and the EPDM rubber is added to the first part of the antibacterial agent. After mixing uniformly, a second portion of the antibacterial agent is added by stirring, and then the thermoplastic polyurethane elastomer is added, and after mixing uniformly, the remaining third portion of the antibacterial agent is added again, and the mass ratio of the three antibacterial agents is 1 : 1-2: 1-2; preferably 1:1: 2.
  • the ethylene propylene diene monomer, the thermoplastic polyurethane elastomer and the antibacterial agent are kneaded by an internal mixer at a rotation speed of 40-50 r/min, and the rubber is discharged after being mixed, and cooled for 20-24 hours. Then, the polypropylene, the flow modifier, the crosslinking agent, the heat stabilizer and the ultraviolet light absorber are mixed at a rotational speed of 10-20 r/min in the internal mixer.
  • cooling the debinding comprises cooling at a cooling rate of 5-6 ° C/h, cooling for 6-8 h, and cooling at a cooling rate of 1-2 ° C/h for 14-16 h.
  • the kneading temperature is 50-80 ° C, preferably 60-70 ° C, and further preferably 60 ° C.
  • the kneading time is 20 min or more, preferably 20-40 min, further preferably 30 min.
  • extruding the mixture comprises: preheating the heating zone of the twin-screw extruder, preheating to a temperature of 50-80 ° C, and then feeding the mixture into the twin-screw extrusion
  • the speed of the twin-screw extruder was adjusted to 1-10 r/min, and the mixture was extruded.
  • the extrusion temperature is 150 ° C or higher, preferably 175 to 200 ° C, and further preferably 180 ° C.
  • the dynamic vulcanization antibacterial TPV composite material of the invention is prepared by using a specific amount of polypropylene, ethylene propylene diene monomer, thermoplastic polyurethane elastomer, antibacterial agent, flow modifier, crosslinking agent, heat stabilizer and ultraviolet light absorber, and antibacterial
  • the agent is uniformly dispersed in the obtained dynamic vulcanized antibacterial TPV composite material, and the obtained dynamic vulcanized antibacterial TPV composite material has excellent antibacterial property, good processing property and easy processing and molding.
  • the preparation method of the dynamic vulcanization antibacterial TPV composite material of the invention has the advantages of simple process, convenient operation and high benefit, and is suitable for industrial production.
  • the invention provides a dynamic vulcanization antibacterial TPV composite material, which is mainly prepared from the following parts by mass:
  • PP polypropylene
  • EPDM polypropylene
  • TPU thermoplastic polyurethane elastomer
  • antibacterial agent 0.5-1.5 parts of flow modifier
  • the crosslinking agent is 0.2-0.6 parts
  • the heat stabilizer is 0.2-0.8 parts
  • the ultraviolet light absorber is 0.2-0.8 parts.
  • the dynamic vulcanization antibacterial TPV composite material of the invention is prepared by using a specific amount of polypropylene, ethylene propylene diene monomer, thermoplastic polyurethane elastomer, antibacterial agent, flow modifier, crosslinking agent, heat stabilizer and ultraviolet light absorber, and antibacterial
  • the agent is uniformly dispersed in the obtained dynamic vulcanized antibacterial TPV composite material, and the obtained dynamic vulcanized antibacterial TPV composite material has excellent antibacterial property, good processing property and easy processing and molding.
  • the dynamically vulcanized antibacterial TPV composite is prepared mainly from the following parts by mass:
  • the dynamically vulcanized antibacterial TPV composite is prepared mainly from the following parts by mass:
  • thermoplastic polyurethane elastomer has a melt flow rate of 25-55 g/10 min at 200 ° C and a pressure of 2.16 kg, and a Rockwell hardness of 45-65; using such a thermoplastic polyurethane elastic having high fluidity
  • the body helps to further improve the fluidity of the obtained dynamically vulcanized antibacterial TPV composite and improve its processing properties.
  • the antibacterial agent comprises one or more of an inorganic antibacterial agent, an organic antibacterial agent and a natural antibacterial agent, preferably including one of polyhexamethylene monohydrochloride hydrochloride and nano silver antibacterial agent or A plurality of, and more preferably, polyhexamethylene monohydrazine hydrochloride and a nanosilver antibacterial agent are included.
  • the mass ratio of the polyhexamethylene monohydrazine hydrochloride to the nanosilver antibacterial agent is 1:0.5-2, preferably 1:0.8-1.2, further preferably 1:1.
  • the antibacterial agent comprises one or more of an inorganic antibacterial agent, an organic antibacterial agent, and a composite antibacterial agent.
  • the inorganic antibacterial agent comprises at least one of a metal ion antibacterial agent, a metal compound antibacterial agent, and a photocatalytically active antibacterial agent.
  • the metal ion antibacterial agent and the metal compound antibacterial agent include a single substance, an ion or an oxide of a metal such as silver, copper or zinc, which is supported on a porous material such as zeolite or silica gel to obtain a loaded antibacterial agent, and also includes a nano-scale metal element or ion, for example, Nano silver antibacterial agent.
  • the photocatalytically active antibacterial agent includes a titanium dioxide antibacterial agent.
  • the inorganic antibacterial agent comprises a metal ion/compound antibacterial agent; preferably, the inorganic antibacterial agent comprises a nanosilver antibacterial agent.
  • the organic antibacterial agent comprises at least one of a quaternary ammonium salt antibacterial agent, a quaternary phosphonium salt antibacterial agent, and an anthraquinone antibacterial agent; preferably, the organic antibacterial agent is an anthraquinone antibacterial agent; preferably The organic antibacterial agent is polyhexamethylene monohydrazine hydrochloride.
  • thermoplastic polyurethane elastomer and the EPDM rubber to swell to plasticize, and is co-crosslinked with EPDM in a dynamic vulcanization by adding a specific antibacterial agent, and can be extruded during the extrusion process.
  • Good dispersion is achieved in the fully crosslinked rubber dispersed phase, and the antistatic property of the obtained dynamically vulcanized antibacterial TPV composite is sufficiently improved.
  • the flow modifier comprises one or more of an internal lubricant, an external lubricant, and a composite lubricant; preferably, the fluidity modifier comprises one of an internal lubricant or A plurality of; preferably, the internal lubricant comprises at least one of a higher fatty alcohol, a fatty acid ester, and a long chain polyfunctional ester.
  • the flow modifier comprises one or more of an internal lubricant, preferably comprising a long chain polyfunctional ester, further preferably comprising an AM-80 flow modifier.
  • the specific flow modifier used has very small volatility, has good dispersibility as a processing aid, and can be used for extrusion, injection molding, calendering, etc. of the polymer, and can improve the processing fluidity of the melt.
  • the melt index is greatly increased without impairing the impact properties of the article.
  • the crosslinking agent comprises one or more of external crosslinking agents, preferably including bis-(tert-butylperoxyisopropyl)benzene (odorless DCP) and triallyl isocyanurate
  • external crosslinking agents preferably including bis-(tert-butylperoxyisopropyl)benzene (odorless DCP) and triallyl isocyanurate
  • TAIC bis-(tert-butylperoxyisopropyl)benzene and triallyl isocyanurate.
  • the mass ratio of the di-(tert-butylperoxyisopropyl)benzene and the triallyl isocyanurate is 1:0.5-2, preferably 1:0.8-1.2, further preferably 1 :1.
  • the use of a specific crosslinking agent helps to promote the crosslinking reaction and improve the mechanical properties of the resulting dynamically vulcanized antimicrobial TPV composite.
  • the heat stabilizer comprises one or more of antioxidants, preferably including 2,6-tert-butyl-4-methylphenol (antioxidant-264), tetrakis (4-hydroxy-) 3,5-di-tert-butylphenylpropionic acid pentaerythritol ester (antioxidant-1010), octadecyl 3,5-di-tert-butyl-4-hydroxyphenylpropionate (antioxidant-1076), sub One or more of triphenyl phosphate (TPP) and tridecyl phenyl phosphite (TNP), further preferably including 2,6-tert-butyl-4-methylphenol.
  • antioxidants preferably including 2,6-tert-butyl-4-methylphenol (antioxidant-264), tetrakis (4-hydroxy-) 3,5-di-tert-butylphenylpropionic acid pentaerythritol ester (antioxidant-1010), octadecy
  • the use of a specific heat stabilizer can effectively delay or inhibit the oxidation process of the obtained dynamically vulcanized antibacterial TPV composite, thereby preventing the aging of the obtained dynamically vulcanized antibacterial TPV composite and prolonging its service life.
  • the ultraviolet light absorber comprises one or more of a benzophenone ultraviolet light absorber, a benzotriazole ultraviolet light absorber, and a piperidine ultraviolet light absorber, preferably including 2- Hydroxy-4-methoxybenzophenone (UV-9), 2,2'-dihydroxy-4-methoxybenzophenone (UV-24), 2(2-hydroxy-3',5 One or more of '-di-tert-butylphenyl)-5-chlorobenzotriazole (UV-328) and bis(2,2,6,6-tetramethylpiperidine) sebacate More preferably, 2-hydroxy-4-methoxybenzophenone is included.
