WO2018110244A1 - Organic electroluminescence element - Google Patents

Organic electroluminescence element Download PDF

Info

Publication number
WO2018110244A1
WO2018110244A1 PCT/JP2017/042143 JP2017042143W WO2018110244A1 WO 2018110244 A1 WO2018110244 A1 WO 2018110244A1 JP 2017042143 W JP2017042143 W JP 2017042143W WO 2018110244 A1 WO2018110244 A1 WO 2018110244A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
group
resin
meth
Prior art date
Application number
PCT/JP2017/042143
Other languages
French (fr)
Japanese (ja)
Inventor
孝敏 末松
孝二郎 関根
耕 大澤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018556530A priority Critical patent/JP7093725B2/en
Publication of WO2018110244A1 publication Critical patent/WO2018110244A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to an organic electroluminescence element, and more particularly to an organic electroluminescence element having excellent luminous efficiency.
  • organic electronic devices such as organic electroluminescent elements (hereinafter also referred to as “organic EL elements”) and organic solar cells are required to be large, light, flexible, and the like.
  • organic EL elements organic electroluminescent elements
  • organic solar cells are required to be large, light, flexible, and the like.
  • large organic electronic devices are required to have high luminous efficiency and power generation efficiency, and transparent electrodes with low electrical resistance.
  • a transparent electrode using a fine metal wire can function as a surface electrode by covering the fine metal wire with a transparent conductive layer. As a result, uniform surface light emission is possible when used in an organic electronic device.
  • the present invention has been made in view of the above problems and situations, and a problem to be solved is to provide an organic electroluminescence device having excellent luminous efficiency.
  • the present inventors cut the organic EL element perpendicular to the transparent substrate along the line width direction of the fine metal wire,
  • the perpendicular bisectors of the point M 1 and the point M 2 and the line segment M 1 M 2 are the interfaces between the organic functional layer and the second electrode at both ends of the portion where the thickness of the fine metal wire is maximum in the line width direction.
  • the angle ⁇ satisfies a specific condition, whereby an organic EL element having excellent luminous efficiency is obtained.
  • the present invention has been found out and can be achieved.
  • An organic electroluminescence device in which a first electrode including at least a fine metal wire formed in a pattern and a transparent conductive layer, an organic functional layer, and a second electrode are sequentially laminated on a transparent substrate, In the cut surface when the organic electroluminescence element is cut perpendicularly to the transparent substrate along the line width direction of the fine metal wires, both end portions of the portion where the thickness of the fine metal wires is maximum in the line width direction A point E, a line segment M 1 E, and a line segment M are points where a perpendicular bisector of the point M 1, the point M 2 , and the line segment M 1 M 2 intersects the interface between the organic functional layer and the second electrode 2
  • An organic electroluminescence device satisfying the following conditional expression (1), where an angle formed by E is an angle ⁇ .
  • the adhesion layer contains a compound selected from a compound having a thiol group, a poly (meth) acrylate having an aminoethyl group, and a poly (meth) acrylamide having an aminoethyl group.
  • Luminescence element a compound selected from a compound having a thiol group, a poly (meth) acrylate having an aminoethyl group, and a poly (meth) acrylamide having an aminoethyl group.
  • the above-mentioned means of the present invention can provide an organic electroluminescence device having excellent luminous efficiency.
  • the organic EL device of the present invention is a portion of the cut surface when the organic EL device is cut perpendicularly to the transparent substrate along the line width direction of the thin metal wire.
  • Both ends of the point M 1 and the point M 2 , and the perpendicular bisector of the line segment M 1 M 2 intersect with the interface between the organic functional layer and the second electrode are the point E and the line segment M 1 E and the line segment
  • the conditional expression (1) is satisfied. This is presumed that by designing the organic EL element so as to satisfy the conditional expression (1), the light from the light emitting layer is reflected on the fine metal wire, and a part of the light can be extracted.
  • the organic EL device of the present invention is a portion of the cut surface when the organic EL device is cut perpendicularly to the transparent substrate along the line width direction of the thin metal wire.
  • Both ends of the point M 1 and the point M 2 , and the perpendicular bisector of the line segment M 1 M 2 intersect with the interface between the organic functional layer and the second electrode are the point E and the line segment M 1 E and the line segment
  • the conditional expression (1) is satisfied.
  • the first electrode is configured by laminating at least a metal thin wire formed in a pattern from the transparent substrate side and a transparent conductive layer in this order.
  • the angle ⁇ satisfies the conditional expression (2).
  • the transparent conductive layer contains a metal oxide.
  • the transparent substrate is preferably a transparent resin substrate.
  • the thickness of the organic functional layer is preferably in the range of 100 to 500 nm.
  • the first electrode is preferably configured by laminating a fluorine-containing resin layer, a metal wire formed in a pattern, and a transparent conductive layer in this order from the transparent substrate side. .
  • an adhesion layer is provided between the transparent substrate and the first electrode, and a thiol group is added to the adhesion layer. It is more preferable that the compound selected from the compound which has, the poly (meth) acrylate which has an aminoethyl group, and the poly (meth) acrylamide which has an aminoethyl group is contained.
  • an optical scattering layer is provided between the transparent substrate and the first electrode from the viewpoint of further improving the luminous efficiency.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • the organic EL element of the present invention is configured by sequentially laminating a first electrode including at least a fine metal wire formed in a pattern and a transparent conductive layer, an organic functional layer, and a second electrode on a transparent substrate.
  • FIG. 1 shows a schematic configuration of the organic EL element of the present invention.
  • the organic EL element 1 is configured by sequentially laminating a first electrode 3 as a transparent electrode, an organic functional layer 4, and a second electrode 5 as a counter electrode on a transparent substrate 2.
  • transparent transparent
  • translucent means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the first electrode 3 includes a thin metal wire 3a and a transparent conductive layer 3b formed in a pattern. Moreover, as shown in FIG. 2, the 1st electrode 3 may have the fluorine-containing resin layer 3c between the transparent substrate 2 and the metal fine wire 3a formed in the pattern shape.
  • the first electrode 3 is configured by laminating a thin metal wire 3a and a transparent conductive layer 3b formed in this order from the transparent substrate 2 side.
  • the transparent conductive layer 3b and the fine metal wires 3a formed in a pattern may be laminated in this order from the transparent substrate 2 side, and further the insulating layer so as to cover the fine metal wires 3a. (Not shown) may be provided.
  • the organic functional layer 4 includes at least a light emitting layer, and may have various organic layers such as a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like.
  • the hole injection layer and the hole transport layer may be provided as a hole transport injection layer.
  • the electron transport layer and the electron injection layer may be provided as an electron transport injection layer.
  • the electron injection layer may be made of an inorganic material.
  • the organic functional layer 4 may have a hole blocking layer, an electron blocking layer, or the like as necessary.
  • the second electrode 5 may have a laminated structure as necessary.
  • the organic EL element 1 In the organic EL element 1, only a portion where the organic functional layer 4 is sandwiched between the first electrode 3 and the second electrode 5 is a light emitting region in the organic EL element 1.
  • the organic EL element 1 is configured as a bottom emission type in which generated light (hereinafter also referred to as emitted light) is extracted from at least the transparent substrate 2 side.
  • extraction electrodes are provided at the ends of the first electrode 3 and the second electrode 5.
  • the first electrode 3 and the second electrode 5 are electrically connected to an external power source (not shown) via the extraction electrode.
  • the organic EL element 1 of the present invention may have various other functional layers as necessary.
  • a gas barrier layer 6 may be provided on the transparent substrate 2.
  • an adhesion layer 7 may be provided between the transparent substrate 2 and the first electrode 3, and as shown in FIG. 6, the transparent substrate 2 and the first electrode 3
  • An optical scattering layer 8 may be provided therebetween.
  • a particle-containing layer may be provided on the surface of the transparent substrate 2 opposite to the first electrode 3. The particle-containing layer is preferably disposed in the outermost layer.
  • FIG. 7 the cross-sectional schematic diagram when the organic EL element 1 of this invention is cut
  • the thickness of the thin metal wires 3a to the line width direction W is the opposite ends point unit M 1 and the point M 2 of the portion becomes maximum.
  • the line segment M 1 M 2 is the line width of the metal fine wire 3a.
  • the organic EL element 1 of the present invention satisfies the following conditional expression (1).
  • the luminous efficiency of the organic EL element can be improved.
  • tan ( ⁇ / 2) is smaller than 1.5, it becomes difficult to form the transparent conductive layer 3b, the organic functional layer 4 and the like following the shape of the thin metal wire 3a, which becomes a leak point and rectifies The nature will decline.
  • tan ( ⁇ / 2) is larger than 10.0, it becomes difficult to extract light generated in the light emitting layer on the thin metal wire 3a.
  • the organic EL element 1 of the present invention satisfies the following conditional expression (2).
  • the value of tan ( ⁇ / 2) is calculated from the value obtained by measuring the length of each line segment using a high-intensity non-contact three-dimensional surface shape roughness meter WYKO NT9100. More specifically, 10 points are measured at random and the average value is obtained.
  • Tan ( ⁇ / 2) in the present invention can be set to an arbitrary value by adjusting the shape of the fine metal wire of the first electrode, the thickness of the insulating layer, and the thickness of the organic functional layer.
  • the fine metal wire according to the present invention is composed of a metal as a main component and is formed with a metal content ratio such that conductivity can be obtained.
  • the ratio of the metal in the fine metal wire is preferably 50% by mass or more.
  • the fine metal wire contains a metal material and is formed in a pattern so as to have an opening.
  • An opening is a part which does not have a metal fine wire, and is a translucent part of a 1st electrode.
  • the pattern shape of the fine metal wires There are no particular restrictions on the pattern shape of the fine metal wires.
  • Examples of the pattern shape of the fine metal wire include a stripe shape (parallel line shape), a lattice shape, a honeycomb shape, and a random network shape. From the viewpoint of transparency, a stripe shape is particularly preferable.
  • the ratio occupied by the openings is preferably 80% or more from the viewpoint of transparency.
  • the line width of the fine metal wire is preferably in the range of 5 to 30 ⁇ m. Desired conductivity can be obtained when the line width of the fine metal wire is 5 ⁇ m or more, and the light emission efficiency of the organic EL element can be further improved by setting it to 30 ⁇ m or less.
  • the distance between the fine metal wires is preferably within a range of 0.01 to 1 mm.
  • the height (thickness) of the fine metal wire is preferably in the range of 0.05 to 1.0 ⁇ m, and more preferably in the range of 0.1 to 0.6 ⁇ m.
  • the desired conductivity is obtained when the height of the fine metal wire is 0.05 ⁇ m or more, and the thickness of the fine metal wire is the thickness distribution of the functional layer when used for an organic EL element when the height is 1.0 ⁇ m or less. Can be reduced.
  • Metal nanoparticle-containing composition As will be described later, after preparing and applying a metal nanoparticle-containing composition in which a metal or a metal-forming material is blended, a thin metal wire is subjected to a drying treatment or a firing treatment. Processes are performed as appropriate.
  • a metal used for a metal nanoparticle metals, such as gold
  • the metal nanoparticle-containing composition is preferably a metal colloid or metal nanoparticle dispersion liquid in which the surface of metal nanoparticles is coated with a surface protective agent and stably dispersed in a solvent.
  • the average particle diameter of the metal nanoparticles in the metal nanoparticle-containing composition is preferably 1000 nm or less from the atomic scale.
  • the metal nanoparticles preferably have an average particle size in the range of 3 to 300 nm, and more preferably in the range of 5 to 100 nm.
  • silver nanoparticles having an average particle diameter of 3 to 100 nm are preferable.
  • the average particle diameter of the metal nanoparticles and the metal colloid can be determined by measuring the particle diameter of the metal nanoparticles in the dispersion using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average particle diameter can be calculated by measuring the particle diameters of 300 independent metal nanoparticles that are not overlapped among the particles observed in the TEM image.
  • an organic ⁇ -junction ligand is preferable as a protective agent for coating the surface of the metal nanoparticles.
  • Conductivity is imparted to the metal colloid by ⁇ -junction of the organic ⁇ -conjugated ligand to the metal nanoparticles.
  • organic (pi) junction ligand the 1 type, or 2 or more types of compound chosen from the group which consists of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative is preferable.
  • organic ⁇ -junction ligand in order to improve coordination to metal nanoparticles and dispersibility in a dispersion medium, an amino group, an alkylamino group, a mercapto group, a hydroxy group, At least one selected from carboxy group, phosphine group, phosphonic acid group, sulfonic acid group, halogen group, selenol group, sulfide group, selenoether group, amide group, imide group, cyano group, nitro group, and salts thereof It is preferable to have a substituent.
  • organic ⁇ -conjugated ligand described in International Publication No. 2011/114713 can be used as the organic ⁇ -junction ligand.
  • OTAN 2,3,11,12,20,21,29,30-octakis [(2-N, N-dimethylaminoethyl) thio] naphthalocyanine
  • OCAN 2,3,11,12,20,21,29,30-naphthalocyanine octacarboxylic acid
  • a liquid phase reduction method may be mentioned.
  • the production of the organic ⁇ -junction ligand of this embodiment and the preparation of the metal nanoparticle dispersion containing the organic ⁇ -junction ligand are performed according to the method described in Paragraphs 0039 to 0060 of International Publication No. 2011/114713. It can be done according to this.
  • the average particle diameter of the metal colloid is usually in the range of 3 to 500 nm, preferably in the range of 5 to 50 nm. When the average particle diameter of the metal colloid is within the above range, fusion between particles is likely to occur, and the conductivity of the obtained metal fine wire can be improved.
  • the protective agent for coating the surface of the metal nanoparticles it is preferable to use a protective agent that removes the ligand at a low temperature of 200 ° C. or lower. As a result, the protective agent is detached by low temperature or low energy, the metal nanoparticles are fused, and conductivity can be imparted.
  • a protective agent that removes the ligand at a low temperature of 200 ° C. or lower.
  • the protective agent is detached by low temperature or low energy, the metal nanoparticles are fused, and conductivity can be imparted.
  • Specific examples include metal nanoparticle dispersions described in JP2013-142173A, JP2012-162767A, JP2014-139343A, Patent No. 5606439, and the like.
  • the metal forming material examples include metal salts, metal complexes, organometallic compounds (compounds having a metal-carbon bond), and the like.
  • the metal salt and metal complex may be either a metal compound having an organic group or a metal compound having no organic group.
  • an organic silver complex produced by reacting a silver compound represented by “Ag n X” with an ammonium carbamate compound is preferably used.
  • n is an integer of 1 to 4
  • X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrate, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoroborate, A substituent selected from the group consisting of acetylacetonate and carboxylate.
  • the silver compound examples include silver oxide, thiocyanate silver, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, silver perchlorate, silver tetrafluoroborate, acetylacetate. Examples thereof include silver nitrate, silver acetate, silver lactate, and silver oxalate. As the silver compound, use of silver oxide or silver carbonate is preferable in terms of reactivity and post-treatment.
  • ammonium carbamate compounds include ammonium carbamate, ethyl ammonium ethyl carbamate, isopropyl ammonium isopropyl carbamate, n-butyl ammonium n-butyl carbamate, isobutyl ammonium isobutyl carbamate, t-butyl ammonium t-butyl carbamate, 2-ethylhexyl ammonium 2 -Ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate, 2-cyanoethyl ammonium 2-cyanoethyl carbamate, dibutyl ammonium dibutyl carbamate, dioctadecyl ammonium dioctadecyl carbamate, methyl decyl ammonium methyl dec
  • the organic silver complex can be produced by the method described in JP 2011-48795 A. For example, it can be synthesized by directly reacting one or more of the above silver compounds and one or more of the above ammonium carbamate compounds at normal pressure or under pressure in a nitrogen atmosphere without using a solvent.
  • alcohols such as methanol, ethanol, isopropanol and butanol
  • glycols such as ethylene glycol and glycerin
  • acetates such as ethyl acetate, butyl acetate and carbitol acetate
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • Ketones such as methyl ethyl ketone and acetone
  • hydrocarbons such as hexane and heptane
  • aromatics such as benzene and toluene
  • halogen substituted solvents such as chloroform, methylene chloride and carbon tetrachloride Can be reacted.
  • the structure of the organic silver complex can be represented by “Ag [A] m ”.
  • A is the ammonium carbamate compound, and m is 0.7 to 2.5.
  • organic silver complex is well soluble in various solvents including solvents for producing organic silver complexes, such as alcohols such as methanol, esters such as ethyl acetate, and ethers such as tetrahydrofuran. For this reason, the organic silver complex can be easily applied to a coating or printing process as a metal nanoparticle-containing composition.
  • solvents for producing organic silver complexes such as alcohols such as methanol, esters such as ethyl acetate, and ethers such as tetrahydrofuran.
  • examples of the metal silver forming material include silver carboxylate having a group represented by the formula “—COOAg”.
  • the silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”.
  • the number of groups represented by the formula “—COOAg” may be one, or two or more.
  • the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
  • the silver carboxylate is preferably at least one selected from the group consisting of silver ⁇ -ketocarboxylate and silver carboxylate (4) described in JP-A-2015-66695.
  • As the metal silver forming material not only silver ⁇ -ketocarboxylate and silver carboxylate (4), but also silver carboxylate having a group represented by the formula “—COOAg”, which includes them, is used. it can.
  • the metal nanoparticle-containing composition contains the above-mentioned silver carboxylate as a metal-forming material
  • the amine compound and quaternary ammonium salt having 25 or less carbon atoms, ammonia, and the amine compound or ammonia together with the silver carboxylate are acid. It is preferable that at least one nitrogen-containing compound selected from the group consisting of ammonium salts formed by reaction with is blended.
  • the amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine.
  • the quaternary ammonium salt has 4 to 25 carbon atoms.
  • the amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group “—NH 2 ” of the primary amine) may be one, or may be two or more.
  • the metal fine line pattern is formed using a metal nanoparticle-containing composition.
  • a conventionally well-known method can be utilized.
  • a conventionally known method for forming a fine metal line pattern for example, a method using a photolithographic method, a coating method, a printing method, or the like can be used. Among them, a fine (small line width) fine metal wire can be formed.
  • the printing method and the micro contact printing method are preferable.
  • fine metal fine wires can be formed by using a fluorine-containing resin layer to be described later and setting the substrate surface to a low energy state.
  • the metal nanoparticle-containing composition contains the metal nanoparticles described above and a solvent, and may contain additives such as a dispersant, a viscosity modifier, and a binder.
  • additives such as a dispersant, a viscosity modifier, and a binder.
  • Solvents used in the composition containing metal nanoparticles include water, methanol, ethanol, propanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexadecanol, hexane Diol, heptanediol, octanediol, nonanediol, decanediol, farnesol, dedecadienol, linalool, geraniol, nerol, heptadienol, tetradecenol, hexadecenol, phytol, oleyl alcohol, dedecenol, decenol, undecylenyl alcohol, nonenol Citronellol, octeno
  • a method generally used for electrode pattern formation is applicable.
  • the gravure printing method include those described in JP 2009-295980 A, JP 2009-259826 A, JP 2009-96189 A, JP 2009-90662 A, and the like.
  • the printing method methods described in JP-A-2004-268319, JP-A-2003-168560, etc., and for screen printing methods, JP-A 2010-34161, JP-A 2010-10245, JP-A-2009.
  • JP-A-302345 and the like is disclosed in JP 2011-180562 A, JP 2000-127410 A, JP 8-238774 A and the like in the inkjet printing method, and in the 2014 2014 in the super inkjet printing method.
  • the method described in JP-A-146665 It is.
  • the pattern of the metal nanoparticle-containing composition is formed by photolithography, specifically, for example, the pattern of the metal nanoparticle-containing composition is formed on the entire surface of the transparent substrate by printing or coating, which will be described later.
  • the film is processed into a desired pattern by etching using a known photolithography method.
  • the drying process can be performed using a known drying method. Drying methods include, for example, air cooling drying, convection heat transfer drying using hot air, radiant heat drying using infrared rays, conductive heat transfer drying using a hot plate, vacuum drying, internal using microwaves Exothermic drying, IPA vapor drying, Marangoni drying, Rotagoni drying, freeze drying, and the like can be used.
  • the drying by heating is preferably performed in a temperature range of 50 to 200 ° C. at a temperature at which the transparent substrate does not deform. It is more preferable to heat the transparent substrate under the condition that the surface temperature is 50 to 150 ° C. When a PET substrate is used as the transparent substrate, it is particularly preferable to heat in a temperature range of 100 ° C. or lower.
  • the firing time depends on the temperature and the size of the metal nanoparticles used, but is preferably in the range of 10 seconds to 30 minutes, and in the range of 10 seconds to 15 minutes from the viewpoint of productivity. More preferably, it is in the range of 10 seconds to 5 minutes.
  • the drying process it is preferable to perform a drying process by infrared irradiation.
  • a specific wavelength region By selectively using a specific wavelength region, it is possible to selectively irradiate a specific wavelength effective for cutting the absorption region of the transparent substrate or the solvent of the metal nanoparticle-containing composition.
  • an infrared heater in which the filament temperature of the light source is in the range of 1600 to 3000 ° C.
  • the pattern of the dried metal nanoparticle-containing composition is baked.
  • the type of metal composition contained in the metal nanoparticle-containing composition for example, silver colloid having the above-mentioned organic ⁇ -junction ligand
  • the conductivity may be sufficiently exhibited by the drying treatment. It does not have to be done.
  • the patterning of the metal nanoparticle-containing composition is preferably performed by light irradiation (flash baking) using a flash lamp in order to improve the conductivity of the first electrode.
  • flash baking a discharge tube of a flash lamp used in flash firing
  • a discharge tube of xenon, helium, neon, argon or the like can be used, but a xenon lamp is preferably used.
  • the preferable spectral band of the flash lamp is preferably in the range of 240 to 2000 nm. Within this range, there is little damage such as thermal deformation of the transparent substrate due to flash firing.
  • the light irradiation conditions of the flash lamp are arbitrary, but the total light irradiation energy is preferably in the range of 0.1 to 50 J / cm 2 , and preferably in the range of 0.5 to 10 J / cm 2. More preferred.
  • the light irradiation time is preferably in the range of 10 ⁇ sec to 100 msec, and more preferably in the range of 100 ⁇ sec to 10 msec. Further, the number of times of light irradiation may be one time or a plurality of times, and it is preferably performed within the range of 1 to 50 times.
  • the flash lamp irradiation on the transparent substrate is preferably performed from the side of the transparent substrate on which the pattern of the metal nanoparticle-containing composition is formed.
  • irradiation may be performed from the transparent substrate side or from both surfaces of the transparent substrate.
  • the surface temperature of the transparent substrate during flash firing is the heat resistance temperature of the transparent substrate, the boiling point (vapor pressure) of the dispersion medium of the solvent contained in the metal nanoparticle-containing composition, the type and pressure of the atmospheric gas, It may be determined in consideration of the thermal behavior such as dispersibility and oxidizability of the particle-containing composition.
  • the flash lamp light irradiation device only needs to satisfy the above irradiation energy and irradiation time.
  • flash baking may be performed in air
  • a fluorine-containing resin layer is formed by applying a fluorine-containing resin layer forming coating solution in which a fluorine-containing resin is dissolved in an appropriate solvent on a transparent substrate.
  • the method for applying the coating solution for forming a fluorine-containing resin layer include an inkjet method, a dipping method, a spin coating method, and a roll coater method.
  • post-treatment drying treatment and baking treatment according to the type of the fluorine-containing resin is performed to form a fluorine-containing resin layer.
  • the fluorine-containing resin layer only needs to be formed at least on the formation part of the metal fine line pattern, and may be formed on the entire surface of the transparent substrate, or may be formed on a part of the surface including the formation part of the metal fine line pattern. Good.
  • the thickness of the fluorine-containing resin layer is not particularly limited, but in general, the liquid repellency can be exhibited if the thickness is 0.01 ⁇ m or more.
  • the upper limit of the thickness is preferably about 5 ⁇ m from the viewpoint of transparency.
  • a fluorine-containing resin that is a polymer having one or more repeating units based on a fluorine-containing monomer containing a fluorine atom can be applied. Moreover, even if it is fluorine-containing resin which is a polymer which has a repeating unit based on a fluorine-containing monomer, and a repeating unit based on a fluorine non-containing monomer which does not contain a fluorine atom, respectively, one or more. Good. Furthermore, the fluorine-containing resin may contain a hetero atom such as oxygen, nitrogen, or chlorine in a part thereof.
  • fluorine-containing resins examples include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and tetrafluoroethylene-perfluoroalkyl vinyl ether.
  • PFA tetrafluoroethylene-hexafluoropropylene copolymer
  • FEP ethylene-tetrafluoroethylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • TFE / PDD perfluorodioxole copolymer
  • resin having a cyclic perfluoroalkyl structure or a cyclic perfluoroalkyl ether structure.
  • the fluorine-containing resin layer may contain an adhesion layer material such as a compound having a thiol group, which will be described later, light scattering particles, or the like, thereby imparting a function as an adhesion layer or an optical scattering layer.
  • an adhesion layer material such as a compound having a thiol group, which will be described later, light scattering particles, or the like, thereby imparting a function as an adhesion layer or an optical scattering layer.
  • the functional group is a functional group formed by cleaving the C—F bond of the fluorine-containing resin. Specifically, a carboxy group, a hydroxy group, and a carbonyl group are formed.
  • ultraviolet irradiation corona discharge treatment, plasma discharge treatment, or excimer laser irradiation is used. These treatments cause a photochemical reaction on the surface of the fluorine-containing resin layer to break the C—F bond, and it is necessary to apply an appropriate amount of energy.
  • the amount of energy applied to the formation portion of the fine metal wire pattern is preferably in the range of 1 to 4000 mJ / cm 2 .
  • ultraviolet irradiation When ultraviolet irradiation is employed as the treatment method, it is preferable to irradiate ultraviolet rays having a wavelength in the range of 10 to 380 nm, more preferably ultraviolet rays having a wavelength in the range of 100 to 200 nm.
  • the exposure processing using a photomask is generally performed.
  • a photomask reticle
  • any of a non-contact exposure method (proximity exposure, projection exposure) and a contact exposure method (contact exposure) can be applied.
  • the distance between the mask and the fluorine-containing resin layer surface is preferably 10 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • a metal nanoparticle dispersion liquid containing a metal fine wire material is applied onto the fluorine-containing resin layer.
  • the metal nanoparticle dispersion since the functional group for selectively fixing the metal nanoparticles is formed in the metal fine line pattern forming part of the fluorine-containing resin layer, the metal nanoparticle dispersion is dropped. It is efficient to spread and apply ink jet method, dipping method, spin coat method, roll coater method and the like.
  • the metal nanoparticle dispersion is repelled by the liquid repellency on the surface of the fluorine-containing resin layer having no functional group, and when a coating member such as a blade is used, the repelled dispersion is removed from the transparent substrate surface. Is done.
  • the metal fine line pattern forming part in which the functional group is formed the metal nanoparticle dispersion liquid remains, the solvent of the dispersion liquid volatilizes, and the metal nanoparticles on the transparent substrate self-sinter to form a metal film. A fine metal line pattern is formed.
  • the firing treatment is preferably performed within a range of 40 to 250 ° C. If it is 40 degreeC or more, the resistance of a metal fine wire pattern can be reduced, and if it is less than 250 degreeC, a deformation
  • the firing time is preferably within the range of 10 to 120 minutes. Firing may be performed in an air atmosphere or in a vacuum atmosphere.
  • the 1st electrode which concerns on this invention is comprised from the metal fine wire and transparent conductive layer which were formed at least in pattern shape. It is preferable that the transparent conductive layer is provided on the fine metal wire so as to cover the entire surface of the fine metal wire.
  • a metal oxide layer or an organic conductive layer is preferably used as the transparent conductive layer.
  • the thickness of the transparent conductive layer is preferably in the range of 30 to 300 nm.
  • the 1st electrode which concerns on this invention can fully exhibit electroconductivity, even if the thickness of a transparent conductive layer is in the said range.
  • the thickness of the transparent conductive layer is more preferably in the range of 50 to 150 nm.
  • the metal oxide layer and the organic conductive layer are preferably formed using a highly conductive metal oxide having a volume resistivity in the range of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm.
  • the volume resistivity can be obtained by measuring the sheet resistance and the film thickness measured in accordance with the resistivity test method of the conductive plastic of JIS K 7194-1994 by the four-probe method.
  • the film thickness can be measured using a contact-type surface shape measuring device (for example, DECTAK) or an optical interference surface shape measuring device (for example, WYKO).
  • the metal oxide layer and the organic conductive layer have a sheet resistance of 10,000 ⁇ / sq. From the viewpoint of ensuring the conductivity. Or less, preferably 2000 ⁇ / sq. The following is more preferable.
  • Metal oxide layer The metal oxide that can be used for the metal oxide layer is not particularly limited as long as the material is excellent in transparency and conductivity.
  • Examples of the metal oxide that can be used for the metal oxide layer include ITO (tin doped indium oxide), IZO (indium oxide / zinc oxide), IGO (gallium doped indium oxide), IWZO (indium oxide / tin oxide), ZnO ( Zinc oxide), GZO (gallium-doped zinc oxide), IGZO (indium gallium zinc oxide) and the like.
  • IZO, IGO, and IWZO are preferable as the metal oxide that can be used for the metal oxide layer.
  • a plurality of metal oxide layers may be provided.
  • the metal oxide layer can be formed by various sputtering methods, ion plating methods, and the like in the same manner as in the case of forming a conventional metal oxide layer. it can.
  • Examples of the sputtering method include DC sputtering, RF sputtering, DC magnetron sputtering, RF magnetron sputtering, ECR plasma sputtering, and ion beam sputtering. Further, in the sputtering method, by examining various conditions as described below, even if the composition is the same as in IZO, it is possible to adjust conductivity and gas barrier properties.
  • the metal oxide layer is formed by a direct current magnetron sputtering method with a distance between target substrates in the range of 50 to 100 mm during sputtering and a sputtering gas pressure in the range of 0.5 to 1.5 Pa. Can do.
  • the distance between the target substrates As for the distance between the target substrates, if the distance between the target substrates is shorter than 50 mm, the kinetic energy of the sputtered particles to be deposited increases, so that the damage received by the substrate increases. In addition, the film thickness becomes non-uniform and the film thickness distribution becomes worse. When the distance between the target substrates is longer than 100 mm, the film thickness distribution is improved, but the kinetic energy of the sputtered particles deposited becomes too low, densification due to diffusion hardly occurs, and the density of the metal oxide layer is not preferable.
  • the sputtering gas pressure if the sputtering gas pressure is lower than 0.5 Pa, the kinetic energy of the sputtered particles to be deposited increases, so that the damage to the transparent substrate increases.
  • the sputtering gas pressure is higher than 1.5 Pa, not only the film formation rate is slowed, but also the kinetic energy of the sputtered particles deposited becomes too low, densification due to diffusion does not occur, and the density of the metal oxide layer is low. Therefore, it is not preferable.
  • the organic conductive layer is mainly composed of a conductive polymer and a binder.
  • a conductive polymer and the binder compounds described in Japanese Patent No. 5750908 and Japanese Patent No. 5882855 can be used.
  • the preparation (method) of the organic conductive composition for forming the organic conductive layer, the formation (method) of the organic conductive layer, and the like should be performed in accordance with the methods described in Japanese Patent No. 5750908 and Japanese Patent No. 5882855. Can do.
  • the transparent substrate according to the present invention is not particularly limited as long as it has high light transmittance, and a transparent material such as glass or resin can be used.
  • the transparent substrate is preferably a transparent resin substrate from the viewpoints of productivity, performance such as lightness and flexibility.
  • the resin that can be used as the transparent resin substrate is not particularly limited.
  • polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and modified polyester, polyethylene (PE) resin, polypropylene (PP) resin, polystyrene resin , Polyolefin resins such as cyclic olefin resins, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin, polysulfone (PSF) resin, polyether sulfone (PES) resin, polycarbonate ( PC) resin, polyamide resin, polyimide resin, acrylic resin, triacetyl cellulose (TAC) resin and the like. These resins may be used alone or in combination.
  • the transparent resin substrate may be an unstretched film or a stretched film.
  • the transparent substrate preferably has a total light transmittance of 50% or more in the visible light wavelength region measured by a method in accordance with JIS K 7361-1: 1997 (Plastic—Testing method of total light transmittance of transparent material). 80% or more is more preferable.
  • the transparent substrate may be subjected to a surface activation treatment in order to improve adhesion with an adhesion layer, a gas barrier layer, and the like described later.
  • a clear hard coat layer may be provided.
  • the surface activation treatment include corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • the material for the clear hard coat layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer, and the like.
  • An ultraviolet curable resin can be preferably used.
  • the organic functional layer according to the present invention is a layer located between the anode and the cathode, and is composed of an organic layer, a metal layer, or the like, but is not limited thereto.
  • the organic functional layer includes at least a light emitting layer, and may have various organic layers such as a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • the hole injection layer and the hole transport layer may be provided as a hole transport injection layer.
  • the electron transport layer and the electron injection layer may be provided as an electron transport injection layer.
  • the electron injection layer may be made of an inorganic material.
  • the organic functional layer may have a hole blocking layer, an electron blocking layer, or the like as necessary.
  • the configuration of (vii) is preferable but not particularly limited.
  • the thickness of the organic functional layer is preferably in the range of 100 to 500 nm. If the thickness of the organic functional layer is 500 nm or less, an increase in driving voltage can be suppressed, and if it is 100 nm or more, rectification characteristics can be maintained.
  • the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the electron injection layer are not particularly limited.
  • JP-A-2014-120334 The compounds described in JP2013-89608A can be used.
  • the organic EL device has an organic functional layer sandwiched between a pair of electrodes including a first electrode as a transparent electrode and a second electrode as a counter electrode.
  • One of the first electrode and the second electrode serves as the anode of the organic EL element, and the other serves as the cathode.
  • the transparent conductive layer 3b of the first electrode 3 is made of a transparent conductive material
  • the second electrode 5 is made of a highly reflective material.
  • the 2nd electrode 5 is also comprised with a transparent conductive material.
  • the second electrode when the second electrode is used as an anode, a material having a work function (4 eV or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof is preferably used.
  • the electrode substance that can constitute the anode include metals such as Au and Ag, and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • the second electrode when the second electrode is used as a cathode, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as electrode materials.
  • an electron injecting metal used as the cathode is an electrode film that functions as a cathode (cathode) that supplies electrons to the light emitting layer.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture. , Indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, or the like is preferable.
  • the sheet resistance as a cathode is several hundred ⁇ / sq.
  • the following are preferable, and the thickness is usually selected within the range of 10 nm to 5 ⁇ m, preferably within the range of 50 to 200 nm.
  • a transparent or semi-transparent cathode can be produced by producing a conductive transparent material on the metal after the metal is produced with a thickness of 1 to 20 nm as a cathode.
  • An element in which both the anode and the cathode are transmissive can be manufactured.
  • the extraction electrode is for electrically connecting the conductive layer of the transparent electrode and the external power source, and the material is not particularly limited, and a known material can be suitably used.
  • a three-layer structure A metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) made of can be used.
  • the adhesion layer according to the present invention is a layer serving as a base for forming a fine metal wire pattern and a transparent conductive layer, and improves adhesion between the substrate and the first electrode.
  • the adhesion layer preferably contains at least one selected from a compound having a thiol group, a poly (meth) acrylate having an aminoethyl group, and a poly (meth) acrylamide having an aminoethyl group. The above may be used in combination.
  • the adhesion layer may contain inorganic particles in addition to the above compound, and is preferably formed to contain oxide particles.
  • the adhesion layer contains oxide particles, adhesion with the metal fine line pattern and the metal oxide layer is improved.
  • the adhesion layer can be provided with functions other than the improvement of adhesion with the metal fine wire pattern or the metal oxide layer.
  • a function other than adhesion it is preferable to have a light extraction function.
  • oxide particles having a refractive index higher than that of the resin are included together with the resin constituting the adhesion layer. Oxide particles having a refractive index higher than that of the resin function as light scattering particles in the adhesion layer, whereby light scattering occurs in the adhesion layer and a light extraction function is imparted to the adhesion layer.
  • the thickness of the adhesion layer is preferably in the range of 10 to 1000 nm, more preferably in the range of 10 to 100 nm.
  • the thickness of the adhesion layer is 10 nm or more, the adhesion layer itself becomes a continuous film, the surface becomes smooth, and the influence on the organic EL element is small.
  • the thickness of the adhesion layer is 1000 nm or less, the transparency of the transparent electrode caused by the adhesion layer and the adsorbed gas derived from the adhesion layer can be reduced, and the resistance deterioration of the metal fine wire pattern can be suppressed. Can do.
  • the thickness of the adhesion layer is 1000 nm or less, damage to the adhesion layer when the transparent electrode is bent can be suppressed.
  • the transparency of the adhesion layer can be arbitrarily selected depending on the application, but the higher the transparency, the better the application to the transparent electrode, which is preferable from the viewpoint of expanding the application.
  • the total light transmittance of the adhesion layer is at least 40% or more, preferably 50% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • the compound having a thiol group (also referred to as a mercapto group) (hereinafter also referred to as a thiol group-containing compound) is not particularly limited as long as the effects of the present invention are not impaired.
  • the thiol group-containing compound according to the present invention is preferably a polyfunctional thiol group-containing compound having two or more thiol groups. Thereby, the adhesiveness with the metal fine wire containing a metal material more can be aimed at.
  • the thiol group-containing compound is preferably a condensate of a compound having a structure represented by the following general formula (I) with a monovalent or polyvalent alcohol or amine.
  • R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, at least one of which is an alkyl group having 1 to 10 carbon atoms.
  • m is an integer of 0 to 2
  • n is 0 or 1.
  • the alkyl group having 1 to 10 carbon atoms in R 1 and R 2 may be linear or branched, and specifically includes a methyl group, an ethyl group, an n-propyl group, an iso- Examples thereof include a propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-hexyl group, and an n-octyl group, and a methyl group or an ethyl group is preferable.
  • R 1 and R 2 may have a known substituent as long as the effects of the present invention are not impaired.
  • n is an integer of 0 to 2, preferably 0 or 1.
  • n is 0 or 1, but preferably 0.
  • Examples of the compound having the structure represented by the general formula (I) include 2-mercaptopropionic acid, 3-mercaptobutyric acid, 2-mercaptoisobutyric acid, and 3-mercaptoisobutyric acid.
  • Monohydric alcohols include methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 2-butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl- 1-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2 -Pentanol, 1-heptanol, 2-heptanol, 2-methyl-2-heptanol, 2-methyl-3-hept Nord, and the like.
  • polyhydric alcohol examples include glycols (wherein the alkylene group preferably has 2 to 10 carbon atoms, and the carbon chain thereof may be branched), such as ethylene glycol, diethylene glycol, 1,2-propylene. Glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane And dipentaerythritol.
  • glycols wherein the alkylene group preferably has 2 to 10 carbon atoms, and the carbon chain thereof may be branched
  • ethylene glycol diethylene glycol
  • 1,2-propylene examples include 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanedio
  • ethylene glycol 1,2-propylene glycol, 1,2-butanediol, 1,4-butanediol, trimethylolethane, trimethylolpropane, and pentaerythritol are preferable.
  • the amine is not particularly limited and may be any of primary to tertiary amines.
  • exemplary compounds SH-1 to SH-155, SE-1 to SE-84, and SA-1 to SA-34 are shown as specific examples of the thiol group-containing compound applicable to the adhesion layer according to the present invention.
  • silsesquioxane derivative having a thiol group (hereinafter also simply referred to as a silsesquioxane derivative) can be used.
  • a silsesquioxane derivative is a compound which has a cage type siloxane structure represented with the following general formula (A).
  • X A is representative of the following X 1 or X 2, at least one of X A is X 2.
  • R 1 to R 5 each independently represents an alkyl group having 1 to 8 carbon atoms or an aromatic hydrocarbon ring group.
  • A represents a divalent hydrocarbon group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms of R 1 to R 5 in X 1 and X 2 may be linear or branched, and specifically includes a methyl group, an ethyl group, Examples thereof include an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group.
  • Examples of the aromatic hydrocarbon ring group of R 1 to R 5 in X 1 and X 2 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • X 1 and X 2 may have a known substituent as long as the effects of the present invention are not impaired.
  • Examples of the divalent hydrocarbon group having 1 to 8 carbon atoms of A in X 2 include linear or branched alkylene groups having 1 to 8 carbon atoms. Among these, a straight-chain alkylene group having 2 or 3 carbon atoms such as —CH 2 CH 2 — and —CH 2 CH 2 CH 2 — is preferable from the viewpoint of easy synthesis of the silsesquioxane derivative.
  • A may have a known substituent as long as the effects of the present invention are not impaired.
  • Composelan (registered trademark) SQ100 series manufactured by Arakawa Chemical Co., Ltd. can be used.
  • JP-A-2015-59108, JP-A-2012-180464 and the like can be referred to.
  • poly (meth) acrylate having aminoethyl group and poly (meth) acrylamide having aminoethyl group are not particularly limited as long as the effects of the present invention are not inhibited, but the partial structure represented by the following general formula (II) It is preferable to have.
  • R 3 represents a hydrogen atom or a methyl group.
  • Q represents —C ( ⁇ O) O— or —C ( ⁇ O) NRa—.
  • Ra represents a hydrogen atom or an alkyl group.
  • A represents a substituted or unsubstituted alkylene group, or — (CH 2 CHRbNH) x —CH 2 CHRb—, Rb represents a hydrogen atom or an alkyl group, x represents the average number of repeating units, and is a positive integer It is.
  • alkyl group in Ra for example, a linear or branched alkyl group having 1 to 5 carbon atoms is preferable, and a methyl group is more preferable.
  • alkyl groups may be substituted with a substituent.
  • substituents include alkyl groups, cycloalkyl groups, aryl groups, heterocycloalkyl groups, heteroaryl groups, hydroxy groups, halogen atoms, alkoxy groups, alkylthio groups, arylthio groups, cycloalkoxy groups, aryloxy groups, Acyl group, alkylcarbonamide group, arylcarbonamide group, alkylsulfonamide group, arylsulfonamide group, ureido group, aralkyl group, nitro group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, alkylcarbamoyl group, Arylcarbamoyl group, alkylsulfamoyl group, arylsulfamoyl group, acyloxy group, alkenyl group, alkynyl group, alkylsulf
  • the alkyl group as the substituent may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a hexyl group, and an octyl group.
  • the cycloalkyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 3 to 8 carbon atoms.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the aryl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group.
  • the heterocycloalkyl group preferably has 2 to 10 carbon atoms, and more preferably 3 to 5 carbon atoms. Examples of the heterocycloalkyl group include a piperidino group, a dioxanyl group, and a 2-morpholinyl group.
  • the heteroaryl group preferably has 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms.
  • the heteroaryl group include a thienyl group and a pyridyl group.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • the alkoxy group may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and more preferably 1 to 4. Is most preferred.
  • alkoxy group examples include a methoxy group, an ethoxy group, a 2-methoxyethoxy group, a 2-methoxy-2-ethoxyethoxy group, a butyloxy group, a hexyloxy group, and an octyloxy group, and an ethoxy group is preferable.
  • the alkylthio group may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and more preferably 1 to 4. Is most preferred.
  • Examples of the alkylthio group include a methylthio group and an ethylthio group.
  • the arylthio group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the arylthio group include a phenylthio group and a naphthylthio group.
  • the cycloalkoxy group preferably has 3 to 12 carbon atoms, more preferably 3 to 8 carbon atoms.
  • Examples of the cycloalkoxy group include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, a cyclohexyloxy group, and the like.
