WO2018192038A1 - 一种直接接触式交流梯形波铝电阻焊工艺方法 - Google Patents

一种直接接触式交流梯形波铝电阻焊工艺方法 Download PDF

Info

Publication number
WO2018192038A1
WO2018192038A1 PCT/CN2017/084619 CN2017084619W WO2018192038A1 WO 2018192038 A1 WO2018192038 A1 WO 2018192038A1 CN 2017084619 W CN2017084619 W CN 2017084619W WO 2018192038 A1 WO2018192038 A1 WO 2018192038A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
current
transformer
electrode
aluminum
Prior art date
Application number
PCT/CN2017/084619
Other languages
English (en)
French (fr)
Inventor
聂兰民
赵继华
Original Assignee
天津商科数控技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津商科数控技术股份有限公司 filed Critical 天津商科数控技术股份有限公司
Priority to EP17732282.3A priority Critical patent/EP3415262A1/en
Priority to JP2017536889A priority patent/JP2019514689A/ja
Priority to US15/644,819 priority patent/US20180304397A1/en
Publication of WO2018192038A1 publication Critical patent/WO2018192038A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/18Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of non-ferrous metals
    • B23K11/185Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of non-ferrous metals of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the invention belongs to the technical field of welding and relates to a resistance welding technology, in particular to a direct contact type AC trapezoidal wave aluminum resistance welding process.
  • the traditional automotive aluminum body resistance welding process uses DC resistance welding power source, which can only weld 10-20 solder joints after grinding the electrode.
  • DC resistance welding power source which can only weld 10-20 solder joints after grinding the electrode.
  • concentric electrode or other direct contact DC welding electrode is in direct contact with the workpiece
  • the equipment stops working and the electrode is repaired again, so the production efficiency is reduced, the electrode life is reduced, and the cost is increased.
  • the difference in nugget size between each layer is too large, and the welding quality is difficult to ensure.
  • the DC welding has a polarity effect, that is, when the current flows from the positive electrode to the negative electrode side, the electrodes on both sides are directional with the workpiece, and the potential difference generated by the contact is a vector, that is, the potential difference caused by the electric field to cause the contact between the copper and the aluminum.
  • the root cause is that the contact heat of the copper-aluminum contact on the positive side is greater than the heat of the contact resistance of the aluminum-copper on the negative side, which causes a change in the temperature field of the soldering region, so that the copper electrode on the positive side is easily adhered to the aluminum electrode, and the result affects the soldering of the resistance spot welding. Efficiency, electrode life and weld quality.
  • a process method for adjusting pulse width adjustable AC-DC inverter resistance (CN103008865A), the method is implemented as follows: First, the welding transformer is installed in the fuselage, and the primary coil of the transformer is connected to the U and V output ends of the controller.
  • the secondary is fixed on the pressing mechanism by the copper conductor and the welding electrode for pressing the welding workpiece; the pulse width adjustable welding transformer is used for outputting the low voltage and large welding current, and the pulse width adjustable inverter controller is used for controlling the welding waveform
  • a method for non-splash dynamic heating adaptive resistance welding of automobile metal sheets (CN103394801A)
  • the implementation steps are as follows: firstly, by using no secondary rectification welding transformer and pulse width adjustable AC inverter power source, by calling different metal materials for thermal balance
  • the factor is such that the nugget is always in the process of melting without melting and heating and cooling the crystallization heat balance process; and the size of the nugget is controlled by detecting the rate of change of dynamic resistance across the electrode.
  • a resistance welding nugget quality control method (CN102107323A)
  • the implementation steps are as follows: the three-phase power supply is connected to the controller, through the current limiting resistor rectifier diode and the full-wave half-controlled rectifier circuit rectification, capacitor filtering through the control circuit, will The alternating current becomes direct current, and then the direct current is input into the H-bridge circuit composed of the IGBT, and the alternating current with alternating positive and negative half-waves is output from the UV terminal according to the main control circuit and the program.
  • the patent document 1 innovation is more efficient and energy-saving than other welding machines in terms of multi-point projection welding, precision welding, welding workpieces sensitive to polarity effects, and high welding quality; Without changing the type of welding machine, one machine is versatile, which greatly improves the efficiency of adjusting the welding machine.
  • Comparative literature 2 introduces the non-splash thermal balance factor t+t0, which effectively solves the spatter problem in the welding process and improves the welding quality.
  • a welding parameter, the nugget coefficient c is added.
  • the current output waveform of each welding heating cycle can be precisely controlled by two independent parameter quantities, so that the welding current waveform control mode is fundamental.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a direct contact type AC trapezoidal wave aluminum resistance welding process by controlling the rising speed of current and outputting positive and negative alternating frequencies on both sides of the welding electrode.