  • the use of a specific ultraviolet light absorber can effectively absorb the ultraviolet light in the sunlight and the fluorescent light source, prevent the ultraviolet light from deteriorating the obtained dynamic sulfurized antibacterial TPV composite material, and improve the stability of the obtained dynamic sulfurized antibacterial TPV composite material under long-time illumination.
  • the preparation method of the above-mentioned dynamic vulcanization antibacterial TPV composite material comprises polypropylene, ethylene propylene diene monomer, thermoplastic polyurethane elastomer, antibacterial agent, flow modifier, crosslinking agent, heat stabilizer and ultraviolet light absorption in proportion
  • the agent is thoroughly mixed and extruded to obtain a dynamically vulcanized antibacterial TPV composite.
  • the preparation method of the dynamic vulcanization antibacterial TPV composite material of the invention has the advantages of simple process, convenient operation and high benefit, and is suitable for industrial production.
  • the preparation method of the dynamic vulcanization antibacterial TPV composite material comprises:
  • the ethylene propylene diene monomer, the thermoplastic polyurethane elastomer and the antibacterial agent are kneaded in proportion, and then polypropylene, a flow modifier, a crosslinking agent, a heat stabilizer and an ultraviolet light absorber are added, and after fully mixing, extrusion is performed.
  • a dynamic vulcanization antibacterial TPV composite material is kneaded in proportion, and then polypropylene, a flow modifier, a crosslinking agent, a heat stabilizer and an ultraviolet light absorber are added, and after fully mixing, extrusion is performed.
  • a dynamic vulcanization antibacterial TPV composite material A dynamic vulcanization antibacterial TPV composite material.
  • the specific feeding mixing sequence is adopted to facilitate further uniform and uniform mixing of the raw materials, and a dynamically vulcanized antibacterial TPV composite material having uniform properties and stable properties is obtained by extrusion.
  • the thermoplastic polyurethane elastomer and the antibacterial agent are kneaded in proportion, the crosslinking agent, the polypropylene, the flow modifier, the heat stabilizer and the sequential addition are sequentially added.
  • the ultraviolet light absorber is sufficiently mixed, wherein the interval time is 1 min or more, preferably 2-5 min, further preferably 3 min; the mixing time is 10 min or more, preferably 20-30 min, and further preferably 25 min.
  • each raw material it is sequentially added in order and in sequence, wherein the addition of the crosslinking agent enables the pre-mixed raw materials (for example, EPDM rubber, thermoplastic polyurethane elastomer and antibacterial agent) to be combined with Forming a chemical bond between other raw materials added later (for example, polypropylene, flow modifier, heat stabilizer, and ultraviolet light absorber), and forming a network structure, which is advantageous for improving the overall strength and elasticity, and is thermally stable.
  • the pre-mixed raw materials for example, EPDM rubber, thermoplastic polyurethane elastomer and antibacterial agent
  • Forming a chemical bond between other raw materials added later for example, polypropylene, flow modifier, heat stabilizer, and ultraviolet light absorber
  • the addition of the agent and the ultraviolet light absorber can directly act on the unstable portion of the raw material, and enhance the stability of the dynamically vulcanized antibacterial TPV composite material obtained by the sequential addition, and the uniform mixing of the respective raw materials can be ensured. degree.
  • the antibacterial agent is divided into three parts, and the first part of the antibacterial agent is added with ethylene propylene diene rubber. After mixing uniformly, the second antibacterial agent is added by stirring, and then the thermoplastic polyurethane elastomer is added, and after evenly mixing, it is added again.
  • the remaining third antibacterial agent and three antibacterial agents have a mass ratio of 1:1 to 2:1-2; preferably 1:1:2.
  • the antibacterial agent is added in three parts and added separately, thereby ensuring the mixing uniformity of the antibacterial agent, the EPDM rubber and the thermoplastic polyurethane elastomer, and is beneficial to improving the prepared dynamic vulcanized antibacterial TPV composite material. Quality.
  • the mixing of the ethylene propylene diene monomer, the thermoplastic polyurethane elastomer and the antibacterial agent is carried out using an internal mixer.
  • the ethylene propylene diene monomer, the thermoplastic polyurethane elastomer and the antibacterial agent are kneaded by an internal mixer, and after the kneading, the rubber is discharged, cooled for 20-24 hours, and then the polypropylene, the flow modifier, the internal mixer, The crosslinking agent, the heat stabilizer and the ultraviolet light absorber are mixed, wherein the first internal mixer has a rotation speed of 40-50 r/min, and the second internal mixer has a rotation speed of 10-20 r/min.
  • the previously added raw materials for example: EPDM rubber, thermoplastic polyurethane elastomer and antibacterial agent
  • the raw materials are mixed, and the later added raw materials (for example, polypropylene, flow modifier, crosslinking agent, heat stabilizer, and ultraviolet light absorber) are mixed at a lower rotation speed, and the mixing is more uniform.
  • the cooling debinding comprises cooling at a cooling rate of 5-6 ° C / h, after cooling for 6-8 h, cooling at a cooling rate of 1-2 ° C / h for 14-16 h.
  • Cooling the debinding with different cooling rates is beneficial to promote the reorientation of the residual stress generated by the degumming molecules during the mixing process, which is beneficial to enhance the uniformity and plasticity of the finally prepared dynamic vulcanized antibacterial TPV composite.
  • the extrusion is carried out using a twin screw extruder.
  • the heating zone of the twin-screw extruder is preheated, preheated to a temperature of 50-80 ° C, and then the mixture is fed into a twin-screw extruder to adjust the rotation speed of the twin-screw extruder to be 1- 10r/min, mixed extrusion.
  • Preheating the twin-screw extruder ensures that the temperature of the material discharged through the mixer when entering the twin-screw extruder is not too large, which is beneficial to maintain the structural stability of the material.
  • the kneading temperature is 50-80 ° C, preferably 60-70 ° C, and further preferably 60 ° C.
  • the kneading time is 20 min or more, preferably 20-40 min, further preferably 30 min.
  • the ethylene propylene diene monomer, the thermoplastic polyurethane elastomer and the antibacterial agent are well mixed, and the antibacterial property of the obtained dynamically vulcanized antibacterial TPV composite material is improved, and the processing energy is improved.
  • the extrusion temperature is 150 ° C or higher, preferably 175 to 200 ° C, and further preferably 180 ° C.
  • the use of a specific extrusion temperature can promote rapid material formation, ensure the fluidity of the material, reduce the expansion rate of the extrudate, and improve the yield.
  • AM-80 flow modifier 1.5kg, di-(tert-butylperoxyisopropyl)benzene (odorless DCP) 0.2kg, triallyl isocyanurate (TAIC) 0.4kg, four ( 4-hydroxy-3,5-di-tert-butylphenylpropionic acid pentaerythritol ester (antioxidant-1010) 0.8 kg and 2,2'-dihydroxy-4-methoxybenzophenone (UV-24) ) 0.8kg;
  • the quaternary ammonium salt antibacterial agent and the supported zinc antibacterial agent are collectively used as an antibacterial agent, and the antibacterial agent is divided into three parts and three parts.
  • the mass ratio of the antibacterial agent is 1:1:2, the first antibacterial agent is added to the internal mixer, the stirring is started, the ethylene propylene diene monomer rubber is added, and after mixing uniformly, the second antibacterial agent is added, followed by the thermoplastic polyurethane elasticity.
  • Body (TPU, commercially available grade 87I85), after mixing evenly, add a third antibacterial agent again, mix in a mixer at 40r/min for 60min at 60°C, then drain the glue to 5°C/ The cooling rate of h was cooled, and after cooling for 6 hours, it was cooled at a cooling rate of 2 ° C / h for 14 h.
  • the mixture was fed into a twin-screw extruder, and the speed of the twin-screw extruder was adjusted to 1 r/min, and the mixture was extruded.
  • the screw processing extrusion temperature of the twin-screw extruder was 180 ° C, and a dynamic vulcanized antibacterial TPV composite material was obtained.
  • the antibacterial agent is divided into three parts, the mass ratio of the three antibacterial agents is 1:1:1, and the first antibacterial agent is added to the internal mixer.
  • start stirring add EPDM rubber, mix evenly, add a second antibacterial agent, then add thermoplastic polyurethane elastomer (TPU, commercial grade 87I85), mix well, then add the third antibacterial agent again.
  • the mixture was kneaded at 60 ° C for 30 min at 50 r/min in an internal mixer, and then discharged, and cooled at a cooling rate of 6 ° C / h. After cooling for 8 h, it was cooled at a cooling rate of 1 ° C / h for 16 h.
  • the heating zone of the screw extruder was preheated, preheated to a temperature of 80 ° C, and then the mixture was fed into a twin-screw extruder, and the rotation speed of the twin-screw extruder was adjusted to 10 r/min, and the mixture was extruded.
  • the screw processing extrusion temperature of the twin-screw extruder was 180 ° C, and a dynamic vulcanized antibacterial TPV composite material was obtained.
