WO2018190671A1 - 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법 - Google Patents

표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법 Download PDF

Info

Publication number
WO2018190671A1
WO2018190671A1 PCT/KR2018/004336 KR2018004336W WO2018190671A1 WO 2018190671 A1 WO2018190671 A1 WO 2018190671A1 KR 2018004336 W KR2018004336 W KR 2018004336W WO 2018190671 A1 WO2018190671 A1 WO 2018190671A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal organic
liquid chemical
modified metal
chemical agent
detoxification
Prior art date
Application number
PCT/KR2018/004336
Other languages
English (en)
French (fr)
Inventor
류삼곤
김민건
정현숙
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to US16/603,899 priority Critical patent/US11400331B2/en
Publication of WO2018190671A1 publication Critical patent/WO2018190671A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/34Dehalogenation using reactive chemical agents able to degrade
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/35Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by hydrolysis
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/02Chemical warfare substances, e.g. cholinesterase inhibitors
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/26Organic substances containing nitrogen or phosphorus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen

Definitions

  • the present invention is a detoxification method of a liquid chemical agent using a surface-modified metal organic ear having a detoxification effect of decomposing and removing a toxic chemical agent present in a liquid state at room temperature into a harmless substance that does not affect a living body. It is about.
  • inhalation or penetration into the skin such as sarin (also called sarin or GB), soman (also called soman or GD), and VX, affects the nervous system of humans and animals, causing sudden paralysis and eventually dying within a short time.
  • sarin also called sarin or GB
  • soman also called soman or GD
  • VX affects the nervous system of humans and animals, causing sudden paralysis and eventually dying within a short time.
  • organophosphorus compounds which are neuronal agents
  • HD distilled mustard
  • DS2 solution 2% by weight sodium hydroxide (NaOH), 28% ethylene glycol monomethyl ether, And diethylenetriamine (diethylenetriamine) is composed of 70%.
  • DS2 is an effective detoxifying agent for organophosphorus, a neurotoxic agent, but by itself it is quite toxic, flammable, highly corrosive and produces toxic detoxification byproducts, as well as teratogenicity in its main component, diethylenetriamine. Known as a substance, there is a potential for health hazards in use or production. In addition, when detoxification using DS2, the decontamination process is completed only after the decontamination surface is washed with water to increase the logistics burden due to storing or transporting a lot of water in the decontamination place.
  • XE555 resin Another antidote used by the US military is the XE555 resin, which is used to quickly decontaminate chemically contaminated surfaces. Although XE555 is effective at removing chemical agents, it does not have the ability to sufficiently neutralize the toxic chemicals absorbed, which may lead to the escape of toxic vapors from the XE555 resin after decontamination.
  • US Pat. No. 6,852,903 proposes an alumina-based reactive adsorbent powder
  • US Pat. No. 5,689,038 proposes an aluminum oxide or a mixture of aluminum oxide and magnesium monoperoxyphthalate (MMPP).
  • MMPP magnesium monoperoxyphthalate
  • US Pat. No. 6,537,382 suggests a metal-substituted zeolite adsorbent as a reactive adsorbent.
  • the two agents act to quickly adsorb the chemical agents or remove the toxicity of the adsorbed chemical agents, which has the advantage of preventing the chemical agent from escaping from the adsorbent.
  • U.S. Patent No. 8,317,931 suggested titania in the form of nanotubes to increase the detoxification rate for VX, and Zirconium hydrate (Zirconium U.S. Patent No. 8,530,719). Hydroxide particles have been reported to dramatically increase the rate of detoxification of VX and GD. However, in both cases, the detoxification rate of distilled mustard (HD), which is a blistering agent, is significantly slower than that of VX or GD, which is a nerve agent, and there is a possibility of toxic substances coming out due to lack of adsorption capacity. .
  • HD distilled mustard
  • the adsorbed distilled mustard (HD) which is a nerve agent and a blistering agent, is sufficiently adsorbed at the same time and the detoxification reaction is still limited. Therefore, as well as VX and GD as well as the diuretic mustard (HD) as well And there is a need for the development of detoxifying agents capable of performing detoxification.
  • the detoxifying agents used or reported as described above have detoxification ability to liquid chemical agents but problems due to their own toxicity, problems with adsorption but without degradability, and actual environmental conditions at room temperature with adsorption and decomposition ability. Degradation rate is too slow at or at the same time there is a problem that does not exhibit the detoxifying ability against various toxic chemicals.
  • the present invention forms a metal-organic skeleton to solve the above problems, and the surface-modified metal organic framework (metal organic framework), which can express not only the specific surface area but also all of the catalytic properties using metal ions,
  • MOF metal organic framework
  • the liquid chemical agent detoxification method of the present invention is to deposit a basic amine-based compound on the surface and pores of the metal organic framework (MOF) or bond inside the skeleton to modify the surface
  • the surface-modified metal organic via the preparation step comprises a detoxification step of removing the liquid chemical agent by performing a decomposition reaction in contact with the liquid chemical agent.
  • the liquid chemical agent refers to a chemical agent in a liquid state at a temperature of about 20 to 30 ° C., and may also be referred to as a chemical agent or a liquid chemical agent in the present invention.
  • the center metal may be zirconium (Zr), iron (Fe), titanium (Ti), copper (Cu), hafnium (Hf), barium (V), zinc (Zn), cobalt (Co), Nickel (Ni), Barium (Ba), Calcium (Ca), Strontium (Sr), Niobium (Nb), Chromium (Cr), Tantalum (Ta), Molybdenum (Mo), Rubidium (Ru), Osmium (Os), Tungsten (W), manganese (Mn), rhenium (Re), palladium (Pd), platinum (Pt), silver (Ag), gold (Au), yttrium (Y), germanium (Ge), bismuth (Bi) arsenic
  • One containing at least one metal ion of (As), lead (Pb), indium (In), gallium (Ga), antimony (Sb) and derivatives thereof can be used.
  • the metal organic diaphragm may be MOF-808 (Zr 6 O 4 (OH) 4 (BTC) 2 [HCOO] 6 ), UiO-66 (Zr 6 O 4 (OH) 4 (BDC) 6 ), UiO- 66-NH 2 (Zr 6 O 4 (OH) 4 (BDC-NH 2 ) 6 ), UiO-67 (Zr 6 O 6 (BPDC) 12 ), UiO-67-NH 2 (Zr 6 O 6 (BPDC- NH 2 ) 12 ) and MIL-100 (Fe) (Acid-activated Fe 3 O (H 2 O) 3 F (BTC) 2 ) may be preferably used, but is not limited to those skilled in the art Conventionally known various metal organic shields can be used.
  • 'BDC' means 1,4-benzenedicarboxylate
  • 'BPDC' means 4,4-biphenyldicarboxylate
  • (4,4'-biphenyldicarboxylate) means
  • 'BTC' means 1,3,5-benzenetricarboxylate (1,3,5-benzenetricarboxylate).
  • the basic amine compounds deposited on the surfaces and pores of the metal organic dogs shown above or bound to the inside of the skeleton are triethylenediamine (TEDA), triethylamine, quinuclidine and pyridine-4. Any one or a mixture thereof selected from -pyridine-4-carboxylic acid may be used, and in particular, it is preferable to use triethylenediamine (TEDA).
  • the content of the amine-based compound in the surface-modified metalorganic ear may include 6 to 20% by weight of the amine-based compound based on 100% by weight of the total surface-modified metal-organic ear.
  • the amine-based compound is less than 6% by weight in the surface-modified metal organic amine, the content of the amine-based compound is small and cannot be detoxified because the liquid chemical agent cannot be decomposed properly, whereas the amine-based compound exceeds 20% by weight.
  • the amine-based compound exceeds 20% by weight.
  • the specific surface area of the pores of the metal organic dog decreases due to the increased amount of the amine compound, the detoxification reactivity to the liquid chemical agent is reduced. It is preferable that the content of the system compound satisfies the range given above.
  • the surface-modified metal organic ear can be used as a detoxification agent for chemical agents in the form of powder and granules, and can remove the liquid chemical agent through the same method as the detoxification step described below. .
  • the surface-modified metal organic electrolyte reacts with water in the air to remove the liquid chemical agent by a hydrolysis reaction, and the reaction time may be preferably performed at 5 minutes to 4 hours.
  • the detoxification reaction time is less than 5 minutes, the reaction time is short, so that the liquid chemical agent is not completely decomposed, and if the reaction time is more than 4 hours, the decontamination time is long without further decomposition effect of the liquid chemical agent, thereby reducing the reaction efficiency.
  • the detoxification reaction time is not necessarily limited to the range shown, and the reaction time may be appropriately changed as necessary.
  • the liquid chemical agent detoxified by the detoxification method of the present invention is bis- (2-chloroethyl) sulfide, pinacolyl methyl phosphonofluoridate Ethyl N, N-dimethylphosphoroamidocyanidate, isopropyl methylphosphonofluoridate, trichloronitromethane, O-ethyl S- ( 2-diisopropylamino) ethyl methylphosphonothioate (O-ethyl S- (2-diisopropylamino) ethyl methylphosphonothioate) and derivatives thereof.
  • Liquid chemical agents used herein are described by the conventional names described above or abbreviations of NATO Military Standard (STANAG).
  • the present invention is to deposit a basic amine compound on the surface and the pores of the surface or the pores in a metal organic stabilizer having a meso pores having a relatively large pore size and stable to moisture, heat and chemicals
  • a metal organic stabilizer having a meso pores having a relatively large pore size and stable to moisture, heat and chemicals
  • hydrophobic chemicals such as sarin (GB), soman (GD), and VX
  • hydrophobic chemicals such as hydrophobic chemicals, and distilled mustard (HD). This will dramatically increase the detoxification efficiency.
