WO2018190010A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2018190010A1
WO2018190010A1 PCT/JP2018/007047 JP2018007047W WO2018190010A1 WO 2018190010 A1 WO2018190010 A1 WO 2018190010A1 JP 2018007047 W JP2018007047 W JP 2018007047W WO 2018190010 A1 WO2018190010 A1 WO 2018190010A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
organic
meth
inorganic protective
Prior art date
Application number
PCT/JP2018/007047
Other languages
French (fr)
Japanese (ja)
Inventor
孝敏 末松
隼 古川
和喜 田地
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019512368A priority Critical patent/JPWO2018190010A1/en
Publication of WO2018190010A1 publication Critical patent/WO2018190010A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to an organic electroluminescence element.
  • organic EL devices such as organic electroluminescence elements (hereinafter also referred to as “organic EL elements”) and organic solar cells are required to have high efficiency, large area, and flexibility.
  • organic EL elements organic electroluminescence elements
  • organic solar cells are required to have high efficiency, large area, and flexibility.
  • a method using a transparent electrode using a thin metal wire is known for increasing the area.
  • a technique for incorporating a conductive fiber such as a metal nanowire into a transparent electrode has been disclosed (see, for example, Patent Document 1).
  • the present invention has been made in view of the above-described problems and situations, and a problem to be solved is to provide an organic electroluminescence element that has excellent rectification characteristics and suppresses the generation of dark spots.
  • the present inventor has suppressed the generation of dark spots in the organic EL device by laminating an inorganic protective layer on the second electrode when sealing using an adhesive is used in the organic EL device. Further, the inventors have found that the rectification characteristics are improved and have reached the present invention. This is presumably because damage to the organic functional layer was reduced. The reason why the generation of dark spots is suppressed is considered to be because the inorganic protective layer can suppress the influence of diffusion of moisture and the like caused by the adhesive. Moreover, it discovered that generation
  • the rectification characteristic specifically means a rectification ratio.
  • An organic electroluminescence device in which a first electrode, an organic functional layer, a second electrode, an inorganic protective layer, an adhesive layer, and a sealing member including at least a thin metal wire and a transparent conductive layer are sequentially laminated on a transparent flexible substrate.
  • Cross-sectional schematic diagram showing a schematic configuration as an example of the organic EL element of the present invention Cross-sectional schematic diagram showing a schematic configuration as another example of the organic EL device of the present invention
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • the organic EL device of the present invention includes a first electrode, an organic functional layer, a second electrode, an inorganic protective layer, and at least a thin metal wire and a transparent conductive layer on a transparent flexible substrate (hereinafter also referred to as a substrate).
  • An adhesive layer and a sealing member (sealing layer) are sequentially laminated.
  • FIG. 1 shows a schematic configuration of the organic EL element of the present invention.
  • the organic EL element 1 includes a transparent flexible substrate 2, a first electrode 3 as a transparent electrode, an organic functional layer 4, a second electrode 5 as a counter electrode, an inorganic protective layer 6, and an adhesive.
  • the layer 7 and the sealing member 8 are sequentially laminated.
  • transparent transparent
  • translucent means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the first electrode 3 is configured by laminating a thin metal wire 3a and a transparent conductive layer 3b formed in this order from the transparent flexible substrate 2 side. 2, the transparent conductive layer 3b from the transparent flexible base material 2 side and the fine metal wires 3a formed in a pattern may be laminated in this order, and further, the fine metal wires 3a are covered. In this way, an insulating layer (not shown) may be provided.
  • the first electrode 3 is preferably configured by laminating at least the fine metal wires 3a and the transparent conductive layer 3b formed in a pattern from the transparent flexible substrate 2 side.
  • the organic functional layer 4 includes at least a light emitting layer, and may have various organic layers such as a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like.
  • the hole injection layer and the hole transport layer may be provided as a hole transport injection layer.
  • the electron transport layer and the electron injection layer may be provided as an electron transport injection layer.
  • the electron injection layer may be made of an inorganic material.
  • the organic functional layer 4 may have a hole blocking layer, an electron blocking layer, or the like as necessary.
  • the second electrode 5 may have a laminated structure as necessary.
  • the inorganic protective layer 6 may have a laminated structure as necessary.
  • the inorganic protective layer 6 may be composed of a first inorganic protective layer 6a, a second inorganic protective layer 6b, and a third inorganic protective layer 6c.
  • the inorganic protective layer 6 may be composed of two layers or may be composed of four or more layers.
  • the organic EL element 1 only a portion where the organic functional layer 4 is sandwiched between the first electrode 3 and the second electrode 5 is a light emitting region in the organic EL element 1. And the organic EL element 1 is the structure which takes out the light (henceforth emitted light) generated at least from the transparent flexible base material 2 side.
  • extraction electrodes are provided at the ends of the first electrode 3 and the second electrode 5.
  • the first electrode 3 and the second electrode 5 are electrically connected to an external power source (not shown) via the extraction electrode.
  • the organic EL element 1 of the present invention may have various other functional layers as necessary.
  • a gas barrier layer 9 may be provided on the transparent flexible substrate 2.
  • a base layer 10 may be provided between the transparent flexible base material 2 and the first electrode 3.
  • a gas barrier layer 9 and an underlayer 10 may be provided in this order between the transparent flexible base material 2 and the first electrode 3.
  • a particle-containing layer may be provided on the surface of the transparent flexible substrate 2 opposite to the first electrode 3. The particle-containing layer is preferably disposed in the outermost layer.
  • the fine metal wires used in the present invention are formed with a metal content ratio that is mainly composed of metal and that can provide conductivity.
  • the ratio of the metal in the fine metal wire is preferably 50% by mass or more.
  • the fine metal wire contains a metal material and is formed in a pattern so as to have an opening.
  • An opening is a part which does not have a metal fine wire, and is a translucent part of a 1st electrode.
  • the pattern shape of the fine metal wires There are no particular restrictions on the pattern shape of the fine metal wires.
  • Examples of the pattern shape of the fine metal wire include a stripe shape (parallel line shape), a lattice shape, a honeycomb shape, and a random network shape. From the viewpoint of transparency, a stripe shape is particularly preferable.
  • the ratio occupied by the openings is preferably 80% or more from the viewpoint of transparency.
  • the line width of the fine metal wire is preferably in the range of 5 to 100 ⁇ m. Desired conductivity can be obtained when the line width of the fine metal wire is 5 ⁇ m or more, and the light emission efficiency of the organic EL element can be further improved by setting it to 100 ⁇ m or less.
  • the distance between the fine metal wires is preferably within a range of 0.01 to 1 mm.
  • the height (thickness) of the fine metal wire is preferably in the range of 0.05 to 3.0 ⁇ m, and more preferably in the range of 0.1 to 0.6 ⁇ m.
  • the desired conductivity is obtained when the height of the fine metal wire is 0.05 ⁇ m or more, and the thickness of the fine metal wire is the layer thickness distribution of the functional layer when used for an organic EL element when the height is 3.0 ⁇ m or less. Can be reduced.
  • the arithmetic average roughness Ra of the fine metal wire is preferably 1 to 20 nm.
  • the arithmetic average roughness Ra is based on JIS B 0601: 2001.
  • the arithmetic average roughness is 1 nm or more due to the influence of the material and forming method of the thin metal wire.
  • the arithmetic average roughness Ra of the fine metal wire is more preferably 10 nm or less from the viewpoint of generation of dark spots and rectification characteristics.
  • the arithmetic average roughness Ra can be measured using, for example, an atomic force microscope (manufactured by Digital Instruments), and is a value obtained by measuring a central portion of a metal thin wire 5 ⁇ m square.
  • the center part of a metal fine wire is the site
  • the center of the metal thin wire 5 ⁇ m square is a rectangular portion of 5 ⁇ m in length ⁇ 5 ⁇ m in width with the intersecting point as the center.
  • the arithmetic average roughness Ra can be controlled by appropriately selecting the forming material, forming conditions, and forming method of the fine metal wires.
  • Metal nanoparticle-containing composition As will be described later, after preparing and applying a metal nanoparticle-containing composition in which a metal or a metal-forming material is blended, a thin metal wire is subjected to a drying treatment or a firing treatment. Processes are performed as appropriate.
  • a metal used for a metal nanoparticle metals, such as gold
  • the metal nanoparticle-containing composition is preferably a metal colloid or metal nanoparticle dispersion liquid in which the surface of metal nanoparticles is coated with a surface protective agent and stably dispersed in a solvent.
  • the average particle diameter of the metal nanoparticles in the metal nanoparticle-containing composition is preferably 1000 nm or less from the atomic scale.
  • the metal nanoparticles preferably have an average particle size in the range of 3 to 300 nm, and more preferably in the range of 5 to 100 nm.
  • silver nanoparticles having an average particle diameter of 5 to 100 nm are preferable.
  • the average particle diameter of the metal nanoparticles and the metal colloid can be determined by measuring the particle diameter of the metal nanoparticles in the dispersion using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average particle diameter can be calculated by measuring the particle diameters of 300 independent metal nanoparticles that are not overlapped among the particles observed in the TEM image.
  • an organic ⁇ -junction ligand is preferable as a protective agent for coating the surface of the metal nanoparticles.
  • Conductivity is imparted to the metal colloid by ⁇ -junction of the organic ⁇ -conjugated ligand to the metal nanoparticles.
  • the organic (pi) junction ligand the 1 type, or 2 or more types of compound chosen from the group which consists of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative is preferable.
  • the organic ⁇ -junction ligand in order to improve coordination to metal nanoparticles and dispersibility in a dispersion medium, an amino group, an alkylamino group, a mercapto group, a hydroxyl group, At least one selected from a carboxyl group, a phosphine group, a phosphonic acid group, a sulfonic acid group, a halogen group, a selenol group, a sulfide group, a selenoether group, an amide group, an imide group, a cyano group, a nitro group, and salts thereof It is preferable to have a substituent.
  • organic ⁇ -conjugated ligand described in International Publication No. 2011/114713 can be used as the organic ⁇ -junction ligand.
  • OTAN 2,3,11,12,20,21,29,30-octakis [(2-N, N-dimethylaminoethyl) thio] naphthalocyanine
  • OCAN 2,3,11,12,20,21,29,30-naphthalocyanine octacarboxylic acid
  • a liquid phase reduction method may be mentioned.
  • the production of the organic ⁇ -junction ligand of this embodiment and the preparation of the metal nanoparticle dispersion containing the organic ⁇ -junction ligand are performed according to the method described in Paragraphs 0039 to 0060 of International Publication No. 2011/114713. It can be done according to this.
  • the average particle diameter of the metal colloid is usually in the range of 3 to 500 nm, preferably in the range of 5 to 50 nm. When the average particle diameter of the metal colloid is within the above range, fusion between particles is likely to occur, and the conductivity of the obtained metal fine wire can be improved.
  • the protective agent for coating the surface of the metal nanoparticles it is preferable to use a protective agent that removes the ligand at a low temperature of 200 ° C. or lower. As a result, the protective agent is detached due to low temperature or low energy, the metal nanoparticles are fused, and conductivity can be imparted.
  • a protective agent that removes the ligand at a low temperature of 200 ° C. or lower.
  • the protective agent is detached due to low temperature or low energy, the metal nanoparticles are fused, and conductivity can be imparted.
  • Specific examples include metal nanoparticle dispersions described in JP2013-142173A, JP2012-162767A, JP2014-139343A, Patent No. 5606439, and the like.
  • the metal forming material examples include metal salts, metal complexes, organometallic compounds (compounds having a metal-carbon bond), and the like.
  • the metal salt and metal complex may be either a metal compound having an organic group or a metal compound having no organic group.
  • an organic silver complex produced by reacting a silver compound represented by “Ag n X” with an ammonium carbamate compound is preferably used.
  • n is an integer of 1 to 4
  • X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrate, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoroborate, A substituent selected from the group consisting of acetylacetonate and carboxylate.
  • the silver compound examples include silver oxide, thiocyanate silver, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, silver perchlorate, silver tetrafluoroborate, acetylacetate. Examples thereof include silver nitrate, silver acetate, silver lactate, and silver oxalate. As the silver compound, use of silver oxide or silver carbonate is preferable in terms of reactivity and post-treatment.
  • ammonium carbamate compounds include ammonium carbamate, ethyl ammonium ethyl carbamate, isopropyl ammonium isopropyl carbamate, n-butyl ammonium n-butyl carbamate, isobutyl ammonium isobutyl carbamate, t-butyl ammonium t-butyl carbamate, 2-ethylhexyl ammonium 2 -Ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate, 2-cyanoethyl ammonium 2-cyanoethyl carbamate, dibutyl ammonium dibutyl carbamate, dioctadecyl ammonium dioctadecyl carbamate, methyl decyl ammonium methyl dec
  • the organic silver complex can be produced by the method described in JP-A-2011-148795. For example, it can be synthesized by directly reacting one or more of the above silver compounds and one or more of the above ammonium carbamate compounds at normal pressure or under pressure in a nitrogen atmosphere without using a solvent.
  • alcohols such as methanol, ethanol, isopropanol and butanol
  • glycols such as ethylene glycol and glycerin
  • acetates such as ethyl acetate, butyl acetate and carbitol acetate
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • Ketones such as methyl ethyl ketone and acetone
  • hydrocarbons such as hexane and heptane
  • aromatics such as benzene and toluene
  • halogen substituted solvents such as chloroform, methylene chloride and carbon tetrachloride Can be reacted.
  • the structure of the organic silver complex can be represented by “Ag [A] m ”.
  • A is the ammonium carbamate compound, and m is 0.7 to 2.5.
  • organic silver complex is well soluble in various solvents including solvents for producing organic silver complexes, such as alcohols such as methanol, esters such as ethyl acetate, and ethers such as tetrahydrofuran. For this reason, the organic silver complex can be easily applied to a coating or printing process as a metal nanoparticle-containing composition.
  • solvents for producing organic silver complexes such as alcohols such as methanol, esters such as ethyl acetate, and ethers such as tetrahydrofuran.
  • examples of the metal silver forming material include silver carboxylate having a group represented by the formula “—COOAg”.
  • the silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”.
  • the number of groups represented by the formula “—COOAg” may be one, or two or more.
  • the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
  • the silver carboxylate is preferably at least one selected from the group consisting of silver ⁇ -ketocarboxylate and silver carboxylate (4) described in JP-A-2015-66695.
  • As the metal silver forming material not only silver ⁇ -ketocarboxylate and silver carboxylate (4), but also silver carboxylate having a group represented by the formula “—COOAg”, which includes them, is used. it can.
  • the metal nanoparticle-containing composition contains the above-mentioned silver carboxylate as a metal forming material, an amine compound and quaternary ammonium salt having 25 or less carbon atoms, ammonia, and an amine compound or ammonia together with silver carboxylate are acid. It is preferable that at least one nitrogen-containing compound selected from the group consisting of ammonium salts formed by reaction with is blended.
  • the amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine.
  • the quaternary ammonium salt has 4 to 25 carbon atoms.
  • the amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group “—NH 2 ” of the primary amine) may be one, or may be two or more.
  • the metal fine line pattern is formed using a metal nanoparticle-containing composition.
  • a conventionally well-known method can be utilized.
  • a method using a photolithography method, a coating method, a printing method, or the like can be used.
  • the metal nanoparticle-containing composition contains the metal nanoparticles described above and a solvent, and may contain additives such as a dispersant, a viscosity modifier, and a binder.
  • additives such as a dispersant, a viscosity modifier, and a binder.
  • Solvents used in the metal nanoparticle-containing composition include water, methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexadecanol, hexanediol, Heptanediol, octanediol, nonanediol, decanediol, farnesol, dedecadienol, linalool, geraniol, nerol, heptadienol, tetradecenol, hexadecenol, phytol, oleyl alcohol, dedecenol, decenol, undecylenyl alcohol, nonenol, citronellol , Octenol, hep
  • a method generally used for electrode pattern formation is applicable.
  • the gravure printing method include those described in JP 2009-295980 A, JP 2009-259826 A, JP 2009-96189 A, JP 2009-90662 A, and the like.
  • the printing method methods described in JP-A-2004-268319, JP-A-2003-168560, etc., and for screen printing methods, JP-A 2010-34161, JP-A 2010-10245, JP-A-2009.
  • JP-A-302345 and the like is disclosed in JP 2011-180562 A, JP 2000-127410 A, JP 8-238774 A and the like in the inkjet printing method, and in the 2014 2014 in the super inkjet printing method.
  • the method described in JP-A-146665 It is.
  • a film of the metal nanoparticle-containing composition is formed on the entire surface of the transparent flexible substrate by printing or coating. After performing a drying process and a baking process, which will be described later, the film is processed into a desired pattern by etching using a known photolithography method.
  • the drying process can be performed using a known drying method. Drying methods include, for example, air cooling drying, convection heat transfer drying using hot air, radiant heat drying using infrared rays, conductive heat transfer drying using a hot plate, vacuum drying, internal using microwaves Exothermic drying, IPA vapor drying, Marangoni drying, Rotagoni drying, freeze drying, and the like can be used.
  • the drying by heating is preferably performed in a temperature range of 50 to 200 ° C. at a temperature at which the transparent flexible base material is not deformed. It is more preferable to heat the transparent flexible substrate under the condition that the surface temperature is 50 to 150 ° C. When a PET substrate is used as the transparent flexible base material, it is particularly preferable to heat in a temperature range of 100 ° C. or lower.
  • the firing time depends on the temperature and the size of the metal nanoparticles used, but is preferably in the range of 10 seconds to 30 minutes, and in the range of 10 seconds to 15 minutes from the viewpoint of productivity. More preferably, it is in the range of 10 seconds to 5 minutes.
  • the drying process it is preferable to perform a drying process by infrared irradiation.
  • a specific wavelength region By selectively using a specific wavelength region, it is possible to selectively irradiate a specific wavelength effective for cutting the absorption region of the transparent flexible substrate or the solvent of the metal nanoparticle-containing composition.
  • an infrared heater in which the filament temperature of the light source is in the range of 1600 to 3000 ° C.
  • the pattern of the dried metal nanoparticle-containing composition is baked.
  • the type of metal composition contained in the metal nanoparticle-containing composition for example, silver colloid having the above-mentioned organic ⁇ -junction ligand
  • the conductivity may be sufficiently exhibited by the drying treatment. It does not have to be done.
  • the patterning of the metal nanoparticle-containing composition is preferably performed by light irradiation (flash baking) using a flash lamp in order to improve the conductivity of the first electrode.
  • flash baking a discharge tube of a flash lamp used in flash firing
  • a discharge tube of xenon, helium, neon, argon or the like can be used, but a xenon lamp is preferably used.
  • the preferable spectral band of the flash lamp is preferably in the range of 240 to 2000 nm. Within this range, there is little damage such as thermal deformation of the transparent flexible substrate due to flash firing.
  • the light irradiation conditions of the flash lamp are arbitrary, but the total light irradiation energy is preferably in the range of 0.1 to 50 J / cm 2 , and preferably in the range of 0.5 to 10 J / cm 2. More preferred.
  • the light irradiation time is preferably in the range of 10 ⁇ sec to 100 msec, and more preferably in the range of 100 ⁇ sec to 10 msec. Further, the number of times of light irradiation may be one time or a plurality of times, and it is preferably performed within the range of 1 to 50 times.
  • the flash lamp irradiation on the transparent flexible substrate is preferably performed from the side where the pattern of the metal nanoparticle-containing composition of the transparent flexible substrate is formed.
  • a transparent flexible base material is transparent, you may irradiate from the transparent flexible base material side, and may irradiate from both surfaces of a transparent flexible base material.
  • the surface temperature of the transparent flexible substrate during flash firing is the heat resistance temperature of the transparent flexible substrate, the boiling point (vapor pressure) of the dispersion medium of the solvent contained in the metal nanoparticle-containing composition, the type of atmospheric gas,
  • the pressure may be determined in consideration of the thermal behavior such as dispersibility and oxidizability of the metal nanoparticle-containing composition, and it is preferably performed at room temperature (25 ° C.) or higher and 200 ° C. or lower.
  • the flash lamp light irradiation device only needs to satisfy the above irradiation energy and irradiation time.
  • flash baking may be performed in air
  • the fine metal wires may be formed by using a known vacuum film formation in the same manner as in the case of forming a conventional metal layer.
  • a conventional method for forming a metal layer it can be formed by various deposition methods, sputtering methods, ion plating methods, and the like.
  • a method for forming a metal fine line pattern a known pattern may be processed by etching using a known photolithography method, or a mask pattern may be used during film formation.
  • the first electrode used in the present invention includes at least a fine metal wire and a transparent conductive layer. It is preferable that the transparent conductive layer is provided on the fine metal wire so as to cover the entire surface of the fine metal wire.
  • a metal oxide layer or an organic conductive layer is preferably used as the transparent conductive layer.
  • the transparent conductive layer is preferably a metal oxide (metal oxide layer) from the viewpoint of further improving luminous efficiency. Note that “being a metal oxide” includes, for example, a case where a metal oxide is contained as a main component and other impurities are contained.
  • the film thickness of the transparent conductive layer is preferably 50 to 300 nm. Even if the thickness of a transparent conductive layer is in the said range, the 1st electrode used for this invention can fully exhibit electroconductivity. Moreover, if the film thickness of a transparent conductive layer is 50 nm or more, a rectification characteristic will become more favorable. Moreover, when the film thickness of the transparent conductive layer is 300 nm or less, the generation of dark spots is further suppressed and the rectification characteristics are improved.
  • the metal oxide layer and the organic conductive layer are preferably formed using a highly conductive metal oxide having a volume resistivity in the range of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm.
  • the volume resistivity can be obtained by measuring the sheet resistance and the film thickness measured in accordance with the resistivity test method of the conductive plastic of JIS K 7194-1994 by the four-probe method.
  • the film thickness can be measured using a contact-type surface shape measuring device (for example, DECTAK) or an optical interference surface shape measuring device (for example, WYKO).
  • the metal oxide layer and the organic conductive layer have a sheet resistance of 10,000 ⁇ / sq. From the viewpoint of ensuring the conductivity. Or less, preferably 2000 ⁇ / sq. The following is more preferable.
  • Metal oxide layer The metal oxide that can be used for the metal oxide layer is not particularly limited as long as the material is excellent in transparency and conductivity.
  • Examples of the metal oxide that can be used for the metal oxide layer include ITO (tin doped indium oxide), IZO (indium oxide / zinc oxide), IGO (gallium doped indium oxide), IWZO (indium oxide / tin oxide), ZnO ( Zinc oxide), GZO (gallium-doped zinc oxide), IGZO (indium gallium zinc oxide) and the like.
  • IZO, IGO, and IWZO are preferable as the metal oxide that can be used for the metal oxide layer.
  • the transparent conductive layer is particularly preferably an amorphous metal oxide. That is, the transparent conductive layer is preferably an amorphous metal oxide layer.
  • the transparent conductive layer is preferably an amorphous metal oxide layer.
  • the amorphous metal oxide include amorphous IZO, amorphous ITO, and amorphous IGZO.
  • a plurality of metal oxide layers may be provided.
  • the metal oxide layer can be formed by various sputtering methods, ion plating methods, and the like in the same manner as in the case of forming a conventional metal oxide layer. it can.
  • Examples of the sputtering method include DC sputtering, RF sputtering, DC magnetron sputtering, RF magnetron sputtering, ECR plasma sputtering, and ion beam sputtering. Further, in the sputtering method, by examining various conditions as described below, even if the composition is the same as in IZO, it is possible to adjust conductivity and gas barrier properties.
  • the metal oxide layer is formed by a direct current magnetron sputtering method with a distance between target substrates in the range of 50 to 100 mm during sputtering and a sputtering gas pressure in the range of 0.5 to 1.5 Pa. Can do.
  • the distance between the target substrates when the distance between the target substrates is shorter than 50 mm, the kinetic energy of the sputtered particles to be deposited increases, so that the damage received by the transparent flexible base material increases. In addition, the film thickness becomes non-uniform and the film thickness distribution becomes worse. When the distance between the target substrates is longer than 100 mm, the film thickness distribution is improved, but the kinetic energy of the sputtered particles deposited becomes too low, densification due to diffusion hardly occurs, and the density of the metal oxide layer is not preferable.
  • the sputtering gas pressure if the sputtering gas pressure is lower than 0.5 Pa, the kinetic energy of the sputtered particles to be deposited increases, so that the damage received by the transparent flexible substrate increases.
  • the sputtering gas pressure is higher than 1.5 Pa, not only the film formation rate is slowed, but also the kinetic energy of the sputtered particles deposited becomes too low, densification due to diffusion does not occur, and the density of the metal oxide layer is low. Therefore, it is not preferable.
  • the organic conductive layer is mainly composed of a conductive polymer and a binder.
  • a conductive polymer and the binder compounds described in Japanese Patent No. 5750908 and Japanese Patent No. 5882855 can be used.
  • the preparation (method) of the organic conductive composition for forming the organic conductive layer, the formation (method) of the organic conductive layer, and the like should be performed in accordance with the methods described in Japanese Patent No. 5750908 and Japanese Patent No. 5882855. Can do.
  • the transparent flexible base material used in the present invention is not particularly limited as long as it has high light transmittance, and it is a transparent resin base material from the viewpoint of productivity, performance such as lightness and flexibility. preferable.
  • resin which can be used as a transparent resin base material For example, polyethylene-terephthalate (PET), polyethylene naphthalate (PEN), polyester-type resins, such as a modified polyester, polyethylene (PE) resin, polypropylene (PP) resin, polystyrene Resins, polyolefin resins such as cyclic olefin resins, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resins, polysulfone (PSF) resins, polyether sulfone (PES) resins, polycarbonate (PC) resin, polyamide resin, polyimide resin, acrylic resin, triacetyl cellulose (TAC) resin, etc. are mentioned. These resins may be used alone or in combination. Further, the transparent resin substrate may be an unstretched film or a stretched film.
  • PET polyethylene-terephthalate
  • PEN polyethylene naphthalate
  • polyester-type resins
  • the transparent flexible substrate has a total light transmittance in a visible light wavelength region of 50% or more measured by a method in accordance with JIS K 7361-1: 1997 (Plastic—Test method for total light transmittance of transparent material). Is more preferable and 80% or more is more preferable.
  • the transparent flexible substrate may be subjected to a surface activation treatment in order to improve adhesion with an underlayer or a gas barrier layer described later.
  • a clear hard coat layer may be provided.
  • the surface activation treatment include corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • the material for the clear hard coat layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer, and the like.
  • An ultraviolet curable resin can be preferably used.
  • the organic functional layer used in the present invention is a layer located between the anode and the cathode, and is composed of an organic layer, a metal layer, or the like, but is not limited thereto.
  • the organic functional layer includes at least a light emitting layer, and may have various organic layers such as a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • the hole injection layer and the hole transport layer may be provided as a hole transport injection layer.
  • the electron transport layer and the electron injection layer may be provided as an electron transport injection layer.
  • the electron injection layer may be made of an inorganic material.
  • the organic functional layer may have a hole blocking layer, an electron blocking layer, or the like as necessary.
  • the configuration of (vii) is preferable but not particularly limited.
  • the thickness of the organic functional layer is preferably in the range of 100 to 500 nm. If the thickness of the organic functional layer is 500 nm or less, an increase in driving voltage can be suppressed, and if it is 100 nm or more, rectification characteristics can be maintained.
  • the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the electron injection layer are not particularly limited.
  • JP-A-2014-120334 The compounds described in JP2013-89608A can be used.
  • the organic EL device has an organic functional layer sandwiched between a pair of electrodes including a first electrode as a transparent electrode and a second electrode as a counter electrode.
  • One of the first electrode and the second electrode serves as the anode of the organic EL element, and the other serves as the cathode.
  • the transparent conductive layer 3b of the first electrode 3 is made of a transparent conductive material
  • the second electrode 5 is made of a highly reflective material.
  • the 2nd electrode 5 is also comprised with a transparent conductive material.
  • the second electrode when the second electrode is used as an anode, a material having a work function (4 eV or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof is preferably used.
  • the electrode substance that can constitute the anode include metals such as Au and Ag, and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • the second electrode when the second electrode is used as a cathode, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as electrode materials.
  • an electron injecting metal used as the cathode is an electrode film that functions as a cathode (cathode) that supplies electrons to the light emitting layer.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the electrode material include aluminum, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, or the like is preferable.
  • the sheet resistance as a cathode is several hundred ⁇ / sq.
  • the following are preferable, and the thickness is usually selected within the range of 10 nm to 5 ⁇ m, preferably within the range of 50 to 200 nm.
  • a transparent or semi-transparent cathode can be produced by producing a conductive transparent material on the metal after the metal is produced with a thickness of 1 to 20 nm as a cathode.
  • An element in which both the anode and the cathode are transmissive can be manufactured.
  • the extraction electrode is for electrically connecting the conductive layer of the transparent electrode and the external power source, and the material is not particularly limited, and a known material can be suitably used.
  • a three-layer structure A metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) made of can be used.
  • the inorganic protective layer used in the present invention is provided on the upper surface of the second electrode.
  • the inorganic protective layer may be provided on a part of the second electrode, but is preferably provided on the entire surface.
  • the material that can be used for the inorganic protective layer is not particularly limited, and examples thereof include silicon compounds such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, and silicon nitride carbide.
  • the inorganic protective layer is preferably composed mainly of silicon nitride from the viewpoint of barrier properties, and specifically, is preferably silicon nitride. That is, the inorganic protective layer is preferably a silicon nitride layer.
  • silicon nitride includes, for example, the case of containing silicon nitride as a main component and other impurities.
  • the inorganic protective layer may be formed as a composite film or a laminated film in which films containing silicon compounds having the same composition or different compositions as main components are combined. Thus, when forming an inorganic protective layer as a composite film or a laminated film, the function as an inorganic protective layer should just be expressed as a whole.
  • the inorganic protective layer preferably has a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) of less than 0.1 g / (m 2 ⁇ 24 h), and 0.01 g / (m 2 ⁇ 24h) or less, more preferably 0.001 g / (m 2 ⁇ 24h) or less.
  • the water vapor permeability of the inorganic protective layer is a value measured by a method based on JIS K 7129-1992.
  • the film thickness of the inorganic protective layer is preferably 500 to 1500 nm. If the thickness of the inorganic protective layer is 500 nm or more, generation of dark spots due to the thickness of the inorganic protective layer is further suppressed. Moreover, if the film thickness of an inorganic protective layer is 1500 nm or less, generation
  • the film thickness of an inorganic protective layer can be measured using a contact-type surface shape measuring device (for example, DECTAK).
  • the film density of the inorganic protective layer is preferably 4.0 to 10.0 ⁇ 10 22 atoms / cm 3 .
  • the inorganic protective layer is preferably formed from two or more layers having different film densities.
  • the inorganic protective layer 6 is preferably formed of three layers having different film densities.
  • the inorganic protective layer 6 includes a first inorganic protective layer 6a on the second electrode 5 side, a second inorganic protective layer 6b that is an intermediate layer, and a third inorganic protective layer 6c on the adhesive layer 7 side. It is configured.
  • the three layers having different film densities mean that at least one layer may have a film density different from that of the other two layers, and the other two layers may have the same film density. Each of the three layers may have a different film density. Since the inorganic protective layer is formed of three layers having different film densities, the generation of dark spots is further suppressed.
  • the film densities of the first inorganic protective layer, the second inorganic protective layer, and the third inorganic protective layer are preferably 4.0 to 10.0 ⁇ 10 22 atoms / cm 3 , respectively.
  • middle layer is the lowest among the inorganic protective layers which consist of said 3 layers. According to such a configuration, the rectification characteristic becomes better.
  • an inorganic protective layer is three or more layers, it is preferable that an intermediate
  • the difference in film density between the second inorganic protective layer and the first inorganic protective layer and the difference in film density between the second inorganic protective layer and the third inorganic protective layer Is preferably 0.3 to 3.0 ⁇ 10 22 atoms / cm 3 .
  • the film density can be measured by measuring the formed single film using Rutherford backscattering analysis method and measuring the film thickness by TEM of the formed cross section.
  • the film density can be controlled by the film formation conditions during film formation.
  • the inorganic protective layer has a thickness of the second inorganic protective layer as the intermediate layer that is 20 to 20 times the total thickness of the inorganic protective layer when the second inorganic protective layer as the intermediate layer has the lowest film density. It is preferable that it is 50%. If the thickness of the second inorganic protective layer is 20 to 50% of the total thickness of the inorganic protective layer, the influence of diffusion of moisture and the like due to the adhesive is suppressed, and the generation of dark spots is further suppressed. At the same time, the rectification characteristics become better. In the case of four or more layers, it is preferable that the intermediate layer having the lowest film density (other than the lowermost layer and the uppermost layer) is 20 to 50% of the total thickness of the inorganic protective layer.
  • the inorganic protective layer can be formed by a dry process.
  • the dry process include film deposition methods such as vacuum deposition (resistance heating, EB method, etc.), magnetron sputtering, ion plating, and CVD.
  • film deposition methods such as vacuum deposition (resistance heating, EB method, etc.), magnetron sputtering, ion plating, and CVD.
  • it can carry out by the method similar to the process of forming this inorganic protective layer.
  • a plasma CVD method using an organic silicon compound will be described.
  • a silicon compound is formed by a reaction product of an organic silicon compound.
  • the organic silicon compound used in the plasma CVD method include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, and trimethylsilane.
  • the source gas is a mole of oxygen as a reaction gas with respect to the molar amount (flow rate) of hexamethyldisiloxane.
  • the amount (flow rate) is preferably 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio.
  • the lower limit of the molar amount of oxygen in the film forming gas is preferably 0.1 times or more, more preferably 0.5 times or more of the molar amount of hexamethyldisiloxane.
  • Si 3 N 4 is the stoichiometric representative value, but there is a certain ratio of width in an actual film, and these are included and handled as SiN.
  • the above-mentioned atomic ratio can be determined by a conventionally known method, and can be measured by, for example, an analyzer using X-ray photoelectron spectroscopy (XPS).
  • the film density of the inorganic protective layer can be controlled by the film forming conditions when the film is formed by the CVD method. That is, the film formation by the CVD method proceeds by a surface reaction on the film formation surface and a gas phase reaction in the film formation atmosphere. At this time, for example, by increasing the flow rate of the source gas to increase the gas phase reaction, the film formation speed increases and the film density decreases. On the other hand, by reducing the flow rate of the source gas to increase the surface reaction, the film formation rate is lowered and the film density is increased.
  • the silicon nitride film as the inorganic protective layer is configured as a film in which the film density is controlled by adjusting the total flow rate of ammonia gas and silane gas.
  • the high-density inorganic protective layer is a film formed by the CVD method with a relatively low film formation speed mainly for surface reaction.
  • the low-density inorganic protective layer is a film formed by a CVD method in which the film formation rate mainly for the gas phase reaction is higher than that of the high-density inorganic protective layer.
  • the gas phase reaction and surface reaction in the CVD film formation are controlled by, for example, the base material temperature and the gas pressure in the film formation atmosphere in addition to the above-described flow rate of the source gas. At this time, for example, by lowering the substrate temperature or increasing the gas pressure in the film formation atmosphere, the gas phase reaction increases, the film formation speed increases, and the film density decreases.
  • the film densities of the first inorganic protective layer, the second inorganic protective layer, and the third inorganic protective layer may be controlled by the method described above.
  • the film density may be controlled by the method described above.
  • the adhesive layer used in the present invention is provided on the upper surface of the inorganic protective layer.
  • the adhesive layer may be provided on a part of the inorganic protective layer, but is preferably provided on the entire surface.
  • the adhesive layer is used as an agent for closely attaching the sealing member to the organic EL element.
  • the adhesive layer has a role of fixing the sealing member to the substrate side.
  • Specific examples of the adhesive layer include photo-curing and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture-curing adhesives such as 2-cyanoacrylates. An agent can be mentioned.
  • examples of the adhesive layer include an epoxy-based heat and chemical curing type (two-component mixing).
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the organic EL element is sealed with a sealing member for the purpose of preventing deterioration of an organic functional layer formed using an organic material or the like.
  • the sealing member is a plate-like (film-like) member that covers the upper surface of the organic EL element, and is fixed to the base material side by an adhesive layer.
  • the sealing member may be a sealing film.
  • Such a sealing member is provided in a state in which the electrode terminal portion of the organic EL element is exposed and at least the organic functional layer is covered.
  • the structure which provides an electrode in a sealing member and makes the electrode terminal part of an organic EL element and the electrode of a sealing member electrically connect may be sufficient.
  • the plate-like (film-like) sealing member examples include a glass substrate, a polymer substrate, a metal substrate, and the like, and these substrates may be used in the form of a thinner film.
  • the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal substrate examples include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the element since the element can be thinned, it is preferable to use a polymer substrate or a metal substrate as a thin film as the sealing member.
  • the substrate material may be processed into a concave plate shape and used as a sealing member. In this case, the substrate member described above is subjected to processing such as sandblasting and chemical etching to form a concave shape.
  • the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 h ⁇ atm) or less, and conforms to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., (90 ⁇ 2)% RH) measured by a compliant method is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the adhesive layer may be applied using a commercially available dispenser or printing such as screen printing.
  • the organic material which comprises an organic EL element may deteriorate with heat processing.
  • the adhesive layer is preferably one that can be adhesively cured from room temperature (25 ° C.) to 80 ° C. Further, a desiccant may be dispersed in the adhesive layer.
  • the foundation layer used in the present invention is a layer that serves as a foundation for forming a fine metal wire pattern or a transparent conductive layer, and improves the adhesion between the substrate and the first electrode.
  • the underlayer contains at least one selected from a compound having a thiol group, a poly (meth) acrylate having an aminoethyl group, and a poly (meth) acrylamide having an aminoethyl group. The above may be used in combination.
  • the base layer may contain inorganic particles in addition to the above compound, and is preferably formed to contain oxide particles.
  • the underlayer contains oxide particles, adhesion with the metal fine line pattern and the metal oxide layer is improved.
  • the base layer can be provided with a function other than improving the adhesion with the metal fine line pattern or the metal oxide layer.
  • a function other than adhesion it is preferable to have a light extraction function.
  • the underlayer may contain fluorine in order to make the fine metal wires thinner.
  • the thickness of the underlayer is preferably in the range of 10 to 1000 nm, more preferably in the range of 10 to 100 nm.
  • the thickness of the underlayer is 10 nm or more, the underlayer itself becomes a continuous film, the surface becomes smooth, and the influence on the organic EL element is small.
  • the thickness of the underlayer is 1000 nm or less, the transparency of the transparent electrode caused by the underlayer and the adsorbed gas derived from the underlayer can be reduced, and the deterioration of the resistance of the metal fine wire pattern can be suppressed. Can do.
  • the thickness of the underlayer is 1000 nm or less, damage to the underlayer when the transparent electrode is bent can be suppressed.