  • the antibacterial agent is divided into three parts, and the mass ratio of the three antibacterial agents is 1:2:2, and the first part is The antibacterial agent is added to the internal mixer, the stirring is started, the EPDM rubber is added, and after mixing evenly, the second antibacterial agent is added, and then the thermoplastic polyurethane elastomer (TPU, commercially available brand 87I85) is added, and after mixing evenly, again Adding a third antibacterial agent, mixing in an internal mixer at 45r/min for 60min at 60°C, followed by debinding, cooling at a cooling rate of 5°C/h, and after cooling for 7h, at 1°C/h The cooling rate was cooled for 15 h.
  • TPU thermoplastic polyurethane elastomer
  • the heating zone of the twin-screw extruder is preheated, preheated to a temperature of 70 ° C, and then the mixture is fed into a twin-screw extruder to adjust the rotation speed of the twin-screw extruder to 5 r / min, and the mixture is extruded. .
  • the screw processing extrusion temperature of the twin-screw extruder was 180 ° C, and a dynamic vulcanized antibacterial TPV composite material was obtained.
  • Example 1-8 of the present invention The performance test of the dynamically vulcanized antibacterial TPV composite material obtained in Example 1-8 of the present invention was carried out, and the obtained dynamically vulcanized antibacterial TPV composite material was respectively subjected to the corresponding standard (tensile strength GB/T1040.2-2006/1A/50, cantilever gap Impact strength GB/T1843-2008/A, bacteriostatic rate GB/T 31402-2015) was prepared into standard test strips, and Comparative Examples 1-8 were respectively subjected to the methods described in Examples 1-8 of the present invention, but without using any For the antibacterial agent, the following tests were carried out, and the performance results are shown in Table 1:
  • the tensile strength can reach the level without using the antibacterial agent, and the cantilever beam notched impact strength is slightly reduced, but the antibacterial ability is greatly improved without using an antibacterial agent.
  • the product has basically no antibacterial ability, and has improved processing performance, is easier to process and form, and effectively solves the problem of uniform dispersion of antistatic agent in the dynamic vulcanization process.
  • the dynamic vulcanization antibacterial TPV composite material of the invention is prepared by using a specific amount of polypropylene, ethylene propylene diene monomer, thermoplastic polyurethane elastomer, antibacterial agent, flow modifier, crosslinking agent, heat stabilizer and ultraviolet light absorber, and antibacterial
  • the agent is uniformly dispersed in the obtained dynamic vulcanized antibacterial TPV composite material, and the obtained dynamic vulcanized antibacterial TPV composite material has excellent antibacterial property, good processing property and easy processing and molding.
  • the preparation method of the dynamic vulcanization antibacterial TPV composite material of the invention has the advantages of simple process, convenient operation and high benefit, and is suitable for industrial production.
  • the dynamic vulcanization antibacterial TPV composite material can be widely used in the manufacture of wire and cable sheaths, and the wires obtained at the same time have good processing performance. The antibacterial and antibacterial effect of the cable is obvious.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种动态硫化抗菌TPV复合材料及其制备方法和应用,该动态硫化抗菌TPV复合材料采用特定用量的聚丙烯、三元乙丙橡胶、热塑性聚氨酯弹性体、抗菌剂、流动改性剂、交联剂、热稳定剂和紫外光吸收剂制备得到,抗菌剂在所得动态硫化抗菌TPV复合材料中分散均匀,所得动态硫化抗菌TPV复合材料具有优异的抗菌性能,且加工性能好,易于加工成型。该动态硫化抗菌TPV复合材料的制备方法工艺简单,操作方便,效益高,适合于进行工业化生产。该动态硫化抗菌TPV复合材料可以广泛的应用于电线电缆外皮的制作中,其在具有良好的加工性能的同时,得到的电线电缆抗菌抑菌效果明显。

Description

一种动态硫化抗菌TPV复合材料及其制备方法和应用
相关申请的交叉引用
本申请要求于2017年04月20日提交中国专利局的申请号为2017102612307、名称为“一种动态硫化抗菌TPV复合材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及材料科学技术领域,具体而言,涉及一种动态硫化抗菌TPV复合材料及其制备方法。
背景技术