  • the aryloxy group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group and a naphthoxy group.
  • the acyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the acyl group include a formyl group, an acetyl group, and a benzoyl group.
  • the alkylcarbonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylcarbonamide group include an acetamide group.
  • the aryl carbonamido group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the arylcarbonamide group include a benzamide group.
  • the alkylsulfonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • Examples of the sulfonamide group include a methanesulfonamide group.
  • the arylsulfonamide group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms.
  • Examples of the arylsulfonamido group include a benzenesulfonamido group and a p-toluenesulfonamido group.
  • the aralkyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms.
  • Examples of the aralkyl group include a benzyl group, a phenethyl group, and a naphthylmethyl group.
  • the alkoxycarbonyl group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the alkoxycarbonyl group include a methoxycarbonyl group.
  • the aryloxycarbonyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aryloxycarbonyl group include a phenoxycarbonyl group.
  • the aralkyloxycarbonyl group preferably has 8 to 20 carbon atoms, and more preferably 8 to 12 carbon atoms.
  • Examples of the aralkyloxycarbonyl group include a benzyloxycarbonyl group.
  • the acyloxy group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms.
  • Examples of the acyloxy group include an acetoxy group and a benzoyloxy group.
  • the alkenyl group has preferably 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms.
  • Examples of the alkenyl group include a vinyl group, an allyl group, and an isopropenyl group.
  • the alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. An ethynyl group etc. are mentioned as an alkynyl group.
  • the alkylsulfonyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms.
  • Examples of the alkylsulfonyl group include a methylsulfonyl group and an ethylsulfonyl group.
  • the arylsulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the arylsulfonyl group include a phenylsulfonyl group and a naphthylsulfonyl group.
  • the alkyloxysulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • alkyloxysulfonyl group examples include a methoxysulfonyl group and an ethoxysulfonyl group.
  • the aryloxysulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the aryloxysulfonyl group include a phenoxysulfonyl group and a naphthoxysulfonyl group.
  • the alkylsulfonyloxy group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • alkylsulfonyloxy group examples include a methylsulfonyloxy group and an ethylsulfonyloxy group.
  • the arylsulfonyloxy group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the arylsulfonyloxy group include a phenylsulfonyloxy group and a naphthylsulfonyloxy group.
  • the substituents may be the same or different, and these substituents may be further substituted.
  • the alkylene group in A preferably has 1 to 5 carbon atoms, more preferably an ethylene group or a propylene group. These alkylene groups may be substituted with the substituent mentioned above.
  • the alkyl group in Rb is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, more preferably a methyl group. These alkyl groups may be substituted with the aforementioned substituents.
  • the average number of repeating units x is not particularly limited as long as it is a positive integer, but it is preferably in the range of 1 to 20.
  • the weight average molecular weight (Mw) of poly (meth) acrylate and poly (meth) acrylamide is preferably in the range of 10,000 to 500,000, more preferably in the range of 30,000 to 200,000. If the weight average molecular weight (Mw) is 10,000 or more, the adhesive layer containing poly (meth) acrylate and poly (meth) acrylamide is hard, so the film thickness changes under time-dependent or forced deterioration conditions and interface deterioration with other layers. Without causing any electrical or optical problems.
  • the solubility in the coating solution for forming the adhesion layer and the compatibility with other compounds are good, and furthermore, there is a problem of peeling from other layers having different hardness in a low temperature or high temperature environment. It does not occur.
  • poly (meth) acrylate having aminoethyl group examples include a polymer or copolymer of (meth) acrylate having an aminoethyl group.
  • examples of (meth) acrylates include monofunctional or bifunctional (meth) acrylates having one or two (meth) acryloyl groups, and polyfunctional (meth) acrylates having three or more (meth) acryloyl groups. .
  • Examples of monofunctional (meth) acrylates include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and sec-butyl.
  • bifunctional (meth) acrylate examples include allyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-propanediol di (meth) acrylate, and 1,4-butane.
  • Alkanediol di (meth) acrylates such as diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and alkane polyol di (meta) such as glycerin di (meth) acrylate ) Acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol Polyalkylene glycol di (meth) acrylate such as urdi (meth) acrylate, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxydiethoxyphenyl) ) Di (meth) acrylates and fatty acids of C 2-4 alkylene oxide adduct
  • bifunctional (meth) acrylate for example, epoxy di (meth) acrylate (bisphenol A type epoxy di (meth) acrylate, novolac type epoxy di (meth) acrylate, etc.), polyester di (meth) acrylate (for example, aliphatic polyester) Type di (meth) acrylate, aromatic polyester type di (meth) acrylate, etc.), (poly) urethane di (meth) acrylate (polyester type urethane di (meth) acrylate, polyether type urethane di (meth) acrylate etc.), silicon (meta ) Oligomers such as acrylates or resins are also included.
  • epoxy di (meth) acrylate bisphenol A type epoxy di (meth) acrylate, novolac type epoxy di (meth) acrylate, etc.
  • polyester di (meth) acrylate for example, aliphatic polyester) Type di (meth) acrylate, aromatic polyester type di (meth) acrylate, etc
  • polyfunctional (meth) acrylate esterified product of polyhydric alcohol and (meth) acrylic acid
  • polyhydric alcohol for example, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate
  • examples include pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
  • the polyhydric alcohol may be an adduct of alkylene oxide (for example, C 2-4 alkylene oxide such as ethylene oxide or propylene oxide).
  • polyfunctional (meth) acrylates tri- to 6-functional (meth) acrylates such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are preferable.
  • Pentaerythritol Tri- to tetra-functional (meth) acrylates such as tri (meth) acrylate are more preferred.
  • the polyfunctional (meth) acrylate is preferably a polyfunctional (meth) acrylate that is not modified with an amine (an unmodified polyfunctional (meth) acrylate that is not added with amines by Michael addition or the like).
  • Examples Compounds PE-1 to PE-9 are shown below as specific examples of poly (meth) acrylates having aminoethyl groups applicable to the adhesion layer according to the present invention.
  • x and y in the following exemplary compounds represent the polymerization ratio of the copolymer.
  • the exemplified compounds PE-1 to PE-9 can be synthesized by a known method. More specifically, (i) a method in which (meth) acrylate is aminoethylated and then polymerized or copolymerized, and (ii) a method in which (meth) acrylate is polymerized and then aminoethylated. As an example, a method for synthesizing Exemplified Compound PE-7 is shown below.
  • poly (meth) acrylamide having an aminoethyl group examples include a polymer or copolymer of (meth) acrylamide having an aminoethyl group.
  • (meth) acrylamide examples include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, and N-benzyl (meth).
  • Acrylamide N-hydroxyethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-tolyl (meth) acrylamide, N- (hydroxyphenyl) (meth) acrylamide, N- (sulfamoylphenyl) (meth) acrylamide N- (phenylsulfonyl) (meth) acrylamide, N- (tolylsulfonyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-methyl-N-phenyl (meth) acrylamide, N-hydroxyethyl- N-methyl (Meth) acrylamide.
  • exemplary compounds PA-1 to PA-12 are shown as specific examples of poly (meth) acrylamide having an aminoethyl group applicable to the adhesion layer according to the present invention.
  • x and y in the following exemplary compounds represent the polymerization ratio of the copolymer.
  • the exemplified compounds PA-1 to PA-12 can be synthesized by known methods.
  • the aminoethylation of (meth) acrylamide or the aminoethylation of poly (meth) acrylamide (homopolymer) can be performed in the same manner as the aminoethylation of (meth) acrylate or poly (meth) acrylate described above.
  • the resin constituting the adhesion layer is not particularly limited as long as the adhesion layer can be formed.
  • a known natural polymer material having a monomer repeating structure or a synthetic polymer material can be used.
  • organic polymer materials, inorganic polymer materials, organic-inorganic hybrid polymer materials, and mixtures thereof can be used. These resins can be used in combination of two or more.
  • the above resin can be synthesized by a known method.
  • Natural polymer materials can be synthesized from microorganisms such as extracted from natural raw materials or cellulose.
  • the synthetic polymer can be obtained by radical polymerization, cationic polymerization, anionic polymerization, coordination polymerization, ring-opening polymerization, polycondensation, addition polymerization, addition condensation, and living polymerization thereof.
  • These resins may be either homopolymers or copolymers, and can have any regularity of random, syndiotactic and isotactic when a monomer having an asymmetric carbon is used. Moreover, in the case of a copolymer, forms, such as random copolymerization, alternating copolymerization, block copolymerization, and graft copolymerization, can be taken.
  • the form of the resin may be liquid or solid.
  • the resin is preferably dissolved in the solvent or uniformly dispersed in the solvent.
  • the resin may be a water-soluble resin or a water-dispersible resin.
  • the resin may be an ionizing radiation curable resin that is cured by ultraviolet rays or an electron beam, a thermosetting resin that is cured by heat, or may be a resin prepared by a sol-gel method. Furthermore, the resin may be crosslinked.
  • the natural polymer material is preferably a natural organic polymer material, and examples thereof include natural fibers such as cotton, hemp, cellulose, silk, and wool, proteins such as gelatin, and natural rubber.
  • Synthetic polymer materials include polyolefin resin, polyacrylic resin, polyvinyl resin, polyether resin, polyester resin, polyamide resin, polyurethane resin, polyphenylene resin, polyimide resin, polyacetal resin, polysulfone resin, fluororesin, epoxy resin, silicone resin Phenol resin, melamine resin, polyurethane resin, polyurea resin, polycarbonate resin, polyketone resin, and the like.
  • polystyrene resin examples include polyethylene, polypropylene, polyisobutylene, poly (1-butene), poly-4-methylpentene, polyvinylcyclohexane, polystyrene, poly (p-methylstyrene), poly ( ⁇ -methylstyrene), polyisoprene. , Polybutadiene, polycyclopentene, polynorbornene and the like.
  • polyacrylic resin include polymethacrylate, polyacrylate, polyacrylamide, polymethacrylamide, polyacrylonitrile and the like.
  • polyvinyl resin examples include polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polymethyl vinyl ether, polyethyl vinyl ether, polyisobutyl vinyl ether, and the like.
  • polyether resin examples include polyalkylene glycols such as polyethylene oxide and polypropylene oxide.
  • polyester resin examples include polyalkylene phthalates such as polyethylene terephthalate and polybutylene terephthalate, and polyalkylene naphthalates such as polyethylene naphthalate.
  • polyamide resin examples include polyamide 6, polyamide 6,6, polyamide 12, and polyamide 11.
  • fluororesin examples include polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, ethylene tetrafluoroethylene copolymer, and polychlorotrifluoroethylene.
  • the above-mentioned water-soluble resin means a resin that dissolves 0.001 g or more in 100 g of water at 25 ° C.
  • the degree of dissolution can be measured with a haze meter, a turbidimeter, or the like.
  • the color of the water-soluble resin is not particularly limited, but is preferably transparent.
  • the number average molecular weight of the water-soluble resin is preferably in the range of 3000 to 2000000, more preferably in the range of 4000 to 500000, and still more preferably in the range of 5000 to 100,000.
  • the number average molecular weight and molecular weight distribution of the water-soluble resin can be measured by generally known gel permeation chromatography (GPC).
  • the solvent to be used is not particularly limited as long as the binder dissolves, but tetrahydrofuran (THF), dimethylformamide (DMF), and dichloromethane (CH 2 Cl 2 ) are preferable, more preferably THF and DMF, and still more preferably DMF. It is.
  • the measurement temperature is not particularly limited, but is preferably 40 ° C.
  • water-soluble resins include natural polymer materials and synthetic polymer materials such as acrylic resins, polyester resins, polyamide resins, polyurethane resins, and fluorine resins.
  • casein starch, agar , Carrageenan, sesulose, hydroxyethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, dextran, dextrin, pullulan, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid, poly (2-hydroxyethyl acrylate), poly ( 2-hydroxyethyl methacrylate), polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, water-soluble polyvinyl butyral, and the like.
  • the above-mentioned water-dispersible resin means a resin that can be uniformly dispersed in an aqueous solvent and in which colloidal particles made of resin are dispersed without being aggregated in the aqueous solvent.
  • the size (average particle diameter) of colloidal particles is generally in the range of 1 to 1000 nm. The average particle diameter of the colloidal particles can be measured with a light scattering photometer.
  • the aqueous solvent is not only pure water such as distilled water and deionized water, but also an aqueous solution containing acid, alkali, salt, etc., a water-containing organic solvent, and a hydrophilic organic solvent. And alcohol-based solvents such as methanol and ethanol, mixed solvents of water and alcohol, and the like.
  • the water dispersible resin is preferably transparent.
  • the water-dispersible resin is not particularly limited as long as it is a medium for forming a film. Examples of the water-dispersible resin include an aqueous acrylic resin, an aqueous urethane resin, an aqueous polyester resin, an aqueous polyamide resin, and an aqueous polyolefin resin.
  • aqueous acrylic resin examples include vinyl acetate, acrylic acid, a polymer of acrylic acid-styrene, or a copolymer with other monomers.
  • the acid moiety responsible for the function of imparting dispersibility to an aqueous solvent is a copolymer of an anionic, nitrogen atom-containing monomer that forms a counter salt with ions such as lithium, sodium, potassium, and ammonium, and nitrogen.
  • ions such as lithium, sodium, potassium, and ammonium, and nitrogen.
  • nonionic systems in which a site such as a hydroxyl group or ethylene oxide is introduced, in which an atom forms a hydrochloride or the like, it is preferably anionic.
  • water-based urethane resin examples include water-dispersed urethane resin and ionomer-type water-based urethane resin (anionic).
  • water-dispersed urethane resins include polyether-based urethane resins and polyester-based urethane resins, and polyester-based urethane resins are preferred.
  • non-yellowing isocyanate having no aromatic ring.
  • Examples of the ionomer-type water-based urethane resin include polyester-based urethane resins, polyether-based urethane resins, and polycarbonate-based urethane resins, and polyester-based urethane resins and polyether-based urethane resins are preferable.
  • the aqueous polyester resin is synthesized from a polybasic acid component and a polyol component.
  • the polybasic acid component include terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid, adipic acid, succinic acid, sebacic acid, dodecanedioic acid and the like, and these may be used alone.
  • Two or more kinds of polybasic acid components that can be used in a particularly suitable manner are industrially produced in large quantities and are inexpensive, so terephthalic acid and isophthalic acid Is particularly preferred.
  • polyol component examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, cyclohexane dimethanol, bisphenol, and the like.
  • a polyol component that can be used particularly suitably it is industrially mass-produced, is inexpensive, and has a solvent resistance of the resin film.
  • Ethylene glycol, propylene glycol or neopentyl glycol is particularly preferable because various performances such as improvement of weather resistance and weather resistance are balanced.
  • examples of the inorganic polymer material include polysiloxane, polyphosphazene, polysilane, polygermane, polystannane, borazine polymer, polymetalloxane, polysilazane, titanium oligomer, and silane coupling agent.
  • Specific examples of the polysiloxane include silicone, silsesquioxane, and silicone resin.
  • organic / inorganic hybrid polymer materials polycarbosilane, polysilylene arylene, polysilole, polyphosphine, polyphosphine oxide, poly (ferrocenylsilane), silsesquioxane derivatives based on silsesquioxane Examples thereof include a resin in which silica is combined with a resin.
  • silsesquioxane derivatives having silsesquioxane as a basic skeleton include photo-curing type SQ series (Toagosei Co., Ltd.), Composelan SQ (Arakawa Chemical Co., Ltd.), Sila-DEC (Chisso Corporation). And so on.
  • Specific examples of the resin in which silica is combined with the resin include the Composelan series (Arakawa Chemical Co., Ltd.).
  • a curable resin such as an ionizing radiation curable resin or a thermosetting resin
  • the ionizing radiation curable resin is a resin that can be cured by an ordinary curing method of an ionizing radiation curable resin composition, that is, by irradiation with an electron beam or ultraviolet rays.
  • keV emitted from various electron beam accelerators such as a Cockrowalton type, a bandegraph type, a resonant transformation type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • An electron beam having an energy within a range of preferably 30 to 300 keV is used.
  • ultraviolet curing ultraviolet rays emitted from rays of ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc, metal halide lamp, etc. can be used.
  • Specific examples of the ultraviolet irradiation device include a rare gas excimer lamp that emits vacuum ultraviolet rays within a range of 100 to 230 nm. Since the excimer lamp has high light generation efficiency, it can be lit with low power. In addition, since light having a long wavelength that causes a temperature rise is not emitted and energy is emitted at a single wavelength in the ultraviolet region, the temperature rise of the irradiation object due to the irradiation light itself is suppressed.
  • thermosetting resin is a resin that is cured by heating, and it is more preferable that a crosslinking agent is contained in the resin.
  • a heating method of the thermosetting resin a conventionally known heating method can be used, and heater heating, oven heating, infrared heating, laser heating and the like can be used.
  • a surface energy adjusting agent may be added to the resin used for the adhesion layer. By adding the surface energy adjusting agent, the adhesion between the fine metal wire pattern and the adhesion layer, the line width of the fine metal wire pattern, and the like can be adjusted.
  • oxide particles The oxide particles that can be added to the adhesion layer are not particularly limited as long as they can be applied to a transparent electrode. By adding oxide particles to the resin, physical properties such as film strength, stretchability, and refractive index of the adhesion layer can be adjusted as appropriate, and the adhesion with the fine metal wire pattern is also improved.
  • the oxide particles include oxides of metals such as magnesium, aluminum, silicon, titanium, zinc, yttrium, zirconium, molybdenum, tin, barium, and tantalum.
  • the oxide particles are preferably titanium oxide, aluminum oxide, silicon oxide, or zirconium oxide.
  • the average particle diameter of the oxide particles is preferably in the range of 5 to 300 nm, and particularly preferably in the range of 5 to 100 nm because it can be suitably used for a transparent electrode.
  • oxide particles having an average particle diameter in the above range are used, sufficient unevenness can be formed on the surface of the adhesion layer, and adhesion with the metal fine wire pattern is improved.
  • the average particle size is 100 nm or less, the surface becomes smooth and the influence on the organic EL element is small.
  • the average particle diameter of the oxide particles can be easily measured using a commercially available measuring apparatus using a light scattering method. Specifically, a value measured at 25 ° C. and 1 mL of a sample dilution amount by a laser Doppler method using a Zetasizer 1000 (manufactured by Malvern) can be used.
  • the oxide particles are preferably contained in the adhesion layer within a range of 10 to 70 vol%, and more preferably within a range of 20 to 60 vol%.
  • the adhesion layer is formed by preparing a dispersion for forming an adhesion layer by dispersing resin, oxide particles, a thiol group-containing compound, and the like in a solvent, and applying this dispersion for forming an adhesion layer on a substrate.
  • the dispersion solvent used in the dispersion for forming the adhesion layer there are no particular restrictions on the dispersion solvent used in the dispersion for forming the adhesion layer, but it is preferable to select a solvent that does not cause precipitation of the resin and aggregation of the thiol group-containing compound.
  • the liquid in which the resin, the thiol group-containing compound, and the oxide particles are mixed is dispersed by a method such as ultrasonic treatment or bead mill treatment. Filtration with a filter or the like is preferable because it can prevent metal oxide aggregates from being generated on the substrate after coating and drying.
  • any appropriate method can be selected.
  • the coating method in addition to various printing methods such as gravure printing, flexographic printing, offset printing, screen printing, and inkjet printing.
  • Various coating methods such as a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a curtain coating method, a spray coating method, and a doctor coating method can be used.
  • the adhesion layer is formed by forming the coating method on a substrate and then drying it by a known heat drying method such as warm air drying or infrared drying, or by natural drying.
  • the temperature at which heat drying is performed can be appropriately selected depending on the substrate to be used, but it is preferably performed at a temperature of 200 ° C. or lower.
  • curing by light energy such as ultraviolet light or excimer light or heat curing with little damage to the substrate may be performed, and curing by excimer light is particularly preferable. It is an aspect.
  • the filament temperature of the light source is 1600 to It is preferable to use an infrared heater in the range of 3000 ° C. Since the hydroxy group has absorption at a specific wavelength emitted from the infrared heater, the solvent can be dried. On the other hand, since polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) as a substrate has little absorption of a specific wavelength emitted from an infrared heater, thermal damage to the substrate is small.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Examples of polar solvents having a hydroxy group include water (pure water such as distilled water and deionized water is preferable), alcohol solvents such as methanol and ethanol, glycols, glycol ethers, and mixed solvents of water and alcohol. Is mentioned.
  • Specific examples of the glycol ether organic solvent include ethyl carbitol, butyl carbitol, and the like.
  • Specific examples of the alcohol-based organic solvent include 1-propanol, 2-propanol, n-butanol, 2-butanol, diacetone alcohol, and butoxyethanol in addition to the above-described methanol and ethanol.
  • optical scattering layer (8) In the organic EL element of the present invention, an optical scattering layer is preferably provided on the transparent substrate.
  • the optical scattering layer includes at least a resin and light scattering particles.
  • the optical scattering layer preferably contains 80% or more of spherical particles having an aspect ratio of 2 or less.
  • the thickness of the optical scattering layer is preferably larger than the particle diameter of the light scattering particles.
  • the light scattering particles include 80% or more of spherical particles having an aspect ratio of 2 or less, and the thickness of the optical scattering layer is larger than the particle diameter of the scattering particles, whereby the light scattering particles are optically scattered in the optical scattering layer. It becomes easy to make uneven distribution in the area
  • a means of diluting from the concentration of the liquid to be applied normally and applying it thicker than the dilution can be used. By doing so, it is possible to adjust the time from immediately after coating to the end of drying of the coating film, and the light scattering particles are likely to sink into the transparent substrate side, so that the light scattering particles on the transparent substrate side of the light scattering particles The abundance ratio can be adjusted.
  • the surface roughness of the optical scattering layer is preferably as small as Ra, and as the preferable surface roughness, the arithmetic average roughness Ra is 10 nm or less, and more preferably Ra is 5 nm or less.
  • Ablation when forming a fine metal wire by firing the pattern of the metal nanoparticle-containing composition even when a fine metal wire is formed directly on the optical scattering layer by increasing the flatness of the surface of the optical scattering layer Can be prevented. Thereby, it is not necessary to provide another structure such as a planarizing layer on the optical scattering layer, and it is possible to suppress a decrease in the reliability of the first electrode due to the occurrence of a metal thin line pattern defect.
  • the uneven distribution of the light scattering particles means that the volume of the light scattering particles on the first electrode side and the transparent substrate side in the optical scattering layer is divided into both sides from the center in the thickness direction of only the resin portion of the optical scattering layer. This means that the ratio is different.
  • the particle abundance ratio of the light scattering particles in the region on the transparent substrate side from the center in the thickness direction in the optical scattering layer is the particle abundance ratio of the light scattering particles in the region on the first electrode side from the center in the thickness direction. It is a preferable aspect that it is larger than.
  • the particle abundance ratio on the transparent substrate side of the optical scattering layer is preferably more than 50%, more preferably 65% or more, and still more preferably 70% or more. The higher the particle abundance ratio of the optical scattering layer on the transparent substrate side, the easier the light extraction is improved and the less ablation occurs.
  • the volume ratio between the light scattering particles and the resin (hereinafter also referred to as PB ratio) is preferably in the range of 5 to 40 vol%.
  • the volume ratio (PB ratio) is the ratio of the volume of light scattering particles to the total volume of the optical scattering layer (volume of light scattering particles / (volume of light scattering particles + volume of resin)).
  • the PB ratio is more preferably 10 vol% or more, and still more preferably 20 vol% or more.
  • the PB ratio is 40 vol% or less, the particle abundance ratio on the transparent substrate side is easily increased, and the flatness of the surface of the optical scattering layer is easily improved.
  • the refractive indexes of the resin and the light scattering particles are measured values at a wavelength of 633 nm.
  • the resin preferably has a refractive index nb at a light wavelength of 633 nm of 1.50 or more and less than 2.00.
  • the refractive index nb of the resin is the refractive index of a single material when it is formed of a single material. In the case of a mixed system, the refractive index nb is obtained by multiplying the refractive index specific to each material by the mixing ratio. The calculated refractive index.
  • the role of the light scattering particles in the optical scattering layer includes a guided light scattering function.
  • a guided light scattering function it is necessary to improve the light scattering property of the light scattering particles.
  • methods such as increasing the difference in refractive index between the light scattering particles and the resin, increasing the layer thickness, and increasing the particle density are conceivable.
  • the method having the least adverse effect on the performance is to increase the difference in refractive index between the light scattering particles and the resin.
  • between the refractive index nb of the resin and the refractive index np of the light scattering particles contained is preferably in the range of 0.2 to 1.0. Especially preferably, it is 0.3 or more. If the refractive index difference
  • the refractive index np of the light scattering particles is made smaller than the refractive index nb of the resin, or the refractive index np of the light scattering particles is made smaller than the refractive index nb of the resin. Also make it bigger.
  • the refractive index np of the light scattering particles is the refractive index of a single material when formed of a single material, and in the case of a mixed system, the refractive index peculiar to each material is multiplied by the mixing ratio. It is the calculated refractive index calculated by the combined value.
  • the refractive index np of the light scattering particles is smaller than the refractive index nb of the resin, it is preferable to use low refractive index particles having a refractive index np of less than 1.5 as the light scattering particles. And it is preferable to use high refractive index resin whose refractive index nb is 1.6 or more as resin.
  • a high refractive index particle having a refractive index np in the range of 1.7 to 3.0 is used as the light scattering particle. Is preferred.
  • the resin it is preferable to use a resin having a refractive index nb that is smaller by 0.2 or more than the refractive index np of the light scattering particles.
  • the optical scattering layer has an action of diffusing light by the difference in refractive index between the resin and the light scattering particles. For this reason, the light-scattering particles are required to have a low adverse effect on other layers and have high light-scattering characteristics.
  • the layer thickness of the optical scattering layer needs to be thick to some extent in order to ensure the optical path length for causing scattering, but it needs to be thin enough not to cause energy loss due to absorption. Therefore, the thickness of the optical scattering layer is preferably in the range of 250 to 1000 nm.
  • the scattering in the optical scattering layer represents a state in which the haze value (ratio of the scattering transmittance to the total light transmittance) in the single layer of the optical scattering layer is 20% or more.
  • the haze value in the single layer of the optical scattering layer is more preferably 25% or more, and particularly preferably 30% or more. If the haze value is 20% or more, the light scattering property (light extraction efficiency) can be improved.
  • the optical scattering layer preferably contains 80% or more of spherical particles having an aspect ratio of 2 or less as light scattering particles.
  • the spherical particles having an aspect ratio of 2 or less preferably have an average particle diameter in the range of 200 to 500 nm, more preferably in the range of 200 to 450 nm, and still more preferably in the range of 250 nm to less than 400 nm.
  • the aspect ratio here is the ratio of the major axis length to the minor axis length of the light scattering particles.
  • light scattering particles can be taken randomly with a scanning electron microscope (SEM) to obtain an image, and the major axis length and minor axis length of the scattering particles can be obtained from the image and calculated.
  • SEM scanning electron microscope
  • the particles are photographed at a magnification of 100,000, the aspect ratio of 100 particles is confirmed from the image, and the ratio is obtained.
  • the light scattering property can be improved by adjusting the average particle diameter and the aspect ratio of the light scattering particles. Specifically, it is preferable to use particles that are larger than the region that causes Mie scattering in the visible light region. On the other hand, in order to make light scattering particles unevenly distributed on the transparent substrate side and flatten the surface of the optical scattering layer, it is necessary to make the average particle diameter smaller than the thickness of the optical scattering layer.
  • the average particle diameter of the light scattering particles can be measured by image processing of an electron micrograph. The particles are photographed at a magnification of 100,000 times, and the length of the long side of the particles is measured from the image. The average of 100 particles is taken as the average particle diameter.
  • the light scattering particles are not particularly limited, and any of the above-described low refractive index particles and high refractive index particles can be appropriately selected according to the purpose.
  • organic fine particles or inorganic fine particles can be used as the low refractive index particles and the high refractive index particles.
  • the low refractive index particles for example, acrylic resin (1.49), PTFE (1.35), PFA (1 .35), SiO 2 (1.46), magnesium fluoride (1.38), lithium fluoride (1.392), calcium fluoride (1.399), silicone rubber (1.40), vinylidene fluoride (1.42), silicone resin (1.43), polypropylene (1.48), urethane (1.49).
  • the parentheses indicate typical refractive indexes of particles made of each material.
  • the quantum described in International Publication No. 2009/014707, US Pat. No. 6,608,439, etc. is used as the high refractive index particles. Dots can also be suitably used. Among these, inorganic fine particles having a high refractive index are preferable.
  • organic fine particles having a high refractive index examples include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, cross-linked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads. Etc.
  • Examples of the inorganic fine particles having a high refractive index include oxide particles similar to those exemplified in the adhesion layer.
  • light scattering particles are used with or without surface treatment from the viewpoint of improving dispersibility and stability when used as a dispersion, similar to oxide particles in an adhesion layer. Can be selected.
  • the coating amount (in general, this coating amount is indicated by the mass ratio of the surface treatment material used on the surface of the particle to the mass of the particles). Is preferably in the range of 0.01 to 99% by mass. By making it in the said range, the improvement effect of the dispersibility and stability by surface treatment can fully be acquired.
  • resin of the optical scattering layer both the configuration in which the refractive index np of the light scattering particles is smaller than the refractive index nb of the resin and the configuration in which the refractive index np of the light scattering particles is larger than the refractive index nb of the resin,
  • a known resin can be used without particular limitation. Further, a plurality of types of resins can be mixed and used.
  • the optical scattering layer it is preferable to use a resin having a refractive index nb of 1.6 or more as a high refractive index resin applied to a configuration in which the refractive index np of the light scattering particles is smaller than the refractive index nb of the resin.
  • Rio Duras TYZ series Rio Duras TYT series (manufactured by Toyo Ink Co., Ltd.), resin coating containing ZrO 2 fine particles (manufactured by Pixellient Technologies), UR series (manufactured by Nissan Chemical Co., Ltd.), Olga-Tix series (manufactured by Matsumoto Fine Chemical Co., Ltd.), PIVVO series (Manufactured by KSM), acrylic resin series, epoxy resin series (manufactured by NTT Advanced Technology), hitaloid series (manufactured by Hitachi Chemical Co., Ltd.) and the like can be used.
  • the resin has a refractive index of 0.2 or smaller than the refractive index np of the scattering particles.
  • a resin having a high refractive index as much as possible, and the above-described high refractive index resin can be used. This is because in the case of a low refractive resin, the light coming from the first electrode side cannot be propagated into the low refractive index resin depending on the penetration angle and is reflected.
  • the same resins as those mentioned for the adhesion layer can be used.
  • the organic EL element of the present invention preferably has a configuration in which a gas barrier layer is provided on the transparent substrate according to the present invention.
  • the transparent substrate on which the gas barrier layer is formed has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / g at a temperature of 25 ⁇ 0.5 ° C. and a humidity of 90 ⁇ 2% RH measured by a method according to JIS K 7129-1992.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24h ⁇ atm) ( 1 atm is 1.01325 ⁇ 10 5 Pa.)
  • the water vapor permeability at a temperature of 25 ⁇ 0.5 ° C. and a humidity of 90 ⁇ 2% RH is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24h) or less.
  • any material may be used as long as it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the gas barrier layer is not particularly limited.
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is also preferable.
  • the polysilazane-containing liquid is applied and dried by a wet coating method, and the formed coating film is irradiated with vacuum ultraviolet light (VUV light) having a wavelength of 200 nm or less, and the formed coating film is subjected to a modification treatment, and gas A method of forming a barrier layer is also preferable.
  • VUV light vacuum ultraviolet light
  • the thickness of the gas barrier layer is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm. If the thickness of the gas barrier layer is 1 nm or more, a desired gas barrier performance can be exhibited, and if it is 500 nm or less, film quality deterioration such as generation of cracks in a dense silicon oxynitride film can be prevented. Can do.
  • the particle-containing layer is provided on a surface (back surface) opposite to the surface (front surface) on which the first electrode is formed in the transparent substrate.
  • the first electrode has a particle-containing layer. By having it, charging, sticking between the first electrodes, and the like can be suppressed.
  • the particle-containing layer is composed of particles and a binder resin.
  • the particle-containing layer preferably contains particles in the range of 1 to 900 parts by mass with respect to 100 parts by mass of the binder resin.
  • the particles constituting the particle-containing layer are preferably inorganic fine particles, inorganic oxide particles, conductive polymer particles, conductive carbon fine particles and the like.
  • oxide particles such as ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , MgO, BaO, MoO 2 , V 2 O 5 , and inorganic oxide particles such as SiO 2 are preferable.
  • SnO 2 and SiO 2 are preferable.
  • Binder resin examples of the binder resin constituting the particle-containing layer include cellulose derivatives such as cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate, polyvinyl acetate, polystyrene, polycarbonate, polybutylene terephthalate, and copolybutylene.
  • Polyesters such as tele / isophthalate, polyvinyl alcohol, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, polyvinyl alcohol derivatives such as polyvinyl benzal, norbornene-based polymers containing norbornene compounds, polymethyl methacrylate, polyethyl methacrylate, polypropylyl methacrylate , Polybutyl methacrylate, polymethyl acrylate, etc. It can be used a copolymer of acrylic resin or an acrylic resin and other resins, but it is not particularly limited to these exemplified a resin material. Among these, cellulose derivatives and acrylic resins are preferable, and acrylic resins are most preferably used.
  • the above thermoplastic resin having a weight average molecular weight (Mw) of 400,000 or more and a glass transition temperature in the range of 80 to 110 ° C. is preferable in terms of optical properties and the quality of the particle-containing layer to be formed. .
  • the glass transition temperature can be determined by the method described in JIS K7121.
  • the binder resin used here is 60% by mass or more, more preferably 80% by mass or more of the total resin mass constituting the particle-containing layer, and an actinic radiation curable resin or a thermosetting resin is applied as necessary. You can also.
  • the formation of the particle-containing layer is preferably performed before the formation of the first electrode, the adhesion layer, and the gas barrier layer.
  • the above-mentioned particles and binder resin are dissolved in an appropriate organic solvent to prepare a coating solution for forming a particle-containing layer in a solution state, and applied onto a transparent substrate by these wet coating methods. And drying to form a particle-containing layer.
  • organic solvent used for preparing the coating solution for forming the particle-containing layer hydrocarbons, alcohols, ketones, esters, glycol ethers and the like can be appropriately mixed and used. It is not limited to these.
  • hydrocarbons examples include benzene, toluene, xylene, hexane, and cyclohexane.
  • examples of the alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, 2-butanol, tert. -Butanol, pentanol, 2-methyl-2-butanol, cyclohexanol and the like.
  • ketones examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like.
  • esters include formic acid.
  • Examples thereof include methyl, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, ethyl lactate, and methyl lactate.
  • Examples of glycol ethers (1 to 4 carbon atoms) include methyl cellosolve and ethyl cellosol.
  • Propylene glycol monomethyl ether (abbreviation: PGME), propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, propylene glycol mono (1 to 4 carbon atoms) alkyl ether ester
  • the solvent include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and examples of other solvents include N-methylpyrrolidone. Although not particularly limited to these, a solvent in which these are appropriately mixed is also preferably used.
  • a method of applying the particle-containing layer forming coating solution onto the transparent substrate doctor coating, extrusion coating, slide coating, roll coating, gravure coating, wire bar coating, reverse coating, curtain coating, extrusion coating, or US Patent No.
  • examples include an extrusion coating method using a hopper described in the specification of US Pat. No. 2,681,294.
  • a particle-containing layer having a dry film thickness in the range of 0.1 to 20 ⁇ m, preferably in the range of 0.2 to 5 ⁇ m, can be formed on the transparent substrate.
  • the organic EL element may be sealed with a sealing member (not shown) for the purpose of preventing deterioration of an organic functional layer formed using an organic material or the like.
  • the sealing member is a plate-like (film-like) member that covers the upper surface of the organic EL element, and is fixed to the substrate side by an adhesive portion.
  • the sealing member may be a sealing film.
  • Such a sealing member is provided in a state in which the electrode terminal portion of the organic EL element is exposed and at least the organic functional layer is covered.
  • the structure which provides an electrode in a sealing member and makes the electrode terminal part of an organic EL element and the electrode of a sealing member electrically connect may be sufficient.
  • the plate-like (film-like) sealing member examples include a glass substrate, a polymer substrate, a metal substrate, and the like, and these substrates may be used in the form of a thinner film.
  • the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal substrate examples include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the element since the element can be thinned, it is preferable to use a polymer substrate or a metal substrate as a thin film as the sealing member.
  • the substrate material may be processed into a concave plate shape and used as a sealing member. In this case, the substrate member described above is subjected to processing such as sandblasting and chemical etching to form a concave shape.
  • the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 h ⁇ atm) or less, and conforms to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., (90 ⁇ 2)% RH) measured by a compliant method is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • substrate side is used as a sealing agent for sealing an organic EL element.
  • the adhesive part include photo-curing and thermosetting adhesives having a reactive vinyl group of acrylic acid oligomers and methacrylic acid oligomers, and moisture-curing adhesives such as 2-cyanoacrylates. Can be mentioned.
  • bonding portion examples include epoxy-based heat and chemical curing types (two-component mixing).
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • coating of the adhesion part to the adhesion part of a sealing member and a transparent electrode may use commercially available dispenser, and may print like screen printing.
  • the organic material which comprises an organic EL element may deteriorate with heat processing.
  • the adhesive part is preferably one that can be adhesively cured from room temperature (25 ° C.) to 80 ° C. Moreover, you may disperse
  • an inert gas such as nitrogen or argon, a fluorinated hydrocarbon, a silicone oil It is preferable to inject an inert liquid such as A vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • the sealing film when a sealing film is used as the sealing member, the sealing film is provided in a state that completely covers the organic functional layer in the organic EL element and exposes the electrode terminal portion of the organic EL element.
  • Such a sealing film is composed of an inorganic material or an organic material.
  • it is made of a material having a function of suppressing intrusion of a substance that causes deterioration of the organic functional layer in the organic EL element such as moisture and oxygen.
  • a material for example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used.
  • a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
  • the method for forming these films is not particularly limited.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a protective member such as a protective film or a protective plate may be provided to mechanically protect the organic EL element.
  • the protective member is disposed at a position where the organic EL element and the sealing member are sandwiched between the first electrode.
  • the sealing member is a sealing film, mechanical protection for the organic EL element is not sufficient, and thus it is preferable to provide such a protective member.
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, or a polymer material film or a metal material film is applied.
  • a polymer film because it is lightweight and thin.
  • a 1st electrode is produced with the above-mentioned manufacturing method.
  • a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are formed in this order on the conductive layer of the first electrode to form an organic functional layer.
  • a film forming method of each of these layers there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but from the point that a uniform film is easily obtained and pinholes are difficult to generate, etc. Vacuum deposition or spin coating is particularly preferred.
  • vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Each condition is preferably selected as appropriate within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of ⁇ 50 to 300 ° C., and layer thickness of 0.1 to 5 ⁇ m.
  • a second electrode is formed on the organic functional layer by an appropriate film forming method such as vapor deposition or sputtering.
  • the second electrode is patterned in a shape in which a terminal portion is drawn from the upper side of the organic functional layer to the periphery of the substrate while maintaining an insulating state with respect to the first electrode by the organic functional layer.
  • a sealing member that covers at least the organic functional layer is provided in a state where the extraction electrode and the terminal portion of the second electrode in the organic EL element are exposed.
  • a desired organic EL element can be obtained.
  • the substrate is taken out from the vacuum atmosphere and subjected to different film forming methods. It doesn't matter. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • Organic EL elements 101 to 134 were produced as follows.
  • a gas barrier layer was formed on the surface of the transparent resin substrate (the surface on the side where the transparent conductive layer is formed).
  • a transparent resin substrate was set in a discharge plasma chemical vapor deposition apparatus (Plasma CVD apparatus Precision 5000 manufactured by Applied Materials) and continuously conveyed by roll-to-roll.
  • a magnetic field was applied between the film forming rollers, and electric power was supplied to each film forming roller to generate plasma between the film forming rollers to form a discharge region.
  • a mixed gas of hexamethyldisiloxane (HMDSO), which is a raw material gas, and oxygen gas (which also functions as a discharge gas), which is a reactive gas is supplied as a film forming gas from the gas supply pipe to the formed discharge region.
  • a gas barrier layer having a thickness of 120 nm was formed under the following conditions.
  • Feed rate of source gas (hexamethyldisiloxane, HMDSO): 50 sccm (Standard Cubic Centimeter per Minute) Reaction gas (O 2 ) supply amount: 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film transport speed: 0.8 m / min
  • first electrode Formation of metal fine wire Silver nanoparticle dispersion (FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.) as a metal nanoparticle-containing composition on a transparent resin substrate (gas barrier layer)
  • FlowMetal SR6000 FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.
  • the ejection amount, the coating speed, the injection frequency, and the number of coatings were adjusted, and a pattern was formed by coating in a grid pattern with a line width of 5 ⁇ m and a line interval of 50 ⁇ m.
  • the super ink jet printing apparatus an ultra fine ink jet apparatus (manufactured by SIJ Technology) was used.
  • quartz glass plates that absorb infrared rays having a wavelength of 3.5 ⁇ m or more are attached to an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates.
  • an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates.
  • the drying process of the pattern of the formed metal nanoparticle containing composition was performed using the heater.
  • each of the crucibles for vapor deposition in the vacuum vapor deposition apparatus was filled with the following materials constituting each layer of the organic functional layer in an optimum amount for device fabrication.
  • a crucible made of a resistance heating material made of molybdenum or tungsten was used as the evaporation crucible.
  • the deposition crucible containing the following compound A-1 was energized and heated, and deposited on the first electrode (metal oxide layer side) at a deposition rate of 0.1 nm / second.
  • the hole injection layer having a thickness of 10 nm was formed.
  • the deposition crucible containing the following compound M-2 was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a 30 nm thick hole transport layer.
  • the following compound BD-1 and the following compound H-1 are co-deposited at a deposition rate of 0.1 nm / second so that the compound BD-1 has a concentration of 5 mass%, and emits blue light with a thickness of 15 nm.
  • a fluorescent light emitting layer was formed.
  • the following compound GD-1, the following compound RD-1, and the following compound H-2 were deposited at a deposition rate of 0.8% so that the concentration of the compound GD-1 was 17% by mass and the concentration of RD-1 was 0.8% by mass.
  • Co-evaporation was performed at 1 nm / second to form a phosphorescent light emitting layer having a thickness of 15 nm and exhibiting a yellow color.
  • the following compound E-1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
  • an organic functional layer was formed.
  • a polyethylene terephthalate film having a thickness of 50 ⁇ m in which an aluminum (Al) foil having a thickness of 100 ⁇ m was laminated was prepared as a sealing member.
  • the prepared solution of the adhesive composition is applied to the aluminum side (gas barrier layer side) of the sealing member so that the thickness of the adhesive layer formed after drying is 20 ⁇ m.
  • the adhesive layer was formed by drying for minutes.
  • a release sheet a release treatment surface of a polyethylene terephthalate film subjected to a release treatment with a thickness of 38 ⁇ m was attached to the formed adhesive layer surface to produce a sealing member.
  • the sealing member produced by the above method was left for 24 hours or more in a nitrogen atmosphere. After leaving, the release sheet was removed, and lamination was performed so as to cover the second electrode of the organic EL element 101 with a vacuum laminator heated to 80 ° C. Furthermore, it heated at 120 degreeC for 30 minutes, and sealed the organic EL element 101 with the sealing member.
  • the organic EL element 102 was produced in the same manner except that the first electrode was formed as follows.