  • the adjustable, low-voltage and high-current welding waveform fundamentally overcomes the problem that the life of the positive electrode side of the aluminum alloy resistance welding is smaller than that of the negative electrode side and the concentric electrode welding piece cannot use the non-destructive testing to check the welding quality and the nugget offset. It can extend the number of consecutive solder joints by 2-5 times, which greatly improves the service life of the electrode.
  • a direct contact type AC trapezoidal wave aluminum resistance welding process the aluminum alloy resistance welding equipment involved includes an inverter controller and an AC transformer, a welding electrode and a pressurizing mechanism and a cooling system, and the steps are as follows:
  • the AC transformer is mounted on a resistance welding device, and the primary coil of the AC transformer is connected to the output terminals of the inverter controller U and V, and the secondary of the AC transformer is connected to the welding electrode of the welding electrode and the resistance welding device through a copper or aluminum conductor.
  • the AC transformer used, the secondary does not install the rectifier or the thyristor;
  • the inverter controller used is an AC trapezoidal wave controller with adjustable frequency and positive and negative half-wave current rise rate controllable;
  • AC transformer parameters output peak current 32KA-70KA, voltage 10-30V;
  • Inverter controller parameters output current 800-4800A, frequency 30-80Hz, duty cycle 20-100%, welding cycle number
  • the inverter controller passes the three-phase power supply through the current limiting resistor R1 and the rectifier diodes D1, D, the thyristor SCR, and the filter capacitor C to convert the alternating current into direct current; and then inputs the direct current into the H-bridge circuit composed of the IGBT.
  • Control Under the control of the circuit, the output voltage from the U and V terminals to the AC transformer whose primary frequency is adjustable, the voltage is adjustable, and the current rise rate is controllable, and the required AC trapezoidal wave welding current is generated on the secondary induction coil. Welding is performed.
  • the parameters of the AC trapezoidal wave welding current are:
  • Peak current is 3.2-7 million amps
  • the welding cycle number is 1-20.
  • the welding parameters of the aluminum alloy resistance welding equipment are:
  • the AC trapezoidal wave inverter controller capable of controlling the rising speed of the positive and negative half-wave currents and the AC transformer (transformer) having an output voltage of 10-30 volts, a peak current of 3.2-7 million amps, and a frequency of 25-80 Hz.
  • the controller, the transformer using the conductor, the welding electrode and the pressing mechanism and the cooling system are connected to form a resistance welding device (mobile welding machine or fixed welding machine), so that it can be pressurized
  • a resistance welding device mobile welding machine or fixed welding machine
  • the positive and negative alternating trapezoidal wave current is outputted on both sides of the electrode, and the welding is performed according to the specified duty ratio, welding current, frequency, welding cycle number and welding pressure, which fundamentally overcomes the positive electrode side of the DC welding aluminum.
  • the electrode loss is greater than the negative electrode side electrode loss and the concentric circle electrode weldment cannot use the non-destructive flaw detection to verify the welding quality, which greatly improves the electrode life and welding quality.
  • the invention is different from the traditional aluminum resistance welding process using a DC power source and a DC power supply plus a concentric electrode.
  • the method solves the problem from the perspective of power supply properties, and has the advantages of long electrode life, low welding cost, good welding quality, high production efficiency, no auxiliary equipment, and low failure rate of the transformer.
  • Figure 1 is a schematic diagram of an alternating current transformer of the present invention
  • FIG. 2 is a circuit schematic diagram of an inverter controller of the present invention
  • FIG. 3 is a waveform diagram of the welding current of the present invention.
  • Figure 4 is a structural view of the stationary welder of the present invention.
  • Figure 5 is a structural view of a mobile welder of the present invention.
  • the direct contact type AC trapezoidal wave aluminum resistance welding process method of the invention comprises an AC trapezoidal wave inverter controller capable of controlling the rising speed of the positive and negative half-wave currents, and an output voltage of 10-30 volts and a peak current of 3.2-7 million.
  • Ampere, AC transformer with frequency of 25-80 Hz (secondary without rectifier or thyristor), the inverter controller, AC transformer using conductor, welding electrode and pressure mechanism and cooling system are connected to form resistance welding equipment, as shown in Figure 5.
  • the mobile welding machine and the fixed welding machine of Fig. 4 enable the positive and negative alternating trapezoidal wave currents to be outputted on both sides of the electrode when the workpiece is pressure welded, and the specified duty ratio, welding current, frequency, The welding cycle number and the welding pressure are used for welding.