TPV是Thermoplastic Vulcanizate的简称,中文名称为热塑性三元乙丙动态硫化弹性体或热塑性三元乙丙动态硫化橡胶,是高度硫化的三元乙丙橡胶EPDM微粒分散在连续聚丙烯PP相中组成的高分子弹性体材料。TPV常温下的物理性能和功能类似于热固性橡胶,在高温下表现为热塑性塑料的特性,可以快速经济和方便地加工成型,在各种耳机线外皮,耳机线接头得到广泛应用。但是经常被人的身体接触,用过一段时间后表面发黑,有大量的细菌产生,因此需开发出一种力学性能优异并且具有抗菌效果的硫化抗菌TPV复合材料显得尤为重要,具有巨大的市场空间。
相关技术中,动态硫化TPV材料抗菌性能差,并且加工性能差,成型加工困难,影响材料性能。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种动态硫化抗菌TPV复合材料,所述的动态硫化抗菌TPV复合材料中抗菌剂分散均匀,抗菌性能优异,加工性能好,易于加工成型。
本发明的第二目的在于提供一种所述的动态硫化抗菌TPV复合材料的制备方法,该方法工艺简单,操作方便,效益高,适合于进行工业化生产。
本发明的第三目的在于提供一种动态硫化抗菌TPV复合材料在电线电缆中的应用,其作为电线电缆的外皮,在具有良好的加工性能的同时,抗菌抑菌效果明显。
为了实现本发明的上述目的,特采用以下技术方案:
一种动态硫化抗菌TPV复合材料,所述动态硫化抗菌TPV复合材料主要由以下质量份数的成分制备得到:
聚丙烯20-50份、三元乙丙橡胶20-60份、热塑性聚氨酯弹性体5-15份、抗菌剂0.2-3份、流动改性剂0.5-1.5份、交联剂0.2-0.6份、热稳定剂0.2-0.8份和紫外光吸收剂0.2-0.8份。
本发明动态硫化抗菌TPV复合材料采用特定用量的聚丙烯、三元乙丙橡胶、热塑性聚氨酯弹性体、抗菌剂、流动改性剂、交联剂、热稳定剂和紫外光吸收剂制备得到,抗菌剂在所得动态硫化抗菌TPV复合材料中分散均匀,所得动态硫化抗菌TPV复合材料具有优异的抗菌性能,且加工性能好,易于加工成型。
优选地,所述动态硫化抗菌TPV复合材料主要由以下质量份数的成分制备得到:
聚丙烯30-40份、三元乙丙橡胶30-50份、热塑性聚氨酯弹性体8-12份、抗菌剂1-2份、流动改性剂0.8-1.2份、交联剂0.3-0.5份、热稳定剂0.4-0.6份和紫外光吸收剂0.4-0.6份。
进一步优选地,所述动态硫化抗菌TPV复合材料主要由以下质量份数的成分制备得到:
聚丙烯35份、三元乙丙橡胶40份、热塑性聚氨酯弹性体10份、抗菌剂1.5份、流动改性剂1份、交联剂0.4份、热稳定剂0.5份和紫外光吸收剂0.5份。
可选地,所述热塑性聚氨酯弹性体在200℃,压力2.16kg条件下的熔融流动速率为25-55g/10min,且洛氏硬度为45-65。
可选地,所述抗菌剂包括无机抗菌剂、有机抗菌剂和天然抗菌剂中的一种或多种,优选包括聚六亚甲基单胍盐酸盐和纳米银抗菌剂中的一种或多种,进一步优选包括聚六亚甲基单胍盐酸盐和纳米银抗菌剂。
优选地,所述聚六亚甲基单胍盐酸盐和纳米银抗菌剂的质量比为1:0.5-2,优选为1:0.8-1.2,进一步优选为1:1。
可选地,所述抗菌剂包括无机抗菌剂、有机抗菌剂和复合型抗菌剂中的一种或多种。
可选地,所述无机抗菌剂包括金属离子抗菌剂、金属化合物抗菌剂和光催化活性抗菌剂中的至少一种;优选地,所述无机抗菌剂包括金属离子抗菌剂和金属化合物抗菌剂中的至少一种;优选地,所述无机抗菌剂包括纳米银抗菌剂。
可选地,所述有机抗菌剂包括季铵盐类抗菌剂、季鏻盐类抗菌剂和胍类抗菌剂中的至少一种;优选地,所述有机抗菌剂为胍类抗菌剂;优选地,所述有机抗菌剂为聚六亚甲基单胍盐酸盐。
可选地,所述流动改性剂包括内润滑剂、外润滑剂和复合型润滑剂中的一种或多种;优选地,所述流动性改性剂包括内润滑剂中的一种或多种;优选地,所述内润滑剂包括高级脂肪醇、脂肪酸酯和长链多官能团酯中的至少一种。
可选地,所述流动改性剂包括内润滑剂中的一种或多种,优选包括长链多官能团酯,进一步优选包括AM-80流动改性剂。
可选地,所述交联剂包括外交联剂中的一种或多种,优选包括二-(叔丁基过氧化异丙基)苯和三烯丙基异氰脲酸酯中的一种或多种,进一步优选包括二-(叔丁基过氧化异丙基)苯和三烯丙基异氰脲酸酯。
优选地,所述二-(叔丁基过氧化异丙基)苯和三烯丙基异氰脲酸酯的质量比为1:0.5-2,优选为1:0.8-1.2,进一步优选为1:1。
可选地,所述热稳定剂包括抗氧剂中的一种或多种,优选包括2,6-叔丁基-4-甲基苯酚、四(4-羟基-3,5-二叔丁基苯基丙酸)季戊四醇酯、3,5-二叔丁基-4-羟基苯丙酸十八酯、亚磷酸三苯酯和亚磷酸三壬基苯酯中的一种或多种,进一步优选包括2,6-叔丁基-4-甲基苯酚。
可选地,所述紫外光吸收剂包括二苯甲酮类紫外光吸收剂、苯并三唑类紫外光吸收剂和哌啶类紫外光吸收剂中的一种或多种,优选包括2-羟基-4-甲氧基二苯甲酮、2,2’-二羟基-4-甲氧基二苯甲酮、2(2-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑和双(2,2,6,6-四甲基哌啶)癸二酸酯中的一种或多种,进一步优选包括2-羟基-4-甲氧基二苯甲酮。
上述的一种动态硫化抗菌TPV复合材料的制备方法,按比例将聚丙烯、三元乙丙橡胶、热塑性聚氨酯弹性体、抗菌剂、流动改性剂、交联剂、热稳定剂和紫外光吸收剂充分混合后挤出,得到一种动态硫化抗菌TPV复合材料。
本发明动态硫化抗菌TPV复合材料的制备方法工艺简单,操作方便,效益高,适合于进行工业化生产。
优选地,所述一种动态硫化抗菌TPV复合材料的制备方法包括:
按比例将三元乙丙橡胶、热塑性聚氨酯弹性体和抗菌剂进行混炼,之后加入聚丙烯、流动改性剂、交联剂、热稳定剂和紫外光吸收剂,充分混合后挤出,得到一种动态硫化抗菌TPV复合材料。
可选地,在按比例将所述三元乙丙橡胶、所述热塑性聚氨酯弹性体和所述抗菌剂进行混炼之后,依次间隔加入所述交联剂、所述聚丙烯、所述流动改性剂、所述热稳定剂和所述紫外光吸收剂,充分混合,其中,间隔时间为1min以上,优选为2-5min,进一步优选为3min;混合时间为10min以上,优选为20-30min,进一步优选为25min。
可选地,将所述抗菌剂分为三份,向第一份所述抗菌剂中加入所述三元乙丙橡胶, 混合均匀后,搅拌加入第二份所述抗菌剂,接着加入所述热塑性聚氨酯弹性体,混合均匀后,再次加入剩余的第三份所述抗菌剂,三份所述抗菌剂的质量比为1:1-2:1-2;优选为1:1:2。
可选地,所述将三元乙丙橡胶、所述热塑性聚氨酯弹性体和所述抗菌剂采用密炼机以40-50r/min的转速进行混炼,混炼后排胶,冷却20-24h,再以所述密炼机以10-20r/min的转速对聚丙烯、所述流动改性剂、所述交联剂、所述热稳定剂和所述紫外光吸收剂进行混合。
可选地,冷却所述排胶包括以5-6℃/h的冷却速度进行冷却,冷却6-8h后,以1-2℃/h的冷却速度冷却14-16h。
可选地,所述混炼的温度为50-80℃,优选为60-70℃,进一步优选为60℃。
可选地,所述混炼的时间为20min以上,优选为20-40min,进一步优选为30min。
可选地,挤出所述混合料包括:先将双螺杆挤出机的加热区进行预热,预热至温度为50-80℃,然后将所述混合料喂入所述双螺杆挤出机,调节所述双螺杆挤出机的转速为1-10r/min,混合挤出。
可选地,所述挤出的温度为150℃以上,优选为175-200℃,进一步优选为180℃。
一种上述动态硫化抗菌TPV复合材料在电线电缆中的应用。
与现有技术相比,本发明的有益效果例如包括:
本发明动态硫化抗菌TPV复合材料采用特定用量的聚丙烯、三元乙丙橡胶、热塑性聚氨酯弹性体、抗菌剂、流动改性剂、交联剂、热稳定剂和紫外光吸收剂制备得到,抗菌剂在所得动态硫化抗菌TPV复合材料中分散均匀,所得动态硫化抗菌TPV复合材料具有优异的抗菌性能,且加工性能好,易于加工成型。本发明动态硫化抗菌TPV复合材料的制备方法工艺简单,操作方便,效益高,适合于进行工业化生产。
具体实施方式
下面将结合具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明提供了一种动态硫化抗菌TPV复合材料,所述动态硫化抗菌TPV复合材料主要由以下质量份数的成分制备得到:
聚丙烯(PP)20-50份、三元乙丙橡胶(EPDM)20-60份、热塑性聚氨酯弹性体(TPU)5-15份、抗菌剂0.2-3份、流动改性剂0.5-1.5份、交联剂0.2-0.6份、热稳定剂0.2-0.8份和紫外光吸收剂0.2-0.8份。
本发明动态硫化抗菌TPV复合材料采用特定用量的聚丙烯、三元乙丙橡胶、热塑性聚氨酯弹性体、抗菌剂、流动改性剂、交联剂、热稳定剂和紫外光吸收剂制备得到,抗菌剂在所得动态硫化抗菌TPV复合材料中分散均匀,所得动态硫化抗菌TPV复合材料具有优异的抗菌性能,且加工性能好,易于加工成型。
优选地,所述动态硫化抗菌TPV复合材料主要由以下质量份数的成分制备得到:
聚丙烯30-40份、三元乙丙橡胶30-50份、热塑性聚氨酯弹性体8-12份、抗菌剂1-2份、流动改性剂0.8-1.2份、交联剂0.3-0.5份、热稳定剂0.4-0.6份和紫外光吸收剂0.4-0.6份。
进一步优选地,所述动态硫化抗菌TPV复合材料主要由以下质量份数的成分制备得到:
聚丙烯35份、三元乙丙橡胶40份、热塑性聚氨酯弹性体10份、抗菌剂1.5份、流动改性剂1份、交联剂0.4份、热稳定剂0.5份和紫外光吸收剂0.5份。
可选地,所述热塑性聚氨酯弹性体在200℃,压力2.16kg条件下的熔融流动速率为25-55g/10min,且洛氏硬度为45-65;采用这种具有高流动性的热塑性聚氨酯弹性体,有助于进一步改善所得动态硫化抗菌TPV复合材料的流动性,改善其加工性能。
可选地,所述抗菌剂包括无机抗菌剂、有机抗菌剂和天然抗菌剂中的一种或多种,优选包括聚六亚甲基单胍盐酸盐和纳米银抗菌剂中的一种或多种,进一步优选包括聚六亚甲基单胍盐酸盐和纳米银抗菌剂。