  • IZO film an L-430S-FHS sputtering apparatus manufactured by Anerva is used. Ar: 20 sccm, O 2 : 3 sccm, sputtering pressure: 0.25 Pa, room temperature (25 ° C.), target side power: 1000 W, target-substrate distance : 86 mm, produced by RF sputtering.
  • a silver nanoparticle dispersion (FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.) as a metal nanoparticle-containing composition is applied using a super ink jet printing method.
  • the pattern was formed by adjusting the injection frequency and the number of times of application, and applying in a grid pattern with a line width of 5 ⁇ m and a line interval of 50 ⁇ m.
  • an ultra fine ink jet apparatus (manufactured by SIJ Technology) was used.
  • quartz glass plates that absorb infrared rays having a wavelength of 3.5 ⁇ m or more are attached to an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates.
  • an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates.
  • the drying process of the pattern of the formed metal nanoparticle containing composition was performed using the heater.
  • the organic EL element 103 was produced in the same manner except that the thickness of the insulating layer was changed to 800 nm.
  • the organic EL element 101 was similarly obtained except that the line width and height of the fine metal wire, the thickness of the transparent conductive layer, and the thickness of the organic functional layer were changed as shown in Table 1.
  • 104 to 118 were produced.
  • the thickness of each layer constituting the organic functional layer constitutes the organic functional layer of the organic EL element 101 so that the total thickness of the organic functional layer becomes a value described in Tables 1 and 2.
  • the ratio was the same as the thickness of each layer.
  • Organic EL elements 119 and 120 were produced in the same manner except that a glass substrate was used instead of the transparent resin substrate in the production of the organic EL elements 107 and 108.
  • organic EL elements 121 and 122 were produced in the same manner except that the transparent conductive layer (metal oxide layer) material was changed from IZO to ITO and ZnO.
  • a coating liquid having the following composition was applied on a fine metal wire pattern by a die coater and then dried to form a transparent conductive layer made of a conductive polymer having a thickness of 100 nm. During the drying process, radiant heat transfer drying using an infrared (IR) heater was performed for 5 minutes.
  • IR infrared
  • the organic EL element 124 was produced in the same manner except that the transparent conductive layer was formed as follows.
  • first electrode Formation of fluorine-containing resin layer An amorphous perfluorobutenyl ether polymer (CYTOP (registered trademark)) as a fluorine-containing resin on a transparent resin substrate (gas barrier layer). ): Asahi Glass Co., Ltd.) was applied by spin coating (rotation speed 2000 rpm, 20 sec), then heated at 50 ° C. for 10 minutes, then at 80 ° C. for 10 minutes, and further heated at 100 ° C. for 60 minutes. And then baked to form a fluorine-containing resin layer having a thickness of 1 ⁇ m.
  • CYTOP amorphous perfluorobutenyl ether polymer
  • a photomask having a lattice pattern (line width: 5 ⁇ m, line spacing: 50 ⁇ m) is brought into close contact with the substrate on which the fluorine-containing resin layer is formed, and irradiated with ultraviolet rays (VUV light) (mask) -Contact exposure with inter-substrate distance 0).
  • VUV light ultraviolet rays
  • a silver nanoparticle dispersion liquid (FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.) was applied as a metal nanoparticle-containing composition to a pretreated substrate.
  • the silver nanoparticle dispersion was wetted and spread in advance on the contact portion between the substrate and the blade (made of glass), and then the blade was swept in one direction. The sweep speed was 2 mm / sec.
  • the silver nanoparticle dispersion liquid was adhered only to the ultraviolet irradiation portion (functional group forming portion) of the substrate.
  • the height of the pattern of the metal nanoparticle-containing composition after the baking treatment described later is adjusted to 100 nm, and is naturally dried at room temperature (25 ° C.). Pattern was formed.
  • quartz glass plates that absorb infrared rays having a wavelength of 3.5 ⁇ m or more are attached to an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates.
  • an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates.
  • the drying process of the pattern of the formed metal nanoparticle containing composition was performed using the heater.
  • the thickness was 100 nm.
  • an L-430S-FHS sputtering apparatus manufactured by Anerva is used. Ar: 20 sccm, O 2 : 3 sccm, sputtering pressure: 0.25 Pa, room temperature (25 ° C.), target side power: 1000 W, target-substrate distance : 86 mm, produced by RF sputtering.
  • the organic EL element 126 was formed in the same manner except that an optical scattering layer was formed on the transparent resin substrate (gas barrier layer) as follows before forming the fine metal wire pattern. Produced.
  • optical scattering layer 45% PB ratio between titanium oxide particles (Titanics JR-808, manufactured by Teika) and resin (PCPM-47-BPA, manufactured by Pixellient Technologies), 2-propanol, propylene
  • the solid content concentration in an organic solvent in which the solvent ratio of glycol monomethyl ether (PGME) and 2-methyl-2,4-pentanediol (PD) is 20% by mass / 40% by mass / 40% by mass is 12% by mass. %.
  • a dispersion liquid for forming an optical scattering layer is prepared by adding 0.4% by mass of an additive (Disperbyk-2096, manufactured by Big Chemie Japan Co., Ltd.) to the above-mentioned solid content (effective mass component). Was prepared.
  • the TiO 2 particles and a solvent and additives were mixed at a mass ratio of 10 mass% with respect to TiO 2 particles, while cooling at room temperature (25 ° C.), an ultrasonic dispersing machine (manufactured by SMT Co., Ltd. UH ⁇ 50) was dispersed for 10 minutes under the standard conditions of a microchip step (MS-3, 3 mm ⁇ manufactured by SMT) to prepare a dispersion of TiO 2 . Next, while stirring the TiO 2 dispersion at 100 rpm, the resin solution is mixed and added little by little.
  • an ultrasonic dispersing machine manufactured by SMT Co., Ltd. UH ⁇ 50
  • the organic EL element 127 was produced in the same manner except that the adhesion layer was formed as follows on the transparent resin substrate (gas barrier layer) before forming the fine metal wire pattern. did.
  • the outer peripheral portion is wiped off so that the adhesion layer fits within the seal when the organic EL element is manufactured, and cured with an excimer lamp (apparatus: excimer irradiation apparatus MODEL MECL-M-1-200 manufactured by M.D. , Irradiation wavelength: 172 nm, lamp enclosed gas: Xe, excimer lamp light intensity: 130 mW / cm 2 (172 nm), distance between sample and light source: 2 mm, stage heating temperature: 70 ° C., oxygen concentration in irradiation apparatus: 20. 0%, irradiation energy: 1 J / cm 2 ), and an adhesion layer having a thickness of 100 nm was formed.
  • an excimer lamp apparatus: excimer irradiation apparatus MODEL MECL-M-1-200 manufactured by M.D. , Irradiation wavelength: 172 nm, lamp enclosed gas: Xe, excimer lamp light intensity: 130 mW / cm 2 (172 nm),
  • each line segment in each organic EL element was measured using a high brightness non-contact three-dimensional surface shape roughness meter WYKO NT9100, and tan ( ⁇ / 2) was calculated from the value. The measurement was performed at arbitrary 10 locations, and the average value was obtained. It was confirmed that the organic EL device of the present invention satisfies the conditional expression (1) at all measurement points.
  • the left side is the transparent resin substrate side.
  • metal thin wire / transparent conductive layer means that the metal thin wire is formed on the transparent resin substrate side
  • transparent conductive layer / metal thin wire means that the transparent conductive layer is formed on the transparent resin substrate side.
  • luminous efficiency was measured using the below-mentioned method, and this was made into the measured value of the luminous efficiency of each organic EL element.
  • a control organic EL element having the same configuration except that each organic EL element and the metal thin wire were not provided was prepared, and the luminous efficiency was measured in the same manner.
  • a value obtained by multiplying the luminous efficiency of each control organic EL element by the aperture ratio of the metal thin wire of each organic EL element corresponding thereto was used as the theoretical value of the luminous efficiency of each organic EL element.
  • the aperture ratio of the fine metal wires is 81% in the case of a lattice pattern having a line width of 5 ⁇ m and a line interval of 50 mm, for example.
  • the improvement rate of the luminous efficiency calculated by the following formula from the measured value and the theoretical value of the luminous efficiency of each organic EL element was used as an index of the luminous efficiency of each organic EL element.
  • the improvement rate of the luminous efficiency is preferably 1.10 or more, and more preferably 1.20 or more.
  • Improvement rate of luminous efficiency (actual value of luminous efficiency of each organic EL element) / (theoretical value of luminous efficiency of each organic EL element)
  • V drive voltage
  • a spectral radiance meter CS-2000 manufactured by Konica Minolta Co., Ltd. was used.
  • Driving voltage is less than 1.5 times 3: Driving voltage is 1.5 times or more and less than 2.5 times 2: Driving voltage is 2.5 times or more and less than 3.5 times 1: Driving voltage is 3.5 times or more
  • the rectification ratio is preferably 1.0 ⁇ 10 3 or more, and more preferably 1.0 ⁇ 10 4 or more.
  • Rectification ratio Current value when + 4V is applied / Current value when ⁇ 4V is applied 5: Rectification ratio is 1.0 ⁇ 10 5 or more 4: Rectification ratio is 1.0 ⁇ 10 4 or more and less than 1.0 ⁇ 10 5 3: Rectification ratio is 1.0 ⁇ 10 3 or more and less than 1.0 ⁇ 10 4 2: Rectification ratio is 1.0 ⁇ 10 2 or more and less than 1.0 ⁇ 10 3 1: Rectification ratio is 1.0 ⁇ 10 or more and 1.0 ⁇ ⁇ 10 2 0: Rectification ratio is less than 1.0 ⁇ 10
  • the strength of the fine metal wires was evaluated by a tape peeling method.
  • the elements 127 to 134 had less peeling of the fine metal wire pattern and excellent adhesion between the substrate and the fine metal wire.
  • the adhesion evaluation was performed by repeating the crimping / peeling 10 times using ST film (Panac 0.1N / 25 mm) on the fine metal wire, and visually observing the drop of the fine metal wire pattern. .
  • the present invention can be particularly suitably used for providing an organic electroluminescence device having excellent luminous efficiency.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide an organic EL element with excellent luminous efficiency. This organic EL element (1) is formed by laminating, on a transparent substrate (2), at least a first electrode (3) comprising a thin metal wire (3a) formed in a pattern and a transparent conductive layer (3b), an organic functional layer (4) and a second electrode (5); in a cross-section of the organic EL element (1) along the width direction of the thin metal wire (3a) and vertical with respect to the transparent substrate (2), defining M1 and M2 as the two ends of the portion of maximal thickness of the thin metal wire (3a) in the wire thickness direction, point E as the point where the vertical bisector of the line segment M1M2 intersects with the interface between the organic functional layer (4) and the second electrode (5), and the angle θ as the angle formed by a line segment M1E and the line segment M2E, the following conditional expression (1) is satisfied. 1.5 ≤ tan(θ/2) ≤ 10.0... (1)

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関し、より詳しくは、発光効率に優れた有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element, and more particularly to an organic electroluminescence element having excellent luminous efficiency.
 近年、有機エレクトロルミネッセン素子(以下、「有機EL素子」ともいう。)や有機太陽電池といった有機電子デバイスには、大型化、軽量化、フレキシブル化等が要求されている。特に、大型な有機電子デバイスには、高い発光効率や発電効率が求められるとともに、電気抵抗の低い透明電極が求められている。 In recent years, organic electronic devices such as organic electroluminescent elements (hereinafter also referred to as “organic EL elements”) and organic solar cells are required to be large, light, flexible, and the like. In particular, large organic electronic devices are required to have high luminous efficiency and power generation efficiency, and transparent electrodes with low electrical resistance.
 透明電極の電気抵抗を小さくする手段として、透明電極に金属ナノインクを焼成した金属細線を用いることが知られている(例えば、特許文献1参照。)。
 金属細線を用いた透明電極では、金属細線を透明導電層で被覆等することにより、面電極として機能させることができる。これにより有機電子デバイスに用いた際には、均一な面発光が可能となる。
As a means for reducing the electrical resistance of the transparent electrode, it is known to use a fine metal wire obtained by firing metal nano ink on the transparent electrode (see, for example, Patent Document 1).
A transparent electrode using a fine metal wire can function as a surface electrode by covering the fine metal wire with a transparent conductive layer. As a result, uniform surface light emission is possible when used in an organic electronic device.
 しかしながら、金属細線を用いた電極では、有機機能層(発光層)で発生した光が金属細線により遮蔽されるため、発生したすべての光を外部に取り出すことが困難となり、結果として発光効率を低下させてしまうという問題があった。 However, in the electrode using a thin metal wire, since the light generated in the organic functional layer (light emitting layer) is shielded by the thin metal wire, it becomes difficult to extract all the generated light to the outside, resulting in a decrease in luminous efficiency. There was a problem of letting it go.
米国特許出願公開第2010/0255323号明細書US Patent Application Publication No. 2010/0255323
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光効率に優れた有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above problems and situations, and a problem to be solved is to provide an organic electroluminescence device having excellent luminous efficiency.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、有機EL素子を金属細線の線幅方向に沿って透明基板に対し垂直に切断したときの切断面において、線幅方向に金属細線の太さが最大となる部分の両端部をそれぞれ点M及び点M、線分Mの垂直2等分線が有機機能層と第2電極との界面と交わる点を点E、線分MEと線分MEとのなす角を角θとするとき、当該角θが特定の条件を満たすことにより、発光効率に優れた有機EL素子を提供できることを見出し、本発明に至った。 In the process of examining the cause of the above-mentioned problem, etc., in order to solve the above-mentioned problems, the present inventors cut the organic EL element perpendicular to the transparent substrate along the line width direction of the fine metal wire, The perpendicular bisectors of the point M 1 and the point M 2 and the line segment M 1 M 2 are the interfaces between the organic functional layer and the second electrode at both ends of the portion where the thickness of the fine metal wire is maximum in the line width direction. When the point that intersects with the point E and the angle formed by the line segment M 1 E and the line segment M 2 E is the angle θ, the angle θ satisfies a specific condition, whereby an organic EL element having excellent luminous efficiency is obtained. The present invention has been found out and can be achieved.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.透明基板上に、少なくとも、パターン状に形成された金属細線と透明導電層とを含む第1電極、有機機能層及び第2電極が順次積層された有機エレクトロルミネッセンス素子であって、
 前記有機エレクトロルミネッセンス素子を前記金属細線の線幅方向に沿って前記透明基板に対し垂直に切断したときの切断面において、線幅方向に前記金属細線の太さが最大となる部分の両端部をそれぞれ点M及び点M、線分Mの垂直2等分線が前記有機機能層と前記第2電極との界面と交わる点を点E、線分MEと線分MEとのなす角を角θとするとき、下記条件式(1)を満たす有機エレクトロルミネッセンス素子。
1. An organic electroluminescence device in which a first electrode including at least a fine metal wire formed in a pattern and a transparent conductive layer, an organic functional layer, and a second electrode are sequentially laminated on a transparent substrate,
In the cut surface when the organic electroluminescence element is cut perpendicularly to the transparent substrate along the line width direction of the fine metal wires, both end portions of the portion where the thickness of the fine metal wires is maximum in the line width direction A point E, a line segment M 1 E, and a line segment M are points where a perpendicular bisector of the point M 1, the point M 2 , and the line segment M 1 M 2 intersects the interface between the organic functional layer and the second electrode 2 An organic electroluminescence device satisfying the following conditional expression (1), where an angle formed by E is an angle θ.
 1.5≦tan(θ/2)≦10.0・・・(1) 1.5 ≦ tan (θ / 2) ≦ 10.0 (1)
 2.前記第1電極が、少なくとも前記透明基板側から前記パターン状に形成された金属細線、前記透明導電層の順に積層されて構成されている第1項に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence element according to claim 1, wherein the first electrode is configured by laminating at least the metal thin wires formed in the pattern from the transparent substrate side and the transparent conductive layer in this order.
 3.前記角θが、下記条件式(2)を満たす第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescent element according to the first or second item, wherein the angle θ satisfies the following conditional expression (2).
 1.5≦tan(θ/2)≦5.0・・・(2) 1.5 ≦ tan (θ / 2) ≦ 5.0 (2)
 4.前記透明導電層に、金属酸化物が含有されている第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 4. The organic electroluminescent element according to any one of claims 1 to 3, wherein the transparent conductive layer contains a metal oxide.
 5.前記透明基板が、透明樹脂基板である第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 5. The organic electroluminescent element according to any one of Items 1 to 4, wherein the transparent substrate is a transparent resin substrate.
 6.前記有機機能層の厚さが、100~500nmの範囲内である第1項から第5項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to any one of items 1 to 5, wherein the thickness of the organic functional layer is in a range of 100 to 500 nm.
 7.前記第1電極が、前記透明基板側からフッ素含有樹脂層、前記パターン状に形成された金属細線、前記透明導電層の順に積層されて構成されている第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 7. Any one of the first to sixth items, wherein the first electrode is configured by laminating a fluorine-containing resin layer, a metal fine wire formed in the pattern shape, and the transparent conductive layer in this order from the transparent substrate side. The organic electroluminescence device according to one item.
 8.前記透明基板と前記第1電極との間に、密着層が設けられている第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 8. The organic electroluminescence device according to any one of items 1 to 7, wherein an adhesion layer is provided between the transparent substrate and the first electrode.
 9.前記密着層に、チオール基を有する化合物、アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミドから選択される化合物が含有されている第8項に記載の有機エレクトロルミネッセンス素子。 9. 9. The organic electro according to claim 8, wherein the adhesion layer contains a compound selected from a compound having a thiol group, a poly (meth) acrylate having an aminoethyl group, and a poly (meth) acrylamide having an aminoethyl group. Luminescence element.
 10.前記透明基板と前記第1電極との間に、光学散乱層が設けられている第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 10. The organic electroluminescence device according to any one of items 1 to 7, wherein an optical scattering layer is provided between the transparent substrate and the first electrode.
 本発明の上記手段により、発光効率に優れた有機エレクトロルミネッセンス素子を提供することができる。 The above-mentioned means of the present invention can provide an organic electroluminescence device having excellent luminous efficiency.
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。 The expression mechanism / action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明の有機EL素子は、有機EL素子を金属細線の線幅方向に沿って透明基板に対し垂直に切断したときの切断面において、線幅方向に金属細線の太さが最大となる部分の両端部をそれぞれ点M及び点M、線分Mの垂直2等分線が有機機能層と第2電極との界面と交わる点を点E、線分MEと線分MEとのなす角を角θとするとき、条件式(1)を満たすことを特徴とする。
 これは、有機EL素子を条件式(1)を満たすように設計することで、発光層からの光が金属細線に反射し、その一部の光が取り出し可能になるためと推測している。
The organic EL device of the present invention is a portion of the cut surface when the organic EL device is cut perpendicularly to the transparent substrate along the line width direction of the thin metal wire. Both ends of the point M 1 and the point M 2 , and the perpendicular bisector of the line segment M 1 M 2 intersect with the interface between the organic functional layer and the second electrode are the point E and the line segment M 1 E and the line segment When the angle between M 2 E and the angle θ is an angle θ, the conditional expression (1) is satisfied.
This is presumed that by designing the organic EL element so as to satisfy the conditional expression (1), the light from the light emitting layer is reflected on the fine metal wire, and a part of the light can be extracted.
本発明の有機EL素子の一例としての概略構成を示す断面模式図Cross-sectional schematic diagram showing a schematic configuration as an example of the organic EL element of the present invention 本発明の有機EL素子の他の一例としての概略構成を示す断面図Sectional drawing which shows schematic structure as another example of the organic EL element of this invention 本発明の有機EL素子の他の一例としての概略構成を示す断面図Sectional drawing which shows schematic structure as another example of the organic EL element of this invention 本発明の有機EL素子の他の一例としての概略構成を示す断面図Sectional drawing which shows schematic structure as another example of the organic EL element of this invention 本発明の有機EL素子の他の一例としての概略構成を示す断面図Sectional drawing which shows schematic structure as another example of the organic EL element of this invention 本発明の有機EL素子の他の一例としての概略構成を示す断面図Sectional drawing which shows schematic structure as another example of the organic EL element of this invention 本発明の有機EL素子の特性を説明するための概略構成を示す断面模式図Cross-sectional schematic diagram showing a schematic configuration for explaining the characteristics of the organic EL device of the present invention
 本発明の有機EL素子は、有機EL素子を金属細線の線幅方向に沿って透明基板に対し垂直に切断したときの切断面において、線幅方向に金属細線の太さが最大となる部分の両端部をそれぞれ点M及び点M、線分Mの垂直2等分線が有機機能層と第2電極との界面と交わる点を点E、線分MEと線分MEとのなす角を角θとするとき、条件式(1)を満たすことを特徴とする。この特徴は、下記各実施態様に係る発明に共通する技術的特徴である。 The organic EL device of the present invention is a portion of the cut surface when the organic EL device is cut perpendicularly to the transparent substrate along the line width direction of the thin metal wire. Both ends of the point M 1 and the point M 2 , and the perpendicular bisector of the line segment M 1 M 2 intersect with the interface between the organic functional layer and the second electrode are the point E and the line segment M 1 E and the line segment When the angle between M 2 E and the angle θ is an angle θ, the conditional expression (1) is satisfied. This feature is a technical feature common to the inventions according to the following embodiments.
 本発明の実施態様としては、生産性の観点から、第1電極が少なくとも透明基板側からパターン状に形成された金属細線、透明導電層が順に積層されて構成されていることが好ましい。 As an embodiment of the present invention, from the viewpoint of productivity, it is preferable that the first electrode is configured by laminating at least a metal thin wire formed in a pattern from the transparent substrate side and a transparent conductive layer in this order.
 また、より発光効率を向上させる観点から、角θが条件式(2)を満たすことが好ましい。 Further, from the viewpoint of further improving the luminous efficiency, it is preferable that the angle θ satisfies the conditional expression (2).
 また、より発光効率を向上させる観点から、透明導電層に金属酸化物が含有されていることが好ましい。 Further, from the viewpoint of further improving the luminous efficiency, it is preferable that the transparent conductive layer contains a metal oxide.
 また、フレキシブル性を得る観点から、透明基板が透明樹脂基板であることが好ましい。 Also, from the viewpoint of obtaining flexibility, the transparent substrate is preferably a transparent resin substrate.
 また、駆動電圧の上昇抑制及び整流特性を向上させる観点から、有機機能層の厚さが100~500nmの範囲内であることが好ましい。 Further, from the viewpoint of suppressing an increase in driving voltage and improving rectification characteristics, the thickness of the organic functional layer is preferably in the range of 100 to 500 nm.
 また、微細な金属細線を形成できる観点から、第1電極が、透明基板側からフッ素含有樹脂層、パターン状に形成された金属細線、透明導電層の順に積層されて構成されていることが好ましい。 In addition, from the viewpoint of forming fine metal wires, the first electrode is preferably configured by laminating a fluorine-containing resin layer, a metal wire formed in a pattern, and a transparent conductive layer in this order from the transparent substrate side. .
 また、透明基板と金属細線及び透明導電層との密着性を向上させる観点から、透明基板と第1電極との間に密着層が設けられていることが好ましく、当該密着層に、チオール基を有する化合物、アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミドから選択される化合物が含有されていることがより好ましい。 Further, from the viewpoint of improving the adhesion between the transparent substrate and the fine metal wires and the transparent conductive layer, it is preferable that an adhesion layer is provided between the transparent substrate and the first electrode, and a thiol group is added to the adhesion layer. It is more preferable that the compound selected from the compound which has, the poly (meth) acrylate which has an aminoethyl group, and the poly (meth) acrylamide which has an aminoethyl group is contained.
 また、より発光効率を向上させる観点から、透明基板と第1電極との間に光学散乱層が設けられていることが好ましい。 Moreover, it is preferable that an optical scattering layer is provided between the transparent substrate and the first electrode from the viewpoint of further improving the luminous efficiency.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
《有機EL素子》
 本発明の有機EL素子は、透明基板上に、少なくとも、パターン状に形成された金属細線と透明導電層とを含む第1電極、有機機能層及び第2電極が順次積層されて構成されている。
 図1に本発明の有機EL素子の概略構成を示す。図1に示すとおり、有機EL素子1は、透明基板2上に、透明電極としての第1電極3、有機機能層4、対向電極としての第2電極5が順次積層されて構成されている。なお、ここでいう透明(透光性)とは、波長550nmでの光透過率が50%以上であることをいう。
<< Organic EL element >>
The organic EL element of the present invention is configured by sequentially laminating a first electrode including at least a fine metal wire formed in a pattern and a transparent conductive layer, an organic functional layer, and a second electrode on a transparent substrate. .
FIG. 1 shows a schematic configuration of the organic EL element of the present invention. As shown in FIG. 1, the organic EL element 1 is configured by sequentially laminating a first electrode 3 as a transparent electrode, an organic functional layer 4, and a second electrode 5 as a counter electrode on a transparent substrate 2. Here, the term “transparent” (translucency) means that the light transmittance at a wavelength of 550 nm is 50% or more.
 第1電極3は、パターン状に形成された金属細線3aと透明導電層3bとを含んで構成されている。また、図2に示すように、第1電極3は、透明基板2とパターン状に形成された金属細線3aとの間に、フッ素含有樹脂層3cを有していてもよい。 The first electrode 3 includes a thin metal wire 3a and a transparent conductive layer 3b formed in a pattern. Moreover, as shown in FIG. 2, the 1st electrode 3 may have the fluorine-containing resin layer 3c between the transparent substrate 2 and the metal fine wire 3a formed in the pattern shape.
 図1に示す有機EL素子では、第1電極3は、透明基板2側からパターン状に形成された金属細線3a、透明導電層3bがこの順に積層されて構成されているが、図3に示すように、透明基板2側から透明導電層3b、パターン状に形成された金属細線3aがこの順に積層されて構成されていてもよく、更には、当該金属細線3aを被覆するようにして絶縁層(図示略)が設けられていてもよい。 In the organic EL element shown in FIG. 1, the first electrode 3 is configured by laminating a thin metal wire 3a and a transparent conductive layer 3b formed in this order from the transparent substrate 2 side. As described above, the transparent conductive layer 3b and the fine metal wires 3a formed in a pattern may be laminated in this order from the transparent substrate 2 side, and further the insulating layer so as to cover the fine metal wires 3a. (Not shown) may be provided.
 有機機能層4は、少なくとも発光層を含んで構成され、その他、各種有機層、例えば、正孔注入層、正孔輸送層、電子輸送層、電子注入層等を有していてもよい。正孔注入層及び正孔輸送層は、正孔輸送注入層として設けられてもよい。電子輸送層及び電子注入層は、電子輸送注入層として設けられてもよい。また、これらの有機層のうち、例えば、電子注入層は無機材料で構成されていてもよい。
 有機機能層4は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて有していてもよい。
The organic functional layer 4 includes at least a light emitting layer, and may have various organic layers such as a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like. The hole injection layer and the hole transport layer may be provided as a hole transport injection layer. The electron transport layer and the electron injection layer may be provided as an electron transport injection layer. Of these organic layers, for example, the electron injection layer may be made of an inorganic material.
In addition to these layers, the organic functional layer 4 may have a hole blocking layer, an electron blocking layer, or the like as necessary.
 第2電極5は、必要に応じて、積層構造であってもよい。 The second electrode 5 may have a laminated structure as necessary.
 有機EL素子1においては、第1電極3と第2電極5とで有機機能層4が挟持されている部分のみが有機EL素子1における発光領域となる。そして、有機EL素子1は、発生させた光(以下、発光光ともいう。)を、少なくとも透明基板2側から取り出すボトムエミッション型として構成されている。 In the organic EL element 1, only a portion where the organic functional layer 4 is sandwiched between the first electrode 3 and the second electrode 5 is a light emitting region in the organic EL element 1. The organic EL element 1 is configured as a bottom emission type in which generated light (hereinafter also referred to as emitted light) is extracted from at least the transparent substrate 2 side.
 また、有機EL素子1において、第1電極3及び第2電極5の端部には、図示しない取出し電極が設けられている。第1電極3及び第2電極5は、当該取出し電極を介して、外部電源(図示略)と電気的に接続される。 Further, in the organic EL element 1, extraction electrodes (not shown) are provided at the ends of the first electrode 3 and the second electrode 5. The first electrode 3 and the second electrode 5 are electrically connected to an external power source (not shown) via the extraction electrode.
 本発明の有機EL素子1は、必要に応じて、その他の各種機能層を有していてもよい。
 例えば、図4に示すように、透明基板2にガスバリアー層6が設けられていてもよい。
 また、図5に示すように、透明基板2と第1電極3との間に密着層7が設けられていてもよいし、図6に示すように、透明基板2と第1電極3との間に光学散乱層8が設けられていてもよい。
 さらには、透明基板2の第1電極3とは反対側の面上に、粒子含有層が設けられていてもよい。粒子含有層は、最も外側の層に配置されることが好ましい。
 これらの機能層は、単独で、又は2種以上を併用して設けることができる。
The organic EL element 1 of the present invention may have various other functional layers as necessary.
For example, as shown in FIG. 4, a gas barrier layer 6 may be provided on the transparent substrate 2.
As shown in FIG. 5, an adhesion layer 7 may be provided between the transparent substrate 2 and the first electrode 3, and as shown in FIG. 6, the transparent substrate 2 and the first electrode 3 An optical scattering layer 8 may be provided therebetween.
Furthermore, a particle-containing layer may be provided on the surface of the transparent substrate 2 opposite to the first electrode 3. The particle-containing layer is preferably disposed in the outermost layer.
These functional layers can be provided alone or in combination of two or more.
〈有機EL素子の特性〉
 以下、図面を参照して、本発明の有機EL素子の特徴的な特性について説明する。図7に、本発明の有機EL素子1を金属細線3aの線幅方向に沿って透明基板2に対し垂直に切断したときの断面模式図を示す。
 図7に示すとおり、線幅方向Wに金属細線3aの太さが最大となる部分の両端部をそれぞれ点M及び点Mとする。本発明に係る金属細線3aにおいては、線分Mが金属細線3aの線幅となる。また、線分Mの垂直2等分線Lが有機機能層4と第2電極5との界面と交わる点を点E、線分MEと線分MEとのなす角を角θとする。
 このとき、本発明の有機EL素子1は、下記条件式(1)を満たすことを特徴とする。
<Characteristics of organic EL elements>
Hereinafter, characteristic characteristics of the organic EL device of the present invention will be described with reference to the drawings. In FIG. 7, the cross-sectional schematic diagram when the organic EL element 1 of this invention is cut | disconnected perpendicularly | vertically with respect to the transparent substrate 2 along the line | wire width direction of the metal fine wire 3a is shown.
As shown in FIG. 7, the thickness of the thin metal wires 3a to the line width direction W is the opposite ends point unit M 1 and the point M 2 of the portion becomes maximum. In the metal fine wire 3a according to the present invention, the line segment M 1 M 2 is the line width of the metal fine wire 3a. Further, the point formed by the point E where the perpendicular bisector L of the line segment M 1 M 2 intersects the interface between the organic functional layer 4 and the second electrode 5, and the angle formed by the line segment M 1 E and the line segment M 2 E Is the angle θ.
At this time, the organic EL element 1 of the present invention satisfies the following conditional expression (1).
 1.5≦tan(θ/2)≦10.0・・・(1) 1.5 ≦ tan (θ / 2) ≦ 10.0 (1)
 これにより、有機EL素子の発光効率を向上させることができる。tan(θ/2)が1.5より小さい場合には、透明導電層3bや有機機能層4等を金属細線3aの形状に追従して形成することが困難となり、これがリークポイントとなって整流性が低下してしまう。一方で、tan(θ/2)が10.0より大きい場合には、金属細線3a上の発光層で発生した光を取り出すことが困難となってしまう。 Thereby, the luminous efficiency of the organic EL element can be improved. When tan (θ / 2) is smaller than 1.5, it becomes difficult to form the transparent conductive layer 3b, the organic functional layer 4 and the like following the shape of the thin metal wire 3a, which becomes a leak point and rectifies The nature will decline. On the other hand, when tan (θ / 2) is larger than 10.0, it becomes difficult to extract light generated in the light emitting layer on the thin metal wire 3a.
 また、本発明の有機EL素子1は、下記条件式(2)を満たすことが好ましい。 Moreover, it is preferable that the organic EL element 1 of the present invention satisfies the following conditional expression (2).
 1.5≦tan(θ/2)≦5.0・・・(2) 1.5 ≦ tan (θ / 2) ≦ 5.0 (2)
 なお、本発明において、tan(θ/2)の値は、各線分の長さを高輝度非接触3次元表面形状粗さ計WYKO NT9100を用いて測定し、その値から算出する。より具体的には、ランダムに10か所測定し、その平均値を求める。 In the present invention, the value of tan (θ / 2) is calculated from the value obtained by measuring the length of each line segment using a high-intensity non-contact three-dimensional surface shape roughness meter WYKO NT9100. More specifically, 10 points are measured at random and the average value is obtained.
 本発明におけるtan(θ/2)は、第1電極の金属細線の形状、絶縁層の厚さ、有機機能層の厚さを調整することで任意の値とすることができる。 Tan (θ / 2) in the present invention can be set to an arbitrary value by adjusting the shape of the fine metal wire of the first electrode, the thickness of the insulating layer, and the thickness of the organic functional layer.
〈第1電極(3)〉
 以下、本発明に係る第1電極を構成する各部材について説明する。
<First electrode (3)>
Hereinafter, each member which comprises the 1st electrode which concerns on this invention is demonstrated.
(金属細線(3a))
 本発明に係る金属細線は、金属を主成分とし、導電性を得ることができる程度の金属の含有比率で形成されている。金属細線中の金属の比率は、好ましくは50質量%以上である。
(Metal fine wire (3a))
The fine metal wire according to the present invention is composed of a metal as a main component and is formed with a metal content ratio such that conductivity can be obtained. The ratio of the metal in the fine metal wire is preferably 50% by mass or more.
 金属細線は、金属材料を含有し、開口部を有するようにパターン状に形成されている。開口部とは、金属細線を有さない部分であり、第1電極の透光性部分である。 The fine metal wire contains a metal material and is formed in a pattern so as to have an opening. An opening is a part which does not have a metal fine wire, and is a translucent part of a 1st electrode.
 金属細線のパターン形状には特に制限はない。金属細線のパターン形状としては、例えば、ストライプ状(平行線状)、格子状、ハニカム状、ランダムな網目状等が挙げられるが、透明性の観点から、特にストライプ状であることが好ましい。 There are no particular restrictions on the pattern shape of the fine metal wires. Examples of the pattern shape of the fine metal wire include a stripe shape (parallel line shape), a lattice shape, a honeycomb shape, and a random network shape. From the viewpoint of transparency, a stripe shape is particularly preferable.
 また、開口部が占める割合(開口率)は、透明性の観点から80%以上であることが好ましい。 Further, the ratio occupied by the openings (opening ratio) is preferably 80% or more from the viewpoint of transparency.
 金属細線の線幅は、好ましくは5~30μmの範囲内である。金属細線の線幅が5μm以上で所望の導電性が得られ、また、30μm以下とすることで有機EL素子の発光効率をより向上させることができる。また、ストライプ状、格子状のパターンにおいては、金属細線の間隔は、0.01~1mmの範囲内であることが好ましい。 The line width of the fine metal wire is preferably in the range of 5 to 30 μm. Desired conductivity can be obtained when the line width of the fine metal wire is 5 μm or more, and the light emission efficiency of the organic EL element can be further improved by setting it to 30 μm or less. In the stripe-like and lattice-like patterns, the distance between the fine metal wires is preferably within a range of 0.01 to 1 mm.
 金属細線の高さ(厚さ)は、0.05~1.0μmの範囲内であることが好ましく、0.1~0.6μmの範囲内であることがより好ましい。金属細線の高さが0.05μm以上で所望の導電性が得られ、また、1.0μm以下とすることで有機EL素子に用いる場合に、その金属細線の高さが機能層の層厚分布に与える影響を軽減できる。 The height (thickness) of the fine metal wire is preferably in the range of 0.05 to 1.0 μm, and more preferably in the range of 0.1 to 0.6 μm. The desired conductivity is obtained when the height of the fine metal wire is 0.05 μm or more, and the thickness of the fine metal wire is the thickness distribution of the functional layer when used for an organic EL element when the height is 1.0 μm or less. Can be reduced.
(1)金属ナノ粒子含有組成物
 金属細線は、後述するように、金属又は金属の形成材料が配合された金属ナノ粒子含有組成物を調製し、塗布した後、乾燥処理や焼成処理等の後処理を適宜行い、形成する。
 金属ナノ粒子に使用される金属としては、例えば、金、銀、銅及び白金等の金属、あるいはこれらを主成分とした合金等が挙げられる。これらの中でも、光の反射率が優れ、得られる有機EL素子の発光効率をより一層向上できる観点から、金及び銀が好ましい。これらの金属又は合金は、いずれか1種を単独で、又は2種以上を適宜組み合わせて用いることができる。
(1) Metal nanoparticle-containing composition As will be described later, after preparing and applying a metal nanoparticle-containing composition in which a metal or a metal-forming material is blended, a thin metal wire is subjected to a drying treatment or a firing treatment. Processes are performed as appropriate.
As a metal used for a metal nanoparticle, metals, such as gold | metal | money, silver, copper, and platinum, or the alloy etc. which have these as a main component are mentioned, for example. Among these, gold and silver are preferable from the viewpoints of excellent light reflectance and further improving the light emission efficiency of the obtained organic EL device. These metals or alloys can be used alone or in combination of two or more.
 金属ナノ粒子含有組成物としては、金属ナノ粒子の表面を表面保護剤で被覆し、溶媒に安定して独立分散させた構成の金属コロイドや金属ナノ粒子分散液であることが好ましい。 The metal nanoparticle-containing composition is preferably a metal colloid or metal nanoparticle dispersion liquid in which the surface of metal nanoparticles is coated with a surface protective agent and stably dispersed in a solvent.
 金属ナノ粒子含有組成物における金属ナノ粒子の平均粒子径としては、原子スケールから1000nm以下のものが好ましく適用できる。特に、金属ナノ粒子は、平均粒子径が3~300nmの範囲内であるものが好ましく、5~100nmの範囲内であるものがより好ましく用いられる。特に、平均粒子径3~100nmの範囲内の銀ナノ粒子が好ましい。 The average particle diameter of the metal nanoparticles in the metal nanoparticle-containing composition is preferably 1000 nm or less from the atomic scale. In particular, the metal nanoparticles preferably have an average particle size in the range of 3 to 300 nm, and more preferably in the range of 5 to 100 nm. In particular, silver nanoparticles having an average particle diameter of 3 to 100 nm are preferable.
 ここで、金属ナノ粒子及び金属コロイドの平均粒子径は、透過電子顕微鏡(TEM)を用いて、上記分散体中の金属ナノ粒子の粒子径を測定して求めることができる。例えば、TEMの画像で観察される粒子のうち、重なっていない独立した300個の金属ナノ粒子の粒子径を計測して、平均粒子径を算出することができる。 Here, the average particle diameter of the metal nanoparticles and the metal colloid can be determined by measuring the particle diameter of the metal nanoparticles in the dispersion using a transmission electron microscope (TEM). For example, the average particle diameter can be calculated by measuring the particle diameters of 300 independent metal nanoparticles that are not overlapped among the particles observed in the TEM image.
 金属コロイドにおいて、金属ナノ粒子の表面を被覆する保護剤としては、有機π接合配位子が好ましい。金属ナノ粒子に有機π共役系配位子がπ接合することにより、金属コロイドに導電性が付与される。 In the metal colloid, an organic π-junction ligand is preferable as a protective agent for coating the surface of the metal nanoparticles. Conductivity is imparted to the metal colloid by π-junction of the organic π-conjugated ligand to the metal nanoparticles.
 上記有機π接合配位子としては、フタロシアニン誘導体、ナフタロシアニン誘導体及びポルフィリン誘導体からなる群から選ばれる一種又は二種以上の化合物が好ましい。
 また、上記有機π接合配位子としては、金属ナノ粒子への配位や、分散媒中での分散性を向上させるために、置換基としてアミノ基、アルキルアミノ基、メルカプト基、ヒドロキシ基、カルボキシ基、ホスフィン基、ホスフォン酸基、スルフォン酸基、ハロゲン基、セレノール基、スルフィド基、セレノエーテル基、アミド基、イミド基、シアノ基、ニトロ基、及び、これらの塩から選ばれる少なくとも1種の置換基を有することが好ましい。
As said organic (pi) junction ligand, the 1 type, or 2 or more types of compound chosen from the group which consists of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative is preferable.
In addition, as the organic π-junction ligand, in order to improve coordination to metal nanoparticles and dispersibility in a dispersion medium, an amino group, an alkylamino group, a mercapto group, a hydroxy group, At least one selected from carboxy group, phosphine group, phosphonic acid group, sulfonic acid group, halogen group, selenol group, sulfide group, selenoether group, amide group, imide group, cyano group, nitro group, and salts thereof It is preferable to have a substituent.
 また、有機π接合配位子として、国際公開第2011/114713号に記載の有機π共役系配位子を用いることができる。 Moreover, the organic π-conjugated ligand described in International Publication No. 2011/114713 can be used as the organic π-junction ligand.
 上記有機π接合配位子の具体的な化合物としては、下記のOTAN、OTAP、及び、OCANから選ばれる1種又は2種以上が好ましい。
 OTAN:2,3,11,12,20,21,29,30-オクタキス[(2-N,N-ジメチルアミノエチル)チオ]ナフタロシアニン
 OTAP:2,3,9,10,16,17,23,24-オクタキス[(2-N,N-ジメチルアミノエチル)チオ]フタロシアニン
 OCAN:2,3,11,12,20,21,29,30-ナフタロシアニンオクタカルボン酸
As a specific compound of the organic π-junction ligand, one or more selected from the following OTAN, OTAP, and OCAN are preferable.
OTAN: 2,3,11,12,20,21,29,30-octakis [(2-N, N-dimethylaminoethyl) thio] naphthalocyanine OTAP: 2,3,9,10,16,17,23 , 24-octakis [(2-N, N-dimethylaminoethyl) thio] phthalocyanine OCAN: 2,3,11,12,20,21,29,30-naphthalocyanine octacarboxylic acid
 有機π接合配位子を含有する金属ナノ粒子分散液の調製方法としては、液相還元法が挙げられる。また、本実施形態の有機π接合配位子の製造及び有機π接合配位子を含有する金属ナノ粒子分散液の調製は、国際公開第2011/114713号の段落0039~0060に記載の方法に準じて行うことができる。 As a method for preparing a metal nanoparticle dispersion containing an organic π-junction ligand, a liquid phase reduction method may be mentioned. In addition, the production of the organic π-junction ligand of this embodiment and the preparation of the metal nanoparticle dispersion containing the organic π-junction ligand are performed according to the method described in Paragraphs 0039 to 0060 of International Publication No. 2011/114713. It can be done according to this.
 金属コロイドの平均粒子径は、通常は3~500nmの範囲内であり、好ましくは5~50nmの範囲内である。金属コロイドの平均粒子径が上記範囲内であると、粒子間の融着が起こりやすくなり、得られる金属細線の導電性を向上させることができる。 The average particle diameter of the metal colloid is usually in the range of 3 to 500 nm, preferably in the range of 5 to 50 nm. When the average particle diameter of the metal colloid is within the above range, fusion between particles is likely to occur, and the conductivity of the obtained metal fine wire can be improved.