  • the film thickness of a base layer can be measured using a contact-type surface shape measuring device (for example, DECTAK).
  • the transparency of the underlayer can be arbitrarily selected depending on the application, but the higher the transparency, the better the application to the transparent electrode, which is preferable from the viewpoint of expanding the application.
  • the total light transmittance of the underlayer is at least 40% or more, preferably 50% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • the compound having a thiol group (also referred to as a mercapto group) (hereinafter also referred to as a thiol group-containing compound) is not particularly limited as long as the effects of the present invention are not impaired.
  • the thiol group-containing compound used in the present invention is preferably a polyfunctional thiol group-containing compound having two or more thiol groups. Thereby, the adhesiveness with the metal fine wire containing a metal material more can be aimed at.
  • the thiol group-containing compound is preferably a condensate of a compound having a structure represented by the following general formula (I) with a monovalent or polyvalent alcohol or amine.
  • R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, at least one of which is an alkyl group having 1 to 10 carbon atoms.
  • m is an integer of 0 to 2
  • n is 0 or 1.
  • the alkyl group having 1 to 10 carbon atoms in R 1 and R 2 may be linear or branched, and specifically includes a methyl group, an ethyl group, an n-propyl group, an iso- Examples thereof include a propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-hexyl group, and an n-octyl group, and a methyl group or an ethyl group is preferable.
  • R 1 and R 2 may have a known substituent as long as the effects of the present invention are not impaired.
  • n is an integer of 0 to 2, preferably 0 or 1.
  • n is 0 or 1, but preferably 0.
  • Examples of the compound having the structure represented by the general formula (I) include 2-mercaptopropionic acid, 3-mercaptobutyric acid, 2-mercaptoisobutyric acid, and 3-mercaptoisobutyric acid.
  • Monohydric alcohols include methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 2-butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl- 1-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2 -Pentanol, 1-heptanol, 2-heptanol, 2-methyl-2-heptanol, 2-methyl-3-hept Nord, and the like.
  • polyhydric alcohol examples include glycols (wherein the alkylene group preferably has 2 to 10 carbon atoms, and the carbon chain thereof may be branched), such as ethylene glycol, diethylene glycol, 1,2-propylene. Glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane And dipentaerythritol.
  • glycols wherein the alkylene group preferably has 2 to 10 carbon atoms, and the carbon chain thereof may be branched
  • ethylene glycol diethylene glycol
  • 1,2-propylene examples include 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanedio
  • ethylene glycol 1,2-propylene glycol, 1,2-butanediol, 1,4-butanediol, trimethylolethane, trimethylolpropane, and dipentaerythritol are preferable.
  • the amine is not particularly limited and may be any of primary to tertiary amines.
  • silsesquioxane derivative having a thiol group (hereinafter also simply referred to as a silsesquioxane derivative) can be used.
  • a silsesquioxane derivative is a compound which has a cage type siloxane structure represented with the following general formula (A).
  • X A is representative of the following X 1 or X 2, at least one of X A is X 2.
  • R 1 to R 5 each independently represents an alkyl group having 1 to 8 carbon atoms or an aromatic hydrocarbon ring group.
  • A represents a divalent hydrocarbon group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms of R 1 to R 5 in X 1 and X 2 may be linear or branched, and specifically includes a methyl group, an ethyl group, Examples thereof include an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group.
  • Examples of the aromatic hydrocarbon ring group of R 1 to R 5 in X 1 and X 2 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • X 1 and X 2 may have a known substituent as long as the effects of the present invention are not impaired.
  • Examples of the divalent hydrocarbon group having 1 to 8 carbon atoms of A in X 2 include linear or branched alkylene groups having 1 to 8 carbon atoms. Among these, a straight-chain alkylene group having 2 or 3 carbon atoms such as —CH 2 CH 2 — and —CH 2 CH 2 CH 2 — is preferable from the viewpoint of easy synthesis of the silsesquioxane derivative.
  • A may have a known substituent as long as the effects of the present invention are not impaired.
  • Composelan (registered trademark) SQ100 series manufactured by Arakawa Chemical Co., Ltd. can be used.
  • JP-A-2015-59108, JP-A-2012-180464 and the like can be referred to.
  • poly (meth) acrylate having aminoethyl group and poly (meth) acrylamide having aminoethyl group are not particularly limited as long as the effects of the present invention are not inhibited, but the partial structure represented by the following general formula (II) It is preferable to have.
  • R 3 represents a hydrogen atom or a methyl group.
  • Q represents —C ( ⁇ O) O— or —C ( ⁇ O) NRa—.
  • Ra represents a hydrogen atom or an alkyl group.
  • A represents a substituted or unsubstituted alkylene group, or — (CH 2 CHRbNH) x —CH 2 CHRb—, Rb represents a hydrogen atom or an alkyl group, x represents the average number of repeating units, and is a positive integer It is.
  • alkyl group in Ra for example, a linear or branched alkyl group having 1 to 5 carbon atoms is preferable, and a methyl group is more preferable.
  • alkyl groups may be substituted with a substituent.
  • substituents include alkyl groups, cycloalkyl groups, aryl groups, heterocycloalkyl groups, heteroaryl groups, hydroxy groups, halogen atoms, alkoxy groups, alkylthio groups, arylthio groups, cycloalkoxy groups, aryloxy groups, Acyl group, alkylcarbonamide group, arylcarbonamide group, alkylsulfonamide group, arylsulfonamide group, ureido group, aralkyl group, nitro group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, alkylcarbamoyl group, Arylcarbamoyl group, alkylsulfamoyl group, arylsulfamoyl group, acyloxy group, alkenyl group, alkynyl group, alkylsulf
  • the alkyl group as the substituent may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a hexyl group, and an octyl group.
  • the cycloalkyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 3 to 8 carbon atoms.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the aryl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group.
  • the heterocycloalkyl group preferably has 2 to 10 carbon atoms, and more preferably 3 to 5 carbon atoms. Examples of the heterocycloalkyl group include a piperidino group, a dioxanyl group, and a 2-morpholinyl group.
  • the heteroaryl group preferably has 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms.
  • the heteroaryl group include a thienyl group and a pyridyl group.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • the alkoxy group may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and more preferably 1 to 4. Is most preferred.
  • alkoxy group examples include a methoxy group, an ethoxy group, a 2-methoxyethoxy group, a 2-methoxy-2-ethoxyethoxy group, a butyloxy group, a hexyloxy group, and an octyloxy group, and an ethoxy group is preferable.
  • the alkylthio group may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and more preferably 1 to 4. Is most preferred.
  • Examples of the alkylthio group include a methylthio group and an ethylthio group.
  • the arylthio group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the arylthio group include a phenylthio group and a naphthylthio group.
  • the cycloalkoxy group preferably has 3 to 12 carbon atoms, more preferably 3 to 8 carbon atoms.
  • Examples of the cycloalkoxy group include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, a cyclohexyloxy group, and the like.
  • the aryloxy group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group and a naphthoxy group.
  • the acyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the acyl group include a formyl group, an acetyl group, and a benzoyl group.
  • the alkylcarbonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylcarbonamide group include an acetamide group.
  • the aryl carbonamido group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the arylcarbonamide group include a benzamide group.
  • the alkylsulfonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • Examples of the sulfonamide group include a methanesulfonamide group.
  • the arylsulfonamide group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms.
  • Examples of the arylsulfonamido group include a benzenesulfonamido group and a p-toluenesulfonamido group.
  • the aralkyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms.
  • Examples of the aralkyl group include a benzyl group, a phenethyl group, and a naphthylmethyl group.
  • the alkoxycarbonyl group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the alkoxycarbonyl group include a methoxycarbonyl group.
  • the aryloxycarbonyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aryloxycarbonyl group include a phenoxycarbonyl group.
  • the aralkyloxycarbonyl group preferably has 8 to 20 carbon atoms, and more preferably 8 to 12 carbon atoms.
  • Examples of the aralkyloxycarbonyl group include a benzyloxycarbonyl group.
  • the acyloxy group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms.
  • Examples of the acyloxy group include an acetoxy group and a benzoyloxy group.
  • the alkenyl group has preferably 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms.
  • Examples of the alkenyl group include a vinyl group, an allyl group, and an isopropenyl group.
  • the alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. An ethynyl group etc. are mentioned as an alkynyl group.
  • the alkylsulfonyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms.
  • Examples of the alkylsulfonyl group include a methylsulfonyl group and an ethylsulfonyl group.
  • the arylsulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the arylsulfonyl group include a phenylsulfonyl group and a naphthylsulfonyl group.
  • the alkyloxysulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • alkyloxysulfonyl group examples include a methoxysulfonyl group and an ethoxysulfonyl group.
  • the aryloxysulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the aryloxysulfonyl group include a phenoxysulfonyl group and a naphthoxysulfonyl group.
  • the alkylsulfonyloxy group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • alkylsulfonyloxy group examples include a methylsulfonyloxy group and an ethylsulfonyloxy group.
  • the arylsulfonyloxy group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the arylsulfonyloxy group include a phenylsulfonyloxy group and a naphthylsulfonyloxy group.
  • the substituents may be the same or different, and these substituents may be further substituted.
  • the alkylene group in A preferably has 1 to 5 carbon atoms, more preferably an ethylene group or a propylene group. These alkylene groups may be substituted with the substituent mentioned above.
  • the alkyl group in Rb is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, more preferably a methyl group. These alkyl groups may be substituted with the aforementioned substituents.
  • the average number of repeating units x is not particularly limited as long as it is a positive integer, but it is preferably in the range of 1 to 20.
  • the weight average molecular weight (Mw) of poly (meth) acrylate and poly (meth) acrylamide is preferably in the range of 10,000 to 500,000, more preferably in the range of 30,000 to 200,000. If the weight average molecular weight (Mw) is 10,000 or more, the underlying layer containing poly (meth) acrylate and poly (meth) acrylamide is hard, so the film thickness changes with time and forced deterioration conditions, and interface deterioration with other layers. Without causing any electrical or optical problems.
  • the solubility in the coating solution for forming the underlayer and the compatibility with other compounds are good, and further, there is a problem of peeling from other layers having different hardness in a low temperature or high temperature environment. It does not occur.
  • poly (meth) acrylate having aminoethyl group examples include a polymer or copolymer of (meth) acrylate having an aminoethyl group.
  • examples of (meth) acrylates include monofunctional or bifunctional (meth) acrylates having one or two (meth) acryloyl groups, and polyfunctional (meth) acrylates having three or more (meth) acryloyl groups. .
  • Examples of monofunctional (meth) acrylates include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and sec-butyl.
  • bifunctional (meth) acrylate examples include allyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-propanediol di (meth) acrylate, and 1,4-butane.
  • Alkanediol di (meth) acrylates such as diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and alkane polyol di (meta) such as glycerin di (meth) acrylate ) Acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol Polyalkylene glycol di (meth) acrylate such as urdi (meth) acrylate, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxydiethoxyphenyl) ) Di (meth) acrylates and fatty acids of C 2-4 alkylene oxide adduct
  • bifunctional (meth) acrylate for example, epoxy di (meth) acrylate (bisphenol A type epoxy di (meth) acrylate, novolac type epoxy di (meth) acrylate, etc.), polyester di (meth) acrylate (for example, aliphatic polyester) Type di (meth) acrylate, aromatic polyester type di (meth) acrylate, etc.), (poly) urethane di (meth) acrylate (polyester type urethane di (meth) acrylate, polyether type urethane di (meth) acrylate etc.), silicon (meta ) Oligomers such as acrylates or resins are also included.
  • epoxy di (meth) acrylate bisphenol A type epoxy di (meth) acrylate, novolac type epoxy di (meth) acrylate, etc.
  • polyester di (meth) acrylate for example, aliphatic polyester) Type di (meth) acrylate, aromatic polyester type di (meth) acrylate, etc
  • polyfunctional (meth) acrylate esterified product of polyhydric alcohol and (meth) acrylic acid
  • polyhydric alcohol for example, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate
  • examples include pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
  • the polyhydric alcohol may be an adduct of alkylene oxide (for example, C2-4 alkylene oxide such as ethylene oxide or propylene oxide).
  • polyfunctional (meth) acrylates tri- to 6-functional (meth) acrylates such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are preferable.
  • Pentaerythritol Tri- to tetra-functional (meth) acrylates such as tri (meth) acrylate are more preferable.
  • the polyfunctional (meth) acrylate is preferably a polyfunctional (meth) acrylate that is not modified with an amine (an unmodified polyfunctional (meth) acrylate that is not added with amines by Michael addition or the like).
  • Examples Compounds PE-1 to PE-9 are shown below as specific examples of poly (meth) acrylates having aminoethyl groups applicable to the underlayer according to the present invention.
  • x and y in the following exemplary compounds represent the polymerization ratio of the copolymer.
  • the exemplified compounds PE-1 to PE-9 can be synthesized by a known method. More specifically, (i) a method in which (meth) acrylate is aminoethylated and then polymerized or copolymerized, and (ii) a method in which (meth) acrylate is polymerized and then aminoethylated. As an example, a method for synthesizing Exemplified Compound PE-7 is shown below.
  • poly (meth) acrylamide having an aminoethyl group examples include a polymer or copolymer of (meth) acrylamide having an aminoethyl group.
  • (meth) acrylamide examples include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, and N-benzyl (meth).
  • Acrylamide N-hydroxyethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-tolyl (meth) acrylamide, N- (hydroxyphenyl) (meth) acrylamide, N- (sulfamoylphenyl) (meth) acrylamide N- (phenylsulfonyl) (meth) acrylamide, N- (tolylsulfonyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-methyl-N-phenyl (meth) acrylamide, N-hydroxyethyl- N-methyl (Meth) acrylamide.
  • Examples Compounds PA-1 to PA-12 are shown below as specific examples of poly (meth) acrylamide having an aminoethyl group applicable to the underlayer used in the present invention.
  • x and y in the following exemplary compounds represent the polymerization ratio of the copolymer.
  • the exemplified compounds PA-1 to PA-12 can be synthesized by known methods.
  • the aminoethylation of (meth) acrylamide or the aminoethylation of poly (meth) acrylamide (homopolymer) can be performed in the same manner as the aminoethylation of (meth) acrylate or poly (meth) acrylate described above.
  • the resin constituting the base layer is not particularly limited as long as the base layer can be formed.
  • a known natural polymer material having a monomer repeating structure or a synthetic polymer material can be used.
  • organic polymer materials, inorganic polymer materials, organic-inorganic hybrid polymer materials, and mixtures thereof can be used. These resins can be used in combination of two or more.
  • the above resin can be synthesized by a known method.
  • Natural polymer materials can be synthesized from microorganisms such as extracted from natural raw materials or cellulose.
  • the synthetic polymer can be obtained by radical polymerization, cationic polymerization, anionic polymerization, coordination polymerization, ring-opening polymerization, polycondensation, addition polymerization, addition condensation, and living polymerization thereof.
  • These resins may be either homopolymers or copolymers, and can have any regularity of random, syndiotactic and isotactic when a monomer having an asymmetric carbon is used. Moreover, in the case of a copolymer, forms, such as random copolymerization, alternating copolymerization, block copolymerization, and graft copolymerization, can be taken.
  • the form of the resin may be liquid or solid.
  • the resin is preferably dissolved in the solvent or uniformly dispersed in the solvent.
  • the resin may be a water-soluble resin or a water-dispersible resin.
  • the resin may be an ionizing radiation curable resin that is cured by ultraviolet rays or an electron beam, a thermosetting resin that is cured by heat, or may be a resin prepared by a sol-gel method. Furthermore, the resin may be crosslinked.
  • the natural polymer material is preferably a natural organic polymer material, and examples thereof include natural fibers such as cotton, hemp, cellulose, silk, and wool, proteins such as gelatin, and natural rubber.
  • Synthetic polymer materials include polyolefin resin, polyacrylic resin, polyvinyl resin, polyether resin, polyester resin, polyamide resin, polyurethane resin, polyphenylene resin, polyimide resin, polyacetal resin, polysulfone resin, fluororesin, epoxy resin, silicone resin Phenol resin, melamine resin, polyurethane resin, polyurea resin, polycarbonate resin, polyketone resin and the like.
  • polystyrene resin examples include polyethylene, polypropylene, polyisobutylene, poly (1-butene), poly-4-methylpentene, polyvinylcyclohexane, polystyrene, poly (p-methylstyrene), poly ( ⁇ -methylstyrene), polyisoprene. , Polybutadiene, polycyclopentene, polynorbornene and the like.
  • polyacrylic resin include polymethacrylate, polyacrylate, polyacrylamide, polymethacrylamide, polyacrylonitrile and the like.
  • polyvinyl resin examples include polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polymethyl vinyl ether, polyethyl vinyl ether, polyisobutyl vinyl ether, and the like.
  • polyether resin examples include polyalkylene glycols such as polyethylene oxide and polypropylene oxide.
  • polyester resin examples include polyalkylene phthalates such as polyethylene terephthalate and polybutylene terephthalate, and polyalkylene naphthalates such as polyethylene naphthalate.
  • polyamide resin examples include polyamide 6, polyamide 6,6, polyamide 12, and polyamide 11.
  • fluororesin examples include polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, ethylene tetrafluoroethylene copolymer, polychlorotrifluoroethylene, and the like.
  • the above-mentioned water-soluble resin means a resin that dissolves 0.001 g or more in 100 g of water at 25 ° C.
  • the degree of dissolution can be measured with a haze meter, a turbidimeter, or the like.
  • the color of the water-soluble resin is not particularly limited, but is preferably transparent.
  • the number average molecular weight of the water-soluble resin is preferably in the range of 3000 to 2000000, more preferably in the range of 4000 to 500000, and still more preferably in the range of 5000 to 100,000.
  • the number average molecular weight and molecular weight distribution of the water-soluble resin can be measured by generally known gel permeation chromatography (GPC).
  • the solvent to be used is not particularly limited as long as the binder dissolves, but tetrahydrofuran (THF), dimethylformamide (DMF), and dichloromethane (CH 2 Cl 2 ) are preferable, more preferably THF and DMF, and still more preferably DMF. It is.
  • the measurement temperature is not particularly limited, but is preferably 40 ° C.
  • water-soluble resins include natural polymer materials and synthetic polymer materials such as acrylic resins, polyester resins, polyamide resins, polyurethane resins, and fluorine resins.
  • casein starch, agar , Carrageenan, sesulose, hydroxyethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, dextran, dextrin, pullulan, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid, poly (2-hydroxyethyl acrylate), poly ( 2-hydroxyethyl methacrylate), polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, water-soluble polyvinyl butyral, and the like.
  • the above-mentioned water-dispersible resin means a resin that can be uniformly dispersed in an aqueous solvent and in which colloidal particles made of resin are dispersed without being aggregated in the aqueous solvent.
  • the size (average particle diameter) of colloidal particles is generally in the range of 1 to 1000 nm. The average particle diameter of the colloidal particles can be measured with a light scattering photometer.
  • the aqueous solvent is not only pure water such as distilled water and deionized water, but also an aqueous solution containing an acid, alkali, salt, etc., a water-containing organic solvent, and a hydrophilic organic solvent. And alcohol-based solvents such as methanol and ethanol, mixed solvents of water and alcohol, and the like.
  • the water dispersible resin is preferably transparent.
  • the water-dispersible resin is not particularly limited as long as it is a medium for forming a film. Examples of the water-dispersible resin include an aqueous acrylic resin, an aqueous urethane resin, an aqueous polyester resin, an aqueous polyamide resin, and an aqueous polyolefin resin.
  • aqueous acrylic resin examples include vinyl acetate, acrylic acid, a polymer of acrylic acid-styrene, or a copolymer with other monomers.
  • the acid moiety responsible for the function of imparting dispersibility to an aqueous solvent is a copolymer of an anionic, nitrogen atom-containing monomer that forms a counter salt with ions such as lithium, sodium, potassium, and ammonium, and nitrogen.
  • ions such as lithium, sodium, potassium, and ammonium, and nitrogen.
  • nonionic systems in which a site such as a hydroxyl group or ethylene oxide is introduced, in which an atom forms a hydrochloride or the like, it is preferably anionic.
  • water-based urethane resin examples include water-dispersed urethane resin and ionomer-type water-based urethane resin (anionic).
  • water-dispersed urethane resins include polyether-based urethane resins and polyester-based urethane resins, and polyester-based urethane resins are preferred.
  • non-yellowing isocyanate having no aromatic ring.
  • Examples of the ionomer-type water-based urethane resin include polyester-based urethane resins, polyether-based urethane resins, and polycarbonate-based urethane resins, and polyester-based urethane resins and polyether-based urethane resins are preferable.
  • the aqueous polyester resin is synthesized from a polybasic acid component and a polyol component.
  • the polybasic acid component include terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid, adipic acid, succinic acid, sebacic acid, dodecanedioic acid and the like, and these may be used alone. Two or more kinds may be used in combination, and the polybasic acid component that can be particularly preferably used is industrially produced in large quantities and is inexpensive, so terephthalic acid and isophthalic acid Is particularly preferred.
  • polyol component examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, cyclohexane dimethanol, bisphenol, and the like. May be used in combination, or two or more may be used in combination.
  • ethylene is mass-produced industrially, is inexpensive, and is balanced in various performances such as improvement in solvent resistance and weather resistance of the resin film.
  • Glycol, propylene glycol or neopentyl glycol is particularly preferred.
  • examples of the inorganic polymer material include polysiloxane, polyphosphazene, polysilane, polygermane, polystannane, borazine polymer, polymetalloxane, polysilazane, titanium oligomer, and silane coupling agent.
  • Specific examples of the polysiloxane include silicone, silsesquioxane, and silicone resin.
  • organic / inorganic hybrid polymer materials polycarbosilane, polysilylene arylene, polysilole, polyphosphine, polyphosphine oxide, poly (ferrocenylsilane), silsesquioxane derivatives based on silsesquioxane Examples thereof include a resin in which silica is combined with a resin.
  • silsesquioxane derivatives having silsesquioxane as a basic skeleton include photo-curing type SQ series (Toagosei Co., Ltd.), Composelan SQ (Arakawa Chemical Co., Ltd.), Sila-DEC (Chisso Corporation). Etc.
  • Specific examples of the resin in which silica is combined with the resin include the Composelan series (Arakawa Chemical Co., Ltd.).
  • a curable resin such as an ionizing radiation curable resin or a thermosetting resin
  • the ionizing radiation curable resin is a resin that can be cured by an ordinary curing method of an ionizing radiation curable resin composition, that is, by irradiation with an electron beam or ultraviolet rays.
  • keV emitted from various electron beam accelerators such as a Cockrowalton type, a bandegraph type, a resonant transformation type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • An electron beam having an energy within a range of preferably 30 to 300 keV is used.
  • ultraviolet curing ultraviolet rays emitted from rays of ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc, metal halide lamp, etc. can be used.
  • Specific examples of the ultraviolet irradiation device include a rare gas excimer lamp that emits vacuum ultraviolet rays within a range of 100 to 230 nm. Since the excimer lamp has high light generation efficiency, it can be lit with low power. In addition, since light having a long wavelength that causes a temperature rise is not emitted and energy is emitted at a single wavelength in the ultraviolet region, the temperature rise of the irradiation object due to the irradiation light itself is suppressed.
  • thermosetting resin is a resin that is cured by heating, and it is more preferable that a crosslinking agent is contained in the resin.
  • a heating method of the thermosetting resin a conventionally known heating method can be used, and heater heating, oven heating, infrared heating, laser heating, or the like can be used.
  • a surface energy adjusting agent may be added to the resin used for the underlayer. By adding the surface energy adjusting agent, the adhesion between the fine metal wire pattern and the underlayer, the line width of the fine metal wire pattern, and the like can be adjusted.
  • oxide particles The oxide particles that can be added to the underlayer are not particularly limited as long as they can be applied to a transparent electrode. By adding oxide particles to the resin, physical properties such as film strength, stretchability, and refractive index of the underlayer can be adjusted as appropriate, and the adhesion to the fine metal wire pattern is also improved.
  • the oxide particles include oxides of metals such as magnesium, aluminum, silicon, titanium, zinc, yttrium, zirconium, molybdenum, tin, barium, and tantalum.
  • the oxide particles are preferably titanium oxide, aluminum oxide, silicon oxide, or zirconium oxide.
  • the average particle diameter of the oxide particles is preferably in the range of 5 to 300 nm, and particularly preferably in the range of 5 to 100 nm because it can be suitably used for a transparent electrode.
  • oxide particles having an average particle diameter in the above range are used, sufficient irregularities can be formed on the surface of the underlayer, and the adhesion to the metal fine wire pattern is improved.
  • the average particle size is 100 nm or less, the surface becomes smooth and the influence on the organic EL element is small.
  • the average particle diameter of the oxide particles can be easily measured using a commercially available measuring apparatus using a light scattering method. Specifically, a value measured at 25 ° C. and 1 mL of a sample dilution amount by a laser Doppler method using a Zetasizer 1000 (manufactured by Malvern) can be used.
  • the oxide particles are preferably contained within the range of 10 to 70 vol%, more preferably within the range of 20 to 60 vol%, in the underlayer.
  • the underlayer is formed by preparing a dispersion for forming an underlayer by dispersing resin, oxide particles, a thiol group-containing compound, etc. in a solvent, and applying this underlayer-forming dispersion on a substrate. .
  • the dispersion solvent used for the dispersion liquid for base layer formation It is preferable to select the solvent in which precipitation of resin and aggregation of a thiol group containing compound etc. do not occur.
  • the underlayer contains oxide particles, from the viewpoint of dispersibility, a resin, a thiol group-containing compound, and the mixture of oxide particles are dispersed by a method such as ultrasonic treatment or bead mill treatment. Filtration with a filter or the like is preferable because it can prevent metal oxide aggregates from being generated on the substrate after coating and drying.
  • any appropriate method can be selected as a method for forming the underlayer.
  • a coating method in addition to various printing methods such as a gravure printing method, a flexographic printing method, an offset printing method, a screen printing method, and an ink jet printing method.
  • Various coating methods such as a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a curtain coating method, a spray coating method, and a doctor coating method can be used.
  • a gravure printing method, a flexographic printing method, an offset printing, a screen printing method, or an inkjet printing method it is preferable to use a gravure printing method, a flexographic printing method, an offset printing, a screen printing method, or an inkjet printing method.
  • the underlayer is formed by depositing the coating method on a substrate and then drying it by a known heat drying method such as warm air drying or infrared drying, or by natural drying.
  • the temperature for performing heat drying can be appropriately selected according to the substrate to be used, but it is preferably performed at a temperature of 200 ° C. or lower.
  • curing by light energy such as ultraviolet rays or excimer light or heat curing with little damage to the substrate may be performed, and in particular, curing by excimer light may be performed. This is a preferred embodiment.
  • the filament temperature of the light source is 1600 ⁇ It is preferable to use an infrared heater in the range of 3000 ° C. Since the hydroxy group has absorption at a specific wavelength emitted from the infrared heater, the solvent can be dried. On the other hand, since polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) as a base material has little absorption of a specific wavelength emitted from an infrared heater, thermal damage to the base material is small.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Examples of the polar solvent having a hydroxy group include water (pure water such as distilled water and deionized water is preferable), alcohol solvents such as methanol and ethanol, glycols, glycol ethers, and a mixed solvent of water and alcohol. Is mentioned.
  • Specific examples of the glycol ether organic solvent include ethyl carbitol, butyl carbitol and the like.
  • Specific examples of the alcohol-based organic solvent include 1-propanol, 2-propanol, n-butanol, 2-butanol, diacetone alcohol, butoxyethanol and the like in addition to the above-described methanol and ethanol.
  • the organic EL element of this invention it is preferable that it is the structure which provides a gas barrier layer on the transparent flexible base material used for this invention.
  • the transparent flexible base material on which the gas barrier layer is formed has a water vapor permeability of 1 ⁇ 10 ⁇ 3 at a temperature of 25 ⁇ 0.5 ° C. and a humidity of 90 ⁇ 2% RH measured by a method according to JIS K 7129-1992.
  • the oxygen permeability was measured by the method based on JIS K 7126-1987 is, 1 ⁇ 10 -3 ml / m 2 ⁇ 24h ⁇ atm (1atm is 1.01325 ⁇ 10 5 Pa.)
  • the water vapor permeability at a temperature of 25 ⁇ 0.5 ° C. and a humidity of 90 ⁇ 2% RH is 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less. Preferably there is.
  • any material may be used as long as it has a function of suppressing intrusion of an element such as moisture or oxygen that causes deterioration of the element. .
  • the method for forming the gas barrier layer is not particularly limited.
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is also preferable.
  • the polysilazane-containing liquid is applied and dried by a wet coating method, and the formed coating film is irradiated with vacuum ultraviolet light (VUV light) having a wavelength of 200 nm or less, and the formed coating film is subjected to a modification treatment, and gas A method of forming a barrier layer is also preferable.
  • VUV light vacuum ultraviolet light
  • the thickness of the gas barrier layer is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm. If the thickness of the gas barrier layer is 1 nm or more, the desired gas barrier performance can be exhibited, and if it is 500 nm or less, film quality deterioration such as generation of cracks in a dense silicon oxynitride film can be prevented. Can do.
  • the particle-containing layer is provided on the surface (back surface) opposite to the surface (front surface) on which the first electrode is formed in the transparent flexible base material.
  • the particle-containing layer is composed of particles and a binder resin.
  • the particle-containing layer preferably contains particles in the range of 1 to 900 parts by mass with respect to 100 parts by mass of the binder resin.
  • the particles constituting the particle-containing layer are preferably inorganic fine particles, inorganic oxide particles, conductive polymer particles, conductive carbon fine particles and the like.
  • oxide particles such as ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , MgO, BaO, MoO 2 , V 2 O 5 , and inorganic oxide particles such as SiO 2 are preferable.
  • SnO 2 and SiO 2 are preferable.
  • Binder resin examples of the binder resin constituting the particle-containing layer include cellulose derivatives such as cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate, polyvinyl acetate, polystyrene, polycarbonate, polybutylene terephthalate, and copolybutylene.
  • Polyesters such as tele / isophthalate, polyvinyl alcohol, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, polyvinyl alcohol derivatives such as polyvinyl benzal, norbornene-based polymers containing norbornene compounds, polymethyl methacrylate, polyethyl methacrylate, polypropylyl methacrylate , Polybutyl methacrylate, polymethyl acrylate, etc. It can be used a copolymer of acrylic resin or an acrylic resin and other resins, but it is not particularly limited to these exemplified a resin material. Among these, cellulose derivatives and acrylic resins are preferable, and acrylic resins are most preferably used.
  • the above thermoplastic resin having a weight average molecular weight (Mw) of 400,000 or more and a glass transition temperature in the range of 80 to 110 ° C. is preferable in terms of optical properties and the quality of the particle-containing layer to be formed. .
  • the glass transition temperature can be determined by the method described in JIS K 7121: 2012.
  • the binder resin used here is 60% by mass or more, more preferably 80% by mass or more of the total resin mass constituting the particle-containing layer, and an actinic radiation curable resin or a thermosetting resin is applied as necessary. You can also.
  • the formation of the particle-containing layer is preferably performed before the formation of the first electrode, the base layer, and the gas barrier layer.
  • the above-described particles and binder resin are dissolved in an appropriate organic solvent to prepare a coating solution for forming a particle-containing layer in a solution state. And coated and dried to form a particle-containing layer.
  • organic solvent used for the preparation of the particle-containing layer forming coating solution hydrocarbons, alcohols, ketones, esters, glycol ethers, and the like can be appropriately mixed and used. It is not limited to these.
  • Examples of the hydrocarbons include benzene, toluene, xylene, hexane, and cyclohexane.
  • Examples of the alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, 2-butanol, tert. -Butanol, pentanol, 2-methyl-2-butanol, cyclohexanol and the like.
  • Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like.
  • Examples of the esters include formic acid.
  • glycol ethers (1 to 4 carbon atoms) include methyl cellosolve and ethyl cellosol.
  • Propylene glycol monomethyl ether (abbreviation: PGME), propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, propylene glycol mono (1 to 4 carbon atoms) alkyl ether ester
  • Examples of the propylene glycol mono (1 to 4 carbon atoms) alkyl ether esters include propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate.
  • other solvents include N-methyl. Examples include pyrrolidone and the like. Although not particularly limited to these, a solvent in which these are appropriately mixed is also preferably used.
  • a method of applying the particle-containing layer forming coating solution onto the transparent flexible substrate doctor coating, extrusion coating, slide coating, roll coating, gravure coating, wire bar coating, reverse coating, curtain coating, extrusion coating, or the United States Examples include an extrusion coating method using a hopper described in Japanese Patent No. 2681294.
  • a particle-containing layer having a dry film thickness in the range of 0.1 to 20 ⁇ m, preferably in the range of 0.2 to 5 ⁇ m can be formed on the transparent flexible substrate. .
  • a protective member such as a protective film or a protective plate may be provided to mechanically protect the organic EL element.
  • the protective member is disposed at a position where the organic EL element and the sealing member are sandwiched between the first electrode.
  • the sealing member is a sealing film, mechanical protection for the organic EL element is not sufficient, and thus it is preferable to provide such a protective member.
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, or a polymer material film or a metal material film is applied.
  • a polymer film because it is lightweight and thin.
  • a 1st electrode is produced with the above-mentioned manufacturing method.
  • a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are formed in this order on the first electrode to form an organic functional layer.
  • a film forming method of each of these layers there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but from the point that a uniform film is easily obtained and pinholes are difficult to generate, etc. Vacuum deposition or spin coating is particularly preferred.
  • vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Each condition is preferably selected as appropriate within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of ⁇ 50 to 300 ° C., and layer thickness of 0.1 to 5 ⁇ m.
  • a second electrode is formed on the organic functional layer by an appropriate film forming method such as vapor deposition or sputtering. At this time, the second electrode is patterned in a shape in which a terminal portion is drawn from the upper side of the organic functional layer to the periphery of the substrate while maintaining an insulating state with respect to the first electrode by the organic functional layer.
  • an inorganic protective layer is formed by the manufacturing method described above. Thereafter, an adhesive layer and a sealing member are provided on at least the organic functional layer with the terminal portions of the extraction electrode and the second electrode exposed.
  • a desired organic EL element can be obtained.
  • the substrate is taken out from the vacuum atmosphere and subjected to different film forming methods. It doesn't matter. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • Organic EL elements 101 to 136 were produced as follows.
  • the organic EL elements 101 to 105 are comparative examples, and the organic EL elements 106 to 136 are examples.
  • ⁇ Preparation of organic EL element 101> Preparation of base material As a transparent flexible base material, a polyethylene terephthalate (PET / CHC) film (G1SBF, thickness 125 ⁇ m, refractive index 1.59) with a clear hard coat layer manufactured by Kimoto Co., Ltd. was prepared.
  • PET / CHC polyethylene terephthalate
  • a transparent flexible base material was set in a discharge plasma chemical vapor deposition apparatus (Plasma CVD apparatus Precision 5000 manufactured by Applied Materials) and continuously conveyed by roll-to-roll.
  • a magnetic field was applied between the film forming rollers, and power was supplied to each film forming roller to generate plasma between the film forming rollers to form a discharge region.
  • a mixed gas of hexamethyldisiloxane (HMDSO), which is a raw material gas, and oxygen gas (which also functions as a discharge gas), which is a reactive gas is supplied as a film forming gas from the gas supply pipe to the formed discharge region.
  • a gas barrier layer having a thickness of 120 nm was formed under the following conditions.
  • Feed rate of source gas (hexamethyldisiloxane, HMDSO): 50 sccm (Standard Cubic Centimeter per Minute) Reaction gas (O 2 ) supply amount: 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film transport speed: 0.8 m / min
  • first electrode Formation of metal thin wire
  • a silver film having a thickness of 0.5 ⁇ m is formed on the gas barrier layer by vapor deposition.
  • a lattice pattern having a width of 50 ⁇ m and a pitch of 1 mm was formed by using a photolithography method.
  • a thin metal wire pattern having an arithmetic average roughness Ra of 1.3 nm was formed.
  • arithmetic mean roughness Ra is the value which measured the center part 5 micrometer square of the metal fine wire using the atomic force microscope (made by Digital Instruments).
  • amorphous IZO film an L-430S-FHS sputtering apparatus manufactured by Anelva was used, Ar: 20 sccm, O 2 : 3 sccm, sputtering pressure: 0.25 Pa, room temperature (25 ° C.), target side power: 1000 W, target-substrate It was produced by RF sputtering at a distance of 86 mm.
  • each of the crucibles for vapor deposition in the vacuum vapor deposition apparatus was filled with the following materials constituting each layer of the organic functional layer in an optimum amount for device fabrication.
  • a crucible made of a resistance heating material made of molybdenum or tungsten was used as the evaporation crucible.
  • the deposition crucible containing the following compound A-1 was energized and heated, and deposited on the first electrode (metal oxide layer side) at a deposition rate of 0.1 nm / second.
  • the hole injection layer having a thickness of 10 nm was formed.
  • the deposition crucible containing the following compound M-2 was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a 30 nm thick hole transport layer.
  • the following compound BD-1 and the following compound H-1 are co-deposited at a deposition rate of 0.1 nm / second so that the compound BD-1 has a concentration of 5 mass%, and emits blue light with a thickness of 15 nm.
  • a fluorescent light emitting layer was formed.
  • the following compound GD-1, the following compound RD-1, and the following compound H-2 were deposited at a deposition rate of 0.8% so that the concentration of the compound GD-1 was 17% by mass and the concentration of RD-1 was 0.8% by mass.
  • Co-evaporation was performed at 1 nm / second to form a phosphorescent light emitting layer having a thickness of 15 nm and exhibiting a yellow color.
  • the following compound E-1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
  • an organic functional layer was formed.
  • a polyethylene terephthalate film having a thickness of 50 ⁇ m in which an aluminum (Al) foil having a thickness of 100 ⁇ m was laminated was prepared as a sealing member.
  • the solution of the prepared adhesive composition was applied to the aluminum side (gas barrier layer side) of the sealing member so that the thickness of the adhesive layer formed after drying was 20 ⁇ m, and at 120 ° C. It was dried for 2 minutes to form an adhesive layer.
  • a release sheet a release treatment surface of a polyethylene terephthalate film having a thickness of 38 ⁇ m was attached to the formed adhesive layer surface to produce a sealing member.
  • the sealing member produced by the above method was left for 24 hours or more in a nitrogen atmosphere. After leaving, the release sheet was removed, and lamination was performed so as to cover the second electrode of the organic EL element 101 with a vacuum laminator heated to 80 ° C. Furthermore, it heated at 120 degreeC for 30 minutes, and sealed the organic EL element 101 with the sealing member.