优选地,所述聚六亚甲基单胍盐酸盐和纳米银抗菌剂的质量比为1:0.5-2,优选为1:0.8-1.2,进一步优选为1:1。
可选地,所述抗菌剂包括无机抗菌剂、有机抗菌剂和复合型抗菌剂中的一种或多种。
可选地,所述无机抗菌剂包括金属离子抗菌剂、金属化合物抗菌剂和光催化活性抗菌剂中的至少一种。其中,金属离子抗菌剂和金属化合物抗菌剂包括银、铜、锌等金属的单质、离子或者氧化物负载于沸石、硅胶等多孔材料得到负载抗菌剂,也包括纳米级的金属单质或离子,例如纳米银抗菌剂。光催化活性抗菌剂包括二氧化钛抗菌剂。优选地,所述无机抗菌剂包括金属离子/化合物抗菌剂;优选地,所述无机抗菌剂包括纳米银抗菌剂。
可选地,所述有机抗菌剂包括季铵盐类抗菌剂、季鏻盐类抗菌剂和胍类抗菌剂中的至少一种;优选地,所述有机抗菌剂为胍类抗菌剂;优选地,所述有机抗菌剂为聚六亚甲基单胍盐酸盐。
采用特定抗菌剂,使得热塑性聚氨酯弹性体和三元乙丙橡胶产生溶胀起增塑作用,并通过加入特定抗菌剂在动态硫化中与三元乙丙橡胶实现共交联,在挤出过程中可以在完全交联的橡胶分散相实现良好分散,充分提高所得动态硫化抗菌TPV复合材料的抗静电性能。
可选地,所述流动改性剂包括内润滑剂、外润滑剂和复合型润滑剂中的一种或多种;优选地,所述流动性改性剂包括内润滑剂中的一种或多种;优选地,所述内润滑剂包括高级脂肪醇、脂肪酸酯和长链多官能团酯中的至少一种。
可选地,所述流动改性剂包括内润滑剂中的一种或多种,优选包括长链多官能团酯,进一步优选包括AM-80流动改性剂。
所采用的特定流动改性剂,具有非常小的挥发性,作为加工助剂,具有良好的分散性,能够用于聚合物的挤出,注塑,压延等,可以提高熔体的加工流动性,大幅度提高熔融指数,且不降低制品的冲击性能。
可选地,所述交联剂包括外交联剂中的一种或多种,优选包括二-(叔丁基过氧化异丙基)苯(无味DCP)和三烯丙基异氰脲酸酯(TAIC)中的一种或多种,进一步优选包括二-(叔丁基过氧化异丙基)苯和三烯丙基异氰脲酸酯。
优选地,所述二-(叔丁基过氧化异丙基)苯和三烯丙基异氰脲酸酯的质量比为1:0.5-2,优选为1:0.8-1.2,进一步优选为1:1。
采用特定的交联剂,有助于促进交联反应的进行,提高所得动态硫化抗菌TPV复合材料的机械性能。
可选地,所述热稳定剂包括抗氧剂中的一种或多种,优选包括2,6-叔丁基-4-甲基苯酚(抗氧剂-264)、四(4-羟基-3,5-二叔丁基苯基丙酸)季戊四醇酯(抗氧剂-1010)、3,5-二叔丁基-4-羟基苯丙酸十八酯(抗氧剂-1076)、亚磷酸三苯酯(TPP)和亚磷酸三壬基苯酯(TNP)中的一种或多种,进一步优选包括2,6-叔丁基-4-甲基苯酚。
采用特定热稳定剂,能够有效延缓或抑制所得动态硫化抗菌TPV复合材料的氧化过程的进行,从而阻止所得动态硫化抗菌TPV复合材料的老化并延长其使用寿命。
可选地,所述紫外光吸收剂包括二苯甲酮类紫外光吸收剂、苯并三唑类紫外光吸收剂和哌啶类紫外光吸收剂中的一种或多种,优选包括2-羟基-4-甲氧基二苯甲酮(UV-9)、2,2’-二羟基-4-甲氧基二苯甲酮(UV-24)、2(2-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑(UV-328)和双(2,2,6,6-四甲基哌啶)癸二酸酯中的一种或多种,进一步优选包括2-羟基-4-甲氧基二苯甲酮。
采用特定紫外光吸收剂,能够有效吸收阳光及荧光光源中的紫外线部分,防止紫外线对所得动态硫化抗菌TPV复合材料产生破坏,提高所得动态硫化抗菌TPV复合材料在长时间光照下的稳定性。
上述的一种动态硫化抗菌TPV复合材料的制备方法,按比例将聚丙烯、三元乙丙橡胶、热塑性聚氨酯弹性体、抗菌剂、流动改性剂、交联剂、热稳定剂和紫外光吸收剂充分混合后挤出,得到一种动态硫化抗菌TPV复合材料。
本发明动态硫化抗菌TPV复合材料的制备方法工艺简单,操作方便,效益高,适合于进行工业化生产。
优选地,所述一种动态硫化抗菌TPV复合材料的制备方法包括:
按比例将三元乙丙橡胶、热塑性聚氨酯弹性体和抗菌剂进行混炼,之后加入聚丙烯、流动改性剂、交联剂、热稳定剂和紫外光吸收剂,充分混合后挤出,得到一种动态硫化抗菌TPV复合材料。
采用特定加料混合顺序,有助于各原料进一步充分均匀混合,通过挤出得到性质均匀稳定的动态硫化抗菌TPV复合材料。
进一步地,在按比例将三元乙丙橡胶、热塑性聚氨酯弹性体和抗菌剂进行混炼之后,采用依次间隔加入的方式,依次加入交联剂、聚丙烯、流动改性剂、热稳定剂和紫外光吸收剂,充分混合,其中,间隔时间为1min以上,优选为2-5min,进一步优选为3min;混合时间为10min以上,优选为20-30min,进一步优选为25min。
本实施例中,依据各个原料的性质,按比例并按顺序依次加入,其中交联剂的加入能够使预先混炼原料(例如:三元乙丙橡胶、热塑性聚氨酯弹性体和抗菌剂)能够与在后加入的其他原料(例如:聚丙烯、流动改性剂、热稳定剂和紫外光吸收剂)之间形成化学键,并形成网状结构,这样有利于提升整体的强度和弹性,而热稳定剂和紫外光吸收剂的在后加入,能够直接作用于原料中的不稳定部位,加强制得的动态硫化抗菌TPV复合材料的稳定性,同时按顺序依次加入还能够确保了各个原料的混合均匀度。
优选地,将抗菌剂分为三份,向第一份抗菌剂中加入三元乙丙橡胶,混合均匀后,搅拌加入第二份抗菌剂,接着加入热塑性聚氨酯弹性体,混合均匀后,再次加入剩余的第三份抗菌剂,三份抗菌剂的质量比为1:1-2:1-2;优选为1:1:2。
本实施例中,采用将抗菌剂分为三份依次加入分别加入,确保了抗菌剂、三元乙丙橡胶以及热塑性聚氨酯弹性体的混合均匀度,有利于提升制得的动态硫化抗菌TPV复合材料的品质。
可选地,所述将三元乙丙橡胶、热塑性聚氨酯弹性体和抗菌剂进行混炼采用密炼机完成。
优选地,将三元乙丙橡胶、热塑性聚氨酯弹性体和抗菌剂采用密炼机进行混炼,混炼后排胶,冷却20-24h,再以密炼机对聚丙烯、流动改性剂、交联剂、热稳定剂和紫外光吸收剂进行混合,其中,第一密炼机的转速为40-50r/min,第二密炼机的转速为10-20r/min。
在先加入的原料(例如:三元乙丙橡胶、热塑性聚氨酯弹性体和抗菌剂)进行长时间的冷却,能够保证在先加入的原料的混合均一性,并且以较高转速对在先加入的原料进行混合,以较低的转速对在后加入的原料(例如:聚丙烯、流动改性剂、交联剂、热稳定剂和紫外光吸收剂)进行混合,混合更均匀。
优选地,冷却排胶包括以5-6℃/h的冷却速度进行冷却,冷却6-8h后,以1-2℃/h的冷却速度冷却14-16h。
采用不同的冷却速度对排胶进行冷却,有利于促使排胶分子在混炼过程中产生的剩余应力进行重新定向,有利于增强最终制得的动态硫化抗菌TPV复合材料的均匀性和可塑性。
可选地,所述挤出采用双螺杆挤出机进行。优选地,先将双螺杆挤出机的加热区进行预热,预热至温度为50-80℃,然后将混合料喂入双螺杆挤出机,调节双螺杆挤出机的转速为1-10r/min,混合挤出。对双螺杆挤出机进行预热,能够保证经密炼机排出的物料在进入双螺旋挤出机时,温差不会太大,有利于保持物料的结构稳定性。
可选地,所述混炼的温度为50-80℃,优选为60-70℃,进一步优选为60℃。
可选地,所述混炼的时间为20min以上,优选为20-40min,进一步优选为30min。
采用特定混炼温度和时间,有助于三元乙丙橡胶、热塑性聚氨酯弹性体和抗菌剂充分混合均匀,提高所得动态硫化抗菌TPV复合材料的抗菌性能,并改善其加工新能。
可选地,所述挤出的温度为150℃以上,优选为175-200℃,进一步优选为180℃。
采用特定挤出温度,能够促进物料快速成型,保证物料的流动性,减少挤出物膨胀率,提高产率。
实施例1
(1)分别称量聚丙烯(T30S)20kg、三元乙丙橡胶20kg、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)5kg、聚六亚甲基单胍盐酸盐0.133kg、纳米银抗菌剂0.067kg、AM-80流动改性剂0.5kg、二-(叔丁基过氧化异丙基)苯(无味DCP)0.133kg、三烯丙基异氰脲酸酯(TAIC)0.067kg、亚磷酸三壬基苯酯(TNP)0.2kg和2-羟基-4-甲氧基二苯甲酮(UV-9)0.2kg;
(2)将三元乙丙橡胶、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)、聚六亚甲基单胍盐酸盐、纳米银抗菌剂在密炼机中,在50℃下混炼60min;
(3)再加入聚丙烯(T30S)、二-(叔丁基过氧化异丙基)苯(无味DCP)、三烯丙基异氰脲酸酯(TAIC)、亚磷酸三壬基苯酯(TNP)和2-羟基-4-甲氧基二苯甲酮(UV-9),充分混合后,采用双螺杆挤出机共混挤出,所述双螺杆挤出机的螺杆加工挤出温度为150℃,得到一种动态硫化抗菌TPV复合材料。
实施例2
(1)分别称量聚丙烯(T30S)50kg、三元乙丙橡胶60kg、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)15kg、聚六亚甲基单胍盐酸盐1kg、纳米银抗菌剂2kg、AM-80流动改性剂1.5kg、二-(叔丁基过氧化异丙基)苯(无味DCP)0.2kg、三烯丙基异氰脲酸酯(TAIC)0.4kg、四(4-羟基-3,5-二叔丁基苯基丙酸)季戊四醇酯(抗氧剂-1010)0.8kg和2,2’-二羟基-4-甲氧基二苯甲酮(UV-24)0.8kg;
(2)将三元乙丙橡胶、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)、聚六亚甲基单胍盐酸盐、纳米银抗菌剂在密炼机中,在80℃下混炼20min;