  • the innovation of the present invention is to control the rising speed of the current of the trapezoidal wave which is positively and negatively alternating on both sides of the electrode by adjusting the duty ratio; and to select an AC transformer of a specific voltage using a specific frequency and a specific current magnitude.
  • the invention relates only to the variation of the inverter controller and the AC transformer, and the overall structure of the mobile welder and the fixed welder is basically unchanged, so only the illustrations of the mobile welder and the fixed welder are given, and The structure is not described.
  • the AC transformer of the present invention is composed of a primary coil, a secondary coil and an iron core, see Fig. 1.
  • Filter circuit consists of a plurality of capacitors with a withstand voltage of 400-900 volts and a capacity of 330-10000 microfarads. The function is to change the pulsating DC voltage to a stable DC voltage;
  • Inverter circuit H-bridge circuit composed of IGBT, IGBT withstand voltage of 1200-2000 volts, current 200-2000 amps, the function is to adjust the DC output voltage from U and V terminals through IGBT according to a certain duty cycle, the frequency can be The alternating AC square wave is then passed through the primary coil of the transformer to induce an alternating low-voltage alternating trapezoidal wave in the secondary of the transformer for welding aluminum;
  • Power supply and IGBT drive circuit generate +5V, ⁇ 15V, +24V power supply for control device operation, control IGBT turn-on and IGBT fault protection signal and trigger signal for controlling thyristor charging;
  • Main control board circuit a program control circuit composed of DSP (ie digital signal processor) as the core;
  • DSP digital signal processor
  • the analog operational amplifier circuit controls the welding current, welding time, current waveform, input and output signals
  • Primary pole (or secondary) current detection consisting of a current transformer, which is fed back to the main control circuit to control the output current with high precision by detecting the magnitude and amount of change of the output current;
  • a direct contact type AC trapezoidal wave aluminum resistance welding process the steps are as follows:
  • the AC transformer is mounted on a resistance welding device, and the primary coil of the AC transformer is connected to the output terminals of the inverter controller U and V, and the secondary of the AC transformer is connected to the welding electrode of the welding electrode and the resistance welding device through a copper or aluminum conductor. ;
  • the AC transformer used, the secondary does not install the rectifier or the thyristor;
  • the inverter controller used is an AC trapezoidal wave controller with adjustable frequency and positive and negative half-wave current rise rate controllable;
  • AC transformer parameters output peak current 3.2-300,000 amps, voltage 10-30 volts;
  • Inverter controller parameters output current 800-4800 ps, frequency 25-80 Hz, duty cycle 10-100%, welding cycle number 1-20 is equivalent to 10-300ms;
  • the inverter controller passes the three-phase power supply through the current limiting resistor R1 and the rectifier diodes D1, D, the thyristor SCR, and the filter capacitor C to convert the alternating current into direct current; and then inputs the direct current into the H-bridge circuit composed of the IGBT.
  • the output voltage from the U and V terminals to the AC transformer whose primary frequency is adjustable, the voltage is adjustable, and the current rise rate is controllable, and the required AC trapezoidal wave welding current is generated on the secondary induction coil. , welding.
  • the process method of the present invention performs the following parameters setting:
  • Peak current is 3.2-7 million amps
  • the welding cycle number 1-20 is equivalent to 10-300ms.
  • the present invention uses the welding current waveform of Figure 1:
  • control power frequency from 25 Hz to 80 Hz is the second key point of aluminum welding.
  • the welding waveform is close to the triangular wave, resulting in a small welding current, insufficient welding heat, and failed welding;
  • the duty cycle of the rising phase is 95%
  • the electrode needs to be ground once.
  • the duty cycle of the rising phase is 100%
  • the electrode needs to be ground once.
  • the duty cycle of the rising phase is 95%
  • the working principle of the invention is:
  • an alternating trapezoidal wave is formed between the positive and negative copper electrodes, and the current and frequency of the trapezoidal wave are suitable for welding aluminum and aluminum alloy; or aluminum alloy according to different thicknesses.
  • Board anytime Adjust current, voltage, frequency, and duty cycle ranges. Since the 95%-100% large duty cycle is used in the initial stage of the half wave, the current climbs very fast. Under the double action of the frequency and the large current, the heat required for soldering is quickly reached between the aluminum and the aluminum.
  • the reason for the positive and negative alternation is that the heat on the positive electrode side does not reach the heat required for the aluminum to penetrate into the copper, and the negative electrode side is turned into the alternating side, so that the two electrodes of the welding electrode do not form the adhesion phenomenon between the electrode and the aluminum alloy, thereby avoiding the phenomenon. Due to overheating of one side caused by power supply problems, quality problems such as adhesion, penetration, and splashing occur, which greatly improves the service life of the electrode and the production efficiency of the electric resistance aluminum alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Resistance Welding (AREA)