 金属ナノ粒子分散液において、金属ナノ粒子の表面を被覆する保護剤としては、200℃以下の低い温度にて配位子がはずれる保護剤を用いることが好ましい。これにより、低温又は低エネルギーにより、保護剤がはずれ、金属ナノ粒子の融着がおき、導電性を付与できる。
 具体的には、特開2013-142173号公報、特開2012-162767号公報、特開2014-139343号公報、特許第5606439号公報などに記載の金属ナノ粒子分散液が例として挙げられる。
In the metal nanoparticle dispersion liquid, as the protective agent for coating the surface of the metal nanoparticles, it is preferable to use a protective agent that removes the ligand at a low temperature of 200 ° C. or lower. As a result, the protective agent is detached by low temperature or low energy, the metal nanoparticles are fused, and conductivity can be imparted.
Specific examples include metal nanoparticle dispersions described in JP2013-142173A, JP2012-162767A, JP2014-139343A, Patent No. 5606439, and the like.
 金属の形成材料としては、例えば、金属塩、金属錯体、有機金属化合物(金属-炭素結合を有する化合物)等を挙げることができる。金属塩及び金属錯体は、有機基を有する金属化合物及び有機基を有しない金属化合物のいずれでもよい。金属ナノ粒子含有組成物に金属の形成材料を用いることで、材料から金属が生じ、この金属を含む金属細線が形成される。 Examples of the metal forming material include metal salts, metal complexes, organometallic compounds (compounds having a metal-carbon bond), and the like. The metal salt and metal complex may be either a metal compound having an organic group or a metal compound having no organic group. By using a metal forming material in the metal nanoparticle-containing composition, a metal is generated from the material, and a fine metal wire including the metal is formed.
 金属銀の形成材料としては、「AgX」で表される銀化合物と、アンモニウムカルバメート系化合物とを反応させて作製された有機銀錯体を用いることが好ましい。「AgX」において、nは1~4の整数であり、Xは酸素、硫黄、ハロゲン、シアノ、シアネート、カーボネート、ニトレート、ニトライト、サルフェート、ホスフェート、チオシアネート、クロレート、パークロレート、テトラフルオロボレート、アセチルアセトネート、及び、カルボキシレートで構成された群から選択される置換基である。 As a material for forming metallic silver, an organic silver complex produced by reacting a silver compound represented by “Ag n X” with an ammonium carbamate compound is preferably used. In “Ag n X”, n is an integer of 1 to 4, and X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrate, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoroborate, A substituent selected from the group consisting of acetylacetonate and carboxylate.
 上記銀化合物としては、例えば、酸化銀、チオシアネート化銀、シアン化銀、シアネート化銀、炭酸銀、硝酸銀、亜硝酸銀、硫酸銀、燐酸銀、過塩素酸銀、四フッ素ボレート化銀、アセチルアセトネート化銀、酢酸銀、乳酸銀、シュウ酸銀等を挙げることができる。銀化合物としては、酸化銀や炭酸銀を使用することが反応性や後処理面で好ましい。 Examples of the silver compound include silver oxide, thiocyanate silver, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, silver perchlorate, silver tetrafluoroborate, acetylacetate. Examples thereof include silver nitrate, silver acetate, silver lactate, and silver oxalate. As the silver compound, use of silver oxide or silver carbonate is preferable in terms of reactivity and post-treatment.
 アンモニウムカルバメート系化合物としては、例えば、アンモニウムカルバメート、エチルアンモニウムエチルカルバメート、イソプロピルアンモニウムイソプロピルカルバメート、n-ブチルアンモニウムn-ブチルカルバメート、イソブチルアンモニウムイソブチルカルバメート、t-ブチルアンモニウムt-ブチルカルバメート、2-エチルヘキシルアンモニウム2-エチルヘキシルカルバメート、オクタデシルアンモニウムオクタデシルカルバメート、2-メトキシエチルアンモニウム2-メトキシエチルカルバメート、2-シアノエチルアンモニウム2-シアノエチルカルバメート、ジブチルアンモニウムジブチルカルバメート、ジオクタデシルアンモニウムジオクタデシルカルバメート、メチルデシルアンモニウムメチルデシルカルバメート、ヘキサメチレンイミニウムヘキサメチレンイミンカルバメート、モルホリウムモルホリンカルバメート、ピリジニュムエチルヘキシルカルバメート、トリエチレンジアミニウムイソプロピルバイカルバメート、ベンジルアンモニウムベンジルカルバメート、トリエトキシシリルプロピルアンモニウムトリエトキシシリルプロピルカルバメート等を挙げることができる。上記アンモニウムカルバメート系化合物のうち、1次アミン置換されたアルキルアンモニウムアルキルカルバメートは、反応性及び安定性面で2次又は3次アミンより優れるため好ましい。 Examples of ammonium carbamate compounds include ammonium carbamate, ethyl ammonium ethyl carbamate, isopropyl ammonium isopropyl carbamate, n-butyl ammonium n-butyl carbamate, isobutyl ammonium isobutyl carbamate, t-butyl ammonium t-butyl carbamate, 2-ethylhexyl ammonium 2 -Ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate, 2-cyanoethyl ammonium 2-cyanoethyl carbamate, dibutyl ammonium dibutyl carbamate, dioctadecyl ammonium dioctadecyl carbamate, methyl decyl ammonium methyl dec Carbamate, hexamethylene iminium hexamethylene imine carbamate, morpholium morpholine carbamate, pyridinium ethyl hexyl carbamate, triethylenediaminium isopropyl bicarbamate, benzylammonium benzyl carbamate, triethoxysilylpropylammonium triethoxysilylpropyl carbamate, etc. Can do. Of the ammonium carbamate compounds, alkylammonium alkyl carbamates substituted with primary amines are preferred because they are superior to secondary or tertiary amines in terms of reactivity and stability.
 上記有機銀錯体は、特開2011-48795号公報に記載の方法により作製することができる。例えば、上記銀化合物の1種以上と、上記アンモニウムカルバメート系化合物の1種以上とを、窒素雰囲気の常圧又は加圧状態で、溶媒を使用せずに直接反応させることで合成できる。また、メタノール、エタノール、イソプロパノール、ブタノールのようなアルコール類、エチレングリコール、グリセリンのようなグリコール類、エチルアセテート、ブチルアセテート、カルビトールアセテートのようなアセテート類、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、メチルエチルケトン、アセトンのようなケトン類、ヘキサン、ヘプタンのような炭化水素系、ベンゼン、トルエンのような芳香族、そしてクロロホルムやメチレンクロライド、カーボンテトラクロライドのようなハロゲン置換溶媒等の溶媒を使用して反応させることができる。 The organic silver complex can be produced by the method described in JP 2011-48795 A. For example, it can be synthesized by directly reacting one or more of the above silver compounds and one or more of the above ammonium carbamate compounds at normal pressure or under pressure in a nitrogen atmosphere without using a solvent. Also, alcohols such as methanol, ethanol, isopropanol and butanol, glycols such as ethylene glycol and glycerin, acetates such as ethyl acetate, butyl acetate and carbitol acetate, ethers such as diethyl ether, tetrahydrofuran and dioxane , Ketones such as methyl ethyl ketone and acetone, hydrocarbons such as hexane and heptane, aromatics such as benzene and toluene, and halogen substituted solvents such as chloroform, methylene chloride and carbon tetrachloride Can be reacted.
 有機銀錯体の構造は「Ag[A]」で表すことができる。なお、「Ag[A]」において、Aは上記アンモニウムカルバメート系化合物であり、mは0.7~2.5である。 The structure of the organic silver complex can be represented by “Ag [A] m ”. In “Ag [A] m ”, A is the ammonium carbamate compound, and m is 0.7 to 2.5.
 上記有機銀錯体は、メタノールのようなアルコール類、エチルアセテートのようなエステル類、テトラヒドロフランのようなエーテル類溶媒など、有機銀錯体を製造する溶媒を含む多様な溶媒によく溶ける。このため、有機銀錯体は、金属ナノ粒子含有組成物として、塗布やプリンティング工程に容易に適用可能である。 The above-mentioned organic silver complex is well soluble in various solvents including solvents for producing organic silver complexes, such as alcohols such as methanol, esters such as ethyl acetate, and ethers such as tetrahydrofuran. For this reason, the organic silver complex can be easily applied to a coating or printing process as a metal nanoparticle-containing composition.
 また、金属銀の形成材料としては、式「-COOAg」で表される基を有するカルボン酸銀が例示できる。カルボン酸銀は、式「-COOAg」で表される基を有していれば特に限定されない。例えば、式「-COOAg」で表される基の数は1個のみでもよいし、2個以上でもよい。また、カルボン酸銀中の式「-COOAg」で表される基の位置も特に限定されない。 Further, examples of the metal silver forming material include silver carboxylate having a group represented by the formula “—COOAg”. The silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”. For example, the number of groups represented by the formula “—COOAg” may be one, or two or more. Further, the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
 カルボン酸銀としては、特開2015-66695号公報に記載のβ-ケトカルボン酸銀、及び、カルボン酸銀(4)からなる群から選択される1種以上であることが好ましい。なお、金属銀の形成材料としては、β-ケトカルボン酸銀及びカルボン酸銀(4)だけではなく、これらを包括する、式「-COOAg」で表される基を有するカルボン酸銀を用いることができる。 The silver carboxylate is preferably at least one selected from the group consisting of silver β-ketocarboxylate and silver carboxylate (4) described in JP-A-2015-66695. As the metal silver forming material, not only silver β-ketocarboxylate and silver carboxylate (4), but also silver carboxylate having a group represented by the formula “—COOAg”, which includes them, is used. it can.
 また、金属ナノ粒子含有組成物に金属の形成材料として上記カルボン酸銀を含む場合、カルボン酸銀とともに、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びにアミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される1種以上の含窒素化合物が配合されていることが好ましい。 Further, when the metal nanoparticle-containing composition contains the above-mentioned silver carboxylate as a metal-forming material, the amine compound and quaternary ammonium salt having 25 or less carbon atoms, ammonia, and the amine compound or ammonia together with the silver carboxylate are acid. It is preferable that at least one nitrogen-containing compound selected from the group consisting of ammonium salts formed by reaction with is blended.
 アミン化合物としては、炭素数が1~25であり、第1級アミン、第2級アミン及び第3級アミンのいずれでもよい。また、第4級アンモニウム塩は、炭素数が4~25である。アミン化合物及び第4級アンモニウム塩は、鎖状及び環状のいずれでもよい。また、アミン部位又はアンモニウム塩部位を構成する窒素原子(例えば、第1級アミンのアミノ基「-NH」を構成する窒素原子)の数は1個でもよいし、2個以上でもよい。 The amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine. The quaternary ammonium salt has 4 to 25 carbon atoms. The amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group “—NH 2 ” of the primary amine) may be one, or may be two or more.
(2)金属細線パターンの形成方法
 次に、金属細線パターンの形成方法について説明する。金属細線パターンは、金属ナノ粒子含有組成物を用いて形成する。金属細線パターンの形成方法としては、特に制限はなく、従来公知の方法が利用できる。この従来公知の金属細線パターンの形成方法としては、例えば、フォトリソ法、塗布法、印刷法を応用した方法等を利用でき、中でも微細な(線幅の小さい)金属細線を形成できることから、スーパーインクジェット印刷法やマイクロコンタクトプリント法が好ましい。また、微細な金属細線形成は、後述するフッ素含有樹脂層などを用い、基板表面を低エネルギー状態にすることでも可能である。
(2) Formation method of a metal fine wire pattern Next, the formation method of a metal fine wire pattern is demonstrated. The metal fine line pattern is formed using a metal nanoparticle-containing composition. There is no restriction | limiting in particular as a formation method of a metal fine wire pattern, A conventionally well-known method can be utilized. As a conventionally known method for forming a fine metal line pattern, for example, a method using a photolithographic method, a coating method, a printing method, or the like can be used. Among them, a fine (small line width) fine metal wire can be formed. The printing method and the micro contact printing method are preferable. In addition, fine metal fine wires can be formed by using a fluorine-containing resin layer to be described later and setting the substrate surface to a low energy state.
 金属ナノ粒子含有組成物は、上述の金属ナノ粒子と、溶媒とを含有し、分散剤、粘度調整剤、バインダー等の添加剤が含有されてもよい。金属ナノ粒子含有組成物に含有される溶媒としては特に制限はないが、中赤外線照射により効率的に溶媒を揮発できる点で、ヒドロキシ基を有する化合物が好ましく、水、アルコール、グリコールエーテルが好ましい。 The metal nanoparticle-containing composition contains the metal nanoparticles described above and a solvent, and may contain additives such as a dispersant, a viscosity modifier, and a binder. Although there is no restriction | limiting in particular as a solvent contained in a metal nanoparticle containing composition, The compound which has a hydroxyl group is preferable at the point which can volatilize a solvent efficiently by mid-infrared irradiation, and water, alcohol, and glycol ether are preferable.
 金属ナノ粒子含有組成物に用いる溶媒としては、水、メタノール、エタノール、プロパノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ファルネソール、デデカジエノール、リナロール、ゲラニオール、ネロール、ヘプタジエノール、テトラデセノール、ヘキサデセネオール、フィトール、オレイルアルコール、デデセノール、デセノール、ウンデシレニルアルコール、ノネノール、シトロネロール、オクテノール、ヘプテノール、メチルシクロヘキサノール、メントール、ジメチルシクロヘキサノール、メチルシクロヘキセノール、テルピネオール、ジヒドロカルベオール、イソプレゴール、クレゾール、トリメチルシクロヘキセノール、グリセリン、エチレングリコール、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ヘキシレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ネオペンチルグリコール、ブタンジオール、ペンタンジオール、ヘプタンジオール、プロパンジオール、ヘキサンジオール、オクタンジオール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等が挙げられる。 Solvents used in the composition containing metal nanoparticles include water, methanol, ethanol, propanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexadecanol, hexane Diol, heptanediol, octanediol, nonanediol, decanediol, farnesol, dedecadienol, linalool, geraniol, nerol, heptadienol, tetradecenol, hexadecenol, phytol, oleyl alcohol, dedecenol, decenol, undecylenyl alcohol, nonenol Citronellol, octenol, heptenol, methylcyclohexanol, menthol, dimethylcyclohexane Sanol, methylcyclohexenol, terpineol, dihydrocarbeveol, isopulegol, cresol, trimethylcyclohexenol, glycerin, ethylene glycol, polyethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, hexylene glycol, propylene glycol, dipropylene glycol , Tripropylene glycol, neopentyl glycol, butanediol, pentanediol, heptanediol, propanediol, hexanediol, octanediol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono Chirueteru, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, and the like.
 印刷法により金属ナノ粒子含有組成物のパターンを形成する場合には、一般的に電極パターン形成に使われる方法が適用可能である。具体的な例として、グラビア印刷法については特開2009-295980号公報、特開2009-259826号公報、特開2009-96189号公報、特開2009-90662号公報等に記載の方法が、フレキソ印刷法については特開2004-268319号公報、特開2003-168560号公報等に記載の方法が、スクリーン印刷法については特開2010-34161号公報、特開2010-10245号公報、特開2009-302345号公報等に記載の方法が、インクジェット印刷法については特開2011-180562号公報、特開2000-127410号公報、特開平8-238774号公報等、スーパーインクジェット印刷法については特開2014-146665号公報等に記載の方法が例として挙げられる。 When forming a pattern of the metal nanoparticle-containing composition by a printing method, a method generally used for electrode pattern formation is applicable. Specific examples of the gravure printing method include those described in JP 2009-295980 A, JP 2009-259826 A, JP 2009-96189 A, JP 2009-90662 A, and the like. Regarding the printing method, methods described in JP-A-2004-268319, JP-A-2003-168560, etc., and for screen printing methods, JP-A 2010-34161, JP-A 2010-10245, JP-A-2009. The method described in JP-A-302345 and the like is disclosed in JP 2011-180562 A, JP 2000-127410 A, JP 8-238774 A and the like in the inkjet printing method, and in the 2014 2014 in the super inkjet printing method. As an example, the method described in JP-A-146665 It is.
 フォトリソ法により金属ナノ粒子含有組成物のパターンを形成する場合には、具体的には、例えば、透明基板上の全面に、印刷又は塗布にて金属ナノ粒子含有組成物のパターンを形成し、後述する乾燥処理及び焼成処理を行った後、公知のフォトリソ法を用いて、エッチングすることにより、所望のパターンに加工する。 When the pattern of the metal nanoparticle-containing composition is formed by photolithography, specifically, for example, the pattern of the metal nanoparticle-containing composition is formed on the entire surface of the transparent substrate by printing or coating, which will be described later. After performing the drying process and the baking process to be performed, the film is processed into a desired pattern by etching using a known photolithography method.
 次に、塗布された金属ナノ粒子含有組成物の乾燥処理を行う。乾燥処理は、公知の乾燥法を用いて行うことができる。乾燥法としては、例えば、空冷乾燥、温風等を用いた対流伝熱乾燥、赤外線等を用いた輻射電熱乾燥、ホットプレート等を用いた伝導伝熱乾燥、真空乾燥、マイクロ波を用いた内部発熱乾燥、IPA蒸気乾燥、マランゴニ乾燥、ロタゴニ乾燥、凍結乾燥等を用いることができる。 Next, the applied metal nanoparticle-containing composition is dried. The drying process can be performed using a known drying method. Drying methods include, for example, air cooling drying, convection heat transfer drying using hot air, radiant heat drying using infrared rays, conductive heat transfer drying using a hot plate, vacuum drying, internal using microwaves Exothermic drying, IPA vapor drying, Marangoni drying, Rotagoni drying, freeze drying, and the like can be used.
 加熱乾燥では、50~200℃の温度範囲で、透明基板の変形がない温度で行うことが好ましい。透明基板の表面温度が、50~150℃となる条件で加熱することがより好ましい。透明基板にPET基板を用いる場合は、100℃以下の温度範囲で加熱することが特に好ましい。焼成時間は温度や使用する金属ナノ粒子の大きさにもよるが、10秒~30分の範囲内であることが好ましく、生産性の観点から、10秒~15分の範囲内であることがより好ましく、10秒~5分の範囲内であることが特に好ましい。 The drying by heating is preferably performed in a temperature range of 50 to 200 ° C. at a temperature at which the transparent substrate does not deform. It is more preferable to heat the transparent substrate under the condition that the surface temperature is 50 to 150 ° C. When a PET substrate is used as the transparent substrate, it is particularly preferable to heat in a temperature range of 100 ° C. or lower. The firing time depends on the temperature and the size of the metal nanoparticles used, but is preferably in the range of 10 seconds to 30 minutes, and in the range of 10 seconds to 15 minutes from the viewpoint of productivity. More preferably, it is in the range of 10 seconds to 5 minutes.
 乾燥処理においては、赤外線照射による乾燥処理を行うことが好ましい。特に、波長制御赤外線ヒータ等により特定の波長領域を選択的に照射することが好ましい。特定の波長領域を選択的に用いることにより、透明基板の吸収領域のカットや、金属ナノ粒子含有組成物の溶媒に有効な特定の波長を選択的に照射することができる。特に光源のフィラメント温度が1600~3000℃の範囲内にある赤外線ヒータを用いることが好ましい。 In the drying process, it is preferable to perform a drying process by infrared irradiation. In particular, it is preferable to selectively irradiate a specific wavelength region with a wavelength control infrared heater or the like. By selectively using a specific wavelength region, it is possible to selectively irradiate a specific wavelength effective for cutting the absorption region of the transparent substrate or the solvent of the metal nanoparticle-containing composition. In particular, it is preferable to use an infrared heater in which the filament temperature of the light source is in the range of 1600 to 3000 ° C.
 次に、乾燥させた金属ナノ粒子含有組成物のパターンの焼成処理を行う。なお、金属ナノ粒子含有組成物に含まれる金属組成物の種類(例えば、上述の有機π接合配位子を有する銀コロイド等)によっては、乾燥処理で十分導電性が発現するため、焼成工程を行わなくてもよい。 Next, the pattern of the dried metal nanoparticle-containing composition is baked. Depending on the type of metal composition contained in the metal nanoparticle-containing composition (for example, silver colloid having the above-mentioned organic π-junction ligand), the conductivity may be sufficiently exhibited by the drying treatment. It does not have to be done.
 金属ナノ粒子含有組成物のパターンの焼成は、フラッシュランプを用いた光照射(フラッシュ焼成)により行うことが、第1電極の導電性の向上のため好ましい。フラッシュ焼成で用いられるフラッシュランプの放電管としては、キセノン、ヘリウム、ネオン、アルゴン等の放電管を用いることができるが、キセノンランプを用いることが好ましい。 The patterning of the metal nanoparticle-containing composition is preferably performed by light irradiation (flash baking) using a flash lamp in order to improve the conductivity of the first electrode. As a discharge tube of a flash lamp used in flash firing, a discharge tube of xenon, helium, neon, argon or the like can be used, but a xenon lamp is preferably used.
 フラッシュランプの好ましいスペクトル帯域としては、240~2000nmの範囲内であることが好ましい。この範囲内であれば、フラッシュ焼成による透明基板の熱変形等のダメージが少ない。 The preferable spectral band of the flash lamp is preferably in the range of 240 to 2000 nm. Within this range, there is little damage such as thermal deformation of the transparent substrate due to flash firing.
 フラッシュランプの光照射条件は任意であるが、光照射エネルギーの総計が0.1~50J/cmの範囲内であることが好ましく、0.5~10J/cmの範囲内であることがより好ましい。光照射時間は、10μ秒~100m秒の範囲内が好ましく、100μ秒~10m秒の範囲内がより好ましい。また、光照射回数は1回でも複数回でもよく、1~50回の範囲内で行うのが好ましい。これらの好ましい条件範囲でフラッシュ光照射を行うことにより、透明基板にダメージを与えることなく金属細線パターンを形成できる。 The light irradiation conditions of the flash lamp are arbitrary, but the total light irradiation energy is preferably in the range of 0.1 to 50 J / cm 2 , and preferably in the range of 0.5 to 10 J / cm 2. More preferred. The light irradiation time is preferably in the range of 10 μsec to 100 msec, and more preferably in the range of 100 μsec to 10 msec. Further, the number of times of light irradiation may be one time or a plurality of times, and it is preferably performed within the range of 1 to 50 times. By performing flash light irradiation in these preferable condition ranges, a fine metal wire pattern can be formed without damaging the transparent substrate.
 透明基板に対するフラッシュランプ照射は、透明基板の金属ナノ粒子含有組成物のパターンが形成されている側から行うことが好ましい。透明基板が透明な場合には、透明基板側から照射してもよく、透明基板の両面から照射してもよい。 The flash lamp irradiation on the transparent substrate is preferably performed from the side of the transparent substrate on which the pattern of the metal nanoparticle-containing composition is formed. When the transparent substrate is transparent, irradiation may be performed from the transparent substrate side or from both surfaces of the transparent substrate.
 また、フラッシュ焼成の際の透明基板の表面温度は、透明基板の耐熱温度や、金属ナノ粒子含有組成物に含まれる溶媒の分散媒の沸点(蒸気圧)、雰囲気ガスの種類や圧力、金属ナノ粒子含有組成物の分散性や酸化性等の熱的挙動などを考慮して決定すればよく、室温(25℃)以上200℃以下で行うことが好ましい。 The surface temperature of the transparent substrate during flash firing is the heat resistance temperature of the transparent substrate, the boiling point (vapor pressure) of the dispersion medium of the solvent contained in the metal nanoparticle-containing composition, the type and pressure of the atmospheric gas, It may be determined in consideration of the thermal behavior such as dispersibility and oxidizability of the particle-containing composition.
 フラッシュランプの光照射装置は上記の照射エネルギー、照射時間を満足するものであればよい。また、フラッシュ焼成は大気中で行ってもよいが、必要に応じ、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気中で行うこともできる。 The flash lamp light irradiation device only needs to satisfy the above irradiation energy and irradiation time. Moreover, although flash baking may be performed in air | atmosphere, it can also be performed in inert gas atmosphere, such as nitrogen, argon, and helium, as needed.
(3)フッ素含有樹脂層を用いた金属細線パターンの形成方法
 次いで、フッ素含有樹脂層を用いた金属細線パターンの形成方法について説明する。
(3) Method for forming metal fine wire pattern using fluorine-containing resin layer Next, a method for forming a metal fine wire pattern using a fluorine-containing resin layer will be described.
 まず、透明基板上に、フッ素含有樹脂を適宜の溶媒に溶解させたフッ素含有樹脂層形成用塗布液を塗布することにより、フッ素含有樹脂層を形成する。フッ素含有樹脂層形成用塗布液の塗布方法としては、インクジェット法、ディッピング法、スピンコート法、ロールコーター法等が挙げられる。
 フッ素含有樹脂層形成用塗布液を塗布した後は、フッ素含有樹脂の種類に応じた後処理(乾燥処理、焼成処理)を行い、フッ素含有樹脂層を形成する。
First, a fluorine-containing resin layer is formed by applying a fluorine-containing resin layer forming coating solution in which a fluorine-containing resin is dissolved in an appropriate solvent on a transparent substrate. Examples of the method for applying the coating solution for forming a fluorine-containing resin layer include an inkjet method, a dipping method, a spin coating method, and a roll coater method.
After applying the coating liquid for forming a fluorine-containing resin layer, post-treatment (drying treatment and baking treatment) according to the type of the fluorine-containing resin is performed to form a fluorine-containing resin layer.
 フッ素含有樹脂層は、少なくとも金属細線パターンの形成部に形成されていればよく、透明基板全面に形成してもよいし、金属細線パターンの形成部を含む一部の面に形成されていてもよい。
 フッ素含有樹脂層の厚さは、特に制限されないが、一般に0.01μm以上であれば撥液性を発揮することができる。また、厚さの上限としては、透明性の観点から、5μm程度を上限とすることが好ましい。
The fluorine-containing resin layer only needs to be formed at least on the formation part of the metal fine line pattern, and may be formed on the entire surface of the transparent substrate, or may be formed on a part of the surface including the formation part of the metal fine line pattern. Good.
The thickness of the fluorine-containing resin layer is not particularly limited, but in general, the liquid repellency can be exhibited if the thickness is 0.01 μm or more. The upper limit of the thickness is preferably about 5 μm from the viewpoint of transparency.
 フッ素含有樹脂としては、フッ素原子を含むフッ素含有単量体に基づく繰り返し単位を1種又は2種以上有する重合体であるフッ素含有樹脂が適用できる。また、フッ素含有単量体に基づく繰り返し単位と、フッ素原子を含まないフッ素非含有単量体に基づく繰り返し単位とを、それぞれ1種又は2種以上有する重合体であるフッ素含有樹脂であってもよい。さらに、フッ素含有樹脂は、その一部に酸素、窒素、塩素等のヘテロ原子を含んでいてもよい。
 このようなフッ素含有樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン-パーフルオロジオキソール共重合体(TFE/PDD)、環状パーフルオロアルキル構造又は環状パーフルオロアルキルエーテル構造を有する樹脂等が挙げられる。
As the fluorine-containing resin, a fluorine-containing resin that is a polymer having one or more repeating units based on a fluorine-containing monomer containing a fluorine atom can be applied. Moreover, even if it is fluorine-containing resin which is a polymer which has a repeating unit based on a fluorine-containing monomer, and a repeating unit based on a fluorine non-containing monomer which does not contain a fluorine atom, respectively, one or more. Good. Furthermore, the fluorine-containing resin may contain a hetero atom such as oxygen, nitrogen, or chlorine in a part thereof.
Examples of such fluorine-containing resins include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and tetrafluoroethylene-perfluoroalkyl vinyl ether. Copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene- Examples include perfluorodioxole copolymer (TFE / PDD), a resin having a cyclic perfluoroalkyl structure or a cyclic perfluoroalkyl ether structure.
 また、フッ素含有樹脂層に後述するチオール基を有する化合物等の密着層材料や光散乱粒子等を含有させ、密着層や光学散乱層としての機能を付与してもよい。 Further, the fluorine-containing resin layer may contain an adhesion layer material such as a compound having a thiol group, which will be described later, light scattering particles, or the like, thereby imparting a function as an adhesion layer or an optical scattering layer.
 次いで、透明基板上のフッ素含有樹脂層表面の金属細線パターン形成部に官能基を形成する。ここでいう官能基とは、フッ素含有樹脂のC-F結合を切断することで形成される官能基のことである。具体的には、カルボキシ基、ヒドロキシ基、カルボニル基が形成される。 Next, a functional group is formed on the fine metal wire pattern forming portion on the surface of the fluorine-containing resin layer on the transparent substrate. The functional group here is a functional group formed by cleaving the C—F bond of the fluorine-containing resin. Specifically, a carboxy group, a hydroxy group, and a carbonyl group are formed.
 フッ素含有樹脂層表面への官能基形成の処理方法としては、紫外線照射、コロナ放電処理、プラズマ放電処理、エキシマレーザー照射による。これらの処理は、フッ素含有樹脂層表面で光化学反応を生じさせてC-F結合を切断するものであり、適度なエネルギーの印加処理であることが必要である。金属細線パターンの形成部に対する印加エネルギー量は、1~4000mJ/cmの範囲内であることが好ましい。
 処理方法として紫外線照射を採用する場合、波長が10~380nmの範囲内である紫外線を照射することが好ましく、より好ましくは波長が100~200nmの範囲内である紫外線を照射する。
As a treatment method for forming functional groups on the surface of the fluorine-containing resin layer, ultraviolet irradiation, corona discharge treatment, plasma discharge treatment, or excimer laser irradiation is used. These treatments cause a photochemical reaction on the surface of the fluorine-containing resin layer to break the C—F bond, and it is necessary to apply an appropriate amount of energy. The amount of energy applied to the formation portion of the fine metal wire pattern is preferably in the range of 1 to 4000 mJ / cm 2 .
When ultraviolet irradiation is employed as the treatment method, it is preferable to irradiate ultraviolet rays having a wavelength in the range of 10 to 380 nm, more preferably ultraviolet rays having a wavelength in the range of 100 to 200 nm.
 フッ素含有樹脂層表面への紫外線照射等においては、一般にフォトマスク(レチクル)を使用した露光処理がなされる。本発明では露光方式に関しては、非接触の露光方式(プロキシミティ露光、プロジェクション露光)と接触の露光方式(コンタクト露光)のいずれも適用できる。プロキシミティ露光においては、マスクとフッ素含有樹脂層表面との間隔は、10μm以下とするのが好ましく、3μm以下とするのがより好ましい。 In the ultraviolet irradiation on the surface of the fluorine-containing resin layer, exposure processing using a photomask (reticle) is generally performed. In the present invention, as the exposure method, any of a non-contact exposure method (proximity exposure, projection exposure) and a contact exposure method (contact exposure) can be applied. In the proximity exposure, the distance between the mask and the fluorine-containing resin layer surface is preferably 10 μm or less, and more preferably 3 μm or less.
 次いで、金属細線材料を含む金属ナノ粒子分散液をフッ素含有樹脂層上に塗布する。金属ナノ粒子分散液の塗布については、フッ素含有樹脂層の金属細線パターン形成部に金属ナノ粒子を選択的に固定するための官能基が形成されていることから、金属ナノ粒子分散液を滴下して塗り広げるのが効率的であり、インクジェット法、ディッピング法、スピンコート法、ロールコーター法などが適用できる。 Next, a metal nanoparticle dispersion liquid containing a metal fine wire material is applied onto the fluorine-containing resin layer. Regarding the application of the metal nanoparticle dispersion, since the functional group for selectively fixing the metal nanoparticles is formed in the metal fine line pattern forming part of the fluorine-containing resin layer, the metal nanoparticle dispersion is dropped. It is efficient to spread and apply ink jet method, dipping method, spin coat method, roll coater method and the like.
 すなわち、金属ナノ粒子分散液は、官能基のないフッ素含有樹脂層の素地面ではその撥液性により弾かれ、ブレード等の塗布部材を使用した場合、弾かれた分散液は透明基板表面から除去される。一方で、官能基が形成された金属細線パターン形成部では、金属ナノ粒子分散液が残り、分散液の溶剤が揮発するとともに、透明基板上の金属ナノ粒子同士が自己焼結して金属膜となり金属細線パターンが形成される。 That is, the metal nanoparticle dispersion is repelled by the liquid repellency on the surface of the fluorine-containing resin layer having no functional group, and when a coating member such as a blade is used, the repelled dispersion is removed from the transparent substrate surface. Is done. On the other hand, in the metal fine line pattern forming part in which the functional group is formed, the metal nanoparticle dispersion liquid remains, the solvent of the dispersion liquid volatilizes, and the metal nanoparticles on the transparent substrate self-sinter to form a metal film. A fine metal line pattern is formed.
 この自己焼結は室温であっても生じる現象であるので、金属細線パターン形成に際して透明基板の加熱は必須の工程ではないが、自己焼結後の金属細線パターンを焼成することで抵抗の低減を図ることができる。
 焼成処理は、40~250℃の範囲内で行うことが好ましい。40℃以上であれば金属細線パターンの抵抗を低減することができ、250℃以内であれば透明樹脂基板の変形を抑制することができる。焼成時間は、10~120分の範囲内が好ましい。焼成は、大気雰囲気下で行ってもよいし、真空雰囲気下でも行ってもよい。
Since this self-sintering is a phenomenon that occurs even at room temperature, heating the transparent substrate is not an essential process when forming a metal fine line pattern, but the resistance can be reduced by firing the metal fine line pattern after self-sintering. Can be planned.
The firing treatment is preferably performed within a range of 40 to 250 ° C. If it is 40 degreeC or more, the resistance of a metal fine wire pattern can be reduced, and if it is less than 250 degreeC, a deformation | transformation of a transparent resin substrate can be suppressed. The firing time is preferably within the range of 10 to 120 minutes. Firing may be performed in an air atmosphere or in a vacuum atmosphere.
(透明導電層(3b))
 本発明に係る第1電極は、少なくともパターン状に形成された金属細線と透明導電層とから構成されている。透明導電層は、金属細線上に、当該金属細線表面全体を覆うようにして設けられていることが好ましい態様である。
 透明導電層としては、金属酸化物層又は有機導電層を用いることが好ましい構成である。
(Transparent conductive layer (3b))
The 1st electrode which concerns on this invention is comprised from the metal fine wire and transparent conductive layer which were formed at least in pattern shape. It is preferable that the transparent conductive layer is provided on the fine metal wire so as to cover the entire surface of the fine metal wire.
As the transparent conductive layer, a metal oxide layer or an organic conductive layer is preferably used.
 透明導電層の厚さは、30~300nmの範囲内であることが好ましい。本発明に係る第1電極は、透明導電層の厚さが上記範囲内であっても、十分に導電性を発揮することができる。透明導電層の厚さは、50~150nmの範囲内であることがより好ましい。 The thickness of the transparent conductive layer is preferably in the range of 30 to 300 nm. The 1st electrode which concerns on this invention can fully exhibit electroconductivity, even if the thickness of a transparent conductive layer is in the said range. The thickness of the transparent conductive layer is more preferably in the range of 50 to 150 nm.
 金属酸化物層及び有機導電層は、体積抵抗率が1×10-5~1×10-2Ω・cmの範囲内である導電性の高い金属酸化物を用いて形成されることが好ましい。体積抵抗率は、JIS K 7194-1994の導電性プラスチックの4探針法による抵抗率試験方法に準拠して測定されたシート抵抗と、膜厚を測定して求めることができる。膜厚は、接触式表面形状測定器(例えばDECTAK)や光干渉表面形状測定器(例えばWYKO)を用いて測定できる。
 また、金属酸化物層及び有機導電層は、導電性を担保する役割を有する観点から、シート抵抗が10000Ω/sq.以下であることが好ましく、2000Ω/sq.以下であることがより好ましい。
The metal oxide layer and the organic conductive layer are preferably formed using a highly conductive metal oxide having a volume resistivity in the range of 1 × 10 −5 to 1 × 10 −2 Ω · cm. The volume resistivity can be obtained by measuring the sheet resistance and the film thickness measured in accordance with the resistivity test method of the conductive plastic of JIS K 7194-1994 by the four-probe method. The film thickness can be measured using a contact-type surface shape measuring device (for example, DECTAK) or an optical interference surface shape measuring device (for example, WYKO).
The metal oxide layer and the organic conductive layer have a sheet resistance of 10,000 Ω / sq. From the viewpoint of ensuring the conductivity. Or less, preferably 2000 Ω / sq. The following is more preferable.
(1)金属酸化物層
 金属酸化物層に使用できる金属酸化物としては、透明性及び導電性に優れる材料であれば、特に限定されない。金属酸化物層に使用できる金属酸化物としては、例えば、ITO(スズドープ酸化インジウム)、IZO(酸化インジウム・酸化亜鉛)、IGO(ガリウムドープ酸化インジウム)、IWZO(酸化インジウム・酸化スズ)、ZnO(酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、IGZO(インジウム・ガリウム・亜鉛酸化物)等が挙げられる。
(1) Metal oxide layer The metal oxide that can be used for the metal oxide layer is not particularly limited as long as the material is excellent in transparency and conductivity. Examples of the metal oxide that can be used for the metal oxide layer include ITO (tin doped indium oxide), IZO (indium oxide / zinc oxide), IGO (gallium doped indium oxide), IWZO (indium oxide / tin oxide), ZnO ( Zinc oxide), GZO (gallium-doped zinc oxide), IGZO (indium gallium zinc oxide) and the like.
 特に、金属酸化物層に使用できる金属酸化物としては、IZO、IGO、IWZOが好ましい。中でも、IZOとしては、質量比In:ZnO=80~95:20~5で表される組成が好ましい。IGOとしては、質量比In:Ga=70~95:30~5で表される組成が好ましい。IWZOとしては、質量比In:WO:ZnO=95~99.8:2.5~0.1:2.5~0.1で表される組成が好ましい。 In particular, IZO, IGO, and IWZO are preferable as the metal oxide that can be used for the metal oxide layer. Among these, as IZO, a composition represented by a mass ratio of In 2 O 3 : ZnO = 80 to 95:20 to 5 is preferable. As IGO, a composition represented by a mass ratio of In 2 O 3 : Ga 2 O 3 = 70 to 95:30 to 5 is preferable. As IWZO, a composition represented by a mass ratio of In 2 O 3 : WO 3 : ZnO = 95 to 99.8: 2.5 to 0.1: 2.5 to 0.1 is preferable.
 なお、第1電極において、金属酸化物層は複数設けられていてもよい。 In the first electrode, a plurality of metal oxide layers may be provided.
(1.1)金属酸化物層の形成方法
 金属酸化物層は、従来の金属酸化物層を成膜する場合と同様にして、各種のスパッタリング法やイオンプレーティング法等によって成膜することができる。
(1.1) Method for forming metal oxide layer The metal oxide layer can be formed by various sputtering methods, ion plating methods, and the like in the same manner as in the case of forming a conventional metal oxide layer. it can.
 スパッタリング法としては、例えば、DCスパッタリング、RFスパッタリング、DCマグネトロンスパッタリング、RFマグネトロンスパッタリング、ECRプラズマスパッタリング、イオンビームスパッタリング等が挙げられる。
 また、スパッタリング法では、下記に示すような様々な条件を検討することで、IZOのように組成は同じでも、導電性とガスバリアー性を調節することが可能である。
Examples of the sputtering method include DC sputtering, RF sputtering, DC magnetron sputtering, RF magnetron sputtering, ECR plasma sputtering, and ion beam sputtering.
Further, in the sputtering method, by examining various conditions as described below, even if the composition is the same as in IZO, it is possible to adjust conductivity and gas barrier properties.
 例えば、金属酸化物層は、スパッタリングの際のターゲット基板間距離を50~100mmの範囲内とし、スパッタリングガス圧を0.5~1.5Paの範囲内として、直流マグネトロンスパッタリング法により成膜することができる。 For example, the metal oxide layer is formed by a direct current magnetron sputtering method with a distance between target substrates in the range of 50 to 100 mm during sputtering and a sputtering gas pressure in the range of 0.5 to 1.5 Pa. Can do.
 ターゲット基板間距離については、ターゲット基板間距離が50mmよりも短くなると、堆積するスパッタ粒子の運動エネルギーが大きくなるため、基板の受けるダメージが大きくなってしまう。また、膜厚も不均一となり膜厚分布が悪くなる。ターゲット基板間距離が100mmより長いと、膜厚分布はよくなるが、堆積するスパッタ粒子の運動エネルギーが低くなりすぎ、拡散による緻密化が起きにくく、金属酸化物層の密度が低くなるため好ましくない。 As for the distance between the target substrates, if the distance between the target substrates is shorter than 50 mm, the kinetic energy of the sputtered particles to be deposited increases, so that the damage received by the substrate increases. In addition, the film thickness becomes non-uniform and the film thickness distribution becomes worse. When the distance between the target substrates is longer than 100 mm, the film thickness distribution is improved, but the kinetic energy of the sputtered particles deposited becomes too low, densification due to diffusion hardly occurs, and the density of the metal oxide layer is not preferable.
 スパッタリングガス圧については、スパッタリングガス圧が0.5Paより低いと堆積するスパッタ粒子の運動エネルギーが大きくなるため、透明基板の受けるダメージが大きくなってしまう。スパッタリングガス圧が1.5Paより高いと、成膜速度が遅くなるだけでなく、堆積するスパッタ粒子の運動エネルギーが低くなりすぎて、拡散による緻密化が起きず、金属酸化物層の密度が低くなるため好ましくない。 Regarding the sputtering gas pressure, if the sputtering gas pressure is lower than 0.5 Pa, the kinetic energy of the sputtered particles to be deposited increases, so that the damage to the transparent substrate increases. When the sputtering gas pressure is higher than 1.5 Pa, not only the film formation rate is slowed, but also the kinetic energy of the sputtered particles deposited becomes too low, densification due to diffusion does not occur, and the density of the metal oxide layer is low. Therefore, it is not preferable.
(2)有機導電層
 有機導電層は、主に、導電性高分子とバインダーとから構成される。導電性高分子及びバインダーとしては、特許第5750908号公報及び特許第5782855号公報に記載の化合物を使用することができる。その他、有機導電層を形成する有機導電組成物の調製(方法)、有機導電層の形成(方法)等は、特許第5750908号公報及び特許第5782855号公報に記載の方法に準じて実施することができる。
(2) Organic conductive layer The organic conductive layer is mainly composed of a conductive polymer and a binder. As the conductive polymer and the binder, compounds described in Japanese Patent No. 5750908 and Japanese Patent No. 5882855 can be used. In addition, the preparation (method) of the organic conductive composition for forming the organic conductive layer, the formation (method) of the organic conductive layer, and the like should be performed in accordance with the methods described in Japanese Patent No. 5750908 and Japanese Patent No. 5882855. Can do.
〈透明基板(2)〉
 本発明に係る透明基板は、高い光透過性を有していれば特に制限はなく、ガラスや樹脂等の透明材料を用いることができる。透明基板は、生産性の観点や、軽量性、柔軟性といった性能の観点から、透明樹脂基板であることが好ましい。
<Transparent substrate (2)>
The transparent substrate according to the present invention is not particularly limited as long as it has high light transmittance, and a transparent material such as glass or resin can be used. The transparent substrate is preferably a transparent resin substrate from the viewpoints of productivity, performance such as lightness and flexibility.
 透明樹脂基板として使用できる樹脂としては特に制限はなく、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリスチレン樹脂、環状オレフィン系樹脂等のポリオレフィン類樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリサルホン(PSF)樹脂、ポリエーテルサルホン(PES)樹脂、ポリカーボネート(PC)樹脂、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、トリアセチルセルロース(TAC)樹脂等が挙げられる。これらの樹脂を単独で使用してもよいし、複数を併用してもよい。
 また、透明樹脂基板は、未延伸フィルムでもよいし、延伸フィルムでもよい。
The resin that can be used as the transparent resin substrate is not particularly limited. For example, polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and modified polyester, polyethylene (PE) resin, polypropylene (PP) resin, polystyrene resin , Polyolefin resins such as cyclic olefin resins, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin, polysulfone (PSF) resin, polyether sulfone (PES) resin, polycarbonate ( PC) resin, polyamide resin, polyimide resin, acrylic resin, triacetyl cellulose (TAC) resin and the like. These resins may be used alone or in combination.