(3)再加入聚丙烯(T30S)、二-(叔丁基过氧化异丙基)苯(无味DCP)、三烯丙基异氰脲酸酯(TAIC)、四(4-羟基-3,5-二叔丁基苯基丙酸)季戊四醇酯(抗氧剂-1010)和2,2’-二羟基-4-甲氧基二苯甲酮(UV-24),充分混合后,采用双螺杆挤出机共混挤出,所述双螺杆挤出机的螺杆加工挤出温度为175℃,得到一种动态硫化抗菌TPV复合材料。
实施例3
(1)分别称量聚丙烯(T30S)30kg、三元乙丙橡胶30kg、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)8kg、聚六亚甲基单胍盐酸盐0.56kg、纳米银抗菌剂0.44kg、AM-80流动改性剂0.8kg、二-(叔丁基过氧化异丙基)苯(无味DCP)0.167kg、三烯丙基异氰脲酸酯(TAIC)0.133kg、3,5-二叔丁基-4-羟基苯丙酸十八酯(抗氧剂-1076)0.4kg和2(2-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑(UV-328)0.4kg;
(2)将三元乙丙橡胶、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)、聚六亚甲基单胍盐酸盐、纳米银抗菌剂在密炼机中,在60℃下混炼20min;
(3)再加入聚丙烯(T30S)、二-(叔丁基过氧化异丙基)苯(无味DCP)、三烯丙基异氰脲酸酯(TAIC)、3,5-二叔丁基-4-羟基苯丙酸十八酯(抗氧剂-1076)和2(2-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑(UV-328),充分混合后,采用双螺杆挤出机共混挤出,所述双螺杆挤出机的螺杆加工挤出温度为200℃,得到一种动态硫化抗菌TPV复合材料。
实施例4
(1)分别称量聚丙烯(T30S)40kg、三元乙丙橡胶50kg、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)12kg、聚六亚甲基单胍盐酸盐0.91kg、纳米银抗菌剂1.09kg、AM-80流动改性剂1.2kg、二-(叔丁基过氧化异丙基)苯(无味DCP)0.227kg、三烯丙基异氰脲酸酯(TAIC)0.273kg、亚磷酸三苯酯(TPP)0.6kg和双(2,2,6,6-四甲基哌啶)癸二酸酯0.6kg;
(2)将三元乙丙橡胶、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)、聚六亚甲基单胍盐酸盐、纳米银抗菌剂在密炼机中,在70℃下混炼40min;
(3)再加入聚丙烯(T30S)、二-(叔丁基过氧化异丙基)苯(无味DCP)、三烯丙基异氰脲酸酯(TAIC)、亚磷酸三苯酯(TPP)和双(2,2,6,6-四甲基哌啶)癸二酸酯,充分混合后,采用双螺杆挤出机共混挤出,所述双螺杆挤出机的螺杆加工挤出温度为190℃,得到一种动态硫化抗菌TPV复合材料。
实施例5
(1)分别称量聚丙烯(T30S)35kg、三元乙丙橡胶40kg、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)10kg、聚六亚甲基单胍盐酸盐0.75kg、纳米银抗菌剂0.75kg、AM-80流动改性剂1kg、二-(叔丁基过氧化异丙基)苯(无味DCP)0.2kg、三烯丙基异氰脲酸酯(TAIC)0.2kg、2,6-叔丁基-4-甲基苯酚(抗氧剂-264)0.5kg和2-羟基-4-甲氧基二苯甲酮(UV-9)0.5kg;
(2)将三元乙丙橡胶、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)、聚六亚甲基单胍盐酸盐、纳米银抗菌剂在密炼机中,在60℃下混炼30min;
(3)再加入聚丙烯(T30S)、二-(叔丁基过氧化异丙基)苯(无味DCP)、三烯丙基异氰脲酸酯(TAIC)、2,6-叔丁基-4-甲基苯酚(抗氧剂-264)和2-羟基-4-甲氧基二苯甲酮(UV-9),充分混合后,采用双螺杆挤出机共混挤出,所述双螺杆挤出机的螺杆加工挤出温度为180℃,得到一种动态硫化抗菌TPV复合材料。
实施例6
(1)分别称量聚丙烯(T30S)32kg、三元乙丙橡胶42kg、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)12kg、季铵盐抗菌剂2kg、负载型锌抗菌剂1kg、AM-80流动改性剂1.2kg、二-(叔丁基过氧化异丙基)苯(无味DCP)0.2kg、三烯丙基异氰脲酸酯(TAIC)0.2kg、2,6-叔丁基-4-甲基苯酚(抗氧剂-264)0.4kg和2-羟基-4-甲氧基二苯甲酮(UV-9)0.4kg;
(2)将季铵盐抗菌剂和负载型锌抗菌剂共同作为抗菌剂,将该抗菌剂分为三份,三份 抗菌剂的质量比为1:1:2,将第一份抗菌剂加入密炼机中,开启搅拌,加入三元乙丙橡胶,混合均匀后,加入第二份抗菌剂,接着加入热塑性聚氨酯弹性体(TPU,市售牌号为87I85),混合均匀后,再次加入第三份抗菌剂,在密炼机中以40r/min的转速于60℃下混炼30min,接着排胶,以5℃/h的冷却速度进行冷却,冷却6h后,以2℃/h的冷却速度冷却14h。
(3)再依次间隔加入作为交联剂的二-(叔丁基过氧化异丙基)苯(无味DCP)和三烯丙基异氰脲酸酯(TAIC),每间隔3min依次加入聚丙烯(T30S)、AM-80流动改性剂、2,6-叔丁基-4-甲基苯酚(抗氧剂-264)和2-羟基-4-甲氧基二苯甲酮(UV-9),密炼机以10r/min的转速对上述原料充分混合25min后,采用双螺杆挤出机共混挤出,先对双螺杆挤出机的加热区进行预热,预热至温度为50℃,然后将混合料喂入双螺杆挤出机,调节双螺杆挤出机的转速为1r/min,混合挤出。双螺杆挤出机的螺杆加工挤出温度为180℃,得到一种动态硫化抗菌TPV复合材料。
实施例7
(1)分别称量聚丙烯(T30S)32kg、三元乙丙橡胶45kg、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)10kg、季鏻盐抗菌剂0.5kg、二氧化钛抗菌剂0.5kg、脂肪酸酯1kg、二丙烯酸-1,4-丁二醇酯0.2kg、过氧化二异丙苯0.2kg、3,5-二叔丁基-4-羟基苯丙酸十八酯0.2kg、亚磷酸三苯酯0.3kg、2(2-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑0.2kg和双(2,2,6,6-四甲基哌啶)癸二酸酯0.2kg;
(2)将季鏻盐抗菌剂和二氧化钛抗菌剂作为抗菌剂,将该抗菌剂分为三份,三份抗菌剂的质量比为1:1:1,将第一份抗菌剂加入密炼机中,开启搅拌,加入三元乙丙橡胶,混合均匀后,加入第二份抗菌剂,接着加入热塑性聚氨酯弹性体(TPU,市售牌号为87I85),混合均匀后,再次加入第三份抗菌剂,在密炼机中以50r/min的转速于60℃下混炼30min,接着排胶,以6℃/h的冷却速度进行冷却,冷却8h后,以1℃/h的冷却速度冷却16h。
(3)先加入作为交联剂的二丙烯酸-1,4-丁二醇酯和过氧化二异丙苯,每间隔3min依次加入聚丙烯(T30S)、脂肪酸酯、3,5-二叔丁基-4-羟基苯丙酸十八酯、亚磷酸三苯酯、2(2-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑和双(2,2,6,6-四甲基哌啶)癸二酸酯,密炼机以20r/min的转速对上述原料充分混合25min后,采用双螺杆挤出机共混挤出,先对双螺杆挤出机的加热区进行预热,预热至温度为80℃,然后将混合料喂入双螺杆挤出机,调节双螺杆挤出机的转速为10r/min,混合挤出。双螺杆挤出机的螺杆加工挤出温度为180℃,得到一种动态硫化抗菌TPV复合材料。
实施例8
(1)分别称量聚丙烯(T30S)38kg、三元乙丙橡胶60kg、热塑性聚氨酯弹性体(TPU,市售牌号为87I85)15kg、聚六亚甲基单胍盐酸盐1kg、纳米银抗菌剂2kg、脂肪酸酯1kg、二丙烯酸-1,4-丁二醇酯0.2kg、三烯丙基异氰脲酸酯0.2kg、3,5-二叔丁基-4-羟基苯丙酸十八酯0.2kg、亚磷酸三苯酯0.3kg、2(2-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑0.3kg和双(2,2,6,6-四甲基哌啶)癸二酸酯0.1kg;
(2)将聚六亚甲基单胍盐酸盐和纳米银抗菌剂作为抗菌剂,将该抗菌剂分为三份,三份抗菌剂的质量比为1:2:2,将第一份抗菌剂加入密炼机中,开启搅拌,加入三元乙丙橡胶,混合均匀后,加入第二份抗菌剂,接着加入热塑性聚氨酯弹性体(TPU,市售牌号为87I85),混合均匀后,再次加入第三份抗菌剂,在密炼机中以45r/min的转速于60℃下混炼30min,接着排胶,以5℃/h的冷却速度进行冷却,冷却7h后,以1℃/h的冷却速度冷却15h。
(3)先加入作为交联剂的二丙烯酸-1,4-丁二醇酯和三烯丙基异氰脲酸酯,每间隔3min依次加入聚丙烯(T30S)、脂肪酸酯、3,5-二叔丁基-4-羟基苯丙酸十八酯、亚磷酸三苯酯、2(2-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑和双(2,2,6,6-四甲基哌啶)癸二酸酯,密炼机以15r/min的转速对上述原料充分混合25min后,采用双螺杆挤出机共混挤出,先对双螺杆挤出机的加热区进行预热,预热至温度为70℃,然后将混合料喂入双螺杆挤出机,调节双螺杆挤出机的转速为5r/min,混合挤出。双螺杆挤出机的螺杆加工挤出温度为180℃,得到一种动态硫化抗菌TPV复合材料。