Abstract

一种直接接触式交流梯形波铝电阻焊工艺方法,包括能控制正负半波电流上升速度的交流梯形波逆变控制器,以及输出电压10-30伏、峰值电流3.2-7万安培、频率25-80赫兹的交流变压器,所述变压器次级无整流器或可控硅。将逆变控制器、交流变压器利用导体、焊接电极与加压机构及冷却系统相连组成电阻焊设备,使其能在加压焊接工件时,在电极两侧输出正负交变的梯形波电流,并按指定占空比、焊接电流、频率、焊接周波数、焊接压力大小进行焊接。该方法每修磨一次电极能焊50-150焊点,电极寿命延长了2-5倍,提高了生产效率和焊接质量,降低了生产成本。

Description

一种直接接触式交流梯形波铝电阻焊工艺方法 技术领域
本发明属于焊接技术领域,涉及有关电阻焊技术,尤其是一种直接接触式交流梯形波铝电阻焊工艺方法。
背景技术
我们知道,大部分电阻焊工艺及设备都是针对碳钢、不锈钢、高温合金、银、铜进行开发与研究应用,对于铝及铝合金的焊接工艺,也仅限于在直流电源范围内,研究压力、电极形状、附加工装、多脉冲对焊接质量、电极寿命、生产效率的影响,对使用交流电源焊铝没有过太多的关注和研究。
传统的汽车铝车身电阻焊工艺都是采用直流电阻焊电源,每次修磨电极后只能焊10-20个焊点,当采用同心圆电极或其它直接接触式直流焊(电极与工件直接接触),最多也只能在焊30多个焊点后,设备停止工作,再次修磨电极,因此生产效率下降,电极使用寿命减少,成本加大。特别是焊接3层及以上薄板组合时每层之间熔核大小相差太大现象,焊接质量难以保证。究其原因,是因为直流焊接存在极性效应,即电流自正极流向负极侧时,两侧电极与工件接触具有方向性,接触产生的电势差是矢量,即在电场作用下导致铜铝接触的电势差与铝铜接触的电势差不同,经测试电势差相差约25%;即在焊接时,正极侧铜铝接触电压高于负极侧铝铜接触电压,根据公式Q=0.24·I·U·t,由于电流I通电时间t相同,造成两侧的热量也相差约25%,导致两侧电极铝向铜电极扩散渗透性不同。根本原因是由于正极侧铜铝接触电阻热量大于负极侧铝铜接触电阻热量,造成了焊接区域温度场发生了改变,使得正极侧铜电极与铝极容易粘连,其结果影响了电阻点焊的焊接效率,电极寿命及焊接质量。
申请人公司作为电阻焊的专业公司,研制并开发了如下三种焊接专利技术:
1、一种脉宽可调式交直流逆变电阻焊接的工艺方法(CN103008865A),该方法实施步骤如下:首先,将焊接变压器装在机身内,变压器初级线圈接控制器U、V输出端,次级通过铜导体和焊接电极固定在加压机构上,用于压紧焊接工件;采用脉宽可调式焊接变压器用于输出低电压大焊接电流,脉宽可调式逆变控制器用于控制焊接波形;根据公式U=4.44·f·N·B·S·10-4导出公式:脉宽T/2=1000/2·f=2.22·N·B·S·10-1/U来设计脉宽可调焊接变压器;通过调整不同时刻的脉宽和焊接电流,以完成不同的波形图相对应的焊接工艺方法。
2、一种汽车金属薄板无飞溅动态加热自适应电阻焊接的方法(CN103394801A),其实施步骤如下:首先利用无次级整流焊接变压器及脉宽可调交流逆变电源,通过调用不同金属材料热平衡因子,使熔核形成过程中始终处于无飞溅的通电加热熔化、冷却结晶热平衡过程;并通过检测电极两端的动态电阻变化率来控制熔核大小。
3、一种电阻焊熔核质量控制方法(CN102107323A),实施步骤如下:将三相电源接入控制器,经限流电阻整流二极管及全波半控整流电路整流,电容器滤波经控制电路,将交流电变为直流电,再将直流电输入由IGBT组成的H桥回路中,按主控制电路及程序从U.V端输出正负半波交替变化的交流电。
通过技术特征的对比,上述公开专利文献中,专利文献1创新在多点凸焊、精密焊接、对极性效应敏感的焊接工件等方面,与其它焊机相比高效节能、焊接质量高;在不改变焊机种类情况下,一机多能,大大提高了调整焊机的效率。对比文献2则是引入无飞溅热平衡因子t+t0,有效解决了焊接过程的飞溅问题,提高了焊接质量。而对比文献3则是在原焊接参数基础上增加一个焊接参数即熔核系数c,每一个焊接加热周期电流输出波形可通过两个独立参数量来精确控制,使焊接电流波形控制方式发生了根本性改变,在焊接过程中降低了焊机调控难度,增大焊核的深度,减少飞溅,降低电阻焊机对材料变化、电网波动、压力变化的敏感性,易于通过调整熔核系数c获得稳定的焊接质 量。
因此,上述公开专利文献与本发明申请的发明目的有较大不同,不会影响本发明申请的创造性及新颖性。
发明内容
本发明的目的在于克服现有技术的不足之处,提供一种直接接触式交流梯形波铝电阻焊工艺方法,该方法是通过控制电流的上升速度并在焊接电极两侧输出正负交替、频率可调、低电压大电流的焊接波形,从根本上克服了铝合金电阻焊时正极侧电极寿命小于负极侧寿命以及同心圆电极焊件无法使用无损探伤检验焊接质量和熔核偏移的问题,能使电极每次连续焊点数延长2-5倍,大大提高了电极使用寿命。