  • a silver nanoparticle dispersion (FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.) as a metal nanoparticle-containing composition is 50 ⁇ m wide, 1 mm pitch, and the dried film thickness after firing is 0.00.
  • a pattern was formed by coating in a grid pattern at 5 ⁇ m.
  • an ink jet printing method an ink jet head having an ink droplet ejection amount of 4 pl was used, and a coating speed and an ejection frequency were adjusted to print a pattern.
  • a desktop robot Shotmaster-300 manufactured by Musashi Engineering
  • an ink jet head manufactured by Konica Minolta
  • an ink jet evaluation apparatus EB150 manufactured by Konica Minolta
  • quartz glass plates that absorb infrared rays having a wavelength of 3.5 ⁇ m or more are attached to an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates.
  • an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates.
  • the drying process of the pattern of the formed metal nanoparticle containing composition was performed using the heater.
  • metal thin line patterns having an arithmetic average roughness Ra of 13.5 nm, 19.5 nm, and 30.2 nm were formed (organic EL elements 103 to 105).
  • the organic EL element 106 was produced in the same manner as in the production of the organic EL element 101 except that an inorganic protective layer was formed on the second electrode as follows before sealing. did.
  • the organic EL elements 107 to 110 were formed in the same manner as in the production of the organic EL elements 102 to 105, except that an inorganic protective layer was formed on the second electrode as follows before sealing. EL elements 107 to 110 were produced.
  • inorganic protective layer A silicon nitride film was formed as an inorganic protective layer on the second electrode so as to have a thickness shown in Table 1.
  • the film thickness of an inorganic protective layer is the value measured with the contact-type surface shape measuring device (DECTAK).
  • the film density of the inorganic protective layer was 7.0 ⁇ 10 22 atoms / cm 3 , which is a high density.
  • the film density was measured by measuring the formed single film using Rutherford backscattering analysis method and measuring the film thickness by TEM of the formed cross section.
  • the substrate was set in a discharge plasma chemical vapor deposition apparatus (a plasma CVD apparatus Precision5000 manufactured by Applied Materials).
  • a mixed gas of hexamethyldisiloxane (HMDSO) as a raw material gas and oxygen gas (which also functions as a discharge gas) as a reaction gas is supplied at 50 sccm (Standard Cubic Centimeter per Minute) and 500 sccm, respectively.
  • the gas was supplied in an amount from a gas supply pipe, and was formed by plasma CVD under the conditions of a vacuum degree in the chamber of 3 Pa, an applied voltage of 0.8 kW, and a frequency of 70 kHz.
  • Organic EL elements 111 to 114 were manufactured in the same manner except that the thickness of the inorganic protective layer was changed to the value shown in Table 1 in the preparation of the organic EL element 107.
  • the organic EL element 115 the thickness of the inorganic protective layer is two, and the film density and the film thickness are the same as those shown in Table 1 for each of the organic EL elements 115 and 116. 116 was produced.
  • the film density of the inorganic protective layer is 5.1 ⁇ 10 22 atoms / cm 3 for the low density and 7.0 ⁇ 10 22 atoms / cm 3 for the high density, and the film density of the inorganic protective layer is the gas flow rate. And by adjusting the pressure during film formation. The same applies hereinafter.
  • organic EL elements 117 to 123 were produced in the same manner except that the inorganic protective layer was three layers and the film density and film thickness were the values shown in Table 1, respectively.
  • the inorganic protective layer is three layers, the second layer is an intermediate layer.
  • organic EL elements 124 and 125 were produced in the same manner except that the organic EL element 124 was changed to a silicon oxide film and the organic EL element 125 was changed to a silicon oxynitride film as the inorganic protective layer.
  • the silicon oxide film was formed by using tetrahydroxysilane and dinitrogen oxide as source gases.
  • the silicon oxynitride film was formed by using dichlorosilane and ammonia as source gases.
  • the organic EL element 126 is changed to amorphous ITO, and the organic EL element 127 is changed to PEDOT (poly (3,4-ethylenedioxythiophene)).
  • PEDOT poly (3,4-ethylenedioxythiophene
  • Amorphous ITO was formed on a thin metal wire so as to have a thickness shown in Table 1, using the method of International Publication No. 2012/090735.
  • PEDOT was formed by the following method.
  • PEDOT-PSS CLEVIOS PH510 solid content concentration 1.89%, manufactured by HC Starck
  • PEDOT-PSS CLEVIOS PH510 solid content concentration 1.89%, manufactured by HC Starck
  • HC Starck HC Starck
  • Organic EL elements 128 to 131 were manufactured in the same manner except that the thickness of the transparent conductive layer was changed to the values shown in Table 1 in the preparation of the organic EL element 121.
  • the organic EL element 121 was formed in the same manner except that the base layer (thiol-based) was formed on the transparent flexible base material (gas barrier layer) as follows. An EL element 132 was produced.
  • the film thickness of a base layer is the value measured with the contact-type surface shape measuring device (DECTAK).
  • the organic EL element 133 was an aminoethyl group acrylic base layer
  • the organic EL element 134 was an aminoethyl group methacrylic base layer.
  • the organic EL element 133 instead of the Karenz MTBD1 added to the underlayer, the organic EL element 133 uses Polyment NK-350, and the organic EL element 134 uses the exemplified compound PA-4 (weight average molecular weight (Mw) 56000). Except for the above, organic EL elements 133 and 134 were produced in the same manner.
  • the organic EL elements 135 and 136 were produced in the same manner except that the inorganic protective layer was four layers and the film density and film thickness were the values shown in Table 1, respectively.
  • the second and third layers are intermediate layers, but the intermediate layer “[film thickness of intermediate layer / total film thickness of inorganic protective layer] ⁇ 100” in Table 1
  • the film thickness is the film thickness of the intermediate layer (second layer) having the lowest film density.
  • ⁇ Dark spot before storage (DS)> Each manufactured organic EL element is lit under a constant current density condition of 2.5 mA / cm 2 , and the area of a point where no light is emitted (dark spot (DS)) in the region to emit light is measured. It was evaluated by. Of the following evaluations, 3 or more were considered acceptable.
  • DS area in a region to emit light is less than 0.5% 5: DS area in a region to emit light is 0.5% or more and less than 1% 4: DS area in a region to emit light is 1 % To less than 5% 3: DS area in the region to emit light is 5% to less than 10% 2: DS area in the region to emit light is 10% to less than 15% 1: DS in the region to emit light The area of 15% or more
  • ⁇ Dark spot after storage (DS)> Each produced organic EL element is put into a thermostat of 85 ° C. (dry), taken out after 500 hours, then lit under a constant current density condition of 2.5 mA / cm 2 , and does not emit light in the region to emit light
  • the area of (dark spot (DS)) was measured and evaluated according to the following criteria. Of the following evaluations, 3 or more were considered acceptable.
  • DS area in a region to emit light is less than 1% 5: DS area in a region to emit light is 1% or more and less than 2.5% 4: DS area in a region to emit light is 2.5 % To less than 5% 3: DS area in the region to emit light is 5% to less than 10% 2: DS area in the region to emit light is 10% to less than 30% 1: DS in the region to emit light The area of 30% or more
  • Rectification ratio Current value when + 4V is applied / Current value when ⁇ 4V is applied 6: Rectification ratio is 1.0 ⁇ 10 5 or more 5: Rectification ratio is 1.0 ⁇ 10 4 or more and less than 1.0 ⁇ 10 5 4: Rectification ratio is 1.0 ⁇ 10 3 or more and less than 1.0 ⁇ 10 4 3: Rectification ratio is 1.0 ⁇ 10 2 or more and less than 1.0 ⁇ 10 3 2: Rectification ratio is 1.0 ⁇ 10 or more and 1.0 Less than ⁇ 10 2 1: Rectification ratio is less than 1.0 ⁇ 10
  • the generation of dark spots is suppressed as compared with the organic EL elements 111 to 116.
  • the organic EL element 119 having the lowest film density in the intermediate layer was superior in rectification ratio as compared with the organic EL elements 117 and 118.
  • the organic EL elements 120 to 122 in which the film thickness of the intermediate layer is 20 to 50% with respect to the film thickness of the entire inorganic protective layer are superior in rectification ratio and darker than the organic EL elements 119 and 123. The generation of spots was suppressed.
  • the organic EL element 121 in which the inorganic protective layer is silicon nitride generation of dark spots was suppressed as compared with the organic EL elements 124 and 125.
  • the transparent conductive layer is an amorphous metal oxide
  • generation of dark spots is suppressed as compared with the organic EL element 127.
  • the organic EL elements 129 and 130 having a preferable thickness of the transparent conductive layer were excellent in rectification ratio and suppressed generation of dark spots as compared with the organic EL elements 128 and 131.
  • the organic EL elements 132 to 134 provided with the base layer were superior in adhesion between the base material and the fine metal wires compared to the organic EL element 121.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The present invention addresses the problem of providing an organic electroluminescent element which is suppressed in the formation of a dark spot, while having excellent rectifying characteristics. This organic electroluminescent element (1) is obtained by sequentially laminating, on a transparent flexible substrate (2), a first electrode (3) that comprises at least a metal thin wire (3a) and a transparent conductive layer (3b), an organic function layer (4), a second electrode (5), an inorganic protection layer (6), an adhesive layer (7) and a sealing member (8).

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element.
 近年、有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)や有機太陽電池といった有機ELデバイスでは、高効率化、大面積化、フレキシブル化が求められている。有機ELデバイスにおいて、大面積化には金属細線を用いた透明電極を用いる方法が知られている。
 例えば、金属ナノワイヤ等の導電性繊維を透明電極に含有させる技術が開示されている(例えば、特許文献1参照)。
In recent years, organic EL devices such as organic electroluminescence elements (hereinafter also referred to as “organic EL elements”) and organic solar cells are required to have high efficiency, large area, and flexibility. In an organic EL device, a method using a transparent electrode using a thin metal wire is known for increasing the area.
For example, a technique for incorporating a conductive fiber such as a metal nanowire into a transparent electrode has been disclosed (see, for example, Patent Document 1).
 一方、有機ELデバイスは酸素や水といった不純物により劣化することが知られており、それらを遮断するため封止が必要となる。フレキシブルな基板に対応した封止方法としては、有機EL素子面上に空間を設けず、第2電極上に接着剤を介して封止部材を貼り合せる密着型の封止方法が知られている(例えば、特許文献2参照)。
 しかし、これらの封止構成を、金属細線を用いた透明電極に用いると、整流比の悪化や発光部にダークスポットが生じるといった問題があった。
On the other hand, organic EL devices are known to be deteriorated by impurities such as oxygen and water, and sealing is necessary to block them. As a sealing method corresponding to a flexible substrate, a contact-type sealing method in which a space is not provided on the surface of the organic EL element and a sealing member is bonded to the second electrode via an adhesive is known. (For example, refer to Patent Document 2).
However, when these sealing structures are used for a transparent electrode using a fine metal wire, there are problems that the rectification ratio is deteriorated and a dark spot is generated in the light emitting portion.
米国特許出願公開第2010/0255323号明細書US Patent Application Publication No. 2010/0255323 特開2008-77855号公報JP 2008-77855 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、整流特性に優れると共に、ダークスポットの発生が抑制された有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above-described problems and situations, and a problem to be solved is to provide an organic electroluminescence element that has excellent rectification characteristics and suppresses the generation of dark spots.
 本発明者は、鋭意検討した結果、接着剤を用いた封止を有機ELデバイスに用いる場合、第2電極上に無機保護層を積層することで、有機ELデバイスのダークスポットの発生が抑制され、また、整流特性が改善されることを見出し、本発明に至った。これは、有機機能層へのダメージを軽減できたためと推測している。なお、ダークスポットの発生が抑制される理由としては、無機保護層により、接着剤に起因する水分等の拡散影響を抑制できたためと考えられる。また、金属細線の算術平均粗さRaを好ましい範囲とすることで、ダークスポットの発生がより抑制されることを見出した。これは、金属細線の微小な凹凸に起因した無機保護層の劣化を抑制できたためと推測している。なお、整流特性とは、具体的は、整流比を意味する。 As a result of intensive studies, the present inventor has suppressed the generation of dark spots in the organic EL device by laminating an inorganic protective layer on the second electrode when sealing using an adhesive is used in the organic EL device. Further, the inventors have found that the rectification characteristics are improved and have reached the present invention. This is presumably because damage to the organic functional layer was reduced. The reason why the generation of dark spots is suppressed is considered to be because the inorganic protective layer can suppress the influence of diffusion of moisture and the like caused by the adhesive. Moreover, it discovered that generation | occurrence | production of a dark spot was suppressed more by making arithmetic mean roughness Ra of a metal fine wire into a preferable range. This is presumably because the deterioration of the inorganic protective layer due to the minute irregularities of the fine metal wires could be suppressed. The rectification characteristic specifically means a rectification ratio.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
1.透明フレキシブル基材上に、少なくとも金属細線と透明導電層とを含む第1電極、有機機能層、第2電極、無機保護層、接着剤層、封止部材が順次積層された有機エレクトロルミネッセンス素子。 1. An organic electroluminescence device in which a first electrode, an organic functional layer, a second electrode, an inorganic protective layer, an adhesive layer, and a sealing member including at least a thin metal wire and a transparent conductive layer are sequentially laminated on a transparent flexible substrate.
2.前記金属細線の算術平均粗さRaが1~20nmである前記1に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescence device according to 1, wherein the thin metal wire has an arithmetic average roughness Ra of 1 to 20 nm.
3.前記金属細線の算術平均粗さRaが1~10nmである前記1又は前記2に記載の有機エレクトロルミネッセンス素子。 3. 3. The organic electroluminescence device according to 1 or 2 above, wherein the thin metal wire has an arithmetic average roughness Ra of 1 to 10 nm.
4.前記無機保護層の膜厚が500~1500nmである前記1から前記3のいずれか1つに記載の有機エレクトロルミネッセンス素子。 4). 4. The organic electroluminescence device according to any one of 1 to 3, wherein the inorganic protective layer has a thickness of 500 to 1500 nm.
5.前記無機保護層が、膜密度の異なる3層から形成されている前記1から前記4のいずれか1つに記載の有機エレクトロルミネッセンス素子。 5. 5. The organic electroluminescence element according to any one of 1 to 4, wherein the inorganic protective layer is formed of three layers having different film densities.
6.前記3層からなる無機保護層のうち、中間層が最も膜密度が低い前記5に記載の有機エレクトロルミネッセンス素子。 6). 6. The organic electroluminescence device according to 5, wherein the intermediate layer has the lowest film density among the three inorganic protective layers.
7.前記中間層の膜厚が前記無機保護層全体の膜厚に対して20~50%である前記6に記載の有機エレクトロルミネッセンス素子。 7). 7. The organic electroluminescence device as described in 6 above, wherein the thickness of the intermediate layer is 20 to 50% with respect to the thickness of the entire inorganic protective layer.
8.前記無機保護層が窒化シリコンである前記1から前記7のいずれか1つに記載の有機エレクトロルミネッセンス素子。 8). 8. The organic electroluminescence device according to any one of 1 to 7, wherein the inorganic protective layer is silicon nitride.
9.前記透明導電層がアモルファスな金属酸化物である前記1から前記8のいずれか1つに記載の有機エレクトロルミネッセンス素子。 9. 9. The organic electroluminescence device according to any one of 1 to 8, wherein the transparent conductive layer is an amorphous metal oxide.
10.前記透明導電層の膜厚が50~300nmである前記1から前記9のいずれか1つに記載の有機エレクトロルミネッセンス素子。 10. 10. The organic electroluminescence device according to any one of 1 to 9, wherein the transparent conductive layer has a thickness of 50 to 300 nm.
11.前記透明フレキシブル基材と前記第1電極との間に、下地層が設けられている前記1から前記10のいずれか1つに記載の有機エレクトロルミネッセンス素子。 11. 11. The organic electroluminescence device according to any one of 1 to 10, wherein a base layer is provided between the transparent flexible substrate and the first electrode.
12.前記下地層に、チオール基を有する化合物、アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミドから選択される少なくとも1種が含有されている前記11に記載の有機エレクトロルミネッセンス素子。 12 12. The organic material according to 11 above, wherein the underlayer contains at least one selected from a compound having a thiol group, a poly (meth) acrylate having an aminoethyl group, and a poly (meth) acrylamide having an aminoethyl group. Electroluminescence element.
 本発明の上記手段により、整流特性に優れると共に、ダークスポットの発生が抑制された有機エレクトロルミネッセンス素子を提供することができる。 By the above means of the present invention, it is possible to provide an organic electroluminescence device that is excellent in rectification characteristics and suppressed in the generation of dark spots.
本発明の有機EL素子の一例としての概略構成を示す断面模式図Cross-sectional schematic diagram showing a schematic configuration as an example of the organic EL element of the present invention 本発明の有機EL素子の他の一例としての概略構成を示す断面模式図Cross-sectional schematic diagram showing a schematic configuration as another example of the organic EL device of the present invention 本発明の有機EL素子の他の一例としての概略構成を示す断面模式図Cross-sectional schematic diagram showing a schematic configuration as another example of the organic EL device of the present invention 本発明の有機EL素子の他の一例としての概略構成を示す断面模式図Cross-sectional schematic diagram showing a schematic configuration as another example of the organic EL device of the present invention 本発明の有機EL素子の他の一例としての概略構成を示す断面模式図Cross-sectional schematic diagram showing a schematic configuration as another example of the organic EL device of the present invention 本発明の有機EL素子における無機保護層の一例としての概略構成を示す断面模式図Cross-sectional schematic diagram showing a schematic configuration as an example of an inorganic protective layer in the organic EL device of the present invention
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
《有機EL素子》
 本発明の有機EL素子は、透明フレキシブル基材(以下、基材ともいう。)上に、少なくとも金属細線と透明導電層とを含む第1電極、有機機能層、第2電極、無機保護層、接着剤層、封止部材(封止層)が順次積層されて構成されている。
<< Organic EL element >>
The organic EL device of the present invention includes a first electrode, an organic functional layer, a second electrode, an inorganic protective layer, and at least a thin metal wire and a transparent conductive layer on a transparent flexible substrate (hereinafter also referred to as a substrate). An adhesive layer and a sealing member (sealing layer) are sequentially laminated.
 図1に本発明の有機EL素子の概略構成を示す。図1に示すとおり、有機EL素子1は、透明フレキシブル基材2上に、透明電極としての第1電極3、有機機能層4、対向電極としての第2電極5、無機保護層6、接着剤層7、封止部材8が順次積層されて構成されている。なお、ここでいう透明(透光性)とは、波長550nmでの光透過率が50%以上であることをいう。 FIG. 1 shows a schematic configuration of the organic EL element of the present invention. As shown in FIG. 1, the organic EL element 1 includes a transparent flexible substrate 2, a first electrode 3 as a transparent electrode, an organic functional layer 4, a second electrode 5 as a counter electrode, an inorganic protective layer 6, and an adhesive. The layer 7 and the sealing member 8 are sequentially laminated. Here, the term “transparent” (translucency) means that the light transmittance at a wavelength of 550 nm is 50% or more.
 図1に示す有機EL素子1では、第1電極3は、透明フレキシブル基材2側からパターン状に形成された金属細線3a、透明導電層3bがこの順に積層されて構成されているが、図2に示すように、透明フレキシブル基材2側から透明導電層3b、パターン状に形成された金属細線3aがこの順に積層されて構成されていてもよく、更には、当該金属細線3aを被覆するようにして絶縁層(図示略)が設けられていてもよい。しかしながら、生産性の観点から、第1電極3は、少なくとも透明フレキシブル基材2側からパターン状に形成された金属細線3a、透明導電層3bが順に積層されて構成されていることが好ましい。 In the organic EL element 1 shown in FIG. 1, the first electrode 3 is configured by laminating a thin metal wire 3a and a transparent conductive layer 3b formed in this order from the transparent flexible substrate 2 side. 2, the transparent conductive layer 3b from the transparent flexible base material 2 side and the fine metal wires 3a formed in a pattern may be laminated in this order, and further, the fine metal wires 3a are covered. In this way, an insulating layer (not shown) may be provided. However, from the viewpoint of productivity, the first electrode 3 is preferably configured by laminating at least the fine metal wires 3a and the transparent conductive layer 3b formed in a pattern from the transparent flexible substrate 2 side.
 有機機能層4は、少なくとも発光層を含んで構成され、その他、各種有機層、例えば、正孔注入層、正孔輸送層、電子輸送層、電子注入層等を有していてもよい。正孔注入層及び正孔輸送層は、正孔輸送注入層として設けられてもよい。電子輸送層及び電子注入層は、電子輸送注入層として設けられてもよい。また、これらの有機層のうち、例えば、電子注入層は無機材料で構成されていてもよい。
 有機機能層4は、これらの層の他にも正孔阻止層や電子阻止層等を必要に応じて有していてもよい。
The organic functional layer 4 includes at least a light emitting layer, and may have various organic layers such as a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like. The hole injection layer and the hole transport layer may be provided as a hole transport injection layer. The electron transport layer and the electron injection layer may be provided as an electron transport injection layer. Of these organic layers, for example, the electron injection layer may be made of an inorganic material.
In addition to these layers, the organic functional layer 4 may have a hole blocking layer, an electron blocking layer, or the like as necessary.
 第2電極5は、必要に応じて、積層構造であってもよい。 The second electrode 5 may have a laminated structure as necessary.
 また、無機保護層6は、必要に応じて、積層構造であってもよい。例えば、図6に示すように、無機保護層6は、第1無機保護層6aと、第2無機保護層6bと、第3無機保護層6cと、から構成されていてもよい。なお、無機保護層6は、2層からなるものであってもよく、4層以上からなるものであってもよい。 Further, the inorganic protective layer 6 may have a laminated structure as necessary. For example, as shown in FIG. 6, the inorganic protective layer 6 may be composed of a first inorganic protective layer 6a, a second inorganic protective layer 6b, and a third inorganic protective layer 6c. The inorganic protective layer 6 may be composed of two layers or may be composed of four or more layers.
 有機EL素子1においては、第1電極3と第2電極5とで有機機能層4が挟持されている部分のみが有機EL素子1における発光領域となる。そして、有機EL素子1は、発生させた光(以下、発光光ともいう。)を、少なくとも透明フレキシブル基材2側から取り出す構成である。 In the organic EL element 1, only a portion where the organic functional layer 4 is sandwiched between the first electrode 3 and the second electrode 5 is a light emitting region in the organic EL element 1. And the organic EL element 1 is the structure which takes out the light (henceforth emitted light) generated at least from the transparent flexible base material 2 side.
 また、有機EL素子1において、第1電極3及び第2電極5の端部には、図示しない取出し電極が設けられている。第1電極3及び第2電極5は、当該と取出し電極を介して、外部電源(図示略)と電気的に接続される。 Further, in the organic EL element 1, extraction electrodes (not shown) are provided at the ends of the first electrode 3 and the second electrode 5. The first electrode 3 and the second electrode 5 are electrically connected to an external power source (not shown) via the extraction electrode.
 本発明の有機EL素子1は、必要に応じて、その他の各種機能層を有していてもよい。
 例えば、図3に示すように、透明フレキシブル基材2にガスバリアー層9が設けられていてもよい。
 また、図4に示すように、透明フレキシブル基材2と第1電極3との間に下地層10が設けられていてもよい。
 また、図5に示すように、透明フレキシブル基材2と第1電極3との間に、ガスバリアー層9、下地層10がこの順に設けられていてもよい。
 更には、透明フレキシブル基材2の第1電極3とは反対側の面上に、粒子含有層が設けられていてもよい。粒子含有層は、最も外側の層に配置されることが好ましい。
 これらの機能層は、単独で、又は2種以上を併用して設けることができる。
The organic EL element 1 of the present invention may have various other functional layers as necessary.
For example, as shown in FIG. 3, a gas barrier layer 9 may be provided on the transparent flexible substrate 2.
In addition, as shown in FIG. 4, a base layer 10 may be provided between the transparent flexible base material 2 and the first electrode 3.
Further, as shown in FIG. 5, a gas barrier layer 9 and an underlayer 10 may be provided in this order between the transparent flexible base material 2 and the first electrode 3.
Furthermore, a particle-containing layer may be provided on the surface of the transparent flexible substrate 2 opposite to the first electrode 3. The particle-containing layer is preferably disposed in the outermost layer.
These functional layers can be provided alone or in combination of two or more.
〈第1電極(3)〉
 以下、本発明に係る第1電極を構成する各部材について説明する。
<First electrode (3)>
Hereinafter, each member which comprises the 1st electrode which concerns on this invention is demonstrated.
(金属細線(3a))
 本発明に用いる金属細線は、金属を主成分とし、導電性を得ることができる程度の金属の含有比率で形成されている。金属細線中の金属の比率は、好ましくは50質量%以上である。
(Metal fine wire (3a))
The fine metal wires used in the present invention are formed with a metal content ratio that is mainly composed of metal and that can provide conductivity. The ratio of the metal in the fine metal wire is preferably 50% by mass or more.
 金属細線は、金属材料を含有し、開口部を有するようにパターン状に形成されている。開口部とは、金属細線を有さない部分であり、第1電極の透光性部分である。 The fine metal wire contains a metal material and is formed in a pattern so as to have an opening. An opening is a part which does not have a metal fine wire, and is a translucent part of a 1st electrode.
 金属細線のパターン形状には特に制限はない。金属細線のパターン形状としては、例えば、ストライプ状(平行線状)、格子状、ハニカム状、ランダムな網目状等が挙げられるが、透明性の観点から、特にストライプ状であることが好ましい。 There are no particular restrictions on the pattern shape of the fine metal wires. Examples of the pattern shape of the fine metal wire include a stripe shape (parallel line shape), a lattice shape, a honeycomb shape, and a random network shape. From the viewpoint of transparency, a stripe shape is particularly preferable.
 また、開口部が占める割合(開口率)は、透明性の観点から80%以上であることが好ましい。 Further, the ratio occupied by the openings (opening ratio) is preferably 80% or more from the viewpoint of transparency.
 金属細線の線幅は、好ましくは5~100μmの範囲内である。金属細線の線幅が5μm以上で所望の導電性が得られ、また、100μm以下とすることで有機EL素子の発光効率をより向上させることができる。また、ストライプ状、格子状のパターンにおいては、金属細線の間隔は、0.01~1mmの範囲内であることが好ましい。 The line width of the fine metal wire is preferably in the range of 5 to 100 μm. Desired conductivity can be obtained when the line width of the fine metal wire is 5 μm or more, and the light emission efficiency of the organic EL element can be further improved by setting it to 100 μm or less. In the stripe-like and lattice-like patterns, the distance between the fine metal wires is preferably within a range of 0.01 to 1 mm.
 金属細線の高さ(厚さ)は、0.05~3.0μmの範囲内であることが好ましく、0.1~0.6μmの範囲内であることがより好ましい。金属細線の高さが0.05μm以上で所望の導電性が得られ、また、3.0μm以下とすることで有機EL素子に用いる場合に、その金属細線の高さが機能層の層厚分布に与える影響を軽減できる。 The height (thickness) of the fine metal wire is preferably in the range of 0.05 to 3.0 μm, and more preferably in the range of 0.1 to 0.6 μm. The desired conductivity is obtained when the height of the fine metal wire is 0.05 μm or more, and the thickness of the fine metal wire is the layer thickness distribution of the functional layer when used for an organic EL element when the height is 3.0 μm or less. Can be reduced.
 金属細線の算術平均粗さRaは、1~20nmであることが好ましい。算術平均粗さRaは、JIS B 0601:2001に準拠したものである。
 フレキシブル基板上に金属細線を形成する場合、金属細線を形成する材料や形成方法の影響により、算術平均粗さは1nm以上になる。金属細線の算術平均粗さRaは、ダークスポットの発生や整流特性の観点から、より好ましくは10nm以下である。
The arithmetic average roughness Ra of the fine metal wire is preferably 1 to 20 nm. The arithmetic average roughness Ra is based on JIS B 0601: 2001.
When forming a thin metal wire on a flexible substrate, the arithmetic average roughness is 1 nm or more due to the influence of the material and forming method of the thin metal wire. The arithmetic average roughness Ra of the fine metal wire is more preferably 10 nm or less from the viewpoint of generation of dark spots and rectification characteristics.
 算術平均粗さRaは、例えば原子間力顕微鏡(Digital Instruments社製)を用いて測定することができ、金属細線の中央部5μm四方を測定した値である。なお、金属細線の中央部とは、金属細線の線方向に対して垂直に切った断面の中心を含む所定範囲の部位、すなわち、金属細線の線幅(横方向)の中点と金属細線の高さ方向(縦方向)の中点とが交差する点を含む所定範囲の部位をいう。金属細線の中央部5μm四方とは、前記交差する点を中心とした縦5μm×横5μmの四角形の部位である。
 また、算術平均粗さRaは、金属細線の形成材料、形成条件、形成方法を適宜選択することにより制御することができる。
The arithmetic average roughness Ra can be measured using, for example, an atomic force microscope (manufactured by Digital Instruments), and is a value obtained by measuring a central portion of a metal thin wire 5 μm square. In addition, the center part of a metal fine wire is the site | part of the predetermined range containing the center of the cross section cut perpendicularly | vertically with respect to the line direction of a metal fine wire, ie, the midpoint of the line | wire width (lateral direction) of a metal fine wire, and a metal fine wire It refers to a portion in a predetermined range including a point where a midpoint in the height direction (vertical direction) intersects. The center of the metal thin wire 5 μm square is a rectangular portion of 5 μm in length × 5 μm in width with the intersecting point as the center.
The arithmetic average roughness Ra can be controlled by appropriately selecting the forming material, forming conditions, and forming method of the fine metal wires.
(1)金属ナノ粒子含有組成物
 金属細線は、後述するように、金属又は金属の形成材料が配合された金属ナノ粒子含有組成物を調製し、塗布した後、乾燥処理や焼成処理等の後処理を適宜行い、形成する。
 金属ナノ粒子に使用される金属としては、例えば、金、銀、銅及び白金等の金属、あるいはこれらを主成分とした合金等が挙げられる。これらの中でも、光の反射率が優れ、得られる有機EL素子の発光効率をより一層向上できる観点から、金及び銀が好ましい。これらの金属又は合金は、いずれか1種を単独で、又は2種以上を適宜組み合わせて用いることができる。
(1) Metal nanoparticle-containing composition As will be described later, after preparing and applying a metal nanoparticle-containing composition in which a metal or a metal-forming material is blended, a thin metal wire is subjected to a drying treatment or a firing treatment. Processes are performed as appropriate.
As a metal used for a metal nanoparticle, metals, such as gold | metal | money, silver, copper, and platinum, or the alloy etc. which have these as a main component are mentioned, for example. Among these, gold and silver are preferable from the viewpoints of excellent light reflectance and further improving the light emission efficiency of the obtained organic EL device. These metals or alloys can be used alone or in combination of two or more.
 金属ナノ粒子含有組成物としては、金属ナノ粒子の表面を表面保護剤で被覆し、溶媒に安定して独立分散させた構成の金属コロイドや金属ナノ粒子分散液であることが好ましい。 The metal nanoparticle-containing composition is preferably a metal colloid or metal nanoparticle dispersion liquid in which the surface of metal nanoparticles is coated with a surface protective agent and stably dispersed in a solvent.
 金属ナノ粒子含有組成物における金属ナノ粒子の平均粒子径としては、原子スケールから1000nm以下のものが好ましく適用できる。特に、金属ナノ粒子は、平均粒子径が3~300nmの範囲内であるものが好ましく、5~100nmの範囲内であるものがより好ましく用いられる。特に、平均粒子径5~100nmの範囲内の銀ナノ粒子が好ましい。 The average particle diameter of the metal nanoparticles in the metal nanoparticle-containing composition is preferably 1000 nm or less from the atomic scale. In particular, the metal nanoparticles preferably have an average particle size in the range of 3 to 300 nm, and more preferably in the range of 5 to 100 nm. In particular, silver nanoparticles having an average particle diameter of 5 to 100 nm are preferable.
 ここで、金属ナノ粒子及び金属コロイドの平均粒子径は、透過電子顕微鏡(TEM)を用いて、上記分散体中の金属ナノ粒子の粒子径を測定して求めることができる。例えば、TEMの画像で観察される粒子のうち、重なっていない独立した300個の金属ナノ粒子の粒子径を計測して、平均粒子径を算出することができる。 Here, the average particle diameter of the metal nanoparticles and the metal colloid can be determined by measuring the particle diameter of the metal nanoparticles in the dispersion using a transmission electron microscope (TEM). For example, the average particle diameter can be calculated by measuring the particle diameters of 300 independent metal nanoparticles that are not overlapped among the particles observed in the TEM image.
 金属コロイドにおいて、金属ナノ粒子の表面を被覆する保護剤としては、有機π接合配位子が好ましい。金属ナノ粒子に有機π共役系配位子がπ接合することにより、金属コロイドに導電性が付与される。 In the metal colloid, an organic π-junction ligand is preferable as a protective agent for coating the surface of the metal nanoparticles. Conductivity is imparted to the metal colloid by π-junction of the organic π-conjugated ligand to the metal nanoparticles.
 上記有機π接合配位子としては、フタロシアニン誘導体、ナフタロシアニン誘導体及びポルフィリン誘導体からなる群から選ばれる1種又は2種以上の化合物が好ましい。
 また、上記有機π接合配位子としては、金属ナノ粒子への配位や、分散媒中での分散性を向上させるために、置換基としてアミノ基、アルキルアミノ基、メルカプト基、ヒドロキシル基、カルボキシル基、ホスフィン基、ホスフォン酸基、スルフォン酸基、ハロゲン基、セレノール基、スルフィド基、セレノエーテル基、アミド基、イミド基、シアノ基、ニトロ基、及び、これらの塩から選ばれる少なくとも1種の置換基を有することが好ましい。
As said organic (pi) junction ligand, the 1 type, or 2 or more types of compound chosen from the group which consists of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative is preferable.
In addition, as the organic π-junction ligand, in order to improve coordination to metal nanoparticles and dispersibility in a dispersion medium, an amino group, an alkylamino group, a mercapto group, a hydroxyl group, At least one selected from a carboxyl group, a phosphine group, a phosphonic acid group, a sulfonic acid group, a halogen group, a selenol group, a sulfide group, a selenoether group, an amide group, an imide group, a cyano group, a nitro group, and salts thereof It is preferable to have a substituent.
 また、有機π接合配位子として、国際公開第2011/114713号に記載の有機π共役系配位子を用いることができる。 Moreover, the organic π-conjugated ligand described in International Publication No. 2011/114713 can be used as the organic π-junction ligand.
 上記有機π接合配位子の具体的な化合物としては、下記のOTAN、OTAP、及び、OCANから選ばれる1種又は2種以上が好ましい。
 OTAN:2,3,11,12,20,21,29,30-オクタキス[(2-N,N-ジメチルアミノエチル)チオ]ナフタロシアニン
 OTAP:2,3,9,10,16,17,23,24-オクタキス[(2-N,N-ジメチルアミノエチル)チオ]フタロシアニン
 OCAN:2,3,11,12,20,21,29,30-ナフタロシアニンオクタカルボン酸
As a specific compound of the organic π-junction ligand, one or more selected from the following OTAN, OTAP, and OCAN are preferable.
OTAN: 2,3,11,12,20,21,29,30-octakis [(2-N, N-dimethylaminoethyl) thio] naphthalocyanine OTAP: 2,3,9,10,16,17,23 , 24-octakis [(2-N, N-dimethylaminoethyl) thio] phthalocyanine OCAN: 2,3,11,12,20,21,29,30-naphthalocyanine octacarboxylic acid
 有機π接合配位子を含有する金属ナノ粒子分散液の調製方法としては、液相還元法が挙げられる。また、本実施形態の有機π接合配位子の製造及び有機π接合配位子を含有する金属ナノ粒子分散液の調製は、国際公開第2011/114713号の段落0039~0060に記載の方法に準じて行うことができる。 As a method for preparing a metal nanoparticle dispersion containing an organic π-junction ligand, a liquid phase reduction method may be mentioned. In addition, the production of the organic π-junction ligand of this embodiment and the preparation of the metal nanoparticle dispersion containing the organic π-junction ligand are performed according to the method described in Paragraphs 0039 to 0060 of International Publication No. 2011/114713. It can be done according to this.
 金属コロイドの平均粒子径は、通常は3~500nmの範囲内であり、好ましくは5~50nmの範囲内である。金属コロイドの平均粒子径が上記範囲内であると、粒子間の融着が起こりやすくなり、得られる金属細線の導電性を向上させることができる。 The average particle diameter of the metal colloid is usually in the range of 3 to 500 nm, preferably in the range of 5 to 50 nm. When the average particle diameter of the metal colloid is within the above range, fusion between particles is likely to occur, and the conductivity of the obtained metal fine wire can be improved.
 金属ナノ粒子分散液において、金属ナノ粒子の表面を被覆する保護剤としては、200℃以下の低い温度にて配位子がはずれる保護剤を用いることが好ましい。これにより、低温又は低エネルギーにより、保護剤がはずれ、金属ナノ粒子の融着が起き、導電性を付与できる。
 具体的には、特開2013-142173号公報、特開2012-162767号公報、特開2014-139343号公報、特許第5606439号公報等に記載の金属ナノ粒子分散液が例として挙げられる。
In the metal nanoparticle dispersion liquid, as the protective agent for coating the surface of the metal nanoparticles, it is preferable to use a protective agent that removes the ligand at a low temperature of 200 ° C. or lower. As a result, the protective agent is detached due to low temperature or low energy, the metal nanoparticles are fused, and conductivity can be imparted.
Specific examples include metal nanoparticle dispersions described in JP2013-142173A, JP2012-162767A, JP2014-139343A, Patent No. 5606439, and the like.
 金属の形成材料としては、例えば、金属塩、金属錯体、有機金属化合物(金属-炭素結合を有する化合物)等を挙げることができる。金属塩及び金属錯体は、有機基を有する金属化合物及び有機基を有しない金属化合物のいずれでもよい。金属ナノ粒子含有組成物に金属の形成材料を用いることで、材料から金属が生じ、この金属を含む金属細線が形成される。 Examples of the metal forming material include metal salts, metal complexes, organometallic compounds (compounds having a metal-carbon bond), and the like. The metal salt and metal complex may be either a metal compound having an organic group or a metal compound having no organic group. By using a metal forming material in the metal nanoparticle-containing composition, a metal is generated from the material, and a fine metal wire including the metal is formed.