  • the detoxification method of the present invention has a high detoxification efficiency for the chemical agent in the liquid state at room temperature with the ability to simultaneously decontaminate the neuroagent and the vesicant that the existing detoxification agents do not have, Has an effect equal to or greater than that of an antidote.
  • it is applied to a protective cloth and protective clothing for chemical agents can be utilized in a variety of military and business purposes.
  • FIG. 1 is a photograph of a surface modified metal organic dog surface manufactured according to an embodiment of the present invention under a scanning electron microscope (SEM).
  • FIG. 2 is a comparative analysis graph of the nitrogen adsorption curve of the surface-modified metal organic dogs prepared according to the embodiment of the present invention.
  • Figure 3 is a graph of the pore distribution analysis of surface modified metal organic dog prepared according to an embodiment of the present invention.
  • FT-IR Fourier transform infrared spectroscopy
  • 5 is a graph showing the adsorption and removal efficiency of distilled mustard (HD) by dynamic experiments.
  • the surface modified metal organic ear of the present invention is a method described below by depositing triethylenediamine (TEDA) with a basic amine compound inside the pores of the metal organic dogs named MOF-808 and UiO-66. It is to prepare a surface-modified metal organic ear.
  • TAA triethylenediamine
  • Example 1 is a method of preparing a surface-modified metal organic ear, and triethylenediamine (TEDA), which is a basic amine-based compound, first agates to be easily adsorbed into the pores of the metal organic metal before being deposited on the metal organic ear. It is prepared by pulverizing as small as possible to the particle size of less than 1 ⁇ m using a grinding or ball mill (ball mill) method. In the case of the ball mill method, the mixing ratio of the ball and the metal organic particles is mixed in a volume ratio of at least 1: 1 to at most 3: 1. At this time, the ball mill time is about 1 minute to a maximum of about 1 hour, preferably 5 minutes to 30 minutes to triethylenediamine (TEDA) particles are ground at a rotational speed of 30 to 300rpm.
  • TDA triethylenediamine
  • the surface of the metal organic dogs is modified by using a rotary evaporation method, and the prepared triethylenediamine (TEDA) powder is specifically modified.
  • the metal organic MOF-808 powder and the prepared triethylenediamine (TEDA) powder which is an amine compound, are prepared.
  • the triamine diamine (TEDA) which is an amine compound, is deposited on the pores and the surface of the MOF-808 by sublimation while turning at normal pressure at a rotational speed of 30 to 80 rpm for about 2 to 24 hours. Allow 6 wt% ethylenediamine (TEDA) to be deposited.
  • Examples 2 to 4 are prepared by the surface-modified metal organic ear by the same rotary evaporation method as Example 1, except that the amount of triethylenediamine (TEDA) deposited on the pores and the surface of the MOF-808 10 wt% (Example 2), 15 wt% (Example 3) and 20 wt% (Example 4) of triethylenediamine (TEDA), respectively, to be deposited.
  • TAA triethylenediamine
  • the surface-modified metal organic diaphragm is expressed as 'MOF-808-TEDA' by depositing a basic amine compound triethylenediamine (TEDA) on the pores and surfaces of the metal organic MOF-808.
  • the deposition amount of ethylenediamine (TEDA) is indicated after MOF-808-TEDA notation, for example, MOF-808-TEDA 6 wt%, MOF-808-TEDA 10 wt%, MOF-808-TEDA 15 It was named in the form of wt% and 20 wt% of MOF-808-TEDA.
  • Example 1 is a scanning electron microscope for confirming the surface state and particle size of the surface-modified metal organic dogs by depositing triethylenediamine (TEDA) on the surface of the metal organic MOF-808 through Example 4 electron microscope (SEM), and as shown in FIG. 1, triethylenediamine and related compounds were not aggregated or surrounded on the surface of the metal organic dog after triethylenediamine deposition. As a result, the pores were diffused into the pores and evenly deposited.
  • TAA triethylenediamine
  • SEM Example 4 electron microscope
  • Figure 2 shows the results of nitrogen adsorption isotherm measurement of the surface-modified metal organic ear and MOF-808 metal surface before surface modification in accordance with Examples 1 to 4, in each embodiment surface modified metal organic ear
  • the nitrogen adsorption isotherm was obtained by measuring the physical adsorption amount of nitrogen within the boiling point temperature of -196 °C and 1 atm.
  • the BET equation was applied to the measured adsorption isotherm, The BET surface area value (cm 3 / g) per weight before and after ethylenediamine (TEDA) deposition was measured.
  • Example 3 shows pore size distributions of surface-modified metal organic groups according to Examples 1 to 4, wherein triethylenediamine (TEDA) deposition rate is 15% by weight or more, and MOF-808-TEDA 15 of Example 3 Only 20% by weight of MOF-808-TEDA of Example 4 and microporous having a pore diameter of 2 nm or less, but 6% by weight of MOF-808-TEDA of Example 1 and MOF of Example 2 At -808-TEDA 10% by weight, mesoporous (mesoporous) with a pore diameter of 2.25 nm and 2.5 nm range of 2-50 nm was still present. The pore diameters separated here were classified according to the definition of the International Union of Pureand Applied Chemistry (IUPAC).
  • IUPAC International Union of Pureand Applied Chemistry
  • FIG. 4 shows the spectrum of fourier transform infrared (FT-IR) analysis according to deposition temperature in 15% by weight of MOF-808-TEDA of Example 3.
  • FT-IR Fourier transform infrared
  • the surface-modified metal organic ear according to the present invention was subjected to the degradation evaluation experiment according to the following toxic substances as in Experimental Examples 1 to 4.
  • the results of measuring the decomposition rate of the liquid chemical agent GD or distilled mustard (HD) for each reactive material through Experimental Example 1 are shown in Tables 1 and 2, respectively, and the GD decomposition rate reacted with the reactive material and GD for 5 minutes. It is the measured decomposition rate, and the HD decomposition rate is the decomposition rate measured after reacting HD with the reactive material for 4 hours.
  • the decomposition rate of the liquid chemical agent is 100%, it means a state in which the chemical agent is decomposed at a concentration that does not affect the living body.
  • triethylenediamine which is an amine compound, was deposited to completely decompose both GD and HD decomposition at 100% of MOF-808-TEDA modified surface.
  • the GD decomposition rate is 75%, which is slightly reduced compared to 78%, which is the GD decomposition rate of UiO-66, which is a general metal organic compound. It is 100%, which is significantly higher than the sample of zirconium hydroxide (Zr (OH) 4 ), a commercial product which is not surface-modified with an amine compound, and UiO-66, MOF-808, which is a general metal organic compound, and significantly increases the decomposition rate of HD I could confirm that.
  • Zr (OH) 4 zirconium hydroxide
  • UiO-66, MOF-808 which is a general metal organic compound
  • the GD decomposition rate of the detoxification reaction time was short as 5 minutes, but 6% by weight of MOF-808-TEDA shows a GD degradation rate of 100%, the detoxification method of the present invention can effectively decompose the liquid chemical agent for a short time It could be confirmed.
  • Experimental Example 2 performs the experiment in the same manner as in Experimental Example 1 to confirm the change of decomposition rate of the chemical agent by water, except that the reactive material which is a sample used in the experiment is pre-treated in dry and wet conditions in advance. After the decomposition rate of distilled mustard (HD) was confirmed and the reaction time was 1 hour.
  • the pretreatment conditions were used after storage for at least 24 hours in a vacuum dataator for dry samples. In contrast, for humidity treatment samples for 24 hours under a condition of about 25 ° C. and 60% relative humidity in a convection oven. After treatment, the decomposition rate of distilled mustard (HD) was measured.
  • Table 3 The results of Example 2 are shown in Table 3.
  • metal organic filler has a lot of restrictions in the application, such as minimizing contact with moisture in the air due to the disadvantage that the structure of the metal organic dog is destroyed when in contact with moisture, in contrast to the surface-modified metal of the present invention
  • MOF metal organic filler
  • the surface-modified metal organic ear decomposes the liquid chemical agent by a hydrolysis reaction by reacting with water in the air.
  • Experimental Example 3 relates to an experiment for measuring the dynamic decomposition of distilled mustard (HD) for each reactive material, wherein the reactive material used herein uses 6% by weight of the surface-modified metal organic MOF-808-TEDA according to Example 1
  • the reactive material used herein uses 6% by weight of the surface-modified metal organic MOF-808-TEDA according to Example 1
  • Zr (OH) 4 zirconium hydroxide
  • surface-modified metal organic MOF-808 and UiO-66 combined with an amine group (NH 2 )
  • UiO-66 Dynamic resolution of HD was measured in the following manner using -NH 2 .
  • Experimental Example 3 is a first experiment for the decomposition experiment of HD first put 10 mg each of the reactive material powder (particle) or particles (glass) in the middle of the glass tube (glass tube), and both inlet to the glass wool (glass wool) I support it. 1 ⁇ l of HD is injected using a micro-syringe in the middle of the glass wool on the inlet side of the carrier gas stream.
  • the glass tube injected with reactive material and HD was mounted in a constant temperature chamber connected in-situ with a gas chromatography-mass spectrometer (GC-MSD), and the glass tube was heated at a temperature of 32 ° C. for 30 ml / min of helium flow.
  • GC-MSD gas chromatography-mass spectrometer
  • MOF-808-TEDA 6% by weight of MOF-808-TEDA is more than three times the HD adsorption and decomposition efficiency than zirconium hydroxide (Zr (OH) 4 ), UiO-66-NH 2 is in zirconium hydroxide (Zr (OH) 4 ).
  • the adsorption and decomposition efficiency is about 2 times higher.
  • the present invention significantly increases the decomposition efficiency of HD as a blistering agent as well as a nerve agent such as GD in the liquid chemical agent, and thus can simultaneously detoxify hydrophilic and hydrophobic chemical agents which are not included in existing detoxification materials.