本发明解决其技术问题是通过以下技术方案实现的:
一种直接接触式交流梯形波铝电阻焊工艺方法,所涉及的铝合金电阻焊设备包括逆变控制器及交流变压器、焊接电极与加压机构及冷却系统,步骤如下:
⑴将交流变压器装在电阻焊设备上,该交流变压器的初级线圈接逆变控制器U、V输出端,该交流变压器次级通过铜或铝导体与焊接电极及电阻焊设备的加压机构相连
⑵所用交流变压器,次级不按装整流器或可控硅;所用逆变控制器,是采用频率可调、正负半波电流上升率可控的交流梯形波控制器;
技术参数如下:
交流变压器参数:输出峰值电流32KA-70KA,电压10-30V;
逆变控制器参数:输出电流800-4800A,频率30-80Hz,占空比20-100%,焊接周波数
1-20周波;
⑶逆变控制器是将三相电源通过限流电阻R1以及整流二极管D1、D、可控硅SCR、滤波电容器C,将交流电变为直流电;再将直流电输入由IGBT组成的H桥回路中,在控 制电路的控制下从U、V端输出给交流变压器初级频率可调、电压可调、电流上升率可控的交变电压,并在次级感应线圈上产生所需的交流梯形波焊接电流,进行焊接。
而且,所述交流梯形波焊接电流的参数为:
电流上升阶段占空比95%-100%;
频率25-80HZ;
峰值电流3.2-7万安培;
焊接周波数1-20。
而且,所述铝合金电阻焊设备的焊接参数为:
焊接压力p;
变压器匝数比N2/N1=1:50-1:15;
预热段检测时间0-3周波,占空比10-50%;
自动处理时间0-100周波,占空比20-80%。
本发明的优点和有益效果为:
1、本发明所设计的能控制正负半波电流上升速度的交流梯形波逆变控制器和输出电压10-30伏、峰值电流3.2-7万安培、频率25-80赫兹的交流变压器(变压器次级无整流器或可控硅),将控制器、变压器利用导体、焊接电极与加压机构及冷却系统相连组成电阻焊设备(移动式焊机或固定式焊机),使其能在加压焊接工件时,在电极两侧输出正负交变的梯形波电流,并按指定占空比、焊接电流、频率、焊接周波数、焊接压力大小进行焊接,从根本上克服了直流焊铝时正极侧电极损耗大于负极侧电极损耗以及同心圆电极焊件无法使用无损探伤检验焊接质量的问题,大大提高了电极使用寿命和焊接质量。实践证明该方法每修磨一次电极能焊50-150焊点,电极寿命延长了2-5倍,极大提高生产效率和焊接质量,降低了生产成本,使铝及铝合金电阻焊工艺发生了质的飞跃。
2、本发明区别于传统使用直流电源、与使用直流电源加同心圆电极的铝电阻焊工艺 方法,是从电源属性角度来解决问题,具有电极使用寿命长、焊接成本低、焊接质量好、生产效率高、不用辅助装备、变压器故障率低等优点。
附图说明
图1是本发明交流变压器的原理图;
图2是本发明逆变控制器的电路原理图;
图3是本发明的焊接电流波形图;
图4是本发明固定式焊机的结构图;
图5是本发明移动式焊机的结构图。
具体实施方式
下面结合附图对本发明的实施例做进一步详述;需要说明的是:本实施例是描述性的,不是限定性的,不能以此来限定本发明的保护范围。
本发明所涉及的直接接触式交流梯形波铝电阻焊工艺方法,包括能控制正负半波电流上升速度的交流梯形波逆变控制器,以及输出电压10-30伏、峰值电流3.2-7万安培、频率25-80赫兹的交流变压器(次级无整流器或可控硅),将逆变控制器、交流变压器利用导体、焊接电极与加压机构及冷却系统相连组成电阻焊设备,如图5的移动式焊机及图4的固定式焊机,使其能在加压焊接工件时,在电极两侧输出正负交变的梯形波电流,并按指定占空比、焊接电流、频率、焊接周波数、焊接压力大小进行焊接。
由于本发明申请的创新点在于通过调整占空比,控制电极两侧正负交变的梯形波的电流的上升速度;以及选择使用特定频率,及特定电流大小,特定电压的交流变压器。
本发明仅涉及逆变控制器和交流变压器的变动,而移动式焊机及固定式焊机的整体结构基本没有改变,因此只给出了移动式焊机及固定式焊机的图示,并没有对结构进行描述。
本发明的交流变压器由初次线圈,次级线圈及铁芯组成,参见图1。
本发明逆变控制器的逆变电路原理图参见图2,工作原理如下:
⑴输入电源:三相110V-440V;
⑵桥式全波半控整流电路:由可控硅及整流二极管组成,电流200-2000安,耐压1200-2000伏,功能是把交流变成脉动直流;
⑶滤波电路:由多只耐压400-900伏,容量330-10000微法的电容器串并联组成,功能是把脉动直流电压变为稳定直流电压;
⑷逆变电路:由IGBT组成的H桥电路,IGBT耐压1200-2000伏,电流200-2000安,功能是将直流电经IGBT按一定占空比从U、V端输出电压可调,频率可变的交流方波,然后通过变压器初级线圈,在变压器次级感应出交变的低压交变梯形波,用于焊铝;
⑸电源及IGBT驱动电路:产生控制器件工作的+5V、±15V、+24V电源,控制IGBT开通关断及IGBT故障时保护信号以及控制可控硅充电的触发信号;