 金属銀の形成材料としては、「AgX」で表される銀化合物と、アンモニウムカルバメート系化合物とを反応させて作製された有機銀錯体を用いることが好ましい。「AgX」において、nは1~4の整数であり、Xは酸素、硫黄、ハロゲン、シアノ、シアネート、カーボネート、ニトレート、ニトライト、サルフェート、ホスフェート、チオシアネート、クロレート、パークロレート、テトラフルオロボレート、アセチルアセトネート、及び、カルボキシレートで構成された群から選択される置換基である。 As a material for forming metallic silver, an organic silver complex produced by reacting a silver compound represented by “Ag n X” with an ammonium carbamate compound is preferably used. In “Ag n X”, n is an integer of 1 to 4, and X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrate, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoroborate, A substituent selected from the group consisting of acetylacetonate and carboxylate.
 上記銀化合物としては、例えば、酸化銀、チオシアネート化銀、シアン化銀、シアネート化銀、炭酸銀、硝酸銀、亜硝酸銀、硫酸銀、燐酸銀、過塩素酸銀、四フッ素ボレート化銀、アセチルアセトネート化銀、酢酸銀、乳酸銀、シュウ酸銀等を挙げることができる。銀化合物としては、酸化銀や炭酸銀を使用することが反応性や後処理面で好ましい。 Examples of the silver compound include silver oxide, thiocyanate silver, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, silver perchlorate, silver tetrafluoroborate, acetylacetate. Examples thereof include silver nitrate, silver acetate, silver lactate, and silver oxalate. As the silver compound, use of silver oxide or silver carbonate is preferable in terms of reactivity and post-treatment.
 アンモニウムカルバメート系化合物としては、例えば、アンモニウムカルバメート、エチルアンモニウムエチルカルバメート、イソプロピルアンモニウムイソプロピルカルバメート、n-ブチルアンモニウムn-ブチルカルバメート、イソブチルアンモニウムイソブチルカルバメート、t-ブチルアンモニウムt-ブチルカルバメート、2-エチルヘキシルアンモニウム2-エチルヘキシルカルバメート、オクタデシルアンモニウムオクタデシルカルバメート、2-メトキシエチルアンモニウム2-メトキシエチルカルバメート、2-シアノエチルアンモニウム2-シアノエチルカルバメート、ジブチルアンモニウムジブチルカルバメート、ジオクタデシルアンモニウムジオクタデシルカルバメート、メチルデシルアンモニウムメチルデシルカルバメート、ヘキサメチレンイミニウムヘキサメチレンイミンカルバメート、モルホリウムモルホリンカルバメート、ピリジニュムエチルヘキシルカルバメート、トリエチレンジアミニウムイソプロピルバイカルバメート、ベンジルアンモニウムベンジルカルバメート、トリエトキシシリルプロピルアンモニウムトリエトキシシリルプロピルカルバメート等を挙げることができる。上記アンモニウムカルバメート系化合物のうち、1次アミン置換されたアルキルアンモニウムアルキルカルバメートは、反応性及び安定性面で2次又は3次アミンより優れるため好ましい。 Examples of ammonium carbamate compounds include ammonium carbamate, ethyl ammonium ethyl carbamate, isopropyl ammonium isopropyl carbamate, n-butyl ammonium n-butyl carbamate, isobutyl ammonium isobutyl carbamate, t-butyl ammonium t-butyl carbamate, 2-ethylhexyl ammonium 2 -Ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate, 2-cyanoethyl ammonium 2-cyanoethyl carbamate, dibutyl ammonium dibutyl carbamate, dioctadecyl ammonium dioctadecyl carbamate, methyl decyl ammonium methyl dec Carbamate, hexamethylene iminium hexamethylene imine carbamate, morpholium morpholine carbamate, pyridinium ethyl hexyl carbamate, triethylenediaminium isopropyl bicarbamate, benzylammonium benzyl carbamate, triethoxysilylpropylammonium triethoxysilylpropyl carbamate, etc. Can do. Of the ammonium carbamate compounds, alkylammonium alkyl carbamates substituted with primary amines are preferred because they are superior to secondary or tertiary amines in terms of reactivity and stability.
 上記有機銀錯体は、特開2011-148795号公報に記載の方法により作製することができる。例えば、上記銀化合物の1種以上と、上記アンモニウムカルバメート系化合物の1種以上とを、窒素雰囲気の常圧又は加圧状態で、溶媒を使用せずに直接反応させることで合成できる。また、メタノール、エタノール、イソプロパノール、ブタノールのようなアルコール類、エチレングリコール、グリセリンのようなグリコール類、エチルアセテート、ブチルアセテート、カルビトールアセテートのようなアセテート類、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、メチルエチルケトン、アセトンのようなケトン類、ヘキサン、ヘプタンのような炭化水素系、ベンゼン、トルエンのような芳香族、そしてクロロホルムやメチレンクロライド、カーボンテトラクロライドのようなハロゲン置換溶媒等の溶媒を使用して反応させることができる。 The organic silver complex can be produced by the method described in JP-A-2011-148795. For example, it can be synthesized by directly reacting one or more of the above silver compounds and one or more of the above ammonium carbamate compounds at normal pressure or under pressure in a nitrogen atmosphere without using a solvent. Also, alcohols such as methanol, ethanol, isopropanol and butanol, glycols such as ethylene glycol and glycerin, acetates such as ethyl acetate, butyl acetate and carbitol acetate, ethers such as diethyl ether, tetrahydrofuran and dioxane , Ketones such as methyl ethyl ketone and acetone, hydrocarbons such as hexane and heptane, aromatics such as benzene and toluene, and halogen substituted solvents such as chloroform, methylene chloride and carbon tetrachloride Can be reacted.
 有機銀錯体の構造は「Ag[A]」で表すことができる。なお、「Ag[A]」において、Aは上記アンモニウムカルバメート系化合物であり、mは0.7~2.5である。 The structure of the organic silver complex can be represented by “Ag [A] m ”. In “Ag [A] m ”, A is the ammonium carbamate compound, and m is 0.7 to 2.5.
 上記有機銀錯体は、メタノールのようなアルコール類、エチルアセテートのようなエステル類、テトラヒドロフランのようなエーテル類溶媒等、有機銀錯体を製造する溶媒を含む多様な溶媒によく溶ける。このため、有機銀錯体は、金属ナノ粒子含有組成物として、塗布やプリンティング工程に容易に適用可能である。 The above-mentioned organic silver complex is well soluble in various solvents including solvents for producing organic silver complexes, such as alcohols such as methanol, esters such as ethyl acetate, and ethers such as tetrahydrofuran. For this reason, the organic silver complex can be easily applied to a coating or printing process as a metal nanoparticle-containing composition.
 また、金属銀の形成材料としては、式「-COOAg」で表される基を有するカルボン酸銀が例示できる。カルボン酸銀は、式「-COOAg」で表される基を有していれば特に限定されない。例えば、式「-COOAg」で表される基の数は1個のみでもよいし、2個以上でもよい。また、カルボン酸銀中の式「-COOAg」で表される基の位置も特に限定されない。 Further, examples of the metal silver forming material include silver carboxylate having a group represented by the formula “—COOAg”. The silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”. For example, the number of groups represented by the formula “—COOAg” may be one, or two or more. Further, the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
 カルボン酸銀としては、特開2015-66695号公報に記載のβ-ケトカルボン酸銀、及び、カルボン酸銀(4)からなる群から選択される1種以上であることが好ましい。なお、金属銀の形成材料としては、β-ケトカルボン酸銀及びカルボン酸銀(4)だけではなく、これらを包括する、式「-COOAg」で表される基を有するカルボン酸銀を用いることができる。 The silver carboxylate is preferably at least one selected from the group consisting of silver β-ketocarboxylate and silver carboxylate (4) described in JP-A-2015-66695. As the metal silver forming material, not only silver β-ketocarboxylate and silver carboxylate (4), but also silver carboxylate having a group represented by the formula “—COOAg”, which includes them, is used. it can.
 また、金属ナノ粒子含有組成物に金属の形成材料として上記カルボン酸銀を含む場合、カルボン酸銀と共に、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びにアミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される1種以上の含窒素化合物が配合されていることが好ましい。 Further, when the metal nanoparticle-containing composition contains the above-mentioned silver carboxylate as a metal forming material, an amine compound and quaternary ammonium salt having 25 or less carbon atoms, ammonia, and an amine compound or ammonia together with silver carboxylate are acid. It is preferable that at least one nitrogen-containing compound selected from the group consisting of ammonium salts formed by reaction with is blended.
 アミン化合物としては、炭素数が1~25であり、第1級アミン、第2級アミン及び第3級アミンのいずれでもよい。また、第4級アンモニウム塩は、炭素数が4~25である。アミン化合物及び第4級アンモニウム塩は、鎖状及び環状のいずれでもよい。また、アミン部位又はアンモニウム塩部位を構成する窒素原子(例えば、第1級アミンのアミノ基「-NH」を構成する窒素原子)の数は1個でもよいし、2個以上でもよい。 The amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine. The quaternary ammonium salt has 4 to 25 carbon atoms. The amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group “—NH 2 ” of the primary amine) may be one, or may be two or more.
(2)金属細線パターンの形成方法
 次に、金属細線パターンの形成方法について説明する。金属細線パターンは、金属ナノ粒子含有組成物を用いて形成する。金属細線パターンの形成方法としては、特に制限はなく、従来公知の方法が利用できる。この従来公知の金属細線パターンの形成方法としては、例えば、フォトリソ法、塗布法、印刷法を応用した方法等を利用できる。
(2) Formation method of a metal fine wire pattern Next, the formation method of a metal fine wire pattern is demonstrated. The metal fine line pattern is formed using a metal nanoparticle-containing composition. There is no restriction | limiting in particular as a formation method of a metal fine wire pattern, A conventionally well-known method can be utilized. As a conventionally known method for forming a fine metal wire pattern, for example, a method using a photolithography method, a coating method, a printing method, or the like can be used.
 金属ナノ粒子含有組成物は、上述の金属ナノ粒子と、溶媒とを含有し、分散剤、粘度調整剤、バインダー等の添加剤が含有されてもよい。金属ナノ粒子含有組成物に含有される溶媒としては特に制限はないが、中赤外線照射により効率的に溶媒を揮発できる点で、ヒドロキシ基を有する化合物が好ましく、水、アルコール、グリコールエーテルが好ましい。 The metal nanoparticle-containing composition contains the metal nanoparticles described above and a solvent, and may contain additives such as a dispersant, a viscosity modifier, and a binder. Although there is no restriction | limiting in particular as a solvent contained in a metal nanoparticle containing composition, The compound which has a hydroxyl group is preferable at the point which can volatilize a solvent efficiently by mid-infrared irradiation, and water, alcohol, and glycol ether are preferable.
 金属ナノ粒子含有組成物に用いる溶媒としては、水、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ファルネソール、デデカジエノール、リナロール、ゲラニオール、ネロール、ヘプタジエノール、テトラデセノール、ヘキサデセネオール、フィトール、オレイルアルコール、デデセノール、デセノール、ウンデシレニルアルコール、ノネノール、シトロネロール、オクテノール、ヘプテノール、メチルシクロヘキサノール、メントール、ジメチルシクロヘキサノール、メチルシクロヘキセノール、テルピネオール、ジヒドロカルベオール、イソプレゴール、クレゾール、トリメチルシクロヘキセノール、グリセリン、エチレングリコール、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ヘキシレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ネオペンチルグリコール、ブタンジオール、ペンタンジオール、ヘプタンジオール、プロパンジオール、ヘキサンジオール、オクタンジオール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等が挙げられる。 Solvents used in the metal nanoparticle-containing composition include water, methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexadecanol, hexanediol, Heptanediol, octanediol, nonanediol, decanediol, farnesol, dedecadienol, linalool, geraniol, nerol, heptadienol, tetradecenol, hexadecenol, phytol, oleyl alcohol, dedecenol, decenol, undecylenyl alcohol, nonenol, citronellol , Octenol, heptenol, methylcyclohexanol, menthol, dimethylcyclohexanol, Lucyclohexenol, terpineol, dihydrocarbeveol, isopulegol, cresol, trimethylcyclohexenol, glycerin, ethylene glycol, polyethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, hexylene glycol, propylene glycol, dipropylene glycol, tri Propylene glycol, neopentyl glycol, butanediol, pentanediol, heptanediol, propanediol, hexanediol, octanediol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, and the like.
 印刷法により金属ナノ粒子含有組成物のパターンを形成する場合には、一般的に電極パターン形成に使われる方法が適用可能である。具体的な例として、グラビア印刷法については特開2009-295980号公報、特開2009-259826号公報、特開2009-96189号公報、特開2009-90662号公報等に記載の方法が、フレキソ印刷法については特開2004-268319号公報、特開2003-168560号公報等に記載の方法が、スクリーン印刷法については特開2010-34161号公報、特開2010-10245号公報、特開2009-302345号公報等に記載の方法が、インクジェット印刷法については特開2011-180562号公報、特開2000-127410号公報、特開平8-238774号公報等、スーパーインクジェット印刷法については特開2014-146665号公報等に記載の方法が例として挙げられる。 When forming a pattern of the metal nanoparticle-containing composition by a printing method, a method generally used for electrode pattern formation is applicable. Specific examples of the gravure printing method include those described in JP 2009-295980 A, JP 2009-259826 A, JP 2009-96189 A, JP 2009-90662 A, and the like. Regarding the printing method, methods described in JP-A-2004-268319, JP-A-2003-168560, etc., and for screen printing methods, JP-A 2010-34161, JP-A 2010-10245, JP-A-2009. The method described in JP-A-302345 and the like is disclosed in JP 2011-180562 A, JP 2000-127410 A, JP 8-238774 A and the like in the inkjet printing method, and in the 2014 2014 in the super inkjet printing method. As an example, the method described in JP-A-146665 It is.
 フォトリソ法により金属ナノ粒子含有組成物のパターンを形成する場合には、具体的には、例えば、透明フレキシブル基材上の全面に、印刷又は塗布にて金属ナノ粒子含有組成物の膜を形成し、後述する乾燥処理及び焼成処理を行った後、公知のフォトリソ法を用いて、エッチングすることにより、所望のパターンに加工する。 When forming a pattern of the metal nanoparticle-containing composition by photolithography, specifically, for example, a film of the metal nanoparticle-containing composition is formed on the entire surface of the transparent flexible substrate by printing or coating. After performing a drying process and a baking process, which will be described later, the film is processed into a desired pattern by etching using a known photolithography method.
 次に、塗布された金属ナノ粒子含有組成物の乾燥処理を行う。乾燥処理は、公知の乾燥法を用いて行うことができる。乾燥法としては、例えば、空冷乾燥、温風等を用いた対流伝熱乾燥、赤外線等を用いた輻射電熱乾燥、ホットプレート等を用いた伝導伝熱乾燥、真空乾燥、マイクロ波を用いた内部発熱乾燥、IPA蒸気乾燥、マランゴニ乾燥、ロタゴニ乾燥、凍結乾燥等を用いることができる。 Next, the applied metal nanoparticle-containing composition is dried. The drying process can be performed using a known drying method. Drying methods include, for example, air cooling drying, convection heat transfer drying using hot air, radiant heat drying using infrared rays, conductive heat transfer drying using a hot plate, vacuum drying, internal using microwaves Exothermic drying, IPA vapor drying, Marangoni drying, Rotagoni drying, freeze drying, and the like can be used.
 加熱乾燥では、50~200℃の温度範囲で、透明フレキシブル基材の変形がない温度で行うことが好ましい。透明フレキシブル基材の表面温度が、50~150℃となる条件で加熱することがより好ましい。透明フレキシブル基材にPET基板を用いる場合は、100℃以下の温度範囲で加熱することが特に好ましい。焼成時間は温度や使用する金属ナノ粒子の大きさにもよるが、10秒~30分の範囲内であることが好ましく、生産性の観点から、10秒~15分の範囲内であることがより好ましく、10秒~5分の範囲内であることが特に好ましい。 The drying by heating is preferably performed in a temperature range of 50 to 200 ° C. at a temperature at which the transparent flexible base material is not deformed. It is more preferable to heat the transparent flexible substrate under the condition that the surface temperature is 50 to 150 ° C. When a PET substrate is used as the transparent flexible base material, it is particularly preferable to heat in a temperature range of 100 ° C. or lower. The firing time depends on the temperature and the size of the metal nanoparticles used, but is preferably in the range of 10 seconds to 30 minutes, and in the range of 10 seconds to 15 minutes from the viewpoint of productivity. More preferably, it is in the range of 10 seconds to 5 minutes.
 乾燥処理においては、赤外線照射による乾燥処理を行うことが好ましい。特に、波長制御赤外線ヒータ等により特定の波長領域を選択的に照射することが好ましい。特定の波長領域を選択的に用いることにより、透明フレキシブル基材の吸収領域のカットや、金属ナノ粒子含有組成物の溶媒に有効な特定の波長を選択的に照射することができる。特に光源のフィラメント温度が1600~3000℃の範囲内にある赤外線ヒータを用いることが好ましい。 In the drying process, it is preferable to perform a drying process by infrared irradiation. In particular, it is preferable to selectively irradiate a specific wavelength region with a wavelength control infrared heater or the like. By selectively using a specific wavelength region, it is possible to selectively irradiate a specific wavelength effective for cutting the absorption region of the transparent flexible substrate or the solvent of the metal nanoparticle-containing composition. In particular, it is preferable to use an infrared heater in which the filament temperature of the light source is in the range of 1600 to 3000 ° C.
 次に、乾燥させた金属ナノ粒子含有組成物のパターンの焼成処理を行う。なお、金属ナノ粒子含有組成物に含まれる金属組成物の種類(例えば、上述の有機π接合配位子を有する銀コロイド等)によっては、乾燥処理で十分導電性が発現するため、焼成工程を行わなくてもよい。 Next, the pattern of the dried metal nanoparticle-containing composition is baked. Depending on the type of metal composition contained in the metal nanoparticle-containing composition (for example, silver colloid having the above-mentioned organic π-junction ligand), the conductivity may be sufficiently exhibited by the drying treatment. It does not have to be done.
 金属ナノ粒子含有組成物のパターンの焼成は、フラッシュランプを用いた光照射(フラッシュ焼成)により行うことが、第1電極の導電性の向上のため好ましい。フラッシュ焼成で用いられるフラッシュランプの放電管としては、キセノン、ヘリウム、ネオン、アルゴン等の放電管を用いることができるが、キセノンランプを用いることが好ましい。 The patterning of the metal nanoparticle-containing composition is preferably performed by light irradiation (flash baking) using a flash lamp in order to improve the conductivity of the first electrode. As a discharge tube of a flash lamp used in flash firing, a discharge tube of xenon, helium, neon, argon or the like can be used, but a xenon lamp is preferably used.
 フラッシュランプの好ましいスペクトル帯域としては、240~2000nmの範囲内であることが好ましい。この範囲内であれば、フラッシュ焼成による透明フレキシブル基材の熱変形等のダメージが少ない。 The preferable spectral band of the flash lamp is preferably in the range of 240 to 2000 nm. Within this range, there is little damage such as thermal deformation of the transparent flexible substrate due to flash firing.
 フラッシュランプの光照射条件は任意であるが、光照射エネルギーの総計が0.1~50J/cmの範囲内であることが好ましく、0.5~10J/cmの範囲内であることがより好ましい。光照射時間は、10μ秒~100m秒の範囲内が好ましく、100μ秒~10m秒の範囲内がより好ましい。また、光照射回数は1回でも複数回でもよく、1~50回の範囲内で行うのが好ましい。これらの好ましい条件範囲でフラッシュ光照射を行うことにより、透明フレキシブル基材にダメージを与えることなく金属細線パターンを形成できる。 The light irradiation conditions of the flash lamp are arbitrary, but the total light irradiation energy is preferably in the range of 0.1 to 50 J / cm 2 , and preferably in the range of 0.5 to 10 J / cm 2. More preferred. The light irradiation time is preferably in the range of 10 μsec to 100 msec, and more preferably in the range of 100 μsec to 10 msec. Further, the number of times of light irradiation may be one time or a plurality of times, and it is preferably performed within the range of 1 to 50 times. By performing flash light irradiation in these preferable condition ranges, a fine metal wire pattern can be formed without damaging the transparent flexible substrate.
 透明フレキシブル基材に対するフラッシュランプ照射は、透明フレキシブル基材の金属ナノ粒子含有組成物のパターンが形成されている側から行うことが好ましい。透明フレキシブル基材が透明な場合には、透明フレキシブル基材側から照射してもよく、透明フレキシブル基材の両面から照射してもよい。 The flash lamp irradiation on the transparent flexible substrate is preferably performed from the side where the pattern of the metal nanoparticle-containing composition of the transparent flexible substrate is formed. When a transparent flexible base material is transparent, you may irradiate from the transparent flexible base material side, and may irradiate from both surfaces of a transparent flexible base material.
 また、フラッシュ焼成の際の透明フレキシブル基材の表面温度は、透明フレキシブル基材の耐熱温度や、金属ナノ粒子含有組成物に含まれる溶媒の分散媒の沸点(蒸気圧)、雰囲気ガスの種類や圧力、金属ナノ粒子含有組成物の分散性や酸化性等の熱的挙動等を考慮して決定すればよく、室温(25℃)以上200℃以下で行うことが好ましい。 The surface temperature of the transparent flexible substrate during flash firing is the heat resistance temperature of the transparent flexible substrate, the boiling point (vapor pressure) of the dispersion medium of the solvent contained in the metal nanoparticle-containing composition, the type of atmospheric gas, The pressure may be determined in consideration of the thermal behavior such as dispersibility and oxidizability of the metal nanoparticle-containing composition, and it is preferably performed at room temperature (25 ° C.) or higher and 200 ° C. or lower.
 フラッシュランプの光照射装置は上記の照射エネルギー、照射時間を満足するものであればよい。また、フラッシュ焼成は大気中で行ってもよいが、必要に応じ、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気中で行うこともできる。 The flash lamp light irradiation device only needs to satisfy the above irradiation energy and irradiation time. Moreover, although flash baking may be performed in air | atmosphere, it can also be performed in inert gas atmosphere, such as nitrogen, argon, and helium, as needed.
 更に、金属細線は、従来の金属層を成膜する場合と同様にして、公知の真空成膜を用いて形成してもよい。従来の金属層を成膜する方法としては、各種の蒸着法、スパッタリング法やイオンプレーティング法等によって成膜することができる。また、金属細線パターンの形成方法は、公知のフォトリソ法を用いて、エッチングすることにより、所望のパターンに加工してもよいし、成膜時にマスクパターンを用いてもよい。 Furthermore, the fine metal wires may be formed by using a known vacuum film formation in the same manner as in the case of forming a conventional metal layer. As a conventional method for forming a metal layer, it can be formed by various deposition methods, sputtering methods, ion plating methods, and the like. In addition, as a method for forming a metal fine line pattern, a known pattern may be processed by etching using a known photolithography method, or a mask pattern may be used during film formation.
(透明導電層(3b))
 本発明に用いる第1電極は、少なくとも金属細線と透明導電層とを含んで構成されている。透明導電層は、金属細線上に、当該金属細線表面全体を覆うようにして設けられていることが好ましい態様である。
 透明導電層としては、金属酸化物層又は有機導電層を用いることが好ましい構成である。透明導電層は、より発光効率を向上させる観点から、金属酸化物(金属酸化物層)であることが好ましい。なお、「金属酸化物である」とは、例えば、金属酸化物を主成分として含有し、その他の不純物等を含有する場合を含むものである。
(Transparent conductive layer (3b))
The first electrode used in the present invention includes at least a fine metal wire and a transparent conductive layer. It is preferable that the transparent conductive layer is provided on the fine metal wire so as to cover the entire surface of the fine metal wire.
As the transparent conductive layer, a metal oxide layer or an organic conductive layer is preferably used. The transparent conductive layer is preferably a metal oxide (metal oxide layer) from the viewpoint of further improving luminous efficiency. Note that “being a metal oxide” includes, for example, a case where a metal oxide is contained as a main component and other impurities are contained.
 透明導電層の膜厚は、50~300nmであることが好ましい。本発明に用いる第1電極は、透明導電層の厚さが上記範囲内であっても、十分に導電性を発揮することができる。また、透明導電層の膜厚が50nm以上であれば、整流特性がより良好となる。また、透明導電層の膜厚が300nm以下であれば、ダークスポットの発生がより抑制されると共に、整流特性がより良好となる。 The film thickness of the transparent conductive layer is preferably 50 to 300 nm. Even if the thickness of a transparent conductive layer is in the said range, the 1st electrode used for this invention can fully exhibit electroconductivity. Moreover, if the film thickness of a transparent conductive layer is 50 nm or more, a rectification characteristic will become more favorable. Moreover, when the film thickness of the transparent conductive layer is 300 nm or less, the generation of dark spots is further suppressed and the rectification characteristics are improved.
 金属酸化物層及び有機導電層は、体積抵抗率が1×10-5~1×10-2Ω・cmの範囲内である導電性の高い金属酸化物を用いて形成されることが好ましい。体積抵抗率は、JIS K 7194-1994の導電性プラスチックの4探針法による抵抗率試験方法に準拠して測定されたシート抵抗と、膜厚を測定して求めることができる。膜厚は、接触式表面形状測定器(例えばDECTAK)や光干渉表面形状測定器(例えばWYKO)を用いて測定できる。
 また、金属酸化物層及び有機導電層は、導電性を担保する役割を有する観点から、シート抵抗が10000Ω/sq.以下であることが好ましく、2000Ω/sq.以下であることがより好ましい。
The metal oxide layer and the organic conductive layer are preferably formed using a highly conductive metal oxide having a volume resistivity in the range of 1 × 10 −5 to 1 × 10 −2 Ω · cm. The volume resistivity can be obtained by measuring the sheet resistance and the film thickness measured in accordance with the resistivity test method of the conductive plastic of JIS K 7194-1994 by the four-probe method. The film thickness can be measured using a contact-type surface shape measuring device (for example, DECTAK) or an optical interference surface shape measuring device (for example, WYKO).
The metal oxide layer and the organic conductive layer have a sheet resistance of 10,000 Ω / sq. From the viewpoint of ensuring the conductivity. Or less, preferably 2000 Ω / sq. The following is more preferable.
(1)金属酸化物層
 金属酸化物層に使用できる金属酸化物としては、透明性及び導電性に優れる材料であれば、特に限定されない。金属酸化物層に使用できる金属酸化物としては、例えば、ITO(スズドープ酸化インジウム)、IZO(酸化インジウム・酸化亜鉛)、IGO(ガリウムドープ酸化インジウム)、IWZO(酸化インジウム・酸化スズ)、ZnO(酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、IGZO(インジウム・ガリウム・亜鉛酸化物)等が挙げられる。
(1) Metal oxide layer The metal oxide that can be used for the metal oxide layer is not particularly limited as long as the material is excellent in transparency and conductivity. Examples of the metal oxide that can be used for the metal oxide layer include ITO (tin doped indium oxide), IZO (indium oxide / zinc oxide), IGO (gallium doped indium oxide), IWZO (indium oxide / tin oxide), ZnO ( Zinc oxide), GZO (gallium-doped zinc oxide), IGZO (indium gallium zinc oxide) and the like.
 特に、金属酸化物層に使用できる金属酸化物としては、IZO、IGO、IWZOが好ましい。中でも、IZOとしては、質量比In:ZnO=80~95:20~5で表される組成が好ましい。IGOとしては、質量比In:Ga=70~95:30~5で表される組成が好ましい。IWZOとしては、質量比In:WO:ZnO=95~99.8:2.5~0.1:2.5~0.1で表される組成が好ましい。 In particular, IZO, IGO, and IWZO are preferable as the metal oxide that can be used for the metal oxide layer. Among these, as IZO, a composition represented by a mass ratio of In 2 O 3 : ZnO = 80 to 95:20 to 5 is preferable. As IGO, a composition represented by a mass ratio of In 2 O 3 : Ga 2 O 3 = 70 to 95:30 to 5 is preferable. As IWZO, a composition represented by a mass ratio of In 2 O 3 : WO 3 : ZnO = 95 to 99.8: 2.5 to 0.1: 2.5 to 0.1 is preferable.
 透明導電層は、特に、アモルファスな金属酸化物であることが好ましい。すなわち、透明導電層は、アモルファスな金属酸化物層であることが好ましい。透明導電層の材料としてアモルファスな金属酸化物を用いることで、ダークスポットの発生をより抑制することができる。アモルファスな金属酸化物としては、例えば、アモルファスIZO、アモルファスITO、アモルファスIGZO等が挙げられる。 The transparent conductive layer is particularly preferably an amorphous metal oxide. That is, the transparent conductive layer is preferably an amorphous metal oxide layer. By using an amorphous metal oxide as the material of the transparent conductive layer, the generation of dark spots can be further suppressed. Examples of the amorphous metal oxide include amorphous IZO, amorphous ITO, and amorphous IGZO.
 なお、第1電極において、金属酸化物層は複数設けられていてもよい。 In the first electrode, a plurality of metal oxide layers may be provided.
(1.1)金属酸化物層の形成方法
 金属酸化物層は、従来の金属酸化物層を成膜する場合と同様にして、各種のスパッタリング法やイオンプレーティング法等によって成膜することができる。
(1.1) Method for forming metal oxide layer The metal oxide layer can be formed by various sputtering methods, ion plating methods, and the like in the same manner as in the case of forming a conventional metal oxide layer. it can.
 スパッタリング法としては、例えば、DCスパッタリング、RFスパッタリング、DCマグネトロンスパッタリング、RFマグネトロンスパッタリング、ECRプラズマスパッタリング、イオンビームスパッタリング等が挙げられる。
 また、スパッタリング法では、下記に示すような様々な条件を検討することで、IZOのように組成は同じでも、導電性とガスバリアー性を調節することが可能である。
Examples of the sputtering method include DC sputtering, RF sputtering, DC magnetron sputtering, RF magnetron sputtering, ECR plasma sputtering, and ion beam sputtering.
Further, in the sputtering method, by examining various conditions as described below, even if the composition is the same as in IZO, it is possible to adjust conductivity and gas barrier properties.
 例えば、金属酸化物層は、スパッタリングの際のターゲット基板間距離を50~100mmの範囲内とし、スパッタリングガス圧を0.5~1.5Paの範囲内として、直流マグネトロンスパッタリング法により成膜することができる。 For example, the metal oxide layer is formed by a direct current magnetron sputtering method with a distance between target substrates in the range of 50 to 100 mm during sputtering and a sputtering gas pressure in the range of 0.5 to 1.5 Pa. Can do.
 ターゲット基板間距離については、ターゲット基板間距離が50mmよりも短くなると、堆積するスパッタ粒子の運動エネルギーが大きくなるため、透明フレキシブル基材の受けるダメージが大きくなってしまう。また、膜厚も不均一となり膜厚分布が悪くなる。ターゲット基板間距離が100mmより長いと、膜厚分布はよくなるが、堆積するスパッタ粒子の運動エネルギーが低くなりすぎ、拡散による緻密化が起きにくく、金属酸化物層の密度が低くなるため好ましくない。 Regarding the distance between the target substrates, when the distance between the target substrates is shorter than 50 mm, the kinetic energy of the sputtered particles to be deposited increases, so that the damage received by the transparent flexible base material increases. In addition, the film thickness becomes non-uniform and the film thickness distribution becomes worse. When the distance between the target substrates is longer than 100 mm, the film thickness distribution is improved, but the kinetic energy of the sputtered particles deposited becomes too low, densification due to diffusion hardly occurs, and the density of the metal oxide layer is not preferable.
 スパッタリングガス圧については、スパッタリングガス圧が0.5Paより低いと堆積するスパッタ粒子の運動エネルギーが大きくなるため、透明フレキシブル基材の受けるダメージが大きくなってしまう。スパッタリングガス圧が1.5Paより高いと、成膜速度が遅くなるだけでなく、堆積するスパッタ粒子の運動エネルギーが低くなりすぎて、拡散による緻密化が起きず、金属酸化物層の密度が低くなるため好ましくない。 Regarding the sputtering gas pressure, if the sputtering gas pressure is lower than 0.5 Pa, the kinetic energy of the sputtered particles to be deposited increases, so that the damage received by the transparent flexible substrate increases. When the sputtering gas pressure is higher than 1.5 Pa, not only the film formation rate is slowed, but also the kinetic energy of the sputtered particles deposited becomes too low, densification due to diffusion does not occur, and the density of the metal oxide layer is low. Therefore, it is not preferable.
(2)有機導電層
 有機導電層は、主に、導電性高分子とバインダーとから構成される。導電性高分子及びバインダーとしては、特許第5750908号公報及び特許第5782855号公報に記載の化合物を使用することができる。その他、有機導電層を形成する有機導電組成物の調製(方法)、有機導電層の形成(方法)等は、特許第5750908号公報及び特許第5782855号公報に記載の方法に準じて実施することができる。
(2) Organic conductive layer The organic conductive layer is mainly composed of a conductive polymer and a binder. As the conductive polymer and the binder, compounds described in Japanese Patent No. 5750908 and Japanese Patent No. 5882855 can be used. In addition, the preparation (method) of the organic conductive composition for forming the organic conductive layer, the formation (method) of the organic conductive layer, and the like should be performed in accordance with the methods described in Japanese Patent No. 5750908 and Japanese Patent No. 5882855. Can do.
〈透明フレキシブル基材(2)〉
 本発明に用いる透明フレキシブル基材は、高い光透過性を有していれば特に制限はなく、生産性の観点や、軽量性、柔軟性といった性能の観点から、透明樹脂基材であることが好ましい。
<Transparent flexible substrate (2)>
The transparent flexible base material used in the present invention is not particularly limited as long as it has high light transmittance, and it is a transparent resin base material from the viewpoint of productivity, performance such as lightness and flexibility. preferable.
 透明樹脂基材として使用できる樹脂としては特に制限はなく、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリスチレン樹脂、環状オレフィン系樹脂等のポリオレフィン類樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリサルホン(PSF)樹脂、ポリエーテルサルホン(PES)樹脂、ポリカーボネート(PC)樹脂、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、トリアセチルセルロース(TAC)樹脂等が挙げられる。これらの樹脂を単独で使用してもよいし、複数を併用してもよい。
 また、透明樹脂基材は、未延伸フィルムでもよいし、延伸フィルムでもよい。
There is no restriction | limiting in particular as resin which can be used as a transparent resin base material, For example, polyethylene-terephthalate (PET), polyethylene naphthalate (PEN), polyester-type resins, such as a modified polyester, polyethylene (PE) resin, polypropylene (PP) resin, polystyrene Resins, polyolefin resins such as cyclic olefin resins, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resins, polysulfone (PSF) resins, polyether sulfone (PES) resins, polycarbonate (PC) resin, polyamide resin, polyimide resin, acrylic resin, triacetyl cellulose (TAC) resin, etc. are mentioned. These resins may be used alone or in combination.
Further, the transparent resin substrate may be an unstretched film or a stretched film.
 透明フレキシブル基材は、JIS K 7361-1:1997(プラスチック-透明材料の全光線透過率の試験方法)に準拠した方法で測定した可視光波長領域における全光線透過率が50%以上であることが好ましく、80%以上であるとより好ましい。 The transparent flexible substrate has a total light transmittance in a visible light wavelength region of 50% or more measured by a method in accordance with JIS K 7361-1: 1997 (Plastic—Test method for total light transmittance of transparent material). Is more preferable and 80% or more is more preferable.
 透明フレキシブル基材は、後述する下地層やガスバリアー層等との密着性を高めるため、表面活性化処理が施されていてもよい。また、耐衝撃性を高めるため、クリアハードコート層が設けられていてもよい。表面活性化処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等が挙げられる。
 クリアハードコート層の材料としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等が挙げられ、中でも紫外線硬化型樹脂を好ましく使用できる。
The transparent flexible substrate may be subjected to a surface activation treatment in order to improve adhesion with an underlayer or a gas barrier layer described later. Moreover, in order to improve impact resistance, a clear hard coat layer may be provided. Examples of the surface activation treatment include corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
Examples of the material for the clear hard coat layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer, and the like. An ultraviolet curable resin can be preferably used.
〈有機機能層(4)〉
 本発明に用いる有機機能層は、陽極と陰極の間に位置する層であり、有機層、金属層等から構成されるが、これらに限定されるものではない。
 有機機能層は、少なくとも発光層を含んで構成され、その他、各種有機層、例えば、正孔注入層、正孔輸送層、電子輸送層、電子注入層等を有していてもよい。正孔注入層及び正孔輸送層は、正孔輸送注入層として設けられてもよい。電子輸送層及び電子注入層は、電子輸送注入層として設けられてもよい。また、これらの有機層のうち、例えば、電子注入層は無機材料で構成されていてもよい。
 有機機能層は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて有していてもよい。
<Organic functional layer (4)>
The organic functional layer used in the present invention is a layer located between the anode and the cathode, and is composed of an organic layer, a metal layer, or the like, but is not limited thereto.
The organic functional layer includes at least a light emitting layer, and may have various organic layers such as a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer. The hole injection layer and the hole transport layer may be provided as a hole transport injection layer. The electron transport layer and the electron injection layer may be provided as an electron transport injection layer. Of these organic layers, for example, the electron injection layer may be made of an inorganic material.
In addition to these layers, the organic functional layer may have a hole blocking layer, an electron blocking layer, or the like as necessary.
(i)(陽極)/発光層/(陰極)
(ii)(陽極)/発光層/電子輸送層/(陰極)
(iii)(陽極)/正孔輸送層/発光層/(陰極)
(iv)(陽極)/正孔輸送層/発光層/電子輸送層/(陰極)
(v)(陽極)/正孔輸送層/発光層/電子輸送層/電子注入層/(陰極)
(vi)(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/(陰極)
(vii)(陽極)/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/(陰極)
(I) (anode) / light emitting layer / (cathode)
(Ii) (anode) / light emitting layer / electron transport layer / (cathode)
(Iii) (Anode) / Hole transport layer / Light emitting layer / (Cathode)
(Iv) (anode) / hole transport layer / light emitting layer / electron transport layer / (cathode)
(V) (anode) / hole transport layer / light emitting layer / electron transport layer / electron injection layer / (cathode)
(Vi) (anode) / hole injection layer / hole transport layer / light emitting layer / electron transport layer / (cathode)
(Vii) (anode) / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / (cathode)
 上記の中でも、(vii)の構成が好ましいが特に制限されない。 Among the above, the configuration of (vii) is preferable but not particularly limited.
 有機機能層の厚さは、100~500nmの範囲内であることが好ましい。有機機能層の厚さが500nm以下であれば、駆動電圧の上昇を抑えることができ、100nm以上であれば、整流特性を維持することができる。 The thickness of the organic functional layer is preferably in the range of 100 to 500 nm. If the thickness of the organic functional layer is 500 nm or less, an increase in driving voltage can be suppressed, and if it is 100 nm or more, rectification characteristics can be maintained.