Abstract

본 발명은 금속 유기 얼개에 염기성 아민계 화합물로 표면이 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법에 관한 것으로, 보다 상세하게는 아민계 화합물을 표면 및 기공 내부에 증착되거나 골격 내부에 결합되어 표면 개질된 금속유기얼개(metal organic framework)를 준비하고, 표면 개질된 금속유기얼개는 액상의 화학작용제과 접촉하면 공기 중의 수분과 반응하여 액상 화학작용제를 가수분해 반응으로 제거하는 것으로 신경작용제 및 수포제와 같은 다양한 화학작용제를 동시에 제독할 수 있어 적은 양으로도 상온에서 액상의 화학작용제에 대한 높은 제독 효과를 갖는다.

Description

표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법
본 발명은 상온에서 액체 상태로 존재하는 유독성의 화학작용제를 생체에 대하여 영향을 미치지 않는 무해한 물질로 분해하여 제거시키는 제독(detoxification)효과를 갖는 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법에 관한 것이다.
전쟁가스로 사용되는 화학작용제들과 산업용의 독성 물질들을 포함한 독성의 작용제들에 노출될 가능성은 군인 뿐 아니라 민간인에게도 상존하는 위험이 되고 있다. 전쟁가스로 사용되는 화학작용들은 아직 여러 국가들에서 보유하고 있으며 일부 테러집단에서도 손쉽게 만들거나 구할 수 있는 실정으로 최근까지도 중동지역의 시리아 등지에서 사용되어 민간인을 포함한 피해 사례가 보고되고 있다.
이들 화학작용제들은 일반적으로 미세한 에어로졸 연무 형태로 뿌려질 가능성이 크므로 호흡에 의한 흡입 위험 뿐 아니라 군복을 포함한 각종 군용장비와 무기의 표면에 침적될 수 있다. 그러므로 앞에서 언급한 장비들의 표면이 상기의 독성이 높은 화학작용제들로 표면이 오염될 경우 접촉 위험을 최소화하기 위하여, 상기 독성의 화학작용제들을 신속하게 제거하여야 한다.
특히 통상 사린(sarin 또는 GB라고도 명명함), 소만(soman 또는 GD라고도 명명함) 및 VX 등과 같이 흡입이나 피부로 침투하여 사람과 동물의 신경계통에 작용하여 급작스럽게 마비를 일으키고 짧은 시간 내에 결국 죽음에 이르게 하는 신경작용제인 유기인제 화합물들과 지속성의 수포 작용제(blister agent)인 증류 겨자(distilled mustard, HD) 등을 신속하게 제거할 수 있는 기술개발이 필요하다.
상기의 화학작용제 뿐만 아니라 산업용 화학물질에 대한 제독 필요성도 증가하고 있는 실정으로 예를 들면 신경계통의 마비를 일으킬 수 있는 살충제 즉, 유기인제 농약들로 파라치온(parathion), 파라옥손(paraoxon) 및 말라치온(malathion)을 포함한 독성물질들과 신경작용제로 사용되는 유기인제에 국한되지 않는 다양한 독성물질들에 의한 정밀장비 및 표면 오염을 효과적으로 제독할 수 있는 기술이 매우 중요하게 되었다.
현재 미군을 비롯한 전 세계적에서 가장 일반적으로 사용되고 있는 신경작용제 제독제는 DS2 용액이며, DS2의 조성은 무게 비율로 가성소다(NaOH) 2%, 에틸렌글리콜모노메틸에테르(ethylene glycol monomethyl ether) 28%, 그리고 디에틸렌트리아민(diethylenetriamine) 70%로 구성되어 있다.
DS2는 신경작용제인 유기인제에 대하여 효과적인 제독제이기는 하나 그 자체로 상당한 독성이 있고, 가연성이고, 부식성이 강하며 독성의 제독 부산물을 만들 뿐 아니라 주성분인 디에틸렌트리아민(diethylenetriamine)의 경우 기형발생 물질로 알려져 있으므로 사용 또는 생산 시 건강에 위해를 줄 가능성이 있다. 또한, DS2를 이용한 제독 시에 제독 후 물을 이용하여 제독 표면을 씻어 내려야 제독공정이 완료되므로 제독장소에 많은 물을 저장해 두거나 수송함으로 인한 군수부담이 커지게 된다.
미군에서 운용중인 또 다른 제독제로 XE555 수지(resin)가 있으며 화학작용제로 오염된 표면을 신속하게 제독하는데 사용된다. XE555가 화학작용제를 제거하는데 효과적이기는 하나 흡수한 독성의 화학작용제를 충분하게 중화하는 능력이 없는 단점이 있고 이로 인하여 제독 후의 XE555 수지에서 독성물질의 증기가 빠져나올 가능성이 있다.
반응성이 강화된 흡착제로 미국특허 제6,852,903호에서 알루미나 기반의 반응성 흡착제 분말을 제시하였으며, 미국특허 제5,689,038호에서는 산화알루미늄 또는 산화알루미늄과 마그네슘 모노퍼록시프탈레이트(magnesium monoperoxyphthalate, MMPP) 혼합물을 제시하였다. 또한, 미국특허 제6,537,382호에서는 금속이 치환된 제올라이트 흡착제를 반응성 흡착제로 제시하였다. 이와 같이 제시된 반응성 흡착제들의 경우 신속하게 화학 작용제들을 흡착하거나 흡착된 화학 작용제들의 독성을 제거하는 두 가지 작용을 하게 되어 흡착제로부터 화학작용제가 빠져나지 못하게 하는 장점들을 가지고 있다.
그러나 이들의 공통점으로 표면에 오염된 화학작용제들을 빠르게 흡수 또는 흡착을 하여 제거해야 하지만 흡착한 화학작용제들을 분해하는 반응속도가 너무 느리다는 단점들을 공통적으로 가지고 있다.
위에 언급된 반응성 흡착제들의 느린 반응속도를 개선하기 위하여 미국특허 제8,317,931호에서는 나노튜브 형태의 타이타니아(titania)를 제시하여 VX에 대한 제독반응 속도를 높였으며, 미국특허 제8,530,719호에서는 지르코늄 수화물(zirconium hydroxide) 입자를 이용하여 VX와 GD의 제독반응 속도를 획기적으로 높인 것으로 발표하고 있다. 그러나 두 가지의 경우 모두다 수포 작용제인 증류 겨자(HD)의 제독반응 속도는 신경작용제인 VX나 GD의 경우에 비하여 현저하게 느린 단점이 있으며 또한 흡착 능력이 부족하여 독성물질이 빠져나올 가능성이 있다.
따라서 신경작용제와 수포작용제인 증류 겨자(HD)를 동시에 빠른 시간 내에 충분하게 흡착하고, 제독반응을 수행하여야 할 경우 여전히 제한점이 있으므로 신경작용제인 VX 및 GD 뿐만 아니라 증류 겨자(HD)도 동시에 빠르게 흡착 및 제독을 수행할 수 있는 제독제의 개발이 필요성이 요구되고 있다.
상기와 같이 기존 사용되거나 보고되고 있는 제독제들은 액상 화학작용제에 대한 제독능력은 있으나 자체 독성으로 인한 문제점과, 흡착능력은 있으나 분해성능이 없는 문제점과, 흡착 및 분해 능력은 있으나 상온의 실제 환경조건에서 분해반응 속도가 너무 느리거나 다양한 유독성 화학물질에 대하여 동시에 제독성능을 발휘하지 못하는 문제점 등이 있다.
따라서 본 발명은 상기와 같은 여러 가지 문제점들을 해결하고자 금속-유기 골격을 이루고 있어 비표면적이 넓을 뿐만 아니라, 금속 이온을 이용한 촉매특성을 모두 발현할 수 있는 표면 개질된 금속유기얼개(metal organic framework, MOF)를 통하여 액상 유독성 화학물질로 특히 액상 화학작용제를 다양한 환경조건에서 모두 분해할 수 있는 액상 화학작용제의 제독방법을 제시하고자 한다.
상기와 같은 목적을 달성하기 위해 본 발명의 액상 화학작용제의 제독방법은 염기성의 아민계 화합물을 금속유기얼개(metal organic framework, MOF)의 표면 및 기공 내부에 증착되거나 골격 내부에 결합되어 표면 개질된 금속유기얼개를 준비하는 단계, 상기 준비단계를 통해 표면 개질된 금속유기얼개는 액상 화학작용제와 접촉하여 분해 반응을 수행함으로써 액상 화학작용제를 제거하는 제독단계를 포함하여 이루어진다.