试验例
对本发明实施例1-8所得的动态硫化抗菌TPV复合材料进行性能测试,将所得动态硫化抗菌TPV复合材料分别按照对应标准(拉伸强度GB/T1040.2-2006/1A/50、悬臂梁缺口冲击强度GB/T1843-2008/A、抑菌率GB/T 31402-2015)制备成标准测试样条,对比例1-8依次分别采用本发明实施例1-8所述方法,但不使用任何抗菌剂,进行以下各项测试,其性能结果如表1所示:
表1本发明动态硫化抗菌TPV复合材料性能测试结果
Figure PCTCN2017101938-appb-000001
Figure PCTCN2017101938-appb-000002
通过表1可以看出,本发明使用了抗菌剂后,拉伸强度能够达到不使用抗菌剂的水平,悬臂梁缺口冲击强度有轻微的降低,但其抗菌能力大幅提高,而不使用抗菌剂的产品基本没有抗菌能力,并且改善了加工性能,更容易加工成型,有效解决了动态硫化过程中抗静电剂均匀分散的问题。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,以上各实施例仅用以说明本发明的技术方案,而非对其限制;本领域的普通技术人员应当理解:在不背离本发明的精神和范围的情况下,可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围;因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些替换和修改。
工业实用性
本发明动态硫化抗菌TPV复合材料采用特定用量的聚丙烯、三元乙丙橡胶、热塑性聚氨酯弹性体、抗菌剂、流动改性剂、交联剂、热稳定剂和紫外光吸收剂制备得到,抗菌剂在所得动态硫化抗菌TPV复合材料中分散均匀,所得动态硫化抗菌TPV复合材料具有优异的抗菌性能,且加工性能好,易于加工成型。本发明动态硫化抗菌TPV复合材料的制备方法工艺简单,操作方便,效益高,适合于进行工业化生产。该动态硫化抗菌TPV复合材料可以广泛的应用于电线电缆外皮的制作中,其在具有良好的加工性能的同时,得到的电线 电缆抗菌抑菌效果明显。

Claims (20)

  1. 一种动态硫化抗菌TPV复合材料,其特征在于,所述动态硫化抗菌TPV复合材料主要由以下质量份数的成分制备得到:
    聚丙烯20-50份、三元乙丙橡胶20-60份、热塑性聚氨酯弹性体5-15份、抗菌剂0.2-3份、流动改性剂0.5-1.5份、交联剂0.2-0.6份、热稳定剂0.2-0.8份和紫外光吸收剂0.2-0.8份;
    优选地,所述动态硫化抗菌TPV复合材料主要由以下质量份数的成分制备得到:
    聚丙烯30-40份、三元乙丙橡胶30-50份、热塑性聚氨酯弹性体8-12份、抗菌剂1-2份、流动改性剂0.8-1.2份、交联剂0.3-0.5份、热稳定剂0.4-0.6份和紫外光吸收剂0.4-0.6份;
    进一步优选地,所述动态硫化抗菌TPV复合材料主要由以下质量份数的成分制备得到:
    聚丙烯35份、三元乙丙橡胶40份、热塑性聚氨酯弹性体10份、抗菌剂1.5份、流动改性剂1份、交联剂0.4份、热稳定剂0.5份和紫外光吸收剂0.5份。
  2. 根据权利要求1所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述热塑性聚氨酯弹性体在200℃,压力2.16kg条件下的熔融流动速率为25-55g/10min,且洛氏硬度为45-65。
  3. 根据权利要求1所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述抗菌剂包括无机抗菌剂、有机抗菌剂和天然抗菌剂中的一种或多种,优选包括聚六亚甲基单胍盐酸盐和纳米银抗菌剂中的一种或多种,进一步优选包括聚六亚甲基单胍盐酸盐和纳米银抗菌剂;
    优选地,所述聚六亚甲基单胍盐酸盐和纳米银抗菌剂的质量比为1:0.5-2,优选为1:0.8-1.2,进一步优选为1:1。
  4. 根据权利要求1所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述抗菌剂包括选自由无机抗菌剂、有机抗菌剂和复合型抗菌剂组成的组中的一种或多种。
  5. 根据权利要求4所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述无机抗菌剂包括选自由金属离子抗菌剂、金属化合物抗菌剂和光催化活性抗菌剂组成的组中的至少一种;优选地,所述无机抗菌剂包括金属离子抗菌剂和金属化合物抗菌剂中的至少一种;优选地,所述无机抗菌剂包括纳米银抗菌剂。
  6. 根据权利要求4所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述有机抗菌剂包括选自由季铵盐类抗菌剂、季鏻盐类抗菌剂和胍类抗菌剂组成的组中的 至少一种;优选地,所述有机抗菌剂为胍类抗菌剂;优选地,所述有机抗菌剂为聚六亚甲基单胍盐酸盐。
  7. 根据权利要求1~6任一项所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述流动改性剂包括选自由内润滑剂、外润滑剂和复合型润滑剂组成的组中的一种或多种;优选地,所述流动性改性剂包括内润滑剂中的一种或多种;优选地,所述内润滑剂包括选自由高级脂肪醇、脂肪酸酯和长链多官能团酯组成的组中的一种或多种。
  8. 根据权利要求1所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述流动改性剂包括内润滑剂中的一种或多种,优选包括长链多官能团酯,进一步优选包括AM-80流动改性剂。
  9. 根据权利要求1所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述交联剂包括外交联剂中的一种或多种,优选包括二-(叔丁基过氧化异丙基)苯和三烯丙基异氰脲酸酯中的一种或多种,进一步优选包括二-(叔丁基过氧化异丙基)苯和三烯丙基异氰脲酸酯;
    优选地,所述二-(叔丁基过氧化异丙基)苯和三烯丙基异氰脲酸酯的质量比为1:0.5-2,优选为1:0.8-1.2,进一步优选为1:1。
  10. 根据权利要求1所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述热稳定剂包括抗氧剂中的一种或多种,优选包括2,6-叔丁基-4-甲基苯酚、四(4-羟基-3,5-二叔丁基苯基丙酸)季戊四醇酯、3,5-二叔丁基-4-羟基苯丙酸十八酯、亚磷酸三苯酯和亚磷酸三壬基苯酯中的一种或多种,进一步优选包括2,6-叔丁基-4-甲基苯酚。
  11. 根据权利要求1所述的一种动态硫化抗菌TPV复合材料,其特征在于,所述紫外光吸收剂包括二苯甲酮类紫外光吸收剂、苯并三唑类紫外光吸收剂和哌啶类紫外光吸收剂中的一种或多种,优选包括2-羟基-4-甲氧基二苯甲酮、2,2’-二羟基-4-甲氧基二苯甲酮、2(2-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑和双(2,2,6,6-四甲基哌啶)癸二酸酯中的一种或多种,进一步优选包括2-羟基-4-甲氧基二苯甲酮。
  12. 如权利要求1-11任一所述的一种动态硫化抗菌TPV复合材料的制备方法,其特征在于,按比例将聚丙烯、三元乙丙橡胶、热塑性聚氨酯弹性体、抗菌剂、流动改性剂、交联剂、热稳定剂和紫外光吸收剂充分混合后挤出,得到一种动态硫化抗菌TPV复合材料;
    优选地,所述一种动态硫化抗菌TPV复合材料的制备方法包括:
    按比例将三元乙丙橡胶、热塑性聚氨酯弹性体和抗菌剂进行混炼,之后加入聚丙烯、流动改性剂、交联剂、热稳定剂和紫外光吸收剂,充分混合后挤出,得到一种动 态硫化抗菌TPV复合材料。
  13. 根据权利要求12所述的动态硫化抗菌TPV复合材料的制备方法,其特征在于,在按比例将所述三元乙丙橡胶、所述热塑性聚氨酯弹性体和所述抗菌剂进行混炼之后,依次间隔加入所述交联剂、所述聚丙烯、所述流动改性剂、所述热稳定剂和所述紫外光吸收剂,充分混合,其中,间隔时间为1min以上,优选为2-5min,进一步优选为3min;混合时间为10min以上,优选为20-30min,进一步优选为25min。
  14. 根据权利要求12所述的动态硫化抗菌TPV复合材料的制备方法,其特征在于,将所述抗菌剂分为三份,向第一份所述抗菌剂中加入所述三元乙丙橡胶,混合均匀后,搅拌加入第二份所述抗菌剂,接着加入所述热塑性聚氨酯弹性体,混合均匀后,再次加入剩余的第三份所述抗菌剂,三份所述抗菌剂的质量比为1:1-2:1-2;优选为1:1:2。
  15. 根据权利要求12所述的动态硫化抗菌TPV复合材料的制备方法,其特征在于,所述将三元乙丙橡胶、所述热塑性聚氨酯弹性体和所述抗菌剂采用密炼机以40-50r/min的转速进行混炼,混炼后排胶,冷却20-24h,再以所述密炼机以10-20r/min的转速对聚丙烯、所述流动改性剂、所述交联剂、所述热稳定剂和所述紫外光吸收剂进行混合。
  16. 根据权利要求12所述的动态硫化抗菌TPV复合材料的制备方法,其特征在于,冷却所述排胶包括以5-6℃/h的冷却速度进行冷却,冷却6-8h后,以1-2℃/h的冷却速度冷却14-16h。
  17. 根据权利要求12~16任一项所述的一种动态硫化抗菌TPV复合材料的制备方法,其特征在于,所述混炼的温度为50-80℃,优选为60-70℃,进一步优选为60℃;
    优选地,所述混炼的时间为20min以上,优选为20-40min,进一步优选为30min。