The transparent resin substrate may be an unstretched film or a stretched film.
 透明基板は、JIS K 7361-1:1997(プラスチック-透明材料の全光線透過率の試験方法)に準拠した方法で測定した可視光波長領域における全光線透過率が50%以上であることが好ましく、80%以上であるとより好ましい。 The transparent substrate preferably has a total light transmittance of 50% or more in the visible light wavelength region measured by a method in accordance with JIS K 7361-1: 1997 (Plastic—Testing method of total light transmittance of transparent material). 80% or more is more preferable.
 透明基板は、後述する密着層やガスバリアー層等との密着性を高めるため、表面活性化処理が施されていてもよい。また、耐衝撃性を高めるため、クリアハードコート層が設けられていてもよい。表面活性化処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等が挙げられる。
 クリアハードコート層の材料としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等が挙げられ、中でも紫外線硬化型樹脂を好ましく使用できる。
The transparent substrate may be subjected to a surface activation treatment in order to improve adhesion with an adhesion layer, a gas barrier layer, and the like described later. Moreover, in order to improve impact resistance, a clear hard coat layer may be provided. Examples of the surface activation treatment include corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
Examples of the material for the clear hard coat layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer, and the like. An ultraviolet curable resin can be preferably used.
〈有機機能層(4)〉
 本発明に係る有機機能層は、陽極と陰極の間に位置する層であり、有機層、金属層などから構成されるが、これらに限定されるものではない。
 有機機能層は、少なくとも発光層を含んで構成され、その他、各種有機層、例えば、正孔注入層、正孔輸送層、電子輸送層、電子注入層等を有していてもよい。正孔注入層及び正孔輸送層は、正孔輸送注入層として設けられてもよい。電子輸送層及び電子注入層は、電子輸送注入層として設けられてもよい。また、これらの有機層のうち、例えば、電子注入層は無機材料で構成されていてもよい。
 有機機能層は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて有していてもよい。
<Organic functional layer (4)>
The organic functional layer according to the present invention is a layer located between the anode and the cathode, and is composed of an organic layer, a metal layer, or the like, but is not limited thereto.
The organic functional layer includes at least a light emitting layer, and may have various organic layers such as a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer. The hole injection layer and the hole transport layer may be provided as a hole transport injection layer. The electron transport layer and the electron injection layer may be provided as an electron transport injection layer. Of these organic layers, for example, the electron injection layer may be made of an inorganic material.
In addition to these layers, the organic functional layer may have a hole blocking layer, an electron blocking layer, or the like as necessary.
(i)(陽極)/発光層/(陰極)
(ii)(陽極)/発光層/電子輸送層/(陰極)
(iii)(陽極)/正孔輸送層/発光層/(陰極)
(iv)(陽極)/正孔輸送層/発光層/電子輸送層/(陰極)
(v)(陽極)/正孔輸送層/発光層/電子輸送層/電子注入層/(陰極)
(vi)(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/(陰極)
(vii)(陽極)/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/(陰極)
(I) (anode) / light emitting layer / (cathode)
(Ii) (anode) / light emitting layer / electron transport layer / (cathode)
(Iii) (Anode) / Hole transport layer / Light emitting layer / (Cathode)
(Iv) (anode) / hole transport layer / light emitting layer / electron transport layer / (cathode)
(V) (anode) / hole transport layer / light emitting layer / electron transport layer / electron injection layer / (cathode)
(Vi) (anode) / hole injection layer / hole transport layer / light emitting layer / electron transport layer / (cathode)
(Vii) (anode) / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / (cathode)
 上記の中でも、(vii)の構成が好ましいが特に制限されない。 Among the above, the configuration of (vii) is preferable but not particularly limited.
 有機機能層の厚さは、100~500nmの範囲内であることが好ましい。有機機能層の厚さが500nm以下とあれば、駆動電圧の上昇を抑えることができ、100nm以上であれば、整流特性を維持することができる。 The thickness of the organic functional layer is preferably in the range of 100 to 500 nm. If the thickness of the organic functional layer is 500 nm or less, an increase in driving voltage can be suppressed, and if it is 100 nm or more, rectification characteristics can be maintained.
 本発明において、正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、電子注入層としては特に制限はなく、例えば、特開2014-120334号公報、特開2013-89608号公報等に記載の化合物を使用することができる。 In the present invention, the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the electron injection layer are not particularly limited. For example, JP-A-2014-120334, The compounds described in JP2013-89608A can be used.
〈第2電極(5)〉
 本発明に係る有機EL素子は、透明電極としての第1電極とその対向電極である第2電極とからなる一対の電極に挟持された有機機能層を有する。第1電極と第2電極とは、いずれか一方が有機EL素子の陽極となり、他方が陰極となる。
 図1に示す有機EL素子1では、第1電極3の透明導電層3bが透明導電材料により構成され、第2電極5が高反射材料により構成されている。なお、有機EL素子1が両面発光型の場合には、第2電極5も透明導電材料により構成される。
<Second electrode (5)>
The organic EL device according to the present invention has an organic functional layer sandwiched between a pair of electrodes including a first electrode as a transparent electrode and a second electrode as a counter electrode. One of the first electrode and the second electrode serves as the anode of the organic EL element, and the other serves as the cathode.
In the organic EL element 1 shown in FIG. 1, the transparent conductive layer 3b of the first electrode 3 is made of a transparent conductive material, and the second electrode 5 is made of a highly reflective material. In addition, when the organic EL element 1 is a double-sided light emission type, the 2nd electrode 5 is also comprised with a transparent conductive material.
 有機EL素子において、第2電極を陽極として用いる場合には、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。陽極を構成可能な電極物質の具体例としては、Au、Ag等の金属、CuI、ITO、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。 In the organic EL device, when the second electrode is used as an anode, a material having a work function (4 eV or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof is preferably used. Specific examples of the electrode substance that can constitute the anode include metals such as Au and Ag, and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 また、有機EL素子において、第2電極を陰極として用いる場合には、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物が電極物質として用いられる。
 陰極は、発光層に電子を供給する陰極(カソード)として機能する電極膜である。陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
In the organic EL element, when the second electrode is used as a cathode, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as electrode materials. Used as
The cathode is an electrode film that functions as a cathode (cathode) that supplies electrons to the light emitting layer. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
 電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。 Specific examples of electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture. , Indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物やアルミニウム等が好適である。 Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, or the like is preferable.
 陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、厚さは通常10nm~5μmの範囲内、好ましくは50~200nmの範囲内で選ばれる。また、陰極として上記金属を1~20nmの厚さで作製した後に、導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 The sheet resistance as a cathode is several hundred Ω / sq. The following are preferable, and the thickness is usually selected within the range of 10 nm to 5 μm, preferably within the range of 50 to 200 nm. Moreover, a transparent or semi-transparent cathode can be produced by producing a conductive transparent material on the metal after the metal is produced with a thickness of 1 to 20 nm as a cathode. An element in which both the anode and the cathode are transmissive can be manufactured.
〈取出し電極〉
 取出し電極は、透明電極の導電層と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。
<Extraction electrode>
The extraction electrode is for electrically connecting the conductive layer of the transparent electrode and the external power source, and the material is not particularly limited, and a known material can be suitably used. For example, a three-layer structure A metal film such as a MAM electrode (Mo / Al · Nd alloy / Mo) made of can be used.
〈密着層(7)〉
 本発明に係る密着層は、金属細線パターンや透明導電層を形成するための下地となる層であり、基板と第1電極との密着性を向上させるものである。
 密着層には、チオール基を有する化合物、アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミドから選択される少なくとも1種が含有されていることが好ましく、2種以上を併用して用いてもよい。
<Adhesion layer (7)>
The adhesion layer according to the present invention is a layer serving as a base for forming a fine metal wire pattern and a transparent conductive layer, and improves adhesion between the substrate and the first electrode.
The adhesion layer preferably contains at least one selected from a compound having a thiol group, a poly (meth) acrylate having an aminoethyl group, and a poly (meth) acrylamide having an aminoethyl group. The above may be used in combination.
 また、密着層には、上記化合物に加えて、無機粒子を含んでいてもよく、特に酸化物粒子を含んで形成されることが好ましい。密着層が酸化物粒子を含むことにより、金属細線パターンや金属酸化物層との密着性が向上する。 In addition, the adhesion layer may contain inorganic particles in addition to the above compound, and is preferably formed to contain oxide particles. When the adhesion layer contains oxide particles, adhesion with the metal fine line pattern and the metal oxide layer is improved.
 また、密着層には、金属細線パターンや金属酸化物層との密着性向上以外の機能を付与することもできる。密着性以外の機能としては、光取出し機能を有することが好ましい。密着層に光取出し機能を付与するためには、密着層を構成する樹脂とともに、樹脂よりも屈折率の高い酸化物粒子を含むことが好ましい。この樹脂よりも屈折率の高い酸化物粒子が密着層内で光散乱粒子として機能することにより、密着層での光散乱が発生し、密着層に光取出し機能が付与される。 Also, the adhesion layer can be provided with functions other than the improvement of adhesion with the metal fine wire pattern or the metal oxide layer. As a function other than adhesion, it is preferable to have a light extraction function. In order to impart a light extraction function to the adhesion layer, it is preferable that oxide particles having a refractive index higher than that of the resin are included together with the resin constituting the adhesion layer. Oxide particles having a refractive index higher than that of the resin function as light scattering particles in the adhesion layer, whereby light scattering occurs in the adhesion layer and a light extraction function is imparted to the adhesion layer.
 密着層の厚さは、10~1000nmの範囲内であることが好ましく、より好ましくは10~100nmの範囲内である。密着層の厚さが10nm以上であると、密着層自体が連続膜となり表面が平滑になり、有機EL素子への影響が小さい。一方、密着層の厚さが1000nm以下であると、密着層に起因する透明電極の透明性の低下や密着層に由来する吸着ガスを減らすことができ、金属細線パターンの抵抗悪化を抑制することができる。また、密着層の厚さが1000nm以下であれば、透明電極を屈曲した際の密着層の破損を抑制することができる。 The thickness of the adhesion layer is preferably in the range of 10 to 1000 nm, more preferably in the range of 10 to 100 nm. When the thickness of the adhesion layer is 10 nm or more, the adhesion layer itself becomes a continuous film, the surface becomes smooth, and the influence on the organic EL element is small. On the other hand, when the thickness of the adhesion layer is 1000 nm or less, the transparency of the transparent electrode caused by the adhesion layer and the adsorbed gas derived from the adhesion layer can be reduced, and the resistance deterioration of the metal fine wire pattern can be suppressed. Can do. Moreover, if the thickness of the adhesion layer is 1000 nm or less, damage to the adhesion layer when the transparent electrode is bent can be suppressed.
 密着層の透明性は、用途によって任意に選択することができるが、透明性が高いほど透明電極への適用が良好となり、用途拡大の観点で好ましい。密着層の全光線透過率としては、少なくとも40%以上、好ましくは50%以上である。全光線透過率は、分光光度計等を用いた公知の方法に従って測定することができる。 The transparency of the adhesion layer can be arbitrarily selected depending on the application, but the higher the transparency, the better the application to the transparent electrode, which is preferable from the viewpoint of expanding the application. The total light transmittance of the adhesion layer is at least 40% or more, preferably 50% or more. The total light transmittance can be measured according to a known method using a spectrophotometer or the like.
(チオール基を有する化合物)
 チオール基(メルカプト基ともいう。)を有する化合物(以下、チオール基含有化合物ともいう。)としては、本発明の効果を阻害しない範囲において、特に限定されない。
 本発明に係るチオール基含有化合物は、チオール基を2個以上有する多官能チオール基含有化合物であることが好ましい。これにより、より金属材料を含む金属細線との密着性を図ることができる。
(Compound having a thiol group)
The compound having a thiol group (also referred to as a mercapto group) (hereinafter also referred to as a thiol group-containing compound) is not particularly limited as long as the effects of the present invention are not impaired.
The thiol group-containing compound according to the present invention is preferably a polyfunctional thiol group-containing compound having two or more thiol groups. Thereby, the adhesiveness with the metal fine wire containing a metal material more can be aimed at.
 また、チオール基含有化合物としては、下記一般式(I)で表される構造を有する化合物と、1価若しくは多価のアルコール、又はアミンとの縮合物であることが好ましい。 The thiol group-containing compound is preferably a condensate of a compound having a structure represented by the following general formula (I) with a monovalent or polyvalent alcohol or amine.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、R及びRは、それぞれ独立に、水素原子又は炭素数1~10のアルキル基を表すが、その少なくとも一方は炭素数1~10のアルキル基である。mは0~2の整数であり、nは0又は1である。 In general formula (I), R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, at least one of which is an alkyl group having 1 to 10 carbon atoms. m is an integer of 0 to 2, and n is 0 or 1.
 R及びRにおける炭素数1~10のアルキル基としては、直鎖状であっても分岐状であってもよく、具体的には、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、n-ヘキシル基、n-オクチル基等が挙げられ、好ましくはメチル基又はエチル基である。
 R及びRは、本発明の効果を阻害しない範囲において、公知の置換基を有していてもよい。
The alkyl group having 1 to 10 carbon atoms in R 1 and R 2 may be linear or branched, and specifically includes a methyl group, an ethyl group, an n-propyl group, an iso- Examples thereof include a propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-hexyl group, and an n-octyl group, and a methyl group or an ethyl group is preferable.
R 1 and R 2 may have a known substituent as long as the effects of the present invention are not impaired.
 mは0~2の整数であるが、好ましくは0又は1である。
 nは0又は1であるが、好ましくは0である。
m is an integer of 0 to 2, preferably 0 or 1.
n is 0 or 1, but preferably 0.
 上記一般式(I)で表される構造を有する化合物としては、2-メルカプトプロピオン酸、3-メルカプト酪酸、2-メルカプトイソ酪酸、3-メルカプトイソ酪酸等が挙げられる。 Examples of the compound having the structure represented by the general formula (I) include 2-mercaptopropionic acid, 3-mercaptobutyric acid, 2-mercaptoisobutyric acid, and 3-mercaptoisobutyric acid.
 1価のアルコールとしては、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、t-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、1-ヘプタノール、2-ヘプタノール、2-メチル-2-ヘプタノール、2-メチル-3-ヘプタノール等が挙げられる。 Monohydric alcohols include methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 2-butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl- 1-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2 -Pentanol, 1-heptanol, 2-heptanol, 2-methyl-2-heptanol, 2-methyl-3-hept Nord, and the like.
 多価のアルコールとしては、グリコール類(ただし、アルキルレン基の炭素数は2~10が好ましく、その炭素鎖は枝分かれしていてもよい。)、例えば、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジペンタエリスリトール等が挙げられる。
 中でも、エチレングリコール、1,2-プロピレングリコール、1,2-ブタンジオール、1,4-ブタンジオール、トリメチロールエタン、トリメチロールプロパン及びペンタエリスリトールが好ましい。
Examples of the polyhydric alcohol include glycols (wherein the alkylene group preferably has 2 to 10 carbon atoms, and the carbon chain thereof may be branched), such as ethylene glycol, diethylene glycol, 1,2-propylene. Glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane And dipentaerythritol.
Of these, ethylene glycol, 1,2-propylene glycol, 1,2-butanediol, 1,4-butanediol, trimethylolethane, trimethylolpropane, and pentaerythritol are preferable.
 上記一般式(I)で表される構造を有する化合物と縮合するアルコールとしては、多官能チオール基含有化合物が得られることから、多価のアルコールが好ましい。 As the alcohol condensed with the compound having the structure represented by the general formula (I), a polyfunctional thiol group-containing compound is obtained, and therefore a polyvalent alcohol is preferable.
 アミンとしては、特に制限されるものではなく、また、第1~3級アミンのいずれでもよいが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、メタキシリレンジアミン、トリレンジアミン、パラキシリレンジアミン、フェニレンジアミン、イソホロンジアミン等が挙げられる。 The amine is not particularly limited and may be any of primary to tertiary amines. For example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethyl Amine, diethylamine, dipropylamine, dibutylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, metaxylylenediamine, tolylenediamine, paraxylylenediamine, phenylenediamine, isophoronediamine Etc.
 以下に、本発明に係る密着層に適用可能なチオール基含有化合物の具体例として、例示化合物SH-1~SH-155、SE-1~SE-84及びSA-1~SA-34を示す。 Hereinafter, exemplary compounds SH-1 to SH-155, SE-1 to SE-84, and SA-1 to SA-34 are shown as specific examples of the thiol group-containing compound applicable to the adhesion layer according to the present invention.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 その他、チオール基含有化合物として、特許第4911666号公報及び特許第4917294号公報に記載されている化合物も好適に用いることができる。 In addition, as the thiol group-containing compound, compounds described in Japanese Patent No. 4911666 and Japanese Patent No. 4917294 can also be suitably used.
 上記例示化合物SH-1~SH-155、SE-1~SE-84及びSA-1~SA-34は、公知の方法により合成することができる。 The above exemplified compounds SH-1 to SH-155, SE-1 to SE-84 and SA-1 to SA-34 can be synthesized by known methods.
 また、チオール基含有化合物としては、チオール基を有するシルセスキオキサン誘導体(以下、単にシルセスキオキサン誘導体ともいう。)を用いることも可能である。
 シルセスキオキサン誘導体としては、特に制限されないが、下記一般式(A)で表されるかご型シロキサン構造を有する化合物であることが好ましい。
In addition, as the thiol group-containing compound, a silsesquioxane derivative having a thiol group (hereinafter also simply referred to as a silsesquioxane derivative) can be used.
Although it does not restrict | limit especially as a silsesquioxane derivative, It is preferable that it is a compound which has a cage type siloxane structure represented with the following general formula (A).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(A)中、Xは、下記X又はXを表すが、Xの少なくとも一つはXである。 In the general formula (A), X A is representative of the following X 1 or X 2, at least one of X A is X 2.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 X及びX中、R~Rは、それぞれ独立に、炭素数1~8のアルキル基又は芳香族炭化水素環基を表す。Aは、炭素数1~8の2価の炭化水素基を表す。 In X 1 and X 2 , R 1 to R 5 each independently represents an alkyl group having 1 to 8 carbon atoms or an aromatic hydrocarbon ring group. A represents a divalent hydrocarbon group having 1 to 8 carbon atoms.
 X及びXにおけるR~Rの炭素数1~8のアルキル基としては、直鎖状であっても分岐鎖状であってもよく、具体的には、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。 The alkyl group having 1 to 8 carbon atoms of R 1 to R 5 in X 1 and X 2 may be linear or branched, and specifically includes a methyl group, an ethyl group, Examples thereof include an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group.
 X及びXにおけるR~Rの芳香族炭化水素環基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。 Examples of the aromatic hydrocarbon ring group of R 1 to R 5 in X 1 and X 2 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
 X及びXは、本発明の効果を阻害しない範囲において、公知の置換基を有していてもよい。 X 1 and X 2 may have a known substituent as long as the effects of the present invention are not impaired.
 XにおけるAの炭素数1~8の2価の炭化水素基としては、炭素数1~8の直鎖状又は分岐鎖状のアルキレン基が挙げられる。これらの中でも、シルセスキオキサン誘導体の合成が容易な点で、-CHCH-、-CHCHCH-等の炭素数2又は3の直鎖状のアルキレン基が好ましい。
 Aは、本発明の効果を阻害しない範囲において、公知の置換基を有していてもよい。
Examples of the divalent hydrocarbon group having 1 to 8 carbon atoms of A in X 2 include linear or branched alkylene groups having 1 to 8 carbon atoms. Among these, a straight-chain alkylene group having 2 or 3 carbon atoms such as —CH 2 CH 2 — and —CH 2 CH 2 CH 2 — is preferable from the viewpoint of easy synthesis of the silsesquioxane derivative.
A may have a known substituent as long as the effects of the present invention are not impaired.
 また、市販のシルセスキオキサン誘導体としては、荒川化学社製のコンポセラン(登録商標)SQ100シリーズ等も使用することができる。 Further, as a commercially available silsesquioxane derivative, Composelan (registered trademark) SQ100 series manufactured by Arakawa Chemical Co., Ltd. can be used.
 その他、本発明に適用可能なチオール基を有するシルセスキオキサン誘導体やその合成方法として、特開2015-59108号公報、特開2012-180464号公報等を参照することができる。 In addition, as a silsesquioxane derivative having a thiol group applicable to the present invention and a synthesis method thereof, JP-A-2015-59108, JP-A-2012-180464 and the like can be referred to.
(アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミド)
 アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミドとしては、本発明の効果を阻害しない範囲において特に限定されないが、下記一般式(II)で表される部分構造を有することが好ましい。
(Poly (meth) acrylate having aminoethyl group and poly (meth) acrylamide having aminoethyl group)
The poly (meth) acrylate having an aminoethyl group and the poly (meth) acrylamide having an aminoethyl group are not particularly limited as long as the effects of the present invention are not inhibited, but the partial structure represented by the following general formula (II) It is preferable to have.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(II)中、Rは、水素原子又はメチル基を表す。Qは、-C(=O)O-又は-C(=O)NRa-を表す。Raは、水素原子又はアルキル基を表す。Aは置換若しくは無置換のアルキレン基、又は-(CHCHRbNH)-CHCHRb-を表し、Rbは水素原子又はアルキル基を示し、xは平均繰り返しユニット数を表し、かつ、正の整数である。 In general formula (II), R 3 represents a hydrogen atom or a methyl group. Q represents —C (═O) O— or —C (═O) NRa—. Ra represents a hydrogen atom or an alkyl group. A represents a substituted or unsubstituted alkylene group, or — (CH 2 CHRbNH) x —CH 2 CHRb—, Rb represents a hydrogen atom or an alkyl group, x represents the average number of repeating units, and is a positive integer It is.
 Raにおけるアルキル基としては、例えば、炭素数1~5の直鎖あるいは分岐アルキル基が好ましく、より好ましくはメチル基である。 As the alkyl group in Ra, for example, a linear or branched alkyl group having 1 to 5 carbon atoms is preferable, and a methyl group is more preferable.
 また、これらのアルキル基は、置換基で置換されていてもよい。これら置換基の例としては、アルキル基、シクロアルキル基、アリール基、ヘテロシクロアルキル基、ヘテロアリール基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルチオ基、アリールチオ基、シクロアルコキシ基、アリールオキシ基、アシル基、アルキルカルボンアミド基、アリールカルボンアミド基、アルキルスルホンアミド基、アリールスルホンアミド基、ウレイド基、アラルキル基、ニトロ基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルキルカルバモイル基、アリールカルバモイル基、アルキルスルファモイル基、アリールスルファモイル基、アシルオキシ基、アルケニル基、アルキニル基、アルキルスルホニル基、アリールスルホニル基、アルキルオキシスルホニル基、アリールオキシスルホニル基、アルキルスルホニルオキシ基、アリールスルホニルオキシ基等で置換されてもよい。これらのうち好ましくは、ヒドロキシ基、アルキルオキシ基である。 In addition, these alkyl groups may be substituted with a substituent. Examples of these substituents include alkyl groups, cycloalkyl groups, aryl groups, heterocycloalkyl groups, heteroaryl groups, hydroxy groups, halogen atoms, alkoxy groups, alkylthio groups, arylthio groups, cycloalkoxy groups, aryloxy groups, Acyl group, alkylcarbonamide group, arylcarbonamide group, alkylsulfonamide group, arylsulfonamide group, ureido group, aralkyl group, nitro group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, alkylcarbamoyl group, Arylcarbamoyl group, alkylsulfamoyl group, arylsulfamoyl group, acyloxy group, alkenyl group, alkynyl group, alkylsulfonyl group, arylsulfonyl group, alkyloxysulfonyl , Aryloxy sulfonyl group, alkylsulfonyloxy group, may be substituted with an aryl sulfonyloxy group. Of these, a hydroxy group and an alkyloxy group are preferable.
 上記置換基としてのアルキル基は、分岐していてもよく、炭素数は1~20であることが好ましく、1~12であることがより好ましく、1~8であることが更に好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基等が挙げられる。
 上記シクロアルキル基の炭素数は、3~20であることが好ましく、3~12であることがより好ましく、3~8であることが更に好ましい。シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 上記アリール基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記へテロシクロアルキル基の炭素数は、2~10であることが好ましく、3~5であることが更に好ましい。へテロシクロアルキル基としては、ピペリジノ基、ジオキサニル基、2-モルホリニル基等が挙げられる。
 上記へテロアリール基の炭素数は、3~20であることが好ましく、3~10であることが更に好ましい。へテロアリール基としては、チエニル基、ピリジル基が挙げられる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 上記アルコキシ基は、分岐していてもよく、炭素数は1~20であることが好ましく、1~12であることがより好ましく、1~6であることが更に好ましく、1~4であることが最も好ましい。アルコキシ基としては、メトキシ基、エトキシ基、2-メトキシエトキシ基、2-メトキシ-2-エトキシエトキシ基、ブチルオキシ基、ヘキシルオキシ基、オクチルオキシ基等が挙げられ、好ましくはエトキシ基である。
 上記アルキルチオ基は、分岐していてもよく、炭素数は1~20であることが好ましく、1~12であることがより好ましく、1~6であることが更に好ましく、1~4であることが最も好ましい。アルキルチオ基としては、メチルチオ基、エチルチオ基等が挙げられる。
 上記アリールチオ基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールチオ基としては、フェニルチオ基、ナフチルチオ基等が挙げられる。
 上記シクロアルコキシ基の炭素数は、3~12であることが好ましく、より好ましくは3~8である。シクロアルコキシ基としては、シクロプロポキシ基、シクロブチロキシ基、シクロペンチロキシ基、シクロヘキシロキシ基等が挙げられる。
 上記アリールオキシ基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールオキシ基としては、フェノキシ基、ナフトキシ基等が挙げられる。
 上記アシル基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アシル基としては、ホルミル基、アセチル基、ベンゾイル基等が挙げられる。
 上記アルキルカルボンアミド基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アルキルカルボンアミド基としては、アセトアミド基等が挙げられる。
 上記アリールカルボンアミド基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アリールカルボンアミド基としては、ベンズアミド基等が挙げられる。
 上記アルキルスルホンアミド基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。スルホンアミド基としては、メタンスルホンアミド基等が挙げられる。
 上記アリールスルホンアミド基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アリールスルホンアミド基としては、ベンゼンスルホンアミド基、p-トルエンスルホンアミド基等が挙げられる。
 上記アラルキル基の炭素数は、7~20であることが好ましく、7~12であることが更に好ましい。アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
 上記アルコキシカルボニル基の炭素数は、1~20であることが好ましく、2~12であることが更に好ましい。アルコキシカルボニル基としては、メトキシカルボニル基等が挙げられる。
 上記アリールオキシカルボニル基の炭素数は、7~20であることが好ましく、7~12であることが更に好ましい。アリールオキシカルボニル基としては、フェノキシカルボニル基等が挙げられる。
 上記アラルキルオキシカルボニル基の炭素数は、8~20であることが好ましく、8~12であることが更に好ましい。アラルキルオキシカルボニル基としては、ベンジルオキシカルボニル基等が挙げられる。
 上記アシルオキシ基の炭素数は、1~20であることが好ましく、2~12であることが更に好ましい。アシルオキシ基としては、アセトキシ基、ベンゾイルオキシ基等が挙げられる。
 上記アルケニル基の炭素数は、2~20であることが好ましく、2~12であることが更に好ましい。アルケニル基としては、ビニル基、アリル基、イソプロペニル基等が挙げられる。
 上記アルキニル基の炭素数は、2~20であることが好ましく、2~12であることが更に好ましい。アルキニル基としては、エチニル基等が挙げられる。
 上記アルキルスルホニル基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル基等が挙げられる。
 上記アリールスルホニル基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールスルホニル基としては、フェニルスルホニル基、ナフチルスルホニル基等が挙げられる。
 上記アルキルオキシスルホニル基の炭素数は、1~20あることが好ましく、1~12であることが更に好ましい。アルキルオキシスルホニル基としては、メトキシスルホニル基、エトキシスルホニル基等が挙げられる。
 上記アリールオキシスルホニル基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールオキシスルホニル基としては、フェノキシスルホニル基、ナフトキシスルホニル基等が挙げられる。
 上記アルキルスルホニルオキシ基の炭素数は、1~20であることが好ましく、1~12であることが更に好ましい。アルキルスルホニルオキシ基としては、メチルスルホニルオキシ基、エチルスルホニルオキシ基等が挙げられる。
 上記アリールスルホニルオキシ基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールスルホニルオキシ基としては、フェニルスルホニルオキシ基、ナフチルスルホニルオキシ基等が挙げられる。
 置換基は、同一でも異なっていてもよく、これら置換基が更に置換されてもよい。
The alkyl group as the substituent may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 8 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a hexyl group, and an octyl group.
The cycloalkyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 3 to 8 carbon atoms. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
The aryl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group.
The heterocycloalkyl group preferably has 2 to 10 carbon atoms, and more preferably 3 to 5 carbon atoms. Examples of the heterocycloalkyl group include a piperidino group, a dioxanyl group, and a 2-morpholinyl group.
The heteroaryl group preferably has 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms. Examples of the heteroaryl group include a thienyl group and a pyridyl group.
As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
The alkoxy group may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and more preferably 1 to 4. Is most preferred. Examples of the alkoxy group include a methoxy group, an ethoxy group, a 2-methoxyethoxy group, a 2-methoxy-2-ethoxyethoxy group, a butyloxy group, a hexyloxy group, and an octyloxy group, and an ethoxy group is preferable.
The alkylthio group may be branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and more preferably 1 to 4. Is most preferred. Examples of the alkylthio group include a methylthio group and an ethylthio group.
The arylthio group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the arylthio group include a phenylthio group and a naphthylthio group.
The cycloalkoxy group preferably has 3 to 12 carbon atoms, more preferably 3 to 8 carbon atoms. Examples of the cycloalkoxy group include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, a cyclohexyloxy group, and the like.
The aryloxy group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. Examples of the aryloxy group include a phenoxy group and a naphthoxy group.
The acyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the acyl group include a formyl group, an acetyl group, and a benzoyl group.
The alkylcarbonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylcarbonamide group include an acetamide group.
The aryl carbonamido group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the arylcarbonamide group include a benzamide group.
The alkylsulfonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the sulfonamide group include a methanesulfonamide group.
The arylsulfonamide group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the arylsulfonamido group include a benzenesulfonamido group and a p-toluenesulfonamido group.
The aralkyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aralkyl group include a benzyl group, a phenethyl group, and a naphthylmethyl group.
The alkoxycarbonyl group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the alkoxycarbonyl group include a methoxycarbonyl group.
The aryloxycarbonyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aryloxycarbonyl group include a phenoxycarbonyl group.
The aralkyloxycarbonyl group preferably has 8 to 20 carbon atoms, and more preferably 8 to 12 carbon atoms. Examples of the aralkyloxycarbonyl group include a benzyloxycarbonyl group.
The acyloxy group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the acyloxy group include an acetoxy group and a benzoyloxy group.
The alkenyl group has preferably 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the alkenyl group include a vinyl group, an allyl group, and an isopropenyl group.
The alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. An ethynyl group etc. are mentioned as an alkynyl group.
The alkylsulfonyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the alkylsulfonyl group include a methylsulfonyl group and an ethylsulfonyl group.
The arylsulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the arylsulfonyl group include a phenylsulfonyl group and a naphthylsulfonyl group.
The alkyloxysulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkyloxysulfonyl group include a methoxysulfonyl group and an ethoxysulfonyl group.
The aryloxysulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryloxysulfonyl group include a phenoxysulfonyl group and a naphthoxysulfonyl group.
The alkylsulfonyloxy group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylsulfonyloxy group include a methylsulfonyloxy group and an ethylsulfonyloxy group.
The arylsulfonyloxy group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the arylsulfonyloxy group include a phenylsulfonyloxy group and a naphthylsulfonyloxy group.
The substituents may be the same or different, and these substituents may be further substituted.
 Aにおけるアルキレン基は、炭素数1~5が好ましく、より好ましくはエチレン基、プロピレン基である。これらのアルキレン基は、前述した置換基で置換されていてもよい。
 Rbにおけるアルキル基としては、炭素数1~5の直鎖又は分岐アルキル基が好ましく、より好ましくはメチル基である。これらのアルキル基は前述の置換基で置換されていてもよい。
The alkylene group in A preferably has 1 to 5 carbon atoms, more preferably an ethylene group or a propylene group. These alkylene groups may be substituted with the substituent mentioned above.
The alkyl group in Rb is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, more preferably a methyl group. These alkyl groups may be substituted with the aforementioned substituents.
 平均繰り返しユニット数xとしては、正の整数であれば特に限定されないが、1~20の範囲内であることが好ましい。 The average number of repeating units x is not particularly limited as long as it is a positive integer, but it is preferably in the range of 1 to 20.
 ポリ(メタ)アクリレート及びポリ(メタ)アクリルアミドの重量平均分子量(Mw)としては、10000~500000の範囲内であることが好ましく、より好ましくは、30000~200000の範囲内である。重量平均分子量(Mw)が10000以上であれば、ポリ(メタ)アクリレート及びポリ(メタ)アクリルアミドを含む密着層が硬いため、経時変化や強制劣化条件での膜厚変化や他層との界面劣化を引き起こすことなく、電気的あるいは光学的な不具合が生じることがない。また、500000以下であれば、密着層形成用塗布液への溶解性や他の化合物との相溶性が良好で、更には、低温あるいは高温環境において硬さの異なる他層との剥離の問題が生じることがない。 The weight average molecular weight (Mw) of poly (meth) acrylate and poly (meth) acrylamide is preferably in the range of 10,000 to 500,000, more preferably in the range of 30,000 to 200,000. If the weight average molecular weight (Mw) is 10,000 or more, the adhesive layer containing poly (meth) acrylate and poly (meth) acrylamide is hard, so the film thickness changes under time-dependent or forced deterioration conditions and interface deterioration with other layers. Without causing any electrical or optical problems. Moreover, if it is 500,000 or less, the solubility in the coating solution for forming the adhesion layer and the compatibility with other compounds are good, and furthermore, there is a problem of peeling from other layers having different hardness in a low temperature or high temperature environment. It does not occur.
(1)アミノエチル基を有するポリ(メタ)アクリレート
 アミノエチル基を有するポリ(メタ)アクリレートとしては、アミノエチル基を有する、(メタ)アクリレートの重合体又は共重合体が挙げられる。
 (メタ)アクリレートとしては、一つ又は二つの(メタ)アクリロイル基を有する単官能又は2官能(メタ)アクリレートや、三つ以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートが挙げられる。
(1) Poly (meth) acrylate having aminoethyl group Examples of the poly (meth) acrylate having aminoethyl group include a polymer or copolymer of (meth) acrylate having an aminoethyl group.
Examples of (meth) acrylates include monofunctional or bifunctional (meth) acrylates having one or two (meth) acryloyl groups, and polyfunctional (meth) acrylates having three or more (meth) acryloyl groups. .
 単官能(メタ)アクリレートとしては、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のC1-24のアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート等の橋架け環式(メタ)アクリレート、フェニル(メタ)アクリレート、ノニルフェニル(メタ)アクリレート等のアリール(メタ)アクリレート、ベンジル(メタ)アクリレート等のアラルキル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシC2-10アルキル(メタ)アクリレート又はC2-10アルカンジオールモノ(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレート等のフルオロC1-10アルキル(メタ)アクリレート、メトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシプロピル(メタ)アクリレート等のアリールオキシアルキル(メタ)アクリレート、フェニルカルビトール(メタ)アクリレート、ノニルフェニルカルビトール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート等のアリールオキシ(ポリ)アルコキシアルキル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート等のアルカンポリオールモノ(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、2-t-ブチルアミノエチル(メタ)アクリレート等のアミノ基又は置換アミノ基を有する(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。 Examples of monofunctional (meth) acrylates include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and sec-butyl. (Meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate C 1-24 alkyl (meth) acrylate such as stearyl (meth) acrylate, cycloalkyl (meth) acrylate such as cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, Bridged cyclic (meth) acrylates such as lopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, phenyl (meta ) Acrylate, aryl (meth) acrylates such as nonylphenyl (meth) acrylate, aralkyl (meth) acrylates such as benzyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate hydroxy C 2-10 alkyl (meth) acrylate or C 2-10 alkanediol mono (meth) acrylate and the like, trifluoroethyl (meth) acrylate, tetrafluoroethylene-flop Pill (meth) acrylate, fluoroalkyl C 1-10 alkyl (meth) acrylates such as hexafluoroisopropyl (meth) acrylate, alkoxyalkyl (meth) acrylates such as methoxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypropyl Aryloxyalkyl (meth) acrylates such as (meth) acrylate, phenyl carbitol (meth) acrylate, nonylphenyl carbitol (meth) acrylate, aryloxy (poly) alkoxyalkyl (meta) such as nonylphenoxypolyethylene glycol (meth) acrylate ) Acrylates, polyalkylene glycol mono (meth) acrylates such as polyethylene glycol mono (meth) acrylate, glycerin mono (meth) acrylate An amino group or substituted amino group such as alkane polyol mono (meth) acrylate such as relate, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 2-t-butylaminoethyl (meth) acrylate, etc. Examples thereof include (meth) acrylate and glycidyl (meth) acrylate.
 2官能(メタ)アクリレートとしては、例えば、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等のアルカンポリオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン等のビスフェノール類(ビスフェノールA、ビスフェノールS等)のC2-4アルキレンオキサイド付加体のジ(メタ)アクリレート、脂肪酸変性ペンタエリスリトール等の酸変性アルカンポリオールのジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、アダマンタンジ(メタ)アクリレート等の橋架け環式ジ(メタ)アクリレートなどが例示できる。 Examples of the bifunctional (meth) acrylate include allyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-propanediol di (meth) acrylate, and 1,4-butane. Alkanediol di (meth) acrylates such as diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and alkane polyol di (meta) such as glycerin di (meth) acrylate ) Acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol Polyalkylene glycol di (meth) acrylate such as urdi (meth) acrylate, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxydiethoxyphenyl) ) Di (meth) acrylates and fatty acids of C 2-4 alkylene oxide adducts of bisphenols (bisphenol A, bisphenol S, etc.) such as propane and 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane Examples include di (meth) acrylates of acid-modified alkane polyols such as modified pentaerythritol, bridged di (meth) acrylates such as tricyclodecane dimethanol di (meth) acrylate and adamantane di (meth) acrylate.
 さらに、2官能(メタ)アクリレートとしては、例えば、エポキシジ(メタ)アクリレート(ビスフェノールA型エポキシジ(メタ)アクリレート、ノボラック型エポキシジ(メタ)アクリレート等)、ポリエステルジ(メタ)アクリレート(例えば、脂肪族ポリエステル型ジ(メタ)アクリレート、芳香族ポリエステル型ジ(メタ)アクリレート等)、(ポリ)ウレタンジ(メタ)アクリレート(ポリエステル型ウレタンジ(メタ)アクリレート、ポリエーテル型ウレタンジ(メタ)アクリレート等)、シリコン(メタ)アクリレート等のオリゴマー又は樹脂も挙げられる。 Further, as the bifunctional (meth) acrylate, for example, epoxy di (meth) acrylate (bisphenol A type epoxy di (meth) acrylate, novolac type epoxy di (meth) acrylate, etc.), polyester di (meth) acrylate (for example, aliphatic polyester) Type di (meth) acrylate, aromatic polyester type di (meth) acrylate, etc.), (poly) urethane di (meth) acrylate (polyester type urethane di (meth) acrylate, polyether type urethane di (meth) acrylate etc.), silicon (meta ) Oligomers such as acrylates or resins are also included.
 多官能(メタ)アクリレートとしては、多価アルコールと(メタ)アクリル酸とのエステル化物、例えば、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。さらに、これらの多官能(メタ)アクリレートにおいて、多価アルコールは、アルキレンオキシド(例えば、エチレンオキシドやプロピレンオキシドなどのC2-4アルキレンオキシド)の付加体であってもよい。 As polyfunctional (meth) acrylate, esterified product of polyhydric alcohol and (meth) acrylic acid, for example, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, Examples include pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate. Further, in these polyfunctional (meth) acrylates, the polyhydric alcohol may be an adduct of alkylene oxide (for example, C 2-4 alkylene oxide such as ethylene oxide or propylene oxide).
 これらの多官能(メタ)アクリレートのうち、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3~6官能(メタ)アクリレートが好ましく、ペンタエリスリトールトリ(メタ)アクリレートなどの3~4官能(メタ)アクリレートがより好ましい。
 さらに、多官能(メタ)アクリレートは、アミンで変性されていない多官能(メタ)アクリレート(マイケル付加などによりアミン類が付加していない未変性多官能(メタ)アクリレート)が好ましい。
Of these polyfunctional (meth) acrylates, tri- to 6-functional (meth) acrylates such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are preferable. Pentaerythritol Tri- to tetra-functional (meth) acrylates such as tri (meth) acrylate are more preferred.
Furthermore, the polyfunctional (meth) acrylate is preferably a polyfunctional (meth) acrylate that is not modified with an amine (an unmodified polyfunctional (meth) acrylate that is not added with amines by Michael addition or the like).
 これらの(メタ)アクリレートは、単独で又は2種以上組み合わせて使用できる。 These (meth) acrylates can be used alone or in combination of two or more.
 以下に、本発明に係る密着層に適用可能なアミノエチル基を有するポリ(メタ)アクリレートの具体例として、例示化合物PE-1~PE-9を示す。なお、下記例示化合物におけるx及びyは、共重合体の重合比率を表す。その重合比率は、溶解性、電極性能等に応じて適宜調整することができ、例えば、x:y=10:90等とすることができる。 Examples Compounds PE-1 to PE-9 are shown below as specific examples of poly (meth) acrylates having aminoethyl groups applicable to the adhesion layer according to the present invention. In addition, x and y in the following exemplary compounds represent the polymerization ratio of the copolymer. The polymerization ratio can be appropriately adjusted according to solubility, electrode performance, and the like. For example, x: y = 10: 90 can be set.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記例示化合物PE-1~PE-9は、公知の方法により合成することができる。より具体的には、(i)(メタ)アクリレートをアミノエチル化した後、重合又は共重合する方法、(ii)(メタ)アクリレートを重合した後、アミノエチル化する方法が挙げられる。
 以下に、その一例として、例示化合物PE-7の合成方法を示す。
The exemplified compounds PE-1 to PE-9 can be synthesized by a known method. More specifically, (i) a method in which (meth) acrylate is aminoethylated and then polymerized or copolymerized, and (ii) a method in which (meth) acrylate is polymerized and then aminoethylated.
As an example, a method for synthesizing Exemplified Compound PE-7 is shown below.
[合成例]例示化合物PE-7の合成
 温度計、撹拌機、還流冷却器を備えたガラス製反応器に、トルエン80質量部を仕込み、内温を110℃まで加熱した。開始剤として2,2-アゾビス-(2-メチルブチロニトリル)1.2質量部を加え、メタクリル酸メチル100質量部及びアクリル酸18質量部からなる混合溶液を3時間で滴下し、更に4時間加熱を継続した。反応終了後、トルエンを加えてカルボキシ基含有ポリマー溶液を得た。
[Synthesis Example] Synthesis of Exemplified Compound PE-7 A glass reactor equipped with a thermometer, a stirrer and a reflux condenser was charged with 80 parts by mass of toluene, and the internal temperature was heated to 110 ° C. As an initiator, 1.2 parts by mass of 2,2-azobis- (2-methylbutyronitrile) was added, and a mixed solution consisting of 100 parts by mass of methyl methacrylate and 18 parts by mass of acrylic acid was added dropwise over 3 hours. Heating was continued for an hour. After completion of the reaction, toluene was added to obtain a carboxy group-containing polymer solution.