본 명세서에서 액상 화학작용제는 20 내지 30℃ 정도의 상온에서 물질의 상태가 액체 상태인 화학작용제를 뜻하며, 본 발명에서 화학작용제 또는 액상의 화학작용제라고 명명하기도 한다.
상기 금속유기얼개로는 중심 금속이 지르코늄(Zr), 철(Fe), 티타늄(Ti), 구리(Cu), 하프늄(Hf), 바니늄(V), 아연(Zn), 코발트(Co), 니켈(Ni), 바륨(Ba), 칼슘(Ca), 스트론튬(Sr), 니오븀(Nb), 크롬(Cr), 탄탈륨(Ta), 몰리브덴(Mo), 루비듐(Ru), 오스뮴(Os), 텅스텐(W), 망간(Mn), 레늄(Re), 팔라듐(Pd), 백금(Pt), 은(Ag), 금(Au), 이트륨(Y), 게르마늄(Ge), 비스무트(Bi) 비소(As), 납(Pb), 인듐(In), 갈륨(Ga), 안티몬(Sb) 및 그 유도체 중 어느 하나 이상의 금속 이온을 포함하고 있는 것을 사용할 수 있다.
상기 금속유기얼개는 예를 들어 MOF-808(Zr6O4(OH)4(BTC)2[HCOO]6), UiO-66(Zr6O4(OH)4(BDC)6), UiO-66-NH2(Zr6O4(OH)4(BDC-NH2)6), UiO-67(Zr6O6(BPDC)12), UiO-67-NH2 (Zr6O6(BPDC-NH2)12) 및 MIL-100(Fe)(Acid-activated Fe3O(H2O)3F(BTC)2)로 명명되는 것을 바람직하게 사용할 수 있으나, 이에 한정되지 않고 당 분야에 기술자에게 통상적으로 알려진 다양한 금속유기얼개를 사용할 수 있다.
상기 예시된 금속유기얼개의 구조를 나타내는 화학식에서 'BDC'는 1,4-벤젠디카르복실레이트(1,4-benzenedicarboxylate)를 의미하고, 'BPDC'는 4,4-비페닐디카르복실레이트(4,4'-biphenyldicarboxylate)를 의미하며, 'BTC'는 1,3,5-벤젠트리카르복실레이트(1,3,5-benzenetricarboxylate)를 의미한다.
상기 제시된 금속유기얼개의 표면 및 기공 내부에 증착되거나 골격 내부에 결합되는 염기성의 아민계 화합물은 트리에틸렌디아민(triethylenediamine, TEDA), 트리에틸아민(triethylamine), 퀴누클리딘(quinuclidine) 및 피리딘-4-카르복실산(pyridine-4-carboxylic acid) 중에서 선택되는 어느 하나 또는 이들의 혼합물을 사용할 수 있으며, 특히 트리에틸렌디아민(triethylenediamine, TEDA)을 사용하는 것이 바람직하다.
상기 표면 개질된 금속유기얼개에서 아민계 화합물의 함량은 전체 표면 개질된 금속유기얼개 100 중량%에 대하여 상기 아민계 화합물을 6 내지 20 중량%로 포함한다.
이때 표면 개질된 금속유기얼개에서 아민계 화합물이 6 중량% 미만이면, 아민계 화합물의 함량이 적어 액상 화학작용제의 분해가 제대로 이루어지지 못해 제독할 수 없으며, 반대로 아민계 화합물이 20 중량%를 초과하여 금속유기얼개에 포함되면, 증가된 아민계 화합물의 양으로 금속유기얼개의 기공의 비표면적이 작아지므로 액상 화학작용제에 대한 제독 반응성이 감소되는 바, 본 발명의 표면 개질된 금속유기얼개는 아민계 화합물의 함량이 상기 제시된 범위를 만족하는 것이 바람직하다.
상기 준비단계를 통해 표면 개질된 금속유기얼개는 분말 형태와 그래뉼(granule) 형태로 화학작용제용 제독제로서 사용할 수 있으며, 아래와 같이 기술한 제독단계와 같은 방법을 통해 액상 화학작용제를 제거할 수 있다.
제독단계는 표면 개질된 금속유기얼개가 공기중의 수분과 반응하여 가수분해 반응으로 액상 화학작용제를 제거하며, 이때 반응시간은 바람직하게 5분 내지 4시간으로 하여 수행할 수 있다.
제독 반응시간이 5분 미만이면 반응시간이 짧아 액상 화학작용제가 완전히 분해되지 못하고, 반응시간이 4시간을 초과하면 더 이상의 액상 화학작용제의 분해효과 없이 제독시간만 길어져 반응 효율이 떨어질 수 있다. 제독 반응시간은 반드시 제시된 범위로 한정되지 않으며 필요에 따라 반응시간을 적절히 변경할 수 있다.
그리고 본 발명의 제독방법을 통해 제독되는 상기 액상 화학작용제로는 비스-(2-클로로에틸)술피드(bis-(2-chloroethyl)sulfide), 피나콜릴 메틸 포스포노플로오리데이트(pinacolyl methyl phosphonofluoridate), 에틸 N,N-디메틸포스포로아미도시아니데이트(ethyl N,N-dimethylphosphoroamidocyanidate), 이소프로필 메틸포스포노플로오리데이트(isopropyl methylphosphonofluoridate), 트리클로로나이트로메탄(trichloronitromethane), O-에틸 S-(2-디이소프로필아미노)에틸 메틸포스포노티오에이트(O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothioate) 및 이들의 유도체로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물이 있다.
여기서 비스-(2-클로로에틸)술피드(bis-(2-chloroethyl)sulfide)는 분자식이 C4H8Cl2S로 통상명칭이 증류 겨자(distilled mustard) 또는 NATO 군사표준(STANAG)의 약어로 HD라고도 하고, 피나콜릴 메틸 포스포노플로오리데이트(pinacolyl methyl phosphonofluoridate)는 C7H16FO2P의 분자식으로 통상명칭이 소만(soman) 또는 STANAG의 약어로 GD이고, 에틸 N,N-디메틸포스포로아미도시아니데이트(ethyl N,N-dimethylphosphoroamidocyanidate)는 C5H11N2O2P의 분자식으로 타분(tabun) 또는 STANAG의 약어로 GA라고도 하고, 이소프로필 메틸포스포노플로오리데이트(isopropyl methylphosphonofluoridate)는 분자식이 C4H10FO2로 통상 사린(sarin) 또는 STANAG의 약어로 GB라고 하고, 트리클로로나이트로메탄(trichloronitromethane)는 CCl3NO2의 분자식을 갖고 통상명칭이 클로로피크린(chloropicrin) 또는 STANAG의 약어로 PS라고도 하며, O-에틸 S-(2-디이소프로필아미노)에틸 메틸포스포노티오에이트(O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothioate)는 C11H26NO2PS의 분자식으로 통상적으로 STANAG의 약어로 VX라고 한다.
본 명세서에서 사용되는 액상 화학작용제는 상기와 같이 설명된 통상의 명칭이나 NATO 군사표준(STANAG)의 약어로 설명한다.
상기의 해결 수단을 통해서, 본 발명은 기공 크기가 비교적 큰 메조 기공이 존재하여 큰 비표면적과 수분과 열 및 화학물질에 안정한 금속유기얼개에 염기성의 아민계 화합물을 표면 및 기공 내부에 증착하거나 골격 내부에 결합한 표면 개질된 금속유기 얼개를 사용하므로 액상 화학작용제로 친수성 화학작용제인 신경작용제로 사린(GB), 소만(GD) 및 VX 뿐만 아니라 소수성 화학작용제인 수포작용제로 증류 겨자(HD)에 대한 제독 효율을 획기적으로 높이게 된다.
따라서 본 발명의 제독방법을 통해 기존 제독제들이 가지지 못한 신경작용제 및 수포제(vesicant)를 동시에 제독할 수 있는 능력으로 상온에서 액체 상태의 화학작용제에 대한 높은 제독 효율을 가짐으로써, 적은 양으로 기존 제독제 대비 동등 이상의 효과를 갖는다. 또한, 이는 화학작용제 보호용 보호천 및 보호의에 적용되어 군사용 및 사업용으로 다양하게 활용 가능하다.