  18. 根据权利要求12所述的动态硫化抗菌TPV复合材料的制备方法,其特征在于,挤出所述混合料包括:先将双螺杆挤出机的加热区进行预热,预热至温度为50-80℃,然后将所述混合料喂入所述双螺杆挤出机,调节所述双螺杆挤出机的转速为1-10r/min,混合挤出。
  19. 根据权利要求18所述的一种动态硫化抗菌TPV复合材料的制备方法,其特征在于,所述挤出的温度为150℃以上,优选为175-200℃,进一步优选为180℃。
  20. 一种如权利要求1~11任一项所述的动态硫化抗菌TPV复合材料在电线电缆中的应用。
PCT/CN2017/101938 2017-04-20 2017-09-15 一种动态硫化抗菌tpv复合材料及其制备方法和应用 WO2018192162A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2018/06327A ZA201806327B (en) 2017-04-20 2018-09-20 Dynamically vulcanized antibacterial tpv composite material, preparation method thereof and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710261230.7 2017-04-20
CN201710261230.7A CN107245187A (zh) 2017-04-20 2017-04-20 一种动态硫化抗菌tpv复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2018192162A1 true WO2018192162A1 (zh) 2018-10-25

Family

ID=60016836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101938 WO2018192162A1 (zh) 2017-04-20 2017-09-15 一种动态硫化抗菌tpv复合材料及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN107245187A (zh)
WO (1) WO2018192162A1 (zh)
ZA (1) ZA201806327B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109134812B (zh) * 2018-07-13 2020-11-03 汕头大学 一种复合抗菌聚氨酯嵌段聚合物及其制备与应用
CN109370064A (zh) * 2018-10-15 2019-02-22 道高分子聚合物(宁波)有限公司 一种塑胶跑道用树脂颗粒及其制备方法
CN109666224B (zh) * 2018-12-24 2022-01-11 宁波汉吉高分子材料有限公司 一种持久自润滑的tpv及其制备方法和该tpv制成的密封条
CN110437604A (zh) * 2019-08-20 2019-11-12 广东工业大学 一种聚烯烃合金热塑性弹性体的制备方法
CN115785573B (zh) * 2022-12-02 2024-05-17 福建奥翔体育塑胶科技股份有限公司 一种持久抗菌型epdm颗粒及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667364B2 (en) * 2000-12-29 2003-12-23 Advanced Elastomer Systems Lp Processable polyethylene/EPDM thermoplastic vulcanizates
CN101440182A (zh) * 2007-11-19 2009-05-27 上海日之升新技术发展有限公司 一种高品质动态硫化热塑性弹性体的制备方法
US20100036027A1 (en) * 2007-01-04 2010-02-11 Polyone Corporation Thermally stable thermoplastic vulcanizate compounds
CN101701095A (zh) * 2009-11-24 2010-05-05 王崇高 一种耐折叠抗菌树脂
CN101864116A (zh) * 2010-07-09 2010-10-20 深圳市科聚新材料有限公司 高性能epdm/pp/nbr三元共混动态硫化热塑性弹性体及其制备方法
CN103497429A (zh) * 2013-09-26 2014-01-08 金发科技股份有限公司 与abs基材二次包覆成型的低气味tpv及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105482266A (zh) * 2016-01-12 2016-04-13 安徽中鼎橡塑制品有限公司 一种汽车转向防尘罩用热塑性硫化橡胶材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667364B2 (en) * 2000-12-29 2003-12-23 Advanced Elastomer Systems Lp Processable polyethylene/EPDM thermoplastic vulcanizates
US20100036027A1 (en) * 2007-01-04 2010-02-11 Polyone Corporation Thermally stable thermoplastic vulcanizate compounds
CN101440182A (zh) * 2007-11-19 2009-05-27 上海日之升新技术发展有限公司 一种高品质动态硫化热塑性弹性体的制备方法
CN101701095A (zh) * 2009-11-24 2010-05-05 王崇高 一种耐折叠抗菌树脂
CN101864116A (zh) * 2010-07-09 2010-10-20 深圳市科聚新材料有限公司 高性能epdm/pp/nbr三元共混动态硫化热塑性弹性体及其制备方法
CN103497429A (zh) * 2013-09-26 2014-01-08 金发科技股份有限公司 与abs基材二次包覆成型的低气味tpv及其制备方法

Also Published As

Publication number Publication date
CN107245187A (zh) 2017-10-13
ZA201806327B (en) 2019-12-18

Similar Documents

Publication Publication Date Title
WO2018192162A1 (zh) 一种动态硫化抗菌tpv复合材料及其制备方法和应用
WO2018192163A1 (zh) 一种动态硫化阻燃tpv复合材料及其制备方法
WO2018192173A1 (zh) 一种动态硫化抗静电tpv复合材料及其制备方法
CN113480795A (zh) 一种低烟无卤阻燃聚乙烯护套料及其制备方法
CN108841073B (zh) 一种阻燃型动态硫化的pp/poe弹性体及其制备方法
CN101544790A (zh) 耐125℃低烟无卤橡皮电缆屏蔽料
EP2670797B1 (de) Peroxidabmischungen für die beschleunigte vernetzung von ethylenvinylacetat
CN111621088A (zh) 一种导电聚丙烯材料及其制备方法
CN108250606B (zh) 一种超耐低温asa复合材料及其制备方法
JP2008280517A (ja) 非ハロゲン難燃性熱可塑性組成物の製造方法
CN111363260B (zh) 电缆护套用组合物、电缆及其制备方法
CN109517259B (zh) 一种聚丙烯直接注射成型用高效阻燃抗菌功能母粒及其制备方法
CN105802023A (zh) 辐照型epdm与pp共混电线电缆绝缘料及其制备方法
KR20140066656A (ko) 저장시 안정적인, 염화 폴리머에 기반한 가교성 폴리머 혼합물
CN107033434A (zh) 高强度抗静电管材及其制备方法
CN110066497A (zh) 一种低气味、低散发、高耐磨聚对苯二甲酸乙二醇酯组合物及其制备方法
KR100373852B1 (ko) 전선용 흑색 수가교 수지 조성물 및 그 제조방법
CN108003651B (zh) 预制式电缆附件及其制备方法
CN116102815B (zh) 辐照交联高电性耐低温低烟无卤绝缘料及制备方法和应用
CN107090125A (zh) 一种高压直流电缆用绝缘材料及其制备方法
JPH07179705A (ja) フッ素ゴム組成物の架橋方法およびその架橋成形体
KR101164342B1 (ko) 폴리프로필렌 수지 조성물 및 이의 제조 방법
CN107383702A (zh) 一种耐磨塑料及其制备方法
CN110903530A (zh) 一种银灰色架空电缆用化学交联聚乙烯绝缘料及制备方法
CN113201192A (zh) 废弃聚氯乙烯电缆料的再生利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906188

Country of ref document: EP

Kind code of ref document: A1