 上記カルボキシ基含有ポリマー溶液を120質量部、トルエン60質量部を仕込み、撹拌下40℃でエチレンイミン53.8質量部とトルエン30質量部の混合溶液を30分かけて滴下した。滴下後40℃で2時間反応させた後、内温を70℃まで昇温して、更に5時間撹拌し熟成を行った後、例示化合物PE-7を得た。
 カルボキシ基のアミノ基への変性率は、ガスクロマトグラフィーの分析から算出した消費されたエチレンイミン量により算出したところ100%であった。
 続いて未反応のエチレンイミンを減圧留去により除去した。減圧留去後のポリマー溶液を検出限界1ppm以下のガスクロマトグラフィーで分析したところ、エチレンイミンは検出されなかった。
120 parts by mass of the carboxy group-containing polymer solution and 60 parts by mass of toluene were charged, and a mixed solution of 53.8 parts by mass of ethyleneimine and 30 parts by mass of toluene was added dropwise at 40 ° C. over 30 minutes with stirring. After the dropwise addition, the reaction was carried out at 40 ° C. for 2 hours, and then the internal temperature was raised to 70 ° C., and the mixture was further stirred for 5 hours for aging to obtain Exemplified Compound PE-7.
The modification ratio of the carboxy group to the amino group was 100% as calculated from the consumed ethyleneimine amount calculated from the analysis of gas chromatography.
Subsequently, unreacted ethyleneimine was removed by distillation under reduced pressure. When the polymer solution after distillation under reduced pressure was analyzed by gas chromatography with a detection limit of 1 ppm or less, ethyleneimine was not detected.
 その他、特開平4-356448号公報、特開2003-41000号公報等に記載の合成方法も参照することができる。 In addition, synthesis methods described in JP-A-4-356448, JP-A-2003-41000, and the like can also be referred to.
(2)アミノエチル基を有するポリ(メタ)アクリルアミド
 アミノエチル基を有するポリ(メタ)アクリルアミドとしては、アミノエチル基を有する、(メタ)アクリルアミドの重合体又は共重合体が挙げられる。
(2) Poly (meth) acrylamide having an aminoethyl group Examples of the poly (meth) acrylamide having an aminoethyl group include a polymer or copolymer of (meth) acrylamide having an aminoethyl group.
 (メタ)アクリルアミドとしては、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ベンジル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-トリル(メタ)アクリルアミド、N-(ヒドロキシフェニル)(メタ)アクリルアミド、N-(スルファモイルフェニル)(メタ)アクリルアミド、N-(フェニルスルホニル)(メタ)アクリルアミド、N-(トリルスルホニル)(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-メチル-N-フェニル(メタ)アクリルアミド、N-ヒドロキシエチル-N-メチル(メタ)アクリルアミド等が挙げられる。 Examples of (meth) acrylamide include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, and N-benzyl (meth). Acrylamide, N-hydroxyethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-tolyl (meth) acrylamide, N- (hydroxyphenyl) (meth) acrylamide, N- (sulfamoylphenyl) (meth) acrylamide N- (phenylsulfonyl) (meth) acrylamide, N- (tolylsulfonyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-methyl-N-phenyl (meth) acrylamide, N-hydroxyethyl- N-methyl (Meth) acrylamide.
 以下に、本発明に係る密着層に適用可能なアミノエチル基を有するポリ(メタ)アクリルアミドの具体例として、例示化合物PA-1~PA-12を示す。なお、下記例示化合物におけるx及びyは、共重合体の重合比率を表す。その重合比率は、例えば、x:y=10:90等とすることができる。 Hereinafter, exemplary compounds PA-1 to PA-12 are shown as specific examples of poly (meth) acrylamide having an aminoethyl group applicable to the adhesion layer according to the present invention. In addition, x and y in the following exemplary compounds represent the polymerization ratio of the copolymer. The polymerization ratio can be, for example, x: y = 10: 90.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記例示化合物PA-1~PA-12は、公知の方法により合成することができる。(メタ)アクリルアミドのアミノエチル化、あるいはポリ(メタ)アクリルアミド(単独重合体)のアミノエチル化は、上述の(メタ)アクリレートあるいはポリ(メタ)アクリレートのアミノエチル化と同様に行うことができる。 The exemplified compounds PA-1 to PA-12 can be synthesized by known methods. The aminoethylation of (meth) acrylamide or the aminoethylation of poly (meth) acrylamide (homopolymer) can be performed in the same manner as the aminoethylation of (meth) acrylate or poly (meth) acrylate described above.
(樹脂)
 密着層を構成する樹脂としては、密着層を形成できるものであれば特に限定されない。
 例えば、単量体の繰り返し構造を持つ公知の天然高分子材料や、合成高分子材料を使用することができる。これらは、有機高分子材料、無機高分子材料、有機無機ハイブリッド高分子材料、及び、これらの混合物等を使用することができる。これらの樹脂は、2種以上混合して使用することもできる。
(resin)
The resin constituting the adhesion layer is not particularly limited as long as the adhesion layer can be formed.
For example, a known natural polymer material having a monomer repeating structure or a synthetic polymer material can be used. As these, organic polymer materials, inorganic polymer materials, organic-inorganic hybrid polymer materials, and mixtures thereof can be used. These resins can be used in combination of two or more.
 上記樹脂は、公知の方法により合成することができる。天然高分子材料は、天然原料からの抽出や、セルロース等のように微生物により合成することができる。合成高分子は、ラジカル重合、カチオン重合、アニオン重合、配位重合、開環重合、重縮合、付加重合、付加縮合及びこれらのリビング重合等で得ることができる。 The above resin can be synthesized by a known method. Natural polymer materials can be synthesized from microorganisms such as extracted from natural raw materials or cellulose. The synthetic polymer can be obtained by radical polymerization, cationic polymerization, anionic polymerization, coordination polymerization, ring-opening polymerization, polycondensation, addition polymerization, addition condensation, and living polymerization thereof.
 また、これらの樹脂は、単独重合体でも共重合体でもよく、不斉炭素を有するモノマーを使用する場合、ランダム、シンジオタックチック、アイソタックチックのいずれかの規則性を持つことができる。また、共重合体の場合、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合等の形態をとることができる。 These resins may be either homopolymers or copolymers, and can have any regularity of random, syndiotactic and isotactic when a monomer having an asymmetric carbon is used. Moreover, in the case of a copolymer, forms, such as random copolymerization, alternating copolymerization, block copolymerization, and graft copolymerization, can be taken.
 樹脂の形態は、樹脂自体が液体でも固体でもよい。また、樹脂は、溶媒に溶解しているか、溶媒中に均一に分散していることが好ましい。さらに、樹脂は、水溶性樹脂又は水分散性樹脂であってもよい。 The form of the resin may be liquid or solid. The resin is preferably dissolved in the solvent or uniformly dispersed in the solvent. Further, the resin may be a water-soluble resin or a water-dispersible resin.
 また、樹脂は、紫外線・電子線によって硬化する電離放射線硬化型樹脂や、熱により硬化する熱硬化性樹脂であってよく、ゾル-ゲル法により作製される樹脂であってもよい。さらに、樹脂は架橋していてもよい。 The resin may be an ionizing radiation curable resin that is cured by ultraviolet rays or an electron beam, a thermosetting resin that is cured by heat, or may be a resin prepared by a sol-gel method. Furthermore, the resin may be crosslinked.
 上述の樹脂において、天然高分子及び合成高分子は、大木道則、大沢利昭、田中元治、千原秀昭編「化学大辞典」(東京化学同人、1989年刊)1551及び769ページのそれぞれの項に記載されているものを一例として使用することができる。 In the above-mentioned resins, the natural polymer and the synthetic polymer are described in the respective sections on pages 1551 and 769 of “Chemical Dictionary” (Tokyo Kagaku Dojin, 1989) edited by Michinori Oki, Toshiaki Osawa, Motoharu Tanaka and Hideaki Chihara. Can be used as an example.
 具体的には、天然高分子材料としては、天然有機高分子材料が好ましく、綿、麻、セルロース、絹、羊毛などの天然繊維や、ゼラチンなどのたんぱく質、天然ゴムなどを挙げることができる。合成高分子材料としては、ポリオレフィン樹脂、ポリアクリル樹脂、ポリビニル樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリフェニレン樹脂、ポリイミド樹脂、ポリアセタール樹脂、ポリスルホン樹脂、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、ポリ尿素樹脂、ポリカーボネート樹脂、ポリケトン樹脂などを挙げることができる。 Specifically, the natural polymer material is preferably a natural organic polymer material, and examples thereof include natural fibers such as cotton, hemp, cellulose, silk, and wool, proteins such as gelatin, and natural rubber. Synthetic polymer materials include polyolefin resin, polyacrylic resin, polyvinyl resin, polyether resin, polyester resin, polyamide resin, polyurethane resin, polyphenylene resin, polyimide resin, polyacetal resin, polysulfone resin, fluororesin, epoxy resin, silicone resin Phenol resin, melamine resin, polyurethane resin, polyurea resin, polycarbonate resin, polyketone resin, and the like.
 ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(1-ブテン)、ポリ4-メチルペンテン、ポリビニルシクロヘキサン、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(α-メチルスチレン)、ポリイソプレン、ポリブタジエン、ポリシクロペンテン、ポリノルボルネンなどが挙げられる。
 ポリアクリル樹脂としては、例えば、ポリメタクリレート、ポリアクリレート、ポリアクリルアミド、ポリメタクリルアミド、ポリアクリロニトリルなどが挙げられる。
 ポリビニル樹脂としては、例えば、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルビニルエーテル、ポリエチルビニルエーテル、ポリイソブチルビニルエーテルなどが挙げられる。
 ポリエーテル樹脂としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリアルキレングリコールなどが挙げられる。
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリアルキレンフタレート、ポリエチレンナフタレート等のポリアルキレンナフタレートなどが挙げられる。
 ポリアミド樹脂としては、例えば、ポリアミド6、ポリアミド6,6、ポリアミド12、ポリアミド11などが挙げられる。
 フッ素樹脂としては、例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマー、ポリクロロトリフルオロエチレンなどが挙げられる。
Examples of the polyolefin resin include polyethylene, polypropylene, polyisobutylene, poly (1-butene), poly-4-methylpentene, polyvinylcyclohexane, polystyrene, poly (p-methylstyrene), poly (α-methylstyrene), polyisoprene. , Polybutadiene, polycyclopentene, polynorbornene and the like.
Examples of the polyacrylic resin include polymethacrylate, polyacrylate, polyacrylamide, polymethacrylamide, polyacrylonitrile and the like.
Examples of the polyvinyl resin include polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polymethyl vinyl ether, polyethyl vinyl ether, polyisobutyl vinyl ether, and the like.
Examples of the polyether resin include polyalkylene glycols such as polyethylene oxide and polypropylene oxide.
Examples of the polyester resin include polyalkylene phthalates such as polyethylene terephthalate and polybutylene terephthalate, and polyalkylene naphthalates such as polyethylene naphthalate.
Examples of the polyamide resin include polyamide 6, polyamide 6,6, polyamide 12, and polyamide 11.
Examples of the fluororesin include polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, ethylene tetrafluoroethylene copolymer, and polychlorotrifluoroethylene.
 なお、上述の水溶性樹脂とは、25℃の水100gに0.001g以上溶解する樹脂を意味する。溶解の度合いは、ヘイズメータ、濁度計等で測定することができる。水溶性樹脂の色は特に限定されないが、透明であることが好ましい。また、水溶性樹脂の数平均分子量は、3000~2000000の範囲内であることが好ましく、より好ましくは4000~500000の範囲内、更に好ましくは5000~100000の範囲内である。 In addition, the above-mentioned water-soluble resin means a resin that dissolves 0.001 g or more in 100 g of water at 25 ° C. The degree of dissolution can be measured with a haze meter, a turbidimeter, or the like. The color of the water-soluble resin is not particularly limited, but is preferably transparent. Further, the number average molecular weight of the water-soluble resin is preferably in the range of 3000 to 2000000, more preferably in the range of 4000 to 500000, and still more preferably in the range of 5000 to 100,000.
 水溶性樹脂の数平均分子量、分子量分布の測定は、一般的に知られているゲルパーミエーションクロマトグラフィー(GPC)により行うことができる。使用する溶媒は、バインダーが溶解すれば特に限りはないが、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、ジクロロメタン(CHCl)が好ましく、より好ましくはTHF、DMFであり、更に好ましくはDMFである。また、測定温度も特に制限はないが、40℃であることが好ましい。 The number average molecular weight and molecular weight distribution of the water-soluble resin can be measured by generally known gel permeation chromatography (GPC). The solvent to be used is not particularly limited as long as the binder dissolves, but tetrahydrofuran (THF), dimethylformamide (DMF), and dichloromethane (CH 2 Cl 2 ) are preferable, more preferably THF and DMF, and still more preferably DMF. It is. The measurement temperature is not particularly limited, but is preferably 40 ° C.
 水溶性樹脂としては、具体的には、天然高分子材料、合成高分子材料として、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、フッ素系等の樹脂が挙げられ、例えば、カゼイン、デンプン、寒天、カラギーナン、セスロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、デキストラン、デキストリン、プルラン、ポリビニルアルコール、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸、ポリ(2-ヒドロキシエチルアクリレート)、ポリ(2-ヒドロキシエチルメタクリレート)、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、水溶性ポリビニルブチラール等のポリマーを挙げることができる。 Specific examples of water-soluble resins include natural polymer materials and synthetic polymer materials such as acrylic resins, polyester resins, polyamide resins, polyurethane resins, and fluorine resins. For example, casein, starch, agar , Carrageenan, sesulose, hydroxyethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, dextran, dextrin, pullulan, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid, poly (2-hydroxyethyl acrylate), poly ( 2-hydroxyethyl methacrylate), polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, water-soluble polyvinyl butyral, and the like.
 上述の水分散性樹脂とは、水系溶剤に均一分散可能なものであり、水系溶剤中に凝集せずに、樹脂からなるコロイド粒子が分散している樹脂を意味する。コロイド粒子の大きさ(平均粒子径)は、一般的に1~1000nmの範囲内程度である。上記のコロイド粒子の平均粒子径は、光散乱光度計により測定することができる。 The above-mentioned water-dispersible resin means a resin that can be uniformly dispersed in an aqueous solvent and in which colloidal particles made of resin are dispersed without being aggregated in the aqueous solvent. The size (average particle diameter) of colloidal particles is generally in the range of 1 to 1000 nm. The average particle diameter of the colloidal particles can be measured with a light scattering photometer.
 また、上記水系溶剤とは、蒸留水及び脱イオン水などの純水のみならず、酸、アルカリ、塩等を含む水溶液、含水の有機溶媒、更には親水性の有機溶媒等の溶媒であることを意味し、メタノール、エタノール等のアルコール系溶媒、水とアルコールとの混合溶媒等が挙げられる。水分散性樹脂は、透明であることが好ましい。また、水分散性樹脂は、フィルムを形成する媒体であれば、特に限定はない。水分散性樹脂としては、例えば、水性アクリル系樹脂、水性ウレタン樹脂、水性ポリエステル樹脂、水性ポリアミド樹脂、水性ポリオレフィン樹脂等が挙げられる。 The aqueous solvent is not only pure water such as distilled water and deionized water, but also an aqueous solution containing acid, alkali, salt, etc., a water-containing organic solvent, and a hydrophilic organic solvent. And alcohol-based solvents such as methanol and ethanol, mixed solvents of water and alcohol, and the like. The water dispersible resin is preferably transparent. The water-dispersible resin is not particularly limited as long as it is a medium for forming a film. Examples of the water-dispersible resin include an aqueous acrylic resin, an aqueous urethane resin, an aqueous polyester resin, an aqueous polyamide resin, and an aqueous polyolefin resin.
 水性アクリル樹脂としては、酢酸ビニル、アクリル酸、アクリル酸-スチレンの重合体、又は、その他のモノマーとの共重合体が挙げられる。また、水系溶媒への分散性を付与する機能を担う酸部分がリチウム、ナトリウム、カリウム、アンモニウム等のイオンと対塩を形成したアニオン性、窒素原子を有するモノマーとの共重合体からなり、窒素原子が塩酸塩等を形成したカチオン性、ヒドロキシ基やエチレンオキシド等の部位を導入したノニオン系があるが、好ましくはアニオン性である。 Examples of the aqueous acrylic resin include vinyl acetate, acrylic acid, a polymer of acrylic acid-styrene, or a copolymer with other monomers. In addition, the acid moiety responsible for the function of imparting dispersibility to an aqueous solvent is a copolymer of an anionic, nitrogen atom-containing monomer that forms a counter salt with ions such as lithium, sodium, potassium, and ammonium, and nitrogen. Although there are nonionic systems in which a site such as a hydroxyl group or ethylene oxide is introduced, in which an atom forms a hydrochloride or the like, it is preferably anionic.
 水性ウレタン樹脂としては、水分散型ウレタン樹脂、アイオノマー型水性ウレタン樹脂(アニオン性)等が挙げられる。水分散型ウレタン樹脂としては、ポリエーテル系ウレタン樹脂、ポリエステル系ウレタン樹脂が挙げられ、好ましくはポリエステル系ウレタン樹脂である。また、光学用途への使用では、芳香環を持たない無黄変イソシアネートを用いることが好ましい。 Examples of the water-based urethane resin include water-dispersed urethane resin and ionomer-type water-based urethane resin (anionic). Examples of water-dispersed urethane resins include polyether-based urethane resins and polyester-based urethane resins, and polyester-based urethane resins are preferred. For use in optical applications, it is preferable to use non-yellowing isocyanate having no aromatic ring.
 アイオノマー型水性ウレタン樹脂としては、ポリエステル系ウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリカーボネート系ウレタン樹脂等が挙げられ、好ましくはポリエステル系ウレタン樹脂、ポリエーテル系ウレタン樹脂である。 Examples of the ionomer-type water-based urethane resin include polyester-based urethane resins, polyether-based urethane resins, and polycarbonate-based urethane resins, and polyester-based urethane resins and polyether-based urethane resins are preferable.
 水性ポリエステル樹脂は、多塩基酸成分とポリオール成分とから合成される。
 多塩基酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタリンジカルボン酸、アジピン酸、コハク酸、セバチン酸、ドデカン二酸等が挙げられ、これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよく、特に好適に用いることのできる多塩基酸成分としては、工業的に多量に生産されており、安価であることなどから、テレフタル酸やイソフタル酸が特に好ましい。
 ポリオール成分としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、シクロヘキサンジメタノール、ビスフェノールなどが挙げられ、これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよく、特に好適に用いることのできるポリオール成分としては、工業的に量産され、安価であり、しかも、樹脂被膜の耐溶剤性や耐候性が向上するなど、諸性能にバランスがとれていることから、エチレングリコール、プロピレングリコール又はネオペンチルグリコールが特に好ましい。
The aqueous polyester resin is synthesized from a polybasic acid component and a polyol component.
Examples of the polybasic acid component include terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid, adipic acid, succinic acid, sebacic acid, dodecanedioic acid and the like, and these may be used alone. Two or more kinds of polybasic acid components that can be used in a particularly suitable manner are industrially produced in large quantities and are inexpensive, so terephthalic acid and isophthalic acid Is particularly preferred.
Examples of the polyol component include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, cyclohexane dimethanol, bisphenol, and the like. As a polyol component that can be used particularly suitably, it is industrially mass-produced, is inexpensive, and has a solvent resistance of the resin film. Ethylene glycol, propylene glycol or neopentyl glycol is particularly preferable because various performances such as improvement of weather resistance and weather resistance are balanced.
 無機高分子材料としては、ポリシロキサン、ポリホスファゼン、ポリシラン、ポリゲルマン、ポリスタナン、ボラジン系ポリマー、ポリメタロキサン、ポリシラザン、チタンオリゴマー、シランカップリング剤などを挙げることができる。ポリシロキサンとしては、具体的に、シリコーン、シルセスキオキサン、シリコーン樹脂などを挙げることができる。 Examples of the inorganic polymer material include polysiloxane, polyphosphazene, polysilane, polygermane, polystannane, borazine polymer, polymetalloxane, polysilazane, titanium oligomer, and silane coupling agent. Specific examples of the polysiloxane include silicone, silsesquioxane, and silicone resin.
 有機無機ハイブリッド高分子材料としては、ポリカルボシラン、ポリシリレンアリレン、ポリシロール、ポリホスフィン、ポリホスフィンオキシド、ポリ(フェロセニルシラン)、シルセスキオキサンを基本骨格としたシルセスキオキサン誘導体、樹脂にシリカを複合化させた樹脂などを挙げることができる。 As organic / inorganic hybrid polymer materials, polycarbosilane, polysilylene arylene, polysilole, polyphosphine, polyphosphine oxide, poly (ferrocenylsilane), silsesquioxane derivatives based on silsesquioxane Examples thereof include a resin in which silica is combined with a resin.
 シルセスキオキサンを基本骨格としたシルセスキオキサン誘導体としては、具体的に、光硬化型SQシリーズ(東亞合成株式会社)、コンポセランSQ(荒川化学株式会社)、Sila-DEC(チッソ株式会社)などを挙げることができる。また、樹脂にシリカを複合化させた樹脂としては、具体的に、コンポセランシリーズ(荒川化学株式会社)などを挙げることができる。 Specific examples of silsesquioxane derivatives having silsesquioxane as a basic skeleton include photo-curing type SQ series (Toagosei Co., Ltd.), Composelan SQ (Arakawa Chemical Co., Ltd.), Sila-DEC (Chisso Corporation). And so on. Specific examples of the resin in which silica is combined with the resin include the Composelan series (Arakawa Chemical Co., Ltd.).
 また、樹脂としては、電離放射線硬化型樹脂、熱硬化型樹脂等の硬化性樹脂を用いることができる。電離放射線硬化型樹脂とは、電離放射線硬化型樹脂組成物の通常の硬化方法、すなわち、電子線又は紫外線の照射によって硬化することができる樹脂である。 Further, as the resin, a curable resin such as an ionizing radiation curable resin or a thermosetting resin can be used. The ionizing radiation curable resin is a resin that can be cured by an ordinary curing method of an ionizing radiation curable resin composition, that is, by irradiation with an electron beam or ultraviolet rays.
 例えば、電子線硬化の場合には、コックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される10~1000keVの範囲内、好ましくは30~300keVの範囲内のエネルギーを有する電子線等が使用される。 For example, in the case of electron beam curing, 10 to 1000 keV emitted from various electron beam accelerators such as a Cockrowalton type, a bandegraph type, a resonant transformation type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type. An electron beam having an energy within a range of preferably 30 to 300 keV is used.
 紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。紫外線照射装置としては、具体的には、100~230nmの範囲内の真空紫外線を発する希ガスエキシマランプが挙げられる。エキシマランプは、光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、温度上昇の要因となる波長の長い光は発せず、紫外線領域の単一波長でエネルギーを照射するため、照射光自体による照射対象物の温度上昇を抑えられる特徴を持っている。 In the case of ultraviolet curing, ultraviolet rays emitted from rays of ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc, metal halide lamp, etc. can be used. Specific examples of the ultraviolet irradiation device include a rare gas excimer lamp that emits vacuum ultraviolet rays within a range of 100 to 230 nm. Since the excimer lamp has high light generation efficiency, it can be lit with low power. In addition, since light having a long wavelength that causes a temperature rise is not emitted and energy is emitted at a single wavelength in the ultraviolet region, the temperature rise of the irradiation object due to the irradiation light itself is suppressed.
 熱硬化型樹脂とは、加熱により硬化する樹脂であり、樹脂内には架橋剤が含まれていることがより好ましい。熱硬化型樹脂の加熱方法としては、従来公知の加熱方法を用いることができ、ヒータ加熱、オーブン加熱、赤外線加熱、レーザー加熱などを用いることができる。 The thermosetting resin is a resin that is cured by heating, and it is more preferable that a crosslinking agent is contained in the resin. As a heating method of the thermosetting resin, a conventionally known heating method can be used, and heater heating, oven heating, infrared heating, laser heating and the like can be used.
 また、密着層に用いる樹脂には、表面エネルギー調整剤を添加してもよい。表面エネルギー調整剤を添加することで、金属細線パターンと密着層との密着性、金属細線パターンの線幅等を調整できる。 Further, a surface energy adjusting agent may be added to the resin used for the adhesion layer. By adding the surface energy adjusting agent, the adhesion between the fine metal wire pattern and the adhesion layer, the line width of the fine metal wire pattern, and the like can be adjusted.
(酸化物粒子)
 密着層に添加することができる酸化物粒子としては、透明電極への適用が可能であれば特に限定されない。樹脂に酸化物粒子を添加することで、密着層の膜強度、伸縮性、屈折率等の物性を適宜調節でき、更には、金属細線パターンとの密着性も向上する。酸化物粒子としては、例えば、マグネシウム、アルミニウム、ケイ素、チタン、亜鉛、イットリウム、ジルコニウム、モリブデン、スズ、バリウム、タンタル等の金属の酸化物を挙げることができる。特に、酸化物粒子は、酸化チタン、酸化アルミニウム、酸化ケイ素又は酸化ジルコニウムのいずれかであることが好ましい。
(Oxide particles)
The oxide particles that can be added to the adhesion layer are not particularly limited as long as they can be applied to a transparent electrode. By adding oxide particles to the resin, physical properties such as film strength, stretchability, and refractive index of the adhesion layer can be adjusted as appropriate, and the adhesion with the fine metal wire pattern is also improved. Examples of the oxide particles include oxides of metals such as magnesium, aluminum, silicon, titanium, zinc, yttrium, zirconium, molybdenum, tin, barium, and tantalum. In particular, the oxide particles are preferably titanium oxide, aluminum oxide, silicon oxide, or zirconium oxide.
 酸化物粒子の平均粒子径は、5~300nmの範囲内であることが好ましく、特に5~100nmの範囲内であることが、透明電極に好適に用いることができるため好ましい。平均粒子径が上記の範囲内にある酸化物粒子を用いると密着層の表面に十分な凹凸を作ることができ、金属細線パターンとの密着性が向上する。平均粒子径が100nm以下であると表面が平滑になり、有機EL素子への影響が少ない。 The average particle diameter of the oxide particles is preferably in the range of 5 to 300 nm, and particularly preferably in the range of 5 to 100 nm because it can be suitably used for a transparent electrode. When oxide particles having an average particle diameter in the above range are used, sufficient unevenness can be formed on the surface of the adhesion layer, and adhesion with the metal fine wire pattern is improved. When the average particle size is 100 nm or less, the surface becomes smooth and the influence on the organic EL element is small.
 酸化物粒子の平均粒子径は、光散乱方式を用いた市販の測定装置を使用して簡便に計測することが可能である。具体的には、ゼータサイザー1000(マルバーン社製)を用いて、レーザードップラー法により、25℃、サンプル希釈液量1mLにて測定した値を用いることができる。
 酸化物粒子は、密着層中に10~70vol%の範囲内で含まれていることが好ましく、20~60vol%の範囲内で含まれていることがより好ましい。
The average particle diameter of the oxide particles can be easily measured using a commercially available measuring apparatus using a light scattering method. Specifically, a value measured at 25 ° C. and 1 mL of a sample dilution amount by a laser Doppler method using a Zetasizer 1000 (manufactured by Malvern) can be used.
The oxide particles are preferably contained in the adhesion layer within a range of 10 to 70 vol%, and more preferably within a range of 20 to 60 vol%.
(密着層の形成方法)
 密着層は、溶媒に樹脂、酸化物粒子、チオール基含有化合物等を分散することで密着層形成用分散液を作製し、この密着層形成用分散液を基板上に塗布することで形成する。
(Adhesion layer formation method)
The adhesion layer is formed by preparing a dispersion for forming an adhesion layer by dispersing resin, oxide particles, a thiol group-containing compound, and the like in a solvent, and applying this dispersion for forming an adhesion layer on a substrate.
 密着層形成用分散液に用いる分散溶媒には特に制限はないが、樹脂の析出とチオール基含有化合物等の凝集が起こらない溶媒を選択することが好ましい。密着層に酸化物粒子が含有されている場合には、分散性の観点から、樹脂、チオール基含有化合物等、及び酸化物粒子を混合した液を超音波処理やビーズミル処理といった方法で分散させ、フィルター等でろ過することが、塗布乾燥後の基板上に金属酸化物の凝集物が発生することを防ぐことができるため好ましい。 There are no particular restrictions on the dispersion solvent used in the dispersion for forming the adhesion layer, but it is preferable to select a solvent that does not cause precipitation of the resin and aggregation of the thiol group-containing compound. When oxide particles are contained in the adhesion layer, from the viewpoint of dispersibility, the liquid in which the resin, the thiol group-containing compound, and the oxide particles are mixed is dispersed by a method such as ultrasonic treatment or bead mill treatment. Filtration with a filter or the like is preferable because it can prevent metal oxide aggregates from being generated on the substrate after coating and drying.
 密着層の形成方法は、任意の適切な方法を選択することができ、例えば、塗工方法として、グラビア印刷法、フレキソ印刷法、オフセット印刷、スクリーン印刷法、インクジェット印刷等の各種印刷方法に加えて、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、カーテンコート法、スプレーコート法、ドクターコート法等の各種塗布法を用いることができる。
 密着層を所定のパターンに形成する場合には、グラビア印刷法、フレキソ印刷法、オフセット印刷、スクリーン印刷法、インクジェット印刷法を用いることが好ましい。
As the method for forming the adhesion layer, any appropriate method can be selected. For example, as the coating method, in addition to various printing methods such as gravure printing, flexographic printing, offset printing, screen printing, and inkjet printing. Various coating methods such as a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a curtain coating method, a spray coating method, and a doctor coating method can be used.
When the adhesion layer is formed in a predetermined pattern, it is preferable to use a gravure printing method, a flexographic printing method, an offset printing, a screen printing method, or an ink jet printing method.
 密着層は、基板上に上記塗工法を成膜した後、温風乾燥や赤外線乾燥等の公知の加熱乾燥法や、自然乾燥により乾燥して形成する。加熱乾燥を行う場合の温度は、使用する基板に応じて適宜選択することができるが、200℃以下の温度で行うことが好ましい。
 また、前述のように選択する樹脂によっては、紫外線やエキシマ光等の光エネルギーによる硬化や、基板へのダメージの少ない熱硬化等の処理を行ってもよく、中でもエキシマ光により硬化することが好ましい態様である。
The adhesion layer is formed by forming the coating method on a substrate and then drying it by a known heat drying method such as warm air drying or infrared drying, or by natural drying. The temperature at which heat drying is performed can be appropriately selected depending on the substrate to be used, but it is preferably performed at a temperature of 200 ° C. or lower.
Depending on the resin selected as described above, curing by light energy such as ultraviolet light or excimer light or heat curing with little damage to the substrate may be performed, and curing by excimer light is particularly preferable. It is an aspect.
 また、密着層形成用分散液に用いる分散溶媒として、水等のヒドロキシ基を有する極性溶媒や、沸点が200℃以下の低沸点溶媒を選択する場合は、乾燥方法として光源のフィラメント温度が1600~3000℃の範囲内にある赤外線ヒータを用いることが好ましい。ヒドロキシ基が赤外線ヒータから発せられる特定の波長に吸収を持つため、溶媒の乾燥が可能となる。一方、基板としてのポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)に対しては、赤外線ヒータから発せられる特定の波長の吸収が少ないため、基板に対する熱ダメージが少ない。 When a polar solvent having a hydroxy group such as water or a low boiling point solvent having a boiling point of 200 ° C. or lower is selected as a dispersion solvent used in the dispersion for forming the adhesion layer, the filament temperature of the light source is 1600 to It is preferable to use an infrared heater in the range of 3000 ° C. Since the hydroxy group has absorption at a specific wavelength emitted from the infrared heater, the solvent can be dried. On the other hand, since polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) as a substrate has little absorption of a specific wavelength emitted from an infrared heater, thermal damage to the substrate is small.
 ヒドロキシ基を有する極性溶媒としては、水(蒸留水、脱イオン水などの純水が好ましい)の他、メタノールやエタノール等のアルコール系溶媒、グリコール類、グリコールエーテル類、水とアルコールの混合溶媒等が挙げられる。
 グリコールエーテル類系有機溶媒としては、具体的には、例えば、エチルカルビトール、ブチルカルビトールなどが挙げられる。
 アルコール系有機溶媒としては、具体的には、例えば、上述のメタノール、エタノールの他、1-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、ジアセトンアルコール、ブトキシエタノールなどが挙げられる。
Examples of polar solvents having a hydroxy group include water (pure water such as distilled water and deionized water is preferable), alcohol solvents such as methanol and ethanol, glycols, glycol ethers, and mixed solvents of water and alcohol. Is mentioned.
Specific examples of the glycol ether organic solvent include ethyl carbitol, butyl carbitol, and the like.
Specific examples of the alcohol-based organic solvent include 1-propanol, 2-propanol, n-butanol, 2-butanol, diacetone alcohol, and butoxyethanol in addition to the above-described methanol and ethanol.
〈光学散乱層(8)〉
 本発明の有機EL素子においては、透明基板上に光学散乱層が設けられていることが好ましい。光学散乱層は、少なくとも樹脂と光散乱粒子とを含んで構成されている。
<Optical scattering layer (8)>
In the organic EL element of the present invention, an optical scattering layer is preferably provided on the transparent substrate. The optical scattering layer includes at least a resin and light scattering particles.
 光学散乱層には、アスペクト比が2以下の球状粒子が80%以上含まれていることが好ましい。
 また、光学散乱層の厚さは、光散乱粒子の粒子径よりも大きいことが好ましい。このように、光散乱粒子としてアスペクト比2以下の球状粒子が80%以上含まれ、光学散乱層の厚さが散乱粒子の粒子径よりも大きいことにより、光学散乱層において光散乱粒子を光学散乱層の透明基板側の領域に偏在させやすくなる。
The optical scattering layer preferably contains 80% or more of spherical particles having an aspect ratio of 2 or less.
The thickness of the optical scattering layer is preferably larger than the particle diameter of the light scattering particles. As described above, the light scattering particles include 80% or more of spherical particles having an aspect ratio of 2 or less, and the thickness of the optical scattering layer is larger than the particle diameter of the scattering particles, whereby the light scattering particles are optically scattered in the optical scattering layer. It becomes easy to make uneven distribution in the area | region of the transparent substrate side of a layer.
 光散乱粒子を透明基板側の領域に偏在させる方法としては、例えば、通常塗布する液濃度より希釈し、希釈分だけ厚く塗布する手段を用いることができる。そうすることにより、塗布直後から塗膜の乾燥が終了するまでの時間を調節することができ、光散乱粒子が透明基板側に沈み込みやすくなるため、光散乱粒子の透明基板側の光散乱粒子の存在率を調整することができる。 As a method of unevenly distributing the light scattering particles in the region on the transparent substrate side, for example, a means of diluting from the concentration of the liquid to be applied normally and applying it thicker than the dilution can be used. By doing so, it is possible to adjust the time from immediately after coating to the end of drying of the coating film, and the light scattering particles are likely to sink into the transparent substrate side, so that the light scattering particles on the transparent substrate side of the light scattering particles The abundance ratio can be adjusted.
 また、光散乱粒子の突出による光学散乱層の表面の凹凸の発生を抑制し、光学散乱層の表面の平坦性を高めることができる。光学散乱層は、表面粗さはRaが小さいほどよく、好ましい表面粗さとしては、算術平均粗さRaが10nm以下であり、より好ましくはRaが5nm以下である。
 光学散乱層の表面の平坦性を高めることにより、光学散乱層の直上に金属細線が形成されている場合にも、金属ナノ粒子含有組成物のパターンを焼成して金属細線を形成する際のアブレーションを防止することができる。これにより、光学散乱層上に平坦化層等の他の構成を設ける必要がなく、金属細線のパターン不良の発生による第1電極の信頼性の低下を抑制することができる。
In addition, it is possible to suppress the occurrence of irregularities on the surface of the optical scattering layer due to the protrusion of the light scattering particles, and to improve the flatness of the surface of the optical scattering layer. The surface roughness of the optical scattering layer is preferably as small as Ra, and as the preferable surface roughness, the arithmetic average roughness Ra is 10 nm or less, and more preferably Ra is 5 nm or less.
Ablation when forming a fine metal wire by firing the pattern of the metal nanoparticle-containing composition even when a fine metal wire is formed directly on the optical scattering layer by increasing the flatness of the surface of the optical scattering layer Can be prevented. Thereby, it is not necessary to provide another structure such as a planarizing layer on the optical scattering layer, and it is possible to suppress a decrease in the reliability of the first electrode due to the occurrence of a metal thin line pattern defect.
 なお、光散乱粒子の偏在とは、光学散乱層において、光学散乱層の樹脂部分のみの厚さ方向の中心から両側にわけたとき、第1電極側と透明基板側で、光散乱粒子の体積比率が異なっている状態のことをいう。本発明においては、光学散乱層における厚さ方向の中心より透明基板側の領域の光散乱粒子の粒子存在率が、厚さ方向の中心より第1電極側の領域の光散乱粒子の粒子存在率よりも大きいことが好ましい態様である。
 透明基板側の粒子存在率の算出法は、光学散乱層の断面において、厚さ方向の中心より透明基板側の領域と第1電極側の領域との各々の領域において、そこから任意の5か所を透過型電子顕微鏡(TEM)で撮影し、光学散乱層の断面積と粒子の断面積から算出することができる。
The uneven distribution of the light scattering particles means that the volume of the light scattering particles on the first electrode side and the transparent substrate side in the optical scattering layer is divided into both sides from the center in the thickness direction of only the resin portion of the optical scattering layer. This means that the ratio is different. In the present invention, the particle abundance ratio of the light scattering particles in the region on the transparent substrate side from the center in the thickness direction in the optical scattering layer is the particle abundance ratio of the light scattering particles in the region on the first electrode side from the center in the thickness direction. It is a preferable aspect that it is larger than.
There are five methods for calculating the particle abundance ratio on the transparent substrate side in each of the region on the transparent substrate side and the region on the first electrode side from the center in the thickness direction in the cross section of the optical scattering layer. The point can be photographed with a transmission electron microscope (TEM) and calculated from the cross-sectional area of the optical scattering layer and the cross-sectional area of the particles.
 光学散乱層の透明基板側の粒子存在率は、50%を超えることが好ましく、65%以上であることがより好ましく、70%以上であることが更に好ましい。光学散乱層の透明基板側の粒子存在率が高くなるほど、光取り出しが向上しやすく、アブレーションも起こりにくくなる。 The particle abundance ratio on the transparent substrate side of the optical scattering layer is preferably more than 50%, more preferably 65% or more, and still more preferably 70% or more. The higher the particle abundance ratio of the optical scattering layer on the transparent substrate side, the easier the light extraction is improved and the less ablation occurs.
 また、光学散乱層において、光散乱粒子と樹脂との体積比率(以下、PB比ともいう。)は、5~40vol%の範囲内であることが好ましい。体積比率(PB比)は、光学散乱層の全体積に対する光散乱粒子の体積の比率(光散乱粒子の体積/(光散乱粒子の体積+樹脂の体積))である。PB比を5vol%以上とすることにより、光学散乱層における光取り出しが向上しやすい。PB比は、より好ましくは10vol%以上であり、更に好ましくは20vol%以上である。また、PB比が40vol%以下だと、透明基板側の粒子存在率を大きくしやすくなり、光学散乱層の表面の平坦性が向上しやすくなる。 In the optical scattering layer, the volume ratio between the light scattering particles and the resin (hereinafter also referred to as PB ratio) is preferably in the range of 5 to 40 vol%. The volume ratio (PB ratio) is the ratio of the volume of light scattering particles to the total volume of the optical scattering layer (volume of light scattering particles / (volume of light scattering particles + volume of resin)). By setting the PB ratio to 5 vol% or more, light extraction in the optical scattering layer is easily improved. The PB ratio is more preferably 10 vol% or more, and still more preferably 20 vol% or more. On the other hand, when the PB ratio is 40 vol% or less, the particle abundance ratio on the transparent substrate side is easily increased, and the flatness of the surface of the optical scattering layer is easily improved.
 以下、樹脂及び光散乱粒子の屈折率は、633nmの波長での測定値である。
 樹脂は、光波長633nmにおける屈折率nbが1.50以上2.00未満であることが好ましい。樹脂の屈折率nbとは、単独の素材で形成されている場合は、単独の素材の屈折率であり、混合系の場合は、各々の素材固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率である。
Hereinafter, the refractive indexes of the resin and the light scattering particles are measured values at a wavelength of 633 nm.
The resin preferably has a refractive index nb at a light wavelength of 633 nm of 1.50 or more and less than 2.00. The refractive index nb of the resin is the refractive index of a single material when it is formed of a single material. In the case of a mixed system, the refractive index nb is obtained by multiplying the refractive index specific to each material by the mixing ratio. The calculated refractive index.
 また、光学散乱層中の光散乱粒子の役割として、導波光の散乱機能が挙げられる。導波光の散乱機能の向上には、光散乱粒子による光散乱性を向上させる必要がある。光散乱性を向上させるためには、光散乱粒子と樹脂との屈折率差を大きくする、層厚を厚くする、粒子密度を大きくする等の方法が考えられる。この中で最も他の性能への悪影響が小さい方法が、光散乱粒子と樹脂との屈折率差を大きくすることである。 Also, the role of the light scattering particles in the optical scattering layer includes a guided light scattering function. In order to improve the guided light scattering function, it is necessary to improve the light scattering property of the light scattering particles. In order to improve the light scattering property, methods such as increasing the difference in refractive index between the light scattering particles and the resin, increasing the layer thickness, and increasing the particle density are conceivable. Among them, the method having the least adverse effect on the performance is to increase the difference in refractive index between the light scattering particles and the resin.
 樹脂の屈折率nbと、含有される光散乱粒子の屈折率npとの屈折率差|nb-np|は、0.2~1.0の範囲内であることが好ましくい。特に好ましくは0.3以上である。樹脂と光散乱粒子との屈折率差|nb-np|が0.2以上であれば、樹脂と光散乱粒子との界面で光散乱効果が発生する。屈折率差|nb-np|が大きいほど、界面での屈折が大きくなり、光散乱効果が向上する。 The refractive index difference | nb−np | between the refractive index nb of the resin and the refractive index np of the light scattering particles contained is preferably in the range of 0.2 to 1.0. Especially preferably, it is 0.3 or more. If the refractive index difference | nb−np | between the resin and the light scattering particles is 0.2 or more, a light scattering effect occurs at the interface between the resin and the light scattering particles. The greater the refractive index difference | nb−np |, the greater the refraction at the interface and the more the light scattering effect.
 屈折率差|nb-np|を発生させるためには、光散乱粒子の屈折率npを樹脂の屈折率nbよりも小さくするか、又は、光散乱粒子の屈折率npを樹脂の屈折率nbよりも大きくする。なお、光散乱粒子の屈折率npとは、単独の素材で形成されている場合は、単独の素材の屈折率であり、混合系の場合は、各々の素材固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率である。 In order to generate the refractive index difference | nb−np |, the refractive index np of the light scattering particles is made smaller than the refractive index nb of the resin, or the refractive index np of the light scattering particles is made smaller than the refractive index nb of the resin. Also make it bigger. The refractive index np of the light scattering particles is the refractive index of a single material when formed of a single material, and in the case of a mixed system, the refractive index peculiar to each material is multiplied by the mixing ratio. It is the calculated refractive index calculated by the combined value.