도 1은 본 발명의 실시예에 따라 제조된 표면 개질된 금속유기얼개의 표면 상태를 주사전자현미경(scanning electron microscope, SEM)으로 관찰한 사진이다.
도 2는 본 발명의 실시예에 따라 제조된 표면 개질된 금속유기얼개의 질소흡착곡선 비교 분석 그래프이다.
도 3은 본 발명의 실시예에 따라 제조된 표면 개질된 금속유기얼개의 기공분포도 변화 분석 그래프이다.
도 4는 본 발명의 실시예에 따라 제조된 표면 개질된 금속유기얼개의 푸리에 변환 적외선 분광법(Fourier transform infrared spectroscopy, FT-IR) 분석 곡선이다.
도 5는 동적 실험에 의한 증류 겨자(HD)의 흡착 및 제거 효율을 나타낸 그래프이다.
본 명세서에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명의 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 한다.
이하 첨부된 도면과 실시예를 참조하여 본 발명을 통해 실시하고자 하는 유독물질을 제독하는 방법에 대해 상세히 설명한다.
본 발명의 표면 개질된 금속유기얼개는 MOF-808 및 UiO-66로 명명되는 금속유기얼개의 기공 내부에 염기성의 아민계 화합물로 트리에틸렌디아민(triethylenediamine, TEDA)를 증착하여 하기에 설명되는 방법으로 표면 개질된 금속유기얼개를 제조하는 것이다.
하기에서 설명되는 본 발명의 표면 개질된 금속유기얼개를 제조하는 방법에서 제시된 회전 속도, 회전 시간, 온도, 건조 온도, 건조 시간 등의 제조 조건은 반복적인 실험을 통하여 최적의 조건을 실험적으로 구한 것으로써, 본 발명이 이루고자 하는 목적에 최적이라고 여겨지는 조건을 기재한 것이다.
실시예 1은 표면 개질된 금속유기얼개를 제조하는 방법으로 먼저 염기성의 아민계 화합물인 트리에틸렌다이아민(TEDA)은 금속유기얼개에 증착하기 하기 전 금속유기얼개의 기공으로 흡착이 용이하도록 마노 유발을 이용한 분쇄 또는 볼밀(ball mill) 방법을 이용하여 입자의 크기를 1 ㎛ 이하로 최대한 작게 분쇄하여 준비한다. 여기서 볼밀 방법의 경우, 볼과 금속유기얼개 입자의 혼합비율을 최소 1:1에서 최대 3:1정도의 부피비율로 혼합하여 준다. 이때, 볼밀 시간은 최소 1분 내지 최대 1시간 정도이며, 바람직하게는 5분 내지 30분 정도로 하여 30 내지 300rpm 회전속도로 트리에틸렌다이아민(TEDA) 입자를 분쇄한다.
그 다음 회전 증발 방법을 이용하여 금속유기얼개의 표면을 상기 준비된 트리에틸렌다이아민(TEDA) 개질하며, 구체적으로 금속유기얼개인 MOF-808 분말과 아민계 화합물인 준비된 트리에틸렌디아민(TEDA) 분말을 함께 회전 증발기(rotary evaporator)의 플라스크 용기에 넣고 대기압 조건으로 외부 항온기기 또는 오븐을 이용하여 플라스크 내부의 온도가 최소 50℃에서 최대 180℃ 온도로 유지하고, 회전속도를 10 내지 120 rpm으로 바람직하게는 30 내지 80 rpm의 회전속도로 상압(normal pressure)에서 2 내지 24시간 정도 돌려주면서 MOF-808의 기공과 표면에 아민계 화합물인 트리에틸렌디아민(TEDA)이 승화에 의해서 증착되도록 하며 이때, 트리에틸렌디아민(TEDA)이 6 중량% 증착되도록 한다.
실시예 2 내지 실시예 4는 상기 실시예 1과 동일한 회전 증발 방법으로 표면 개질된 금속유기얼개를 제조한 것으로, 다만 MOF-808의 기공과 표면에 트리에틸렌디아민(TEDA)의 증착량을 달리한 것으로, 각각 10 중량%(실시예 2), 15 중량%(실시예 3) 및 20 중량%(실시예 4)의 트리에틸렌디아민(TEDA)이 증착되도록 한다.
본 실시예에서 금속유기얼개인 MOF-808의 기공 및 표면에 염기성의 아민계 화합물인 트리에틸렌디아민(TEDA)이 증착됨으로써 표면 개질된 금속유기얼개를 'MOF-808-TEDA'로 표기하고, 트리에틸렌디아민(TEDA)의 증착량에 따라 MOF-808-TEDA 표기 뒤에 증착량을 표기하여 예를 들어, MOF-808-TEDA 6 wt%, MOF-808-TEDA 10 wt%, MOF-808-TEDA 15 wt% 및 MOF-808-TEDA 20 wt%의 형식으로 명명하였다.
도 1은 상기 실시예 4을 통해 금속유기얼개인 MOF-808의 표면에 트리에틸렌디아민(TEDA)을 증착시켜 표면 개질된 금속유기얼개의 표면 상태 및 입자의 입경을 확인을 위해서 주사전자현미경(scanning electron microscope, SEM)을 통해 관찰한 이미지이며, 도 1에처럼 트리에틸렌다이아민 증착처리 이후 금속유기얼개의 표면에 트리에틸렌다이아민 및 그 관련된 화합물이 응집되어 있거나, 표면을 감싸고 있지 않은 것으로 나타난 바, 기공 내부로 확산되어 골고루 증착되었다는 것을 확인할 수 있었다.
도 2는 실시예 1 내지 실시예 4를 따라 표면 개질된 금속유기얼개와 표면 개질전 금속유기얼개인 MOF-808의 질소 흡착등온선 측정 결과를 나타낸 것으로, 각각의 실시예에서 표면 개질된 금속유기얼개의 표면적을 측정하기 위해 -196℃의 액체 질소의 비등점 온도와 1기압 이내에서 질소의 물리 흡착량을 측정하여 질소 흡착등온선을 얻었으며, 측정한 흡착등온선에 BET식을 적용하여 금속유기얼개에 트리에틸렌디아민(TEDA) 증착 전후의 중량 당 BET 표면적 값(cm3/g)을 측정하였다.
그 결과 도 2에 도시된 바와 같이, 트리에틸렌디아민(TEDA) 증착 비율에 따라 비표면적이 변화하나 트리에틸렌디아민(TEDA) 증착 비율이 10 중량% 까지는 표면 개질전 MOF-808와 비교하였을 때 비표면적의 감소 변화가 크지 않은 것을 확인할 수 있다.
도 3은 실시예 1 내지 실시예 4에 따라 표면 개질된 금속유기얼개의 기공 크기 분포도를 나타낸 것으로, 트리에틸렌디아민(TEDA) 증착 비율이 15 중량% 이상으로 실시예 3의 MOF-808-TEDA 15중량%와 실시예 4의 MOF-808-TEDA 20중량%에서 기공의 직경이 2 nm 이하인 마이크로포러스(microporous)만을 갖으나, 실시예 1의 MOF-808-TEDA 6중량% 및 실시예 2의 MOF-808-TEDA 10중량%에서는 기공의 직경이 2.25 nm와 2.5nm 정도의 2~50nm 범위를 갖는 메조포러스(mesoporous)가 여전히 존재한다는 것을 확인할 수 있었다. 여기서 구분된 기공 직경은 IUPAC(International Union of Pureand Applied Chemistry)의 정의에 따라 분류하였다.
도 4는 실시예 3의 MOF-808-TEDA 15중량%에서 증착 온도에 따른 적외선 흡수분광(FT-IR, fourier transform infrared) 분석 결과 스펙트럼을 나타낸 것이다. 도 4에 나타난 바와 같이 250℃의 온도로 트리에틸렌디아민(TEDA)를 증착한 경우에서도 트리에틸렌디아민(TEDA)에 의한 O-H 피크가 계속 남에 있는 것으로 보아 트리에틸렌디아민(TEDA)이 금속유기얼개에 강하게 증착되어 열에 의하여 쉽게 떨어지지 않는 것을 확인하였다.
본 발명에 따른 표면 개질된 금속유기얼개를 액상 화학작용제의 분해 효과를 확인하고자 하기와 같은 독성물질별 분해 평가 실험을 하기 실험예 1 내지 실험예 4와 같이 실시하였다.
실험예 1은 반응성 재료 분말(powder) 또는 입자(particle) 10mg 씩을 각각 2.0 mL의 유리 바이알(vial)에 넣고 액상의 화학작용제로 증류 겨자(HD) 또는 GD(또는 '소만'이라고 명명함)를 0.4 ㎕와 20㎕의 펜탄(pentane)을 혼합한 용액을 마이크로 주사기(micro-syringe)로 주입한 다음 화학작용제가 각각의 재료들에 충분히 골고루 흡착 또는 스며들 수 있도록 볼텍스 믹서(voltex mixer)를 이용하여 5분간 혼합한 다음, 20℃ 내지 30℃ 정도의 실온에서 일정 시간 보관한 후 정해진 시간이 지나면 1.5 ml의 에틸아세테이트(ethyl acetate)를 각 유리 바이알에 넣고 25℃ 온도에서 2시간 동안 흔들어준다. 이후, 바이알 내의 내용물을 주사기 필터(syringe filter)를 이용하여 여과하고 여과된 용액을 가스크로마토그래피-질량분석(gas chromatograph-mass spectrometery)을 이용하여 액상의 화학작용제로 HD 또는 GD의 분해율을 측정하였다.
실험예 1에서 사용한 반응성 재료로는 본 발명의 실시예 1에 따른 표면 개질된 금속유기얼개인 MOF-808-TEDA 6중량%를 사용하였으며, 이를 종래의 반응성 재료와 액상의 화학작용제에 대한 분해 효율을 비교하기 위하여 상용제품인 Aldich사의 수산화지르코늄(Zr(OH)4), 표면 개질하지 않은 금속유기얼개인 UiO-66, MOF-808 그리고 UiO-66에 아민기(NH2)가 결합된 UiO-66-NH2를 사용하여 상기 실험예 1의 방법과 동일한 방법으로 HD 또는 GD의 분해율을 측정하였다.
또한, 상기 실험예 1에서 사용한 액상 화학작용제의 종류에 따라 에틸아세테이트(ethyl acetate)를 넣기 전에 보관 방법이 다르며, 예를 들어, HD 분해율을 측정할 경우에는 20℃ 내지 30℃ 정도이고 상대 습도가 30 내지 70%로 실온의 일반 공기 중인 환경에서 24시간 동안 보관한 후 사용하였으며, GD의 제거율을 측정할 경우에는 상대 습도가 30 내지 70%인 진공 데시케이트에서 실온으로 24시간 동안 보관한 후 사용하였다.
상기 실험예 1를 통해 반응성 재료 별 액상 화학작용제인 GD 또는 증류 겨자(HD)의 분해율을 측정한 결과는 하기 표 1과 표 2에 각각 나타내었으며, GD 분해율는 반응성 재료와 GD를 5분 동안 반응하고 측정한 분해율이고, HD 분해율은 반응성 재료와 HD를 4시간 동안 반응하고 측정한 분해율이다. 여기서 액상 화학작용제의 분해율이 100%인 경우는 화학작용제가 생체에 대하여 영향을 미치지 않는 정도의 농도로 분해된 상태를 의미한다.
시료 Zr(OH)4 UiO-66 UiO-66-NH2 MOF-808 MOF-808-TEDA 6중량%
GD 분해율(%) 82 78 75 83 100
시료 Zr(OH)4 UiO-66 UiO-66-NH2 MOF-808 MOF-808-TEDA 6중량%
HD 분해율(%) 85 30 100 55 100
상기 표 1과 표 2에 나타난 바와 같이, 아민계 화합물인 트리에틸렌디아민(TEDA)이 증착되어 표면이 개질된 MOF-808-TEDA 6중량%의 경우 GD 분해율 및 HD 분해율 모두 100%로 완전히 분해되었다.
아민기(NH2)가 결합된 UiO-66-NH2의 경우 GD 분해율은 75%로 일반 금속유기얼개인 UiO-66의 GD 분해율인 78%에 비해 소폭 분해율이 감소하기는 하나, HD 분해율은 100%로 나타나는 바, 이는 아민계 화합물로 표면 개질되지 않은 상용제품인 수산화지르코늄(Zr(OH)4)과 일반 금속유기얼개인 UiO-66, MOF-808의 시료에 비해 획기적으로 HD의 분해율이 증가하는 것을 확인할 수 있었다.
또한, GD 분해율은 제독 반응시간이 5분으로 짧았지만 MOF-808-TEDA 6중량%의 경우 100%의 GD 분해율을 보이는 바, 본 발명의 제독방법은 짧은 시간동안 효과적으로 액상 화학작용제를 분해할 수 있음을 확인할 수 있었다.
실험예 2는 수분에 의한 화학작용제의 분해율의 변화를 확인하기 위하여 상기 실험예 1에서의 방법과 동일하게 실험을 수행하며, 다만 실험에 사용한 시료인 반응성 재료들은 건조한 조건과 습한 조건에서의 미리 전처리를 한 후 증류 겨자(HD)의 분해율을 확인하였으며 반응시간은 1시간이었다. 여기서 전처리 조건은 건조 시료의 경우, 진공 데이케이터에서 24시간 이상 보관 후 사용하였으며, 이와 달리 습도처리 시료의 경우는 컨벡션 오븐(convection oven) 내에서 약 25℃, 상대습도 60% 조건으로 24시간 처리한 후 증류 겨자(HD)의 분해율을 측정하였다. 실시예 2의 결과는 표 3에 나타내었다.
시료 건조 시료HD 분해율(%) 습도처리 시료HD 분해율(%)
MOF-808 1.1 34.6
MOF-808-TEDA 6중량% 6.4 54.1
UiO-66 2.6 18.4
UiO-66-NH2 19.4 81.5
UiO-66-TEDA 6중량% 0.6 15.7
Zr(OH)4 87.4 17.8
Zr(OH)4-TEDA 6중량% 18.3 1.8
Cu-BTC 0 47.3
상기 표 3에 나타난 결과로 보와 건조한 조건의 시료에서의 수산화지르코늄(Zr(OH)4)의 HD 분해율이 87.4%로 가장 좋은 것으로 확인되었다. 그러나 습도처리 시료의 경우 17.8%로 분해율이 급격하게 낮아지는 것을 확인할 수 있다. 이 결과는 수산화지르코늄(Zr(OH)4)의 경우 공기 중 수분의 영향으로 효과적으로 HD를 분해하지 못한다는 것을 말해 주고 있다. 그러나 수산화지르코늄(Zr(OH)4)을 제외한 모든 시료들에서 건조 시료에 비하여 습도처리 시료의 분해율이 증가하는 것을 확인할 수 있다. 뿐만 아니라 TEDA를 증착한 MOF-808-TEDA 6중량% 경우와 골격 내에 아민기(NH2)가 결합되어 있는 UiO-66-NH2의 경우는 그러하지 않은 시료에 비하여 획기적으로 HD 분해율이 증가하는 것을 알 수 있다.
일반적으로 금속유기얼개(MOF)는 수분과 접촉시 금속유기얼개의 구조가 파괴되는 단점으로 인해 공기 중의 수분과 접촉을 최소화 하는 등의 응용에 많은 제약이 있었으나, 이와 달리 본 발명의 표면 개질된 금속유기얼개는 상기 살펴본 바와 같이 공기 중의 수분으로 인해 액상 화학작용제의 분해율이 증가함을 알 수 있다.
그리고 상기 실험예 1 및 실험예 2의 실험결과 추출물을 가스크로마토그래피-질량분석기(GC-MSD)를 이용하여 분해 생성물을 확인한 결과는 비록 본 발명의 도면에는 도시되지 않았으나 GD 및 HD 모두 가수분해 반응 생성물이 확인되었다. 구체적으로 GD의 경우 가수분해 생성물로 이소프로필메틸유기인산(isopropyl methyl phosphonic acid)이 생성됨을 확인하였으며, HD의 경우 가수분해 생성물로 2-클로로에틸 2-하이드록시에틸 설파이드(2-chloroethyl 2-hydroxyethyl sulfide)와 디티오글리콜(dithioglycol, DTG)가 생성되었으며, 할로겐 수소 이탈(dehydrohalogenation) 반응에 의하여 2-클로로에틸 비닐 설파이드(2-chloroethyl vinyl sulfide)의 생성을 확인할 수 있었다.
따라서 본 발명의 제독방법은 표면 개질된 금속유기얼개가 공기 중의 수분과 반응하여 가수분해 반응으로 액상의 화학작용제를 분해함을 알 수 있다.
실험예 3은 반응성 재료 별 증류 겨자(HD)의 동적 분해 측정 실험에 관한 것으로, 여기서 사용되는 반응성 재료는 상기 실시예 1에 따른 표면 개질된 금속유기얼개인 MOF-808-TEDA 6중량%를 사용하였으며, 이의 HD 분해 효율을 비교하기 위하여 상용제품인 수산화지르코늄(Zr(OH)4), 표면 개질하지 않은 금속유기얼개인 MOF-808 그리고 UiO-66에 아민기(NH2)가 결합된 UiO-66-NH2를 사용하여 하기와 같은 방법으로 HD의 동적 분해율을 측정하였다.
구체적으로 실험예 3은 먼저 1차 실험으로 HD의 분해 실험을 위하여 유리관(glass tube) 중간에 시료인 반응성 재료 분말(powder) 또는 입자(particle) 10 mg씩 넣고 양쪽 입구를 유리솜(glass wool)으로 지지한다. HD 1㎕를 이동 가스(carrier gas) 흐름의 입구쪽 유리솜 중간에 마이크로 주사기(micro-syringe)를 이용하여 주입한다. 반응성 재료와 HD가 주입된 유리관을 가스크로마토그래피-질량분석기(GC-MSD)와 in-situ로 연결된 항온챔버에 장착하고, 32℃온도로 헬륨(He)의 유량이 30ml/분 흐르도록 하여 유리관의 출구에서 일정 시간 간격으로 자동으로 샘플링 된 가스 시료를 가스크로마토그래피-질량분석기(GC-MSD)로 분석하여 반응성 재료 층을 통과하여 방출되는 HD의 양을 확인하였다. 2차 및 3차의 HD의 주입은 상기 1차 실험에서 사용한 반응성 재료가 충전되어 있는 유리관을 연속하여 사용하여 HD 1㎕씩을 주입함으로써, 반응성 재료의 최대 흡착 및 분해 능력을 확인하였다. 그 결과는 도 5에 나타내었다.
도 5에 도시된 바와 같이, 수산화지르코늄(Zr(OH)4)과 일반 금속유기얼개 MOF-808의 경우 1차 HD 1㎕ 주입 후 바로 상당한 많은 양의 HD가 흡착튜브를 통과하여 배출되는 것을 확인하였다. 2차 HD 1㎕ 주입 후에는 1차 주입에서 배출되지 않았던 UiO-66-NH2에서 HD가 배출되었으며, MOF-808-TEDA 6중량%의 경우에는 3차 HD 1㎕ 주입 후에 HD가 배출되었으나 그 양은 수산화지르코늄(Zr(OH)4)이나 UiO-66-NH2에 비하여 훨씬 낮은 수준인 것을 확인하였다. 즉, MOF-808-TEDA 6중량%는 수산화지르코늄(Zr(OH)4)에 비하여 3배 이상의 HD 흡착 및 분해 효율이 있으며, UiO-66-NH2는 수산화지르코늄(Zr(OH)4)에 비하여 2배 정도의 HD 흡착 및 분해 효율이 있는 것으로 판단된다.
이와 같이 본 발명은 액상 화학작용제에서 GD와 같은 신경작용제 뿐만 아니라 수포작용제로 HD에 대한 분해 효율을 현저히 높이므로, 기존 제독 재료들이 가지지 못한 친수성 화학작용제와 소수성 화학작용제를 동시에 제독할 수 있는 효과를 갖는다.
이상의 설명은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 예시적으로 설명한 것에 불과하며, 전술한 실시예 및 첨부한 도면에 한정되는 것이 아니므로 이로 인해 본 발명의 기술 사상 범위가 한정되는 것이 아니다. 따라서 본 발명의 기술 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하며, 그와 동등한 범위 내에 있는 부분도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. 아민계 화합물을 표면 및 기공 내부에 증착되거나 골격 내부에 결합되어 표면 개질된 금속유기얼개(metal organic framework)를 준비하는 단계; 및
    표면 개질된 금속유기얼개는 액상의 화학작용제와 접촉시켜 분해 반응을 수행하여 액상 화학작용제를 제거하는 제독단계;를 포함하는 것을 특징으로 하는 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법.
  2. 제1항에 있어서,
    상기 액상 화학작용제는 비스-(2-클로로에틸)술피드(bis-(2-chloroethyl)sulfide), 피나콜릴 메틸 포스포노플로오리데이트(pinacolyl methyl phosphonofluoridate), 에틸 N,N-디메틸포스포로아미도시아니데이트(ethyl N,N-dimethylphosphoroamidocyanidate), 이소프로필 메틸포스포노플로오리데이트(isopropyl methylphosphonofluoridate), 트리클로로나이트로메탄(trichloronitromethane), O-에틸 S-(2-디이소프로필아미노)에틸 메틸포스포노티오에이트(O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothioate) 및 이들의 유도체로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법.
  3. 제1항에 있어서,
    상기 금속유기얼개는 중심 금속이 지르코늄(Zr), 철(Fe), 티타늄(Ti), 구리(Cu), 하프늄(Hf), 바니늄(V), 아연(Zn), 코발트(Co), 니켈(Ni), 바륨(Ba), 칼슘(Ca), 스트론튬(Sr), 니오븀(Nb), 크롬(Cr), 탄탈륨(Ta), 몰리브덴(Mo), 루비듐(Ru), 오스뮴(Os), 텅스텐(W), 망간(Mn), 레늄(Re), 팔라듐(Pd), 백금(Pt), 은(Ag), 금(Au), 이트륨(Y), 게르마늄(Ge), 비스무트(Bi) 비소(As), 납(Pb), 인듐(In), 갈륨(Ga), 안티몬(Sb) 및 그 유도체 중 어느 하나 이상의 금속 이온을 포함하고 있는 것을 특징으로 하는 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법.
  4. 제3항에 있어서,
    상기 금속유기얼개는 MOF-808, UiO-66, UiO-66-NH2, UiO-67, UiO-67-NH2 및 MIL-100(Fe)중에서 선택되는 어느 하나인 것을 특징으로 하는 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법.
  5. 제1항에 있어서,
    상기 아민계 화합물은 트리에틸렌디아민(triethylenediamine), 트리에틸아민(triethylamine), 퀴누클리딘(quinuclidine) 및 피리딘-4-카르복실산(pyridine-4-carboxylic acid) 중에서 선택되는 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법.
  6. 제1항에 있어서,
    상기 표면 개질된 금속유기얼개는 전체 표면 개질된 금속유기얼개 100 중량%에 대하여 아민계 화합물 6 내지 20 중량%를 포함하는 것을 특징으로 하는 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법.
  7. 제1항에 있어서,
    상기 제독단계는 반응시간을 5분 내지 4시간으로 표면 개질된 금속유기얼개가 공기 중의 수분과 반응하여 가수분해 반응으로 액상 화학작용제를 제거하는 것을 특징으로 하는 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법.
PCT/KR2018/004336 2017-04-13 2018-04-13 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법 WO2018190671A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/603,899 US11400331B2 (en) 2017-04-13 2018-04-13 Method for detoxifying liquid chemical warfare agents using surface-modified metal organic framework

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0047875 2017-04-13
KR1020170047875A KR101845661B1 (ko) 2017-04-13 2017-04-13 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법

Publications (1)

Publication Number Publication Date
WO2018190671A1 true WO2018190671A1 (ko) 2018-10-18

Family

ID=61975619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004336 WO2018190671A1 (ko) 2017-04-13 2018-04-13 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법

Country Status (3)

Country Link
US (1) US11400331B2 (ko)
KR (1) KR101845661B1 (ko)
WO (1) WO2018190671A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101845661B1 (ko) 2017-04-13 2018-04-04 국방과학연구소 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법
AU2019309363A1 (en) * 2018-07-26 2021-01-28 Research Triangle Institute Reaction process involving capillary condensation within a microporous catalyst
KR102053664B1 (ko) * 2019-03-21 2019-12-10 한국화학연구원 극독성 유기인계 화합물의 제독을 위한 반응필터 및 이를 이용한 제독방법
KR102201876B1 (ko) * 2019-03-25 2021-01-12 한국화학연구원 메탄 선택적 작용기가 도입된 유무기 복합 다공체를 포함하는 메탄 선택성 복합 분리막, 이의 용도 및 이의 제조방법
KR102234958B1 (ko) * 2019-07-12 2021-04-01 한국과학기술연구원 신경작용제 제거를 위한 황(s)이 도핑된 금속 산화물 촉매 및 이의 제조 방법
CN114767711B (zh) * 2022-05-17 2023-10-20 恩祺生物科技(上海)有限公司 一种用于肿瘤治疗的氧化还原纳米酶及其制备方法
CN114835733B (zh) * 2022-05-27 2023-10-03 南昌大学 一种sp2-C金属有机框架的制备方法和解毒芥子气模拟物应用
CN115490879B (zh) * 2022-11-03 2023-05-16 江苏海洋大学 一种EDTA修饰的UIO-66(Zr)金属有机框架材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100088619A (ko) * 2007-11-04 2010-08-09 블뤼허 게엠베하 수착 필터 재료 및 그것의 용도
KR20150051137A (ko) * 2013-10-29 2015-05-11 경희대학교 산학협력단 수처리용 분리막 및 그 제조 방법
KR20160134644A (ko) * 2014-03-18 2016-11-23 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 미세다공성 금속 유기 구조체의 정렬된 초격자로 구성된 메조스코픽 물질
US9562005B2 (en) * 2013-07-23 2017-02-07 Northwestern University Metallated metal-organic frameworks
KR101845661B1 (ko) * 2017-04-13 2018-04-04 국방과학연구소 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689038A (en) 1996-06-28 1997-11-18 The United States Of America As Represented By The Secretary Of The Army Decontamination of chemical warfare agents using activated aluminum oxide
US6852903B1 (en) 2000-05-31 2005-02-08 The United States Of America As Represented By The Secretary Of The Army Decontamination of chemical warfare agents using a reactive sorbent
US6537382B1 (en) 2000-09-06 2003-03-25 The United States Of America As Represented By The Secretary Of The Army Decontamination methods for toxic chemical agents
US8317931B1 (en) 2006-07-10 2012-11-27 The United States Of America As Represented By The Secretary Of The Army Nanotubular titania for decontamination of chemical warfare agents and toxic industial chemicals
US8530719B1 (en) 2010-11-02 2013-09-10 The United States Of America As Represented By The Secretary Of The Army Zirconium hydroxide for decontaminating toxic agents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100088619A (ko) * 2007-11-04 2010-08-09 블뤼허 게엠베하 수착 필터 재료 및 그것의 용도
US9562005B2 (en) * 2013-07-23 2017-02-07 Northwestern University Metallated metal-organic frameworks
KR20150051137A (ko) * 2013-10-29 2015-05-11 경희대학교 산학협력단 수처리용 분리막 및 그 제조 방법
KR20160134644A (ko) * 2014-03-18 2016-11-23 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 미세다공성 금속 유기 구조체의 정렬된 초격자로 구성된 메조스코픽 물질
KR101845661B1 (ko) * 2017-04-13 2018-04-04 국방과학연구소 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOON, SU-YOUNG ET AL.: "Detoxification of Chemical Warfare Agents Using a Zr6-Based Metal-Organic Framework/Polymer Mixture", CHEMISTRY A EUROPEAN JOURNAL, vol. 22, no. 42, 10 October 2016 (2016-10-10), pages 14864 - 14868, XP055559226, Retrieved from the Internet <URL:https://doi.org/10.1002/chem.201603976> *

Also Published As

Publication number Publication date
US11400331B2 (en) 2022-08-02
US20200114189A1 (en) 2020-04-16
KR101845661B1 (ko) 2018-04-04

Similar Documents

Publication Publication Date Title
WO2018190671A1 (ko) 표면 개질된 금속유기얼개를 이용한 액상 화학작용제의 제독방법
DE102018120398A1 (de) Dekontaminierungsmittel für chemische kampfstoffe (cwa), cwa-dekontaminierungsverfahren unter verwendung desselben, und selbiges enthaltendes produkt
JP4837828B2 (ja) 生物学的および化学的汚染物質の吸着駆除剤としての反応性ナノ粒子
Son et al. Uncovering the role of metal–organic framework topology on the capture and reactivity of chemical warfare agents
US6727400B2 (en) Deactivation of toxic chemical agents
Giannakoudakis et al. Analysis of interactions of mustard gas surrogate vapors with porous carbon textiles
US7335808B2 (en) Method for biological and chemical contamination
AU642653B2 (en) Chromium-free impregnated activated carbon for adsorption of toxic gases and/or vapors
Giannakoudakis et al. Detoxification of chemical warfare agents
DE102005040189B4 (de) Trägermaterial mit katalytisch aktiven Polymerpartikeln
EP1278411A1 (en) Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
DeCoste et al. Hierarchical pore development by plasma etching of Zr‐based metal–organic frameworks
US5689038A (en) Decontamination of chemical warfare agents using activated aluminum oxide
US6537382B1 (en) Decontamination methods for toxic chemical agents
Li et al. Significant enhancement in hydrolytic degradation of sulfur mustard promoted by silver nanoparticles in the Ag NPs@ HKUST-1 composites
Prasad et al. Decontamination of sulfur mustard and sarin on titania nanotubes
KR20200041619A (ko) 크기가 조절된 UiO-66의 제조방법 및 이에 따라 제조된 활성이 향상된 화학작용제 가수분해 촉매
US9034289B1 (en) Method and apparatus for prolonging the service life of a collective protection filter using a guard bed
EP3476474B1 (en) Reactive sorbent based on activated clay for decontaminating chemical warfare agent (cwa) and decontamination method using the same
US10828873B1 (en) Textile composite having sorptive and reactive properties against toxic agents
Candel et al. Hydrolysis of DCNP (a Tabun mimic) catalysed by mesoporous silica nanoparticles
US7678736B1 (en) Modified reactive sorbents exhibiting enhanced decontamination of chemical warfare agents
Kim et al. Metal oxide composites for detoxification of chemical warfare agent (CWA) simulant with enhanced catalytic activity under IR irradiation
KR20200058008A (ko) 화학 작용제 제거용 물질 및 그를 포함하는 군수용품
US10773114B1 (en) Zirconium hydroxide-based slurry for decontamination and detoxification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18783950

Country of ref document: EP

Kind code of ref document: A1