⑹主控板电路:以DSP(即数字信号处理器)为核心组成的程序控制电路;
通过数字输入输出控制电路,模拟运算放大电路来控制焊接电流,焊接时间,电流波形,输入输出信号;
⑺初次极(或次级)电流检测:由电流互感器组成,通过检测输出电流的大小及变化量反馈给主控电路达到控制高精度的输出电流;
⑻编程器:将焊接数据输入给控制器的人机界面。
一种直接接触式交流梯形波铝电阻焊工艺方法,步骤如下:
⑴将交流变压器装在电阻焊设备上,该交流变压器的初级线圈接逆变控制器U、V输出端,该交流变压器次级通过铜或铝导体与焊接电极及电阻焊设备的加压机构相连;
⑵所用交流变压器,次级不按装整流器或可控硅;所用逆变控制器,是采用频率可调、正负半波电流上升率可控的交流梯形波控制器;
技术参数如下:
交流变压器参数:输出峰值电流3.2-7万安培,电压10-30伏特;
逆变控制器参数:输出电流800-4800培,频率25-80赫兹,占空比10-100%,焊接周波数1-20相当于10-300ms;
⑶逆变控制器是将三相电源通过限流电阻R1以及整流二极管D1、D、可控硅SCR、滤波电容器C,将交流电变为直流电;再将直流电输入由IGBT组成的H桥回路中,在控制电路的控制下从U、V端输出给交流变压器初级频率可调、电压可调、电流上升率可控的交变电压,并在次级感应线圈上产生所需的交流梯形波焊接电流,进行焊接。
焊接波形参见图3。
本发明所涉及的工艺方法进行以下参数的设定:
焊接压力p;
变压器匝数比N2/N1;
预热段检测时间0-3周波,占空比10-50%
自动处理时间0-100周波,占空比20-80%。
焊接参数:
交流梯形波;
电流上升阶段占空比95%-100%;
频率25-80HZ;
峰值电流3.2-7万安培;
焊接周波数1-20相当于10-300ms。
本发明使用图1的焊接电流波形:
1、使用交流梯形波,能解决直流电源电阻焊焊铝电极寿命短、熔核偏移、电极易粘连问题,其原理可用铝铜,铜铝接触产生电势差以及交流逆变电源控制方式 上解释清楚。
2、控制交流梯形波每半波电流上升段占空比为95-100%,使电流从零上升到峰值电流Imax=32KA-70KA的时间处于t0=1-5ms范围内,让焊接波形接近矩形,在最短时间达到焊铝的必要电流值,这是焊接铝的核心点之一,否则由于电流密度不足、铝散热快,导致铝熔核未形成而焊接失败。
3、控制电源频率为25赫兹到80赫兹,是铝焊接关键点之二。
当频率大于80赫兹,焊接波形接近三角波,导致焊接电流小,焊接热量不足,焊接失败;
当频率小于25赫兹,焊接波形接近矩形波,焊接电流大,焊接可以成功;但由于半波时间T/2大于(1000/25)/2=20ms较长,它即在一个周波内的正半波,时间也较长,根据公式Q=0.24·I·U·t,在正极性侧产生的热量较大,电极粘连倾向增加,影响电极寿命。
下面通过三个应用实例,进一步验证本发明申请的技术优势和突出效果。
应用实例1:
针对1.5mm+1.5mm铝合金点焊工参数:
焊接压力P=4000N;
变压器匝数比N2/N1=1:28;
上升阶段占空比95%;
焊接峰值电流Imax=38KA;
焊接频率f=50赫兹;
焊接周波数n=5;
每连续焊接130个焊点且满足焊接质量,需修磨一次电极。
应用实例2:
针对3mm+3mm铝合金点焊工参数:
焊接压力P=4000N;
变压器匝数比N2/N1=1:40;
上升阶段占空比100%;
焊接峰值电流Imax=40KA;
焊接频率f=40赫兹;
焊接周波数n=12;
每连续焊接65个焊点且满足焊接质量,需修磨一次电极。
应用实例3:
针对1.5mm+3mm+1.5铝合金点焊工参数:
焊接压力P=4000N;
变压器匝数比N2/N1=1:40;
上升阶段占空比95%;
焊接峰值电流Imax=39KA;
焊接频率f=45赫兹;
焊接周波数n=8;
连续焊接100次满足焊接质量要求,且熔核大小一致(直流焊熔核一大一小),而后才需修磨一次电极。
上述参照实施例对电阻焊工艺方法进行的详细描述,是说明性的而不是限定性的;因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。
本发明的工作原理是:
通过调整逆变电路的占空比及焊接变压器的电压,在正负铜电极之间形成交变梯形波,该梯形波的电流、频率适合焊接铝及铝合金;也可根据不同厚度的铝合金板,随时 调整电流、电压、频率及占空比范围。由于在半波的起始段用95%-100%大占空比,因此电流爬升非常快,在该频率及大电流双重作用下,铝与铝之间迅速达到焊接所需热量,铜电极由于正负交替的原因,在正极侧热量恰好达不到铝向铜渗透所需的热量,就转成交变的负极侧,使得焊接电极的两极都不会形成电极与铝合金的粘连现象,避免了由于电源属性问题造成的一侧过热,出现粘连、穿透,飞溅等质量问题,极大地提高了电极的使用寿命,以及电阻焊铝合金的生产效率。