 本発明において、正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、電子注入層としては特に制限はなく、例えば、特開2014-120334号公報、特開2013-89608号公報等に記載の化合物を使用することができる。 In the present invention, the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the electron injection layer are not particularly limited. For example, JP-A-2014-120334, The compounds described in JP2013-89608A can be used.
〈第2電極(5)〉
 本発明に係る有機EL素子は、透明電極としての第1電極とその対向電極である第2電極とからなる一対の電極に挟持された有機機能層を有する。第1電極と第2電極とは、いずれか一方が有機EL素子の陽極となり、他方が陰極となる。
 図1に示す有機EL素子1では、第1電極3の透明導電層3bが透明導電材料により構成され、第2電極5が高反射材料により構成されている。なお、有機EL素子1が両面発光型の場合には、第2電極5も透明導電材料により構成される。
<Second electrode (5)>
The organic EL device according to the present invention has an organic functional layer sandwiched between a pair of electrodes including a first electrode as a transparent electrode and a second electrode as a counter electrode. One of the first electrode and the second electrode serves as the anode of the organic EL element, and the other serves as the cathode.
In the organic EL element 1 shown in FIG. 1, the transparent conductive layer 3b of the first electrode 3 is made of a transparent conductive material, and the second electrode 5 is made of a highly reflective material. In addition, when the organic EL element 1 is a double-sided light emission type, the 2nd electrode 5 is also comprised with a transparent conductive material.
 有機EL素子において、第2電極を陽極として用いる場合には、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。陽極を構成可能な電極物質の具体例としては、Au、Ag等の金属、CuI、ITO、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。 In the organic EL device, when the second electrode is used as an anode, a material having a work function (4 eV or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof is preferably used. Specific examples of the electrode substance that can constitute the anode include metals such as Au and Ag, and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 また、有機EL素子において、第2電極を陰極として用いる場合には、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物が電極物質として用いられる。
 陰極は、発光層に電子を供給する陰極(カソード)として機能する電極膜である。陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
In the organic EL element, when the second electrode is used as a cathode, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as electrode materials. Used as
The cathode is an electrode film that functions as a cathode (cathode) that supplies electrons to the light emitting layer. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
 電極物質の具体例としては、アルミニウム、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。 Specific examples of the electrode material include aluminum, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物やアルミニウム等が好適である。 Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, or the like is preferable.
 陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、厚さは通常10nm~5μmの範囲内、好ましくは50~200nmの範囲内で選ばれる。また、陰極として上記金属を1~20nmの厚さで作製した後に、導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 The sheet resistance as a cathode is several hundred Ω / sq. The following are preferable, and the thickness is usually selected within the range of 10 nm to 5 μm, preferably within the range of 50 to 200 nm. Moreover, a transparent or semi-transparent cathode can be produced by producing a conductive transparent material on the metal after the metal is produced with a thickness of 1 to 20 nm as a cathode. An element in which both the anode and the cathode are transmissive can be manufactured.
〈取出し電極〉
 取出し電極は、透明電極の導電層と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。
<Extraction electrode>
The extraction electrode is for electrically connecting the conductive layer of the transparent electrode and the external power source, and the material is not particularly limited, and a known material can be suitably used. For example, a three-layer structure A metal film such as a MAM electrode (Mo / Al · Nd alloy / Mo) made of can be used.
〈無機保護層(6)〉
 本発明に用いる無機保護層は、第2電極の上面に設けられている。無機保護層は、第2電極上の一部に設けられていてもよいが、全面に設けられていることが好ましい。
 無機保護層として使用できる材料は特に限定されず、例えば、酸化シリコン、窒化シリコン、酸化窒化シリコン、炭化シリコン、窒化炭化シリコン等のシリコン化合物が挙げられる。特に、無機保護層は、バリア性の観点から、シリコンの窒化物を主成分とすることが好ましく、具体的には、窒化シリコンであることが好ましい。すなわち、無機保護層は、窒化シリコン層であることが好ましい。また、無機保護層を窒化シリコンとすることで、ダークスポットの発生がより抑制される。
 なお、例えば「窒化シリコンである」とは、例えば、窒化シリコンを主成分として含有し、その他の不純物等を含有する場合を含むものである。
 また、無機保護層は、同じ組成又は異なる組成のシリコン化合物を主成分とする膜を組み合わせた、複合膜や積層膜として形成してもよい。このように無機保護層を複合膜や積層膜として形成させる場合は、全体で無機保護層としての機能が発現すればよい。
<Inorganic protective layer (6)>
The inorganic protective layer used in the present invention is provided on the upper surface of the second electrode. The inorganic protective layer may be provided on a part of the second electrode, but is preferably provided on the entire surface.
The material that can be used for the inorganic protective layer is not particularly limited, and examples thereof include silicon compounds such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, and silicon nitride carbide. In particular, the inorganic protective layer is preferably composed mainly of silicon nitride from the viewpoint of barrier properties, and specifically, is preferably silicon nitride. That is, the inorganic protective layer is preferably a silicon nitride layer. Moreover, generation of dark spots is further suppressed by using silicon nitride as the inorganic protective layer.
For example, “it is silicon nitride” includes, for example, the case of containing silicon nitride as a main component and other impurities.
The inorganic protective layer may be formed as a composite film or a laminated film in which films containing silicon compounds having the same composition or different compositions as main components are combined. Thus, when forming an inorganic protective layer as a composite film or a laminated film, the function as an inorganic protective layer should just be expressed as a whole.
 無機保護層は、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.1g/(m・24h)未満であることが好ましく、0.01g/(m・24h)以下であることがより好ましく、0.001g/(m・24h)以下であることが更に好ましい。
 なお、この無機保護層の水蒸気透過度とは、JIS K 7129-1992に準拠した方法で測定された値である。
The inorganic protective layer preferably has a water vapor permeability (25 ± 0.5 ° C., relative humidity 90 ± 2% RH) of less than 0.1 g / (m 2 · 24 h), and 0.01 g / (m 2 · 24h) or less, more preferably 0.001 g / (m 2 · 24h) or less.
The water vapor permeability of the inorganic protective layer is a value measured by a method based on JIS K 7129-1992.
 無機保護層の膜厚は、500~1500nmであることが好ましい。無機保護層の膜厚が500nm以上であれば、無機保護層の膜厚に起因するダークスポットの発生がより抑制される。また、無機保護層の膜厚が1500nm以下であれば、無機保護層の割れに起因するダークスポットの発生がより抑制される。
 なお、無機保護層の膜厚は、接触式表面形状測定器(例えばDECTAK)を用いて測定することができる。
 また、無機保護層の膜密度は、4.0~10.0×1022atoms/cmであることが好ましい。
The film thickness of the inorganic protective layer is preferably 500 to 1500 nm. If the thickness of the inorganic protective layer is 500 nm or more, generation of dark spots due to the thickness of the inorganic protective layer is further suppressed. Moreover, if the film thickness of an inorganic protective layer is 1500 nm or less, generation | occurrence | production of the dark spot resulting from the crack of an inorganic protective layer will be suppressed more.
In addition, the film thickness of an inorganic protective layer can be measured using a contact-type surface shape measuring device (for example, DECTAK).
The film density of the inorganic protective layer is preferably 4.0 to 10.0 × 10 22 atoms / cm 3 .
 無機保護層は膜密度の異なる2層以上から形成されていることが好ましい。特に、図6に示すように、無機保護層6は、膜密度の異なる3層から形成されていることが好ましい。ここでは、無機保護層6は、第2電極5側の第1無機保護層6aと、中間層である第2無機保護層6bと、接着剤層7側の第3無機保護層6cと、から構成されている。なお、膜密度の異なる3層とは、少なくとも1層が他の2層と膜密度が異なればよく、他の2層は同じ膜密度であってもよいことを意味する。また、3層のそれぞれが、互いに膜密度が異なるものであってもよい。
 無機保護層が膜密度の異なる3層から形成されていることで、ダークスポットの発生がより抑制される。
The inorganic protective layer is preferably formed from two or more layers having different film densities. In particular, as shown in FIG. 6, the inorganic protective layer 6 is preferably formed of three layers having different film densities. Here, the inorganic protective layer 6 includes a first inorganic protective layer 6a on the second electrode 5 side, a second inorganic protective layer 6b that is an intermediate layer, and a third inorganic protective layer 6c on the adhesive layer 7 side. It is configured. The three layers having different film densities mean that at least one layer may have a film density different from that of the other two layers, and the other two layers may have the same film density. Each of the three layers may have a different film density.
Since the inorganic protective layer is formed of three layers having different film densities, the generation of dark spots is further suppressed.
 第1無機保護層、第2無機保護層、及び、第3無機保護層の膜密度は、それぞれ、4.0~10.0×1022atoms/cmであることが好ましい。 The film densities of the first inorganic protective layer, the second inorganic protective layer, and the third inorganic protective layer are preferably 4.0 to 10.0 × 10 22 atoms / cm 3 , respectively.
 ここで、無機保護層は、前記3層からなる無機保護層のうち、中間層である第2無機保護層が最も膜密度が低いことが好ましい。
 このような構成によれば、整流特性がより良好となる。
 なお、無機保護層が3層以上の場合は、中間層(最下層、最上層以外)が、膜密度が低いことが好ましい。
Here, as for an inorganic protective layer, it is preferable that the film density of the 2nd inorganic protective layer which is an intermediate | middle layer is the lowest among the inorganic protective layers which consist of said 3 layers.
According to such a configuration, the rectification characteristic becomes better.
In addition, when an inorganic protective layer is three or more layers, it is preferable that an intermediate | middle layer (except a lowermost layer and uppermost layer) has a low film | membrane density.
 第2無機保護層が最も膜密度が低い場合、第2無機保護層と第1無機保護層との膜密度の差、及び、第2無機保護層と第3無機保護層との膜密度の差は、0.3~3.0×1022atoms/cmであることが好ましい。 When the second inorganic protective layer has the lowest film density, the difference in film density between the second inorganic protective layer and the first inorganic protective layer and the difference in film density between the second inorganic protective layer and the third inorganic protective layer Is preferably 0.3 to 3.0 × 10 22 atoms / cm 3 .
 膜密度の測定は、成膜した単膜をラザフォード後方散乱分析法を用いて測定し、成膜した断面のTEMにより膜厚を測定することにより求めることができる。
 膜密度は、成膜する際の成膜条件により制御することができる。
The film density can be measured by measuring the formed single film using Rutherford backscattering analysis method and measuring the film thickness by TEM of the formed cross section.
The film density can be controlled by the film formation conditions during film formation.
 また、無機保護層は、中間層である第2無機保護層が最も膜密度が低い場合において、中間層である第2無機保護層の膜厚が無機保護層全体の膜厚に対して20~50%であることが好ましい。第2無機保護層の膜厚が無機保護層全体の膜厚に対して20~50%であれば、接着剤に起因する水分等の拡散影響が抑制され、ダークスポットの発生がより抑制されると共に、整流特性がより良好となる。なお、4層以上の場合は、最も膜密度が低い中間層(最下層、最上層以外)が無機保護層全体の膜厚に対して20~50%であることが好ましい。 In addition, the inorganic protective layer has a thickness of the second inorganic protective layer as the intermediate layer that is 20 to 20 times the total thickness of the inorganic protective layer when the second inorganic protective layer as the intermediate layer has the lowest film density. It is preferable that it is 50%. If the thickness of the second inorganic protective layer is 20 to 50% of the total thickness of the inorganic protective layer, the influence of diffusion of moisture and the like due to the adhesive is suppressed, and the generation of dark spots is further suppressed. At the same time, the rectification characteristics become better. In the case of four or more layers, it is preferable that the intermediate layer having the lowest film density (other than the lowermost layer and the uppermost layer) is 20 to 50% of the total thickness of the inorganic protective layer.
(無機保護層の形成方法)
 次に、無機保護層の形成方法の一例について説明する。
 無機保護層は、ドライプロセスによって形成することができる。ドライプロセスとしては、例えば、真空蒸着法(抵抗加熱、EB法等)、マグネトロンスパッタ法、イオンプレーティング法、CVD法等の成膜法が挙げられる。
 なお、透明フレキシブル基材上にバリア層を形成する場合も、この無機保護層を形成する工程と同様の方法により行うことができる。
(Method for forming inorganic protective layer)
Next, an example of a method for forming the inorganic protective layer will be described.
The inorganic protective layer can be formed by a dry process. Examples of the dry process include film deposition methods such as vacuum deposition (resistance heating, EB method, etc.), magnetron sputtering, ion plating, and CVD.
In addition, also when forming a barrier layer on a transparent flexible base material, it can carry out by the method similar to the process of forming this inorganic protective layer.
 無機保護層を形成する工程の一例として、有機シリコン化合物を用いたプラズマCVD法について説明する。プラズマCVD法による無機保護層の形成では、有機シリコン化合物の反応生成物によりシリコン化合物を形成する。
 プラズマCVD法に用いる有機シリコン化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。中でも、成膜での取扱い及び得られる無機保護層のバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。また、これらの有機シリコン化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
As an example of the step of forming the inorganic protective layer, a plasma CVD method using an organic silicon compound will be described. In the formation of the inorganic protective layer by the plasma CVD method, a silicon compound is formed by a reaction product of an organic silicon compound.
Examples of the organic silicon compound used in the plasma CVD method include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, and trimethylsilane. , Diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane and the like. Of these, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferred from the viewpoints of characteristics such as handling during film formation and barrier properties of the resulting inorganic protective layer. Moreover, these organic silicon compounds can be used individually by 1 type or in combination of 2 or more types.
 例えば、プラズマCVD法を用いて、ヘキサメチルジシロキサンの反応生成物からなる無機保護層を成膜する場合、原料ガスとして、ヘキサメチルジシロキサンのモル量(流量)に対する反応ガスとしての酸素のモル量(流量)を、化学量論比である12倍量以下(より好ましくは、10倍以下)とすることが好ましい。このような比で、ヘキサメチルジシロキサンと酸素とを供給することにより、完全に酸化されないヘキサメチルジシロキサン中の炭素原子や水素原子が無機保護層中に取り込まれる。このため、得られる無機保護層に優れたバリア性や、耐屈曲性を持たせることができる。成膜ガス中の酸素のモル量の下限は、ヘキサメチルジシロキサンのモル量の0.1倍以上とすることが好ましく、0.5倍以上とすることがより好ましい。 For example, when an inorganic protective layer made of a reaction product of hexamethyldisiloxane is formed by plasma CVD, the source gas is a mole of oxygen as a reaction gas with respect to the molar amount (flow rate) of hexamethyldisiloxane. The amount (flow rate) is preferably 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. By supplying hexamethyldisiloxane and oxygen at such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that are not completely oxidized are taken into the inorganic protective layer. For this reason, the barrier property and bending resistance which were excellent in the obtained inorganic protective layer can be given. The lower limit of the molar amount of oxygen in the film forming gas is preferably 0.1 times or more, more preferably 0.5 times or more of the molar amount of hexamethyldisiloxane.
 また、ドライプロセスを用いた成膜においては、導入ガス以外の微量のガスが存在するため、量論どおりの成分になることは稀である。具体的には、Siが量論代表値であるが、実際の膜にはある程度の比率の幅が存在しており、これらを含めてSiNとして取り扱う。上記の原子数比は、従来公知の方法で求めることが可能であるが、例えば、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いた分析装置等で測定することできる。 Further, in film formation using a dry process, since a very small amount of gas other than the introduced gas is present, it is rare that the component becomes as stoichiometric. Specifically, Si 3 N 4 is the stoichiometric representative value, but there is a certain ratio of width in an actual film, and these are included and handled as SiN. The above-mentioned atomic ratio can be determined by a conventionally known method, and can be measured by, for example, an analyzer using X-ray photoelectron spectroscopy (XPS).
 無機保護層の膜密度は、CVD法によって成膜する際の成膜条件によって制御することができる。つまり、CVD法による成膜は、成膜表面における表面反応と、成膜雰囲気における気相反応とによって成膜が進行する。このとき、例えば原料ガスの流量を増加させて気相反応を多くすることで、成膜速度が速くなるとと共に膜密度が低くなる。一方、原料ガスの流量を減少させて表面反応を多くすることで、成膜速度が遅くなると共に膜密度が高くなる。 The film density of the inorganic protective layer can be controlled by the film forming conditions when the film is formed by the CVD method. That is, the film formation by the CVD method proceeds by a surface reaction on the film formation surface and a gas phase reaction in the film formation atmosphere. At this time, for example, by increasing the flow rate of the source gas to increase the gas phase reaction, the film formation speed increases and the film density decreases. On the other hand, by reducing the flow rate of the source gas to increase the surface reaction, the film formation rate is lowered and the film density is increased.
 ここで、無機保護層の成膜には、アンモニア(NH)ガスが用いられており、この他の原料ガスとしては更にシラン(SH)ガスが用いられることになる。したがって、無機保護層である窒化シリコン膜は、アンモニアガスとシランガスとの合計の流量を調整することにより、膜密度が制御された膜として構成される。 Here, ammonia (NH 3 ) gas is used for forming the inorganic protective layer, and silane (SH 4 ) gas is further used as the other source gas. Therefore, the silicon nitride film as the inorganic protective layer is configured as a film in which the film density is controlled by adjusting the total flow rate of ammonia gas and silane gas.
 つまり、高密度の無機保護層は、表面反応を主とした成膜速度が比較的低速度なCVD法によって成膜された膜となる。一方、低密度の無機保護層は、高密度の無機保護層と比較して気相反応を主とした成膜速度が高速度なCVD法によって成膜された膜となる。 That is, the high-density inorganic protective layer is a film formed by the CVD method with a relatively low film formation speed mainly for surface reaction. On the other hand, the low-density inorganic protective layer is a film formed by a CVD method in which the film formation rate mainly for the gas phase reaction is higher than that of the high-density inorganic protective layer.
 なお、CVD成膜における気相反応と表面反応とは、上述した原料ガスの流量の他に、例えば基材温度や成膜雰囲気内のガス圧力によっても制御される。この際、例えば、基材温度を下げること、又は成膜雰囲気のガス圧量を高くすることにより、気相反応が多くなり、成膜速度が速まって膜密度が低くなるのである。 Note that the gas phase reaction and surface reaction in the CVD film formation are controlled by, for example, the base material temperature and the gas pressure in the film formation atmosphere in addition to the above-described flow rate of the source gas. At this time, for example, by lowering the substrate temperature or increasing the gas pressure in the film formation atmosphere, the gas phase reaction increases, the film formation speed increases, and the film density decreases.
 なお、無機保護層を膜密度の異なる3層とする場合においても、第1無機保護層、第2無機保護層、及び、第3無機保護層の膜密度は、前記した方法により制御すればよい。また、無機保護層を膜密度の異なる2層、あるいは4層以上とする場合においても、膜密度は、前記した方法により制御すればよい。 Even when the inorganic protective layer has three layers having different film densities, the film densities of the first inorganic protective layer, the second inorganic protective layer, and the third inorganic protective layer may be controlled by the method described above. . Even when the inorganic protective layer has two layers having different film densities, or four or more layers, the film density may be controlled by the method described above.
〈接着剤層(7)〉
 本発明に用いる接着剤層は、無機保護層の上面に設けられている。接着剤層は、無機保護層上の一部に設けられていてもよいが、全面に設けられていることが好ましい。
 接着剤層は、有機EL素子に封止部材を密着するための剤として用いられる。また、接着剤層は、封止部材を基材側に固定する役割を有する。
 接着剤層としては、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。
<Adhesive layer (7)>
The adhesive layer used in the present invention is provided on the upper surface of the inorganic protective layer. The adhesive layer may be provided on a part of the inorganic protective layer, but is preferably provided on the entire surface.
The adhesive layer is used as an agent for closely attaching the sealing member to the organic EL element. The adhesive layer has a role of fixing the sealing member to the substrate side.
Specific examples of the adhesive layer include photo-curing and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture-curing adhesives such as 2-cyanoacrylates. An agent can be mentioned.
 また、接着剤層としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Also, examples of the adhesive layer include an epoxy-based heat and chemical curing type (two-component mixing). Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
〈封止部材(8)〉
 有機EL素子は、有機材料等を用いて構成された有機機能層の劣化を防止することを目的として、封止部材で封止されている。封止部材は、有機EL素子の上面を覆う板状(フィルム状)の部材であって、接着剤層によって基材側に固定される。また、封止部材は、封止膜であってもよい。このような封止部材は、有機EL素子の電極端子部分を露出させ、少なくとも有機機能層を覆う状態で設けられている。また、封止部材に電極を設け、有機EL素子の電極端子部分と、封止部材の電極とを導通させる構成でもよい。
<Sealing member (8)>
The organic EL element is sealed with a sealing member for the purpose of preventing deterioration of an organic functional layer formed using an organic material or the like. The sealing member is a plate-like (film-like) member that covers the upper surface of the organic EL element, and is fixed to the base material side by an adhesive layer. The sealing member may be a sealing film. Such a sealing member is provided in a state in which the electrode terminal portion of the organic EL element is exposed and at least the organic functional layer is covered. Moreover, the structure which provides an electrode in a sealing member and makes the electrode terminal part of an organic EL element and the electrode of a sealing member electrically connect may be sufficient.
 板状(フィルム状)の封止部材としては、具体的には、ガラス基板、ポリマー基板、金属基板等が挙げられ、これらの基板を更に薄型のフィルム状にして用いてもよい。ガラス基板としては、特に、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属基板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
 特に、素子を薄膜化できるということから、封止部材としてポリマー基板や金属基板を薄型のフィルム状にして使用することが好ましい。
 また、基板材料は、凹板状に加工して封止部材として用いてもよい。この場合、上述した基板部材に対して、サンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。
Specific examples of the plate-like (film-like) sealing member include a glass substrate, a polymer substrate, a metal substrate, and the like, and these substrates may be used in the form of a thinner film. Examples of the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal substrate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
In particular, since the element can be thinned, it is preferable to use a polymer substrate or a metal substrate as a thin film as the sealing member.
The substrate material may be processed into a concave plate shape and used as a sealing member. In this case, the substrate member described above is subjected to processing such as sandblasting and chemical etching to form a concave shape.
 更に、フィルム状としたポリマー基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、(90±2)%RH)が、1×10-3g/(m・24h)以下であることが好ましい。 Furthermore, the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 mL / (m 2 · 24 h · atm) or less, and conforms to JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., (90 ± 2)% RH) measured by a compliant method is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.
 接着剤層の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 なお、有機EL素子を構成する有機材料は、熱処理により劣化する場合がある。このため、接着剤層は、室温(25℃)から80℃までに接着硬化できるものが好ましい。また、接着剤層中に乾燥剤を分散させておいてもよい。
The adhesive layer may be applied using a commercially available dispenser or printing such as screen printing.
In addition, the organic material which comprises an organic EL element may deteriorate with heat processing. For this reason, the adhesive layer is preferably one that can be adhesively cured from room temperature (25 ° C.) to 80 ° C. Further, a desiccant may be dispersed in the adhesive layer.
〈下地層(10)〉
 本発明に用いる下地層は、金属細線パターンや透明導電層を形成するための下地となる層であり、基材と第1電極との密着性を向上させるものである。
 下地層には、チオール基を有する化合物、アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミドから選択される少なくとも1種が含有されていることが好ましく、2種以上を併用して用いてもよい。
<Underlayer (10)>
The foundation layer used in the present invention is a layer that serves as a foundation for forming a fine metal wire pattern or a transparent conductive layer, and improves the adhesion between the substrate and the first electrode.
Preferably, the underlayer contains at least one selected from a compound having a thiol group, a poly (meth) acrylate having an aminoethyl group, and a poly (meth) acrylamide having an aminoethyl group. The above may be used in combination.
 また、下地層には、上記化合物に加えて、無機粒子を含んでいてもよく、特に酸化物粒子を含んで形成されることが好ましい。下地層が酸化物粒子を含むことにより、金属細線パターンや金属酸化物層との密着性が向上する。 In addition, the base layer may contain inorganic particles in addition to the above compound, and is preferably formed to contain oxide particles. When the underlayer contains oxide particles, adhesion with the metal fine line pattern and the metal oxide layer is improved.
 また、下地層には、金属細線パターンや金属酸化物層との密着性向上以外の機能を付与することもできる。密着性以外の機能としては、光取出し機能を有することが好ましい。下地層に光取出し機能を付与するためには、下地層を構成する樹脂と共に、樹脂よりも屈折率の高い酸化物粒子を含むことが好ましい。この樹脂よりも屈折率の高い酸化物粒子が下地層内で光散乱粒子として機能することにより、下地層での光散乱が発生し、下地層に光取出し機能が付与される。
 また、下地層には、金属細線の細線化のため、フッ素を含有させてもよい。
In addition, the base layer can be provided with a function other than improving the adhesion with the metal fine line pattern or the metal oxide layer. As a function other than adhesion, it is preferable to have a light extraction function. In order to impart a light extraction function to the underlayer, it is preferable to include oxide particles having a refractive index higher than that of the resin together with the resin constituting the underlayer. Oxide particles having a refractive index higher than that of the resin function as light scattering particles in the underlayer, whereby light scattering occurs in the underlayer and a light extraction function is imparted to the underlayer.
Further, the underlayer may contain fluorine in order to make the fine metal wires thinner.
 下地層の厚さは、10~1000nmの範囲内であることが好ましく、より好ましくは10~100nmの範囲内である。下地層の厚さが10nm以上であると、下地層自体が連続膜となり表面が平滑になり、有機EL素子への影響が小さい。一方、下地層の厚さが1000nm以下であると、下地層に起因する透明電極の透明性の低下や下地層に由来する吸着ガスを減らすことができ、金属細線パターンの抵抗悪化を抑制することができる。また、下地層の厚さが1000nm以下であれば、透明電極を屈曲した際の下地層の破損を抑制することができる。
 なお、下地層の膜厚は、接触式表面形状測定器(例えばDECTAK)を用いて測定することができる。
The thickness of the underlayer is preferably in the range of 10 to 1000 nm, more preferably in the range of 10 to 100 nm. When the thickness of the underlayer is 10 nm or more, the underlayer itself becomes a continuous film, the surface becomes smooth, and the influence on the organic EL element is small. On the other hand, when the thickness of the underlayer is 1000 nm or less, the transparency of the transparent electrode caused by the underlayer and the adsorbed gas derived from the underlayer can be reduced, and the deterioration of the resistance of the metal fine wire pattern can be suppressed. Can do. Moreover, if the thickness of the underlayer is 1000 nm or less, damage to the underlayer when the transparent electrode is bent can be suppressed.
In addition, the film thickness of a base layer can be measured using a contact-type surface shape measuring device (for example, DECTAK).
 下地層の透明性は、用途によって任意に選択することができるが、透明性が高いほど透明電極への適用が良好となり、用途拡大の観点で好ましい。下地層の全光線透過率としては、少なくとも40%以上、好ましくは50%以上である。全光線透過率は、分光光度計等を用いた公知の方法に従って測定することができる。 The transparency of the underlayer can be arbitrarily selected depending on the application, but the higher the transparency, the better the application to the transparent electrode, which is preferable from the viewpoint of expanding the application. The total light transmittance of the underlayer is at least 40% or more, preferably 50% or more. The total light transmittance can be measured according to a known method using a spectrophotometer or the like.
(チオール基を有する化合物)
 チオール基(メルカプト基ともいう。)を有する化合物(以下、チオール基含有化合物ともいう。)としては、本発明の効果を阻害しない範囲において、特に限定されない。
 本発明に用いるチオール基含有化合物は、チオール基を2個以上有する多官能チオール基含有化合物であることが好ましい。これにより、より金属材料を含む金属細線との密着性を図ることができる。
(Compound having a thiol group)
The compound having a thiol group (also referred to as a mercapto group) (hereinafter also referred to as a thiol group-containing compound) is not particularly limited as long as the effects of the present invention are not impaired.
The thiol group-containing compound used in the present invention is preferably a polyfunctional thiol group-containing compound having two or more thiol groups. Thereby, the adhesiveness with the metal fine wire containing a metal material more can be aimed at.
 また、チオール基含有化合物としては、下記一般式(I)で表される構造を有する化合物と、1価若しくは多価のアルコール、又はアミンとの縮合物であることが好ましい。 The thiol group-containing compound is preferably a condensate of a compound having a structure represented by the following general formula (I) with a monovalent or polyvalent alcohol or amine.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、R及びRは、それぞれ独立に、水素原子又は炭素数1~10のアルキル基を表すが、その少なくとも一方は炭素数1~10のアルキル基である。mは0~2の整数であり、nは0又は1である。 In general formula (I), R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, at least one of which is an alkyl group having 1 to 10 carbon atoms. m is an integer of 0 to 2, and n is 0 or 1.
 R及びRにおける炭素数1~10のアルキル基としては、直鎖状であっても分岐状であってもよく、具体的には、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、n-ヘキシル基、n-オクチル基等が挙げられ、好ましくはメチル基又はエチル基である。
 R及びRは、本発明の効果を阻害しない範囲において、公知の置換基を有していてもよい。
The alkyl group having 1 to 10 carbon atoms in R 1 and R 2 may be linear or branched, and specifically includes a methyl group, an ethyl group, an n-propyl group, an iso- Examples thereof include a propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-hexyl group, and an n-octyl group, and a methyl group or an ethyl group is preferable.
R 1 and R 2 may have a known substituent as long as the effects of the present invention are not impaired.
 mは0~2の整数であるが、好ましくは0又は1である。
 nは0又は1であるが、好ましくは0である。
m is an integer of 0 to 2, preferably 0 or 1.
n is 0 or 1, but preferably 0.
 上記一般式(I)で表される構造を有する化合物としては、2-メルカプトプロピオン酸、3-メルカプト酪酸、2-メルカプトイソ酪酸、3-メルカプトイソ酪酸等が挙げられる。 Examples of the compound having the structure represented by the general formula (I) include 2-mercaptopropionic acid, 3-mercaptobutyric acid, 2-mercaptoisobutyric acid, and 3-mercaptoisobutyric acid.
 1価のアルコールとしては、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、t-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、1-ヘプタノール、2-ヘプタノール、2-メチル-2-ヘプタノール、2-メチル-3-ヘプタノール等が挙げられる。 Monohydric alcohols include methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 2-butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl- 1-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2 -Pentanol, 1-heptanol, 2-heptanol, 2-methyl-2-heptanol, 2-methyl-3-hept Nord, and the like.
 多価のアルコールとしては、グリコール類(ただし、アルキルレン基の炭素数は2~10が好ましく、その炭素鎖は枝分かれしていてもよい。)、例えば、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジペンタエリスリトール等が挙げられる。
 中でも、エチレングリコール、1,2-プロピレングリコール、1,2-ブタンジオール、1,4-ブタンジオール、トリメチロールエタン、トリメチロールプロパン及びジペンタエリスリトールが好ましい。
Examples of the polyhydric alcohol include glycols (wherein the alkylene group preferably has 2 to 10 carbon atoms, and the carbon chain thereof may be branched), such as ethylene glycol, diethylene glycol, 1,2-propylene. Glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane And dipentaerythritol.
Of these, ethylene glycol, 1,2-propylene glycol, 1,2-butanediol, 1,4-butanediol, trimethylolethane, trimethylolpropane, and dipentaerythritol are preferable.
 上記一般式(I)で表される構造を有する化合物と縮合するアルコールとしては、多官能チオール基含有化合物が得られることから、多価のアルコールが好ましい。 As the alcohol condensed with the compound having the structure represented by the general formula (I), a polyfunctional thiol group-containing compound is obtained, and therefore a polyvalent alcohol is preferable.
 アミンとしては、特に制限されるものではなく、また、第1~3級アミンのいずれでもよいが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、メタキシリレンジアミン、トリレンジアミン、パラキシリレンジアミン、フェニレンジアミン、イソホロンジアミン等が挙げられる。 The amine is not particularly limited and may be any of primary to tertiary amines. For example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethyl Amine, diethylamine, dipropylamine, dibutylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, metaxylylenediamine, tolylenediamine, paraxylylenediamine, phenylenediamine, isophoronediamine Etc.
 以下に、本発明に係る下地層に適用可能なチオール基含有化合物の具体例として、例示化合物SH-1~SH-155、SE-1~SE-84及びSA-1~SA-34を示す。 Examples Compounds SH-1 to SH-155, SE-1 to SE-84, and SA-1 to SA-34 are shown below as specific examples of the thiol group-containing compound applicable to the underlayer according to the present invention.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 その他、チオール基含有化合物として、特許第4911666号公報及び特許第4917294号公報に記載されている化合物も好適に用いることができる。 In addition, as the thiol group-containing compound, compounds described in Japanese Patent No. 4911666 and Japanese Patent No. 4917294 can also be suitably used.
 上記例示化合物SH-1~SH-155、SE-1~SE-84及びSA-1~SA-34は、公知の方法により合成することができる。 The above exemplified compounds SH-1 to SH-155, SE-1 to SE-84 and SA-1 to SA-34 can be synthesized by known methods.
 また、チオール基含有化合物としては、チオール基を有するシルセスキオキサン誘導体(以下、単にシルセスキオキサン誘導体ともいう。)を用いることも可能である。
 シルセスキオキサン誘導体としては、特に制限されないが、下記一般式(A)で表されるかご型シロキサン構造を有する化合物であることが好ましい。
In addition, as the thiol group-containing compound, a silsesquioxane derivative having a thiol group (hereinafter also simply referred to as a silsesquioxane derivative) can be used.
Although it does not restrict | limit especially as a silsesquioxane derivative, It is preferable that it is a compound which has a cage type siloxane structure represented with the following general formula (A).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(A)中、Xは、下記X又はXを表すが、Xの少なくとも一つはXである。 In the general formula (A), X A is representative of the following X 1 or X 2, at least one of X A is X 2.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 X及びX中、R~Rは、それぞれ独立に、炭素数1~8のアルキル基又は芳香族炭化水素環基を表す。Aは、炭素数1~8の2価の炭化水素基を表す。 In X 1 and X 2 , R 1 to R 5 each independently represents an alkyl group having 1 to 8 carbon atoms or an aromatic hydrocarbon ring group. A represents a divalent hydrocarbon group having 1 to 8 carbon atoms.
 X及びXにおけるR~Rの炭素数1~8のアルキル基としては、直鎖状であっても分岐鎖状であってもよく、具体的には、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。 The alkyl group having 1 to 8 carbon atoms of R 1 to R 5 in X 1 and X 2 may be linear or branched, and specifically includes a methyl group, an ethyl group, Examples thereof include an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group.
 X及びXにおけるR~Rの芳香族炭化水素環基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。 Examples of the aromatic hydrocarbon ring group of R 1 to R 5 in X 1 and X 2 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
 X及びXは、本発明の効果を阻害しない範囲において、公知の置換基を有していてもよい。 X 1 and X 2 may have a known substituent as long as the effects of the present invention are not impaired.
 XにおけるAの炭素数1~8の2価の炭化水素基としては、炭素数1~8の直鎖状又は分岐鎖状のアルキレン基が挙げられる。これらの中でも、シルセスキオキサン誘導体の合成が容易な点で、-CHCH-、-CHCHCH-等の炭素数2又は3の直鎖状のアルキレン基が好ましい。
 Aは、本発明の効果を阻害しない範囲において、公知の置換基を有していてもよい。
Examples of the divalent hydrocarbon group having 1 to 8 carbon atoms of A in X 2 include linear or branched alkylene groups having 1 to 8 carbon atoms. Among these, a straight-chain alkylene group having 2 or 3 carbon atoms such as —CH 2 CH 2 — and —CH 2 CH 2 CH 2 — is preferable from the viewpoint of easy synthesis of the silsesquioxane derivative.
A may have a known substituent as long as the effects of the present invention are not impaired.
 また、市販のシルセスキオキサン誘導体としては、荒川化学社製のコンポセラン(登録商標)SQ100シリーズ等も使用することができる。 Further, as a commercially available silsesquioxane derivative, Composelan (registered trademark) SQ100 series manufactured by Arakawa Chemical Co., Ltd. can be used.
 その他、本発明に適用可能なチオール基を有するシルセスキオキサン誘導体やその合成方法として、特開2015-59108号公報、特開2012-180464号公報等を参照することができる。 In addition, as a silsesquioxane derivative having a thiol group applicable to the present invention and a synthesis method thereof, JP-A-2015-59108, JP-A-2012-180464 and the like can be referred to.
(アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミド)
 アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミドとしては、本発明の効果を阻害しない範囲において特に限定されないが、下記一般式(II)で表される部分構造を有することが好ましい。
(Poly (meth) acrylate having aminoethyl group and poly (meth) acrylamide having aminoethyl group)
The poly (meth) acrylate having an aminoethyl group and the poly (meth) acrylamide having an aminoethyl group are not particularly limited as long as the effects of the present invention are not inhibited, but the partial structure represented by the following general formula (II) It is preferable to have.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(II)中、Rは、水素原子又はメチル基を表す。Qは、-C(=O)O-又は-C(=O)NRa-を表す。Raは、水素原子又はアルキル基を表す。Aは置換若しくは無置換のアルキレン基、又は-(CHCHRbNH)-CHCHRb-を表し、Rbは水素原子又はアルキル基を示し、xは平均繰り返しユニット数を表し、かつ、正の整数である。 In general formula (II), R 3 represents a hydrogen atom or a methyl group. Q represents —C (═O) O— or —C (═O) NRa—. Ra represents a hydrogen atom or an alkyl group. A represents a substituted or unsubstituted alkylene group, or — (CH 2 CHRbNH) x —CH 2 CHRb—, Rb represents a hydrogen atom or an alkyl group, x represents the average number of repeating units, and is a positive integer It is.
 Raにおけるアルキル基としては、例えば、炭素数1~5の直鎖あるいは分岐アルキル基が好ましく、より好ましくはメチル基である。 As the alkyl group in Ra, for example, a linear or branched alkyl group having 1 to 5 carbon atoms is preferable, and a methyl group is more preferable.
 また、これらのアルキル基は、置換基で置換されていてもよい。これら置換基の例としては、アルキル基、シクロアルキル基、アリール基、ヘテロシクロアルキル基、ヘテロアリール基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルチオ基、アリールチオ基、シクロアルコキシ基、アリールオキシ基、アシル基、アルキルカルボンアミド基、アリールカルボンアミド基、アルキルスルホンアミド基、アリールスルホンアミド基、ウレイド基、アラルキル基、ニトロ基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルキルカルバモイル基、アリールカルバモイル基、アルキルスルファモイル基、アリールスルファモイル基、アシルオキシ基、アルケニル基、アルキニル基、アルキルスルホニル基、アリールスルホニル基、アルキルオキシスルホニル基、アリールオキシスルホニル基、アルキルスルホニルオキシ基、アリールスルホニルオキシ基等で置換されてもよい。これらのうち好ましくは、ヒドロキシ基、アルキルオキシ基である。 In addition, these alkyl groups may be substituted with a substituent. Examples of these substituents include alkyl groups, cycloalkyl groups, aryl groups, heterocycloalkyl groups, heteroaryl groups, hydroxy groups, halogen atoms, alkoxy groups, alkylthio groups, arylthio groups, cycloalkoxy groups, aryloxy groups, Acyl group, alkylcarbonamide group, arylcarbonamide group, alkylsulfonamide group, arylsulfonamide group, ureido group, aralkyl group, nitro group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, alkylcarbamoyl group, Arylcarbamoyl group, alkylsulfamoyl group, arylsulfamoyl group, acyloxy group, alkenyl group, alkynyl group, alkylsulfonyl group, arylsulfonyl group, alkyloxysulfonyl , Aryloxy sulfonyl group, alkylsulfonyloxy group, may be substituted with an aryl sulfonyloxy group. Of these, a hydroxy group and an alkyloxy group are preferable.