 光散乱粒子の屈折率npが樹脂の屈折率nbよりも小さい場合には、光散乱粒子として、屈折率npが1.5未満の低屈折率粒子を用いることが好ましい。そして、樹脂として、屈折率nbが1.6以上の高屈折率樹脂を用いることが好ましい。また、光散乱粒子の屈折率npが樹脂の屈折率nbよりも大きい場合には、光散乱粒子として、屈折率npが1.7~3.0の範囲内である高屈折率粒子を用いることが好ましい。そして、樹脂として、屈折率nbが光散乱粒子の屈折率npより0.2以上小さい屈折率の樹脂を用いることが好ましい。 When the refractive index np of the light scattering particles is smaller than the refractive index nb of the resin, it is preferable to use low refractive index particles having a refractive index np of less than 1.5 as the light scattering particles. And it is preferable to use high refractive index resin whose refractive index nb is 1.6 or more as resin. When the refractive index np of the light scattering particle is larger than the refractive index nb of the resin, a high refractive index particle having a refractive index np in the range of 1.7 to 3.0 is used as the light scattering particle. Is preferred. As the resin, it is preferable to use a resin having a refractive index nb that is smaller by 0.2 or more than the refractive index np of the light scattering particles.
 光学散乱層は、上記のように、樹脂と光散乱粒子との屈折率の差により光を拡散させる作用を有する。このため、光散乱粒子は、他の層への悪影響が少なく、光を散乱する特性が高いことが求められる。
 光学散乱層の層厚は、散乱を生じるための光路長を確保するためにある程度厚い必要があるが、一方で吸収によるエネルギーロスを生じない程度に薄い必要がある。このため、光学散乱層の厚さは、250~1000nmの範囲内であることが好ましい。
As described above, the optical scattering layer has an action of diffusing light by the difference in refractive index between the resin and the light scattering particles. For this reason, the light-scattering particles are required to have a low adverse effect on other layers and have high light-scattering characteristics.
The layer thickness of the optical scattering layer needs to be thick to some extent in order to ensure the optical path length for causing scattering, but it needs to be thin enough not to cause energy loss due to absorption. Therefore, the thickness of the optical scattering layer is preferably in the range of 250 to 1000 nm.
 なお、光学散乱層における散乱とは、光学散乱層の単層でのヘイズ値(全光線透過率に対する散乱透過率の割合)が20%以上を示す状態を表す。光学散乱層の単層でのヘイズ値は、より好ましくは25%以上、特に好ましくは30%以上である。ヘイズ値が20%以上であれば、光散乱性(光取り出し効率)を向上させることができる。 Note that the scattering in the optical scattering layer represents a state in which the haze value (ratio of the scattering transmittance to the total light transmittance) in the single layer of the optical scattering layer is 20% or more. The haze value in the single layer of the optical scattering layer is more preferably 25% or more, and particularly preferably 30% or more. If the haze value is 20% or more, the light scattering property (light extraction efficiency) can be improved.
(光散乱粒子)
 上述したように、光学散乱層には光散乱粒子として、アスペクト比が2以下の球状粒子が80%以上含まれていることが好ましい。このアスペクト比が2以下の球状粒子は、平均粒子径が200~500nmの範囲内であることが好ましく、200~450nmの範囲内であることがより好ましく、250nm以上400nm未満であることが更に好ましい。
 ここでいうアスペクト比とは、光散乱粒子の長軸長と短軸長の比のことである。例えば、走査型電子顕微鏡(SEM)でランダムに光散乱粒子を撮影して画像を得て、その画像から散乱粒子の長軸長と短軸長を求めて計算することができる。粒子を倍率10万倍で撮影し、その画像から粒子100個分のアスペクト比を確認し、比率を求める。
(Light scattering particles)
As described above, the optical scattering layer preferably contains 80% or more of spherical particles having an aspect ratio of 2 or less as light scattering particles. The spherical particles having an aspect ratio of 2 or less preferably have an average particle diameter in the range of 200 to 500 nm, more preferably in the range of 200 to 450 nm, and still more preferably in the range of 250 nm to less than 400 nm. .
The aspect ratio here is the ratio of the major axis length to the minor axis length of the light scattering particles. For example, light scattering particles can be taken randomly with a scanning electron microscope (SEM) to obtain an image, and the major axis length and minor axis length of the scattering particles can be obtained from the image and calculated. The particles are photographed at a magnification of 100,000, the aspect ratio of 100 particles is confirmed from the image, and the ratio is obtained.
 光学散乱層においては、例えば、光散乱粒子の平均粒子径やアスペクト比を調整することにより、光散乱性を向上させることができる。具体的には、可視光域のMie散乱を生じさせる領域以上の粒子を用いることが好ましい。一方、光散乱粒子を透明基板側に偏在させ、光学散乱層の表面を平坦化するためには、平均粒子径を光学散乱層の厚さよりも小さくする必要がある。
 光散乱粒子の平均粒子径は、電子顕微鏡写真の画像処理により測定することができる。粒子を倍率10万倍で撮影し、その画像から粒子の長辺の長さを測定する。粒子100個分の平均をとったものを粒子の平均粒子径とする。
In the optical scattering layer, for example, the light scattering property can be improved by adjusting the average particle diameter and the aspect ratio of the light scattering particles. Specifically, it is preferable to use particles that are larger than the region that causes Mie scattering in the visible light region. On the other hand, in order to make light scattering particles unevenly distributed on the transparent substrate side and flatten the surface of the optical scattering layer, it is necessary to make the average particle diameter smaller than the thickness of the optical scattering layer.
The average particle diameter of the light scattering particles can be measured by image processing of an electron micrograph. The particles are photographed at a magnification of 100,000 times, and the length of the long side of the particles is measured from the image. The average of 100 particles is taken as the average particle diameter.
 光散乱粒子としては、特に制限はなく、上述の低屈折率粒子及び高屈折率粒子のいずれにおいても、目的に応じて適宜選択することができる。例えば、低屈折率粒子、高屈折率粒子として、有機微粒子や、無機微粒子を用いることができる。 The light scattering particles are not particularly limited, and any of the above-described low refractive index particles and high refractive index particles can be appropriately selected according to the purpose. For example, organic fine particles or inorganic fine particles can be used as the low refractive index particles and the high refractive index particles.
 光散乱粒子の屈折率npが樹脂の屈折率nbよりも小さい構成の光学散乱層においては、低屈折率粒子として、例えば、アクリル樹脂(1.49)、PTFE(1.35)、PFA(1.35)、SiO(1.46)、フッ化マグネシウム(1.38)、フッ化リチウム(1.392)、フッ化カルシウム(1.399)、シリコーンゴム(1.40)、フッ化ビニリデン(1.42)、シリコーン樹脂(1.43)、ポリプロピレン(1.48)、ウレタン(1.49)が挙げられる。なお、括弧内は各材料からなる粒子の代表的な屈折率を示している。 In the optical scattering layer having a configuration in which the refractive index np of the light scattering particles is smaller than the refractive index nb of the resin, as the low refractive index particles, for example, acrylic resin (1.49), PTFE (1.35), PFA (1 .35), SiO 2 (1.46), magnesium fluoride (1.38), lithium fluoride (1.392), calcium fluoride (1.399), silicone rubber (1.40), vinylidene fluoride (1.42), silicone resin (1.43), polypropylene (1.48), urethane (1.49). The parentheses indicate typical refractive indexes of particles made of each material.
 光散乱粒子の屈折率npが樹脂の屈折率nbよりも大きい構成の光学散乱層においては、高屈折率粒子として、国際公開第2009/014707号や米国特許第6608439号明細書等に記載の量子ドットも好適に用いることができる。中でも高屈折率を有する無機微粒子であることが好ましい。 In the optical scattering layer having a configuration in which the refractive index np of the light scattering particles is larger than the refractive index nb of the resin, the quantum described in International Publication No. 2009/014707, US Pat. No. 6,608,439, etc. is used as the high refractive index particles. Dots can also be suitably used. Among these, inorganic fine particles having a high refractive index are preferable.
 また、高屈折率を有する有機微粒子としては、例えば、ポリメチルメタクリレートビーズ、アクリル-スチレン共重合体ビーズ、メラミンビーズ、ポリカーボネートビーズ、スチレンビーズ、架橋ポリスチレンビーズ、ポリ塩化ビニルビーズ、ベンゾグアナミン-メラミンホルムアルデヒドビーズ等が挙げられる。 Examples of organic fine particles having a high refractive index include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, cross-linked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads. Etc.
 高屈折率を有する無機微粒子としては、例えば、密着層で挙げたものと同様の酸化物粒子を挙げることができる。
 また、光散乱粒子は、密着層における酸化物粒子と同様に、分散液とした場合の分散性や安定性向上の観点から、表面処理を施して用いるか、あるいは、表面処理を施さずに用いるかを選択することができる。
Examples of the inorganic fine particles having a high refractive index include oxide particles similar to those exemplified in the adhesion layer.
In addition, light scattering particles are used with or without surface treatment from the viewpoint of improving dispersibility and stability when used as a dispersion, similar to oxide particles in an adhesion layer. Can be selected.
 無機酸化物粒子が、表面処理材で表面被覆処理されている場合、その被覆量(一般的に、この被覆量は、粒子の質量に対する当該粒子の表面に用いた表面処理材の質量割合で示される。)は、0.01~99質量%の範囲内であることが好ましい。当該範囲内とすることで、表面処理による分散性や安定性の向上効果を十分に得ることができる。 When the inorganic oxide particles are surface-coated with a surface treatment material, the coating amount (in general, this coating amount is indicated by the mass ratio of the surface treatment material used on the surface of the particle to the mass of the particles). Is preferably in the range of 0.01 to 99% by mass. By making it in the said range, the improvement effect of the dispersibility and stability by surface treatment can fully be acquired.
(樹脂)
 光学散乱層の樹脂としては、光散乱粒子の屈折率npが樹脂の屈折率nbよりも小さい構成、及び、光散乱粒子の屈折率npが樹脂の屈折率nbよりも大きい構成のいずれにおいても、公知の樹脂を特に制限なく使用できる。また、樹脂は、複数種類を混合して使用することもできる。
(resin)
As the resin of the optical scattering layer, both the configuration in which the refractive index np of the light scattering particles is smaller than the refractive index nb of the resin and the configuration in which the refractive index np of the light scattering particles is larger than the refractive index nb of the resin, A known resin can be used without particular limitation. Further, a plurality of types of resins can be mixed and used.
 光学散乱層において、光散乱粒子の屈折率npが樹脂の屈折率nbよりも小さい構成に適用する高屈折率樹脂としては、屈折率nbが1.6以上の樹脂を用いることが好ましい。例えば、リオデュラスTYZシリーズ、リオデュラスTYTシリーズ(東洋インキ社製)、ZrO微粒子入り樹脂塗料(Pixelligent Technologies社製)、URシリーズ(日産化学社製)、オルガチックスシリーズ(マツモトファインケミカル社製)、PIUVOシリーズ(ケーエスエム社製)、アクリル系樹脂シリーズ、エポキシ系樹脂シリーズ(NTTアドバンステクノロジ社製)、ヒタロイドシリーズ(日立化成社製)等を用いることができる。 In the optical scattering layer, it is preferable to use a resin having a refractive index nb of 1.6 or more as a high refractive index resin applied to a configuration in which the refractive index np of the light scattering particles is smaller than the refractive index nb of the resin. For example, Rio Duras TYZ series, Rio Duras TYT series (manufactured by Toyo Ink Co., Ltd.), resin coating containing ZrO 2 fine particles (manufactured by Pixellient Technologies), UR series (manufactured by Nissan Chemical Co., Ltd.), Olga-Tix series (manufactured by Matsumoto Fine Chemical Co., Ltd.), PIVVO series (Manufactured by KSM), acrylic resin series, epoxy resin series (manufactured by NTT Advanced Technology), hitaloid series (manufactured by Hitachi Chemical Co., Ltd.) and the like can be used.
 また、光散乱粒子の屈折率npが樹脂の屈折率nbよりも大きい構成の光学散乱層においては、樹脂としては、屈折率nbが散乱粒子の屈折率npより0.2以上小さい屈折率の樹脂とし、かつ、できるだけ高屈折率の樹脂を用いるのがよく、前述の高屈折率樹脂を用いることができる。
 これは、低屈折樹脂の場合、第1電極側から来た光が侵入角度によっては低屈折率樹脂内に進むことができず、反射されてしまうためである。
Further, in the optical scattering layer having a configuration in which the refractive index np of the light scattering particles is larger than the refractive index nb of the resin, the resin has a refractive index of 0.2 or smaller than the refractive index np of the scattering particles. In addition, it is preferable to use a resin having a high refractive index as much as possible, and the above-described high refractive index resin can be used.
This is because in the case of a low refractive resin, the light coming from the first electrode side cannot be propagated into the low refractive index resin depending on the penetration angle and is reflected.
 また、光学散乱層の樹脂としては、密着層で挙げたものと同様の樹脂を用いることもできる。 Also, as the resin for the optical scattering layer, the same resins as those mentioned for the adhesion layer can be used.
〈ガスバリアー層(6)〉
 本発明の有機EL素子においては、本発明に係る透明基板上に、ガスバリアー層を設ける構成であることが好ましい。
 ガスバリアー層を形成した透明基板は、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、湿度90±2%RHにおける水蒸気透過度が、1×10-3g/(m・24h)以下であることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)(1atmは、1.01325×10Paである。)以下であって、温度25±0.5℃、湿度90±2%RHにおける水蒸気透過度が、1×10-3g/(m・24h)以下であることが好ましい。
<Gas barrier layer (6)>
The organic EL element of the present invention preferably has a configuration in which a gas barrier layer is provided on the transparent substrate according to the present invention.
The transparent substrate on which the gas barrier layer is formed has a water vapor transmission rate of 1 × 10 −3 g / g at a temperature of 25 ± 0.5 ° C. and a humidity of 90 ± 2% RH measured by a method according to JIS K 7129-1992. (M 2 · 24h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 × 10 −3 ml / (m 2 · 24h · atm) ( 1 atm is 1.01325 × 10 5 Pa.) And the water vapor permeability at a temperature of 25 ± 0.5 ° C. and a humidity of 90 ± 2% RH is 1 × 10 −3 g / (m 2 · 24h) or less.
 ガスバリアー層を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素などを用いることができる。
 さらに、ガスバリアー層の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
As a material for forming the gas barrier layer, any material may be used as long as it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
Furthermore, in order to improve the brittleness of the gas barrier layer, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 ガスバリアー層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法及びコーティング法などを用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものも好ましい。また、ポリシラザン含有液を湿式塗布方式により塗布及び乾燥し、形成された塗布膜に波長200nm以下の真空紫外光(VUV光)を照射して、形成した塗布膜に改質処理を施して、ガスバリアー層を形成する方法も好ましい。 The method for forming the gas barrier layer is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is also preferable. In addition, the polysilazane-containing liquid is applied and dried by a wet coating method, and the formed coating film is irradiated with vacuum ultraviolet light (VUV light) having a wavelength of 200 nm or less, and the formed coating film is subjected to a modification treatment, and gas A method of forming a barrier layer is also preferable.
 ガスバリアー層の厚さは、1~500nmの範囲内であることが好ましく、より好ましくは10~300nmの範囲内である。ガスバリアー層の厚さが1nm以上であれば、所望のガスバリアー性能を発揮することができ、500nm以下であれば、緻密な酸窒化ケイ素膜でのクラックの発生等の膜質劣化を防止することができる。 The thickness of the gas barrier layer is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm. If the thickness of the gas barrier layer is 1 nm or more, a desired gas barrier performance can be exhibited, and if it is 500 nm or less, film quality deterioration such as generation of cracks in a dense silicon oxynitride film can be prevented. Can do.
〈粒子含有層〉
 粒子含有層は、透明基板において、第1電極が形成される面(表面)と反対側の面(裏面)に設けられる。第1電極を重ねた際や、長尺の第1電極をロール状に巻回した際のように、第1電極同士が直接接触する状態となった場合において、第1電極が粒子含有層を有することにより、帯電や、第1電極同士の固着等を抑制することができる。
<Particle-containing layer>
The particle-containing layer is provided on a surface (back surface) opposite to the surface (front surface) on which the first electrode is formed in the transparent substrate. In the case where the first electrodes are in direct contact with each other, such as when the first electrodes are stacked or the long first electrode is wound in a roll shape, the first electrode has a particle-containing layer. By having it, charging, sticking between the first electrodes, and the like can be suppressed.
 粒子含有層は、粒子とバインダー樹脂とから構成される。粒子含有層は、バインダー樹脂100質量部に対して、粒子を1~900質量部の範囲内で含有することが好ましい。 The particle-containing layer is composed of particles and a binder resin. The particle-containing layer preferably contains particles in the range of 1 to 900 parts by mass with respect to 100 parts by mass of the binder resin.
(粒子)
 粒子含有層を構成する粒子は、無機微粒子、無機酸化物粒子、導電性ポリマー粒子、導電性カーボン微粒子等が好ましい。中でも、ZnO、TiO、SnO、Al、In、MgO、BaO、MoO、V等の酸化物粒子、及び、SiO等の無機酸化物粒子が好ましい。特に、SnO、SiOが好ましい。
(particle)
The particles constituting the particle-containing layer are preferably inorganic fine particles, inorganic oxide particles, conductive polymer particles, conductive carbon fine particles and the like. Among these, oxide particles such as ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , MgO, BaO, MoO 2 , V 2 O 5 , and inorganic oxide particles such as SiO 2 are preferable. In particular, SnO 2 and SiO 2 are preferable.
(バインダー樹脂)
 粒子含有層を構成するバインダー樹脂としては、例えば、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートフタレート、セルロースナイトレート等のセルロース誘導体、ポリ酢酸ビニル、ポリスチレン、ポリカーボネート、ポリブチレンテレフタレート、コポリブチレン/テレ/イソフタレート等のポリエステル、ポリビニルアルコール、ポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール、ポリビニルベンザール等のポリビニルアルコール誘導体、ノルボルネン化合物を含有するノルボルネン系ポリマー、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリプロピルチルメタクリレート、ポリブチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂又はアクリル樹脂とその他樹脂との共重合体を用いることができるが、特にこれら例示する樹脂材料に限定されるものではない。この中では、セルロース誘導体、アクリル樹脂が好ましく、アクリル樹脂が最も好ましく用いられる。
(Binder resin)
Examples of the binder resin constituting the particle-containing layer include cellulose derivatives such as cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate, polyvinyl acetate, polystyrene, polycarbonate, polybutylene terephthalate, and copolybutylene. / Polyesters such as tele / isophthalate, polyvinyl alcohol, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, polyvinyl alcohol derivatives such as polyvinyl benzal, norbornene-based polymers containing norbornene compounds, polymethyl methacrylate, polyethyl methacrylate, polypropylyl methacrylate , Polybutyl methacrylate, polymethyl acrylate, etc. It can be used a copolymer of acrylic resin or an acrylic resin and other resins, but it is not particularly limited to these exemplified a resin material. Among these, cellulose derivatives and acrylic resins are preferable, and acrylic resins are most preferably used.
 バインダー樹脂としては、重量平均分子量(Mw)が40万以上で、ガラス転移温度が80~110℃の範囲内にある上記熱可塑性樹脂が、光学特性及び形成する粒子含有層の品質の点で好ましい。 As the binder resin, the above thermoplastic resin having a weight average molecular weight (Mw) of 400,000 or more and a glass transition temperature in the range of 80 to 110 ° C. is preferable in terms of optical properties and the quality of the particle-containing layer to be formed. .
 ガラス転移温度は、JIS K 7121に記載の方法で求めることができる。ここで使用するバインダー樹脂は、粒子含有層を構成する全樹脂質量の60質量%以上、更に好ましくは80質量%以上であり、必要に応じて活性線硬化性樹脂、あるいは熱硬化樹脂を適用することもできる。 The glass transition temperature can be determined by the method described in JIS K7121. The binder resin used here is 60% by mass or more, more preferably 80% by mass or more of the total resin mass constituting the particle-containing layer, and an actinic radiation curable resin or a thermosetting resin is applied as necessary. You can also.
(粒子含有層の形成方法)
 粒子含有層の形成は、第1電極、密着層及びガスバリアー層の形成前に行うことが好ましい。
 粒子含有層の形成では、上述の粒子とバインダー樹脂とを、適当な有機溶剤に溶解して、溶液状態の粒子含有層形成用塗布液を調製し、これら湿式塗布方式により、透明基板上に塗布及び乾燥して、粒子含有層を形成する。
(Method for forming particle-containing layer)
The formation of the particle-containing layer is preferably performed before the formation of the first electrode, the adhesion layer, and the gas barrier layer.
In the formation of the particle-containing layer, the above-mentioned particles and binder resin are dissolved in an appropriate organic solvent to prepare a coating solution for forming a particle-containing layer in a solution state, and applied onto a transparent substrate by these wet coating methods. And drying to form a particle-containing layer.
 粒子含有層形成用塗布液の調製に用いる有機溶剤としては、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類などを適宜混合して使用することができるが、有機溶剤は、特にこれらに限定されるものではない。 As the organic solvent used for preparing the coating solution for forming the particle-containing layer, hydrocarbons, alcohols, ketones, esters, glycol ethers and the like can be appropriately mixed and used. It is not limited to these.
 炭化水素類としては、例えば、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等が挙げられ、アルコール類としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール、2-ブタノール、tert-ブタノール、ペンタノール、2-メチル-2-ブタノール、シクロヘキサノール等が挙げられ、ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられ、エステル類としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、乳酸エチル、乳酸メチル等が挙げられ、グリコールエーテル(炭素数1~4)類としては、例えば、メチルセルソルブ、エチルセルソルブ、プロピレングリコールモノメチルエーテル(略称:PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ(炭素数1~4)アルキルエーテルエステル類としては、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、その他の溶媒として、例えば、N-メチルピロリドンなどが挙げられる。特にこれらに限定されるものではないが、これらを適宜混合した溶媒も好ましく用いられる。 Examples of the hydrocarbons include benzene, toluene, xylene, hexane, and cyclohexane. Examples of the alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, 2-butanol, tert. -Butanol, pentanol, 2-methyl-2-butanol, cyclohexanol and the like. Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like. Examples of esters include formic acid. Examples thereof include methyl, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, ethyl lactate, and methyl lactate. Examples of glycol ethers (1 to 4 carbon atoms) include methyl cellosolve and ethyl cellosol. , Propylene glycol monomethyl ether (abbreviation: PGME), propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, propylene glycol mono (1 to 4 carbon atoms) alkyl ether ester Examples of the solvent include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and examples of other solvents include N-methylpyrrolidone. Although not particularly limited to these, a solvent in which these are appropriately mixed is also preferably used.
 粒子含有層形成用塗布液を透明基板上に塗布する方法として、ドクターコート、エクストルージョンコート、スライドコート、ロールコート、グラビアコート、ワイヤーバーコート、リバースコート、カーテンコート、押し出しコート、あるいは米国特許第2681294号明細書に記載のホッパーを使用するエクストルージョンコート方法等が挙げられる。これら湿式塗布方法を適宜用いることにより、透明基板上に、乾燥膜厚が0.1~20μmの範囲内、好ましくは0.2~5μmの範囲内の粒子含有層を形成することができる。 As a method of applying the particle-containing layer forming coating solution onto the transparent substrate, doctor coating, extrusion coating, slide coating, roll coating, gravure coating, wire bar coating, reverse coating, curtain coating, extrusion coating, or US Patent No. Examples include an extrusion coating method using a hopper described in the specification of US Pat. No. 2,681,294. By appropriately using these wet coating methods, a particle-containing layer having a dry film thickness in the range of 0.1 to 20 μm, preferably in the range of 0.2 to 5 μm, can be formed on the transparent substrate.
〈封止部材〉
 有機EL素子は、有機材料等を用いて構成された有機機能層の劣化を防止することを目的として、図示しない封止部材で封止されていてもよい。封止部材は、有機EL素子の上面を覆う板状(フィルム状)の部材であって、接着部によって基板側に固定される。また、封止部材は、封止膜であってもよい。このような封止部材は、有機EL素子の電極端子部分を露出させ、少なくとも有機機能層を覆う状態で設けられている。また、封止部材に電極を設け、有機EL素子の電極端子部分と、封止部材の電極とを導通させる構成でもよい。
<Sealing member>
The organic EL element may be sealed with a sealing member (not shown) for the purpose of preventing deterioration of an organic functional layer formed using an organic material or the like. The sealing member is a plate-like (film-like) member that covers the upper surface of the organic EL element, and is fixed to the substrate side by an adhesive portion. The sealing member may be a sealing film. Such a sealing member is provided in a state in which the electrode terminal portion of the organic EL element is exposed and at least the organic functional layer is covered. Moreover, the structure which provides an electrode in a sealing member and makes the electrode terminal part of an organic EL element and the electrode of a sealing member electrically connect may be sufficient.
 板状(フィルム状)の封止部材としては、具体的には、ガラス基板、ポリマー基板、金属基板等が挙げられ、これらの基板を更に薄型のフィルム状にして用いてもよい。ガラス基板としては、特に、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属基板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
 特に、素子を薄膜化できるということから、封止部材としてポリマー基板や金属基板を薄型のフィルム状にして使用することが好ましい。
 また、基板材料は、凹板状に加工して封止部材として用いてもよい。この場合、上述した基板部材に対して、サンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。
Specific examples of the plate-like (film-like) sealing member include a glass substrate, a polymer substrate, a metal substrate, and the like, and these substrates may be used in the form of a thinner film. Examples of the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal substrate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
In particular, since the element can be thinned, it is preferable to use a polymer substrate or a metal substrate as a thin film as the sealing member.
The substrate material may be processed into a concave plate shape and used as a sealing member. In this case, the substrate member described above is subjected to processing such as sandblasting and chemical etching to form a concave shape.
 さらに、フィルム状としたポリマー基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、(90±2)%RH)が、1×10-3g/(m・24h)以下であることが好ましい。 Further, the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 mL / (m 2 · 24 h · atm) or less, and conforms to JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., (90 ± 2)% RH) measured by a compliant method is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.
 また、封止部材を基板側に固定する接着部は、有機EL素子を封止するためのシール剤として用いられる。接着部としては、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。 Moreover, the adhesion part which fixes a sealing member to the board | substrate side is used as a sealing agent for sealing an organic EL element. Specific examples of the adhesive part include photo-curing and thermosetting adhesives having a reactive vinyl group of acrylic acid oligomers and methacrylic acid oligomers, and moisture-curing adhesives such as 2-cyanoacrylates. Can be mentioned.
 また、接着部としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 In addition, examples of the bonding portion include epoxy-based heat and chemical curing types (two-component mixing). Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 封止部材と透明電極との接着部分への接着部の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 なお、有機EL素子を構成する有機材料は、熱処理により劣化する場合がある。このため、接着部は、室温(25℃)から80℃までに接着硬化できるものが好ましい。また、接着部中に乾燥剤を分散させておいてもよい。
Application | coating of the adhesion part to the adhesion part of a sealing member and a transparent electrode may use commercially available dispenser, and may print like screen printing.
In addition, the organic material which comprises an organic EL element may deteriorate with heat processing. For this reason, the adhesive part is preferably one that can be adhesively cured from room temperature (25 ° C.) to 80 ° C. Moreover, you may disperse | distribute a desiccant in an adhesion part.
 また、板状の封止部材と第1電極と間に隙間が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコーンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In addition, when a gap is formed between the plate-shaped sealing member and the first electrode, in this gap, in the gas phase and the liquid phase, an inert gas such as nitrogen or argon, a fluorinated hydrocarbon, a silicone oil It is preferable to inject an inert liquid such as A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 一方、封止部材として封止膜を用いる場合、有機EL素子における有機機能層を完全に覆い、かつ有機EL素子の電極端子部分を露出させる状態で封止膜が設けられる。 On the other hand, when a sealing film is used as the sealing member, the sealing film is provided in a state that completely covers the organic functional layer in the organic EL element and exposes the electrode terminal portion of the organic EL element.
 このような封止膜は、無機材料や有機材料を用いて構成される。特に、水分や酸素等、有機EL素子における有機機能層の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成される。このような材料としては、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機材料が用いられる。さらに、封止膜の脆弱性を改良するために、これら無機材料からなる膜とともに、有機材料からなる膜を用いて積層構造としてもよい。 Such a sealing film is composed of an inorganic material or an organic material. In particular, it is made of a material having a function of suppressing intrusion of a substance that causes deterioration of the organic functional layer in the organic EL element such as moisture and oxygen. As such a material, for example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used. Furthermore, in order to improve the brittleness of the sealing film, a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
 これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 The method for forming these films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
〈保護部材〉
 また、有機EL素子を機械的に保護するために、保護膜又は保護板等の保護部材(図示略)を設けてもよい。保護部材は、有機EL素子及び封止部材を、第1電極とで挟む位置に配置される。特に封止部材が封止膜である場合には、有機EL素子に対する機械的な保護が十分ではないため、このような保護部材を設けることが好ましい。
<Protective member>
Further, a protective member (not shown) such as a protective film or a protective plate may be provided to mechanically protect the organic EL element. The protective member is disposed at a position where the organic EL element and the sealing member are sandwiched between the first electrode. In particular, when the sealing member is a sealing film, mechanical protection for the organic EL element is not sufficient, and thus it is preferable to provide such a protective member.
 以上のような保護部材は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち、特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。 For the protective member as described above, a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, or a polymer material film or a metal material film is applied. Among these, it is particularly preferable to use a polymer film because it is lightweight and thin.
〈有機EL素子の製造方法〉
 次に、有機EL素子の製造方法の一例を説明する。
 まず、上述の製造方法により第1電極を作製する。
 次に、第1電極の導電層上に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の順に成膜し、有機機能層を形成する。これらの各層の成膜方法としては、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。さらに、層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが好ましい。
<Method for producing organic EL element>
Next, an example of a method for manufacturing an organic EL element will be described.
First, a 1st electrode is produced with the above-mentioned manufacturing method.
Next, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are formed in this order on the conductive layer of the first electrode to form an organic functional layer. As a film forming method of each of these layers, there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but from the point that a uniform film is easily obtained and pinholes are difficult to generate, etc. Vacuum deposition or spin coating is particularly preferred. Further, different film formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 × 10 −6 to 1 × 10 −2 Each condition is preferably selected as appropriate within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of −50 to 300 ° C., and layer thickness of 0.1 to 5 μm.
 有機機能層を形成した後、この上部に第2電極を蒸着法やスパッタ法などの適宜の成膜法によって形成する。この際、第2電極は、有機機能層によって第1電極に対して絶縁状態を保ちつつ、有機機能層の上方から基板の周縁に端子部分を引き出した形状にパターン形成する。これにより、有機EL素子が得られる。また、その後には、有機EL素子における取出し電極及び第2電極の端子部分を露出させた状態で、少なくとも有機機能層を覆う封止部材を設ける。 After forming the organic functional layer, a second electrode is formed on the organic functional layer by an appropriate film forming method such as vapor deposition or sputtering. At this time, the second electrode is patterned in a shape in which a terminal portion is drawn from the upper side of the organic functional layer to the periphery of the substrate while maintaining an insulating state with respect to the first electrode by the organic functional layer. Thereby, an organic EL element is obtained. Thereafter, a sealing member that covers at least the organic functional layer is provided in a state where the extraction electrode and the terminal portion of the second electrode in the organic EL element are exposed.
 以上により、所望の有機EL素子が得られる。このような有機EL素子の作製においては、1回の真空引きで一貫して発光ユニットから第2電極まで作製するのが好ましいが、途中で真空雰囲気から基板を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 Thus, a desired organic EL element can be obtained. In the production of such an organic EL element, it is preferable to produce from the light emitting unit to the second electrode consistently by one evacuation. However, the substrate is taken out from the vacuum atmosphere and subjected to different film forming methods. It doesn't matter. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
《有機EL素子の作製》
 以下のようにして、有機EL素子101~134を作製した。
<< Production of organic EL element >>
Organic EL elements 101 to 134 were produced as follows.
〈有機EL素子101の作製〉
(1)基板の準備
 透明樹脂基板として、株式会社きもと製のクリアハードコート層付きポリエチレンテレフタレート(PET/CHC)フィルム(G1SBF、厚さ125μm、屈折率1.59)を準備した。
<Preparation of organic EL element 101>
(1) Preparation of Substrate As a transparent resin substrate, a polyethylene terephthalate (PET / CHC) film (G1SBF, thickness 125 μm, refractive index 1.59) with a clear hard coat layer manufactured by Kimoto Co., Ltd. was prepared.
(2)ガスバリアー層の形成
 次に、上記透明樹脂基板の表面(透明導電層を形成する側の面)上に、ガスバリアー層を形成した。
(2) Formation of Gas Barrier Layer Next, a gas barrier layer was formed on the surface of the transparent resin substrate (the surface on the side where the transparent conductive layer is formed).
 具体的には、放電プラズマ化学気相成長装置(アプライドマテリアルズ社製プラズマCVD装置 Precision5000)に、透明樹脂基板をセットし、ロールtoロールで連続搬送させた。次に、成膜ローラー間に磁場を印加するとともに、各成膜ローラーに電力を供給して、成膜ローラー間にプラズマを発生させ、放電領域を形成した。次に、形成した放電領域に、成膜ガスとして、原料ガスであるヘキサメチルジシロキサン(HMDSO)と反応ガスである酸素ガス(放電ガスとしても機能する。)の混合ガスを、ガス供給管から供給し、下記条件にて、厚さ120nmのガスバリアー層を成膜した。 Specifically, a transparent resin substrate was set in a discharge plasma chemical vapor deposition apparatus (Plasma CVD apparatus Precision 5000 manufactured by Applied Materials) and continuously conveyed by roll-to-roll. Next, a magnetic field was applied between the film forming rollers, and electric power was supplied to each film forming roller to generate plasma between the film forming rollers to form a discharge region. Next, a mixed gas of hexamethyldisiloxane (HMDSO), which is a raw material gas, and oxygen gas (which also functions as a discharge gas), which is a reactive gas, is supplied as a film forming gas from the gas supply pipe to the formed discharge region. A gas barrier layer having a thickness of 120 nm was formed under the following conditions.
(成膜条件)
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 反応ガス(O)の供給量:500sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 フィルムの搬送速度:0.8m/min
(Deposition conditions)
Feed rate of source gas (hexamethyldisiloxane, HMDSO): 50 sccm (Standard Cubic Centimeter per Minute)
Reaction gas (O 2 ) supply amount: 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film transport speed: 0.8 m / min
(3)第1電極の形成
(3.1)金属細線の形成
 透明樹脂基板(ガスバリアー層)上に、金属ナノ粒子含有組成物として銀ナノ粒子分散液(FlowMetal SR6000、バンドー化学株式会社製)をスーパーインクジェット印刷法を用い、吐出量、塗布速度、射出周波数、塗布回数を調整して、線幅5μm、線間隔50μmピッチで格子状になるように塗布してパターン形成した。スーパーインクジェット印刷装置としては、超微細インクジェット装置(SIJテクノロジ社製)を用いた。
(3) Formation of first electrode (3.1) Formation of metal fine wire Silver nanoparticle dispersion (FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.) as a metal nanoparticle-containing composition on a transparent resin substrate (gas barrier layer) Using a super ink jet printing method, the ejection amount, the coating speed, the injection frequency, and the number of coatings were adjusted, and a pattern was formed by coating in a grid pattern with a line width of 5 μm and a line interval of 50 μm. As the super ink jet printing apparatus, an ultra fine ink jet apparatus (manufactured by SIJ Technology) was used.
 次に、赤外線照射装置(アルティメットヒーター/カーボン、明々工業株式会社製)に、波長3.5μm以上の赤外線を吸収する石英ガラス板2枚を取り付け、ガラス板間に冷却空気を流した波長制御赤外線ヒータを用いて、形成した金属ナノ粒子含有組成物のパターンの乾燥処理を行った。 Next, two quartz glass plates that absorb infrared rays having a wavelength of 3.5 μm or more are attached to an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates. The drying process of the pattern of the formed metal nanoparticle containing composition was performed using the heater.
 次に、250nm以下の短波長カットフィルターを装着したキセノンフラッシュランプ2400WS(COMET社製)を用いて、光照射エネルギーの総計が3.5J/cmのフラッシュ光を、照射時間2m秒で金属ナノ粒子含有組成物のパターン側から1回照射して、乾燥後の金属ナノ粒子含有組成物のパターンの焼成処理を行い、線幅5μm、高さ100nmの金属細線パターンを形成した。 Next, using a xenon flash lamp 2400WS (manufactured by COMET) equipped with a short-wavelength cut filter of 250 nm or less, flash light having a total light irradiation energy of 3.5 J / cm 2 was irradiated with a metal nanometer in an irradiation time of 2 milliseconds. The pattern of the metal nanoparticle-containing composition after drying was irradiated once from the pattern side of the particle-containing composition, and a metal nanowire pattern with a line width of 5 μm and a height of 100 nm was formed.
(3.2)透明導電層の形成
 透明樹脂基板(ガスバリアー層)と金属細線パターン上に、透明導電層(金属酸化物層)としてのIZO(質量比In:ZnO=90:10)膜を厚さ300nmで形成した。
 IZO膜は、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar:20sccm、O:3sccm、スパッタ圧:0.25Pa、室温(25℃)下、ターゲット側電力:1000W、ターゲット-基板距離:86mmで、RFスパッタにて作製した。
(3.2) Formation of transparent conductive layer IZO (mass ratio In 2 O 3 : ZnO = 90: 10) as a transparent conductive layer (metal oxide layer) on a transparent resin substrate (gas barrier layer) and a metal fine wire pattern ) A film was formed with a thickness of 300 nm.
For the IZO film, an L-430S-FHS sputtering apparatus manufactured by Anerva is used. Ar: 20 sccm, O 2 : 3 sccm, sputtering pressure: 0.25 Pa, room temperature (25 ° C.), target side power: 1000 W, target-substrate distance : 86 mm, produced by RF sputtering.
(4)有機機能層の形成
 まず、真空蒸着装置内の蒸着用るつぼの各々に、有機機能層の各層を構成する下記に示す材料を、各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、下記化合物A-1の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で第1電極(金属酸化物層側)上に蒸着し、厚さ10nmの正孔注入層を形成した。
 次に、下記化合物M-2の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、厚さ30nmの正孔輸送層を形成した。
 次に、下記化合物BD-1及び下記化合物H-1を、化合物BD-1が5質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの青色発光を呈する蛍光発光層を形成した。
 次に、下記化合物GD-1、下記化合物RD-1及び下記化合物H-2を、化合物GD-1が17質量%、RD-1が0.8質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの黄色を呈するリン光発光層を形成した。
 その後、下記化合物E-1を蒸着速度0.1nm/秒で蒸着し、厚さ30nmの電子輸送層を形成した。
 以上により、有機機能層を形成した。
(4) Formation of organic functional layer First, each of the crucibles for vapor deposition in the vacuum vapor deposition apparatus was filled with the following materials constituting each layer of the organic functional layer in an optimum amount for device fabrication. As the evaporation crucible, a crucible made of a resistance heating material made of molybdenum or tungsten was used.
After depressurizing to a vacuum of 1 × 10 −4 Pa, the deposition crucible containing the following compound A-1 was energized and heated, and deposited on the first electrode (metal oxide layer side) at a deposition rate of 0.1 nm / second. The hole injection layer having a thickness of 10 nm was formed.
Next, the deposition crucible containing the following compound M-2 was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a 30 nm thick hole transport layer.
Next, the following compound BD-1 and the following compound H-1 are co-deposited at a deposition rate of 0.1 nm / second so that the compound BD-1 has a concentration of 5 mass%, and emits blue light with a thickness of 15 nm. A fluorescent light emitting layer was formed.
Next, the following compound GD-1, the following compound RD-1, and the following compound H-2 were deposited at a deposition rate of 0.8% so that the concentration of the compound GD-1 was 17% by mass and the concentration of RD-1 was 0.8% by mass. Co-evaporation was performed at 1 nm / second to form a phosphorescent light emitting layer having a thickness of 15 nm and exhibiting a yellow color.
Thereafter, the following compound E-1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
Thus, an organic functional layer was formed.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(5)第2電極の形成
 さらに、LiFを厚さ1.5nmで形成した後に、アルミニウムを110nm蒸着して第2電極と、その取出し電極を形成し、有機EL素子101を作製した。
(5) Formation of 2nd electrode Furthermore, after forming LiF by thickness 1.5nm, 110nm of aluminum was vapor-deposited, the 2nd electrode and its extraction electrode were formed, and the organic EL element 101 was produced.
(6)封止
(6.1)接着剤組成物の調製
 ポリイソブチレン系樹脂(A)として「オパノールB50(BASF製、重量平均分子量(Mw)=340000)」100質量部、ポリブテン樹脂(B)として「日石ポリブテン グレードHV-1900(新日本石油社製、重量平均分子量(Mw)=1900)」30質量部、ヒンダードアミン系光安定剤(C)として「TINUVIN765(BASF・ジャパン製、3級のヒンダードアミン基を有する。)」0.5質量部、ヒンダードフェノール系酸化防止剤(D)として「IRGANOX1010(BASF・ジャパン製、ヒンダードフェノール基のβ位が二つともターシャリーブチル基を有する。)」0.5質量部、及び環状オレフィン系重合体(E)として「Eastotac H-100L Resin(イーストマンケミカル.Co.製)」50質量部を、トルエンに溶解し、固形分濃度約25質量%の接着剤組成物を調製した。
(6) Sealing (6.1) Preparation of Adhesive Composition As polyisobutylene resin (A), 100 parts by mass of “OPanol B50 (manufactured by BASF, weight average molecular weight (Mw) = 340000)”, polybutene resin (B) 30 parts by mass of “Nisseki Polybutene Grade HV-1900 (manufactured by Nippon Oil Corporation, weight average molecular weight (Mw) = 1900)” and “TINUVIN 765 (manufactured by BASF Japan, grade 3 of hindered amine light stabilizer (C)) “Having a hindered amine group.” ”0.5 part by mass, as a hindered phenol-based antioxidant (D)“ IRGANOX 1010 (manufactured by BASF Japan, both β-positions of hindered phenol groups have tertiary butyl groups. ” ) ”0.5 part by mass, and“ Eastotac H-1 ”as the cyclic olefin polymer (E) The 0L Resin (Eastman Chemical .Co. Ltd.) "50 parts by weight, was dissolved in toluene, to prepare a solid concentration of about 25 wt% of the adhesive composition.
(6.2)封止部材の作製
 まず、厚さ100μmのアルミニウム(Al)箔が張り合わされた厚さ50μmのポリエチレンテレフタレートフィルムを用意し封止部材とした。次に、調製した上記接着剤組成物の溶液を乾燥後に形成される接着層の厚さが20μmとなるように封止部材のアルミニウム側(ガスバリアー層側)に塗工し、120℃で2分間乾燥させて接着層を形成した。
 次に、形成した接着層面に対して、剥離シートとして、厚さ38μmの剥離処理をしたポリエチレンテレフタレートフィルムの剥離処理面を貼付して、封止部材を作製した。
(6.2) Production of Sealing Member First, a polyethylene terephthalate film having a thickness of 50 μm in which an aluminum (Al) foil having a thickness of 100 μm was laminated was prepared as a sealing member. Next, the prepared solution of the adhesive composition is applied to the aluminum side (gas barrier layer side) of the sealing member so that the thickness of the adhesive layer formed after drying is 20 μm. The adhesive layer was formed by drying for minutes.
Next, as a release sheet, a release treatment surface of a polyethylene terephthalate film subjected to a release treatment with a thickness of 38 μm was attached to the formed adhesive layer surface to produce a sealing member.
 上述の方法で作製した封止部材を、窒素雰囲気下で24時間以上放置した。
 放置後、剥離シートを除去し、80℃に加熱した真空ラミネーターで有機EL素子101の第2電極を覆う形でラミネートした。さらに、120℃で30分加熱し、封止部材により有機EL素子101を封止した。
The sealing member produced by the above method was left for 24 hours or more in a nitrogen atmosphere.
After leaving, the release sheet was removed, and lamination was performed so as to cover the second electrode of the organic EL element 101 with a vacuum laminator heated to 80 ° C. Furthermore, it heated at 120 degreeC for 30 minutes, and sealed the organic EL element 101 with the sealing member.
〈有機EL素子102の作製〉
 有機EL素子101の作製において、第1電極を以下のようにして形成した以外は同様にして、有機EL素子102を作製した。
<Preparation of organic EL element 102>
In the production of the organic EL element 101, the organic EL element 102 was produced in the same manner except that the first electrode was formed as follows.
(1)第1電極の形成
(1.1)透明導電層の形成
 透明樹脂基板(ガスバリアー層)上に、透明導電層(金属酸化物層)としてのIZO(質量比In:ZnO=90:10)膜を厚さ300nmで形成した。
 IZO膜は、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar:20sccm、O:3sccm、スパッタ圧:0.25Pa、室温(25℃)下、ターゲット側電力:1000W、ターゲット-基板距離:86mmで、RFスパッタにて作製した。
(1) Formation of first electrode (1.1) Formation of transparent conductive layer IZO (mass ratio In 2 O 3 : ZnO) as a transparent conductive layer (metal oxide layer) on a transparent resin substrate (gas barrier layer) = 90: 10) A film was formed with a thickness of 300 nm.
For the IZO film, an L-430S-FHS sputtering apparatus manufactured by Anerva is used. Ar: 20 sccm, O 2 : 3 sccm, sputtering pressure: 0.25 Pa, room temperature (25 ° C.), target side power: 1000 W, target-substrate distance : 86 mm, produced by RF sputtering.
(1.2)金属細線の形成
 透明導電層上に、金属ナノ粒子含有組成物として銀ナノ粒子分散液(FlowMetal SR6000、バンドー化学株式会社製)をスーパーインクジェット印刷法を用い、吐出量、塗布速度、射出周波数、塗布回数を調整して、線幅5μm、線間隔50μmピッチで格子状になるように塗布してパターン形成した。スーパーインクジェット印刷装置としては、超微細インクジェット装置(SIJテクノロジ社製)を用いた。
(1.2) Formation of fine metal wires On a transparent conductive layer, a silver nanoparticle dispersion (FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.) as a metal nanoparticle-containing composition is applied using a super ink jet printing method. The pattern was formed by adjusting the injection frequency and the number of times of application, and applying in a grid pattern with a line width of 5 μm and a line interval of 50 μm. As the super ink jet printing apparatus, an ultra fine ink jet apparatus (manufactured by SIJ Technology) was used.
 次に、赤外線照射装置(アルティメットヒーター/カーボン、明々工業株式会社製)に、波長3.5μm以上の赤外線を吸収する石英ガラス板2枚を取り付け、ガラス板間に冷却空気を流した波長制御赤外線ヒータを用いて、形成した金属ナノ粒子含有組成物のパターンの乾燥処理を行った。 Next, two quartz glass plates that absorb infrared rays having a wavelength of 3.5 μm or more are attached to an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates. The drying process of the pattern of the formed metal nanoparticle containing composition was performed using the heater.
 次に、250nm以下の短波長カットフィルターを装着したキセノンフラッシュランプ2400WS(COMET社製)を用いて、光照射エネルギーの総計が3.5J/cmのフラッシュ光を、照射時間2m秒で金属ナノ粒子含有組成物のパターン側から1回照射して、乾燥後の金属ナノ粒子含有組成物のパターンの焼成処理を行い、線幅5μm、高さ100nmの金属細線パターンを形成した。 Next, using a xenon flash lamp 2400WS (manufactured by COMET) equipped with a short-wavelength cut filter of 250 nm or less, flash light having a total light irradiation energy of 3.5 J / cm 2 was irradiated with a metal nanometer in an irradiation time of 2 milliseconds. The pattern of the metal nanoparticle-containing composition after drying was irradiated once from the pattern side of the particle-containing composition, and a metal nanowire pattern with a line width of 5 μm and a height of 100 nm was formed.
(1.3)絶縁層の形成
 次に、金属細線パターン上に、上述のスーパーインクジェット印刷法を用い、吐出量、塗布速度、射出周波数、塗布回数を調整して、線幅5μm、線間隔50μmピッチで格子状になるように塗布してパターン形成した。絶縁層の塗布材料としては、ZEOCOAT ES 2110-10(ZEON社製)を用いた。次に、120℃、30分焼成を行い、厚さ300nmの絶縁層を形成した。
(1.3) Formation of Insulating Layer Next, on the fine metal wire pattern, the above-described super ink jet printing method is used to adjust the discharge amount, the coating speed, the injection frequency, and the number of times of coating, and the line width is 5 μm and the line spacing is 50 μm. A pattern was formed by coating so as to form a lattice pattern at a pitch. As a coating material for the insulating layer, ZEOCOAT ES 2110-10 (manufactured by ZEON) was used. Next, baking was performed at 120 ° C. for 30 minutes to form an insulating layer having a thickness of 300 nm.
〈有機EL素子103の作製〉
 有機EL素子102の作製において、絶縁層の厚さを800nmに変更した以外は同様にして、有機EL素子103を作製した。
<Preparation of organic EL element 103>
In the production of the organic EL element 102, the organic EL element 103 was produced in the same manner except that the thickness of the insulating layer was changed to 800 nm.
〈有機EL素子104~118の作製〉
 有機EL素子101の作製において、金属細線の線幅及び高さ、透明導電層の厚さ、並びに有機機能層の厚さを表1に記載のとおりに変更した以外は同様にして、有機EL素子104~118を作製した。
 なお、本実施例において、有機機能層を構成する各層の厚さは、有機機能層の総厚が表1及び2に記載の値となるように、有機EL素子101の有機機能層を構成する各層の厚さと同様の比率とした。
<Preparation of organic EL elements 104 to 118>
In the production of the organic EL element 101, the organic EL element was similarly obtained except that the line width and height of the fine metal wire, the thickness of the transparent conductive layer, and the thickness of the organic functional layer were changed as shown in Table 1. 104 to 118 were produced.
In the present example, the thickness of each layer constituting the organic functional layer constitutes the organic functional layer of the organic EL element 101 so that the total thickness of the organic functional layer becomes a value described in Tables 1 and 2. The ratio was the same as the thickness of each layer.
〈有機EL素子119及び120の作製〉
 有機EL素子107及び108の作製において、透明樹脂基板に代えてガラス基板を用いた以外は同様にして、有機EL素子119及び120をそれぞれ作製した。
<Preparation of organic EL elements 119 and 120>
Organic EL elements 119 and 120 were produced in the same manner except that a glass substrate was used instead of the transparent resin substrate in the production of the organic EL elements 107 and 108.
〈有機EL素子121及び122の作製〉
 有機EL素子107の作製において、透明導電層(金属酸化物層)材料をIZOからITO、ZnOに変更した以外は同様にして、有機EL素子121及び122をそれぞれ作製した。
<Preparation of organic EL elements 121 and 122>
In the production of the organic EL element 107, organic EL elements 121 and 122 were produced in the same manner except that the transparent conductive layer (metal oxide layer) material was changed from IZO to ITO and ZnO.
〈有機EL素子123の作製〉
 有機EL素子107の作製において、透明導電層を以下のようにして形成した以外は同様にして、有機EL素子123を作製した。
<Preparation of organic EL element 123>
In the production of the organic EL element 107, an organic EL element 123 was produced in the same manner except that the transparent conductive layer was formed as follows.
(1)透明導電層の形成
 金属細線パターン上に、下記組成の塗布液をダイコーターにより塗布した後、乾燥処理を施して、厚さ100nmの導電性ポリマーからなる透明導電層を形成した。乾燥処理時、赤外線(IR)ヒータを用いた輻射伝熱乾燥を5分間行った。
(1) Formation of transparent conductive layer A coating liquid having the following composition was applied on a fine metal wire pattern by a die coater and then dried to form a transparent conductive layer made of a conductive polymer having a thickness of 100 nm. During the drying process, radiant heat transfer drying using an infrared (IR) heater was performed for 5 minutes.
(塗布液)
 Clevios PH1000(へレウス社製のPEDOT/PSS、固形分濃度1.2質量%)                  70質量部
 エチレングリコール                   15質量部
 エチレングリコールモノブチルエーテル           8質量部
 純水                           7質量部
(Coating solution)
Clevios PH1000 (PEDOT / PSS made by Heraeus, solid content concentration 1.2% by mass) 70 parts by mass Ethylene glycol 15 parts by mass Ethylene glycol monobutyl ether 8 parts by mass Pure water 7 parts by mass
〈有機EL素子124の作製〉
 有機EL素子107の作製において、透明導電層を以下のようにして形成した以外は同様にして、有機EL素子124を作製した。
<Preparation of organic EL element 124>
In the production of the organic EL element 107, the organic EL element 124 was produced in the same manner except that the transparent conductive layer was formed as follows.
(1)透明導電層の形成
 金属細線パターン上に、下記塗布液Aを、押し出し法を用いて、乾燥膜厚100nmになるように押し出しヘッドのスリット間隙を調整して塗布し、110℃、5分で加熱乾燥し、導電性ポリマーと水溶性ポリマーP-1(ポリ(2-ヒドロキシエチルアクリレート))からなる透明導電層を形成した。水溶性ポリマーP-1は、特許第5750908号公報の段落0156に記載の方法により合成した。
(1) Formation of transparent conductive layer The following coating liquid A was applied onto a fine metal wire pattern by adjusting the slit gap of the extrusion head so as to have a dry film thickness of 100 nm using an extrusion method. Then, a transparent conductive layer composed of a conductive polymer and a water-soluble polymer P-1 (poly (2-hydroxyethyl acrylate)) was formed. Water-soluble polymer P-1 was synthesized by the method described in paragraph 0156 of Japanese Patent No. 5750908.
〔塗布液A〕
 ポリチオフェン:PEDOT-PSS CLEVIOS PH510(固形分濃度1.89%、H.C.Starck社製)      1.59g
 P-1(固形分20%水溶液)              0.35g
 ジメチルスルホキシド(DMSO)            0.16g
[Coating liquid A]
Polythiophene: PEDOT-PSS CLEVIOS PH510 (solid content concentration 1.89%, manufactured by HC Starck) 1.59 g
P-1 (20% solid content aqueous solution) 0.35 g
Dimethyl sulfoxide (DMSO) 0.16g
〈有機EL素子125の作製〉
 有機EL素子107の作製において、以下のようにして第1電極を形成した以外は同様にして、有機EL素子125を作製した。
<Preparation of organic EL element 125>
In the production of the organic EL element 107, an organic EL element 125 was produced in the same manner except that the first electrode was formed as follows.
(1)第1電極の形成
(1.1)フッ素含有樹脂層の形成
 透明樹脂基板(ガスバリアー層)上に、フッ素含有樹脂として非晶質性パーフルオロブテニルエーテル重合体(CYTOP(登録商標):旭硝子(株)製)をスピンコート法(回転数2000rpm、20sec)で塗布した後、50℃で10分、続いて80℃で10分加熱し、更にオーブンにて100℃で60分加熱して焼成し、厚さ1μmのフッ素含有樹脂層を形成した。
(1) Formation of first electrode (1.1) Formation of fluorine-containing resin layer An amorphous perfluorobutenyl ether polymer (CYTOP (registered trademark)) as a fluorine-containing resin on a transparent resin substrate (gas barrier layer). ): Asahi Glass Co., Ltd.) was applied by spin coating (rotation speed 2000 rpm, 20 sec), then heated at 50 ° C. for 10 minutes, then at 80 ° C. for 10 minutes, and further heated at 100 ° C. for 60 minutes. And then baked to form a fluorine-containing resin layer having a thickness of 1 μm.
(1.2)金属細線の形成
 フッ素含有樹脂層が形成された基板に、格子パターン(線幅5μm、線間隔50μm)のフォトマスクを密着し、ここに紫外線(VUV光)を照射した(マスク-基板間距離0のコンタクト露光)。VUV光は、波長172nm、11mW/cm-2で20秒照射し、前処理を施した。
(1.2) Formation of fine metal wires A photomask having a lattice pattern (line width: 5 μm, line spacing: 50 μm) is brought into close contact with the substrate on which the fluorine-containing resin layer is formed, and irradiated with ultraviolet rays (VUV light) (mask) -Contact exposure with inter-substrate distance 0). VUV light was irradiated at a wavelength of 172 nm and 11 mW / cm −2 for 20 seconds and pretreated.
 次に、金属ナノ粒子含有組成物として銀ナノ粒子分散液(FlowMetal SR6000、バンドー化学株式会社製)を前処理した基板に塗布した。塗布は、基板とブレード(ガラス製)との接触部分にあらかじめ銀ナノ粒子分散液を濡れ広がらせた後、ブレードを一方向に掃引した。掃引速度は、2mm/secとした。このブレードによる塗布により、基板の紫外線照射部(官能基形成部)のみに銀ナノ粒子分散液が付着しているのが確認された。これを繰り返し行うことで、後述の焼成処理後の金属ナノ粒子含有組成物のパターンの高さが100nmとなるように調整し、室温(25℃)で自然乾燥させて、金属ナノ粒子含有組成物のパターンを形成した。 Next, a silver nanoparticle dispersion liquid (FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.) was applied as a metal nanoparticle-containing composition to a pretreated substrate. For coating, the silver nanoparticle dispersion was wetted and spread in advance on the contact portion between the substrate and the blade (made of glass), and then the blade was swept in one direction. The sweep speed was 2 mm / sec. By applying with this blade, it was confirmed that the silver nanoparticle dispersion liquid was adhered only to the ultraviolet irradiation portion (functional group forming portion) of the substrate. By repeating this, the height of the pattern of the metal nanoparticle-containing composition after the baking treatment described later is adjusted to 100 nm, and is naturally dried at room temperature (25 ° C.). Pattern was formed.
 次に、赤外線照射装置(アルティメットヒーター/カーボン、明々工業株式会社製)に、波長3.5μm以上の赤外線を吸収する石英ガラス板2枚を取り付け、ガラス板間に冷却空気を流した波長制御赤外線ヒータを用いて、形成した金属ナノ粒子含有組成物のパターンの乾燥処理を行った。 Next, two quartz glass plates that absorb infrared rays having a wavelength of 3.5 μm or more are attached to an infrared irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.), and wavelength control infrared rays in which cooling air flows between the glass plates. The drying process of the pattern of the formed metal nanoparticle containing composition was performed using the heater.
 次に、250nm以下の短波長カットフィルターを装着したキセノンフラッシュランプ2400WS(COMET社製)を用いて、光照射エネルギーの総計が3.5J/cmのフラッシュ光を、照射時間2m秒で金属ナノ粒子含有組成物のパターン側から1回照射して、乾燥後の金属ナノ粒子含有組成物のパターンの焼成処理を行い、線幅5μm、高さ100nmの金属細線パターンを形成した。 Next, using a xenon flash lamp 2400WS (manufactured by COMET) equipped with a short-wavelength cut filter of 250 nm or less, flash light having a total light irradiation energy of 3.5 J / cm 2 was irradiated with a metal nanometer in an irradiation time of 2 milliseconds. The pattern of the metal nanoparticle-containing composition after drying was irradiated once from the pattern side of the particle-containing composition, and a metal nanowire pattern with a line width of 5 μm and a height of 100 nm was formed.
(1.3)透明導電層の形成
 フッ素含有樹脂層と金属細線パターン上に、透明導電層(金属酸化物層)としてのIZO(質量比In:ZnO=90:10)膜を厚さ100nmで形成した。
 IZO膜は、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar:20sccm、O:3sccm、スパッタ圧:0.25Pa、室温(25℃)下、ターゲット側電力:1000W、ターゲット-基板距離:86mmで、RFスパッタにて作製した。
(1.3) Formation of Transparent Conductive Layer A thick IZO (mass ratio In 2 O 3 : ZnO = 90: 10) film as a transparent conductive layer (metal oxide layer) is formed on the fluorine-containing resin layer and the fine metal wire pattern. The thickness was 100 nm.
For the IZO film, an L-430S-FHS sputtering apparatus manufactured by Anerva is used. Ar: 20 sccm, O 2 : 3 sccm, sputtering pressure: 0.25 Pa, room temperature (25 ° C.), target side power: 1000 W, target-substrate distance : 86 mm, produced by RF sputtering.
〈有機EL素子126の作製〉
 有機EL素子107の作製において、金属細線パターンを形成する前に、透明樹脂基板(ガスバリアー層)上に、以下のようにして光学散乱層を形成した以外は同様にして、有機EL素子126を作製した。
<Preparation of organic EL element 126>
In the production of the organic EL element 107, the organic EL element 126 was formed in the same manner except that an optical scattering layer was formed on the transparent resin substrate (gas barrier layer) as follows before forming the fine metal wire pattern. Produced.
(1)光学散乱層の形成
 酸化チタン粒子(チタニックスJR―808、テイカ社製)と、樹脂(PCPM-47-BPA、Pixelligent Technologies社製)とのPB比が45%、2-プロパノール、プロピレングリコールモノメチルエーテル(PGME)及び2-メチル-2,4-ペンタンジオール(PD)との溶媒比が、20質量%/40質量%/40質量%である有機溶媒中での固形分濃度が12質量%となるように調製した。
 上記の固形分(有効質量成分)に対し、0.4質量%の添加剤(ビックケミージャパン株式会社製 Disperbyk-2096)を加え、10mL量の比率で処方設計して光学散乱層形成用分散液を調製した。
(1) Formation of optical scattering layer 45% PB ratio between titanium oxide particles (Titanics JR-808, manufactured by Teika) and resin (PCPM-47-BPA, manufactured by Pixellient Technologies), 2-propanol, propylene The solid content concentration in an organic solvent in which the solvent ratio of glycol monomethyl ether (PGME) and 2-methyl-2,4-pentanediol (PD) is 20% by mass / 40% by mass / 40% by mass is 12% by mass. %.
A dispersion liquid for forming an optical scattering layer is prepared by adding 0.4% by mass of an additive (Disperbyk-2096, manufactured by Big Chemie Japan Co., Ltd.) to the above-mentioned solid content (effective mass component). Was prepared.
 具体的には、上記TiO粒子と溶媒及び添加剤を、TiO粒子に対し10質量%の質量比で混合し、常温(25℃)で冷却しながら、超音波分散機(エスエムテー社製 UH-50)に、マイクロチップステップ(エスエムテー社製 MS-3 3mmφ)の標準条件で10分間分散を加え、TiOの分散液を作製した。
 次に、TiO分散液を100rpmで撹拌しながら、樹脂溶液を少量ずつ混合添加し、添加完了後、500rpmまで撹拌速度を上げ、10分間混合した後、疎水性PVDF0.45μmフィルター(ワットマン社製)にて濾過し、目的の光学散乱層形成用分散液を得た。
Specifically, the TiO 2 particles and a solvent and additives were mixed at a mass ratio of 10 mass% with respect to TiO 2 particles, while cooling at room temperature (25 ° C.), an ultrasonic dispersing machine (manufactured by SMT Co., Ltd. UH −50) was dispersed for 10 minutes under the standard conditions of a microchip step (MS-3, 3 mmφ manufactured by SMT) to prepare a dispersion of TiO 2 .
Next, while stirring the TiO 2 dispersion at 100 rpm, the resin solution is mixed and added little by little. After the addition is completed, the stirring speed is increased to 500 rpm and mixing is performed for 10 minutes, and then a hydrophobic PVDF 0.45 μm filter (manufactured by Whatman) The target dispersion liquid for forming an optical scattering layer was obtained.
 上記分散液をインクジェット塗布法にて、透明樹脂基板上に塗布した後、簡易乾燥(70℃、2分)し、更に、赤外線照射装置(アルティメットヒーター/カーボン,明々工業株式会社製)に、波長3.5μm以上の赤外線を吸収する石英ガラス板2枚を取り付け、ガラス板間に冷却空気を流した波長制御赤外線ヒータを用いて、基板温度80℃未満の出力条件で5分間乾燥処理を実行した。 After applying the above dispersion on a transparent resin substrate by an ink jet coating method, it is simply dried (70 ° C., 2 minutes), and further applied to an infrared irradiation device (Ultimate Heater / Carbon, manufactured by Akemi Kogyo Co., Ltd.) Two quartz glass plates that absorb infrared rays of 3.5 μm or more were attached, and a drying process was performed for 5 minutes under an output condition of a substrate temperature of less than 80 ° C. using a wavelength-controlled infrared heater in which cooling air was passed between the glass plates. .
 次に、下記改質処理装置及び改質処理条件にて硬化反応を促進した。 Next, the curing reaction was promoted with the following modification treatment apparatus and modification treatment conditions.
(改質処理装置)
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL MECL-M-1-200
 照射波長:172nm
 ランプ封入ガス:Xe
(Modification equipment)
Equipment: M.com Co., Ltd. excimer irradiation equipment MODEL MECL-M-1-200
Irradiation wavelength: 172 nm
Lamp filled gas: Xe
(改質処理条件)
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:2mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:20.0%
 照射エネルギー:8J/cm
(Reforming treatment conditions)
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 2mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 20.0%
Irradiation energy: 8 J / cm 2
〈有機EL素子127の作製〉
 有機EL素子107の作製において、金属細線パターンを形成する前に、透明樹脂基板(ガスバリアー層)上に、以下のようにして密着層を形成した以外は同様にして、有機EL素子127を作製した。
<Preparation of organic EL element 127>
In the production of the organic EL element 107, the organic EL element 127 was produced in the same manner except that the adhesion layer was formed as follows on the transparent resin substrate (gas barrier layer) before forming the fine metal wire pattern. did.
(1)密着層の形成
 透明樹脂基板(ガスバリアー層)上に、カレンズMTBD1(昭和電工(株)社製、例示化合物SE-20)と、1当量のA-TMM-3LM-N(ペンタエリスリトールトリアクリレート(トリエステル57%)、新中村化学工業(株)社製)とを混合し、固形分が0.2質量%になる量の重合開始剤イルガキュア184(BASF社製)を混合して、メチルイソブチルケトン(MIBK)で固形分3質量%の希釈液を調製した。これをスピンコーターを用いて2000rpmで成膜後、上述の赤外線照射装置で乾燥した。その後、有機EL素子作製時における封止内に密着層が収まるように外周部をふき取り、エキシマランプにて硬化(装置:株式会社エム・ディ・コム製エキシマ照射装置MODEL MECL-M-1-200、照射波長:172nm、ランプ封入ガス:Xe、エキシマランプ光強度:130mW/cm(172nm)、試料と光源との距離:2mm、ステージ加熱温度:70℃、照射装置内の酸素濃度:20.0%、照射エネルギー:1J/cm)を行い、厚さ100nmの密着層を形成した。
(1) Formation of adhesion layer On a transparent resin substrate (gas barrier layer), Karenz MTBD1 (produced by Showa Denko KK, Exemplified Compound SE-20) and 1 equivalent of A-TMM-3LM-N (pentaerythritol) Triacrylate (57% triester), Shin-Nakamura Chemical Co., Ltd.) and polymerization initiator Irgacure 184 (BASF) in such an amount that the solid content becomes 0.2% by mass are mixed. A diluted solution with a solid content of 3% by mass was prepared with methyl isobutyl ketone (MIBK). This was formed into a film at 2000 rpm using a spin coater, and then dried by the infrared irradiation apparatus described above. Thereafter, the outer peripheral portion is wiped off so that the adhesion layer fits within the seal when the organic EL element is manufactured, and cured with an excimer lamp (apparatus: excimer irradiation apparatus MODEL MECL-M-1-200 manufactured by M.D. , Irradiation wavelength: 172 nm, lamp enclosed gas: Xe, excimer lamp light intensity: 130 mW / cm 2 (172 nm), distance between sample and light source: 2 mm, stage heating temperature: 70 ° C., oxygen concentration in irradiation apparatus: 20. 0%, irradiation energy: 1 J / cm 2 ), and an adhesion layer having a thickness of 100 nm was formed.
〈有機EL素子128~134の作製〉
 有機EL素子127の作製において、密着層に添加するカレンズMTBD1に代えて、カレンズMTPE1(昭和電工(株)社製、例示化合物SE-50)、カレンズMTNR1(昭和電工(株)社製、例示化合物SE-71)、ポリメントNK-350(日本触媒社製、重量平均分子量(Mw)=100000)、例示化合物PE-1、例示化合物PE-4、例示化合物PA-1、例示化合物PA-4を用いた以外は同様にして、有機EL素子128~134をそれぞれ作製した。
<Preparation of organic EL elements 128 to 134>
In the production of the organic EL element 127, instead of Karenz MTBD1 added to the adhesion layer, Karenz MTPE1 (manufactured by Showa Denko KK, exemplified compound SE-50), Karenz MTNR1 (manufactured by Showa Denko KK, exemplified compound) SE-71), Polyment NK-350 (manufactured by Nippon Shokubai Co., Ltd., weight average molecular weight (Mw) = 100000), exemplified compound PE-1, exemplified compound PE-4, exemplified compound PA-1, and exemplified compound PA-4 are used. Except for the above, organic EL elements 128 to 134 were produced in the same manner.
《評価》
 作製した有機EL素子101~134について、下記評価を行った。
 評価結果を表1及び2に示す。
<Evaluation>
The manufactured organic EL elements 101 to 134 were evaluated as follows.
The evaluation results are shown in Tables 1 and 2.
 なお、各有機EL素子における各線分の長さは、高輝度非接触3次元表面形状粗さ計WYKO NT9100を用いて測定し、その値からtan(θ/2)を算出した。測定は、任意の10か所において行い、その平均値を求めた。本発明の有機EL素子は、すべての測定箇所において、条件式(1)を満たしていることが確認された。 In addition, the length of each line segment in each organic EL element was measured using a high brightness non-contact three-dimensional surface shape roughness meter WYKO NT9100, and tan (θ / 2) was calculated from the value. The measurement was performed at arbitrary 10 locations, and the average value was obtained. It was confirmed that the organic EL device of the present invention satisfies the conditional expression (1) at all measurement points.
 また、表1及び2中、第1電極の構成において、左側が透明樹脂基板側となる。例えば、「金属細線/透明導電層」とは、金属細線が透明樹脂基板側に形成され、「透明導電層/金属細線」とは、透明導電層が透明樹脂基板側に形成されていることを示している。 Also, in Tables 1 and 2, in the configuration of the first electrode, the left side is the transparent resin substrate side. For example, “metal thin wire / transparent conductive layer” means that the metal thin wire is formed on the transparent resin substrate side, and “transparent conductive layer / metal thin wire” means that the transparent conductive layer is formed on the transparent resin substrate side. Show.
〈発光効率〉
 作製した各有機EL素子について、後述の方法を用いて発光効率を測定し、これを各有機EL素子の発光効率の実測値とした。
 一方で、各有機EL素子と金属細線がない以外は同様の構成である対照用有機EL素子をそれぞれ作製し、同様に発光効率を測定した。次に、各対照用有機EL素子の発光効率に、これと対応する各有機EL素子の金属細線の開口率を掛けた値を各有機EL素子の発光効率の理論値とした。ここで、金属細線の開口率は、例えば、線幅5μm、線間隔50mmの格子状パターンの場合、81%となる。
 各有機EL素子の発光効率の実測値と理論値とから下記式で算出される発光効率の向上率を各有機EL素子の発光効率の指標とした。発光効率の向上率は、1.10以上であることが好ましく、1.20以上であることがより好ましい。
<Luminescent efficiency>
About each produced organic EL element, luminous efficiency was measured using the below-mentioned method, and this was made into the measured value of the luminous efficiency of each organic EL element.
On the other hand, a control organic EL element having the same configuration except that each organic EL element and the metal thin wire were not provided was prepared, and the luminous efficiency was measured in the same manner. Next, a value obtained by multiplying the luminous efficiency of each control organic EL element by the aperture ratio of the metal thin wire of each organic EL element corresponding thereto was used as the theoretical value of the luminous efficiency of each organic EL element. Here, the aperture ratio of the fine metal wires is 81% in the case of a lattice pattern having a line width of 5 μm and a line interval of 50 mm, for example.
The improvement rate of the luminous efficiency calculated by the following formula from the measured value and the theoretical value of the luminous efficiency of each organic EL element was used as an index of the luminous efficiency of each organic EL element. The improvement rate of the luminous efficiency is preferably 1.10 or more, and more preferably 1.20 or more.
 発光効率の向上率=(各有機EL素子の発光効率の実測値)/(各有機EL素子の発光効率の理論値) Improvement rate of luminous efficiency = (actual value of luminous efficiency of each organic EL element) / (theoretical value of luminous efficiency of each organic EL element)
(発光効率の測定)
 作製した各試料に対し、室温(25℃)で、2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、発光輝度を測定し、当該電流値における発光効率(L)を求めた。
(Measurement of luminous efficiency)
Each prepared sample was lit at a constant current density of 2.5 mA / cm 2 at room temperature (25 ° C.), and emission luminance was measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta). Was measured, and the luminous efficiency (L) at the current value was determined.
〈駆動電圧〉
 作製した各有機EL素子について、正面輝度が1000cd/mとなるときの電圧を駆動電圧(V)をとして測定し、有機EL素子101の駆動電圧を基準として、以下の評価基準に従って評価した。駆動電圧は、3.5倍未満であることが好ましく、2.5倍未満であることがより好ましい。
 なお、輝度の測定には、分光放射輝度計CS-2000(コニカミノルタ(株)製)を用いた。
<Drive voltage>
About each produced organic EL element, the voltage when front luminance became 1000 cd / m < 2 > was measured as drive voltage (V), and it evaluated in accordance with the following evaluation criteria on the basis of the drive voltage of the organic EL element 101. FIG. The drive voltage is preferably less than 3.5 times, and more preferably less than 2.5 times.
For measurement of luminance, a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.) was used.
 4:駆動電圧が1.5倍未満
 3:駆動電圧が1.5倍以上2.5倍未満
 2:駆動電圧が2.5倍以上3.5倍未満
 1:駆動電圧が3.5倍以上
4: Driving voltage is less than 1.5 times 3: Driving voltage is 1.5 times or more and less than 2.5 times 2: Driving voltage is 2.5 times or more and less than 3.5 times 1: Driving voltage is 3.5 times or more
〈整流特性〉
 作製した各有機EL素子について、同一作製手順にてそれぞれ10個ずつ作製し、整流比を測定した上で平均値を求め、以下の指標で整流比として評価した。整流比は、1.0×10以上であることが好ましく、1.0×10以上であることがより好ましい。
<Rectification characteristics>
About each produced organic EL element, ten each was produced in the same preparation procedure, after measuring a rectification ratio, the average value was calculated | required and evaluated as a rectification ratio with the following parameter | indexes. The rectification ratio is preferably 1.0 × 10 3 or more, and more preferably 1.0 × 10 4 or more.
 整流比=+4V印加時の電流値/-4V印加時の電流値
 5:整流比が1.0×10以上
 4:整流比が1.0×10以上1.0×10未満
 3:整流比が1.0×10以上1.0×10未満
 2:整流比が1.0×10以上1.0×10未満
 1:整流比が1.0×10以上1.0×10未満
 0:整流比が1.0×10未満
Rectification ratio = Current value when + 4V is applied / Current value when −4V is applied 5: Rectification ratio is 1.0 × 10 5 or more 4: Rectification ratio is 1.0 × 10 4 or more and less than 1.0 × 10 5 3: Rectification ratio is 1.0 × 10 3 or more and less than 1.0 × 10 4 2: Rectification ratio is 1.0 × 10 2 or more and less than 1.0 × 10 3 1: Rectification ratio is 1.0 × 10 or more and 1.0 × <10 2 0: Rectification ratio is less than 1.0 × 10
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
〈まとめ〉
 表1及び2から明らかなように、本発明の有機EL素子は、比較例の有機EL素子と比べて、発光効率、駆動電圧及び整流特性に優れていることが確認された。
 以上から、有機EL素子を金属細線の線幅方向に沿って透明基板に対し垂直に切断したときの切断面において、条件式(1)を満たすことが発光効率に優れた有機EL素子を提供することに有用であることがわかる。
<Summary>
As is clear from Tables 1 and 2, it was confirmed that the organic EL device of the present invention was superior in luminous efficiency, drive voltage, and rectifying characteristics as compared with the organic EL device of the comparative example.
From the above, it is possible to provide an organic EL element having excellent luminous efficiency by satisfying the conditional expression (1) on the cut surface when the organic EL element is cut perpendicularly to the transparent substrate along the line width direction of the thin metal wire. It turns out to be particularly useful.
 また、有機EL素子107及び127~134について、金属細線まで形成した段階で、金属細線の強度(基板と金属細線との密着性)をテープ剥離法により評価したところ、密着層を設けた有機EL素子127~134は、有機EL素子107と比較して、金属細線パターンの剥離が少なく、基板と金属細線間の密着性に優れていた。
 なお、密着性の評価は、具体的には、金属細線上にSTフィルム(パナック0.1N/25mm)を用いて圧着/剥離を10回繰り返し、金属細線パターンの脱落を目視観察して行った。
Further, when the organic EL elements 107 and 127 to 134 were formed up to the fine metal wires, the strength of the fine metal wires (adhesion between the substrate and the fine metal wires) was evaluated by a tape peeling method. In comparison with the organic EL element 107, the elements 127 to 134 had less peeling of the fine metal wire pattern and excellent adhesion between the substrate and the fine metal wire.
Specifically, the adhesion evaluation was performed by repeating the crimping / peeling 10 times using ST film (Panac 0.1N / 25 mm) on the fine metal wire, and visually observing the drop of the fine metal wire pattern. .
 本発明は、発光効率に優れた有機エレクトロルミネッセンス素子を提供することに、特に好適に利用することができる。 The present invention can be particularly suitably used for providing an organic electroluminescence device having excellent luminous efficiency.
1 有機EL素子
2 透明基板
3 第1電極
 3a 金属細線
 3b 透明導電層
 3c フッ素含有樹脂層
4 有機機能層
5 第2電極
6 ガスバリアー層
7 密着層
8 光学散乱層
DESCRIPTION OF SYMBOLS 1 Organic EL element 2 Transparent substrate 3 1st electrode 3a Metal fine wire 3b Transparent conductive layer 3c Fluorine-containing resin layer 4 Organic functional layer 5 Second electrode 6 Gas barrier layer 7 Adhesion layer 8 Optical scattering layer

Claims (10)

  1.  透明基板上に、少なくとも、パターン状に形成された金属細線と透明導電層とを含む第1電極、有機機能層及び第2電極が順次積層された有機エレクトロルミネッセンス素子であって、
     前記有機エレクトロルミネッセンス素子を前記金属細線の線幅方向に沿って前記透明基板に対し垂直に切断したときの切断面において、線幅方向に前記金属細線の太さが最大となる部分の両端部をそれぞれ点M及び点M、線分Mの垂直2等分線が前記有機機能層と前記第2電極との界面と交わる点を点E、線分MEと線分MEとのなす角を角θとするとき、下記条件式(1)を満たす有機エレクトロルミネッセンス素子。
     1.5≦tan(θ/2)≦10.0・・・(1)
    An organic electroluminescence device in which a first electrode including at least a fine metal wire formed in a pattern and a transparent conductive layer, an organic functional layer, and a second electrode are sequentially laminated on a transparent substrate,
    In the cut surface when the organic electroluminescence element is cut perpendicularly to the transparent substrate along the line width direction of the fine metal wires, both end portions of the portion where the thickness of the fine metal wires is maximum in the line width direction A point E, a line segment M 1 E, and a line segment M are points where a perpendicular bisector of the point M 1, the point M 2 , and the line segment M 1 M 2 intersects the interface between the organic functional layer and the second electrode 2 An organic electroluminescence device satisfying the following conditional expression (1), where an angle formed by E is an angle θ.
    1.5 ≦ tan (θ / 2) ≦ 10.0 (1)
  2.  前記第1電極が、少なくとも前記透明基板側から前記パターン状に形成された金属細線、前記透明導電層の順に積層されて構成されている請求項1に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1, wherein the first electrode is configured by laminating at least the metal thin wires formed in the pattern shape from the transparent substrate side and the transparent conductive layer in this order.
  3.  前記角θが、下記条件式(2)を満たす請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
     1.5≦tan(θ/2)≦5.0・・・(2)
    The organic electroluminescent element according to claim 1, wherein the angle θ satisfies the following conditional expression (2).
    1.5 ≦ tan (θ / 2) ≦ 5.0 (2)
  4.  前記透明導電層に、金属酸化物が含有されている請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to any one of claims 1 to 3, wherein the transparent conductive layer contains a metal oxide.
  5.  前記透明基板が、透明樹脂基板である請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence element according to any one of claims 1 to 4, wherein the transparent substrate is a transparent resin substrate.
  6.  前記有機機能層の厚さが、100~500nmの範囲内である請求項1から請求項5までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to any one of claims 1 to 5, wherein the thickness of the organic functional layer is in a range of 100 to 500 nm.
  7.  前記第1電極が、前記透明基板側からフッ素含有樹脂層、前記パターン状に形成された金属細線、前記透明導電層の順に積層されて構成されている請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The said 1st electrode is any one of Claim 1-6 comprised by laminating | stacking in order of the fluorine-containing resin layer from the said transparent substrate side, the metal fine wire formed in the said pattern shape, and the said transparent conductive layer. The organic electroluminescence device according to one item.
  8.  前記透明基板と前記第1電極との間に、密着層が設けられている請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to any one of claims 1 to 7, wherein an adhesion layer is provided between the transparent substrate and the first electrode.
  9.  前記密着層に、チオール基を有する化合物、アミノエチル基を有するポリ(メタ)アクリレート及びアミノエチル基を有するポリ(メタ)アクリルアミドから選択される化合物が含有されている請求項8に記載の有機エレクトロルミネッセンス素子。 The organic electro according to claim 8, wherein the adhesion layer contains a compound selected from a compound having a thiol group, a poly (meth) acrylate having an aminoethyl group, and a poly (meth) acrylamide having an aminoethyl group. Luminescence element.
  10.  前記透明基板と前記第1電極との間に、光学散乱層が設けられている請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to any one of claims 1 to 7, wherein an optical scattering layer is provided between the transparent substrate and the first electrode.
PCT/JP2017/042143 2016-12-16 2017-11-24 Organic electroluminescence element WO2018110244A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556530A JP7093725B2 (en) 2016-12-16 2017-11-24 Organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244018 2016-12-16
JP2016-244018 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018110244A1 true WO2018110244A1 (en) 2018-06-21

Family

ID=62558293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042143 WO2018110244A1 (en) 2016-12-16 2017-11-24 Organic electroluminescence element

Country Status (2)

Country Link
JP (1) JP7093725B2 (en)
WO (1) WO2018110244A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004493A1 (en) * 2020-06-30 2022-01-06 Agc株式会社 Conductive film, optoelectronic element and conductive film manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266596A (en) * 2006-03-02 2007-10-11 Semiconductor Energy Lab Co Ltd Circuit pattern and method for manufacturing thin-film transistor, and electronic device mounted with the thin-film transistor
JP2010228412A (en) * 2009-03-30 2010-10-14 Fujifilm Corp Gas barrier film and method for manufacturing barrier laminate
JP2015518234A (en) * 2012-03-23 2015-06-25 エルジー・ケム・リミテッド Substrates for organic electronic devices
JP2016068463A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Manufacturing method of functional element and functional element member
WO2016163215A1 (en) * 2015-04-09 2016-10-13 コニカミノルタ株式会社 Organic electroluminescent element
JP2016207522A (en) * 2015-04-24 2016-12-08 コニカミノルタ株式会社 Phototherapy apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115220A (en) * 2001-10-05 2003-04-18 Bridgestone Corp Transparent conductive film and touch panel
JP5057652B2 (en) * 2004-03-24 2012-10-24 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
JP2006207522A (en) * 2005-01-31 2006-08-10 Sanyo Electric Co Ltd Electric fan
JP2009158691A (en) * 2007-12-26 2009-07-16 Sharp Corp Organic device and manufacturing method thereof
KR101542285B1 (en) * 2010-10-20 2015-08-07 주식회사 엘지화학 Pressure-sensitive adhesive composition for touch panel
JP6313109B2 (en) * 2014-04-25 2018-04-18 株式会社ブリヂストン Pneumatic tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266596A (en) * 2006-03-02 2007-10-11 Semiconductor Energy Lab Co Ltd Circuit pattern and method for manufacturing thin-film transistor, and electronic device mounted with the thin-film transistor
JP2010228412A (en) * 2009-03-30 2010-10-14 Fujifilm Corp Gas barrier film and method for manufacturing barrier laminate
JP2015518234A (en) * 2012-03-23 2015-06-25 エルジー・ケム・リミテッド Substrates for organic electronic devices
JP2016068463A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Manufacturing method of functional element and functional element member
WO2016163215A1 (en) * 2015-04-09 2016-10-13 コニカミノルタ株式会社 Organic electroluminescent element
JP2016207522A (en) * 2015-04-24 2016-12-08 コニカミノルタ株式会社 Phototherapy apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004493A1 (en) * 2020-06-30 2022-01-06 Agc株式会社 Conductive film, optoelectronic element and conductive film manufacturing method

Also Published As

Publication number Publication date
JPWO2018110244A1 (en) 2019-10-24
JP7093725B2 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP6783294B2 (en) Transparent electrode and organic electronic device equipped with it
JP2010049210A (en) Coating composition, method for producing the same, translucent light-scattering film, organic electroluminescence display element and planar light source
JP2009259792A (en) Organic el display device
EP3185249B1 (en) Transparent electrode, method for producing transparent electrode and electronic device
WO2018190010A1 (en) Organic electroluminescent element
JP2022010127A (en) Method for manufacturing gas barrier film, method for manufacturing transparent conductive member, and method for manufacturing organic electroluminescent element
WO2015012108A1 (en) Electronic device and method for manufacturing same
WO2018110244A1 (en) Organic electroluminescence element
JP6201807B2 (en) Method for manufacturing organic light emitting device and organic light emitting device
JP5239145B2 (en) Optical component and manufacturing method thereof
JP2008117735A (en) Optical component and organic el (electroluminescence) display element using it
WO2016163215A1 (en) Organic electroluminescent element
KR102287519B1 (en) Electronic devices and organic electroluminescent devices
JP6793654B2 (en) A method for manufacturing a transparent electrode, an organic electronic device, a transparent electrode, and a method for manufacturing an organic electronic device.
JP6802842B2 (en) Manufacturing method of transparent electrode
Lee et al. Enhanced light extraction from organic light-emitting diodes using a quasi-periodic nano-structure
JP2004303562A (en) Substrate for organic electroluminescent element
JP6927968B2 (en) Transparent conductive member and organic electroluminescence element
JP2018198180A (en) Organic electroluminescent element
JP2017107707A (en) Transparent electrode and organic electronic device
JP2016225092A (en) Laminated organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879942

Country of ref document: EP

Kind code of ref document: A1