Claims (3)

  1. 一种直接接触式交流梯形波铝电阻焊工艺方法,所涉及的铝合金电阻焊设备包括逆变控制器及交流变压器、焊接电极与加压机构及冷却系统,其特征在于:
    步骤如下:
    ⑴将交流变压器装在电阻焊设备上,该交流变压器的初级线圈接逆变控制器U、V输出端,该交流变压器次级通过铜或铝导体与焊接电极及电阻焊设备的加压机构相连;
    ⑵所用交流变压器,次级不按装整流器或可控硅;所用逆变控制器,是采用频率可调、正负半波电流上升率可控的交流梯形波控制器;
    技术参数如下:
    交流变压器参数:输出峰值电流32KA-70KA,电压10-30V;
    逆变控制器参数:输出电流800-4800A,频率30-80Hz,占空比20-100%,焊接周波数1-20周波;
    ⑶逆变控制器是将三相电源通过限流电阻R1以及整流二极管D1、D、可控硅SCR、滤波电容器C,将交流电变为直流电;再将直流电输入由IGBT组成的H桥回路中,在控制电路的控制下从U、V端输出给交流变压器初级频率可调、电压可调、电流上升率可控的交变电压,并在次级感应线圈上产生所需的交流梯形波焊接电流,进行焊接。
  2. 根据权利要求1所述的直接接触式交流梯形波铝电阻焊工艺方法,其特征在于:所述交流梯形波焊接电流的参数为:
    电流上升阶段占空比95%-100%;
    频率25-80HZ;
    峰值电流3.2-7万安培;
    焊接周波数1-20。
  3. 根据权利要求1所述的直接接触式交流梯形波铝电阻焊工艺方法,其特征在于:所述铝合金电阻焊设备的焊接参数为:
    焊接压力p;
    变压器匝数比N2/N1=1:50-1:15;
    预热段检测时间0-3周波,占空比10-50%;
    自动处理时间0-100周波,占空比20-80%。
PCT/CN2017/084619 2017-04-20 2017-05-17 一种直接接触式交流梯形波铝电阻焊工艺方法 WO2018192038A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17732282.3A EP3415262A1 (en) 2017-04-20 2017-05-17 Direct contact- and alternating current trapezoidal wave-based electric resistance welding process method of aluminum
JP2017536889A JP2019514689A (ja) 2017-04-20 2017-05-17 交流台形波を用いた直接接触式アルミ抵抗溶接方法
US15/644,819 US20180304397A1 (en) 2017-04-20 2017-07-09 Direct-contact type alternating current trapezoidal wave aluminum resistance welding process method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710259885.0A CN107088701B (zh) 2017-04-20 2017-04-20 一种直接接触式交流梯形波铝电阻焊工艺方法
CN201710259885.0 2017-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/644,819 Continuation US20180304397A1 (en) 2017-04-20 2017-07-09 Direct-contact type alternating current trapezoidal wave aluminum resistance welding process method

Publications (1)

Publication Number Publication Date
WO2018192038A1 true WO2018192038A1 (zh) 2018-10-25

Family

ID=59637524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084619 WO2018192038A1 (zh) 2017-04-20 2017-05-17 一种直接接触式交流梯形波铝电阻焊工艺方法

Country Status (4)