 上記置換基としてのアルキル基は、分岐していてもよく、炭素数は1~20であることが好ましく、1~12であることがより好ましく、1~8であることが更に好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基等が挙げられる。
 上記シクロアルキル基の炭素数は、3~20であることが好ましく、3~12であることがより好ましく、3~8であることが更に好ましい。シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 上記アリール基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記へテロシクロアルキル基の炭素数は、2~10であることが好ましく、3~5であることが更に好ましい。へテロシクロアルキル基としては、ピペリジノ基、ジオキサニル基、2-モルホリニル基等が挙げられる。
 上記へテロアリール基の炭素数は、3~20であることが好ましく、3~10であることが更に好ましい。へテロアリール基としては、チエニル基、ピリジル基が挙げられる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 上記アルコキシ基は、分岐していてもよく、炭素数は1~20であることが好ましく、1~12であることがより好ましく、1~6であることが更に好ましく、1~4であることが最も好ましい。アルコキシ基としては、メトキシ基、エトキシ基、2-メトキシエトキシ基、2-メトキシ-2-エトキシエトキシ基、ブチルオキシ基、ヘキシルオキシ基、オクチルオキシ基等が挙げられ、好ましくはエトキシ基である。
 上記アルキルチオ基は、分岐していてもよく、炭素数は1~20であることが好ましく、1~12であることがより好ましく、1~6であることが更に好ましく、1~4であることが最も好ましい。アルキルチオ基としては、メチルチオ基、エチルチオ基等が挙げられる。
 上記アリールチオ基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールチオ基としては、フェニルチオ基、ナフチルチオ基等が挙げられる。
 上記シクロアルコキシ基の炭素数は、3~12であることが好ましく、より好ましくは3~8である。シクロアルコキシ基としては、シクロプロポキシ基、シクロブチロキシ基、シクロペンチロキシ基、シクロヘキシロキシ基等が挙げられる。
 上記アリールオキシ基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールオキシ基としては、フェノキシ基、ナフトキシ基等が挙げられる。
 上記アシル基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アシル基としては、ホルミル基、アセチル基、ベンゾイル基等が挙げられる。
 上記アルキルカルボンアミド基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アルキルカルボンアミド基としては、アセトアミド基等が挙げられる。
 上記アリールカルボンアミド基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アリールカルボンアミド基としては、ベンズアミド基等が挙げられる。
 上記アルキルスルホンアミド基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。スルホンアミド基としては、メタンスルホンアミド基等が挙げられる。
 上記アリールスルホンアミド基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アリールスルホンアミド基としては、ベンゼンスルホンアミド基、p-トルエンスルホンアミド基等が挙げられる。
 上記アラルキル基の炭素数は、7~20であることが好ましく、7~12であることが更に好ましい。アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
 上記アルコキシカルボニル基の炭素数は、1~20であることが好ましく、2~12であることが更に好ましい。アルコキシカルボニル基としては、メトキシカルボニル基等が挙げられる。
 上記アリールオキシカルボニル基の炭素数は、7~20であることが好ましく、7~12であることが更に好ましい。アリールオキシカルボニル基としては、フェノキシカルボニル基等が挙げられる。
 上記アラルキルオキシカルボニル基の炭素数は、8~20であることが好ましく、8~12であることが更に好ましい。アラルキルオキシカルボニル基としては、ベンジルオキシカルボニル基等が挙げられる。
 上記アシルオキシ基の炭素数は、1~20であることが好ましく、2~12であることが更に好ましい。アシルオキシ基としては、アセトキシ基、ベンゾイルオキシ基等が挙げられる。
 上記アルケニル基の炭素数は、2~20であることが好ましく、2~12であることが更に好ましい。アルケニル基としては、ビニル基、アリル基、イソプロペニル基等が挙げられる。
 上記アルキニル基の炭素数は、2~20であることが好ましく、2~12であることが更に好ましい。アルキニル基としては、エチニル基等が挙げられる。
 上記アルキルスルホニル基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル基等が挙げられる。
 上記アリールスルホニル基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールスルホニル基としては、フェニルスルホニル基、ナフチルスルホニル基等が挙げられる。
 上記アルキルオキシスルホニル基の炭素数は、1~20あることが好ましく、1~12であることが更に好ましい。アルキルオキシスルホニル基としては、メトキシスルホニル基、エトキシスルホニル基等が挙げられる。
 上記アリールオキシスルホニル基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールオキシスルホニル基としては、フェノキシスルホニル基、ナフトキシスルホニル基等が挙げられる。
 上記アルキルスルホニルオキシ基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アルキルスルホニルオキシ基としては、メチルスルホニルオキシ基、エチルスルホニルオキシ基等が挙げられる。
 上記アリールスルホニルオキシ基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールスルホニルオキシ基としては、フェニルスルホニルオキシ基、ナフチルスルホニルオキシ基等が挙げられる。
 置換基は、同一でも異なっていてもよく、これら置換基が更に置換されてもよい。
The alkyl group as the substituent may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 8 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a hexyl group, and an octyl group.
The cycloalkyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 3 to 8 carbon atoms. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
The aryl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group.
The heterocycloalkyl group preferably has 2 to 10 carbon atoms, and more preferably 3 to 5 carbon atoms. Examples of the heterocycloalkyl group include a piperidino group, a dioxanyl group, and a 2-morpholinyl group.
The heteroaryl group preferably has 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms. Examples of the heteroaryl group include a thienyl group and a pyridyl group.
As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
The alkoxy group may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and more preferably 1 to 4. Is most preferred. Examples of the alkoxy group include a methoxy group, an ethoxy group, a 2-methoxyethoxy group, a 2-methoxy-2-ethoxyethoxy group, a butyloxy group, a hexyloxy group, and an octyloxy group, and an ethoxy group is preferable.
The alkylthio group may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and more preferably 1 to 4. Is most preferred. Examples of the alkylthio group include a methylthio group and an ethylthio group.
The arylthio group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the arylthio group include a phenylthio group and a naphthylthio group.
The cycloalkoxy group preferably has 3 to 12 carbon atoms, more preferably 3 to 8 carbon atoms. Examples of the cycloalkoxy group include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, a cyclohexyloxy group, and the like.
The aryloxy group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. Examples of the aryloxy group include a phenoxy group and a naphthoxy group.
The acyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the acyl group include a formyl group, an acetyl group, and a benzoyl group.
The alkylcarbonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylcarbonamide group include an acetamide group.
The aryl carbonamido group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the arylcarbonamide group include a benzamide group.
The alkylsulfonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the sulfonamide group include a methanesulfonamide group.
The arylsulfonamide group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the arylsulfonamido group include a benzenesulfonamido group and a p-toluenesulfonamido group.
The aralkyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aralkyl group include a benzyl group, a phenethyl group, and a naphthylmethyl group.
The alkoxycarbonyl group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the alkoxycarbonyl group include a methoxycarbonyl group.
The aryloxycarbonyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aryloxycarbonyl group include a phenoxycarbonyl group.
The aralkyloxycarbonyl group preferably has 8 to 20 carbon atoms, and more preferably 8 to 12 carbon atoms. Examples of the aralkyloxycarbonyl group include a benzyloxycarbonyl group.
The acyloxy group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the acyloxy group include an acetoxy group and a benzoyloxy group.
The alkenyl group has preferably 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the alkenyl group include a vinyl group, an allyl group, and an isopropenyl group.
The alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. An ethynyl group etc. are mentioned as an alkynyl group.
The alkylsulfonyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the alkylsulfonyl group include a methylsulfonyl group and an ethylsulfonyl group.
The arylsulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the arylsulfonyl group include a phenylsulfonyl group and a naphthylsulfonyl group.
The alkyloxysulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkyloxysulfonyl group include a methoxysulfonyl group and an ethoxysulfonyl group.
The aryloxysulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryloxysulfonyl group include a phenoxysulfonyl group and a naphthoxysulfonyl group.
The alkylsulfonyloxy group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylsulfonyloxy group include a methylsulfonyloxy group and an ethylsulfonyloxy group.
The arylsulfonyloxy group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the arylsulfonyloxy group include a phenylsulfonyloxy group and a naphthylsulfonyloxy group.
The substituents may be the same or different, and these substituents may be further substituted.
 Aにおけるアルキレン基は、炭素数1~5が好ましく、より好ましくはエチレン基、プロピレン基である。これらのアルキレン基は、前述した置換基で置換されていてもよい。
 Rbにおけるアルキル基としては、炭素数1~5の直鎖又は分岐アルキル基が好ましく、より好ましくはメチル基である。これらのアルキル基は前述の置換基で置換されていてもよい。
The alkylene group in A preferably has 1 to 5 carbon atoms, more preferably an ethylene group or a propylene group. These alkylene groups may be substituted with the substituent mentioned above.
The alkyl group in Rb is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, more preferably a methyl group. These alkyl groups may be substituted with the aforementioned substituents.
 平均繰り返しユニット数xとしては、正の整数であれば特に限定されないが、1~20の範囲内であることが好ましい。 The average number of repeating units x is not particularly limited as long as it is a positive integer, but it is preferably in the range of 1 to 20.
 ポリ(メタ)アクリレート及びポリ(メタ)アクリルアミドの重量平均分子量(Mw)としては、10000~500000の範囲内であることが好ましく、より好ましくは、30000~200000の範囲内である。重量平均分子量(Mw)が10000以上であれば、ポリ(メタ)アクリレート及びポリ(メタ)アクリルアミドを含む下地層が硬いため、経時変化や強制劣化条件での膜厚変化や他層との界面劣化を引き起こすことなく、電気的あるいは光学的な不具合が生じることがない。また、500000以下であれば、下地層形成用塗布液への溶解性や他の化合物との相溶性が良好で、更には、低温あるいは高温環境において硬さの異なる他層との剥離の問題が生じることがない。 The weight average molecular weight (Mw) of poly (meth) acrylate and poly (meth) acrylamide is preferably in the range of 10,000 to 500,000, more preferably in the range of 30,000 to 200,000. If the weight average molecular weight (Mw) is 10,000 or more, the underlying layer containing poly (meth) acrylate and poly (meth) acrylamide is hard, so the film thickness changes with time and forced deterioration conditions, and interface deterioration with other layers. Without causing any electrical or optical problems. Moreover, if it is 500,000 or less, the solubility in the coating solution for forming the underlayer and the compatibility with other compounds are good, and further, there is a problem of peeling from other layers having different hardness in a low temperature or high temperature environment. It does not occur.
(1)アミノエチル基を有するポリ(メタ)アクリレート
 アミノエチル基を有するポリ(メタ)アクリレートとしては、アミノエチル基を有する、(メタ)アクリレートの重合体又は共重合体が挙げられる。
 (メタ)アクリレートとしては、一つ又は二つの(メタ)アクリロイル基を有する単官能又は2官能(メタ)アクリレートや、三つ以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートが挙げられる。
(1) Poly (meth) acrylate having aminoethyl group Examples of the poly (meth) acrylate having aminoethyl group include a polymer or copolymer of (meth) acrylate having an aminoethyl group.
Examples of (meth) acrylates include monofunctional or bifunctional (meth) acrylates having one or two (meth) acryloyl groups, and polyfunctional (meth) acrylates having three or more (meth) acryloyl groups. .
 単官能(メタ)アクリレートとしては、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のC1-24のアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート等の橋架け環式(メタ)アクリレート、フェニル(メタ)アクリレート、ノニルフェニル(メタ)アクリレート等のアリール(メタ)アクリレート、ベンジル(メタ)アクリレート等のアラルキル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシC2-10アルキル(メタ)アクリレート又はC2-10アルカンジオールモノ(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレート等のフルオロC1-10アルキル(メタ)アクリレート、メトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシプロピル(メタ)アクリレート等のアリールオキシアルキル(メタ)アクリレート、フェニルカルビトール(メタ)アクリレート、ノニルフェニルカルビトール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート等のアリールオキシ(ポリ)アルコキシアルキル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート等のアルカンポリオールモノ(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、2-t-ブチルアミノエチル(メタ)アクリレート等のアミノ基又は置換アミノ基を有する(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。 Examples of monofunctional (meth) acrylates include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and sec-butyl. (Meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate C 1-24 alkyl (meth) acrylate such as stearyl (meth) acrylate, cycloalkyl (meth) acrylate such as cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, Bridged cyclic (meth) acrylates such as lopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, phenyl (meta ) Acrylate, aryl (meth) acrylates such as nonylphenyl (meth) acrylate, aralkyl (meth) acrylates such as benzyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate hydroxy C 2-10 alkyl (meth) acrylate or C 2-10 alkanediol mono (meth) acrylate and the like, trifluoroethyl (meth) acrylate, tetrafluoroethylene-flop Pill (meth) acrylate, fluoroalkyl C 1-10 alkyl (meth) acrylates such as hexafluoroisopropyl (meth) acrylate, alkoxyalkyl (meth) acrylates such as methoxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypropyl Aryloxyalkyl (meth) acrylates such as (meth) acrylate, phenyl carbitol (meth) acrylate, nonylphenyl carbitol (meth) acrylate, aryloxy (poly) alkoxyalkyl (meta) such as nonylphenoxypolyethylene glycol (meth) acrylate ) Acrylates, polyalkylene glycol mono (meth) acrylates such as polyethylene glycol mono (meth) acrylate, glycerin mono (meth) acrylate An amino group or substituted amino group such as alkane polyol mono (meth) acrylate such as relate, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 2-t-butylaminoethyl (meth) acrylate, etc. Examples thereof include (meth) acrylate and glycidyl (meth) acrylate.
 2官能(メタ)アクリレートとしては、例えば、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等のアルカンポリオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン等のビスフェノール類(ビスフェノールA、ビスフェノールS等)のC2-4アルキレンオキサイド付加体のジ(メタ)アクリレート、脂肪酸変性ペンタエリスリトール等の酸変性アルカンポリオールのジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、アダマンタンジ(メタ)アクリレート等の橋架け環式ジ(メタ)アクリレート等が例示できる。 Examples of the bifunctional (meth) acrylate include allyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-propanediol di (meth) acrylate, and 1,4-butane. Alkanediol di (meth) acrylates such as diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and alkane polyol di (meta) such as glycerin di (meth) acrylate ) Acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol Polyalkylene glycol di (meth) acrylate such as urdi (meth) acrylate, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxydiethoxyphenyl) ) Di (meth) acrylates and fatty acids of C 2-4 alkylene oxide adducts of bisphenols (bisphenol A, bisphenol S, etc.) such as propane and 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane Examples include di (meth) acrylates of acid-modified alkane polyols such as modified pentaerythritol, bridged di (meth) acrylates such as tricyclodecane dimethanol di (meth) acrylate, and adamantane di (meth) acrylate.
 更に、2官能(メタ)アクリレートとしては、例えば、エポキシジ(メタ)アクリレート(ビスフェノールA型エポキシジ(メタ)アクリレート、ノボラック型エポキシジ(メタ)アクリレート等)、ポリエステルジ(メタ)アクリレート(例えば、脂肪族ポリエステル型ジ(メタ)アクリレート、芳香族ポリエステル型ジ(メタ)アクリレート等)、(ポリ)ウレタンジ(メタ)アクリレート(ポリエステル型ウレタンジ(メタ)アクリレート、ポリエーテル型ウレタンジ(メタ)アクリレート等)、シリコン(メタ)アクリレート等のオリゴマー又は樹脂も挙げられる。 Further, as the bifunctional (meth) acrylate, for example, epoxy di (meth) acrylate (bisphenol A type epoxy di (meth) acrylate, novolac type epoxy di (meth) acrylate, etc.), polyester di (meth) acrylate (for example, aliphatic polyester) Type di (meth) acrylate, aromatic polyester type di (meth) acrylate, etc.), (poly) urethane di (meth) acrylate (polyester type urethane di (meth) acrylate, polyether type urethane di (meth) acrylate etc.), silicon (meta ) Oligomers such as acrylates or resins are also included.
 多官能(メタ)アクリレートとしては、多価アルコールと(メタ)アクリル酸とのエステル化物、例えば、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。更に、これらの多官能(メタ)アクリレートにおいて、多価アルコールは、アルキレンオキシド(例えば、エチレンオキシドやプロピレンオキシド等のC2-4アルキレンオキシド)の付加体であってもよい。 As polyfunctional (meth) acrylate, esterified product of polyhydric alcohol and (meth) acrylic acid, for example, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, Examples include pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate. Further, in these polyfunctional (meth) acrylates, the polyhydric alcohol may be an adduct of alkylene oxide (for example, C2-4 alkylene oxide such as ethylene oxide or propylene oxide).
 これらの多官能(メタ)アクリレートのうち、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3~6官能(メタ)アクリレートが好ましく、ペンタエリスリトールトリ(メタ)アクリレート等の3~4官能(メタ)アクリレートがより好ましい。
 更に、多官能(メタ)アクリレートは、アミンで変性されていない多官能(メタ)アクリレート(マイケル付加等によりアミン類が付加していない未変性多官能(メタ)アクリレート)が好ましい。
Of these polyfunctional (meth) acrylates, tri- to 6-functional (meth) acrylates such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are preferable. Pentaerythritol Tri- to tetra-functional (meth) acrylates such as tri (meth) acrylate are more preferable.
Furthermore, the polyfunctional (meth) acrylate is preferably a polyfunctional (meth) acrylate that is not modified with an amine (an unmodified polyfunctional (meth) acrylate that is not added with amines by Michael addition or the like).
 これらの(メタ)アクリレートは、単独で又は2種以上組み合わせて使用できる。 These (meth) acrylates can be used alone or in combination of two or more.
 以下に、本発明に係る下地層に適用可能なアミノエチル基を有するポリ(メタ)アクリレートの具体例として、例示化合物PE-1~PE-9を示す。なお、下記例示化合物におけるx及びyは、共重合体の重合比率を表す。その重合比率は、溶解性、電極性能等に応じて適宜調整することができ、例えば、x:y=10:90等とすることができる。 Examples Compounds PE-1 to PE-9 are shown below as specific examples of poly (meth) acrylates having aminoethyl groups applicable to the underlayer according to the present invention. In addition, x and y in the following exemplary compounds represent the polymerization ratio of the copolymer. The polymerization ratio can be appropriately adjusted according to solubility, electrode performance, and the like. For example, x: y = 10: 90 can be set.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記例示化合物PE-1~PE-9は、公知の方法により合成することができる。より具体的には、(i)(メタ)アクリレートをアミノエチル化した後、重合又は共重合する方法、(ii)(メタ)アクリレートを重合した後、アミノエチル化する方法が挙げられる。
 以下に、その一例として、例示化合物PE-7の合成方法を示す。
The exemplified compounds PE-1 to PE-9 can be synthesized by a known method. More specifically, (i) a method in which (meth) acrylate is aminoethylated and then polymerized or copolymerized, and (ii) a method in which (meth) acrylate is polymerized and then aminoethylated.
As an example, a method for synthesizing Exemplified Compound PE-7 is shown below.
[合成例]例示化合物PE-7の合成
 温度計、撹拌機、還流冷却器を備えたガラス製反応器に、トルエン80質量部を仕込み、内温を110℃まで加熱した。開始剤として2,2-アゾビス-(2-メチルブチロニトリル)1.2質量部を加え、メタクリル酸メチル100質量部及びアクリル酸18質量部からなる混合溶液を3時間で滴下し、更に4時間加熱を継続した。反応終了後、トルエンを加えてカルボキシ基含有ポリマー溶液を得た。
[Synthesis Example] Synthesis of Exemplified Compound PE-7 A glass reactor equipped with a thermometer, a stirrer and a reflux condenser was charged with 80 parts by mass of toluene, and the internal temperature was heated to 110 ° C. As an initiator, 1.2 parts by mass of 2,2-azobis- (2-methylbutyronitrile) was added, and a mixed solution consisting of 100 parts by mass of methyl methacrylate and 18 parts by mass of acrylic acid was added dropwise over 3 hours. Heating was continued for an hour. After completion of the reaction, toluene was added to obtain a carboxy group-containing polymer solution.
 上記カルボキシ基含有ポリマー溶液を120質量部、トルエン60質量部を仕込み、撹拌下40℃でエチレンイミン53.8質量部とトルエン30質量部の混合溶液を30分かけて滴下した。滴下後40℃で2時間反応させた後、内温を70℃まで昇温して、更に5時間撹拌し熟成を行った後、例示化合物PE-7を得た。
 カルボキシ基のアミノ基への変性率は、ガスクロマトグラフィーの分析から算出した消費されたエチレンイミン量により算出したところ100%であった。
 続いて未反応のエチレンイミンを減圧留去により除去した。減圧留去後のポリマー溶液を検出限界1ppm以下のガスクロマトグラフィーで分析したところ、エチレンイミンは検出されなかった。
120 parts by mass of the carboxy group-containing polymer solution and 60 parts by mass of toluene were charged, and a mixed solution of 53.8 parts by mass of ethyleneimine and 30 parts by mass of toluene was added dropwise at 40 ° C. over 30 minutes with stirring. After the dropwise addition, the reaction was carried out at 40 ° C. for 2 hours, and then the internal temperature was raised to 70 ° C., and the mixture was further stirred for 5 hours for aging to obtain Exemplified Compound PE-7.
The modification ratio of the carboxy group to the amino group was 100% as calculated from the consumed ethyleneimine amount calculated from the analysis of gas chromatography.
Subsequently, unreacted ethyleneimine was removed by distillation under reduced pressure. When the polymer solution after distillation under reduced pressure was analyzed by gas chromatography with a detection limit of 1 ppm or less, ethyleneimine was not detected.
 その他、特開平4-356448号公報、特開2003-41000号公報等に記載の合成方法も参照することができる。 In addition, synthesis methods described in JP-A-4-356448, JP-A-2003-41000, and the like can also be referred to.
(2)アミノエチル基を有するポリ(メタ)アクリルアミド
 アミノエチル基を有するポリ(メタ)アクリルアミドとしては、アミノエチル基を有する、(メタ)アクリルアミドの重合体又は共重合体が挙げられる。
(2) Poly (meth) acrylamide having an aminoethyl group Examples of the poly (meth) acrylamide having an aminoethyl group include a polymer or copolymer of (meth) acrylamide having an aminoethyl group.
 (メタ)アクリルアミドとしては、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ベンジル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-トリル(メタ)アクリルアミド、N-(ヒドロキシフェニル)(メタ)アクリルアミド、N-(スルファモイルフェニル)(メタ)アクリルアミド、N-(フェニルスルホニル)(メタ)アクリルアミド、N-(トリルスルホニル)(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-メチル-N-フェニル(メタ)アクリルアミド、N-ヒドロキシエチル-N-メチル(メタ)アクリルアミド等が挙げられる。 Examples of (meth) acrylamide include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, and N-benzyl (meth). Acrylamide, N-hydroxyethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-tolyl (meth) acrylamide, N- (hydroxyphenyl) (meth) acrylamide, N- (sulfamoylphenyl) (meth) acrylamide N- (phenylsulfonyl) (meth) acrylamide, N- (tolylsulfonyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-methyl-N-phenyl (meth) acrylamide, N-hydroxyethyl- N-methyl (Meth) acrylamide.
 以下に、本発明に用いる下地層に適用可能なアミノエチル基を有するポリ(メタ)アクリルアミドの具体例として、例示化合物PA-1~PA-12を示す。なお、下記例示化合物におけるx及びyは、共重合体の重合比率を表す。その重合比率は、例えば、x:y=10:90等とすることができる。 Examples Compounds PA-1 to PA-12 are shown below as specific examples of poly (meth) acrylamide having an aminoethyl group applicable to the underlayer used in the present invention. In addition, x and y in the following exemplary compounds represent the polymerization ratio of the copolymer. The polymerization ratio can be, for example, x: y = 10: 90.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記例示化合物PA-1~PA-12は、公知の方法により合成することができる。(メタ)アクリルアミドのアミノエチル化、あるいはポリ(メタ)アクリルアミド(単独重合体)のアミノエチル化は、上述の(メタ)アクリレートあるいはポリ(メタ)アクリレートのアミノエチル化と同様に行うことができる。 The exemplified compounds PA-1 to PA-12 can be synthesized by known methods. The aminoethylation of (meth) acrylamide or the aminoethylation of poly (meth) acrylamide (homopolymer) can be performed in the same manner as the aminoethylation of (meth) acrylate or poly (meth) acrylate described above.
(樹脂)
 下地層を構成する樹脂としては、下地層を形成できるものであれば特に限定されない。
 例えば、単量体の繰り返し構造を持つ公知の天然高分子材料や、合成高分子材料を使用することができる。これらは、有機高分子材料、無機高分子材料、有機無機ハイブリッド高分子材料、及び、これらの混合物等を使用することができる。これらの樹脂は、2種以上混合して使用することもできる。
(resin)
The resin constituting the base layer is not particularly limited as long as the base layer can be formed.
For example, a known natural polymer material having a monomer repeating structure or a synthetic polymer material can be used. As these, organic polymer materials, inorganic polymer materials, organic-inorganic hybrid polymer materials, and mixtures thereof can be used. These resins can be used in combination of two or more.
 上記樹脂は、公知の方法により合成することができる。天然高分子材料は、天然原料からの抽出や、セルロース等のように微生物により合成することができる。合成高分子は、ラジカル重合、カチオン重合、アニオン重合、配位重合、開環重合、重縮合、付加重合、付加縮合及びこれらのリビング重合等で得ることができる。 The above resin can be synthesized by a known method. Natural polymer materials can be synthesized from microorganisms such as extracted from natural raw materials or cellulose. The synthetic polymer can be obtained by radical polymerization, cationic polymerization, anionic polymerization, coordination polymerization, ring-opening polymerization, polycondensation, addition polymerization, addition condensation, and living polymerization thereof.
 また、これらの樹脂は、単独重合体でも共重合体でもよく、不斉炭素を有するモノマーを使用する場合、ランダム、シンジオタックチック、アイソタックチックのいずれかの規則性を持つことができる。また、共重合体の場合、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合等の形態をとることができる。 These resins may be either homopolymers or copolymers, and can have any regularity of random, syndiotactic and isotactic when a monomer having an asymmetric carbon is used. Moreover, in the case of a copolymer, forms, such as random copolymerization, alternating copolymerization, block copolymerization, and graft copolymerization, can be taken.
 樹脂の形態は、樹脂自体が液体でも固体でもよい。また、樹脂は、溶媒に溶解しているか、溶媒中に均一に分散していることが好ましい。更に、樹脂は、水溶性樹脂又は水分散性樹脂であってもよい。 The form of the resin may be liquid or solid. The resin is preferably dissolved in the solvent or uniformly dispersed in the solvent. Further, the resin may be a water-soluble resin or a water-dispersible resin.
 また、樹脂は、紫外線・電子線によって硬化する電離放射線硬化型樹脂や、熱により硬化する熱硬化性樹脂であってよく、ゾル-ゲル法により作製される樹脂であってもよい。更に、樹脂は架橋していてもよい。 The resin may be an ionizing radiation curable resin that is cured by ultraviolet rays or an electron beam, a thermosetting resin that is cured by heat, or may be a resin prepared by a sol-gel method. Furthermore, the resin may be crosslinked.
 上述の樹脂において、天然高分子及び合成高分子は、大木道則、大沢利昭、田中元治、千原秀昭編「化学大辞典」(東京化学同人、1989年刊)1551及び769ページのそれぞれの項に記載されているものを一例として使用することができる。 In the above-mentioned resins, the natural polymer and the synthetic polymer are described in the respective sections on pages 1551 and 769 of “Chemical Dictionary” (Tokyo Kagaku Dojin, 1989) edited by Michinori Oki, Toshiaki Osawa, Motoharu Tanaka and Hideaki Chihara. Can be used as an example.
 具体的には、天然高分子材料としては、天然有機高分子材料が好ましく、綿、麻、セルロース、絹、羊毛等の天然繊維や、ゼラチン等のたんぱく質、天然ゴム等を挙げることができる。合成高分子材料としては、ポリオレフィン樹脂、ポリアクリル樹脂、ポリビニル樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリフェニレン樹脂、ポリイミド樹脂、ポリアセタール樹脂、ポリスルホン樹脂、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、ポリ尿素樹脂、ポリカーボネート樹脂、ポリケトン樹脂等を挙げることができる。 Specifically, the natural polymer material is preferably a natural organic polymer material, and examples thereof include natural fibers such as cotton, hemp, cellulose, silk, and wool, proteins such as gelatin, and natural rubber. Synthetic polymer materials include polyolefin resin, polyacrylic resin, polyvinyl resin, polyether resin, polyester resin, polyamide resin, polyurethane resin, polyphenylene resin, polyimide resin, polyacetal resin, polysulfone resin, fluororesin, epoxy resin, silicone resin Phenol resin, melamine resin, polyurethane resin, polyurea resin, polycarbonate resin, polyketone resin and the like.
 ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(1-ブテン)、ポリ4-メチルペンテン、ポリビニルシクロヘキサン、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(α-メチルスチレン)、ポリイソプレン、ポリブタジエン、ポリシクロペンテン、ポリノルボルネン等が挙げられる。
 ポリアクリル樹脂としては、例えば、ポリメタクリレート、ポリアクリレート、ポリアクリルアミド、ポリメタクリルアミド、ポリアクリロニトリル等が挙げられる。
 ポリビニル樹脂としては、例えば、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルビニルエーテル、ポリエチルビニルエーテル、ポリイソブチルビニルエーテル等が挙げられる。
 ポリエーテル樹脂としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリアルキレングリコール等が挙げられる。
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリアルキレンフタレート、ポリエチレンナフタレート等のポリアルキレンナフタレート等が挙げられる。
 ポリアミド樹脂としては、例えば、ポリアミド6、ポリアミド6,6、ポリアミド12、ポリアミド11等が挙げられる。
 フッ素樹脂としては、例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマー、ポリクロロトリフルオロエチレン等が挙げられる。
Examples of the polyolefin resin include polyethylene, polypropylene, polyisobutylene, poly (1-butene), poly-4-methylpentene, polyvinylcyclohexane, polystyrene, poly (p-methylstyrene), poly (α-methylstyrene), polyisoprene. , Polybutadiene, polycyclopentene, polynorbornene and the like.
Examples of the polyacrylic resin include polymethacrylate, polyacrylate, polyacrylamide, polymethacrylamide, polyacrylonitrile and the like.
Examples of the polyvinyl resin include polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polymethyl vinyl ether, polyethyl vinyl ether, polyisobutyl vinyl ether, and the like.
Examples of the polyether resin include polyalkylene glycols such as polyethylene oxide and polypropylene oxide.
Examples of the polyester resin include polyalkylene phthalates such as polyethylene terephthalate and polybutylene terephthalate, and polyalkylene naphthalates such as polyethylene naphthalate.
Examples of the polyamide resin include polyamide 6, polyamide 6,6, polyamide 12, and polyamide 11.
Examples of the fluororesin include polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, ethylene tetrafluoroethylene copolymer, polychlorotrifluoroethylene, and the like.
 なお、上述の水溶性樹脂とは、25℃の水100gに0.001g以上溶解する樹脂を意味する。溶解の度合いは、ヘイズメータ、濁度計等で測定することができる。水溶性樹脂の色は特に限定されないが、透明であることが好ましい。また、水溶性樹脂の数平均分子量は、3000~2000000の範囲内であることが好ましく、より好ましくは4000~500000の範囲内、更に好ましくは5000~100000の範囲内である。 In addition, the above-mentioned water-soluble resin means a resin that dissolves 0.001 g or more in 100 g of water at 25 ° C. The degree of dissolution can be measured with a haze meter, a turbidimeter, or the like. The color of the water-soluble resin is not particularly limited, but is preferably transparent. Further, the number average molecular weight of the water-soluble resin is preferably in the range of 3000 to 2000000, more preferably in the range of 4000 to 500000, and still more preferably in the range of 5000 to 100,000.
 水溶性樹脂の数平均分子量、分子量分布の測定は、一般的に知られているゲルパーミエーションクロマトグラフィー(GPC)により行うことができる。使用する溶媒は、バインダーが溶解すれば特に限りはないが、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、ジクロロメタン(CHCl)が好ましく、より好ましくはTHF、DMFであり、更に好ましくはDMFである。また、測定温度も特に制限はないが、40℃であることが好ましい。 The number average molecular weight and molecular weight distribution of the water-soluble resin can be measured by generally known gel permeation chromatography (GPC). The solvent to be used is not particularly limited as long as the binder dissolves, but tetrahydrofuran (THF), dimethylformamide (DMF), and dichloromethane (CH 2 Cl 2 ) are preferable, more preferably THF and DMF, and still more preferably DMF. It is. The measurement temperature is not particularly limited, but is preferably 40 ° C.
 水溶性樹脂としては、具体的には、天然高分子材料、合成高分子材料として、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、フッ素系等の樹脂が挙げられ、例えば、カゼイン、デンプン、寒天、カラギーナン、セスロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、デキストラン、デキストリン、プルラン、ポリビニルアルコール、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸、ポリ(2-ヒドロキシエチルアクリレート)、ポリ(2-ヒドロキシエチルメタクリレート)、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、水溶性ポリビニルブチラール等のポリマーを挙げることができる。 Specific examples of water-soluble resins include natural polymer materials and synthetic polymer materials such as acrylic resins, polyester resins, polyamide resins, polyurethane resins, and fluorine resins. For example, casein, starch, agar , Carrageenan, sesulose, hydroxyethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, dextran, dextrin, pullulan, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid, poly (2-hydroxyethyl acrylate), poly ( 2-hydroxyethyl methacrylate), polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, water-soluble polyvinyl butyral, and the like.
 上述の水分散性樹脂とは、水系溶剤に均一分散可能なものであり、水系溶剤中に凝集せずに、樹脂からなるコロイド粒子が分散している樹脂を意味する。コロイド粒子の大きさ(平均粒子径)は、一般的に1~1000nmの範囲内程度である。上記のコロイド粒子の平均粒子径は、光散乱光度計により測定することができる。 The above-mentioned water-dispersible resin means a resin that can be uniformly dispersed in an aqueous solvent and in which colloidal particles made of resin are dispersed without being aggregated in the aqueous solvent. The size (average particle diameter) of colloidal particles is generally in the range of 1 to 1000 nm. The average particle diameter of the colloidal particles can be measured with a light scattering photometer.
 また、上記水系溶剤とは、蒸留水及び脱イオン水等の純水のみならず、酸、アルカリ、塩等を含む水溶液、含水の有機溶媒、更には親水性の有機溶媒等の溶媒であることを意味し、メタノール、エタノール等のアルコール系溶媒、水とアルコールとの混合溶媒等が挙げられる。水分散性樹脂は、透明であることが好ましい。また、水分散性樹脂は、フィルムを形成する媒体であれば、特に限定はない。水分散性樹脂としては、例えば、水性アクリル系樹脂、水性ウレタン樹脂、水性ポリエステル樹脂、水性ポリアミド樹脂、水性ポリオレフィン樹脂等が挙げられる。 The aqueous solvent is not only pure water such as distilled water and deionized water, but also an aqueous solution containing an acid, alkali, salt, etc., a water-containing organic solvent, and a hydrophilic organic solvent. And alcohol-based solvents such as methanol and ethanol, mixed solvents of water and alcohol, and the like. The water dispersible resin is preferably transparent. The water-dispersible resin is not particularly limited as long as it is a medium for forming a film. Examples of the water-dispersible resin include an aqueous acrylic resin, an aqueous urethane resin, an aqueous polyester resin, an aqueous polyamide resin, and an aqueous polyolefin resin.
 水性アクリル樹脂としては、酢酸ビニル、アクリル酸、アクリル酸-スチレンの重合体、又は、その他のモノマーとの共重合体が挙げられる。また、水系溶媒への分散性を付与する機能を担う酸部分がリチウム、ナトリウム、カリウム、アンモニウム等のイオンと対塩を形成したアニオン性、窒素原子を有するモノマーとの共重合体からなり、窒素原子が塩酸塩等を形成したカチオン性、ヒドロキシ基やエチレンオキシド等の部位を導入したノニオン系があるが、好ましくはアニオン性である。 Examples of the aqueous acrylic resin include vinyl acetate, acrylic acid, a polymer of acrylic acid-styrene, or a copolymer with other monomers. In addition, the acid moiety responsible for the function of imparting dispersibility to an aqueous solvent is a copolymer of an anionic, nitrogen atom-containing monomer that forms a counter salt with ions such as lithium, sodium, potassium, and ammonium, and nitrogen. Although there are nonionic systems in which a site such as a hydroxyl group or ethylene oxide is introduced, in which an atom forms a hydrochloride or the like, it is preferably anionic.
 水性ウレタン樹脂としては、水分散型ウレタン樹脂、アイオノマー型水性ウレタン樹脂(アニオン性)等が挙げられる。水分散型ウレタン樹脂としては、ポリエーテル系ウレタン樹脂、ポリエステル系ウレタン樹脂が挙げられ、好ましくはポリエステル系ウレタン樹脂である。また、光学用途への使用では、芳香環を持たない無黄変イソシアネートを用いることが好ましい。 Examples of the water-based urethane resin include water-dispersed urethane resin and ionomer-type water-based urethane resin (anionic). Examples of water-dispersed urethane resins include polyether-based urethane resins and polyester-based urethane resins, and polyester-based urethane resins are preferred. For use in optical applications, it is preferable to use non-yellowing isocyanate having no aromatic ring.
 アイオノマー型水性ウレタン樹脂としては、ポリエステル系ウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリカーボネート系ウレタン樹脂等が挙げられ、好ましくはポリエステル系ウレタン樹脂、ポリエーテル系ウレタン樹脂である。 Examples of the ionomer-type water-based urethane resin include polyester-based urethane resins, polyether-based urethane resins, and polycarbonate-based urethane resins, and polyester-based urethane resins and polyether-based urethane resins are preferable.
 水性ポリエステル樹脂は、多塩基酸成分とポリオール成分とから合成される。
 多塩基酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタリンジカルボン酸、アジピン酸、コハク酸、セバチン酸、ドデカン二酸等が挙げられ、これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよく、特に好適に用いることのできる多塩基酸成分としては、工業的に多量に生産されており、安価であること等から、テレフタル酸やイソフタル酸が特に好ましい。
 ポリオール成分としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、シクロヘキサンジメタノール、ビスフェノール等が挙げられ、これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。特に好適に用いることのできるポリオール成分としては、工業的に量産され、安価であり、しかも、樹脂被膜の耐溶剤性や耐候性が向上する等、諸性能にバランスがとれていることから、エチレングリコール、プロピレングリコール又はネオペンチルグリコールが特に好ましい。
The aqueous polyester resin is synthesized from a polybasic acid component and a polyol component.
Examples of the polybasic acid component include terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid, adipic acid, succinic acid, sebacic acid, dodecanedioic acid and the like, and these may be used alone. Two or more kinds may be used in combination, and the polybasic acid component that can be particularly preferably used is industrially produced in large quantities and is inexpensive, so terephthalic acid and isophthalic acid Is particularly preferred.
Examples of the polyol component include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, cyclohexane dimethanol, bisphenol, and the like. May be used in combination, or two or more may be used in combination. As a polyol component that can be particularly preferably used, ethylene is mass-produced industrially, is inexpensive, and is balanced in various performances such as improvement in solvent resistance and weather resistance of the resin film. Glycol, propylene glycol or neopentyl glycol is particularly preferred.
 無機高分子材料としては、ポリシロキサン、ポリホスファゼン、ポリシラン、ポリゲルマン、ポリスタナン、ボラジン系ポリマー、ポリメタロキサン、ポリシラザン、チタンオリゴマー、シランカップリング剤等を挙げることができる。ポリシロキサンとしては、具体的に、シリコーン、シルセスキオキサン、シリコーン樹脂等を挙げることができる。 Examples of the inorganic polymer material include polysiloxane, polyphosphazene, polysilane, polygermane, polystannane, borazine polymer, polymetalloxane, polysilazane, titanium oligomer, and silane coupling agent. Specific examples of the polysiloxane include silicone, silsesquioxane, and silicone resin.
 有機無機ハイブリッド高分子材料としては、ポリカルボシラン、ポリシリレンアリレン、ポリシロール、ポリホスフィン、ポリホスフィンオキシド、ポリ(フェロセニルシラン)、シルセスキオキサンを基本骨格としたシルセスキオキサン誘導体、樹脂にシリカを複合化させた樹脂等を挙げることができる。 As organic / inorganic hybrid polymer materials, polycarbosilane, polysilylene arylene, polysilole, polyphosphine, polyphosphine oxide, poly (ferrocenylsilane), silsesquioxane derivatives based on silsesquioxane Examples thereof include a resin in which silica is combined with a resin.
 シルセスキオキサンを基本骨格としたシルセスキオキサン誘導体としては、具体的に、光硬化型SQシリーズ(東亞合成株式会社)、コンポセランSQ(荒川化学株式会社)、Sila-DEC(チッソ株式会社)等を挙げることができる。また、樹脂にシリカを複合化させた樹脂としては、具体的に、コンポセランシリーズ(荒川化学株式会社)等を挙げることができる。 Specific examples of silsesquioxane derivatives having silsesquioxane as a basic skeleton include photo-curing type SQ series (Toagosei Co., Ltd.), Composelan SQ (Arakawa Chemical Co., Ltd.), Sila-DEC (Chisso Corporation). Etc. Specific examples of the resin in which silica is combined with the resin include the Composelan series (Arakawa Chemical Co., Ltd.).
 また、樹脂としては、電離放射線硬化型樹脂、熱硬化型樹脂等の硬化性樹脂を用いることができる。電離放射線硬化型樹脂とは、電離放射線硬化型樹脂組成物の通常の硬化方法、すなわち、電子線又は紫外線の照射によって硬化することができる樹脂である。 Further, as the resin, a curable resin such as an ionizing radiation curable resin or a thermosetting resin can be used. The ionizing radiation curable resin is a resin that can be cured by an ordinary curing method of an ionizing radiation curable resin composition, that is, by irradiation with an electron beam or ultraviolet rays.
 例えば、電子線硬化の場合には、コックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される10~1000keVの範囲内、好ましくは30~300keVの範囲内のエネルギーを有する電子線等が使用される。 For example, in the case of electron beam curing, 10 to 1000 keV emitted from various electron beam accelerators such as a Cockrowalton type, a bandegraph type, a resonant transformation type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type. An electron beam having an energy within a range of preferably 30 to 300 keV is used.
 紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。紫外線照射装置としては、具体的には、100~230nmの範囲内の真空紫外線を発する希ガスエキシマランプが挙げられる。エキシマランプは、光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、温度上昇の要因となる波長の長い光は発せず、紫外線領域の単一波長でエネルギーを照射するため、照射光自体による照射対象物の温度上昇を抑えられる特徴を持っている。 In the case of ultraviolet curing, ultraviolet rays emitted from rays of ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc, metal halide lamp, etc. can be used. Specific examples of the ultraviolet irradiation device include a rare gas excimer lamp that emits vacuum ultraviolet rays within a range of 100 to 230 nm. Since the excimer lamp has high light generation efficiency, it can be lit with low power. In addition, since light having a long wavelength that causes a temperature rise is not emitted and energy is emitted at a single wavelength in the ultraviolet region, the temperature rise of the irradiation object due to the irradiation light itself is suppressed.
 熱硬化型樹脂とは、加熱により硬化する樹脂であり、樹脂内には架橋剤が含まれていることがより好ましい。熱硬化型樹脂の加熱方法としては、従来公知の加熱方法を用いることができ、ヒータ加熱、オーブン加熱、赤外線加熱、レーザー加熱等を用いることができる。 The thermosetting resin is a resin that is cured by heating, and it is more preferable that a crosslinking agent is contained in the resin. As a heating method of the thermosetting resin, a conventionally known heating method can be used, and heater heating, oven heating, infrared heating, laser heating, or the like can be used.
 また、下地層に用いる樹脂には、表面エネルギー調整剤を添加してもよい。表面エネルギー調整剤を添加することで、金属細線パターンと下地層との密着性、金属細線パターンの線幅等を調整できる。 Further, a surface energy adjusting agent may be added to the resin used for the underlayer. By adding the surface energy adjusting agent, the adhesion between the fine metal wire pattern and the underlayer, the line width of the fine metal wire pattern, and the like can be adjusted.
(酸化物粒子)
 下地層に添加することができる酸化物粒子としては、透明電極への適用が可能であれば特に限定されない。樹脂に酸化物粒子を添加することで、下地層の膜強度、伸縮性、屈折率等の物性を適宜調節でき、更には、金属細線パターンとの密着性も向上する。酸化物粒子としては、例えば、マグネシウム、アルミニウム、シリコン、チタン、亜鉛、イットリウム、ジルコニウム、モリブデン、スズ、バリウム、タンタル等の金属の酸化物を挙げることができる。特に、酸化物粒子は、酸化チタン、酸化アルミニウム、酸化シリコン又は酸化ジルコニウムのいずれかであることが好ましい。
(Oxide particles)
The oxide particles that can be added to the underlayer are not particularly limited as long as they can be applied to a transparent electrode. By adding oxide particles to the resin, physical properties such as film strength, stretchability, and refractive index of the underlayer can be adjusted as appropriate, and the adhesion to the fine metal wire pattern is also improved. Examples of the oxide particles include oxides of metals such as magnesium, aluminum, silicon, titanium, zinc, yttrium, zirconium, molybdenum, tin, barium, and tantalum. In particular, the oxide particles are preferably titanium oxide, aluminum oxide, silicon oxide, or zirconium oxide.
 酸化物粒子の平均粒子径は、5~300nmの範囲内であることが好ましく、特に5~100nmの範囲内であることが、透明電極に好適に用いることができるため好ましい。平均粒子径が上記の範囲内にある酸化物粒子を用いると下地層の表面に十分な凹凸を作ることができ、金属細線パターンとの密着性が向上する。平均粒子径が100nm以下であると表面が平滑になり、有機EL素子への影響が少ない。 The average particle diameter of the oxide particles is preferably in the range of 5 to 300 nm, and particularly preferably in the range of 5 to 100 nm because it can be suitably used for a transparent electrode. When oxide particles having an average particle diameter in the above range are used, sufficient irregularities can be formed on the surface of the underlayer, and the adhesion to the metal fine wire pattern is improved. When the average particle size is 100 nm or less, the surface becomes smooth and the influence on the organic EL element is small.
 酸化物粒子の平均粒子径は、光散乱方式を用いた市販の測定装置を使用して簡便に計測することが可能である。具体的には、ゼータサイザー1000(マルバーン社製)を用いて、レーザードップラー法により、25℃、サンプル希釈液量1mLにて測定した値を用いることができる。
 酸化物粒子は、下地層中に10~70vol%の範囲内で含まれていることが好ましく、20~60vol%の範囲内で含まれていることがより好ましい。
The average particle diameter of the oxide particles can be easily measured using a commercially available measuring apparatus using a light scattering method. Specifically, a value measured at 25 ° C. and 1 mL of a sample dilution amount by a laser Doppler method using a Zetasizer 1000 (manufactured by Malvern) can be used.
The oxide particles are preferably contained within the range of 10 to 70 vol%, more preferably within the range of 20 to 60 vol%, in the underlayer.
(下地層の形成方法)
 下地層は、溶媒に樹脂、酸化物粒子、チオール基含有化合物等を分散することで下地層形成用分散液を作製し、この下地層形成用分散液を基材上に塗布することで形成する。
(Formation method of underlayer)
The underlayer is formed by preparing a dispersion for forming an underlayer by dispersing resin, oxide particles, a thiol group-containing compound, etc. in a solvent, and applying this underlayer-forming dispersion on a substrate. .
 下地層形成用分散液に用いる分散溶媒には特に制限はないが、樹脂の析出とチオール基含有化合物等の凝集が起こらない溶媒を選択することが好ましい。下地層に酸化物粒子が含有されている場合には、分散性の観点から、樹脂、チオール基含有化合物等、及び酸化物粒子を混合した液を超音波処理やビーズミル処理といった方法で分散させ、フィルター等でろ過することが、塗布乾燥後の基材上に金属酸化物の凝集物が発生することを防ぐことができるため好ましい。 Although there is no restriction | limiting in particular in the dispersion solvent used for the dispersion liquid for base layer formation, It is preferable to select the solvent in which precipitation of resin and aggregation of a thiol group containing compound etc. do not occur. When the underlayer contains oxide particles, from the viewpoint of dispersibility, a resin, a thiol group-containing compound, and the mixture of oxide particles are dispersed by a method such as ultrasonic treatment or bead mill treatment. Filtration with a filter or the like is preferable because it can prevent metal oxide aggregates from being generated on the substrate after coating and drying.
 下地層の形成方法は、任意の適切な方法を選択することができ、例えば、塗工方法として、グラビア印刷法、フレキソ印刷法、オフセット印刷、スクリーン印刷法、インクジェット印刷等の各種印刷方法に加えて、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、カーテンコート法、スプレーコート法、ドクターコート法等の各種塗布法を用いることができる。
 下地層を所定のパターンに形成する場合には、グラビア印刷法、フレキソ印刷法、オフセット印刷、スクリーン印刷法、インクジェット印刷法を用いることが好ましい。
Any appropriate method can be selected as a method for forming the underlayer. For example, as a coating method, in addition to various printing methods such as a gravure printing method, a flexographic printing method, an offset printing method, a screen printing method, and an ink jet printing method. Various coating methods such as a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a curtain coating method, a spray coating method, and a doctor coating method can be used.
When the underlayer is formed in a predetermined pattern, it is preferable to use a gravure printing method, a flexographic printing method, an offset printing, a screen printing method, or an inkjet printing method.
 下地層は、基材上に上記塗工法を成膜した後、温風乾燥や赤外線乾燥等の公知の加熱乾燥法や、自然乾燥により乾燥して形成する。加熱乾燥を行う場合の温度は、使用する基材に応じて適宜選択することができるが、200℃以下の温度で行うことが好ましい。
 また、前述のように選択する樹脂によっては、紫外線やエキシマ光等の光エネルギーによる硬化や、基材へのダメージの少ない熱硬化等の処理を行ってもよく、中でもエキシマ光により硬化することが好ましい態様である。
The underlayer is formed by depositing the coating method on a substrate and then drying it by a known heat drying method such as warm air drying or infrared drying, or by natural drying. The temperature for performing heat drying can be appropriately selected according to the substrate to be used, but it is preferably performed at a temperature of 200 ° C. or lower.
In addition, depending on the resin selected as described above, curing by light energy such as ultraviolet rays or excimer light or heat curing with little damage to the substrate may be performed, and in particular, curing by excimer light may be performed. This is a preferred embodiment.
 また、下地層形成用分散液に用いる分散溶媒として、水等のヒドロキシ基を有する極性溶媒や、沸点が200℃以下の低沸点溶媒を選択する場合は、乾燥方法として光源のフィラメント温度が1600~3000℃の範囲内にある赤外線ヒータを用いることが好ましい。ヒドロキシ基が赤外線ヒータから発せられる特定の波長に吸収を持つため、溶媒の乾燥が可能となる。一方、基材としてのポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)に対しては、赤外線ヒータから発せられる特定の波長の吸収が少ないため、基材に対する熱ダメージが少ない。 Further, when a polar solvent having a hydroxy group such as water or a low boiling point solvent having a boiling point of 200 ° C. or lower is selected as a dispersion solvent used in the underlayer-forming dispersion liquid, the filament temperature of the light source is 1600˜ It is preferable to use an infrared heater in the range of 3000 ° C. Since the hydroxy group has absorption at a specific wavelength emitted from the infrared heater, the solvent can be dried. On the other hand, since polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) as a base material has little absorption of a specific wavelength emitted from an infrared heater, thermal damage to the base material is small.
 ヒドロキシ基を有する極性溶媒としては、水(蒸留水、脱イオン水等の純水が好ましい)の他、メタノールやエタノール等のアルコール系溶媒、グリコール類、グリコールエーテル類、水とアルコールの混合溶媒等が挙げられる。
 グリコールエーテル類系有機溶媒としては、具体的には、例えば、エチルカルビトール、ブチルカルビトール等が挙げられる。
 アルコール系有機溶媒としては、具体的には、例えば、上述のメタノール、エタノールの他、1-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、ジアセトンアルコール、ブトキシエタノール等が挙げられる。
Examples of the polar solvent having a hydroxy group include water (pure water such as distilled water and deionized water is preferable), alcohol solvents such as methanol and ethanol, glycols, glycol ethers, and a mixed solvent of water and alcohol. Is mentioned.
Specific examples of the glycol ether organic solvent include ethyl carbitol, butyl carbitol and the like.
Specific examples of the alcohol-based organic solvent include 1-propanol, 2-propanol, n-butanol, 2-butanol, diacetone alcohol, butoxyethanol and the like in addition to the above-described methanol and ethanol.
〈ガスバリアー層(9)〉
 本発明の有機EL素子においては、本発明に用いる透明フレキシブル基材上に、ガスバリアー層を設ける構成であることが好ましい。
 ガスバリアー層を形成した透明フレキシブル基材は、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm(1atmは、1.01325×10Paである。)以下であって、温度25±0.5℃、湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。
<Gas barrier layer (9)>
In the organic EL element of this invention, it is preferable that it is the structure which provides a gas barrier layer on the transparent flexible base material used for this invention.
The transparent flexible base material on which the gas barrier layer is formed has a water vapor permeability of 1 × 10 −3 at a temperature of 25 ± 0.5 ° C. and a humidity of 90 ± 2% RH measured by a method according to JIS K 7129-1992. is preferably g / m 2 · 24h or less, further, the oxygen permeability was measured by the method based on JIS K 7126-1987 is, 1 × 10 -3 ml / m 2 · 24h · atm (1atm is 1.01325 × 10 5 Pa.) The water vapor permeability at a temperature of 25 ± 0.5 ° C. and a humidity of 90 ± 2% RH is 1 × 10 −3 g / m 2 · 24 h or less. Preferably there is.
 ガスバリアー層を形成する材料としては、水分や酸素等、素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化シリコン、二酸化シリコン、窒化シリコン等を用いることができる。
 更に、ガスバリアー層の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
As a material for forming the gas barrier layer, any material may be used as long as it has a function of suppressing intrusion of an element such as moisture or oxygen that causes deterioration of the element. .
Furthermore, in order to improve the brittleness of the gas barrier layer, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 ガスバリアー層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法及びコーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものも好ましい。また、ポリシラザン含有液を湿式塗布方式により塗布及び乾燥し、形成された塗布膜に波長200nm以下の真空紫外光(VUV光)を照射して、形成した塗布膜に改質処理を施して、ガスバリアー層を形成する方法も好ましい。 The method for forming the gas barrier layer is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is also preferable. In addition, the polysilazane-containing liquid is applied and dried by a wet coating method, and the formed coating film is irradiated with vacuum ultraviolet light (VUV light) having a wavelength of 200 nm or less, and the formed coating film is subjected to a modification treatment, and gas A method of forming a barrier layer is also preferable.
 ガスバリアー層の厚さは、1~500nmの範囲内であることが好ましく、より好ましくは10~300nmの範囲内である。ガスバリアー層の厚さが1nm以上であれば、所望のガスバリアー性能を発揮することができ、500nm以下であれば、緻密な酸窒化シリコン膜でのクラックの発生等の膜質劣化を防止することができる。 The thickness of the gas barrier layer is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm. If the thickness of the gas barrier layer is 1 nm or more, the desired gas barrier performance can be exhibited, and if it is 500 nm or less, film quality deterioration such as generation of cracks in a dense silicon oxynitride film can be prevented. Can do.
〈粒子含有層〉
 粒子含有層は、透明フレキシブル基材において、第1電極が形成される面(表面)と反対側の面(裏面)に設けられる。
<Particle-containing layer>
The particle-containing layer is provided on the surface (back surface) opposite to the surface (front surface) on which the first electrode is formed in the transparent flexible base material.
 粒子含有層は、粒子とバインダー樹脂とから構成される。粒子含有層は、バインダー樹脂100質量部に対して、粒子を1~900質量部の範囲内で含有することが好ましい。 The particle-containing layer is composed of particles and a binder resin. The particle-containing layer preferably contains particles in the range of 1 to 900 parts by mass with respect to 100 parts by mass of the binder resin.
(粒子)
 粒子含有層を構成する粒子は、無機微粒子、無機酸化物粒子、導電性ポリマー粒子、導電性カーボン微粒子等が好ましい。中でも、ZnO、TiO、SnO、Al、In、MgO、BaO、MoO、V等の酸化物粒子、及び、SiO等の無機酸化物粒子が好ましい。特に、SnO、SiOが好ましい。
(particle)
The particles constituting the particle-containing layer are preferably inorganic fine particles, inorganic oxide particles, conductive polymer particles, conductive carbon fine particles and the like. Among these, oxide particles such as ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , MgO, BaO, MoO 2 , V 2 O 5 , and inorganic oxide particles such as SiO 2 are preferable. In particular, SnO 2 and SiO 2 are preferable.
(バインダー樹脂)
 粒子含有層を構成するバインダー樹脂としては、例えば、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートフタレート、セルロースナイトレート等のセルロース誘導体、ポリ酢酸ビニル、ポリスチレン、ポリカーボネート、ポリブチレンテレフタレート、コポリブチレン/テレ/イソフタレート等のポリエステル、ポリビニルアルコール、ポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール、ポリビニルベンザール等のポリビニルアルコール誘導体、ノルボルネン化合物を含有するノルボルネン系ポリマー、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリプロピルチルメタクリレート、ポリブチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂又はアクリル樹脂とその他樹脂との共重合体を用いることができるが、特にこれら例示する樹脂材料に限定されるものではない。この中では、セルロース誘導体、アクリル樹脂が好ましく、アクリル樹脂が最も好ましく用いられる。
(Binder resin)
Examples of the binder resin constituting the particle-containing layer include cellulose derivatives such as cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate, polyvinyl acetate, polystyrene, polycarbonate, polybutylene terephthalate, and copolybutylene. / Polyesters such as tele / isophthalate, polyvinyl alcohol, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, polyvinyl alcohol derivatives such as polyvinyl benzal, norbornene-based polymers containing norbornene compounds, polymethyl methacrylate, polyethyl methacrylate, polypropylyl methacrylate , Polybutyl methacrylate, polymethyl acrylate, etc. It can be used a copolymer of acrylic resin or an acrylic resin and other resins, but it is not particularly limited to these exemplified a resin material. Among these, cellulose derivatives and acrylic resins are preferable, and acrylic resins are most preferably used.
 バインダー樹脂としては、重量平均分子量(Mw)が40万以上で、ガラス転移温度が80~110℃の範囲内にある上記熱可塑性樹脂が、光学特性及び形成する粒子含有層の品質の点で好ましい。 As the binder resin, the above thermoplastic resin having a weight average molecular weight (Mw) of 400,000 or more and a glass transition temperature in the range of 80 to 110 ° C. is preferable in terms of optical properties and the quality of the particle-containing layer to be formed. .
 ガラス転移温度は、JIS K 7121:2012に記載の方法で求めることができる。ここで使用するバインダー樹脂は、粒子含有層を構成する全樹脂質量の60質量%以上、更に好ましくは80質量%以上であり、必要に応じて活性線硬化性樹脂、あるいは熱硬化樹脂を適用することもできる。 The glass transition temperature can be determined by the method described in JIS K 7121: 2012. The binder resin used here is 60% by mass or more, more preferably 80% by mass or more of the total resin mass constituting the particle-containing layer, and an actinic radiation curable resin or a thermosetting resin is applied as necessary. You can also.
(粒子含有層の形成方法)
 粒子含有層の形成は、第1電極、下地層及びガスバリアー層の形成前に行うことが好ましい。
 粒子含有層の形成では、上述の粒子とバインダー樹脂とを、適当な有機溶剤に溶解して、溶液状態の粒子含有層形成用塗布液を調製し、これら湿式塗布方式により、透明フレキシブル基材上に塗布及び乾燥して、粒子含有層を形成する。
(Method for forming particle-containing layer)
The formation of the particle-containing layer is preferably performed before the formation of the first electrode, the base layer, and the gas barrier layer.
In the formation of the particle-containing layer, the above-described particles and binder resin are dissolved in an appropriate organic solvent to prepare a coating solution for forming a particle-containing layer in a solution state. And coated and dried to form a particle-containing layer.
 粒子含有層形成用塗布液の調製に用いる有機溶剤としては、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類等を適宜混合して使用することができるが、有機溶剤は、特にこれらに限定されるものではない。 As the organic solvent used for the preparation of the particle-containing layer forming coating solution, hydrocarbons, alcohols, ketones, esters, glycol ethers, and the like can be appropriately mixed and used. It is not limited to these.
 炭化水素類としては、例えば、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等が挙げられ、アルコール類としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール、2-ブタノール、tert-ブタノール、ペンタノール、2-メチル-2-ブタノール、シクロヘキサノール等が挙げられ、ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられ、エステル類としては、例えば、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、乳酸エチル、乳酸メチル等が挙げられ、グリコールエーテル(炭素数1~4)類としては、例えば、メチルセルソルブ、エチルセルソルブ、プロピレングリコールモノメチルエーテル(略称:PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ(炭素数1~4)アルキルエーテルエステル類が挙げられ、プロピレングリコールモノ(炭素数1~4)アルキルエーテルエステル類としては、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートが挙げられ、その他の溶媒として、例えば、N-メチルピロリドン等が挙げられる。特にこれらに限定されるものではないが、これらを適宜混合した溶媒も好ましく用いられる。 Examples of the hydrocarbons include benzene, toluene, xylene, hexane, and cyclohexane. Examples of the alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, 2-butanol, tert. -Butanol, pentanol, 2-methyl-2-butanol, cyclohexanol and the like. Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like. Examples of the esters include formic acid. Examples thereof include methyl, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, ethyl lactate and methyl lactate. Examples of glycol ethers (1 to 4 carbon atoms) include methyl cellosolve and ethyl cellosol. , Propylene glycol monomethyl ether (abbreviation: PGME), propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, propylene glycol mono (1 to 4 carbon atoms) alkyl ether ester Examples of the propylene glycol mono (1 to 4 carbon atoms) alkyl ether esters include propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate. Examples of other solvents include N-methyl. Examples include pyrrolidone and the like. Although not particularly limited to these, a solvent in which these are appropriately mixed is also preferably used.
 粒子含有層形成用塗布液を透明フレキシブル基材上に塗布する方法として、ドクターコート、エクストルージョンコート、スライドコート、ロールコート、グラビアコート、ワイヤーバーコート、リバースコート、カーテンコート、押し出しコート、あるいは米国特許第2681294号明細書に記載のホッパーを使用するエクストルージョンコート方法等が挙げられる。これら湿式塗布方法を適宜用いることにより、透明フレキシブル基材上に、乾燥膜厚が0.1~20μmの範囲内、好ましくは0.2~5μmの範囲内の粒子含有層を形成することができる。 As a method of applying the particle-containing layer forming coating solution onto the transparent flexible substrate, doctor coating, extrusion coating, slide coating, roll coating, gravure coating, wire bar coating, reverse coating, curtain coating, extrusion coating, or the United States Examples include an extrusion coating method using a hopper described in Japanese Patent No. 2681294. By appropriately using these wet coating methods, a particle-containing layer having a dry film thickness in the range of 0.1 to 20 μm, preferably in the range of 0.2 to 5 μm, can be formed on the transparent flexible substrate. .
〈保護部材〉
 また、有機EL素子を機械的に保護するために、保護膜又は保護板等の保護部材(図示略)を設けてもよい。保護部材は、有機EL素子及び封止部材を、第1電極とで挟む位置に配置される。特に封止部材が封止膜である場合には、有機EL素子に対する機械的な保護が十分ではないため、このような保護部材を設けることが好ましい。
<Protective member>
Further, a protective member (not shown) such as a protective film or a protective plate may be provided to mechanically protect the organic EL element. The protective member is disposed at a position where the organic EL element and the sealing member are sandwiched between the first electrode. In particular, when the sealing member is a sealing film, mechanical protection for the organic EL element is not sufficient, and thus it is preferable to provide such a protective member.
 以上のような保護部材は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち、特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。 For the protective member as described above, a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, or a polymer material film or a metal material film is applied. Among these, it is particularly preferable to use a polymer film because it is lightweight and thin.
〈有機EL素子の製造方法〉
 次に、有機EL素子の製造方法の一例を説明する。
 まず、上述の製造方法により第1電極を作製する。
 次に、第1電極上に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の順に成膜し、有機機能層を形成する。これらの各層の成膜方法としては、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。更に、層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが好ましい。
<Method for producing organic EL element>
Next, an example of a method for manufacturing an organic EL element will be described.
First, a 1st electrode is produced with the above-mentioned manufacturing method.
Next, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are formed in this order on the first electrode to form an organic functional layer. As a film forming method of each of these layers, there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but from the point that a uniform film is easily obtained and pinholes are difficult to generate, etc. Vacuum deposition or spin coating is particularly preferred. Further, different film formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 × 10 −6 to 1 × 10 −2 Each condition is preferably selected as appropriate within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of −50 to 300 ° C., and layer thickness of 0.1 to 5 μm.
 有機機能層を形成した後、この上部に第2電極を蒸着法やスパッタ法等の適宜の成膜法によって形成する。この際、第2電極は、有機機能層によって第1電極に対して絶縁状態を保ちつつ、有機機能層の上方から基板の周縁に端子部分を引き出した形状にパターン形成する。次に、上述の製造方法により無機保護層を形成する。また、その後には、取出し電極及び第2電極の端子部分を露出させた状態で、少なくとも有機機能層上に接着剤層及び封止部材を設ける。 After forming the organic functional layer, a second electrode is formed on the organic functional layer by an appropriate film forming method such as vapor deposition or sputtering. At this time, the second electrode is patterned in a shape in which a terminal portion is drawn from the upper side of the organic functional layer to the periphery of the substrate while maintaining an insulating state with respect to the first electrode by the organic functional layer. Next, an inorganic protective layer is formed by the manufacturing method described above. Thereafter, an adhesive layer and a sealing member are provided on at least the organic functional layer with the terminal portions of the extraction electrode and the second electrode exposed.
 以上により、所望の有機EL素子が得られる。このような有機EL素子の作製においては、1回の真空引きで一貫して発光ユニットから第2電極まで作製するのが好ましいが、途中で真空雰囲気から基板を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 Thus, a desired organic EL element can be obtained. In the production of such an organic EL element, it is preferable to produce from the light emitting unit to the second electrode consistently by one evacuation. However, the substrate is taken out from the vacuum atmosphere and subjected to different film forming methods. It doesn't matter. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
《有機EL素子の作製》
 以下のようにして、有機EL素子101~136を作製した。なお、有機EL素子101~105は比較例、有機EL素子106~136は実施例である。
<< Production of organic EL element >>
Organic EL elements 101 to 136 were produced as follows. The organic EL elements 101 to 105 are comparative examples, and the organic EL elements 106 to 136 are examples.
〈有機EL素子101の作製〉
(1)基材の準備
 透明フレキシブル基材として、株式会社きもと製のクリアハードコート層付きポリエチレンテレフタレート(PET/CHC)フィルム(G1SBF、厚さ125μm、屈折率1.59)を準備した。
<Preparation of organic EL element 101>
(1) Preparation of base material As a transparent flexible base material, a polyethylene terephthalate (PET / CHC) film (G1SBF, thickness 125 μm, refractive index 1.59) with a clear hard coat layer manufactured by Kimoto Co., Ltd. was prepared.
(2)ガスバリアー層の形成
 次に、上記透明フレキシブル基材の表面(ハードコート層面)上に、ガスバリアー層を形成した。
(2) Formation of gas barrier layer Next, a gas barrier layer was formed on the surface (hard coat layer surface) of the transparent flexible substrate.
 具体的には、放電プラズマ化学気相成長装置(アプライドマテリアルズ社製プラズマCVD装置 Precision5000)に、透明フレキシブル基材をセットし、ロールtoロールで連続搬送させた。次に、成膜ローラー間に磁場を印加すると共に、各成膜ローラーに電力を供給して、成膜ローラー間にプラズマを発生させ、放電領域を形成した。次に、形成した放電領域に、成膜ガスとして、原料ガスであるヘキサメチルジシロキサン(HMDSO)と反応ガスである酸素ガス(放電ガスとしても機能する。)の混合ガスを、ガス供給管から供給し、下記条件にて、厚さ120nmのガスバリアー層を成膜した。 Specifically, a transparent flexible base material was set in a discharge plasma chemical vapor deposition apparatus (Plasma CVD apparatus Precision 5000 manufactured by Applied Materials) and continuously conveyed by roll-to-roll. Next, a magnetic field was applied between the film forming rollers, and power was supplied to each film forming roller to generate plasma between the film forming rollers to form a discharge region. Next, a mixed gas of hexamethyldisiloxane (HMDSO), which is a raw material gas, and oxygen gas (which also functions as a discharge gas), which is a reactive gas, is supplied as a film forming gas from the gas supply pipe to the formed discharge region. A gas barrier layer having a thickness of 120 nm was formed under the following conditions.
(成膜条件)
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 反応ガス(O)の供給量:500sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 フィルムの搬送速度:0.8m/min
(Deposition conditions)
Feed rate of source gas (hexamethyldisiloxane, HMDSO): 50 sccm (Standard Cubic Centimeter per Minute)
Reaction gas (O 2 ) supply amount: 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film transport speed: 0.8 m / min
(3)第1電極の形成
(3.1)金属細線の形成
 有機EL素子101については、ガスバリアー層上に、蒸着法を用いて銀膜を0.5μmの厚さで作成し、既存のフォトリソ法を用いて、50μm幅、1mmピッチ、格子状のパターンを形成した。これにより、算術平均粗さRaが1.3nmの金属細線パターンを形成した。
 なお、算術平均粗さRaは、原子間力顕微鏡(Digital Instruments社製)を用いて、金属細線の中央部5μm四方を測定した値である。
(3) Formation of first electrode (3.1) Formation of metal thin wire For the organic EL element 101, a silver film having a thickness of 0.5 μm is formed on the gas barrier layer by vapor deposition. A lattice pattern having a width of 50 μm and a pitch of 1 mm was formed by using a photolithography method. As a result, a thin metal wire pattern having an arithmetic average roughness Ra of 1.3 nm was formed.
In addition, arithmetic mean roughness Ra is the value which measured the center part 5 micrometer square of the metal fine wire using the atomic force microscope (made by Digital Instruments).
(3.2)透明導電層の形成
 透明フレキシブル基材(ガスバリアー層)と金属細線パターン上に、透明導電層(金属酸化物層)としてのアモルファスIZO(質量比In:ZnO=90:10)膜を150nmの厚さになるように形成した。なお、透明導電層の膜厚は、接触式表面形状測定器(DECTAK)により測定した値である。
 アモルファスIZO膜は、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar:20sccm、O:3sccm、スパッタ圧:0.25Pa、室温(25℃)下、ターゲット側電力:1000W、ターゲット-基板距離:86mmで、RFスパッタにて作製した。
(3.2) Formation of transparent conductive layer Amorphous IZO (mass ratio In 2 O 3 : ZnO = 90) as a transparent conductive layer (metal oxide layer) on a transparent flexible base material (gas barrier layer) and a fine metal wire pattern : 10) The film was formed to a thickness of 150 nm. In addition, the film thickness of a transparent conductive layer is the value measured with the contact-type surface shape measuring device (DECTAK).
For the amorphous IZO film, an L-430S-FHS sputtering apparatus manufactured by Anelva was used, Ar: 20 sccm, O 2 : 3 sccm, sputtering pressure: 0.25 Pa, room temperature (25 ° C.), target side power: 1000 W, target-substrate It was produced by RF sputtering at a distance of 86 mm.
(4)有機機能層の形成
 まず、真空蒸着装置内の蒸着用るつぼの各々に、有機機能層の各層を構成する下記に示す材料を、各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、下記化合物A-1の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で第1電極(金属酸化物層側)上に蒸着し、厚さ10nmの正孔注入層を形成した。
 次に、下記化合物M-2の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、厚さ30nmの正孔輸送層を形成した。
 次に、下記化合物BD-1及び下記化合物H-1を、化合物BD-1が5質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの青色発光を呈する蛍光発光層を形成した。
 次に、下記化合物GD-1、下記化合物RD-1及び下記化合物H-2を、化合物GD-1が17質量%、RD-1が0.8質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの黄色を呈するリン光発光層を形成した。
 その後、下記化合物E-1を蒸着速度0.1nm/秒で蒸着し、厚さ30nmの電子輸送層を形成した。
 以上により、有機機能層を形成した。
(4) Formation of organic functional layer First, each of the crucibles for vapor deposition in the vacuum vapor deposition apparatus was filled with the following materials constituting each layer of the organic functional layer in an optimum amount for device fabrication. As the evaporation crucible, a crucible made of a resistance heating material made of molybdenum or tungsten was used.
After depressurizing to a vacuum of 1 × 10 −4 Pa, the deposition crucible containing the following compound A-1 was energized and heated, and deposited on the first electrode (metal oxide layer side) at a deposition rate of 0.1 nm / second. The hole injection layer having a thickness of 10 nm was formed.
Next, the deposition crucible containing the following compound M-2 was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a 30 nm thick hole transport layer.
Next, the following compound BD-1 and the following compound H-1 are co-deposited at a deposition rate of 0.1 nm / second so that the compound BD-1 has a concentration of 5 mass%, and emits blue light with a thickness of 15 nm. A fluorescent light emitting layer was formed.
Next, the following compound GD-1, the following compound RD-1, and the following compound H-2 were deposited at a deposition rate of 0.8% so that the concentration of the compound GD-1 was 17% by mass and the concentration of RD-1 was 0.8% by mass. Co-evaporation was performed at 1 nm / second to form a phosphorescent light emitting layer having a thickness of 15 nm and exhibiting a yellow color.
Thereafter, the following compound E-1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
Thus, an organic functional layer was formed.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(5)第2電極の形成
 更に、LiFを厚さ1.5nmで形成した後に、アルミニウムを110nm蒸着して第2電極と、その取出し電極を形成し、有機EL素子101を作製した。
(5) Formation of 2nd electrode Furthermore, after forming LiF by thickness 1.5nm, aluminum was vapor-deposited 110nm, the 2nd electrode and its extraction electrode were formed, and organic EL element 101 was produced.
(6)封止
(6.1)接着剤組成物の調製
 ポリイソブチレン系樹脂(A)として「オパノールB50(BASF製、重量平均分子量(Mw)=340000)」100質量部、ポリブテン樹脂(B)として「日石ポリブテン グレードHV-1900(新日本石油社製、重量平均分子量(Mw)=1900)」30質量部、ヒンダードアミン系光安定剤(C)として「TINUVIN765(BASF・ジャパン製、3級のヒンダードアミン基を有する。)」0.5質量部、ヒンダードフェノール系酸化防止剤(D)として「IRGANOX1010(BASF・ジャパン製、ヒンダードフェノール基のβ位が二つともターシャリーブチル基を有する。)」0.5質量部、及び環状オレフィン系重合体(E)として「Eastotac H-100L Resin(イーストマンケミカル.Co.製)」50質量部を、トルエンに溶解し、固形分濃度約25質量%の接着剤組成物を調製した。
(6) Sealing (6.1) Preparation of Adhesive Composition As polyisobutylene resin (A), 100 parts by mass of “OPanol B50 (manufactured by BASF, weight average molecular weight (Mw) = 340000)”, polybutene resin (B) 30 parts by mass of “Nisseki Polybutene Grade HV-1900 (manufactured by Nippon Oil Corporation, weight average molecular weight (Mw) = 1900)” and “TINUVIN 765 (manufactured by BASF Japan, grade 3 of hindered amine light stabilizer (C)) “Having a hindered amine group.” ”0.5 part by mass, as a hindered phenol-based antioxidant (D)“ IRGANOX 1010 (manufactured by BASF Japan, both β-positions of hindered phenol groups have tertiary butyl groups. ” ) ”0.5 part by mass, and“ Eastotac H-1 ”as the cyclic olefin polymer (E) The 0L Resin (Eastman Chemical .Co. Ltd.) "50 parts by weight, was dissolved in toluene, to prepare a solid concentration of about 25 wt% of the adhesive composition.
(6.2)封止部材の作製
 まず、厚さ100μmのアルミニウム(Al)箔が張り合わされた厚さ50μmのポリエチレンテレフタレートフィルムを用意し封止部材とした。次に、調製した上記接着剤組成物の溶液を乾燥後に形成される接着剤層の厚さが20μmとなるように封止部材のアルミニウム側(ガスバリアー層側)に塗工し、120℃で2分間乾燥させて接着剤層を形成した。
 次に、形成した接着剤層面に対して、剥離シートとして、厚さ38μmの剥離処理をしたポリエチレンテレフタレートフィルムの剥離処理面を貼付して、封止部材を作製した。
(6.2) Production of Sealing Member First, a polyethylene terephthalate film having a thickness of 50 μm in which an aluminum (Al) foil having a thickness of 100 μm was laminated was prepared as a sealing member. Next, the solution of the prepared adhesive composition was applied to the aluminum side (gas barrier layer side) of the sealing member so that the thickness of the adhesive layer formed after drying was 20 μm, and at 120 ° C. It was dried for 2 minutes to form an adhesive layer.
Next, as a release sheet, a release treatment surface of a polyethylene terephthalate film having a thickness of 38 μm was attached to the formed adhesive layer surface to produce a sealing member.
 上述の方法で作製した封止部材を、窒素雰囲気下で24時間以上放置した。
 放置後、剥離シートを除去し、80℃に加熱した真空ラミネーターで有機EL素子101の第2電極を覆う形でラミネートした。更に、120℃で30分加熱し、封止部材により有機EL素子101を封止した。
The sealing member produced by the above method was left for 24 hours or more in a nitrogen atmosphere.
After leaving, the release sheet was removed, and lamination was performed so as to cover the second electrode of the organic EL element 101 with a vacuum laminator heated to 80 ° C. Furthermore, it heated at 120 degreeC for 30 minutes, and sealed the organic EL element 101 with the sealing member.
〈有機EL素子102~105の作製〉
 有機EL素子101の作製において、金属細線の形成方法を以下のようにした以外は同様にして、有機EL素子102~105を作製した。
<Preparation of organic EL elements 102 to 105>
In the production of the organic EL element 101, the organic EL elements 102 to 105 were produced in the same manner except that the method for forming the thin metal wire was as follows.
 ガスバリアー層上に、金属ナノ粒子含有組成物として銀ナノ粒子分散液(FlowMetal SR6000、バンドー化学株式会社製)をインクジェット印刷法を用いて、50μm幅、1mmピッチ、焼成後の乾燥膜厚0.5μmで格子状に塗布してパターン形成した。インクジェット印刷法としては、インク液滴の射出量が4plのインクジェットヘッドを使用し、塗布速度と射出周波数を調整して、パターンを印刷した。インクジェット印刷装置としては、インクジェットヘッド(コニカミノルタ社製)を取り付けた卓上型ロボットShotmaster-300(武蔵エンジニアリング社製)を用い、インクジェット評価装置EB150(コニカミノルタ社製)にて制御した。 On the gas barrier layer, a silver nanoparticle dispersion (FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.) as a metal nanoparticle-containing composition is 50 μm wide, 1 mm pitch, and the dried film thickness after firing is 0.00. A pattern was formed by coating in a grid pattern at 5 μm. As an ink jet printing method, an ink jet head having an ink droplet ejection amount of 4 pl was used, and a coating speed and an ejection frequency were adjusted to print a pattern. As the ink jet printing apparatus, a desktop robot Shotmaster-300 (manufactured by Musashi Engineering) equipped with an ink jet head (manufactured by Konica Minolta) was used and controlled by an ink jet evaluation apparatus EB150 (manufactured by Konica Minolta).
 次に、赤外線照射装置(アルティメットヒーター/カーボン、明々工業株式会社製)に、波長3.5μm以上の赤外線を吸収する石英ガラス板2枚を取り付け、ガラス板間に冷却空気を流した波長制御赤外線ヒータを用いて、形成した金属ナノ粒子含有組成物のパターンの乾燥処理を行った。 Next, two quartz glass plates that absorb infrared rays having a wavelength of 3.5 μm or more are attached to an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates. The drying process of the pattern of the formed metal nanoparticle containing composition was performed using the heater.
 次に、250nm以下の短波長カットフィルターを装着したキセノンフラッシュランプ2400WS(COMET社製)を用いて、光照射エネルギーの総計が3.5J/cmのフラッシュ光を、照射時間2m秒で金属ナノ粒子含有組成物のパターン側から1回照射して、乾燥後の金属ナノ粒子含有組成物のパターンの焼成処理を行い、算術平均粗さRaが9.2nmの金属細線パターンを形成した(有機EL素子102)。 Next, using a xenon flash lamp 2400WS (manufactured by COMET) equipped with a short-wavelength cut filter of 250 nm or less, flash light having a total light irradiation energy of 3.5 J / cm 2 was irradiated with a metal nanometer in an irradiation time of 2 milliseconds. Irradiation is performed once from the pattern side of the particle-containing composition, and the pattern of the dried metal nanoparticle-containing composition is baked to form a fine metal wire pattern having an arithmetic average roughness Ra of 9.2 nm (organic EL Element 102).
 更に、光の照射エネルギーの総計を増加させることで、算術平均粗さRaが13.5nm、19.5nm、30.2nmの金属細線パターンを形成した(有機EL素子103~105)。 Furthermore, by increasing the total amount of light irradiation energy, metal thin line patterns having an arithmetic average roughness Ra of 13.5 nm, 19.5 nm, and 30.2 nm were formed (organic EL elements 103 to 105).
〈有機EL素子106~110の作製〉
 有機EL素子106は、有機EL素子101の作製において、封止をする前に、第2電極上に、以下のようにして無機保護層を形成した以外は同様にして、有機EL素子106を作製した。
 有機EL素子107~110は、それぞれ有機EL素子102~105の作製において、封止をする前に、第2電極上に、以下のようにして無機保護層を形成した以外は同様にして、有機EL素子107~110を作製した。
<Preparation of organic EL elements 106 to 110>
The organic EL element 106 was produced in the same manner as in the production of the organic EL element 101 except that an inorganic protective layer was formed on the second electrode as follows before sealing. did.
The organic EL elements 107 to 110 were formed in the same manner as in the production of the organic EL elements 102 to 105, except that an inorganic protective layer was formed on the second electrode as follows before sealing. EL elements 107 to 110 were produced.
(1)無機保護層の形成
 第2電極上に、無機保護層として窒化シリコン膜を表1に示す厚さになるように形成した。なお、無機保護層の膜厚は、接触式表面形状測定器(DECTAK)により測定した値である。
 また、無機保護層の膜密度は、高密度である7.0×1022atoms/cmとした。なお、膜密度の測定は、成膜した単膜をラザフォード後方散乱分析法を用いて測定し、成膜した断面のTEMにより膜厚を測定することにより求めた。
 具体的には、放電プラズマ化学気相成長装置(アプライドマテリアルズ社製プラズマCVD装置 Precision5000)に、基板をセットした。成膜ガスとして、原料ガスであるヘキサメチルジシロキサン(HMDSO)と反応ガスである酸素ガス(放電ガスとしても機能する。)の混合ガスを、それぞれ50sccm(Standard Cubic Centimeter per Minute)、500sccmの供給量でガス供給管から供給し、チャンバー内の真空度が3Pa、印加電圧0.8kW、周波数70kHzの条件で、プラズマCVDにて形成した。
(1) Formation of inorganic protective layer A silicon nitride film was formed as an inorganic protective layer on the second electrode so as to have a thickness shown in Table 1. In addition, the film thickness of an inorganic protective layer is the value measured with the contact-type surface shape measuring device (DECTAK).
The film density of the inorganic protective layer was 7.0 × 10 22 atoms / cm 3 , which is a high density. The film density was measured by measuring the formed single film using Rutherford backscattering analysis method and measuring the film thickness by TEM of the formed cross section.
Specifically, the substrate was set in a discharge plasma chemical vapor deposition apparatus (a plasma CVD apparatus Precision5000 manufactured by Applied Materials). As a film forming gas, a mixed gas of hexamethyldisiloxane (HMDSO) as a raw material gas and oxygen gas (which also functions as a discharge gas) as a reaction gas is supplied at 50 sccm (Standard Cubic Centimeter per Minute) and 500 sccm, respectively. The gas was supplied in an amount from a gas supply pipe, and was formed by plasma CVD under the conditions of a vacuum degree in the chamber of 3 Pa, an applied voltage of 0.8 kW, and a frequency of 70 kHz.
〈有機EL素子111~114の作製〉
 有機EL素子107の作製において、無機保護層の膜厚を表1に示す値とした以外は同様にして、有機EL素子111~114を作製した。
<Preparation of organic EL elements 111 to 114>
Organic EL elements 111 to 114 were manufactured in the same manner except that the thickness of the inorganic protective layer was changed to the value shown in Table 1 in the preparation of the organic EL element 107.
〈有機EL素子115、116の作製〉
 有機EL素子107の作製において、無機保護層を2層とし、膜密度及び膜厚を、有機EL素子115、116のそれぞれについて表1に示す値とした以外は同様にして、有機EL素子115、116を作製した。
 なお、無機保護層の膜密度は、低密度は5.1×1022atoms/cm、高密度は7.0×1022atoms/cmであり、無機保護層の膜密度は、ガス流量と成膜時の圧力を制御することにより調整した。以下、同様である。
<Preparation of organic EL elements 115 and 116>
In the production of the organic EL element 107, the organic EL element 115, the thickness of the inorganic protective layer is two, and the film density and the film thickness are the same as those shown in Table 1 for each of the organic EL elements 115 and 116. 116 was produced.
The film density of the inorganic protective layer is 5.1 × 10 22 atoms / cm 3 for the low density and 7.0 × 10 22 atoms / cm 3 for the high density, and the film density of the inorganic protective layer is the gas flow rate. And by adjusting the pressure during film formation. The same applies hereinafter.
〈有機EL素子117~123の作製〉
 有機EL素子107の作製において、無機保護層を3層とし、膜密度及び膜厚を、それぞれ表1に示す値とした以外は同様にして、有機EL素子117~123を作製した。なお、無機保護層が3層の場合、2層目が中間層である。
<Preparation of organic EL elements 117 to 123>
In the production of the organic EL element 107, organic EL elements 117 to 123 were produced in the same manner except that the inorganic protective layer was three layers and the film density and film thickness were the values shown in Table 1, respectively. When the inorganic protective layer is three layers, the second layer is an intermediate layer.
〈有機EL素子124、125の作製〉
 有機EL素子121の作製において、無機保護層として、有機EL素子124は酸化シリコン膜に、有機EL素子125は酸窒化シリコン膜に変更した以外は同様にして、有機EL素子124、125を作製した。
 なお、酸化シリコン膜は、原料ガスとしてテトラヒドロキシシランと酸化二窒素を用いることで成膜した。酸窒化シリコン膜は、原料ガスとしてジクロロシランとアンモニアを用いることで成膜した。
<Preparation of organic EL elements 124 and 125>
In the production of the organic EL element 121, organic EL elements 124 and 125 were produced in the same manner except that the organic EL element 124 was changed to a silicon oxide film and the organic EL element 125 was changed to a silicon oxynitride film as the inorganic protective layer. .
Note that the silicon oxide film was formed by using tetrahydroxysilane and dinitrogen oxide as source gases. The silicon oxynitride film was formed by using dichlorosilane and ammonia as source gases.
〈有機EL素子126、127の作製〉
 有機EL素子121の作製において、透明導電層として、有機EL素子126はアモルファスITOに、有機EL素子127はPEDOT(ポリ(3,4-エチレンジオキシチオフェン))に変更し、これらを以下の方法で形成した以外は同様にして、有機EL素子126、127を作製した。
<Preparation of organic EL elements 126 and 127>
In the production of the organic EL element 121, as the transparent conductive layer, the organic EL element 126 is changed to amorphous ITO, and the organic EL element 127 is changed to PEDOT (poly (3,4-ethylenedioxythiophene)). The organic EL elements 126 and 127 were produced in the same manner except that they were formed as described above.
 アモルファスITOは、国際公開第2012/090735号の方法を用いて、金属細線上に、アモルファスITOを表1に示す厚さになるように形成した。
 また、PEDOTは、以下の方法により形成した。
 金属細線上に、PEDOT-PSS CLEVIOS PH510(固形分濃度1.89%、H.C.Starck社製)を、押し出し法を用いて、乾燥膜厚150nmになるように押し出しヘッドのスリット間隙を調整して塗布した。次に、110℃、5分で加熱乾燥し、導電性ポリマーと水溶性ポリマーP-1(ポリ(2-ヒドロキシエチルアクリレート))からなる透明導電層を形成した。
Amorphous ITO was formed on a thin metal wire so as to have a thickness shown in Table 1, using the method of International Publication No. 2012/090735.
PEDOT was formed by the following method.
PEDOT-PSS CLEVIOS PH510 (solid content concentration 1.89%, manufactured by HC Starck) is adjusted on a thin metal wire using an extrusion method to adjust the slit gap of the extrusion head to a dry film thickness of 150 nm. And applied. Next, it was dried by heating at 110 ° C. for 5 minutes to form a transparent conductive layer comprising a conductive polymer and a water-soluble polymer P-1 (poly (2-hydroxyethyl acrylate)).
〈有機EL素子128~131の作製〉
 有機EL素子121の作製において、透明導電層の膜厚を、それぞれ表1に示す値とした以外は同様にして、有機EL素子128~131を作製した。
<Preparation of organic EL elements 128 to 131>
Organic EL elements 128 to 131 were manufactured in the same manner except that the thickness of the transparent conductive layer was changed to the values shown in Table 1 in the preparation of the organic EL element 121.
〈有機EL素子132の作製〉
 有機EL素子121の作製において、金属細線パターンを形成する前に、透明フレキシブル基材(ガスバリアー層)上に、以下のようにして下地層(チオール系)を形成した以外は同様にして、有機EL素子132を作製した。
<Preparation of organic EL element 132>
In the production of the organic EL element 121, before forming the fine metal wire pattern, the organic EL element 121 was formed in the same manner except that the base layer (thiol-based) was formed on the transparent flexible base material (gas barrier layer) as follows. An EL element 132 was produced.
(1)下地層の形成
 透明フレキシブル基材(ガスバリアー層)上に、カレンズMTBD1(昭和電工(株)社製、例示化合物SE-20)と、1当量のA-TMM-3LM-N(ペンタエリスリトールトリアクリレート(トリエステル57%)、新中村化学工業(株)社製)とを混合し、固形分が0.2質量%になる量の重合開始剤イルガキュア184(BASF社製)を混合して、メチルイソブチルケトン(MIBK)で固形分3質量%の希釈液を調製した。これをスピンコーターを用いて2000rpmで成膜後、上述の赤外線照射装置で乾燥した。その後、有機EL素子作製時における封止内に下地層が収まるように外周部をふき取り、エキシマランプにて硬化(装置:株式会社エム・ディ・コム製エキシマ照射装置MODEL MECL-M-1-200、照射波長:172nm、ランプ封入ガス:Xe、エキシマランプ光強度:130mW/cm(172nm)、試料と光源との距離:2mm、ステージ加熱温度:70℃、照射装置内の酸素濃度:20.0%、照射エネルギー:1J/cm)を行い、厚さ100nmの下地層を形成した。なお、下地層の膜厚は、接触式表面形状測定器(DECTAK)により測定した値である。
(1) Formation of underlayer Karenz MTBD1 (produced by Showa Denko KK, Exemplified Compound SE-20) and 1 equivalent of A-TMM-3LM-N (penta) on a transparent flexible substrate (gas barrier layer) Erythritol triacrylate (Triester 57%), Shin-Nakamura Chemical Co., Ltd.) is mixed, and polymerization initiator Irgacure 184 (BASF) is mixed in such an amount that the solid content becomes 0.2% by mass. Then, a diluted solution having a solid content of 3% by mass was prepared with methyl isobutyl ketone (MIBK). This was formed into a film at 2000 rpm using a spin coater, and then dried by the infrared irradiation apparatus described above. Thereafter, the outer peripheral portion is wiped off so that the underlayer is contained in the seal when the organic EL element is produced, and cured with an excimer lamp (apparatus: excimer irradiation apparatus MODEL MECL-M-1-200 manufactured by M.D. , Irradiation wavelength: 172 nm, lamp enclosed gas: Xe, excimer lamp light intensity: 130 mW / cm 2 (172 nm), distance between sample and light source: 2 mm, stage heating temperature: 70 ° C., oxygen concentration in irradiation apparatus: 20. 0%, irradiation energy: 1 J / cm 2 ), and a base layer having a thickness of 100 nm was formed. In addition, the film thickness of a base layer is the value measured with the contact-type surface shape measuring device (DECTAK).
〈有機EL素子133、134の作製〉
 有機EL素子132のチオール系の下地層に代えて、有機EL素子133はアミノエチル基アクリル系、有機EL素子134はアミノエチル基メタクリル系の下地層を用いた。
 有機EL素子132の作製において、下地層に添加するカレンズMTBD1に代えて、有機EL素子133はポリメントNK-350、有機EL素子134は例示化合物PA-4(重量平均分子量(Mw)56000)を用いた以外は同様にして、有機EL素子133、134を作製した。
<Preparation of organic EL elements 133 and 134>
Instead of the thiol base layer of the organic EL element 132, the organic EL element 133 was an aminoethyl group acrylic base layer, and the organic EL element 134 was an aminoethyl group methacrylic base layer.
In the production of the organic EL element 132, instead of the Karenz MTBD1 added to the underlayer, the organic EL element 133 uses Polyment NK-350, and the organic EL element 134 uses the exemplified compound PA-4 (weight average molecular weight (Mw) 56000). Except for the above, organic EL elements 133 and 134 were produced in the same manner.
〈有機EL素子135、136の作製〉
 有機EL素子107の作製において、無機保護層を4層とし、膜密度及び膜厚を、それぞれ表1に示す値とした以外は同様にして、有機EL素子135、136を作製した。なお、無機保護層が4層の場合、2層目と3層目が中間層であるが、表1の「[中間層の膜厚/無機保護層全体の膜厚]×100」の中間層の膜厚は、最も膜密度が低い中間層(2層目)の膜厚としたものである。
<Preparation of organic EL elements 135 and 136>
In the production of the organic EL element 107, the organic EL elements 135 and 136 were produced in the same manner except that the inorganic protective layer was four layers and the film density and film thickness were the values shown in Table 1, respectively. When the number of inorganic protective layers is four, the second and third layers are intermediate layers, but the intermediate layer “[film thickness of intermediate layer / total film thickness of inorganic protective layer] × 100” in Table 1 The film thickness is the film thickness of the intermediate layer (second layer) having the lowest film density.
《評価》
 作製した有機EL素子101~136について、下記評価を行った。
 評価結果を表1に示す。
<Evaluation>
The manufactured organic EL elements 101 to 136 were evaluated as follows.
The evaluation results are shown in Table 1.
〈保存前ダークスポット(DS)〉
 作製した各有機EL素子に対し、2.5mA/cmの定電流密度条件下による点灯を行い、発光すべき領域内における発光しない点(ダークスポット(DS))の面積を測定し、下記基準により評価した。下記評価のうち、3以上を合格とした。
<Dark spot before storage (DS)>
Each manufactured organic EL element is lit under a constant current density condition of 2.5 mA / cm 2 , and the area of a point where no light is emitted (dark spot (DS)) in the region to emit light is measured. It was evaluated by. Of the following evaluations, 3 or more were considered acceptable.
 6:発光すべき領域内におけるDSの面積が0.5%未満
 5:発光すべき領域内におけるDSの面積が0.5%以上1%未満
 4:発光すべき領域内におけるDSの面積が1%以上5%未満
 3:発光すべき領域内におけるDSの面積が5%以上10%未満
 2:発光すべき領域内におけるDSの面積が10%以上15%未満
 1:発光すべき領域内におけるDSの面積が15%以上
6: DS area in a region to emit light is less than 0.5% 5: DS area in a region to emit light is 0.5% or more and less than 1% 4: DS area in a region to emit light is 1 % To less than 5% 3: DS area in the region to emit light is 5% to less than 10% 2: DS area in the region to emit light is 10% to less than 15% 1: DS in the region to emit light The area of 15% or more
〈保存後ダークスポット(DS)〉
 作製した各有機EL素子を85℃(dry)の恒温槽に投入し、500時間後取り出した後、2.5mA/cmの定電流密度条件下による点灯、発光すべき領域内における発光しない点(ダークスポット(DS))の面積を測定し、下記基準により評価した。下記評価のうち、3以上を合格とした。
<Dark spot after storage (DS)>
Each produced organic EL element is put into a thermostat of 85 ° C. (dry), taken out after 500 hours, then lit under a constant current density condition of 2.5 mA / cm 2 , and does not emit light in the region to emit light The area of (dark spot (DS)) was measured and evaluated according to the following criteria. Of the following evaluations, 3 or more were considered acceptable.
 6:発光すべき領域内におけるDSの面積が1%未満
 5:発光すべき領域内におけるDSの面積が1%以上2.5%未満
 4:発光すべき領域内におけるDSの面積が2.5%以上5%未満
 3:発光すべき領域内におけるDSの面積が5%以上10%未満
 2:発光すべき領域内におけるDSの面積が10%以上30%未満
 1:発光すべき領域内におけるDSの面積が30%以上
6: DS area in a region to emit light is less than 1% 5: DS area in a region to emit light is 1% or more and less than 2.5% 4: DS area in a region to emit light is 2.5 % To less than 5% 3: DS area in the region to emit light is 5% to less than 10% 2: DS area in the region to emit light is 10% to less than 30% 1: DS in the region to emit light The area of 30% or more
〈整流特性〉
 作製した各有機EL素子について、同一作製手順にてそれぞれ10個ずつ作製し、整流比を測定した上で平均値を求め、以下の指標で整流比として評価した。下記評価のうち、3以上を合格とした。
<Rectification characteristics>
About each produced organic EL element, ten each was produced in the same preparation procedure, after measuring a rectification ratio, the average value was calculated | required and evaluated as a rectification ratio with the following parameter | indexes. Of the following evaluations, 3 or more were considered acceptable.
 整流比=+4V印加時の電流値/-4V印加時の電流値
 6:整流比が1.0×10以上
 5:整流比が1.0×10以上1.0×10未満
 4:整流比が1.0×10以上1.0×10未満
 3:整流比が1.0×10以上1.0×10未満
 2:整流比が1.0×10以上1.0×10未満
 1:整流比が1.0×10未満
Rectification ratio = Current value when + 4V is applied / Current value when −4V is applied 6: Rectification ratio is 1.0 × 10 5 or more 5: Rectification ratio is 1.0 × 10 4 or more and less than 1.0 × 10 5 4: Rectification ratio is 1.0 × 10 3 or more and less than 1.0 × 10 4 3: Rectification ratio is 1.0 × 10 2 or more and less than 1.0 × 10 3 2: Rectification ratio is 1.0 × 10 or more and 1.0 Less than × 10 2 1: Rectification ratio is less than 1.0 × 10
〈密着性〉
 各有機EL素子について、金属細線まで形成した段階で、金属細線の強度(基材と金属細線との密着性)をテープ剥離法により評価した。具体的には、金属細線上にSTフィルム(パナック0.1N/25mm)を用いて圧着/剥離を10回繰り返し、金属細線パターンの脱落を目視観察して行った。金属細線パターンの剥離が少ないものを○、金属細線パターンの剥離がないものを◎とした。
<Adhesion>
About each organic EL element, the strength (adhesiveness of a base material and a metal fine wire) of the metal fine wire was evaluated by the tape peeling method in the stage which formed even the metal fine wire. Specifically, pressing / peeling was repeated 10 times using an ST film (Panac 0.1N / 25 mm) on the fine metal wire, and the metal fine wire pattern was observed by visual observation. The case where there was little peeling of a metal fine wire pattern was marked as ○, and the case where there was no peeling of the metal fine wire pattern was marked as ◎.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
〈まとめ〉
 表1、2から明らかなように、本発明の有機EL素子は、比較例の有機EL素子と比べて、整流比に優れると共に、ダークスポットの発生が抑制されていることが確認された。
 また、金属細線の算術平均粗さRaが好ましい値である有機EL素子108、109は、有機EL素子110と比較して、ダークスポットの発生が抑制されていた。
 また、金属細線の算術平均粗さRaがより好ましい値である有機EL素子106、107は、有機EL素子108~110と比較して、整流比に優れると共に、ダークスポットの発生が抑制されていた。
 また、無機保護層の膜厚が好ましい値である有機EL素子112、113は、有機EL素子111、114と比較して、ダークスポットの発生が抑制されていた。
<Summary>
As is clear from Tables 1 and 2, it was confirmed that the organic EL device of the present invention was superior in rectification ratio and suppressed the generation of dark spots as compared with the organic EL device of the comparative example.
In addition, in the organic EL elements 108 and 109 having the preferable arithmetic average roughness Ra of the fine metal wires, generation of dark spots was suppressed as compared with the organic EL element 110.
In addition, the organic EL elements 106 and 107 having a more preferable value of the arithmetic average roughness Ra of the fine metal wires are superior in rectification ratio and suppressed generation of dark spots as compared with the organic EL elements 108 to 110. .
Further, in the organic EL elements 112 and 113 having a preferable thickness of the inorganic protective layer, generation of dark spots was suppressed as compared with the organic EL elements 111 and 114.
 また、無機保護層が、膜密度の異なる3層から形成されている有機EL素子117、118は、有機EL素子111~116と比較して、ダークスポットの発生が抑制されていた。
 また、3層からなる無機保護層のうち、中間層が最も膜密度が低い有機EL素子119は、有機EL素子117、118と比較して、整流比に優れていた。
 また、中間層の膜厚が無機保護層全体の膜厚に対して20~50%である有機EL素子120~122は、有機EL素子119、123と比較して、整流比に優れると共に、ダークスポットの発生が抑制されていた。
In addition, in the organic EL elements 117 and 118 in which the inorganic protective layer is formed of three layers having different film densities, the generation of dark spots is suppressed as compared with the organic EL elements 111 to 116.
In addition, among the three inorganic protective layers, the organic EL element 119 having the lowest film density in the intermediate layer was superior in rectification ratio as compared with the organic EL elements 117 and 118.
Further, the organic EL elements 120 to 122 in which the film thickness of the intermediate layer is 20 to 50% with respect to the film thickness of the entire inorganic protective layer are superior in rectification ratio and darker than the organic EL elements 119 and 123. The generation of spots was suppressed.
 また、無機保護層が窒化シリコンである有機EL素子121は、有機EL素子124、125と比較して、ダークスポットの発生が抑制されていた。
 また、透明導電層がアモルファスな金属酸化物である有機EL素子121は、有機EL素子127と比較して、ダークスポットの発生が抑制されていた。
 また、透明導電層の膜厚が好ましい値である有機EL素子129、130は、有機EL素子128、131と比較して、整流比に優れると共に、ダークスポットの発生が抑制されていた。
 また、下地層を設けた有機EL素子132~134は、有機EL素子121と比較して、基材と金属細線間の密着性に優れていた。
In addition, in the organic EL element 121 in which the inorganic protective layer is silicon nitride, generation of dark spots was suppressed as compared with the organic EL elements 124 and 125.
Further, in the organic EL element 121 in which the transparent conductive layer is an amorphous metal oxide, generation of dark spots is suppressed as compared with the organic EL element 127.
In addition, the organic EL elements 129 and 130 having a preferable thickness of the transparent conductive layer were excellent in rectification ratio and suppressed generation of dark spots as compared with the organic EL elements 128 and 131.
In addition, the organic EL elements 132 to 134 provided with the base layer were superior in adhesion between the base material and the fine metal wires compared to the organic EL element 121.
1 有機EL素子
2 透明フレキシブル基材
3 第1電極
3a 金属細線
3b 透明導電層
4 有機機能層
5 第2電極
6 無機保護層
6a 第1無機保護層
6b 第2無機保護層
6c 第3無機保護層
7 接着剤層
8 封止部材(封止層)
9 ガスバリアー層
10 下地層
DESCRIPTION OF SYMBOLS 1 Organic EL element 2 Transparent flexible base material 3 1st electrode 3a Metal thin wire 3b Transparent conductive layer 4 Organic functional layer 5 Second electrode 6 Inorganic protective layer 6a First inorganic protective layer 6b Second inorganic protective layer 6c Third inorganic protective layer 7 Adhesive layer 8 Sealing member (sealing layer)
9 Gas barrier layer 10 Underlayer

Claims (12)

  1.  透明フレキシブル基材上に、少なくとも金属細線と透明導電層とを含む第1電極、有機機能層、第2電極、無機保護層、接着剤層、封止部材が順次積層された有機エレクトロルミネッセンス素子。 An organic electroluminescence device in which a first electrode, an organic functional layer, a second electrode, an inorganic protective layer, an adhesive layer, and a sealing member including at least a thin metal wire and a transparent conductive layer are sequentially laminated on a transparent flexible substrate.
  2.  前記金属細線の算術平均粗さRaが1~20nmである請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein the arithmetic average roughness Ra of the thin metal wire is 1 to 20 nm.
  3.  前記金属細線の算術平均粗さRaが1~10nmである請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein the thin metal wire has an arithmetic average roughness Ra of 1 to 10 nm.
  4.  前記無機保護層の膜厚が500~1500nmである請求項1から請求項3のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 3, wherein the inorganic protective layer has a thickness of 500 to 1500 nm.
  5.  前記無機保護層が、膜密度の異なる3層から形成されている請求項1から請求項4のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to any one of claims 1 to 4, wherein the inorganic protective layer is formed of three layers having different film densities.
  6.  前記3層からなる無機保護層のうち、中間層が最も膜密度が低い請求項5に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 5, wherein, among the three inorganic protective layers, the intermediate layer has the lowest film density.
  7.  前記中間層の膜厚が前記無機保護層全体の膜厚に対して20~50%である請求項6に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 6, wherein the film thickness of the intermediate layer is 20 to 50% with respect to the film thickness of the entire inorganic protective layer.
  8.  前記無機保護層が窒化シリコンである請求項1から請求項7のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 7, wherein the inorganic protective layer is silicon nitride.
  9.  前記透明導電層がアモルファスな金属酸化物である請求項1から請求項8のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 8, wherein the transparent conductive layer is an amorphous metal oxide.
  10.  前記透明導電層の膜厚が50~300nmである請求項1から請求項9のいずれか1項に記載の有機エレクトロルミネッセンス素子。 10. The organic electroluminescence device according to claim 1, wherein the transparent conductive layer has a thickness of 50 to 300 nm.
  11.  前記透明フレキシブル基材と前記第1電極との間に、下地層が設けられている請求項1から請求項10のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to any one of claims 1 to 10, wherein a base layer is provided between the transparent flexible substrate and the first electrode.
  12.  前記下地層に、チオール基を有する化合物、アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミドから選択される少なくとも1種が含有されている請求項11に記載の有機エレクトロルミネッセンス素子。 The at least 1 sort (s) selected from the compound which has a thiol group, the poly (meth) acrylate which has an aminoethyl group, and the poly (meth) acrylamide which has an aminoethyl group in the said base layer is contained. Organic electroluminescence device.
PCT/JP2018/007047 2017-04-11 2018-02-26 Organic electroluminescent element WO2018190010A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019512368A JPWO2018190010A1 (en) 2017-04-11 2018-02-26 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017078104 2017-04-11
JP2017-078104 2017-04-11

Publications (1)

Publication Number Publication Date
WO2018190010A1 true WO2018190010A1 (en) 2018-10-18

Family

ID=63792918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007047 WO2018190010A1 (en) 2017-04-11 2018-02-26 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JPWO2018190010A1 (en)
WO (1) WO2018190010A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119664A (en) * 2019-01-21 2020-08-06 トヨタ自動車株式会社 Coating device
JP2020198172A (en) * 2019-05-31 2020-12-10 パイオニア株式会社 Light-emitting device
WO2022255093A1 (en) * 2021-05-31 2022-12-08 キヤノン株式会社 Light emitting device and display device, imaging device, electronic apparatus, illumination device, and mobile body having light emitting device
WO2024150811A1 (en) * 2023-01-13 2024-07-18 東洋紡株式会社 Device and method for manufacturing device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203433A (en) * 1984-03-29 1985-10-15 住友ベークライト株式会社 Manufacture of transparent conductive film
JP2003115220A (en) * 2001-10-05 2003-04-18 Bridgestone Corp Transparent conductive film and touch panel
JP2004228057A (en) * 2002-11-25 2004-08-12 Fuji Photo Film Co Ltd Mesh-like conductor, manufacturing method therefor, and its use
WO2007077871A1 (en) * 2006-01-06 2007-07-12 Konica Minolta Holdings, Inc. Moistureproof cellulose ester film, polarizer-protective film, and polarizer
JP2008153004A (en) * 2006-12-15 2008-07-03 Konica Minolta Holdings Inc Organic electroluminescent element
JP2009037813A (en) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd Manufacturing method of organic el device
JP2009037811A (en) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd Manufacturing method of organic el device
JP2009117181A (en) * 2007-11-06 2009-05-28 Hitachi Displays Ltd Organic el display device, and manufacturing method thereof
WO2011114860A1 (en) * 2010-03-17 2011-09-22 コニカミノルタホールディングス株式会社 Light emitting device
WO2012081471A1 (en) * 2010-12-13 2012-06-21 コニカミノルタホールディングス株式会社 Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
JP2013543901A (en) * 2010-10-20 2013-12-09 エルジー・ケム・リミテッド Adhesive composition for touch panel
JP2014152317A (en) * 2013-02-13 2014-08-25 Lintec Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive and pressure-sensitive adhesive sheet
JP2015111505A (en) * 2013-12-06 2015-06-18 双葉電子工業株式会社 Organic electroluminescent device
WO2015170657A1 (en) * 2014-05-07 2015-11-12 シャープ株式会社 Electroluminescent device and method for producing same
JP2016507400A (en) * 2012-12-13 2016-03-10 ケアストリーム ヘルス インク Anticorrosive for transparent conductive film
JP2016181426A (en) * 2015-03-24 2016-10-13 パイオニア株式会社 Light-emitting device
JP2016207522A (en) * 2015-04-24 2016-12-08 コニカミノルタ株式会社 Phototherapy apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184251A (en) * 2005-12-07 2007-07-19 Sony Corp Display device
JP5655745B2 (en) * 2011-09-08 2015-01-21 コニカミノルタ株式会社 Transparent electrode and organic electroluminescence device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203433A (en) * 1984-03-29 1985-10-15 住友ベークライト株式会社 Manufacture of transparent conductive film
JP2003115220A (en) * 2001-10-05 2003-04-18 Bridgestone Corp Transparent conductive film and touch panel
JP2004228057A (en) * 2002-11-25 2004-08-12 Fuji Photo Film Co Ltd Mesh-like conductor, manufacturing method therefor, and its use
WO2007077871A1 (en) * 2006-01-06 2007-07-12 Konica Minolta Holdings, Inc. Moistureproof cellulose ester film, polarizer-protective film, and polarizer
JP2008153004A (en) * 2006-12-15 2008-07-03 Konica Minolta Holdings Inc Organic electroluminescent element
JP2009037813A (en) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd Manufacturing method of organic el device
JP2009037811A (en) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd Manufacturing method of organic el device
JP2009117181A (en) * 2007-11-06 2009-05-28 Hitachi Displays Ltd Organic el display device, and manufacturing method thereof
WO2011114860A1 (en) * 2010-03-17 2011-09-22 コニカミノルタホールディングス株式会社 Light emitting device
JP2013543901A (en) * 2010-10-20 2013-12-09 エルジー・ケム・リミテッド Adhesive composition for touch panel
WO2012081471A1 (en) * 2010-12-13 2012-06-21 コニカミノルタホールディングス株式会社 Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
JP2016507400A (en) * 2012-12-13 2016-03-10 ケアストリーム ヘルス インク Anticorrosive for transparent conductive film
JP2014152317A (en) * 2013-02-13 2014-08-25 Lintec Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive and pressure-sensitive adhesive sheet
JP2015111505A (en) * 2013-12-06 2015-06-18 双葉電子工業株式会社 Organic electroluminescent device
WO2015170657A1 (en) * 2014-05-07 2015-11-12 シャープ株式会社 Electroluminescent device and method for producing same
JP2016181426A (en) * 2015-03-24 2016-10-13 パイオニア株式会社 Light-emitting device
JP2016207522A (en) * 2015-04-24 2016-12-08 コニカミノルタ株式会社 Phototherapy apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119664A (en) * 2019-01-21 2020-08-06 トヨタ自動車株式会社 Coating device
JP2020198172A (en) * 2019-05-31 2020-12-10 パイオニア株式会社 Light-emitting device
WO2022255093A1 (en) * 2021-05-31 2022-12-08 キヤノン株式会社 Light emitting device and display device, imaging device, electronic apparatus, illumination device, and mobile body having light emitting device
WO2024150811A1 (en) * 2023-01-13 2024-07-18 東洋紡株式会社 Device and method for manufacturing device

Also Published As

Publication number Publication date
JPWO2018190010A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP6783294B2 (en) Transparent electrode and organic electronic device equipped with it
WO2018190010A1 (en) Organic electroluminescent element
US7229703B2 (en) Gas barrier substrate
JP2010049210A (en) Coating composition, method for producing the same, translucent light-scattering film, organic electroluminescence display element and planar light source
EP3185249B1 (en) Transparent electrode, method for producing transparent electrode and electronic device
JP2022010127A (en) Method for manufacturing gas barrier film, method for manufacturing transparent conductive member, and method for manufacturing organic electroluminescent element
WO2015012108A1 (en) Electronic device and method for manufacturing same
JPWO2016043141A1 (en) Gas barrier film
JP2013180520A (en) Gas barrier film and electronic device
WO2018110244A1 (en) Organic electroluminescence element
WO2016163215A1 (en) Organic electroluminescent element
JP6927968B2 (en) Transparent conductive member and organic electroluminescence element
JP6793654B2 (en) A method for manufacturing a transparent electrode, an organic electronic device, a transparent electrode, and a method for manufacturing an organic electronic device.
JP6802842B2 (en) Manufacturing method of transparent electrode
WO2018088048A1 (en) Electronic device and organic electroluminescent element
JP2005071901A (en) Transparent conductive laminated film
WO2017047346A1 (en) Electronic device and method for sealing electronic device
JP3403882B2 (en) Transparent conductive film
JP6812429B2 (en) Light extraction film and organic electroluminescence light emitting device
JP2016171038A (en) Method for manufacturing electronic device
JP2018198180A (en) Organic electroluminescent element
JP2017107707A (en) Transparent electrode and organic electronic device
US20230174564A1 (en) Fluorinated photoinitiators and fluorinated (co)polymer layers made using the same
JP2018098139A (en) Organic electroluminescent element
JP2016190442A (en) Gas barrier film, transparent conductive member, and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512368

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784013

Country of ref document: EP

Kind code of ref document: A1