Country Link
EP (1) EP3415262A1 (zh)
JP (1) JP2019514689A (zh)
CN (1) CN107088701B (zh)
WO (1) WO2018192038A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315170A (zh) * 2019-05-31 2019-10-11 广汽乘用车有限公司 一种用于焊装车间的中频交流焊接系统及方法
CN110253129B (zh) * 2019-07-18 2024-01-30 天津七所高科技有限公司 基于高频逆变直流电阻焊电源用于铝点焊的系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071359A (zh) * 1991-03-06 1993-04-28 埃尔帕特朗尼股份公司 电阻焊接方法及实现该方法的装置
CN2161412Y (zh) * 1993-07-22 1994-04-13 华南理工大学 绝缘栅双极晶体管逆变电阻点焊机
JPH06320291A (ja) * 1993-04-19 1994-11-22 Matsushita Electric Ind Co Ltd 抵抗スポット溶接方法
CN1119572A (zh) * 1994-05-27 1996-04-03 东芝株式会社 用于电阻焊机的控制装置
CN101104219A (zh) * 2007-06-18 2008-01-16 华南理工大学 一种高频逆变直流点焊电源装置及其应用
CN102107323A (zh) 2010-12-29 2011-06-29 天津商科数控设备有限公司 电阻焊熔核质量控制方法
JP4926397B2 (ja) * 2004-12-15 2012-05-09 株式会社Fts シーム溶接機の溶接制御装置
CN103008865A (zh) 2012-12-31 2013-04-03 天津商科数控设备有限公司 脉宽可调式交直流逆变电阻焊接的工艺方法
CN103111743A (zh) * 2013-02-28 2013-05-22 山东大学 一种钢与铝或铝合金的快速焊接方法
CN103394801A (zh) 2013-08-16 2013-11-20 天津商科数控设备有限公司 汽车金属薄板无飞溅动态加热自适应电阻焊接的方法
CN204018946U (zh) * 2014-06-13 2014-12-17 广东省自动化研究所 一种双处理器的电阻点焊电源控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4426693B2 (ja) * 2000-03-22 2010-03-03 ミヤチテクノス株式会社 金属部材接合方法及びリフローハンダ付方法
CN1220034C (zh) * 2003-07-23 2005-09-21 天津大学 多信息融合技术确定铝合金板材电阻点焊熔核面积的方法
CN102935551B (zh) * 2012-11-23 2015-04-22 贵州安大航空锻造有限责任公司 铝合金薄壁环件的闪光焊成形方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071359A (zh) * 1991-03-06 1993-04-28 埃尔帕特朗尼股份公司 电阻焊接方法及实现该方法的装置
JPH06320291A (ja) * 1993-04-19 1994-11-22 Matsushita Electric Ind Co Ltd 抵抗スポット溶接方法
CN2161412Y (zh) * 1993-07-22 1994-04-13 华南理工大学 绝缘栅双极晶体管逆变电阻点焊机
CN1119572A (zh) * 1994-05-27 1996-04-03 东芝株式会社 用于电阻焊机的控制装置
JP4926397B2 (ja) * 2004-12-15 2012-05-09 株式会社Fts シーム溶接機の溶接制御装置
CN101104219A (zh) * 2007-06-18 2008-01-16 华南理工大学 一种高频逆变直流点焊电源装置及其应用
CN102107323A (zh) 2010-12-29 2011-06-29 天津商科数控设备有限公司 电阻焊熔核质量控制方法
CN103008865A (zh) 2012-12-31 2013-04-03 天津商科数控设备有限公司 脉宽可调式交直流逆变电阻焊接的工艺方法
CN103111743A (zh) * 2013-02-28 2013-05-22 山东大学 一种钢与铝或铝合金的快速焊接方法
CN103394801A (zh) 2013-08-16 2013-11-20 天津商科数控设备有限公司 汽车金属薄板无飞溅动态加热自适应电阻焊接的方法
CN204018946U (zh) * 2014-06-13 2014-12-17 广东省自动化研究所 一种双处理器的电阻点焊电源控制系统

Also Published As

Publication number Publication date
EP3415262A1 (en) 2018-12-19
CN107088701A (zh) 2017-08-25
JP2019514689A (ja) 2019-06-06
CN107088701B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN103008865B (zh) 脉宽可调式交直流逆变电阻焊接的工艺方法
CN103394801B (zh) 汽车金属薄板无飞溅动态加热自适应电阻焊接的方法
CN103567652A (zh) 基于脉冲协调控制的铝合金直流等离子-钨极氩弧复合焊接方法
CN102107323B (zh) 电阻焊熔核质量控制方法
WO2018192038A1 (zh) 一种直接接触式交流梯形波铝电阻焊工艺方法
US20140175065A1 (en) Welding-Current Control Method of the Resistance Welding Machine and Welding-Current Control Device
CN110253129A (zh) 基于高频逆变直流电阻焊电源用于铝点焊的系统及方法
JP5653116B2 (ja) メッキ鋼板の抵抗溶接制御方法
KR102010163B1 (ko) 전원 장치, 접합 시스템 및 통전 가공 방법
JP2015519203A (ja) パルス電流を適用する手アーク溶接装置およびその溶接方法
JP2001105155A (ja) インバータ交流式抵抗溶接方法と制御装置
Nagasathya et al. MFDC-An energy efficient adaptive technology for welding of thin sheets
US20180304397A1 (en) Direct-contact type alternating current trapezoidal wave aluminum resistance welding process method
JP2010149143A (ja) 抵抗溶接制御方法
JP3097486B2 (ja) インバータ制御交流式抵抗溶接装置
JP2711138B2 (ja) 交流ティグ溶接方法および装置
KR200492145Y1 (ko) 매시 시임 용접기
CN109396608A (zh) 一种数字化交直流脉冲钨极氩弧焊机系统
JP2711137B2 (ja) 交流ティグ溶接装置
JP6493093B2 (ja) 抵抗スポット溶接用電源装置
CN205043363U (zh) 大容量绝缘栅双极型晶体管中频逆变点焊机
CN106425072A (zh) 采用桥式整流供电的焊机电路
JPH10128551A (ja) 抵抗溶接方法及び装置
TWM592359U (zh) 變頻高速焊接裝置
JP2014158417A (ja) 電源装置及び電源制御方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017732282

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017536889

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17732282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE