WO2016163215A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2016163215A1
WO2016163215A1 PCT/JP2016/058274 JP2016058274W WO2016163215A1 WO 2016163215 A1 WO2016163215 A1 WO 2016163215A1 JP 2016058274 W JP2016058274 W JP 2016058274W WO 2016163215 A1 WO2016163215 A1 WO 2016163215A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon
metal
gas barrier
light
Prior art date
Application number
PCT/JP2016/058274
Other languages
French (fr)
Japanese (ja)
Inventor
井 宏元
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017511520A priority Critical patent/JPWO2016163215A1/en
Publication of WO2016163215A1 publication Critical patent/WO2016163215A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention relates to an organic electroluminescence element provided on a gas barrier film.
  • Organic electroluminescence devices using organic electroluminescence are thin-film, completely solid-state devices that can emit light at a low voltage of several volts to several tens of volts. It has many excellent features such as high luminous efficiency, thinness and light weight. For this reason, organic EL using a gas barrier film having a gas barrier layer on a thin and light resin substrate in recent years, particularly as backlights for various displays, display boards such as signboards and emergency lights, and surface light emitters such as illumination light sources. Devices are drawing attention.
  • a method for producing a gas barrier film in which a gas barrier layer is formed by applying energy to a precursor layer formed by applying a solution on a substrate is also examined.
  • a method for producing a gas barrier film in which a gas barrier layer is formed by applying energy to a precursor layer formed by applying a solution on a substrate is also examined.
  • studies using a polysilazane compound as a precursor of a gas barrier layer barrier layer have been widely conducted, and studies are being conducted as a technique for achieving both high productivity and barrier properties by coating.
  • a gas barrier layer obtained by modifying a polysilazane compound using excimer light having a wavelength of 172 nm has been attracting attention.
  • a molded body having a layer in which hydrocarbon compound ions are implanted in a layer containing the polysilazane compound has been proposed (for example, see Patent Document 1).
  • a solution containing polysilazane and a catalyst on a substrate removing the solvent to form a polysilazane layer, VUV radiation containing a wavelength component of less than 230 nm and a wavelength of 230 to 300 nm in an atmosphere containing water vapor
  • a method has been proposed in which a polysilazane layer is modified by irradiating UV radiation containing components to form a gas barrier layer on a substrate (see, for example, Patent Document 2).
  • a polysilazane-modified film is formed multiple times by repeating the process of applying polysilazane on a resin substrate to form a polymer film having a film thickness of 250 nm or less and the process of irradiating the polymer film with vacuum ultraviolet light.
  • a method for producing a flexible gas barrier film has been proposed (see, for example, Patent Document 3).
  • the organic EL device using the gas barrier film described above has good storage stability at a low temperature up to about 40 ° C., but has high storage stability in a very severe environment of high temperature and high humidity such as 80 ° C. and 85% RH. It will decline. For this reason, when the above-mentioned gas barrier film is used, the reliability of the organic EL element cannot be ensured.
  • the present invention provides a highly reliable organic electroluminescence device using a gas barrier film having excellent reliability.
  • the organic electroluminescence device of the present invention includes a gas barrier film having a gas barrier layer formed on a resin substrate, a light scattering layer provided on the gas barrier film, and a smoothing provided on the light scattering layer.
  • An internal light extraction layer comprising layers, a first electrode and a second electrode provided on the internal light extraction layer, and a light emitting unit sandwiched between the first electrode and the second electrode.
  • the gas barrier layer includes a metal-containing layer containing a compound of at least one metal selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al, and a silicon-containing layer containing silicon and nitrogen And have.
  • a highly reliable organic electroluminescence element can be provided.
  • FIG. 1 shows a schematic configuration diagram (cross-sectional view) of an organic EL element.
  • the organic EL element 10 shown in FIG. 1 includes a gas barrier film 20 and an internal light extraction layer that is provided on the gas barrier film 20 and includes a light scattering layer 14 and a smoothing layer 11. Furthermore, on the smoothing layer 11, the 1st electrode 12, the light emission unit 13, and the 2nd electrode 15 are laminated
  • An extraction electrode 16 is provided at the end of the first electrode 12.
  • the first electrode 12 and an external power source (not shown) are electrically connected via the extraction electrode 16.
  • the auxiliary electrode 18 may be provided in contact with the first electrode 12.
  • the layer structure of the light emitting unit 13 is not limited and may be a general layer structure.
  • the first electrode 12 functions as an anode (that is, an anode) and the second electrode 15 functions as a cathode (that is, a cathode) will be described.
  • the light-emitting unit 13 has a configuration in which a hole injection layer 13a / a hole transport layer 13b / a light-emitting layer 13c / an electron transport layer 13d / an electron injection layer 13e are stacked in this order from the first electrode 12 side that is an anode.
  • the 1st electrode 12 functions as a cathode (namely, cathode)
  • stacking order of the light emission unit 13 becomes said reverse.
  • the light-emitting unit 13 having the above-described configuration has at least a light-emitting layer 13c formed using an organic material.
  • the hole injection layer 13a and the hole transport layer 13b may be provided as a hole transport injection layer.
  • the electron transport layer 13d and the electron injection layer 13e may be provided as an electron transport injection layer.
  • the electron injection layer 13e may be made of an inorganic material.
  • the light-emitting unit 13 may have a hole blocking layer, an electron blocking layer, or the like stacked as necessary.
  • the light emitting layer 13c may have a structure in which each color light emitting layer that generates light emitted in each wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting intermediate layer.
  • the intermediate layer may function as a hole blocking layer and an electron blocking layer.
  • the second electrode 15 as the cathode may also have a laminated structure as necessary. In such a configuration, only a portion where the light emitting unit 13 is sandwiched between the first electrode 12 and the second electrode 15 becomes a light emitting region in the organic EL element 10.
  • the gas barrier film 20 includes a resin base material 21 and a gas barrier layer 22 provided on the resin base material 21.
  • the gas barrier layer 22 includes a silicon-containing layer 23 provided on the resin base material 21 and a metal-containing layer 24 provided on the silicon-containing layer 23.
  • the silicon-containing layer 23 is formed of a silicon compound containing silicon and nitrogen.
  • the metal-containing layer 24 is formed including a metal compound containing at least one metal M selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al.
  • the silicon-containing layer 23 and the metal-containing layer 24 of the gas barrier layer 22 when the silicon atom composition ratio is set to 100 in the atomic composition distribution profile obtained when XPS composition analysis is performed in the layer thickness direction.
  • the silicon-containing layer 23 and the metal-containing layer 24 are preferably in contact via the region A.
  • the region A preferably has a region having an oxygen atom composition ratio of 40 or more and 300 or less when the silicon atom composition ratio is 100.
  • the organic EL element 10 is configured to extract the generated light (emitted light h) at least from the gas barrier film 20 side.
  • the organic EL element 10 having such a configuration is sealed on a gas barrier film 20 with a sealing member 17 described later for the purpose of preventing deterioration of the light emitting unit 13 configured using an organic material or the like. Yes.
  • the sealing member 17 is fixed to the gas barrier film 20 side through an adhesive layer 19.
  • the terminal portions of the first electrode 12 (extraction electrode 16) and the second electrode 15 are provided in a state of being exposed from the sealing member 17 on the gas barrier film 20 while maintaining insulation from each other by the light emitting unit 13. It has been.
  • the gas barrier film 20 includes a resin base material 21 and a gas barrier layer 22 provided on the resin base material 21.
  • the gas barrier layer 22 includes a metal-containing layer 24 containing at least one compound of metal M selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al, and silicon and nitrogen.
  • a silicon-containing layer 23 is a metal-containing layer 24 containing at least one compound of metal M selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al, and silicon and nitrogen.
  • the silicon-containing layer 23 and the metal-containing layer 24 are in this order. It may be.
  • the metal-containing layer 24 and the silicon-containing layer 23 may be formed on both surfaces of the substrate.
  • another layer may be disposed between the resin base material 21 and each layer or on each layer.
  • the gas barrier layer 22 has a composition SiM x N y in the vicinity of the interface between the metal-containing layer 24 and the silicon-containing layer 23 in the atomic composition distribution profile obtained when XPS composition analysis in the thickness direction is performed. ) And formula (2).
  • the gas barrier film 20 having the gas barrier layer 22 having such a configuration is excellent in durability in a high temperature and high humidity environment.
  • the gas barrier layer 22 is formed of a coating solution in which the silicon-containing layer 23 contains polysilazane, and the region A satisfies the following formula (3).
  • the region A is a region where silicon atoms and metal atoms are present at the same time, and the gas barrier film 20 has a high gas barrier property when the ratio of metal atom / silicon atom is 0.2 or more and 3.0 or less. Is expressed.
  • the ratio of metal atom / silicon atom is preferably 0.5 or more and 2.0 or less.
  • the region A has a region having an oxygen atom composition ratio of 40 or more and 300 or less when the silicon atom composition ratio is 100.
  • the oxygen atom composition ratio is preferably 100 or more and 200 or less.
  • the gas barrier layer 22 has a particularly high gas barrier property when the silicon-containing compound used for forming the silicon-containing layer 23 contains polysilazane.
  • the ratio of metal atoms / silicon atoms is 0.2 or more and 3.0 or less, and nitrogen atoms
  • the ratio of / silicon atom is 0.05 or more and 0.6 or less, extremely high gas barrier properties can be obtained.
  • the ratio of nitrogen atom / silicon atom is less than 0.05, the content ratio of polysilazane contained in the silicon-containing layer 23 is low, or the polysilazane is modified to reduce silicon-nitrogen bonds. It is thought to decline. Also, when the ratio of nitrogen atom / silicon atom exceeds 0.6, the amount of silicon atom and metal atom are relatively decreased and the silicon-metal bond is also decreased by the increase of nitrogen atom. It is considered that the gas barrier property is lowered.
  • silicon-nitrogen bond (Si-N bond) of polysilazane is in contact with a metal atom formed by a method such as a vapor phase film-forming method, energy such as vacuum ultraviolet light is applied in contact with the metal atom. Therefore, it is considered that the silicon-metal bond is easily changed. For this reason, it is considered that a significantly higher gas barrier property can be obtained than when other silicon-containing compounds having no silicon-nitrogen bond are used.
  • region A is an integral multiple of 2.5 nm because a depth profile is obtained every 2.5 nm in the depth direction in terms of SiO 2 in the XPS composition analysis shown below. Moreover, when the area
  • control of the composition and thickness of such a region A is compared between the formation of the metal-containing layer 24 (or silicon-containing layer 23) and the formation of the silicon-containing layer 23 (or metal-containing layer 24). It can be carried out by a method such as storing the film under conditions of low temperature and humidity, or storing it in a dry nitrogen atmosphere.
  • the region A has the region B represented by the following formula (4). Is preferred.
  • the above equation (4) means that the total number of bonds of O and N is less than the total number of bonds of Si and M.
  • (4 + ax) ⁇ (3y + 2z) in the above formula (4) exceeds 0, it is considered that a direct bond between Si and M is formed. It is considered that as the value of (4 + ax) ⁇ (3y + 2z) increases, the ratio of direct bonding between Si and M increases, the density of the composition in region A increases, and the gas barrier properties are further improved. Therefore, (4 + ax) ⁇ (3y + 2z) in the region B is more preferably 1 or more, further preferably 2 or more, and particularly preferably 3 or more. In addition, when the area
  • Control of the value of (4 + ax) ⁇ (3y + 2z) is, for example, in the case where the formation of the layer containing the metal M is performed by sputtering, for example, a metal as a target or a metal in which oxygen is lost stoichiometrically This can be done by using an oxide and appropriately adjusting the amount of oxygen introduced during sputtering.
  • the position where the region B is formed is not particularly limited, but is preferably in the vicinity of the interface between the region A and the metal-containing layer 24 or in the vicinity of the interface between the region A and the silicon-containing layer 23. If the region B is formed in the vicinity of these interfaces, it means that a co-oxynitride layer of Si and metal M is formed at the interface between the metal-containing layer 24 and the silicon-containing layer 23. This is because the co-oxynitride layer of Si and M is considered to exhibit high wet heat resistance.
  • the composition of the region A and the region B can be measured by the following method.
  • XPS composition analysis a composition distribution profile in the thickness direction is measured in the vicinity of the interface between the metal-containing layer 24 and the silicon-containing layer 23, and the composition is indicated by SiM x N y O z At this time, it is determined whether or not the region A is present from the relationship between x and y. If the area A is included, the value of (4 + ax) ⁇ (3y + 2z) is obtained to determine whether or not the area B is further included.
  • the gas barrier layer 22 having the above-described structure exhibits a durability effect in a high-temperature and high-humidity environment is unclear, the following mechanism is conceivable. In addition, the following mechanism is speculative and is not limited to the following mechanism.
  • the gas barrier layer 22 is presumed to exhibit gas barrier properties by forming a high-density region A in which silicon atoms and metal atoms are present simultaneously and silicon atoms and metal atoms are directly bonded. Even if the ratio of metal atom / silicon atom is less than 0.2 or more than 3.0, the bond between the silicon atom and the metal atom is reduced, so that the barrier property is considered to be lowered.
  • the silicon-containing layer 23 obtained by applying a coating liquid containing a silicon-containing compound and drying exhibits gas barrier properties by having a specific composition.
  • the silicon-containing layer 23 formed by this manufacturing method unlike the case where it is formed by the vapor phase film forming method, foreign substances such as particles are hardly mixed at the time of film formation, and a gas barrier layer with very few defects can be formed. It becomes possible.
  • the silicon-containing layer 23 containing silicon and nitrogen exhibits gas barrier properties by having a specific composition.
  • the silicon-containing layer 23 is not completely stable against oxidation, and may be gradually oxidized in a high-temperature and high-humidity environment, resulting in a decrease in gas barrier properties.
  • the gas barrier film 20 has a metal-containing layer 24 together with the silicon-containing layer 23, and has the region A in the vicinity of the interface between the silicon-containing layer 23 and the metal-containing layer 24. Since the metal-containing layer 24 is more easily oxidized than the silicon-containing layer 23, the metal-containing layer 24 is oxidized first and the oxidation of the silicon-containing layer 23 is suppressed. For this reason, it is thought that the gas barrier film 20 is excellent in durability in a high temperature and high humidity environment. That is, it is considered that the gas barrier film 20 has the region A, whereby the durability under a high temperature and high humidity environment is particularly improved.
  • resin substrate 21 Specific examples of the resin substrate 21 include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyether.
  • base materials containing a thermoplastic resin such as a ring-modified polycarbonate resin, a fluorene ring-modified polyester resin, and an acryloyl compound.
  • the resin base material 21 can be used individually or in combination of 2 or more types.
  • the resin substrate 21 is preferably made of a material having heat resistance. Specifically, a material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
  • Tg glass transition temperature
  • the Tg and linear expansion coefficient of the resin base material 21 can be adjusted by an additive or the like.
  • the gas barrier film 20 When producing the organic EL element 10 using the gas barrier film 20, the gas barrier film 20 may be exposed to a process of 150 ° C. or higher. In this case, when the linear expansion coefficient of the base material in the gas barrier film 20 exceeds 100 ppm / K, the substrate dimensions are not stabilized in the above-described thermal process, and the barrier performance is deteriorated with thermal expansion and contraction. Or it is easy to produce the malfunction that it cannot endure a heat process. If the linear expansion coefficient of the resin base material 21 is less than 15 ppm / K, it may break like the gas barrier film 20 glass and the flexibility may deteriorate.
  • a transparent resin base material 21 is used. That is, the resin substrate 21 having a light transmittance of usually 80% or more, preferably 85% or more, more preferably 90% or more is used.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using an integrating sphere light transmittance measuring device described in JIS K7105: 1981, and subtracting the diffuse transmittance from the total light transmittance. Apply.
  • an opaque material can be used as the resin base material 21.
  • the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
  • the resin base material 21 may be an unstretched film or a stretched film.
  • the resin base material 21 can be manufactured by a conventionally known general method. Regarding the production method of these base materials, the matters described in paragraphs [0051] to [0055] of International Publication No. 2013/002026 can be appropriately employed.
  • the surface of the resin base material 21 may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatment as necessary. May be performed in combination.
  • the resin substrate 21 may be a single layer or a laminated structure of two or more layers.
  • the resin base materials 21 may be of the same type or different types.
  • the thickness of the resin base material 21 (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 ⁇ m, and more preferably 20 to 150 ⁇ m.
  • the silicon-containing layer 23 is formed using a silicon-containing compound containing silicon and nitrogen.
  • the silicon-containing layer 23 is obtained by applying and drying a coating solution containing a silicon-containing compound (silicon-containing coating solution).
  • the silicon-containing layer 23 may be a single layer or a laminated structure of two or more layers.
  • silicon-containing compound examples include polysiloxane, polysilsesquioxane, polysilazane, polysiloxazan, polysilane, polycarbosilane, and the like. Among these, it is preferable to have at least one selected from the group consisting of a silicon-nitrogen bond, a silicon-hydrogen bond, and a silicon-silicon bond.
  • the silicon-containing compound is a polysilazane having a silicon-nitrogen bond and a silicon-hydrogen bond, a polysiloxazan having a silicon-nitrogen bond, a polysiloxane having a silicon-hydrogen bond, and a polysilsesqui having a silicon-hydrogen bond.
  • Oxane, polysilane having a silicon-silicon bond can be used.
  • polysiloxane examples include compounds described in paragraphs [0093] to [0121] of JP2012-116101A.
  • hydrogenated (hydrogen) polysiloxane is particularly preferable.
  • polysilane is not particularly limited, and may be a non-cyclic polysilane (linear polysilane, branched polysilane, network polysilane, etc.), a homopolymer such as cyclic polysilane, a random copolymer, It may be a copolymer such as a block copolymer, an alternating copolymer, or a comb copolymer.
  • the terminal group (terminal substituent) of the polysilane may be a hydrogen atom, a halogen atom (such as a chlorine atom), an alkyl group, a hydroxyl group, an alkoxy group, or a silyl group. May be.
  • polysilanes include polydialkylsilanes such as polydimethylsilane, poly (methylpropylsilane), poly (methylbutylsilane), poly (methylpentylsilane), poly (dibutylsilane), poly (dihexylsilane), poly Copolymers of polydiarylsilanes such as (diphenylsilane), homopolymers such as poly (alkylarylsilane) such as poly (methylphenylsilane), dialkylsilanes such as dimethylsilane-methylhexylsilane copolymer and other dialkylsilanes Polymers, arylsilane-alkylarylsilane copolymers such as phenylsilane-methylphenylsilane copolymer, dimethylsilane-methylphenylsilane copolymer, dimethylsilane-phenylhexylsilane copolymer, dimethylmethyls
  • Polycarbosilane is a polymer compound having a (—Si—C—) bond in the main chain in the molecule.
  • As polycarbosilane what contains the repeating unit represented by following formula (d) is preferable.
  • Rw and Rv each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, an aryl group, an alkenyl group, or a monovalent heterocyclic group.
  • a plurality of Rw and Rv may be the same or different.
  • R represents an alkylene group, an arylene group or a divalent heterocyclic group.
  • the weight average molecular weight of the polycarbosilane having a repeating unit represented by the formula (d) is usually from 400 to 12,000.
  • the heterocyclic ring of the monovalent heterocyclic group of Rw and Rv is not particularly limited as long as it is a 3- to 10-membered cyclic compound containing at least one hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in addition to a carbon atom.
  • the monovalent heterocyclic group include 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-thienyl group, 3-thienyl group, 2-furyl group, 3-furyl group, and 3-pyrazolyl.
  • alkylene group of R examples include alkylene groups having 1 to 10 carbon atoms such as a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and an octamethylene group.
  • arylene group examples include arylene groups having 6 to 20 carbon atoms such as a p-phenylene group, a 1,4-naphthylene group, and a 2,5-naphthylene group.
  • the alkylene group and arylene group of R may have a substituent such as an alkyl group, an aryl group, an alkoxy group, or a halogen atom at an arbitrary position.
  • the divalent heterocyclic group for R may be a divalent group derived from a 3- to 10-membered heterocyclic compound containing at least one hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in addition to a carbon atom.
  • the divalent heterocyclic group include thiophene diyl groups such as 2,5-thiophenediyl group, frangyl groups such as 2,5-furandiyl group, and selenophene such as 2,5-selenophenediyl group.
  • Diyl group pyrrole diyl group such as 2,5-pyrrole diyl group, 2,5-pyridinediyl group, pyridinediyl group such as 2,6-pyridinediyl group, 2,5-thieno [3,2-b] thiophenediyl group Thienothiophene diyl group such as 2,5-thieno [2,3-b] thiophenediyl group, Quinoline diyl group such as 2,6-quinolinediyl group, 1,4-isoquinolinediyl group, 1,5-isoquinolinediyl group, etc.
  • Isoquinolinediyl group quinoxalinediyl group such as 5,8-quinoxalinediyl group, and benzo [4,7-benzo [1,2,5] thiadiazolediyl group , 2,5] thiadiazole diyl group, benzothiazole diyl group such as 4,7-benzothiazole diyl group, carbazole diyl group such as 2,7-carbazole diyl group, 3,6-carbazole diyl group, 3,7-phenoxy Phenoxazinediyl group such as sazinediyl group, phenothiazinediyl group such as 3,7-phenothiazinediyl group, dibenzosiloldiyl group such as 2,7-dibenzosiloldiyl group, 2,6-benzo [1,2-b: 4,5-b ′] dithiophenediyl group, 2,6-benzo [1,2-b: 5,4-b ′] dithi
  • Rw and Rv are each independently a hydrogen atom, an alkyl group or an aryl group
  • polycarbosilane containing a repeating unit in which R is an alkylene group or an arylene group is more preferable.
  • polycarbosilane containing a repeating unit in which Rw and Rv are each independently a hydrogen atom or an alkyl group and R is an alkylene group is preferable.
  • polysilazane is more preferable.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • polysilazane preferably has a structure represented by the following general formula (I).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different.
  • n is an integer, and is preferably determined so that the polysilazane having the structure represented by the general formula (I) has a number average molecular weight of 150 to 150,000 g / mol. .
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • the polysilazane preferably has a structure represented by the following general formula (II).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. Is preferred. Note that n ′ and p may be the same or different.
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom
  • R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group
  • R 5' compound represents a vinyl group
  • R 1 ', R 3' , A compound in which R 4 ′ and R 6 ′ each represent a hydrogen atom and R 2 ′ and R 5 ′ each represent a methyl group is preferred.
  • the polysilazane preferably has a structure represented by the following general formula (III).
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • n ′′, p ′′ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. Preferably, it is defined. Note that n ′′, p ′′, and q may be the same or different.
  • R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
  • R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
  • R 9 ′′ represents a (triethoxysilyl) propyl group
  • R 7 ′′ represents an alkyl group or a hydrogen atom.
  • the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. And toughness can be imparted to the ceramic film made of brittle polysilazane. For this reason, even when the film thickness (average) of the silicon-containing layer 23 is increased, there is an advantage that generation of cracks can be suppressed. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Polysilazane is commercially available in a solution in an organic solvent, and a commercially available product can be used as it is as a silicon-containing coating solution for forming the silicon-containing layer 23.
  • Examples of commercially available polysilazane solutions include NN120, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd. It is done. These polysilazane solutions can be used alone or in combination of two or more.
  • polysilazane used for forming the silicon-containing layer 23 As another example of polysilazane used for forming the silicon-containing layer 23, the following polysilazane can be mentioned.
  • a silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide with the above polysilazane Japanese Patent Laid-Open No. 5-238827
  • a glycidol-added polysilazane obtained by reacting glycidol Japanese Patent Laid-Open No.
  • JP-A-6-240208 an alcohol Alcohol-added polysilazane obtained by reaction
  • metal carboxylate-added polysilazane JP-A-6-299118
  • JP-A-6-306329 an acetylacetonate complex containing a metal Acetylacetonate complex-added polysilazane
  • JP-A-7-196986 metal-silica-added polysilazane
  • the polysilazane content in the silicon-containing layer 23 before irradiation with vacuum ultraviolet rays is 100% by mass when the total mass of the silicon-containing layer 23 is 100% by mass. Can do.
  • the silicon-containing layer 23 before vacuum ultraviolet irradiation contains things other than polysilazane, it is preferable that the content rate of the polysilazane in a layer is 10 to 99 mass%, and is 40 to 95 mass%. More preferably, it is 70 mass% or less and 95 mass% or less.
  • the solvent for preparing the coating liquid (silicon-containing coating liquid) for forming the silicon-containing layer 23 is not particularly limited as long as it can dissolve the silicon-containing compound.
  • the solvent an organic solvent which does not contain water and reactive groups (for example, hydroxyl group or amine group) that easily react with the silicon-containing compound and is inert to the silicon-containing compound is preferable. Protic organic solvents are more preferred.
  • the solvent includes an aprotic solvent, for example, an aliphatic hydrocarbon such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and terpene, and a hydrocarbon such as alicyclic hydrocarbon and aromatic hydrocarbon.
  • an aprotic solvent for example, an aliphatic hydrocarbon such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and terpene
  • a hydrocarbon such as alicyclic hydrocarbon and aromatic hydrocarbon.
  • Solvents such as methylene chloride and trichloroethane, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran, ethers such as alicyclic ethers Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of the silicon-containing compound in the silicon-containing coating solution is not particularly limited.
  • the concentration of the silicon-containing compound in the silicon-containing coating solution varies depending on the thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass, and still more preferably 10 to 40% by mass. %.
  • the silicon-containing coating solution contains a catalyst for promoting the modification.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N , N ′, N′-tetramethyl-13-diaminopropane, amine catalysts such as N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propionic acid Examples thereof include Pd compounds such as Pd, metal catalysts such as Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the silicon compound. By setting the amount of catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
  • the following additives can be used as necessary.
  • cellulose ethers such as ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, natural resin, rubber, rosin resin, synthetic resin, polymerization resin, condensation resin, aminoplast, urea resin Melamine formaldehyde resin, alkyd resin, acrylic resin, polyester resin, modified polyester resin, epoxy resin, polyisocyanate, blocked polyisocyanate, polysiloxane and the like.
  • the coating film After applying the coating solution, the coating film is dried. By drying the coating film, the organic solvent contained in the coating film is removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable silicon-containing layer 23 can be obtained. The remaining solvent is removed later.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C.
  • the drying temperature is set to 150 ° C. or lower in consideration of deformation of the resin base material 21 due to heat. Is preferred.
  • the temperature is set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the coating film obtained by applying the silicon-containing coating solution may include a step of removing moisture before irradiation with vacuum ultraviolet rays or during irradiation with vacuum ultraviolet rays.
  • a method for removing moisture a form in which the coating film is retained and dehumidified in a low humidity environment is preferable. Since humidity in a low-humidity environment varies with temperature, the relationship between temperature and humidity shows a preferred form by defining the dew point temperature.
  • a preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), and a more preferable dew point temperature is ⁇ 5 ° C. or lower (temperature 25 ° C./humidity 10%).
  • the dew point temperature is ⁇ 5 ° C. or lower and the maintaining time is 1 minute or longer.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher, and preferably ⁇ 40 ° C. or higher. This is a preferable form from the viewpoint of promoting the dehydration reaction of the silicon-containing layer 23 converted to silanol by removing water before or during the modification treatment.
  • the coating film containing the silicon-containing compound formed as described above can be used as it is as the silicon-containing layer 23, but the obtained coating film is irradiated with vacuum ultraviolet rays to form silicon oxynitride or the like. It is preferable to form the silicon-containing layer 23 by carrying out a conversion reaction.
  • the gas barrier layer 22 having the silicon-containing layer 23 and the metal-containing layer 24 is subjected to vacuum ultraviolet irradiation to perform from the formation of the silicon-containing layer 23 to the formation of the metal-containing layer 24. It is difficult for gas barrier properties to deteriorate due to environmental effects.
  • the vacuum barrier irradiation improves the gas barrier property, so that the vacuum ultraviolet irradiation is preferably performed. .
  • Vacuum ultraviolet irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the resin substrate 21 to be used.
  • it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source.
  • the ultraviolet baking furnace itself is generally known.
  • an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • an ultraviolet-ray can be continuously irradiated in the drying zone which equipped the ultraviolet-ray generation source, conveying this.
  • the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the substrate used and the composition and concentration of the silicon-containing layer 23.
  • the modification by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm which is larger than the interatomic bonding force in the silicon-containing compound (especially polysilazane compound).
  • light energy having a wavelength of 100 to 180 nm is used.
  • an oxidative reaction with active oxygen or ozone is advanced while the atoms are directly cut by the action of only photons called photon processes.
  • a film containing silicon oxynitride can be formed at a relatively low temperature (about 200 ° C. or less).
  • the vacuum ultraviolet ray source may be any source that generates light having a wavelength of 100 to 180 nm.
  • an excimer radiator eg, an Xe excimer lamp
  • a low pressure mercury vapor lamp having an emission line at about 185 nm
  • a medium and high pressure mercury vapor lamp having a wavelength component of 230 nm or less
  • Excimer lamp with maximum emission at 222 nm is an excimer radiator having a maximum emission at about 172 nm, a low pressure mercury vapor lamp having an emission line at about 185 nm, a medium and high pressure mercury vapor lamp having a wavelength component of 230 nm or less.
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. Moreover, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds.
  • the coating film can be modified in a short time by the high energy of the active oxygen, ozone and ultraviolet radiation.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power. Further, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated at a short wavelength in the ultraviolet region, so that an increase in the surface temperature of the irradiation object can be suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
  • the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 10 to 20000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10000 volume ppm (0.005 to 1 volume%). More preferred.
  • the water vapor concentration at the time of irradiation with vacuum ultraviolet rays is preferably in the range of 1000 to 4000 ppm by volume.
  • the gas satisfying the irradiation atmosphere used for the vacuum ultraviolet irradiation is preferably a dry inert gas, and particularly preferably a dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet ray on the coating surface received by the coating film is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. and further preferably 50mW / cm 2 ⁇ 160mW / cm 2. If it is 1 mW / cm 2 or more, the reforming efficiency is improved. If it is 10 W / cm ⁇ 2 > or less, the ablation which may arise in a coating film and the damage to the resin base material 21 can be reduced.
  • the irradiation energy amount (irradiation amount) of vacuum ultraviolet rays on the surface of the coating film is 0.1 to 10 J / cm 2. Is preferably 0.1 to 7 J / cm 2 , and more preferably 0.1 to 3 J / cm 2 .
  • the irradiation energy amount (irradiation amount) of vacuum ultraviolet rays onto the surface of the coating film is 1 to 10 J / cm 2. Preferably, it is 3-7 J / cm 2 . If it is this range, generation
  • the vacuum ultraviolet rays used for irradiating the surface of the coating film may be generated from plasma formed by a gas containing at least one of CO, CO 2 and CH 4 .
  • a gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but the rare gas or H 2 is used as the main gas. It is preferable to add a small amount of the contained gas.
  • plasma generation methods include capacitively coupled plasma.
  • the gas barrier film 20 includes a silicon-containing layer 23 and a metal-containing layer 24 containing a compound of at least one metal M selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al. Have.
  • the metal-containing layer 24 containing the metal M is more easily oxidized than the silicon-containing layer 23, and suppresses oxidation of the silicon-containing layer 23.
  • the metal-containing layer 24 is preferably formed by a vapor deposition method using a metal compound containing the metal M.
  • the metal compound containing the metal M is not particularly limited, and examples thereof include an oxide, nitride, carbide, oxynitride, or oxycarbide of the metal M. In particular, from the viewpoint of more effectively suppressing oxidation of the silicon-containing layer 23, an oxide of metal M is preferable.
  • the metal compound may be used alone or in combination of two or more.
  • the content of the metal compound in the metal-containing layer 24 is preferably 50% by mass or more, more preferably 80% by mass or more, and 95% by mass or more with respect to the total mass of the metal-containing layer 24. More preferably, it is particularly preferably 98% by mass or more, and most preferably 100% by mass (that is, the metal-containing layer 24 is made of a metal compound).
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, plasma CVD (chemical vapor deposition), and ALD (Atomic Layer). Chemical vapor deposition methods such as Deposition). Among them, it is preferable to use a sputtering method because film formation can be performed without damaging the lower layer and high productivity is obtained.
  • bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used.
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used.
  • the reactive sputtering method is preferable because the metal oxide film can be formed at a high film formation speed by controlling the sputtering phenomenon so as to be in the transition region.
  • a metal oxide thin film can be formed by using a metal for the target and introducing oxygen into the process gas.
  • RF high frequency
  • a metal oxide target can be used.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used.
  • a thin film of a metal compound such as a metal oxide, nitride, nitride oxide, or carbonate can be produced.
  • film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like.
  • a sputtering method using a metal oxide as a target is particularly used because it has a higher film formation rate and higher productivity.
  • the metal-containing layer 24 may be a single layer or a laminated structure of two or more layers. When the metal-containing layer 24 has a laminated structure of two or more layers, the metal compounds contained in the metal-containing layer 24 may be the same or different.
  • the metal-containing layer 24 is considered to be a layer having a function of suppressing the oxidation of the silicon-containing layer 23 and maintaining the gas barrier property, the gas barrier property is not necessarily required. Accordingly, the metal-containing layer 24 can be effective even in a relatively thin layer.
  • the thickness of the metal-containing layer 24 (the total thickness in the case of a laminated structure of two or more layers) is the barrier From the viewpoint of in-plane uniformity of the property, the thickness is preferably 1 to 200 nm, more preferably 2 to 100 nm, and further preferably 3 to 50 nm.
  • the thickness of the metal-containing layer 24 is a barrier property. From the viewpoint of in-plane uniformity, the thickness is preferably 1 to 200 nm, more preferably 2 to 150 nm, and even more preferably 10 to 150 nm.
  • the gas barrier film 20 has a structure of resin base material 21 / silicon-containing layer 23 / metal-containing layer 24, it is preferable to form the silicon-containing layer 23 and then form the metal-containing layer 24.
  • the silicon-containing layer 23 may be modified by vacuum ultraviolet irradiation or not. If the region A is formed, good gas barrier properties can be obtained without performing the vacuum ultraviolet irradiation of the silicon-containing layer 23. For this reason, by not performing the vacuum ultraviolet irradiation, high-speed film formation is possible, and high productivity can be obtained.
  • the modification with the vacuum ultraviolet ray irradiation of the silicon-containing layer 23 at an irradiation energy amount of less than 3J / cm 2, and less than 1 J / cm 2 It is more preferable. Furthermore, an aspect in which the irradiation energy amount is 0 J / cm 2 , that is, the modification is not performed by vacuum ultraviolet irradiation can be preferably selected.
  • the silicon-containing layer 23 when the vacuum ultraviolet irradiation is not performed, the silicon-containing layer 23 is a coating film obtained by applying and drying a coating solution containing a silicon-containing compound at 5 to 40 ° C. It is formed by storing for 1 to 1000 hours under conditions of a relative humidity of 0 to 60% RH. Thereafter, the metal-containing layer 24 is preferably formed.
  • the undesirable change is a decrease in the nitrogen content on the surface of the silicon-containing layer 23 and an increase in the oxygen content due to the reaction between moisture in the atmosphere and polysilazane. Etc.
  • the film thickness per layer of the silicon-containing layer 23 (the total thickness in the case of a laminated structure of two or more layers) is the gas barrier performance. From this point of view, the thickness is preferably 10 to 1000 nm, more preferably 50 to 600 nm, and still more preferably 50 to 300 nm. If it is this range, the balance of gas barrier property and durability becomes favorable and is preferable.
  • the gas barrier film 20 has a structure of resin base material 21 / metal-containing layer 24 / silicon-containing layer 23, after forming the metal-containing layer 24, a coating solution containing a silicon-containing compound is applied and dried. Once formed, the coating is modified by vacuum UV treatment.
  • the effect of suppressing the oxidation of the silicon-containing layer 23 by the metal-containing layer 24 is higher when the silicon-containing layer 23 is modified. For this reason, when it is the structure of the resin base material 21 / metal containing layer 24 / silicon containing layer 23, it is preferable that the silicon containing layer 23 is modified to the lower surface side close to the metal containing layer 24.
  • the thickness of the silicon-containing layer 23 is relatively thin in order to allow 172 nm light to reach the lower surface of the silicon-containing layer 23. It is preferable.
  • the film thickness per layer of the silicon-containing layer 23 (the total thickness in the case of a laminated structure of two or more layers) is preferably 300 nm or less, more preferably 200 nm or less, The thickness is more preferably 150 nm or less, and particularly preferably 100 nm or less.
  • the thickness is preferably 5 nm or more, more preferably 10 nm or more, further preferably 20 nm or more, and particularly preferably 40 nm or more. preferable.
  • the region A can be formed as follows. For example, after the metal-containing layer 24 is formed, it is stored for 1 to 1000 hours under the conditions of 5 to 40 ° C. and relative humidity 0 to 60% RH where the formed metal-containing layer 24 is formed. Thereafter, by forming the silicon-containing layer 23 on the metal-containing layer 24, the gas barrier layer 22 having the region A can be produced.
  • the gas barrier film 20 can be provided with layers having various functions.
  • anchor coat layer For the purpose of improving the adhesion between the resin substrate 21 and the metal-containing layer 24 or the silicon-containing layer 23, the anchor coat layer is formed on the surface of the resin substrate 21 on the side on which the metal-containing layer 24 and the silicon-containing layer 23 are formed. May be formed.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • polyester resins As anchor coating agents used in the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicone resins, alkyl titanates, etc. are used alone. Or it can use in combination of 2 or more types.
  • the anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and the anchor coating is applied by drying and removing the solvent, diluent, etc. Can be formed.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving the adhesive layer 19 property and the like.
  • an anchor coat layer can also be formed for control.
  • the resin base material 21 may have a hard coat layer on the surface (one side or both sides).
  • Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used singly or in combination of two or more.
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray curable resin a material containing a monomer having an ethylenically unsaturated double bond is preferably used. This material is cured by irradiating active energy rays such as ultraviolet rays and electron beams to form a layer containing a cured product of the active energy ray curable resin, that is, a hard coat layer.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. Moreover, you may use the commercially available resin base material 21 in which the hard-coat layer is formed previously.
  • the gas barrier film 20 may have a smoothing layer between the resin base material 21 and the metal-containing layer 24 or the silicon-containing layer 23.
  • the smoothing layer is flattened to flatten the rough surface of the resin substrate 21 where protrusions and the like are present, or to fill the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin substrate 21 To be provided.
  • Such a smoothing layer is basically produced by curing a photosensitive material or a thermosetting material.
  • Examples of the photosensitive material for the smoothing layer include a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, and polyester.
  • Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved.
  • a UV curable organic / inorganic hybrid hard coat material manufactured by JSR Corporation may be mentioned.
  • photosensitive material for the smoothing layer OPSTAR (registered trademark) series can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, Unico manufactured by DIC, Inc. Dick (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic and organic nanocomposite materials manufactured by Nittobo Co., Ltd.
  • thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicon resin.
  • an epoxy resin-based material having heat resistance is particularly preferable.
  • the method for forming the smoothing layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as an evaporation method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary. Further, regardless of the position where the smoothing layer is laminated, in any smoothing layer, an appropriate resin or additive may be used for improving the film forming property and preventing the generation of pinholes in the film.
  • the thickness of the smoothing layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 7 ⁇ m from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. It is preferable.
  • the smoothness of the smoothing layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the ten-point average roughness Rz is preferably 10 nm or more and 30 nm or less.
  • the internal light extraction layer includes a light scattering layer 14 and at least one smoothing layer 11.
  • the light scattering layer 14 preferably contains light scattering particles having an average particle diameter of 0.2 ⁇ m or more and less than 1 ⁇ m and a binder.
  • the smoothing layer 11 is mainly composed of silicon oxide, niobium oxide, silicon nitride, or niobium nitride.
  • the water vapor permeability is preferably less than 0.1 g / (m 2 ⁇ 24 h).
  • the smoothing layer 11 may contain a reaction product of an inorganic silicon compound or an organic silicon compound, or niobium oxide as a main component in order to effectively prevent moisture from entering and lead to a long life of the organic EL element. preferable.
  • the water vapor transmission rate Wg of the gas barrier layer 22, the water vapor transmission rate Ws of the light scattering layer 14, and the water vapor transmission rate Wf of the smoothing layer 11 satisfy the following conditional expression.
  • the absolute value of the water vapor transmission rate Ws of the light scattering layer 14 is low, in principle the gas permeability of the light scattering layer 14 is large and the water vapor transmission rate Ws of the light scattering layer 14 is also large.
  • the organic EL element 10 it is preferable to design the water vapor permeability Wg of the gas barrier layer 22 to be the lowest.
  • a gas barrier layer is provided on the opposite surface (light emission surface side) of the resin base material 21, and basic constituent members of the resin base material 21 / gas barrier layer 22 are provided. Two or more can be used in layers.
  • the layer mainly composed of oxide or nitride of silicon or niobium constituting the smoothing layer 11 is formed by a dry process. It is preferable to form a film. From the viewpoint of improving the smoothness of the smoothing layer 11, it is preferable that the surface side (first electrode 12) of the smoothing layer 11 is formed by a wet process.
  • the refractive index of the smoothing layer 11 is preferably in the range of 1.7 to 3.0.
  • the refractive index of the smoothing layer 11 it is preferable that nanoparticles having a refractive index in the range of 1.7 to 3.0 are contained in the smoothing layer.
  • the smoothing layer 11 includes a plurality of layers. It is preferable to become.
  • each layer may be formed by the same process or may be formed by different processes. Further, they may be formed of the same material or different materials.
  • the deposited layers can be stacked.
  • the layer on the first electrode 12 side is formed by a dry process
  • the layer on the light scattering layer 14 side is formed by a wet process.
  • the smoothing layer 11 is a layer mainly composed of an oxide or nitride of silicon or niobium in order from the resin base material 21 side. It is preferable to have a structure having a layer formed by a wet process.
  • the smoothing layer 11 preferably contains a reaction product of niobium oxide, an inorganic silicon compound, or an organic silicon compound as a main component in order to effectively prevent moisture from entering and lead to a long life of the organic EL element.
  • the smoothing layer 11 preferably has a refractive index in the range of 1.7 to 3.0.
  • the folding ratio of each layer is in the range of 1.7 to 3.0.
  • the smoothing layer 11 is particularly preferably composed mainly of niobium oxide, silicon nitride, or silicon oxynitride.
  • the light scattering layer 14 is preferably patterned in the sealing region. .
  • the smoothing layer 11 is mainly composed of an oxide or nitride of silicon (Si) or niobium (Nb), or has a water vapor permeability of less than 0.1 g / (m 2 ⁇ 24 h). And This effectively prevents transmission of gas emitted from the light scattering layer 14 and the smoothing layer 11, which will be described later, moisture in the atmosphere, and the like, and also causes high temperatures due to irregularities on the surface of the gas barrier layer 22 or the light scattering layer 14. -It is possible to prevent adverse effects such as deterioration of storage stability and electrical short circuit (short circuit) in a high humidity atmosphere.
  • the main component means a component having the highest constituent ratio among the components constituting the smoothing layer 11.
  • the water vapor permeability of the smoothing layer 11 is a value measured by a method according to JIS K 7129-1992, and the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH). Is less than 0.1 g / (m 2 ⁇ 24 h), preferably 0.01 g / (m 2 ⁇ 24 h) or less, and more preferably 0.001 g / (m 2 ⁇ 24 h) or less.
  • the refractive index of the smoothing layer 11 is preferably in the range of 1.7 to 3.0, more preferably in the range of 1.7 to 2.5, and particularly preferably 1.7 to 2. Within the range of 2.
  • a value at a wavelength of 633 nm measured at 25 ° C. with an ellipsometer is treated as a representative value.
  • the layer thickness is preferably as thin as possible, and more preferably less than 100 nm.
  • the smoothing layer 11 preferably has a certain gas barrier property, and the layer thickness at which a continuous film is formed is the lower limit. In this respect, 5 nm or more is necessary, 10 nm or more is preferable, and 30 nm or more is particularly preferable.
  • the smoothing layer 11 is made of a high refractive index material (refractive index of 1.7 or more), the upper limit of the layer thickness is not particularly limited, and the lower limit of the layer thickness is made of the low refractive index material. It is the same. However, when the film of the smoothing layer 11 has visible light absorption, it is preferable that the layer thickness is as thin as possible, and an optimum layer thickness can be set in view of necessary gas barrier properties and extraction efficiency.
  • the smoothing layer 11 preferably has a small absorption (a value obtained by dividing the total value of T% R% in the spectral wavelength measurement with an integrating sphere) in the entire visible light region of the layer having a thickness of 100 nm, preferably It is less than 10%, more preferably less than 5%, still more preferably less than 3%, most preferably less than 1%.
  • the smoothing layer 11 is important for bending resistance at a thickness of 100 nm.
  • a gas barrier layer 22 is provided on a PET film, a smoothing layer 11 having a thickness of 100 nm is formed thereon, and the diameter at which cracks occur in 100 uneven bending tests is preferably less than 30 mm ⁇ , and less than 15 mm ⁇ It is more preferable that it is less than 10 mm ⁇ .
  • Examples of the oxide or nitride of silicon or niobium contained in the smoothing layer 11 include, for example, a reaction product of an inorganic silicon compound, a reaction product of an organic silicon compound, niobium oxide, niobium oxynitride, niobium nitride, and carbonized oxide. Niobium, niobium nitride niobium, or the like can be given. Among these, as the oxide or nitride of silicon or niobium contained in the smoothing layer 11, silicon nitride, silicon oxynitride, or niobium oxide is preferable.
  • Examples of the reaction product of the inorganic silicon compound include silicon oxide, silicon oxynitride, silicon nitride, silicon oxide carbide, and silicon nitride carbide.
  • Examples of the organosilicon compound include hexamethyldisiloxane, 1,13,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, Examples include phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane.
  • hexamethyldisiloxane and 1,13,3-tetramethyldisiloxane are preferable from the viewpoint of handling during film formation and characteristics such as gas barrier properties of the resulting smoothing layer 11.
  • these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • the reaction gas as a reaction gas with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material gas is used.
  • the molar amount (flow rate) of oxygen is preferably 12 times or less, more preferably 10 times or less the stoichiometric ratio.
  • the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas should be greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane. It is more preferable that the amount be more than 0.5 times.
  • an RF magnetron plasma generation unit and a niobium oxide (Nb 2 O 5 ) target are provided, and these are vacuumed by the introduction unit.
  • An apparatus connected to the processing chamber can be given.
  • an RF magnetron sputtering source is constituted by an RF magnetron plasma generation unit and a target.
  • a plasma of argon gas is generated by an RF magnetron plasma generation unit, and RF is applied to a disk-shaped target, so that niobium atoms and oxygen atoms of the target are sputtered (RF magnetron sputtering), and these are positioned downstream.
  • the smoothing layer 11 can be formed by adhering to the surface.
  • niobium metal is used as a target.
  • PEM plasma emission monitoring
  • Examples of the dry process include a vapor deposition method (resistance heating, EB method, etc.), a plasma CVD method, a sputtering method, an ion plating method, etc., but a water vapor permeability is small and a dense film with low film stress is used. Any of them can be suitably used as long as they can be formed.
  • a vapor deposition method resistance heating, EB method, etc.
  • a plasma CVD method a sputtering method, an ion plating method, etc.
  • a water vapor permeability is small and a dense film with low film stress is used. Any of them can be suitably used as long as they can be formed.
  • the component becomes a stoichiometric component due to the presence of a small amount of gas in addition to the introduced gas.
  • the smoothing layer 11 When forming the smoothing layer 11 using a wet process, it is preferable to contain the silicon dioxide compound which is a reaction product of an inorganic silicon compound.
  • polysilazane is preferably used as the inorganic silicon compound, but is not particularly limited thereto, and a known material can be used.
  • polysilazane polysilazane represented by the above general formula (I) can be used as in the case of the light scattering layer 14 described above. From the viewpoint of the denseness of the smoothing layer 11 to be obtained, it is preferable to use perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 in the general formula (I) are hydrogen atoms.
  • PHPS perhydropolysilazane
  • the smoothing layer 11 can be formed by applying a coating liquid containing polysilazane and drying it, followed by irradiation with vacuum ultraviolet rays.
  • concentration of polysilazane in the coating liquid containing polysilazane varies depending on the layer thickness of the smoothing layer 11 and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
  • an organic solvent for preparing a coating liquid containing polysilazane it is preferable to use a solvent that does not contain a lower alcohol or water that easily reacts with polysilazane.
  • a solvent that does not contain a lower alcohol or water that easily reacts with polysilazane For example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used.
  • organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed and used.
  • a coating solution containing polysilazane is added to an amine catalyst, a Pt compound such as Pt acetylacetonate, a Pd compound such as propionic acid Pd, or an Rh compound such as Rh acetylacetonate.
  • a metal catalyst such as can also be added.
  • Specific amine catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-13 -Diaminopropane, N, N, N ', N'-tetramethyl-1,6-diaminohexane and the like.
  • the addition amount of the catalyst with respect to polysilazane is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.2 to 5% by mass, and 0.5 to 2%. More preferably, it is in the range of mass%.
  • any appropriate method can be adopted as a method of applying the coating liquid containing polysilazane.
  • Specific examples include a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a cast film forming method, a bar coating method, and a gravure printing method.
  • the thickness of the coating is appropriately set according to the purpose.
  • the thickness of the coating film is preferably in the range of 50 nm to 2 ⁇ m, more preferably in the range of 70 nm to 1.5 ⁇ m, and still more preferably in the range of 100 nm to 1 ⁇ m.
  • the smoothing layer 11 is modified to at least part of polysilazane into silicon oxynitride by irradiating the layer containing polysilazane with vacuum ultraviolet rays.
  • the vacuum ultraviolet light source the above rare gas excimer lamp is preferably used.
  • the illuminance of vacuum ultraviolet rays on the coating surface received by the coating containing polysilazane is preferably in the range of 30 to 200 mW / cm 2 , and in the range of 50 to 160 mW / cm 2. It is more preferable. If it is 30 mW / cm 2 or more, there is no concern that the reforming efficiency is lowered, and if it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged.
  • Irradiation energy amount of the VUV in the coated surface is preferably in the range of 200 ⁇ 10000mJ / cm 2, and more preferably in a range of 500 ⁇ 5000mJ / cm 2.
  • the modification can be sufficiently performed. Further, if it is 10000 mJ / cm 2 or less, it is not excessively reformed, and there is no generation of cracks or thermal deformation of the substrate.
  • the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably in the range of 10 to 10000 ppm, more preferably in the range of 50 to 5000 ppm, and still more preferably in the range of 1000 to 4500 ppm.
  • a dry inert gas is preferable, and a dry nitrogen gas is particularly preferable from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the smoothing layer 11 is preferably formed by containing nanoparticles having a refractive index in the range of 1.7 to 3.0 in a binder as a medium. If the refractive index of the nanoparticles is 1.7 or more, the refractive index of the smoothing layer 11 can be easily adjusted. Moreover, if the refractive index of a nanoparticle is 3.0 or less, the multiple scattering in a layer will be suppressed and transparency will not be reduced. Nanoparticles are defined as fine particles (colloidal particles) having a particle size dispersed in a dispersion medium of the order of nanometers. The particles include discrete particles (primary particles) and aggregated particles (secondary particles), which are defined as nanoparticles including secondary particles.
  • the lower limit of the particle diameter of the nanoparticles is usually preferably 5 nm or more, more preferably 10 nm or more, and further preferably 15 nm or more.
  • an upper limit of the particle diameter of a nanoparticle it is preferable that it is 70 nm or less, It is more preferable that it is 60 nm or less, It is further more preferable that it is 50 nm or less.
  • the particle diameter of the nanoparticles is in the range of 5 to 60 nm, it is preferable in that high transparency can be obtained.
  • the particle size distribution of the nanoparticles is not limited and may be wide or narrow and may have a plurality of distributions.
  • the nanoparticle is more preferably TiO 2 (titanium dioxide sol) from the viewpoint of stability.
  • TiO 2 titanium dioxide sol
  • rutile type is more preferable than anatase type, since the catalytic activity is low and the weather resistance of the smoothing layer 11 and the adjacent layer becomes high and the refractive index is high.
  • As a method for preparing the titanium dioxide sol for example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327 and the like can be referred to.
  • the smoothing layer 11 is formed by a wet process, a dry process, or the like, but these methods may be used in combination, or one method may be used in combination with the same composition or different compositions.
  • the function and action as the smoothing layer 11 are expressed as a whole.
  • the film after drying, curing, and modification after coating is formed as the smoothing layer 11, and the smoothing layer 11 has a distribution of components in the depth direction from the surface. You may have a slope.
  • silicon oxynitride, silicon nitride, and niobium oxide are particularly advantageous and preferable in the dry process.
  • the coating material in the wet process excimer curing under a low oxygen concentration of polysilazane is preferable because of its high refractive index.
  • the refractive index can be adjusted in the addition / combination of nanoparticles, and adaptation in combination with such nanoparticles is very suitable.
  • the smoothing layer 11 is in a high temperature / high humidity atmosphere due to the unevenness of the surface of the gas barrier layer 22 or the light scattering layer 14. It is provided mainly for the purpose of preventing adverse effects such as deterioration of storage stability and electrical short circuit (short circuit), and is a layer provided between the light scattering layer 14 and the first electrode 12.
  • the smoothing layer 11 has flatness in order to satisfactorily form the first electrode 12 thereon.
  • the thickness of the smoothing layer 11 needs to be thick to some extent in order to reduce the surface roughness of the light scattering layer 14, but it needs to be thin enough not to cause energy loss due to absorption.
  • the surface property of the smoothing layer 11 is preferably such that the arithmetic average roughness Ra is in the range of 0.5 to 50 nm, more preferably 30 nm or less, particularly preferably 10 nm or less, and most preferably 5 nm or less.
  • the arithmetic average roughness Ra is set within the range of 0.5 to 50 nm, it is possible to suppress defects such as a short circuit of the organic EL element 10.
  • the arithmetic average roughness Ra 0 nm is preferable, but 0.5 nm is set as a lower limit value as a practical level limit value.
  • the arithmetic average roughness Ra of the surface represents the arithmetic average roughness according to JIS B 0601-2001.
  • the surface roughness (arithmetic average roughness Ra) was measured by using an atomic force microscope (AFM) manufactured by Digital Instruments, and continuously measured with a detector having a stylus having a minimum tip radius. It is calculated from the cross-section curve, and is measured three times in a section having a measurement direction of 10 ⁇ m with a stylus having a very small tip radius, and is obtained from the average roughness regarding the amplitude of fine irregularities.
  • AFM atomic force microscope
  • the average refractive index nf of the smoothing layer 11 is preferably a value close to the refractive index of the organic layer included in the light emitting unit 13.
  • the light emitting unit 13 is generally made of an organic material having a high refractive index. Therefore, the smoothing layer 11 has an average refractive index nf of 1.5 or more, particularly more than 1.65 and less than 2.5 at the shortest emission maximum wavelength among the emission maximum wavelengths of the emitted light h from the light emitting unit 13. A high refractive index layer is preferred.
  • the average refractive index nf is greater than 1.65 and less than 2.5, it may be formed of a single material or a mixture.
  • the refractive index of each material may be 1.65 or less or 2.5 or more, and the average refractive index nf of the mixed film is greater than 1.65 and less than 2.5. It only has to satisfy.
  • the “average refractive index nf” of the smoothing layer 11 is the refractive index of a single material when it is formed of a single material.
  • the mixing ratio is added to the refractive index specific to each material. It is a calculated refractive index calculated by the sum value multiplied by.
  • the refractive index is measured by irradiating a light beam having the shortest light emission maximum wavelength among the light emission maximum wavelengths of the emitted light h from the light emitting unit 13 in an atmosphere of 25 ° C., and Abbe refractometer (manufactured by ATAGO, DR -M2).
  • a known resin can be used without any particular limitation.
  • hydrophilic resins examples include water-soluble resins, water-dispersible resins, colloid-dispersed resins, and mixtures thereof.
  • hydrophilic resin examples include acrylic resins, polyester resins, polyamide resins, polyurethane resins, fluorine resins, etc., for example, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinyl pyrrolidone, casein, starch, agar, carrageenan, polyacrylic.
  • Polymers such as acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, water-soluble polyvinyl butyral can be mentioned, but these Among these, polyvinyl alcohol is preferable.
  • the polymer used as the binder resin one type may be used alone, or two or more types may be mixed and used as necessary. Similarly, conventionally known resin particles (emulsion) and the like can also be suitably used as the binder.
  • a resin curable mainly by ultraviolet rays or an electron beam that is, a mixture of a thermoplastic resin and a solvent in an ionizing radiation curable resin or a thermosetting resin
  • a binder resin is preferably a polymer having a saturated hydrocarbon or polyether as a main chain, and more preferably a polymer having a saturated hydrocarbon as a main chain.
  • the binder is preferably crosslinked.
  • the polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer.
  • the smoothing layer 11 can be produced as follows. First, a dispersion liquid in which nano-TiO 2 particles are dispersed and a resin solution are mixed and filtered through a filter to obtain a solution for preparing the smoothing layer 11. And the smoothing layer 11 can be produced by apply
  • the average refractive index ns of the light scattering layer 14 is preferably as close as possible to the organic layer of the light emitting unit 13 and the adjacent smoothing layer 11.
  • the average refractive index ns of the light scattering layer 14 is within the range of 1.5 or more, particularly 1.6 or more and less than 2.5 at the shortest emission maximum wavelength among the emission maximum wavelengths of the emitted light h from the light emitting unit 13. Preferably there is.
  • the light scattering layer 14 may be formed alone using a material having an average refractive index ns of 1.6 or more and less than 2.5, or formed using a mixture of two or more materials. May be.
  • the average refractive index ns of the light-scattering layer 14 uses a calculated refractive index that is calculated by adding a refractive index specific to each material and a mixing ratio.
  • the refractive index of each material may be less than 1.6 or 2.5 or more as long as the average refractive index ns of the mixed film satisfies 1.6 or more and less than 2.5. Good.
  • the “average refractive index ns” is the refractive index of a single material when formed of a single material, and in the case of a mixed system, the refractive index specific to each material is multiplied by the mixing ratio. It is the calculated refractive index calculated by the combined value.
  • the light scattering layer 14 is a layer that improves light extraction efficiency, and is preferably formed on the outermost surface of the gas barrier film 20 on the first electrode 12 side.
  • the light scattering layer 14 is preferably a mixture of a binder that is a layer medium and light scattering particles.
  • the light scattering layer 14 is preferably a scattering film using a refractive index difference by a mixture of a binder having a lower refractive index than the light scattering particles and a light scattering particle having a higher refractive index than the binder.
  • the binder having a low refractive index has a refractive index nb of less than 1.9, particularly preferably less than 1.6.
  • the refractive index nb of the binder is the refractive index of a single material when it is formed of a single material.
  • the refractive index nb is calculated by adding the refractive index specific to each material and the mixing ratio. Is the calculated refractive index.
  • the light scattering particles have a refractive index np of 1.5 or more, preferably 1.8 or more, and particularly preferably 2.0 or more.
  • the refractive index np of the light scattering particle is the refractive index of a single material when it is formed of a single material. In the case of a mixed system, the total refractive index of each material is multiplied by the mixing ratio. Calculated refractive index calculated by value.
  • the role of the light scattering particles of the light scattering layer 14 includes a guided light scattering function.
  • a guided light scattering function In order to improve the guided light scattering function, it is conceivable to increase the refractive index difference between the light scattering particles and the binder, increase the layer thickness, and increase the particle density. Among them, the one with the smallest trade-off with other performance is to increase the difference in refractive index between the light scattering particles and the binder.
  • between the binder as the layer medium and the contained light scattering particles is preferably 0.2 or more, and particularly preferably 0.3 or more.
  • between the layer medium and the light scattering particles is 0.03 or more, a scattering effect occurs at the interface between the layer medium and the light scattering particles.
  • is preferable because refraction at the interface increases and the scattering effect is improved.
  • it is preferably a high refractive index layer in which the average refractive index ns of the light scattering layer 14 is in the range of 1.6 or more and less than 2.5.
  • the refractive index nb of the binder is preferably smaller than 1.6, and the refractive index np of the light scattering particles is preferably larger than 1.8.
  • the refractive index is measured in the same manner as the smoothing layer 11 by irradiating a light beam having the shortest light emission maximum wavelength among the light emission maximum wavelengths of the emitted light h from the light emitting unit 13 in an atmosphere at 25 ° C. The measurement was performed using a rate meter (manufactured by ATAGO, DR-M2).
  • the layer thickness of the light scattering layer 14 needs to be thick to some extent in order to ensure the optical path length for causing scattering. On the other hand, it should be thin enough not to cause energy loss due to absorption. Specifically, the thickness of the light scattering layer 14 is preferably in the range of 0.1 to 5 ⁇ m, and more preferably in the range of 0.2 to 2 ⁇ m.
  • the light scattering layer 14 is preferably a layer that diffuses light due to a difference in refractive index between the layer medium and the light scattering particles. For this reason, the contained light scattering particles are required to scatter the emitted light h from the light emitting unit 13 without adversely affecting other layers. Scattering particles are actually polydisperse particles and difficult to arrange regularly, so they have a diffraction effect locally, but in many cases, the direction of light is changed by diffusion to improve light extraction efficiency. Improve.
  • Scattering represents a state in which the haze value of the single layer of the light scattering layer 14 (the ratio of the scattering transmittance to the total light transmittance) is 20% or more, more preferably 25% or more, and particularly preferably 30% or more. . If the haze value is 20% or more, the luminous efficiency can be improved.
  • the haze value is a physical property value calculated under the influence of (i) the influence of the refractive index difference of the composition in the film and (ii) the influence of the surface shape. That is, by measuring the haze value while suppressing the surface roughness below a certain level, the haze value excluding the influence of (ii) is measured. Specifically, it can be measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., NDH-5000, etc.).
  • the light scattering layer 14 can improve the light scattering property by adjusting the particle diameter of the light scattering particles, and can suppress defects such as a short circuit. Specifically, it is preferable to use transparent light scattering particles having a particle diameter equal to or larger than a region that causes Mie scattering in the visible light region.
  • the average particle diameter of the light scattering particles is preferably 0.2 ⁇ m or more. If the average particle diameter of the light scattering particles is too large, the adjacent smoothing layer 11 for flattening the roughness of the light scattering layer 14 containing the light scattering particles also needs to be thickened. There are disadvantages in terms of absorption. For this reason, it is preferable that the average particle diameter of light-scattering particle
  • the average particle diameter of the light scattering particles can be measured, for example, by an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or by image processing of an electron micrograph.
  • the light scattering layer 14 in addition to the light scattering particles having a particle size in the above range, at least one kind of light scattering particles having an average particle diameter in the range of 100 nm to 3 ⁇ m is included, and 3 ⁇ m. It is preferable that the above light scattering particles are not included, and it is particularly preferable that at least one kind of light scattering particles within a range of 200 nm to 1 ⁇ m is included and light scattering particles of 1 ⁇ m or more are not included.
  • the material of such light scattering particles is not particularly limited and can be appropriately selected according to the purpose.
  • organic fine particles or inorganic fine particles may be used.
  • the light scattering particles are preferably inorganic fine particles having a high refractive index.
  • quantum dots described in International Publication No. 2009/014707 and US Pat. No. 6,608,439 can also be suitably used as light scattering particles.
  • organic fine particles having a high refractive index examples include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, cross-linked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like. Can be mentioned.
  • the inorganic fine particles having a high refractive index examples include inorganic oxide particles made of at least one oxide selected from zirconium, titanium, aluminum, indium, zinc, tin, antimony and the like.
  • Specific examples of inorganic oxide particles include ZrO 2 , TiO 2 , BaTiO 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO, SiO 2 , ZrSiO 4 , zeolite, and the like. Is mentioned.
  • TiO 2 , BaTiO 3 , ZrO 2 , ZnO and SnO 2 are preferable, and TiO 2 is most preferable.
  • the rutile type is more preferable than the anatase type because the weather resistance of the light scattering layer 14 and the adjacent layer is high because the catalytic activity is low, and the refractive index is high.
  • these light scattering particles may be used after being subjected to a surface treatment from the viewpoint of improving the dispersibility and stability of the dispersion containing the light scattering particles.
  • specific materials for the surface treatment include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, and the like. It is done.
  • These surface treatment materials may be used individually by 1 type, and may be used in combination of multiple types.
  • the surface treatment material is preferably a different inorganic oxide and / or metal hydroxide, more preferably a metal hydroxide.
  • the coating amount is preferably 0.01 to 99% by mass. By making the coating amount within this range, the effect of improving the dispersibility and stability by the surface treatment can be sufficiently obtained, and the light extraction efficiency can be improved by the high refractive index of the light scattering layer 14. .
  • the coating amount is indicated by the mass ratio of the surface treatment material used on the surface of the particle with respect to the mass of the particle.
  • the light scattering particles are arranged in a layer thickness corresponding to one light scattering particle so that the light scattering particles are in contact with or close to the interface between the light scattering layer 14 and the adjacent smoothing layer 11. Is preferred. Thereby, when total reflection occurs at the interface between the smoothing layer 11 and the light scattering layer 14, the evanescent light that oozes out to the light scattering layer 14 can be scattered by the light scattering particles, and the light extraction efficiency is improved. improves.
  • the content of the high refractive index particles in the light scattering layer 14 is preferably in the range of 1.0 to 70%, more preferably in the range of 5.0 to 50% in terms of volume filling factor.
  • the refractive index distribution can be made sparse / dense at the smoothing layer 11 adjacent to the light scattering layer 14 or the interface between the smoothing layer 11, and the light extraction efficiency can be improved by increasing the amount of light scattering. .
  • the layer medium is a resin material
  • the light scattering particles are dispersed in a resin material (polymer) solution serving as a medium and applied onto the resin substrate 21.
  • a solvent in which particles are not dissolved is used as the solvent.
  • binder examples of the binder used for the light scattering layer 14 include the same resin as that of the smoothing layer 11.
  • a compound capable of forming a metal oxide, a metal nitride, or a metal oxynitride by ultraviolet irradiation under a specific atmosphere is particularly preferably used.
  • this compound a compound which can be modified at a relatively low temperature described in JP-A-8-112879 is preferable.
  • compounds that can be modified at low temperatures include polysiloxanes having Si—O—Si bonds (including polysilsesquioxane), polysilazanes having Si—N—Si bonds, and Si—O—Si bonds. And polysiloxazan containing both Si and N—Si bonds. These can be used in combination of two or more. Further, different compounds can be used by sequentially laminating or simultaneously laminating.
  • the polysiloxane used in the light scattering layer 14 can include [R 3 SiO 1/2 ], [R 2 SiO], [RSiO 3/2 ], and [SiO 2 ] as general structural units.
  • R represents a hydrogen atom, an alkyl group containing 1 to 20 carbon atoms (for example, methyl, ethyl, propyl, etc.), an aryl group (for example, phenyl), and an unsaturated alkyl group (for example, vinyl).
  • Examples of specific polysiloxane groups include [PhSiO 3/2 ], [MeSiO 3/2 ], [HSiO 3/2 ], [MePhSiO], [Ph 2 SiO], [PhViSiO], [ViSiO 3/2 ].
  • Vi represents a vinyl group
  • Mixtures and copolymers of polysiloxanes can also be used.
  • Polysilsesquioxane In the light scattering layer 14, it is preferable to use polysilsesquioxane among the above-mentioned polysiloxanes.
  • Polysilsesquioxane is a compound containing silsesquioxane in a structural unit.
  • the “silsesquioxane” is a compound represented by [RSiO 3/2 ] and is usually represented by RSiX 3 .
  • R is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group (also referred to as an aralkyl group), and the like
  • X is a halogen, an alkoxy group, or the like.
  • the molecular arrangement of polysilsesquioxane is typically an amorphous structure, a ladder structure, a cage structure, or a partially cleaved structure (a structure in which a silicon atom is missing from a cage structure or a cage structure).
  • a structure in which the silicon-oxygen bond in the structure is partially broken is known.
  • hydrogen silsesquioxane polymer examples include a hydridosiloxane polymer represented by HSi (OH) x (OR) y O z / 2 .
  • Each R is an organic group or a substituted organic group, and forms a hydrolyzable substituent when bonded to silicon by an oxygen atom.
  • x 0 to 2
  • y 0 to 2
  • z 1 to 3
  • x + y + z 3.
  • R examples include an alkyl group (eg, methyl group, ethyl group, propyl group, butyl group), an aryl group (eg, phenyl group), and an alkenyl group (eg, allyl group, vinyl group).
  • These resins may be fully condensed (HSiO 3/2 ) n , or only partially hydrolyzed (ie, including some Si—OR) and / or partially condensed (ie, , Including some Si—OH).
  • the polysilazane used in the light scattering layer 14 is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, NH, etc., SiO 2 , Si 3 N 4, and both intermediate solid solutions SiO x N y.
  • the polysilazane preferably used for the light scattering layer 14 the polysilazane represented by the above general formula (I) can be used as in the above-described light scattering layer 14.
  • Perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness of the resulting light scattering layer 14 as a film.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6-membered and 8-membered rings, and its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (gel Polystyrene conversion by permeation chromatography), which is a liquid or solid substance.
  • Mn number average molecular weight
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is.
  • Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials.
  • an ionizing radiation curable resin composition can be used as the binder.
  • a curing method of the ionizing radiation curable resin composition a normal curing method of the ionizing radiation curable resin composition, that is, an electron beam or It can be cured by UV irradiation.
  • 10 to 1000 keV emitted from various electron beam accelerators such as a Cockrowalton type, a bandegraph type, a resonant transformation type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • an electron beam having an energy of 30 to 300 keV is used, and in the case of ultraviolet curing, ultraviolet rays emitted from rays of ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc, metal halide lamp, etc. Available.
  • the ultraviolet irradiation device examples include a rare gas excimer lamp that emits vacuum ultraviolet rays within a range of 100 to 230 nm.
  • Atoms of noble gases such as xenon (Xe), krypton (Kr), argon (Ar), neon (Ne) and the like are called inert gases because they do not form molecules by chemically bonding.
  • rare gas atoms excited atoms
  • ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Moreover, since extra light is not radiated
  • a dielectric barrier discharge lamp As a light source for efficiently irradiating excimer light, there is a dielectric barrier discharge lamp.
  • a dielectric barrier discharge lamp has a structure in which a discharge is generated between electrodes via a dielectric. Generally, at least one electrode is disposed between a discharge vessel made of a dielectric and the outside thereof. That's fine.
  • a dielectric barrier discharge lamp for example, a rare gas such as xenon is enclosed in a double cylindrical discharge vessel composed of a thick tube and a thin tube made of quartz glass, and a net-like second discharge vessel is formed outside the discharge vessel. There is one in which one electrode is provided and another electrode is provided inside the inner tube.
  • a dielectric barrier discharge lamp generates a dielectric barrier discharge inside a discharge vessel by applying a high frequency voltage between electrodes, and generates excimer light when excimer molecules such as xenon generated by the discharge dissociate. .
  • the refractive index difference between the binder of the light scattering layer 14 and the adjacent smoothing layer 11 is small.
  • the refractive index difference between the binder of the light scattering layer 14 and the smoothing layer 11 is preferably 0.1 or less.
  • the thickness obtained by adding the smoothing layer 11 to the light scattering layer 14 is preferably in the range of 100 nm to 5 ⁇ m, and more preferably in the range of 300 nm to 2 ⁇ m.
  • the organic EL element 10 includes a light emitting unit 13 sandwiched between a pair of electrodes including a first electrode 12 and a second electrode 15.
  • One of the first electrode 12 and the second electrode 15 serves as the anode of the organic EL element 10, and the other serves as the cathode.
  • the anode and the cathode will be described.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • an electrode substance include conductive transparent materials such as metals such as Au and Ag, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as metals such as Au and Ag, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when the pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%.
  • the sheet resistance as the anode is several hundred ⁇ / sq. The following is preferred.
  • the film thickness depends on the material, it is usually selected within the range of 10 to 1000 nm, preferably within the range of 10 to 200 nm.
  • the cathode is an electrode film that functions as a cathode (cathode) that supplies electrons to the light emitting unit 13.
  • a material having a work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound
  • a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, or the like is preferable.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ / sq.
  • the film thickness is usually selected from the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • a transparent or semitransparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode thereon. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • the auxiliary electrode 18 is provided for the purpose of reducing the resistance of the first electrode 12 and is preferably provided in contact with the first electrode 12.
  • the material for forming the auxiliary electrode 18 is preferably a metal with low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range that does not affect the extraction of the emitted light h from the light extraction surface.
  • the extraction electrode 16 is for electrically connecting the first electrode 12 and an external power source, and the material thereof is not particularly limited, and a known material can be preferably used.
  • a metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) made of can be used.
  • the light emitting unit 13 is a light emitting body (unit) composed mainly of at least a light emitting layer containing a light emitting material made of various organic compounds.
  • the light emitting unit 13 is sandwiched between a pair of electrodes composed of an anode and a cathode, and holes supplied from the anode and electrons supplied from the cathode are recombined in the light emitter. Emits light.
  • the organic EL element 10 may include a plurality of the light emitting units 13 according to a desired light emission color.
  • the organic EL element 10 may be an element having a so-called tandem structure in which a plurality of light emitting units 13 including at least one light emitting layer are stacked.
  • Examples of typical element configurations of the tandem structure include the following configurations. Anode / first light emitting unit / intermediate connector layer / second light emitting unit / intermediate connector layer / third light emitting unit / cathode
  • the first light emitting unit, the second light emitting unit, and the third light emitting unit may all be the same or different. Further, the two light emitting units may be the same, and the remaining one may be different.
  • the plurality of light emitting units 13 may be directly stacked or may be stacked via an intermediate connector layer.
  • the intermediate connector layer is also commonly referred to as an intermediate electrode, intermediate conductive layer, charge generation layer, electron extraction layer, connection layer, or intermediate insulating layer. Electrons are transferred to the anode side adjacent layer and holes are connected to the cathode side adjacent layer.
  • a known material structure can be used as long as the layer has a function of supplying. Examples of materials used for the intermediate connector layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, and GaN.
  • Examples of a preferable configuration in the light emitting unit 13 include, but are not limited to, a configuration in which the anode and the cathode are removed from the configuration described in the representative element configuration.
  • Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No.
  • JP-A-2006-228712 JP-A-2006-24791, JP-A-2006-49393, JP-A-2006-49394 JP-A-2006-49396
  • JP-A-2011-96679 JP-A-2005-340187, JP-A-4711424, JP-A-3496868, JP-A-3848564, JP-A-4421169, JP 2010-192719, JP 009-076929, JP 2008-078414, JP 2007-059848, JP 2003-272860, JP 2003-045676, WO 2005/094130, etc.
  • Examples of the structure and constituent materials are given.
  • the light emitting layer 13c is a layer that emits light by recombination of electrons injected from the electron transport layer 13d and holes injected from the hole transport layer 13b, and the light emitting portion is within the layer of the light emitting layer 13c. Even if it exists, the interface of the light emitting layer 13c and the adjacent layer may be sufficient.
  • the configuration of the light emitting layer 13c is not particularly limited as long as the light emitting material included satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting auxiliary layer (not shown) between the light emitting layers 13c.
  • the total thickness of the light emitting layer 13c is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the total layer thickness of the light emitting layer 13c is a layer thickness including the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers 13c.
  • the thickness of each light emitting layer is preferably adjusted within a range of 1 to 50 nm, and more preferably within a range of 1 to 20 nm.
  • the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
  • the structure of the light emitting layer 13c preferably contains a host compound (light emitting host or the like) and a light emitting material (light emitting dopant) and emits light from the light emitting material.
  • the light emitting layer 13c may be a mixture of a plurality of light emitting materials.
  • a phosphorescent compound phosphorescent compound, phosphorescent light emitting material
  • a fluorescent light emitting material fluorescent dopant, fluorescent compound
  • the light emitting layer 13c preferably contains a phosphorescent light emitting compound as a light emitting material.
  • a host compound contained in the light emitting layer 13c As a host compound contained in the light emitting layer 13c, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 13c.
  • a known host compound may be used alone, or a plurality of types may be used.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host).
  • the known host compound is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from becoming longer, and has a high Tg (glass transition temperature).
  • the glass transition point (Tg) is a value determined by a method based on JIS K 7121 using DSC (Differential Scanning Calorimetry).
  • Luminescent material examples include phosphorescent compounds (phosphorescent compounds and phosphorescent materials) and fluorescent compounds (fluorescent compounds and fluorescent materials).
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. A preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition.
  • the phosphorescence quantum yield in solution can be measured using various solvents, but when using a phosphorescent compound, the above phosphorescence quantum yield (0.01 or more) can be achieved in any solvent. That's fine.
  • the phosphorescent compound There are two types of light emission principle of the phosphorescent compound. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent compound to emit light from the phosphorescent compound. Energy transfer type. The other is a carrier trap type in which a phosphorescent compound serves as a carrier trap, carrier recombination occurs on the phosphorescent compound, and light emission from the phosphorescent compound is obtained. In either case, the condition is that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound can be appropriately selected from those used in a light emitting layer of a general organic EL device.
  • Preferred are complex compounds containing a group 8-10 metal in the periodic table of elements, and more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes.
  • iridium compounds are preferred.
  • Specific examples of the phosphorescent compound include, but are not limited to, compounds described in JP2010-251675A.
  • the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 13c.
  • the light emitting layer 13c may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer 13c may change in the thickness direction of the light emitting layer 13c.
  • Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. System dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • injection layer hole injection layer, electron injection layer
  • the injection layer is a layer provided between the electrode and the light emitting layer 13c in order to lower the driving voltage and improve the light emission luminance.
  • the injection layer can be provided as necessary.
  • the hole injection layer 13a may be present between the anode and the light emitting layer 13c or the hole transport layer 13b, and the electron injection layer 13e may be present between the cathode and the light emitting layer 13c or the electron transport layer 13d. .
  • the details of the hole injection layer 13a are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like.
  • Specific examples thereof include phthalocyanine represented by copper phthalocyanine.
  • Examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the electron injection layer 13e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically represented by strontium, aluminum, and the like.
  • Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
  • the electron injection layer 13e is preferably a very thin layer, and its layer thickness is preferably in the range of 1 nm to 10 ⁇ m, although it depends on the material.
  • the hole transport layer 13b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 13a and the electron blocking layer are also included in the hole transport layer 13b.
  • the hole transport layer 13b can be provided as a single layer or a plurality of layers.
  • the hole transport layer 13b may have a single layer structure composed of one or more of the following materials.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminoph
  • polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • the so-called p-type hole transport material described in 139 can also be used. These materials are preferably used because a light emitting element with higher efficiency can be obtained.
  • the p property of the hole transport layer 13b is increased, a device with lower power consumption can be manufactured.
  • the layer thickness of the hole transport layer 13b is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer 13b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. be able to.
  • the electron transport layer 13d is made of a material having a function of transporting electrons, and in a broad sense, the electron injection layer 13e and a hole blocking layer (not shown) are also included in the electron transport layer 13d.
  • the electron transport layer 13d can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • the electron transport layer 13d may have a single-layer structure made of one or more of the following materials.
  • the electron transport material (also serving as a hole blocking material) constituting the layer portion adjacent to the light emitting layer 13c has a function of transmitting electrons injected from the cathode to the light emitting layer 13c. That's fine.
  • any one of conventionally known compounds can be selected and used. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group are also used as the material for the electron transport layer 13d.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc. and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material of the electron transport layer 13d.
  • metal-free or metal phthalocyanine or those whose terminal is substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 13d.
  • distyrylpyrazine derivatives used as the material of the light emitting layer 13c, and inorganic semiconductors such as n-type-Si and n-type-SiC similar to the hole injection layer 13a and the hole transport layer 13b are also included in the electron transport layer 13d. It can be used as a material.
  • the electron transport layer 13d can be doped with impurities to increase the n property. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like. Furthermore, it is preferable that the electron transport layer 13d contains potassium, a potassium compound, or the like. As the potassium compound, for example, potassium fluoride can be used. Thus, when the n property of the electron transport layer 13d is increased, an element with lower power consumption can be manufactured.
  • the layer thickness of the electron transport layer 13d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer 13d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, as described in JP-A Nos. 11-204258 and 11-204359 and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)”. There is a hole blocking layer.
  • the thickness of the blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the hole blocking layer has a function of the electron transport layer 13d in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of the electron carrying layer 13d can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer 13c.
  • the electron blocking layer has a function of the hole transport layer 13b in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons. By blocking holes while transporting holes, the electron recombination probability is improved. Can be made.
  • the structure of the positive hole transport layer 13b can be used as an electron blocking layer as needed.
  • the sealing member 17 is a plate-like (film-like) member that covers the upper surface of the organic EL element 10, and is fixed to the resin base material 21 side by the adhesive layer 19. Further, the sealing member 17 may be a sealing film. Such a sealing member 17 is provided in a state in which the electrode terminal portion of the organic EL element 10 is exposed and at least the light emitting unit 13 is covered. Further, an electrode may be provided on the sealing member 17 so that the electrode terminal portion of the organic EL element 10 and the electrode of the sealing member 17 are electrically connected.
  • the plate-like (film-like) sealing member 17 include a glass substrate, a polymer substrate, a metal substrate, and the like. These substrates may be used in the form of a thin film.
  • the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal substrate examples include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the element since the element can be thinned, it is preferable to use a polymer substrate or a metal substrate as a thin film as the sealing member.
  • the substrate material may be processed into a concave plate shape and used as the sealing member 17.
  • the substrate member described above is subjected to processing such as sandblasting and chemical etching to form a concave shape.
  • the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and conforms to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a compliant method is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. .
  • examples of the adhesive layer 19 include epoxy-based heat and chemical curing types (two-component mixing). Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Further, the adhesive layer 19 can be exemplified by a cationic curing type ultraviolet curing epoxy resin.
  • coating of the contact bonding layer 19 to the contact bonding layer 19 part of the sealing member 17 and the gas-barrier film 20 may use commercially available dispenser, and may print like screen printing.
  • the organic material which comprises an organic EL element may deteriorate with heat processing.
  • the adhesive layer 19 is preferably one that can cure the adhesive layer 19 from room temperature (25 ° C.) to 80 ° C.
  • a desiccant may be dispersed in the adhesive layer 19.
  • an inert gas such as nitrogen and argon, a fluorinated hydrocarbon
  • an inert liquid such as silicone oil
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a sealing film is used as the sealing member 17, sealing is performed on the gas barrier film 20 in a state where the light emitting unit 13 in the organic EL element 10 is completely covered and the electrode terminal portion of the organic EL element 10 is exposed.
  • a membrane is provided.
  • Such a sealing film is configured using an inorganic material or an organic material. In particular, it is made of a material having a function of suppressing intrusion of a substance that causes deterioration of the light emitting unit 13 in the organic EL element 10 such as moisture and oxygen. As such a material, for example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used. Furthermore, in order to improve the brittleness of the sealing film, a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
  • the method for forming these films is not particularly limited.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a protective member such as a protective film or a protective plate for mechanically protecting the organic EL element 10 may be provided.
  • the protective member is disposed at a position where the organic EL element 10 and the sealing member 17 are sandwiched between the gas barrier film 20.
  • the sealing member 17 is a sealing film, mechanical protection for the organic EL element 10 is not sufficient, and thus such a protective member is preferably provided.
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, or a polymer material film or a metal material film is applied.
  • a polymer film because it is lightweight and thin.
  • the gas barrier layer 22 is formed on the resin base material 21.
  • a coating film containing polysilazane is formed on the resin base material 21, and after the coating film is dried, a modification treatment by vacuum ultraviolet irradiation is performed to form a silicon-containing layer 23 containing silicon and nitrogen.
  • the metal containing layer 24 containing the compound of the metal M is formed on the silicon containing layer 23 using a vapor phase film-forming method.
  • the gas barrier layer 22 including the silicon-containing layer 23 and the metal-containing layer 24 is formed.
  • the region A described above is preferably formed in the vicinity of the interface between the silicon-containing layer 23 and the metal-containing layer 24.
  • the smoothing layer 11 mainly composed of silicon or niobium oxide or nitride is formed on the light scattering layer 14 by a dry process or a wet process.
  • the first electrode 12 made of silver or an alloy containing silver as a main component is formed on the smoothing layer 11 so as to have a layer thickness of 12 nm or less, preferably 4 to 9 nm.
  • the extraction electrode 16 connected to the external power source is formed at the end of the first electrode 12 by an appropriate method such as vapor deposition.
  • a hole injection layer 13a, a hole transport layer 13b, a light emitting layer 13c, an electron transport layer 13d, and an electron injection layer 13e are formed in this order on this, and the light emitting unit 13 is formed.
  • a film forming method of each of these layers there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but from the point that a uniform film is easily obtained and pinholes are difficult to generate, etc. Vacuum deposition or spin coating is particularly preferred. Further, different film formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Each condition is preferably selected as appropriate within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of ⁇ 50 to 300 ° C., and layer thickness of 0.1 to 5 ⁇ m.
  • a second electrode 15 serving as a cathode is formed thereon by an appropriate film forming method such as a vapor deposition method or a sputtering method.
  • the second electrode 15 is formed in a pattern in which a terminal portion is drawn from the upper side of the light emitting unit 13 to the periphery of the gas barrier film 20 while being insulated from the first electrode 12 by the light emitting unit 13.
  • a sealing member 17 that covers at least the light emitting unit 13 is provided with the terminal portions of the extraction electrode 16 and the second electrode 15 in the organic EL element 10 exposed.
  • the desired organic EL element 10 can be formed on the gas barrier film 20.
  • the resin base material 21 is taken out from the vacuum atmosphere in the middle and is different. A film forming method may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the first electrode 12 serving as an anode has a positive polarity and the second electrode 15 serving as a cathode has a negative polarity.
  • Luminescence can be observed when about 40 V is applied.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the organic EL element 10 described above has an internal light extraction layer composed of the light scattering layer 14 and the smoothing layer 11 on the gas barrier film 20.
  • the gas barrier film 20 includes a gas barrier layer 22 including a silicon-containing layer 23 and a metal-containing layer 24.
  • the gas barrier layer 22 can prevent impurities from entering from the resin base material 21 side. For this reason, the reliability and storability of the organic EL element 10 can be improved.
  • by providing the light scattering layer 14 and the smoothing layer 11 on the gas barrier film 20 it is possible to configure a light emitting device that achieves both improved light extraction efficiency and improved storage stability. .
  • organic EL elements Since the organic EL elements having the above-described configurations are surface light emitters as described above, they can be used as various light emission sources. For example, lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include, but are not limited to, a light source of an optical sensor, and can be effectively used as a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
  • lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include, but are not limited to, a light source of an optical sensor, and can be effectively used as a backlight of a liquid crystal display device combined with a color filter and a light source for
  • the organic EL element may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image. (Display) may be used.
  • the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic EL elements are joined together in a plane.
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a color or full-color display device can be manufactured by using two or more organic EL elements having different emission colors.
  • An example of the use of the organic EL element is a lighting device.
  • the lighting device using the organic EL element may be designed such that each organic EL element having the above-described configuration has a resonator structure.
  • Examples of the purpose of use of the organic EL element configured as a resonator structure include, but are not limited to, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. .
  • the material used for the organic EL element can be applied to an organic EL element that emits substantially white light (also referred to as a white organic EL element).
  • a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing.
  • a combination of a plurality of emission colors those containing the three emission maximum wavelengths of the three primary colors of red, green and blue may be used, or two emission using the complementary colors such as blue and yellow, blue green and orange, etc. It may contain a maximum wavelength.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and excitation of light from the light emitting materials. Any combination with a pigment material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants may be used.
  • a light emitting material used for the light emitting layer of such a white organic EL element For example, if it is a backlight in a liquid crystal display element, it will fit in the wavelength range corresponding to CF (color filter) characteristic. As described above, any one of the above-described metal complexes and known light-emitting materials may be selected and combined to be whitened. If the white organic EL element demonstrated above is used, it is possible to produce the illuminating device which produces substantially white light emission.
  • a UV curable resin manufactured by Aika Kogyo Co., Ltd., product number: Z731L was applied to a dry film thickness of 0.5 ⁇ m, dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 .
  • a clear hard coat layer having a thickness of 2 ⁇ m was formed on the surface of the resin base on the side where the silicon-containing layer is to be formed as follows.
  • a UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied to a dry film thickness of 2 ⁇ m, dried at 80 ° C., and then irradiated with a high-pressure mercury lamp in air. Curing was performed under the condition of 0.5 J / cm 2 . In this way, a resin base material with a hard coat layer was obtained.
  • this resin substrate with a hard coat layer is simply referred to as a resin substrate.
  • a coating solution was prepared by appropriately diluting with dibutyl ether for film thickness adjustment.
  • the coating solution was applied onto the resin substrate by spin coating so that the dry film thickness was 150 nm, and dried at 80 ° C. for 2 minutes.
  • the shortest distance between the vacuum ultraviolet irradiation apparatus (external layer surface of the sample and the excimer lamp tube surface) having a Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) with a wavelength of 172 nm is used. 3 mm), and a vacuum ultraviolet ray irradiation treatment was performed with a vacuum ultraviolet ray irradiation energy amount (irradiation amount) of 2.5 J / cm 2 .
  • the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume.
  • the stage temperature for installing the sample was set to 80 ° C.
  • the energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using a UV integrating photometer: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics.
  • the sensor head was installed at the center of the sample stage of the vacuum ultraviolet irradiation apparatus so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head was 3 mm, and the atmosphere in the apparatus chamber was Nitrogen and oxygen were supplied so as to have the same oxygen concentration as in the vacuum ultraviolet irradiation step, and the measurement was performed by moving the sample stage at a speed of 0.5 m / min.
  • an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement. Based on the irradiation energy obtained by this measurement, the moving speed of the sample stage was adjusted so that the above-mentioned irradiation energy was obtained. The vacuum ultraviolet irradiation was performed after aging for 10 minutes.
  • the resin base material formed up to the silicon-containing layer was stored for 24 hours in an environment of 20 ° C. and a relative humidity of 50% RH. Thereafter, a metal-containing layer was formed on the silicon-containing layer using a magnetron sputtering apparatus and using the following target and film formation conditions.
  • a film was formed by DC sputtering using an oxygen-deficient Nb 2 O 5 target as a target and Ar and O 2 as process gases.
  • the conditions of the composition were determined by adjusting the oxygen partial pressure in advance by film formation using a glass substrate, and the conditions were found such that the composition near the depth of 10 nm from the surface layer was Nb 2 O 3 . By applying these conditions, a film was formed with a thickness of 15 nm. Through the above steps, a gas barrier film of Sample 101 was produced.
  • a light scattering layer was produced on the produced gas barrier film by the following method.
  • the solid content ratio of TiO 2 particles having a refractive index of 2.4 and an average particle diameter of 0.25 ⁇ m JR600A, manufactured by Taca Co., Ltd.
  • a resin solution ED230AL (organic-inorganic hybrid resin) manufactured by APM
  • the solid content concentration in propylene glycol monomethyl ether (PGME) was adjusted to 15% by mass.
  • 0.4 mass% additive Disbyk-2096 manufactured by Big Chemie Japan Co., Ltd. was added to the solid content (effective mass component), and the formulation was designed at a ratio of 10 ml.
  • the TiO 2 particles and a solvent and additives were mixed with 10% by weight ratio with respect to TiO 2 particles, while cooling at room temperature (25 ° C.), an ultrasonic dispersing machine (manufactured by SMT Co. UH- 50) was dispersed for 10 minutes under the standard conditions of a microchip step (MS-3, 3 mm ⁇ manufactured by SMT Co., Ltd.) to prepare a TiO 2 dispersion.
  • an ultrasonic dispersing machine manufactured by SMT Co. UH- 50
  • MS-3 microchip step
  • the resin solution was mixed and added little by little.
  • the stirring speed was increased to 500 rpm, and the mixture was mixed for 10 minutes, and then a hydrophobic PVDF 0.45 ⁇ m filter (Whatman) To obtain the desired coating solution for light scattering layer.
  • the prepared coating solution for the light scattering layer is applied onto the gas barrier film by the ink jet coating method, and then simply dried (80 ° C., 2 minutes). Further, the output condition is that the substrate temperature is less than 80 ° C. by wavelength control IR. The drying process was performed for 5 minutes.
  • a high refractive index UV curable resin manufactured by Toyo Ink Co., Ltd., Rio Duras TYT82-01, nanosol particles: TiO 2
  • PGME propylene glycol monomethyl ether
  • 2-methyl-2 The formulation was designed in a ratio of 10 ml so that the solid content concentration in an organic solvent having a solvent ratio of 90% by mass / 10% by mass with 1,4-pentanediol (PD) was 12% by mass.
  • the high refractive index UV curable resin and the solvent are mixed, mixed at 500 rpm for 1 minute, and then filtered through a hydrophobic PVDF 0.2 ⁇ m filter (manufactured by Whatman) for the intended smoothing layer.
  • a coating solution was obtained. After applying the coating solution on the light scattering layer by the inkjet coating method, it is simply dried (80 ° C., 2 minutes), and further subjected to a drying treatment for 5 minutes under an output condition with a substrate temperature of less than 80 ° C. by wavelength control IR. Executed.
  • Excimer irradiation equipment MODEL MEIRH-M-1-200-222-H-KM-G, wavelength 222 nm, lamp filled gas KrCl (Reforming treatment conditions) Excimer light intensity 8J / cm 2 (222nm) Stage heating temperature 60 °C Oxygen concentration in the irradiation device
  • the resin base material on which the internal light extraction layer was formed was fixed to a base material holder of a commercially available vacuum deposition apparatus. 46 was put in a resistance heating boat made of tantalum, and the substrate holder and the heating boat were attached to the first vacuum chamber of the vacuum deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
  • the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then the following exemplified compound No.
  • the heating boat containing 46 was energized and heated, and the following exemplary compound No. 1 having a layer thickness of 25 nm was formed on the substrate (smoothing layer) within a deposition rate range of 0.1 to 0.2 nm / second.
  • An underlayer consisting of 46 was provided.
  • the resin base material formed up to the underlayer is transferred to the second vacuum chamber while being vacuumed, and after the pressure of the second vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver is energized and heated. Then, an electrode layer made of silver having a layer thickness of 8 nm was formed on the underlayer at a deposition rate of 0.1 to 0.2 nm / second to produce a first electrode.
  • each layer was formed as follows by sequentially energizing and heating the heating boat containing each material.
  • a hole-injecting hole transporting material serving as both a hole-injecting layer and a hole-transporting layer made of ⁇ -NPD is heated by energizing a heating boat containing ⁇ -NPD represented by the following structural formula as a hole-transporting injecting material.
  • a layer was formed on the first electrode. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 140 nm.
  • each of the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were energized independently, respectively.
  • a light emitting layer composed of the photoluminescent compound Ir-4 was formed on the hole transport injection layer.
  • the layer thickness was 30 nm.
  • a hole-blocking layer made of BAlq was formed on the light-emitting layer by heating a heated boat containing BAlq represented by the following structural formula as a hole-blocking material.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
  • thermosetting liquid adhesive epoxy resin
  • a thermosetting liquid adhesive epoxy resin
  • the sealing member which provided this sealing resin layer was piled up on the sample in which even the 2nd electrode was formed.
  • the sealing resin layer forming surface of the sealing member was continuously superimposed on the gas barrier film side of the organic EL element so that the end portions of the extraction portions of the first electrode and the second electrode were exposed.
  • the sample to which the sealing member was bonded was placed in a decompression device, and pressed at 90 ° C. under a decompression condition of 0.1 MPa and held for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive.
  • the sealing process is performed under atmospheric pressure and in a nitrogen atmosphere with a moisture content of 1 ppm or less in accordance with JIS B 9920.
  • the measured cleanliness is class 100, the dew point temperature is ⁇ 80 ° C. or less, and the oxygen concentration is 0.8 ppm or less. At atmospheric pressure.
  • the description regarding formation of the extraction part etc. from the 1st electrode and the 2nd electrode is omitted.
  • Gas barrier films and organic EL elements of Samples 102 to 107 were prepared using the same method as Sample 101 described above, except that the composition of region A was made to have the configuration shown in Table 2 below.
  • the nitrogen atom composition ratio (N), the metal atom composition ratio (M), and the silicon atom composition ratio (Si) when the silicon atom composition ratio (Si) in the region A of the gas barrier film of each sample is 100 are set to 100.
  • Table 2 shows the oxygen atom composition ratio (O).
  • a gas barrier film of Sample 108 and an organic EL element were produced using the same method as Sample 101 described above, except that the metal-containing layer was not formed in the production of the gas barrier layer.
  • the gas barrier layer is constituted only by the silicon-containing layer. Nitrogen atom composition ratio (N), metal atom composition ratio (M) when silicon atom composition ratio (Si) at the interface (smoothing layer side) of the silicon-containing layer of the gas barrier film of sample 108 is 100, silicon Table 2 shows the oxygen atomic composition ratio (O) when the atomic composition ratio (Si) is 100.
  • a gas barrier film of Sample 109 and an organic EL element were produced using the same method as Sample 101 described above, except that a metal-containing layer made of Co was formed by the following method.
  • the nitrogen atom composition ratio (N), the metal atom composition ratio (M), and the silicon atom composition ratio (Si) are 100 when the silicon atom composition ratio (Si) is 100.
  • Table 2 shows the oxygen atom composition ratio (O).
  • the resin base material formed up to the silicon-containing layer was stored for 24 hours in an environment of 20 ° C. and a relative humidity of 50% RH. Thereafter, a metal-containing layer was formed on the silicon-containing layer by DC sputtering using a Co target as a target and Ar and O 2 as process gases.
  • the condition of the composition was determined in advance by adjusting the oxygen partial pressure by film formation using a glass substrate, and the condition was found that the composition in the vicinity of a depth of 10 nm from the surface layer becomes Co 3 O 4 . A film with a thickness of 15 nm was applied under these conditions to produce a gas barrier film of Sample 109.
  • Ca method evaluation of gas barrier film A Ca method evaluation sample (type evaluated by permeation concentration) prepared by the following method was stored in an 85 ° C. and 85% RH environment, and the corrosion rate of Ca was observed at regular intervals. 1 hour, 5 hours, 10 hours, 20 hours, and thereafter, observation and transmission density measurement (average of 4 points) every 20 hours, and when the measured transmission density is less than 50% of the initial transmission density value Was used as an index of storability of the organic EL device. 5: 400 hours or more 4: 300 hours or more and less than 400 hours 3: 200 hours or more and less than 300 hours 2: 100 hours or more and less than 200 hours 1: 1: 100 hours or less
  • a gas barrier film with an internal light extraction layer was prepared in which the light scattering layer and the internal light extraction layer of the smoothing layer were formed on the gas barrier film. Then, for this gas barrier film with an internal light extraction layer, the surface of the smoothing layer and the gas barrier layer surface around the smoothing layer are UV-cleaned, and then a thermosetting sheet as a sealing resin layer on the gas barrier layer surface An adhesive (epoxy resin) was bonded at a thickness of 20 ⁇ m. This was punched out to a size of 50 mm ⁇ 50 mm, then placed in a glove box and dried for 24 hours.
  • a 50 mm ⁇ 50 mm non-alkali glass plate (thickness 0.7 mm) was UV cleaned.
  • Ca was vapor-deposited by the size of 20 mm x 20 mm through the mask in the center of the glass plate using the vacuum vapor deposition apparatus made from an EILS technology. The thickness of Ca was 80 nm.
  • the Ca vapor-deposited glass plate was moved into the glove box, placed so that the sealing resin layer surface of the gas barrier film and the Ca vapor-deposited surface of the glass plate were in contact, and adhered by vacuum lamination. At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down and cured for 30 minutes to produce a Ca method evaluation cell.
  • Table 2 shows the gas barrier films of the samples 101 to 109, the metal M contained in the metal-containing layer in the organic EL element, the composition of the region A, and the evaluation results.
  • the samples 101 to 107 containing Nb, Ti, or Ta in the metal-containing layer are more storable and bent than the sample 108 having no metal-containing layer and the sample 109 containing Co. Good results were obtained for both storage stability.
  • the metal-containing layer contains Nb and the composition of region A has a silicon atom composition ratio of 100, the nitrogen atom composition ratio exceeds 0 and is 60 or less, and the metal atom composition ratio is 20 or more and 300 or less, Further, the sample 103 having an oxygen atom composition ratio of 40 or more and 300 or less obtained the best results in both storage stability and folding storage stability.
  • Nb is contained in the metal-containing layer, and the composition of region A has a silicon atom composition ratio of 100, a nitrogen atom composition ratio exceeding 0 and 60 or less, and a metal atom composition ratio satisfying 20 or more and 300 or less.
  • the sample 102 having an oxygen atom composition ratio of 40 or more and 300 or less when the silicon atom composition ratio was 100 was lower in both storage stability and folding storage stability than the sample 103.
  • the composition of the region A is defined as 100 as the silicon atom composition ratio
  • the sample 104 does not satisfy any of the nitrogen atom composition ratio exceeding 0 and 60 or less, or the metal atom composition ratio of 20 or more and 300 or less.
  • the sample 105 was lower in both storage stability and folding storage stability than the sample 103.
  • the gas barrier layer has a silicon atom composition ratio of 100, the nitrogen atom composition ratio exceeds 0 and is 60 or less, the metal atom composition ratio is 20 or more and 300 or less, and the oxygen atom composition ratio is 40.
  • the region A that satisfies the above 300 or less the reliability of the organic EL element can be improved.
  • the metal-containing layer contains Ta or Ti and the composition of the region A is defined as a silicon atom composition ratio of 100, the nitrogen atom composition ratio exceeds 0 and is 60 or less, and the metal atom composition ratio is 20 or more and 300.
  • the sample 106 and the sample 107 satisfying an oxygen atomic composition ratio of 40 or more and 300 or less obtained good results in both storage stability and folding storage stability. From this result, even in metals other than Nb, the reliability of the organic EL element can be improved by having the region A in the gas barrier layer.
  • the gas barrier film on which the light scattering layer was formed was mounted on the lower electrode side of the chamber of a parallel plate type plasma CVD apparatus (manufactured by Anelva, PED-401).
  • the chamber of the plasma CVD apparatus was depressurized to an ultimate vacuum of 1.0 ⁇ 10 ⁇ 2 Pa using an oil rotary pump and a turbo molecular pump.
  • nitrogen gas (N 2 ) was introduced from the raw material supply apparatus into the chamber at 30 sccm via the raw material supply nozzle.
  • the pressure adjusting valve between the chamber and the vacuum pump was adjusted to adjust the pressure in the chamber to 20 Pa.
  • Table 3 shows the metal M contained in the metal-containing layer in the organic EL elements of the samples 201 to 209, the composition of the region A, and the evaluation results.
  • samples 201 to 209 in which silicon nitride is formed using a plasma CVD method as the smoothing layer have both improved storage stability and folding storage stability compared to the above samples 101 to 109. ing. From this result, it can be seen that, as an organic EL element, it is preferable to provide a smoothing layer formed by a dry process rather than a smoothing layer formed by a wet process from the viewpoint of improving the storage stability. This is presumably because the layer formed by the dry process has a higher gas blocking effect (barrier property) than the layer formed by the wet process.

Abstract

This organic electroluminescent element is configured by forming a light scattering layer, smoothing layer, first electrode, light emitting unit, and second electrode on a gas barrier film that has a metal-containing layer containing a compound consisting of at least one kind of metal selected from the group consisting of V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al, and a gas barrier layer configured from a silicon-containing layer containing silicon and nitrogen.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、ガスバリアフィルム上に設けられた有機エレクトロルミネッセンス素子に係わる。 The present invention relates to an organic electroluminescence element provided on a gas barrier film.
 有機材料のエレクトロルミネッセンス(electroluminescence:以下、単にELともいう)を利用した有機エレクトロルミネッセンス素子は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、及び軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として、特に近年では薄型・軽量な樹脂基材にガスバリア層を有するガスバリア性フィルムを用いた有機EL素子が注目されている。 Organic electroluminescence devices using organic electroluminescence (hereinafter also simply referred to as EL) are thin-film, completely solid-state devices that can emit light at a low voltage of several volts to several tens of volts. It has many excellent features such as high luminous efficiency, thinness and light weight. For this reason, organic EL using a gas barrier film having a gas barrier layer on a thin and light resin substrate in recent years, particularly as backlights for various displays, display boards such as signboards and emergency lights, and surface light emitters such as illumination light sources. Devices are drawing attention.
 このような有機EL素子に用いるガスバリア性フィルムとして、例えば、基材上に溶液を塗布して形成された前駆体層に、エネルギーを印加してガスバリア層を形成するガスバリア性フィルムの製造方法も検討されている。特に、ポリシラザン化合物をガスバリア層バリア層の前駆体として用いる検討が広く行われており、塗布による高生産性とバリア性とを両立する技術として検討が進められている。特に波長172nmのエキシマ光を用いてポリシラザン化合物を改質したガスバリア層が注目されている。 As a gas barrier film used in such an organic EL device, for example, a method for producing a gas barrier film in which a gas barrier layer is formed by applying energy to a precursor layer formed by applying a solution on a substrate is also examined. Has been. In particular, studies using a polysilazane compound as a precursor of a gas barrier layer barrier layer have been widely conducted, and studies are being conducted as a technique for achieving both high productivity and barrier properties by coating. In particular, a gas barrier layer obtained by modifying a polysilazane compound using excimer light having a wavelength of 172 nm has been attracting attention.
 上記ポリシラザン化合物を改質したガスバリア層としては、ポリシラザン化合物を含む層に炭化水素系化合物のイオンが注入された層を有する成形体が提案されている(例えば、特許文献1参照)。
 また、ポリシラザン及び触媒を含む溶液を基材上に塗布し、溶剤を除去してポリシラザン層を形成した後、水蒸気を含む雰囲気中において、230nm未満の波長成分を含むVUV放射線及び230~300nmの波長成分を含むUV放射線を照射することによって、ポリシラザン層を改質し、基材上にガスバリア層を形成する方法が提案されている(例えば、特許文献2参照)。
 さらに、樹脂基材上に、ポリシラザンを塗工して膜厚250nm以下のポリマー膜を形成する工程と、このポリマー膜に真空紫外光を照射する工程とを繰り返し、ポリシラザン改質膜を複数回形成するフレキシブルガスバリアフィルムの製造方法が提案されている(例えば、特許文献3参照)。
As the gas barrier layer in which the polysilazane compound is modified, a molded body having a layer in which hydrocarbon compound ions are implanted in a layer containing the polysilazane compound has been proposed (for example, see Patent Document 1).
In addition, after applying a solution containing polysilazane and a catalyst on a substrate, removing the solvent to form a polysilazane layer, VUV radiation containing a wavelength component of less than 230 nm and a wavelength of 230 to 300 nm in an atmosphere containing water vapor A method has been proposed in which a polysilazane layer is modified by irradiating UV radiation containing components to form a gas barrier layer on a substrate (see, for example, Patent Document 2).
Furthermore, a polysilazane-modified film is formed multiple times by repeating the process of applying polysilazane on a resin substrate to form a polymer film having a film thickness of 250 nm or less and the process of irradiating the polymer film with vacuum ultraviolet light. A method for producing a flexible gas barrier film has been proposed (see, for example, Patent Document 3).
国際公開第2011/122547号International Publication No. 2011-122547 特表2009-503157号公報Special table 2009-503157 特開2009-255040号公報JP 2009-255040 A
 しかしながら、上述のガスバリア性フィルムを用いた有機EL素子は、40℃程度までの低温における保存性は良好であるものの、80℃85%RHといった高温高湿の非常に過酷な環境下では保存性が低下してしまう。このため、上述のガスバリア性フィルムを用いた場合には、有機EL素子の信頼性を確保することができない。 However, the organic EL device using the gas barrier film described above has good storage stability at a low temperature up to about 40 ° C., but has high storage stability in a very severe environment of high temperature and high humidity such as 80 ° C. and 85% RH. It will decline. For this reason, when the above-mentioned gas barrier film is used, the reliability of the organic EL element cannot be ensured.
 上述した問題の解決のため、本発明においては、信頼性に優れるガスバリア性フィルムを用いた信頼性の高い有機エレクトロルミネッセンス素子を提供するものである。 In order to solve the above-described problems, the present invention provides a highly reliable organic electroluminescence device using a gas barrier film having excellent reliability.
 本発明の有機エレクトロルミネッセンス素子は、樹脂基材上にガスバリア層が形成されたガスバリア性フィルムと、ガスバリア性フィルム上に設けられた、光散乱層、及び、光散乱層上に設けられた平滑化層からなる内部光取り出し層と、内部光取り出し層上に設けられた第1電極、第2電極、及び、第1電極と第2電極とに挟持された発光ユニットとを備える。そして。ガスバリア層が、V、Nb、Ta、Ti、Zr、Hf、Mg、Y、及び、Alから選ばれる少なくとも1種以上の金属の化合物を含む金属含有層と、ケイ素と窒素とを含むケイ素含有層とを有する。 The organic electroluminescence device of the present invention includes a gas barrier film having a gas barrier layer formed on a resin substrate, a light scattering layer provided on the gas barrier film, and a smoothing provided on the light scattering layer. An internal light extraction layer comprising layers, a first electrode and a second electrode provided on the internal light extraction layer, and a light emitting unit sandwiched between the first electrode and the second electrode. And then. The gas barrier layer includes a metal-containing layer containing a compound of at least one metal selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al, and a silicon-containing layer containing silicon and nitrogen And have.
 本発明によれば、信頼性の高い有機エレクトロルミネッセンス素子を提供することができる。 According to the present invention, a highly reliable organic electroluminescence element can be provided.
有機EL素子の概略構成を示す図である。It is a figure which shows schematic structure of an organic EL element.
〈有機エレクトロルミネッセンス素子〉
 以下、有機エレクトロルミネッセンス素子(有機EL素子)の具体的な実施の形態について説明する。図1に有機EL素子の概略構成図(断面図)を示す。
<Organic electroluminescence device>
Hereinafter, specific embodiments of the organic electroluminescence element (organic EL element) will be described. FIG. 1 shows a schematic configuration diagram (cross-sectional view) of an organic EL element.
[有機EL素子の構成]
 図1に示す有機EL素子10は、ガスバリア性フィルム20と、このガスバリア性フィルム20上に設けられた、光散乱層14及び平滑化層11からなる内部光取り出し層を備える。さらに、平滑化層11上に、第1電極12、発光ユニット13、及び、第2電極15がこの順に積層されている。
[Configuration of organic EL element]
The organic EL element 10 shown in FIG. 1 includes a gas barrier film 20 and an internal light extraction layer that is provided on the gas barrier film 20 and includes a light scattering layer 14 and a smoothing layer 11. Furthermore, on the smoothing layer 11, the 1st electrode 12, the light emission unit 13, and the 2nd electrode 15 are laminated | stacked in this order.
 第1電極12の端部には、取り出し電極16が設けられている。第1電極12と外部電源(図示略)とは、取り出し電極16を介して、電気的に接続される。また、第1電極12の低抵抗化を図ることを目的とし、第1電極12に接して補助電極18が設けられていてもよい。 An extraction electrode 16 is provided at the end of the first electrode 12. The first electrode 12 and an external power source (not shown) are electrically connected via the extraction electrode 16. For the purpose of reducing the resistance of the first electrode 12, the auxiliary electrode 18 may be provided in contact with the first electrode 12.
 また、発光ユニット13の層構造が限定されることはなく、一般的な層構造であってよい。ここでは、第1電極12がアノード(すなわち陽極)として機能し、第2電極15がカソード(すなわち陰極)として機能する例について説明する。この場合、例えば、発光ユニット13は、アノードである第1電極12側から順に正孔注入層13a/正孔輸送層13b/発光層13c/電子輸送層13d/電子注入層13eが積層された構成が例示される。なお、第1電極12がカソード(すなわち陰極)として機能し、第2電極15がアノード(すなわち陽極)として機能する場合には、発光ユニット13の積層順が上記の逆となる。 Further, the layer structure of the light emitting unit 13 is not limited and may be a general layer structure. Here, an example in which the first electrode 12 functions as an anode (that is, an anode) and the second electrode 15 functions as a cathode (that is, a cathode) will be described. In this case, for example, the light-emitting unit 13 has a configuration in which a hole injection layer 13a / a hole transport layer 13b / a light-emitting layer 13c / an electron transport layer 13d / an electron injection layer 13e are stacked in this order from the first electrode 12 side that is an anode. Is exemplified. In addition, when the 1st electrode 12 functions as a cathode (namely, cathode) and the 2nd electrode 15 functions as an anode (namely, anode), the lamination | stacking order of the light emission unit 13 becomes said reverse.
 上記構成の発光ユニット13は、少なくとも有機材料を用いて構成された発光層13cを有することが必須である。正孔注入層13a及び正孔輸送層13bは、正孔輸送注入層として設けられてもよい。電子輸送層13d及び電子注入層13eは、電子輸送注入層として設けられてもよい。また、これらの発光ユニット13のうち、例えば、電子注入層13eは無機材料で構成されている場合もある。 It is essential that the light-emitting unit 13 having the above-described configuration has at least a light-emitting layer 13c formed using an organic material. The hole injection layer 13a and the hole transport layer 13b may be provided as a hole transport injection layer. The electron transport layer 13d and the electron injection layer 13e may be provided as an electron transport injection layer. Of these light emitting units 13, for example, the electron injection layer 13e may be made of an inorganic material.
 また、発光ユニット13は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていてもよい。さらに、発光層13cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させた構造としてもよい。中間層は、正孔阻止層、電子阻止層として機能してもよい。さらに、カソードである第2電極15も、必要に応じた積層構造であってもよい。このような構成において、第1電極12と第2電極15とで発光ユニット13が挟持された部分のみが、有機EL素子10における発光領域となる。 Further, in addition to these layers, the light-emitting unit 13 may have a hole blocking layer, an electron blocking layer, or the like stacked as necessary. Furthermore, the light emitting layer 13c may have a structure in which each color light emitting layer that generates light emitted in each wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting intermediate layer. The intermediate layer may function as a hole blocking layer and an electron blocking layer. Furthermore, the second electrode 15 as the cathode may also have a laminated structure as necessary. In such a configuration, only a portion where the light emitting unit 13 is sandwiched between the first electrode 12 and the second electrode 15 becomes a light emitting region in the organic EL element 10.
 ガスバリア性フィルム20は、樹脂基材21と、この樹脂基材21上に設けられたガスバリア層22とからなる。ガスバリア層22は、樹脂基材21上に設けられたケイ素含有層23と、ケイ素含有層23上に設けられたた金属含有層24とを有する。 The gas barrier film 20 includes a resin base material 21 and a gas barrier layer 22 provided on the resin base material 21. The gas barrier layer 22 includes a silicon-containing layer 23 provided on the resin base material 21 and a metal-containing layer 24 provided on the silicon-containing layer 23.
 ケイ素含有層23は、ケイ素と窒素とを含むケイ素化合物により形成される。金属含有層24は、V、Nb、Ta、Ti、Zr、Hf、Mg、Y、及び、Alから選ばれる少なくとも1種以上の金属Mを含む金属化合物を含んで形成される。 The silicon-containing layer 23 is formed of a silicon compound containing silicon and nitrogen. The metal-containing layer 24 is formed including a metal compound containing at least one metal M selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al.
 また、ガスバリア層22のケイ素含有層23と金属含有層24との界面には、層厚方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、ケイ素原子組成比を100としたとき、窒素原子組成比が0を超えて60以下、且つ、金属原子組成比が20以上300以下となる領域Aが存在することが好ましい。そして、この領域Aを介してケイ素含有層23と金属含有層24とが接触していることが好ましい。
 さらに、上記領域Aは、ケイ素原子組成比を100としたとき、酸素原子組成比が40以上300以下である領域を有することが好ましい。
Further, at the interface between the silicon-containing layer 23 and the metal-containing layer 24 of the gas barrier layer 22, when the silicon atom composition ratio is set to 100 in the atomic composition distribution profile obtained when XPS composition analysis is performed in the layer thickness direction. Preferably, there is a region A in which the nitrogen atom composition ratio exceeds 0 and is 60 or less and the metal atom composition ratio is 20 or more and 300 or less. The silicon-containing layer 23 and the metal-containing layer 24 are preferably in contact via the region A.
Further, the region A preferably has a region having an oxygen atom composition ratio of 40 or more and 300 or less when the silicon atom composition ratio is 100.
 有機EL素子10は、発生させた光(発光光h)を、少なくともガスバリア性フィルム20側から取り出すように構成されている。このような構成の有機EL素子10は、有機材料等を用いて構成された発光ユニット13の劣化を防止することを目的として、ガスバリア性フィルム20上において後述する封止部材17で封止されている。この封止部材17は、接着層19を介してガスバリア性フィルム20側に固定されている。ただし、第1電極12(取り出し電極16)及び第2電極15の端子部分は、ガスバリア性フィルム20上において発光ユニット13によって互いに絶縁性を保った状態で封止部材17から露出させた状態で設けられている。 The organic EL element 10 is configured to extract the generated light (emitted light h) at least from the gas barrier film 20 side. The organic EL element 10 having such a configuration is sealed on a gas barrier film 20 with a sealing member 17 described later for the purpose of preventing deterioration of the light emitting unit 13 configured using an organic material or the like. Yes. The sealing member 17 is fixed to the gas barrier film 20 side through an adhesive layer 19. However, the terminal portions of the first electrode 12 (extraction electrode 16) and the second electrode 15 are provided in a state of being exposed from the sealing member 17 on the gas barrier film 20 while maintaining insulation from each other by the light emitting unit 13. It has been.
 以下、上述した有機EL素子10を構成するための主要各層の詳細とその製造方法について説明する。 Hereinafter, details of each main layer for constituting the organic EL element 10 described above and a manufacturing method thereof will be described.
[ガスバリア性フィルム]
 ガスバリア性フィルム20は、樹脂基材21と、この樹脂基材21上に設けられたガスバリア層22とからなる。ガスバリア層22は、V、Nb、Ta、Ti、Zr、Hf、Mg、Y、及び、Alから選ばれる少なくとも1種以上の金属Mの化合物を含む金属含有層24と、ケイ素と窒素とを含むケイ素含有層23とを有する。
[Gas barrier film]
The gas barrier film 20 includes a resin base material 21 and a gas barrier layer 22 provided on the resin base material 21. The gas barrier layer 22 includes a metal-containing layer 24 containing at least one compound of metal M selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al, and silicon and nitrogen. A silicon-containing layer 23.
 ガスバリア性フィルム20において、金属含有層24及びケイ素含有層23は、樹脂基材21側から金属含有層24、ケイ素含有層23の順であっても、ケイ素含有層23、金属含有層24の順であってもよい。また、樹脂基材21の一方の面に金属含有層24、ケイ素含有層23が形成される形態だけではなく、基材の両面に金属含有層24及びケイ素含有層23が形成されていてもよい。さらに、樹脂基材21と各層との間、又は、各層上には他の層が配置されていてもよい。 In the gas barrier film 20, even if the metal-containing layer 24 and the silicon-containing layer 23 are in the order of the metal-containing layer 24 and the silicon-containing layer 23 from the resin substrate 21 side, the silicon-containing layer 23 and the metal-containing layer 24 are in this order. It may be. In addition to the form in which the metal-containing layer 24 and the silicon-containing layer 23 are formed on one surface of the resin substrate 21, the metal-containing layer 24 and the silicon-containing layer 23 may be formed on both surfaces of the substrate. . Furthermore, another layer may be disposed between the resin base material 21 and each layer or on each layer.
(原子組成プロファイル)
 ガスバリア層22は、厚さ方向のXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、金属含有層24とケイ素含有層23との界面付近に、組成SiMが下記式(1)及び式(2)を満足する領域Aを有する。このような構成のガスバリア層22を有するガスバリア性フィルム20は、高温高湿環境での耐久性に優れる。
(Atomic composition profile)
The gas barrier layer 22 has a composition SiM x N y in the vicinity of the interface between the metal-containing layer 24 and the silicon-containing layer 23 in the atomic composition distribution profile obtained when XPS composition analysis in the thickness direction is performed. ) And formula (2). The gas barrier film 20 having the gas barrier layer 22 having such a configuration is excellent in durability in a high temperature and high humidity environment.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 また、ガスバリア層22は、ケイ素含有層23がポリシラザンを含む塗布液から形成され、且つ、領域Aは上記yが下記式(3)を満足することが好ましい。 In addition, it is preferable that the gas barrier layer 22 is formed of a coating solution in which the silicon-containing layer 23 contains polysilazane, and the region A satisfies the following formula (3).
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 領域Aは、式(1)及び式(2)を同時に満たすことが必要である。つまり、領域Aは、ケイ素原子と金属原子とが同時に存在する領域であって、金属原子/ケイ素原子の比率が0.2以上3.0以下であることにより、ガスバリア性フィルム20が高いガスバリア性を発現する。特に、金属原子/ケイ素原子の比率が0.5以上2.0以下であることが好ましい。 It is necessary for the region A to satisfy the expressions (1) and (2) at the same time. That is, the region A is a region where silicon atoms and metal atoms are present at the same time, and the gas barrier film 20 has a high gas barrier property when the ratio of metal atom / silicon atom is 0.2 or more and 3.0 or less. Is expressed. In particular, the ratio of metal atom / silicon atom is preferably 0.5 or more and 2.0 or less.
 また、高いガスバリア性が得られるという観点から、領域Aの中にケイ素原子組成比を100としたとき、酸素原子組成比が40以上300以下である領域を有することが好ましい。特に、酸素原子組成比が100以上200以下であることが好ましい。 Further, from the viewpoint of obtaining high gas barrier properties, it is preferable that the region A has a region having an oxygen atom composition ratio of 40 or more and 300 or less when the silicon atom composition ratio is 100. In particular, the oxygen atom composition ratio is preferably 100 or more and 200 or less.
 また、ガスバリア層22は、ケイ素含有層23の形成に用いるケイ素含有化合物が、ポリシラザンを含む場合に、特に著しく高いガスバリア性が得られる。特に、このポリシラザンを含む場合において、ケイ素原子と金属原子と窒素原子とが同時に存在する領域が形成され、金属原子/ケイ素原子の比率が0.2以上3.0以下であり、かつ、窒素原子/ケイ素原子の比率が0.05以上0.6以下であると、著しく高いガスバリア性が得られる。 Further, the gas barrier layer 22 has a particularly high gas barrier property when the silicon-containing compound used for forming the silicon-containing layer 23 contains polysilazane. In particular, in the case of containing this polysilazane, a region in which silicon atoms, metal atoms, and nitrogen atoms exist simultaneously is formed, the ratio of metal atoms / silicon atoms is 0.2 or more and 3.0 or less, and nitrogen atoms When the ratio of / silicon atom is 0.05 or more and 0.6 or less, extremely high gas barrier properties can be obtained.
 窒素原子/ケイ素原子の比率が0.05未満の場合は、ケイ素含有層23に含有されるポリシラザンの含有比率が低い、又は、ポリシラザンが変性してケイ素-窒素結合が減少するため、ガスバリア性が低下すると考えられる。また、窒素原子/ケイ素原子の比率が0.6を超える場合は、窒素原子が増加した分、相対的にケイ素原子と金属原子とが減少し、ケイ素-金属の結合も減少するため、同様にガスバリア性が低下すると考えられる。 When the ratio of nitrogen atom / silicon atom is less than 0.05, the content ratio of polysilazane contained in the silicon-containing layer 23 is low, or the polysilazane is modified to reduce silicon-nitrogen bonds. It is thought to decline. Also, when the ratio of nitrogen atom / silicon atom exceeds 0.6, the amount of silicon atom and metal atom are relatively decreased and the silicon-metal bond is also decreased by the increase of nitrogen atom. It is considered that the gas barrier property is lowered.
 ポリシラザンのケイ素-窒素結合(Si-N結合)は、気相成膜法等の方法で形成される金属原子と接した場合や、金属原子と接した状態で真空紫外線等のエネルギーを印加することで、ケイ素-金属の結合へと変化し易いものと考えられる。このため、他のケイ素-窒素結合を有さないケイ素含有化合物を用いた場合よりも、著しく高いガスバリア性が得られると考えられる。 When the silicon-nitrogen bond (Si-N bond) of polysilazane is in contact with a metal atom formed by a method such as a vapor phase film-forming method, energy such as vacuum ultraviolet light is applied in contact with the metal atom. Therefore, it is considered that the silicon-metal bond is easily changed. For this reason, it is considered that a significantly higher gas barrier property can be obtained than when other silicon-containing compounds having no silicon-nitrogen bond are used.
 なお、領域Aの厚さは、下記に示すXPS組成分析において、SiO換算で深さ方向2.5nmごとのデプスプロファイルを得ているため、2.5nmの整数倍の厚さとなる。また、領域Aが複数種の金属Mを有する場合は、各金属の含有量の重み付けをした総和からxを算出する。 The thickness of region A is an integral multiple of 2.5 nm because a depth profile is obtained every 2.5 nm in the depth direction in terms of SiO 2 in the XPS composition analysis shown below. Moreover, when the area | region A has several types of metal M, x is calculated from the sum total which weighted content of each metal.
 このような領域Aの組成や厚さの制御は、金属含有層24(又はケイ素含有層23)を形成した後、ケイ素含有層23(又は金属含有層24)を形成するまでの間に、比較的低い温度及び湿度の条件でフィルムを保管する、又は、乾燥窒素雰囲気下で保管する等の方法により行うことができる。 The control of the composition and thickness of such a region A is compared between the formation of the metal-containing layer 24 (or silicon-containing layer 23) and the formation of the silicon-containing layer 23 (or metal-containing layer 24). It can be carried out by a method such as storing the film under conditions of low temperature and humidity, or storing it in a dry nitrogen atmosphere.
 さらに、より高いガスバリア性が得られるという観点から、領域Aの原子組成をSiMで示した際に、下記式(4)で表される領域Bを領域Aの中に有することが好ましい。 Furthermore, from the viewpoint that higher gas barrier properties can be obtained, when the atomic composition of the region A is represented by SiM x N y O z , the region A has the region B represented by the following formula (4). Is preferred.
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 上記式(4)は、SiとMとを合計した結合手数に対して、OとNとを合計した結合手数が少ないことを意味する。推定ではあるが、上記式(4)の(4+ax)-(3y+2z)が0を超える場合には、SiとMとの直接の結合が形成されていると考えられる。そして、(4+ax)-(3y+2z)の値が大きくなるほどSiとMとの直接結合の割合が大きくなり、領域Aの組成の密度が増加し、ガスバリア性がさらに向上すると考えられる。このため、領域B中の(4+ax)-(3y+2z)は、より好ましくは1以上、さらに好ましくは2以上、特に好ましくは3以上である。なお、領域Bが複数種の金属Mを有する場合は、各金属の含有量の重み付けをした総和からxを算出する。 The above equation (4) means that the total number of bonds of O and N is less than the total number of bonds of Si and M. Although it is estimated, when (4 + ax) − (3y + 2z) in the above formula (4) exceeds 0, it is considered that a direct bond between Si and M is formed. It is considered that as the value of (4 + ax) − (3y + 2z) increases, the ratio of direct bonding between Si and M increases, the density of the composition in region A increases, and the gas barrier properties are further improved. Therefore, (4 + ax) − (3y + 2z) in the region B is more preferably 1 or more, further preferably 2 or more, and particularly preferably 3 or more. In addition, when the area | region B has multiple types of metal M, x is calculated from the sum total which weighted content of each metal.
 (4+ax)-(3y+2z)の値の制御は、例えば、金属Mを含有する層の形成をスパッタで行う場合を例に挙げると、ターゲットとして金属、又は、化学量論的に酸素が欠損した金属酸化物を用い、スパッタの際に導入する酸素の量を適宜調整することで行うことができる。 Control of the value of (4 + ax) − (3y + 2z) is, for example, in the case where the formation of the layer containing the metal M is performed by sputtering, for example, a metal as a target or a metal in which oxygen is lost stoichiometrically This can be done by using an oxide and appropriately adjusting the amount of oxygen introduced during sputtering.
 領域Bが形成される位置は特に制限されないが、領域Aと金属含有層24との界面近傍、又は、領域Aとケイ素含有層23との界面近傍であることが好ましい。これらの界面近傍に領域Bが形成されていれば、金属含有層24とケイ素含有層23との界面において、Siと金属Mとの共酸化窒化物層が形成されていることを意味し、このSiとMとの共酸化窒化物層が、高い湿熱耐性を発現すると考えられるためである。 The position where the region B is formed is not particularly limited, but is preferably in the vicinity of the interface between the region A and the metal-containing layer 24 or in the vicinity of the interface between the region A and the silicon-containing layer 23. If the region B is formed in the vicinity of these interfaces, it means that a co-oxynitride layer of Si and metal M is formed at the interface between the metal-containing layer 24 and the silicon-containing layer 23. This is because the co-oxynitride layer of Si and M is considered to exhibit high wet heat resistance.
 領域A及び領域Bの組成は、以下の方法により測定することができる。
 XPS組成分析により、金属含有層24とケイ素含有層23との界面近傍について、厚さ方向の組成分布プロファイルを測定し、組成をSiMで示す。この際、xとyとの関係から、領域Aを有するかどうか判定する。また、領域Aを有する場合には、(4+ax)-(3y+2z)の値を求めて、さらに領域Bを有するかどうか判定する。
The composition of the region A and the region B can be measured by the following method.
By XPS composition analysis, a composition distribution profile in the thickness direction is measured in the vicinity of the interface between the metal-containing layer 24 and the silicon-containing layer 23, and the composition is indicated by SiM x N y O z At this time, it is determined whether or not the region A is present from the relationship between x and y. If the area A is included, the value of (4 + ax) − (3y + 2z) is obtained to determine whether or not the area B is further included.
(XPS組成分析条件)
 ・装置:アルバックファイ製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算で2.5nm相当のスパッタ後、測定を繰り返し、SiO換算深さ方向2.5nmごとのデプスプロファイルを得る。
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量する。データ処理は、アルバックファイ社製のMultiPakを用いる。
(XPS composition analysis conditions)
・ Equipment: ULVAC-PHI QUANTERASXM
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: After sputtering equivalent to 2.5 nm in terms of SiO 2 , measurement is repeated to obtain a depth profile for every 2.5 nm in the SiO 2 equivalent depth direction.
Quantification: The background is obtained by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. Data processing uses MultiPak manufactured by ULVAC-PHI.
 上記構成のガスバリア層22によって高温高湿環境での耐久性効果が発現する理由は不明であるが、下記のようなメカニズムが考えられる。なお、下記のメカニズムは推測によるものであり、下記メカニズムに何ら拘泥されるものではない。 Although the reason why the gas barrier layer 22 having the above-described structure exhibits a durability effect in a high-temperature and high-humidity environment is unclear, the following mechanism is conceivable. In addition, the following mechanism is speculative and is not limited to the following mechanism.
 ガスバリア層22は、ケイ素原子と金属原子とが同時に存在し、ケイ素原子と金属原子とが直接結合した高密度の領域Aを形成することでガスバリア性を発現していると推定される。金属原子/ケイ素原子の比率が0.2未満であっても、また、3.0を超えても、ケイ素原子と金属原子との結合が減少するため、バリア性が低下すると考えられる。 The gas barrier layer 22 is presumed to exhibit gas barrier properties by forming a high-density region A in which silicon atoms and metal atoms are present simultaneously and silicon atoms and metal atoms are directly bonded. Even if the ratio of metal atom / silicon atom is less than 0.2 or more than 3.0, the bond between the silicon atom and the metal atom is reduced, so that the barrier property is considered to be lowered.
 ケイ素含有化合物を含有する塗布液の塗布、及び、乾燥により得られるケイ素含有層23は、特定の組成を有することでガスバリア性を発現する。また、この製法によるケイ素含有層23においては、気相成膜法で形成される場合とは異なり、成膜時にパーティクル等の異物混入がほとんどなくなり、欠陥が非常に少ないガスバリア層を形成することが可能となる。 The silicon-containing layer 23 obtained by applying a coating liquid containing a silicon-containing compound and drying exhibits gas barrier properties by having a specific composition. In addition, in the silicon-containing layer 23 formed by this manufacturing method, unlike the case where it is formed by the vapor phase film forming method, foreign substances such as particles are hardly mixed at the time of film formation, and a gas barrier layer with very few defects can be formed. It becomes possible.
 ケイ素と窒素とを含むケイ素含有層23は、特定の組成を有することでガスバリア性を発現する。しかし、このケイ素含有層23は、酸化に対して完全に安定ではなく、高温高湿環境では徐々に酸化されてガスバリア性が低下することがある。 The silicon-containing layer 23 containing silicon and nitrogen exhibits gas barrier properties by having a specific composition. However, the silicon-containing layer 23 is not completely stable against oxidation, and may be gradually oxidized in a high-temperature and high-humidity environment, resulting in a decrease in gas barrier properties.
 これに対し、ガスバリア性フィルム20は、ケイ素含有層23と共に金属含有層24を有し、このケイ素含有層23と金属含有層24との界面付近に、上記領域Aを有する。金属含有層24は、ケイ素含有層23よりも酸化されやすいため、金属含有層24が先に酸化されてケイ素含有層23の酸化が抑制される。このため、ガスバリア性フィルム20は、高温高湿環境での耐久性に優れると考えられる。すなわち、ガスバリア性フィルム20は、領域Aを有することによって、高温高湿環境下での耐久性が特に向上すると考えられる。 On the other hand, the gas barrier film 20 has a metal-containing layer 24 together with the silicon-containing layer 23, and has the region A in the vicinity of the interface between the silicon-containing layer 23 and the metal-containing layer 24. Since the metal-containing layer 24 is more easily oxidized than the silicon-containing layer 23, the metal-containing layer 24 is oxidized first and the oxidation of the silicon-containing layer 23 is suppressed. For this reason, it is thought that the gas barrier film 20 is excellent in durability in a high temperature and high humidity environment. That is, it is considered that the gas barrier film 20 has the region A, whereby the durability under a high temperature and high humidity environment is particularly improved.
[樹脂基材]
 樹脂基材21としては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。樹脂基材21は、単独又は2種以上組み合わせて用いることができる。
[Resin substrate]
Specific examples of the resin substrate 21 include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyether. Imide resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, fat Examples thereof include base materials containing a thermoplastic resin such as a ring-modified polycarbonate resin, a fluorene ring-modified polyester resin, and an acryloyl compound. The resin base material 21 can be used individually or in combination of 2 or more types.
 樹脂基材21は耐熱性を有する材料からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の材料が使用される。樹脂基材21のTgや線膨張係数は、添加剤等によって調整することができる。 The resin substrate 21 is preferably made of a material having heat resistance. Specifically, a material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used. The Tg and linear expansion coefficient of the resin base material 21 can be adjusted by an additive or the like.
 ガスバリア性フィルム20を用いて有機EL素子10を作製する場合に、ガスバリア性フィルム20が150℃以上の工程に曝されることがある。この場合、ガスバリア性フィルム20における基材の線膨張係数が100ppm/Kを超えると、上述の熱工程で基板寸法が安定せず、熱膨張及び収縮に伴い、遮断性性能が劣化する。或いは、熱工程に耐えられないという不具合が生じやすい。樹脂基材21の線膨張係数が15ppm/K未満では、ガスバリア性フィルム20ガラスのように割れてしまいフレキシビリティが劣化する場合がある。 When producing the organic EL element 10 using the gas barrier film 20, the gas barrier film 20 may be exposed to a process of 150 ° C. or higher. In this case, when the linear expansion coefficient of the base material in the gas barrier film 20 exceeds 100 ppm / K, the substrate dimensions are not stabilized in the above-described thermal process, and the barrier performance is deteriorated with thermal expansion and contraction. Or it is easy to produce the malfunction that it cannot endure a heat process. If the linear expansion coefficient of the resin base material 21 is less than 15 ppm / K, it may break like the gas barrier film 20 glass and the flexibility may deteriorate.
 樹脂基材21として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。 More preferable specific examples of the thermoplastic resin that can be used as the resin substrate 21 include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and fat. Cyclic polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C. manufactured by Nippon Zeon Co., Ltd.), polyarylate (PAr: 210 ° C.), polyether sulfone (PES: 220 ° C.), polysulfone (PSF: 190 ° C.), cyclo Olefin copolymer (COC: Compound described in JP-A No. 2001-150584: 162 ° C.), polyimide (for example, Neoprim (registered trademark): 260 ° C. manufactured by Mitsubishi Gas Chemical Co., Inc.), fluorene ring-modified polycarbonate (BCF-PC: JP 2000-22760 No. 225 ° C.), cycloaliphatic modified polycarbonate (IP-PC: JP 2000-227603 JP-A compound: 205 ° C.), acryloyl compound (JP-A 2002-80616) : 300 ° C. or higher), etc. (in parentheses indicate Tg).
 有機EL素子10の発光光をガスバリア性フィルム20側から取り出す構成(ボトムエミッション)の場合には、透明な樹脂基材21を用いる。即ち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上の樹脂基材21を用いる。光線透過率は、JIS K7105:1981に記載された、積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出する方法を適用する。 In the case of a configuration (bottom emission) in which emitted light of the organic EL element 10 is extracted from the gas barrier film 20 side, a transparent resin base material 21 is used. That is, the resin substrate 21 having a light transmittance of usually 80% or more, preferably 85% or more, more preferably 90% or more is used. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using an integrating sphere light transmittance measuring device described in JIS K7105: 1981, and subtracting the diffuse transmittance from the total light transmittance. Apply.
 ただし、有機EL素子10の発光光をガスバリア性フィルム20と逆側から取り出す構成(トップエミッション)の場合には、必ずしも透明性が要求されない。このような場合は、樹脂基材21として不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。 However, in the case of a configuration (top emission) in which the light emitted from the organic EL element 10 is extracted from the side opposite to the gas barrier film 20, transparency is not necessarily required. In such a case, an opaque material can be used as the resin base material 21. Examples of the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
 また、樹脂基材21は、未延伸フィルムでもよく、延伸フィルムでもよい。樹脂基材21は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落[0051]~[0055]の記載された事項を適宜採用することができる。 Further, the resin base material 21 may be an unstretched film or a stretched film. The resin base material 21 can be manufactured by a conventionally known general method. Regarding the production method of these base materials, the matters described in paragraphs [0051] to [0055] of International Publication No. 2013/002026 can be appropriately employed.
 樹脂基材21の表面には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、又は、プラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。 The surface of the resin base material 21 may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatment as necessary. May be performed in combination.
 樹脂基材21は、単層でもよいし2層以上の積層構造であってもよい。樹脂基材21が2層以上の積層構造である場合、各樹脂基材21は同じ種類であってもよいし異なる種類であってもよい。樹脂基材21の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。 The resin substrate 21 may be a single layer or a laminated structure of two or more layers. When the resin base material 21 has a laminated structure of two or more layers, the resin base materials 21 may be of the same type or different types. The thickness of the resin base material 21 (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 μm, and more preferably 20 to 150 μm.
[ケイ素含有層]
 ケイ素含有層23は、ケイ素と窒素とを含むケイ素含有化合物を用いて形成される。このケイ素含有層23は、ケイ素含有化合物を含有する塗布液(ケイ素含有塗布液)を塗布及び乾燥することで得られる。ケイ素含有層23は、単層でもよいし2層以上の積層構造であってもよい。
[Silicon-containing layer]
The silicon-containing layer 23 is formed using a silicon-containing compound containing silicon and nitrogen. The silicon-containing layer 23 is obtained by applying and drying a coating solution containing a silicon-containing compound (silicon-containing coating solution). The silicon-containing layer 23 may be a single layer or a laminated structure of two or more layers.
 ケイ素含有化合物としては、例えば、ポリシロキサン、ポリシルセスキオキサン、ポリシラザン、ポリシロキサザン、ポリシラン、ポリカルボシラン等を挙げることができる。これらの中でも、ケイ素-窒素結合、ケイ素-水素結合、及び、ケイ素-ケイ素結合からなる群より選ばれる少なくとも1種を有することが好ましい。 Examples of the silicon-containing compound include polysiloxane, polysilsesquioxane, polysilazane, polysiloxazan, polysilane, polycarbosilane, and the like. Among these, it is preferable to have at least one selected from the group consisting of a silicon-nitrogen bond, a silicon-hydrogen bond, and a silicon-silicon bond.
 ケイ素含有化合物としてより好ましくは、ケイ素-窒素結合とケイ素-水素結合とを有するポリシラザン、ケイ素-窒素結合を有するポリシロキサザン、ケイ素-水素結合を有するポリシロキサン、ケイ素-水素結合を有するポリシルセスキオキサン、ケイ素-ケイ素結合を有するポリシランを用いることができる。ケイ素-窒素結合、ケイ素-水素結合、及び、ケイ素-ケイ素結合のいずれかを有するケイ素含有化合物を用いてケイ素含有層23を形成すると、上述の領域Bを形成し易くなる。 More preferably, the silicon-containing compound is a polysilazane having a silicon-nitrogen bond and a silicon-hydrogen bond, a polysiloxazan having a silicon-nitrogen bond, a polysiloxane having a silicon-hydrogen bond, and a polysilsesqui having a silicon-hydrogen bond. Oxane, polysilane having a silicon-silicon bond can be used. When the silicon-containing layer 23 is formed using a silicon-containing compound having any one of a silicon-nitrogen bond, a silicon-hydrogen bond, and a silicon-silicon bond, the above-described region B is easily formed.
 ポリシロキサン、ポリシルセスキオキサン、及び、ポリシロキサザンの具体例としては、特開2012-116101号公報の段落[0093]~[0121]に記載の化合物が挙げられる。ポリシロキサンとしては、特に水素化(ハイドロジェン)ポリシロキサンが好ましい。 Specific examples of polysiloxane, polysilsesquioxane, and polysiloxazan include compounds described in paragraphs [0093] to [0121] of JP2012-116101A. As the polysiloxane, hydrogenated (hydrogen) polysiloxane is particularly preferable.
 ポリシランの形態は特に制限されず、非環状ポリシラン(直鎖状ポリシラン、分岐鎖状ポリシラン、網目状ポリシラン等)や、環状ポリシラン等の単独重合体であってもよく、また、ランダム共重合体、ブロック共重合体、交互共重合体、くし型共重合体等の共重合体であってもよい。 The form of polysilane is not particularly limited, and may be a non-cyclic polysilane (linear polysilane, branched polysilane, network polysilane, etc.), a homopolymer such as cyclic polysilane, a random copolymer, It may be a copolymer such as a block copolymer, an alternating copolymer, or a comb copolymer.
 ポリシランが非環状ポリシランである場合は、ポリシランの末端基(末端置換基)は、水素原子であっても、ハロゲン原子(塩素原子等)、アルキル基、ヒドロキシル基、アルコキシ基、シリル基等であってもよい。 When the polysilane is an acyclic polysilane, the terminal group (terminal substituent) of the polysilane may be a hydrogen atom, a halogen atom (such as a chlorine atom), an alkyl group, a hydroxyl group, an alkoxy group, or a silyl group. May be.
 ポリシランの具体例としては、ポリジメチルシラン、ポリ(メチルプロピルシラン)、ポリ(メチルブチルシラン)、ポリ(メチルペンチルシラン)、ポリ(ジブチルシラン)、ポリ(ジヘキシルシラン)等のポリジアルキルシラン、ポリ(ジフェニルシラン)等のポリジアリールシラン、ポリ(メチルフェニルシラン)等のポリ(アルキルアリールシラン)等のホモポリマー、ジメチルシラン-メチルヘキシルシラン共重合体等のジアルキルシランと他のジアルキルシランとの共重合体、フェニルシラン-メチルフェニルシラン共重合体等のアリールシラン-アルキルアリールシラン共重合体、ジメチルシラン-メチルフェニルシラン共重合体、ジメチルシラン-フェニルヘキシルシラン共重合体、ジメチルシラン-メチルナフチルシラン共重合体、メチルプロピルシラン-メチルフェニルシラン共重合体等のジアルキルシラン-アルキルアリールシラン共重合体等のコポリマー等が挙げられる。 Specific examples of polysilanes include polydialkylsilanes such as polydimethylsilane, poly (methylpropylsilane), poly (methylbutylsilane), poly (methylpentylsilane), poly (dibutylsilane), poly (dihexylsilane), poly Copolymers of polydiarylsilanes such as (diphenylsilane), homopolymers such as poly (alkylarylsilane) such as poly (methylphenylsilane), dialkylsilanes such as dimethylsilane-methylhexylsilane copolymer and other dialkylsilanes Polymers, arylsilane-alkylarylsilane copolymers such as phenylsilane-methylphenylsilane copolymer, dimethylsilane-methylphenylsilane copolymer, dimethylsilane-phenylhexylsilane copolymer, dimethylsilane-methylnaphthylsila Copolymer, methyl propyl silane - include copolymers such as alkyl aryl silane copolymer - dialkyl silane and methyl phenyl silane copolymer.
 ポリカルボシランは、分子内の主鎖に(-Si-C-)結合を有する高分子化合物である。ポリカルボシランとしては、下記式(d)で表される繰り返し単位を含むものが好ましい。 Polycarbosilane is a polymer compound having a (—Si—C—) bond in the main chain in the molecule. As polycarbosilane, what contains the repeating unit represented by following formula (d) is preferable.
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 式中、Rw、Rvは、それぞれ独立して、水素原子、ヒドロキシル基、アルキル基、アリール基、アルケニル基、又は、1価の複素環基を表す。複数のRw、Rvは、それぞれ同一であっても異なっていてもよい。Rは、アルキレン基、アリーレン基又は2価の複素環基を表す。
 式(d)で表される繰り返し単位を有するポリカルボシランの重量平均分子量は、通常400~12000である。
In the formula, Rw and Rv each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, an aryl group, an alkenyl group, or a monovalent heterocyclic group. A plurality of Rw and Rv may be the same or different. R represents an alkylene group, an arylene group or a divalent heterocyclic group.
The weight average molecular weight of the polycarbosilane having a repeating unit represented by the formula (d) is usually from 400 to 12,000.
 Rw、Rvの1価の複素環基の複素環としては、炭素原子の他に酸素原子、窒素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む3~10員の環状化合物であれば特に制約はない。1価の複素環基の具体例としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-チエニル基、3-チエニル基、2-フリル基、3-フリル基、3-ピラゾリル基、4-ピラゾリル基、2-イミダゾリル基、4-イミダゾリル基、1,2,4-トリアジン-3-イル基、1,2,4-トリアジン-5-イル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、3-ピリダジル基、4-ピリダジル基、2-ピラジル基、2-(13,5-トリアジル)基、3-(1,2,4-トリアジル)基、6-(1,2,4-トリアジル)基、2-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、5-イソチアゾリル基、2-(13,4-チアジアゾリル)基、3-(1,2,4-チアジアゾリル)基、2-オキサゾリル基、4-オキサゾリル基、3-イソオキサゾリル基、5-イソオキサゾリル基、2-(13,4-オキサジアゾリル)基、3-(1,2,4-オキサジアゾリル)基、5-(1,2,3-オキサジアゾリル)基等が挙げられる。これらの基は、任意の位置に、アルキル基、アリール基、アルコキシ基、アリールオキシ基等の置換基を有していてもよい。 The heterocyclic ring of the monovalent heterocyclic group of Rw and Rv is not particularly limited as long as it is a 3- to 10-membered cyclic compound containing at least one hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in addition to a carbon atom. There is no. Specific examples of the monovalent heterocyclic group include 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-thienyl group, 3-thienyl group, 2-furyl group, 3-furyl group, and 3-pyrazolyl. Group, 4-pyrazolyl group, 2-imidazolyl group, 4-imidazolyl group, 1,2,4-triazin-3-yl group, 1,2,4-triazin-5-yl group, 2-pyrimidyl group, 4- Pyrimidyl group, 5-pyrimidyl group, 3-pyridyl group, 4-pyridazyl group, 2-pyrazyl group, 2- (13,5-triazyl) group, 3- (1,2,4-triazyl) group, 6- ( 1,2,4-triazyl) group, 2-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 5-isothiazolyl group, 2- (13,4-thiadiazolyl) group, 3- (1,2,4- Thiadiazolyl) group, 2-oxazolyl group 4-oxazolyl group, 3-isoxazolyl group, 5-isoxazolyl group, 2- (13,4-oxadiazolyl) group, 3- (1,2,4-oxadiazolyl) group, 5- (1,2,3-oxadiazolyl) Groups and the like. These groups may have a substituent such as an alkyl group, an aryl group, an alkoxy group, or an aryloxy group at an arbitrary position.
 Rのアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基等の炭素数1~10のアルキレン基が挙げられる。アリーレン基としては、p-フェニレン基、1,4-ナフチレン基、2,5-ナフチレン基等の炭素数6~20のアリーレン基が挙げられる。Rのアルキレン基、アリーレン基は、任意の位置に、アルキル基、アリール基、アルコキシ基、ハロゲン原子等の置換基を有していてもよい。 Examples of the alkylene group of R include alkylene groups having 1 to 10 carbon atoms such as a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and an octamethylene group. Examples of the arylene group include arylene groups having 6 to 20 carbon atoms such as a p-phenylene group, a 1,4-naphthylene group, and a 2,5-naphthylene group. The alkylene group and arylene group of R may have a substituent such as an alkyl group, an aryl group, an alkoxy group, or a halogen atom at an arbitrary position.
 Rの2価の複素環基としては、炭素原子の他に酸素原子、窒素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む3~10員の複素環化合物から導かれる2価の基であれば特に制約はない。2価の複素環基の具体例としては、2,5-チオフェンジイル基等のチオフェンジイル基、2,5-フランジイル基等のフランジイル基、2,5-セレノフェンジイル基等のセレノフェンジイル基、2,5-ピロールジイル基等のピロールジイル基、2,5-ピリジンジイル基、2,6-ピリジンジイル基等のピリジンジイル基、2,5-チエノ[3,2-b]チオフェンジイル基、2,5-チエノ[2,3-b]チオフェンジイル基等のチエノチオフェンジイル基、2,6-キノリンジイル基等のキノリンジイル基、1,4-イソキノリンジイル基、1,5-イソキノリンジイル基等のイソキノリンジイル基、5,8-キノキサリンジイル基等のキノキサリンジイル基、4,7-ベンゾ[1,2,5]チアジアゾールジイル基等のベンゾ[1,2,5]チアジアゾールジイル基、4,7-ベンゾチアゾールジイル基等のベンゾチアゾールジイル基、2,7-カルバゾールジイル基、3,6-カルバゾールジイル基等のカルバゾールジイル基、3,7-フェノキサジンジイル基等のフェノキサジンジイル基、3,7-フェノチアジンジイル基等のフェノチアジンジイル基、2,7-ジベンゾシロールジイル基等のジベンゾシロールジイル基、2,6-ベンゾ[1,2-b:4,5-b’]ジチオフェンジイル基、2,6-ベンゾ[1,2-b:5,4-b’]ジチオフェンジイル基、2,6-ベンゾ[2,1-b:3,4-b’]ジチオフェンジイル基、2,6-ベンゾ[1,2-b:3,4-b’]ジチオフェンジイル基等のベンゾジチオフェンジイル基等が挙げられる。Rの2価の複素環基は、任意の位置に、アルキル基、アリール基、アルコキシ基、ハロゲン原子等の置換基を有していてもよい。 The divalent heterocyclic group for R may be a divalent group derived from a 3- to 10-membered heterocyclic compound containing at least one hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in addition to a carbon atom. There are no particular restrictions. Specific examples of the divalent heterocyclic group include thiophene diyl groups such as 2,5-thiophenediyl group, frangyl groups such as 2,5-furandiyl group, and selenophene such as 2,5-selenophenediyl group. Diyl group, pyrrole diyl group such as 2,5-pyrrole diyl group, 2,5-pyridinediyl group, pyridinediyl group such as 2,6-pyridinediyl group, 2,5-thieno [3,2-b] thiophenediyl group Thienothiophene diyl group such as 2,5-thieno [2,3-b] thiophenediyl group, Quinoline diyl group such as 2,6-quinolinediyl group, 1,4-isoquinolinediyl group, 1,5-isoquinolinediyl group, etc. Isoquinolinediyl group, quinoxalinediyl group such as 5,8-quinoxalinediyl group, and benzo [4,7-benzo [1,2,5] thiadiazolediyl group , 2,5] thiadiazole diyl group, benzothiazole diyl group such as 4,7-benzothiazole diyl group, carbazole diyl group such as 2,7-carbazole diyl group, 3,6-carbazole diyl group, 3,7-phenoxy Phenoxazinediyl group such as sazinediyl group, phenothiazinediyl group such as 3,7-phenothiazinediyl group, dibenzosiloldiyl group such as 2,7-dibenzosiloldiyl group, 2,6-benzo [1,2-b: 4,5-b ′] dithiophenediyl group, 2,6-benzo [1,2-b: 5,4-b ′] dithiophenediyl group, 2,6-benzo [2,1-b: 3, Benzodithiophene diyl groups such as 4-b ′] dithiophene diyl group and 2,6-benzo [1,2-b: 3,4-b ′] dithiophene diyl group. The divalent heterocyclic group for R may have a substituent such as an alkyl group, an aryl group, an alkoxy group, or a halogen atom at an arbitrary position.
 これらの中でも、式(d)において、Rw、Rvがそれぞれ独立して、水素原子、アルキル基又はアリール基であり、Rがアルキレン基又はアリーレン基である繰り返し単位を含むポリカルボシランがより好ましい。さらに、Rw、Rvがそれぞれ独立して、水素原子又はアルキル基であり、Rがアルキレン基である繰り返し単位を含むポリカルボシランが好ましい。 Among these, in formula (d), Rw and Rv are each independently a hydrogen atom, an alkyl group or an aryl group, and polycarbosilane containing a repeating unit in which R is an alkylene group or an arylene group is more preferable. Furthermore, polycarbosilane containing a repeating unit in which Rw and Rv are each independently a hydrogen atom or an alkyl group and R is an alkylene group is preferable.
 ケイ素含有層23の形成材料として、ポリシラザンがより好ましい。
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。具体的には、ポリシラザンは、好ましくは下記一般式(I)に示す構造を有する。
As a material for forming the silicon-containing layer 23, polysilazane is more preferable.
Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer. Specifically, polysilazane preferably has a structure represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 上記一般式(I)において、R、R及びRは、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R、R及びRは、それぞれ、同じであっても、異なっていてもよい。また、上記一般式(I)において、nは、整数であり、上記一般式(I)で表される構造を有するポリシラザンが150~150000g/モルの数平均分子量を有するように定められることが好ましい。
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザンである。
In the general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different. In the general formula (I), n is an integer, and is preferably determined so that the polysilazane having the structure represented by the general formula (I) has a number average molecular weight of 150 to 150,000 g / mol. .
In the compound having the structure represented by the general formula (I), one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
 また、ポリシラザンとしては、好ましくは下記一般式(II)で表される構造を有する。 The polysilazane preferably has a structure represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 上記一般式(II)において、R1’、R2’、R3’、R4’、R5’及びR6’は、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’及びR6’は、それぞれ、同じであっても、異なっていてもよい。また、上記一般式(II)において、n’及びpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150~150000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’及びpは、同じであっても、異なっていてもよい。 In the general formula (II), R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different. In the general formula (II), n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. Is preferred. Note that n ′ and p may be the same or different.
 上記一般式(II)のポリシラザンのうち、R1’、R3’及びR6’が各々水素原子を表し、R2’、R4’及びR5’が各々メチル基を表す化合物、R1’、R3’及びR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物、又は、R1’、R3’、R4’及びR6’が各々水素原子を表し、R2’及びR5’が各々メチル基を表す化合物が好ましい。 Of the polysilazanes of the above general formula (II), R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group, R 1 ', R 3' and R 6 'are each a hydrogen atom, R 2', R 4 'are each a methyl group, R 5' compound represents a vinyl group, or, R 1 ', R 3' , A compound in which R 4 ′ and R 6 ′ each represent a hydrogen atom and R 2 ′ and R 5 ′ each represent a methyl group is preferred.
 又は、ポリシラザンとしては、好ましくは、下記一般式(III)で表される構造を有する。 Alternatively, the polysilazane preferably has a structure represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
 上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”及びR9”は、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”及びR9”は、それぞれ、同じであっても、異なっていてもよい。 In the general formula (III), R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ may be the same or different.
 また、上記一般式(III)において、n”、p”及びqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150~150000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、p”及びqは、同じであっても、異なっていてもよい。 In the general formula (III), n ″, p ″ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. Preferably, it is defined. Note that n ″, p ″, and q may be the same or different.
 上記一般式(III)のポリシラザンのうち、R1”、R3”及びR6”が各々水素原子を表し、R2”、R4”、R5”及びR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基又は水素原子を表す化合物が好ましい。 Among the polysilazanes of the above general formula (III), R 1 ″ , R 3 ″ and R 6 ″ each represent a hydrogen atom, and R 2 ″ , R 4 ″ , R 5 ″ and R 8 ″ each represent a methyl group. , R 9 ″ represents a (triethoxysilyl) propyl group, and R 7 ″ represents an alkyl group or a hydrogen atom.
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くて脆いポリシラザンによるセラミック膜に靭性を持たせることができる。このため、ケイ素含有層23の膜厚(平均)を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンとを選択してよく、混合して使用することもできる。 On the other hand, the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. And toughness can be imparted to the ceramic film made of brittle polysilazane. For this reason, even when the film thickness (average) of the silicon-containing layer 23 is increased, there is an advantage that generation of cracks can be suppressed. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
 パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造とが存在する構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体又は固体の物質があり、その状態は分子量により異なる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is approximately 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and there are liquid or solid substances, and the state varies depending on the molecular weight.
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままケイ素含有層23を形成するためのケイ素含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。これらポリシラザン溶液は、単独でも又は2種以上組み合わせても用いることもできる。 Polysilazane is commercially available in a solution in an organic solvent, and a commercially available product can be used as it is as a silicon-containing coating solution for forming the silicon-containing layer 23. Examples of commercially available polysilazane solutions include NN120, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd. It is done. These polysilazane solutions can be used alone or in combination of two or more.
 ケイ素含有層23の形成に用いるポリシラザンの別の例として、以下のポリシラザンを挙げることができる。例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。 As another example of polysilazane used for forming the silicon-containing layer 23, the following polysilazane can be mentioned. For example, a silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide with the above polysilazane (Japanese Patent Laid-Open No. 5-238827), a glycidol-added polysilazane obtained by reacting glycidol (Japanese Patent Laid-Open No. 6-122852), and an alcohol Alcohol-added polysilazane (JP-A-6-240208) obtained by reaction, metal carboxylate-added polysilazane (JP-A-6-299118) obtained by reacting a metal carboxylate, and an acetylacetonate complex containing a metal Acetylacetonate complex-added polysilazane (JP-A-6-306329) obtained by reacting with metal, and metal-silica-added polysilazane (JP-A-7-196986) obtained by adding metal fine particles, etc. Policy Than, and the like.
 ケイ素含有層23の形成にポリシラザンを用いる場合、真空紫外線照射前のケイ素含有層23中におけるポリシラザンの含有率は、ケイ素含有層23の全質量を100質量%としたとき、100質量%とすることができる。また、真空紫外線照射前のケイ素含有層23がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。 When polysilazane is used to form the silicon-containing layer 23, the polysilazane content in the silicon-containing layer 23 before irradiation with vacuum ultraviolet rays is 100% by mass when the total mass of the silicon-containing layer 23 is 100% by mass. Can do. Moreover, when the silicon-containing layer 23 before vacuum ultraviolet irradiation contains things other than polysilazane, it is preferable that the content rate of the polysilazane in a layer is 10 to 99 mass%, and is 40 to 95 mass%. More preferably, it is 70 mass% or less and 95 mass% or less.
(ケイ素含有塗布液)
 ケイ素含有層23を形成するための塗布液(ケイ素含有塗布液)を調製する溶剤としては、ケイ素含有化合物を溶解できるものであれば特に制限されない。溶剤としては、ケイ素含有化合物と容易に反応してしまう水及び反応性基(例えば、ヒドロキシル基、又は、アミン基等)を含まず、ケイ素含有化合物に対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤、例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン等のケトン類、ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類、例えば、テトラヒドロフラン、ジブチルエーテル、モノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)等を挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されても又は2種以上の混合物の形態で使用されてもよい。
(Silicon-containing coating solution)
The solvent for preparing the coating liquid (silicon-containing coating liquid) for forming the silicon-containing layer 23 is not particularly limited as long as it can dissolve the silicon-containing compound. As the solvent, an organic solvent which does not contain water and reactive groups (for example, hydroxyl group or amine group) that easily react with the silicon-containing compound and is inert to the silicon-containing compound is preferable. Protic organic solvents are more preferred. Specifically, the solvent includes an aprotic solvent, for example, an aliphatic hydrocarbon such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and terpene, and a hydrocarbon such as alicyclic hydrocarbon and aromatic hydrocarbon. Solvents, halogen hydrocarbon solvents such as methylene chloride and trichloroethane, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran, ethers such as alicyclic ethers Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like. The solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
 ケイ素含有塗布液におけるケイ素含有化合物の濃度は、特に制限されない。ケイ素含有塗布液におけるケイ素含有化合物の濃度は、層の厚さや塗布液のポットライフによっても異なるが、好ましくは1~80質量%、より好ましくは5~50質量%、さらに好ましくは10~40質量%である。 The concentration of the silicon-containing compound in the silicon-containing coating solution is not particularly limited. The concentration of the silicon-containing compound in the silicon-containing coating solution varies depending on the thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass, and still more preferably 10 to 40% by mass. %.
 ケイ素含有層23の改質を行う場合には、ケイ素含有塗布液に改質を促進するための触媒が含有されていることが好ましい。改質を促進するための触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-13-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1~10質量%、より好ましくは0.5~7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、及び、膜密度の低下、膜欠陥の増大等を避けることができる。 When the silicon-containing layer 23 is modified, it is preferable that the silicon-containing coating solution contains a catalyst for promoting the modification. As the catalyst for promoting the reforming, a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N , N ′, N′-tetramethyl-13-diaminopropane, amine catalysts such as N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propionic acid Examples thereof include Pd compounds such as Pd, metal catalysts such as Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the silicon compound. By setting the amount of catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
 ケイ素含有塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類、例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂、ゴム、ロジン樹脂等、合成樹脂、重合樹脂等、縮合樹脂、アミノプラスト、尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル樹脂、変性ポリエステル樹脂、エポキシ樹脂、ポリイソシアネート、ブロック化ポリイソシアネート、ポリシロキサン等である。 In the silicon-containing coating solution, the following additives can be used as necessary. For example, cellulose ethers, cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, natural resin, rubber, rosin resin, synthetic resin, polymerization resin, condensation resin, aminoplast, urea resin Melamine formaldehyde resin, alkyd resin, acrylic resin, polyester resin, modified polyester resin, epoxy resin, polyisocyanate, blocked polyisocyanate, polysiloxane and the like.
(塗布方法)
 ケイ素含有塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用される。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ダイコート法、グラビア印刷法等が挙げられる。
 塗布厚さは、好ましい厚さや目的に応じて適切に設定される。
(Application method)
As a method for applying the silicon-containing coating solution, a conventionally known appropriate wet coating method is employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
The coating thickness is appropriately set according to the preferred thickness and purpose.
 塗布液を塗布した後は、塗膜を乾燥させる。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去する。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適なケイ素含有層23が得られる。なお、残存する溶媒は後に除去される。 After applying the coating solution, the coating film is dried. By drying the coating film, the organic solvent contained in the coating film is removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable silicon-containing layer 23 can be obtained. The remaining solvent is removed later.
 塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃であることが好ましい。例えば、ガラス転移温度(Tg)が70℃のポリエチレンテレフタレートフィルムを樹脂基材21として用いる場合には、乾燥温度は、熱による樹脂基材21の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定される。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。 The drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C. For example, when a polyethylene terephthalate film having a glass transition temperature (Tg) of 70 ° C. is used as the resin base material 21, the drying temperature is set to 150 ° C. or lower in consideration of deformation of the resin base material 21 due to heat. Is preferred. The temperature is set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes. The drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
 ケイ素含有塗布液を塗布して得られた塗膜は、真空紫外線の照射前又は真空紫外線の照射中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境に、塗膜を保持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するため、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-5℃以下(温度25℃/湿度10%)である。塗膜を保持維持する時間は適宜設定することが好ましい。具体的には、露点温度は-5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上であり、-40℃以上であることが好ましい。改質処理前、又は、改質処理中に水分を除去することによって、シラノールに転化したケイ素含有層23の脱水反応を促進する観点から好ましい形態である。 The coating film obtained by applying the silicon-containing coating solution may include a step of removing moisture before irradiation with vacuum ultraviolet rays or during irradiation with vacuum ultraviolet rays. As a method for removing moisture, a form in which the coating film is retained and dehumidified in a low humidity environment is preferable. Since humidity in a low-humidity environment varies with temperature, the relationship between temperature and humidity shows a preferred form by defining the dew point temperature. A preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), and a more preferable dew point temperature is −5 ° C. or lower (temperature 25 ° C./humidity 10%). It is preferable to appropriately set the time for holding and maintaining the coating film. Specifically, it is preferable that the dew point temperature is −5 ° C. or lower and the maintaining time is 1 minute or longer. The lower limit of the dew point temperature is not particularly limited, but is usually −50 ° C. or higher, and preferably −40 ° C. or higher. This is a preferable form from the viewpoint of promoting the dehydration reaction of the silicon-containing layer 23 converted to silanol by removing water before or during the modification treatment.
(真空紫外線照射)
 上記のようにして形成されたケイ素含有化合物を含む塗膜は、そのままの状態でケイ素含有層23とすることができるが、得られた塗膜に対して真空紫外線を照射し、酸窒化ケイ素等への転化反応を行うことによりケイ素含有層23を形成することが好ましい。樹脂基材21側から順に、ケイ素含有層23と金属含有層24とを有する構成のガスバリア層22では、真空紫外線照射を行うことにより、ケイ素含有層23の形成から金属含有層24の形成までの間で、環境影響によるガスバリア性の劣化が発生しにくい。樹脂基材21側から順に、金属含有層24とケイ素含有層23とを有する構成のガスバリア層22では、真空紫外線照射を行うことにより、ガスバリア性が向上するため、真空紫外線照射を行うことが好ましい。
(Vacuum UV irradiation)
The coating film containing the silicon-containing compound formed as described above can be used as it is as the silicon-containing layer 23, but the obtained coating film is irradiated with vacuum ultraviolet rays to form silicon oxynitride or the like. It is preferable to form the silicon-containing layer 23 by carrying out a conversion reaction. In order from the resin base material 21 side, the gas barrier layer 22 having the silicon-containing layer 23 and the metal-containing layer 24 is subjected to vacuum ultraviolet irradiation to perform from the formation of the silicon-containing layer 23 to the formation of the metal-containing layer 24. It is difficult for gas barrier properties to deteriorate due to environmental effects. In the gas barrier layer 22 having the metal-containing layer 24 and the silicon-containing layer 23 in order from the resin base material 21 side, the vacuum barrier irradiation improves the gas barrier property, so that the vacuum ultraviolet irradiation is preferably performed. .
 真空紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する樹脂基材21の形状によって適宜選定することができる。例えば、バッチ処理の場合には、紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、対象が長尺フィルム状である場合には、これを搬送させながら紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することができる。紫外線照射に要する時間は、使用する基材やケイ素含有層23の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 Vacuum ultraviolet irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the resin substrate 21 to be used. For example, in the case of batch processing, it can be processed in an ultraviolet baking furnace equipped with an ultraviolet ray generation source. The ultraviolet baking furnace itself is generally known. For example, an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used. Moreover, when a target is a long film form, an ultraviolet-ray can be continuously irradiated in the drying zone which equipped the ultraviolet-ray generation source, conveying this. The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the substrate used and the composition and concentration of the silicon-containing layer 23.
 真空紫外線照射による改質は、ケイ素含有化合物(特にポリシラザン化合物)内の原子間結合力より大きい100~200nmの光エネルギーを用いる。好ましくは100~180nmの波長の光エネルギーを用いる。この真空紫外線照射により、原子の結合を光量子プロセスと呼ばれる光子のみの作用で、直接切断しながら活性酸素やオゾンによる酸化反応を進行させる。これにより、比較的低温(約200℃以下)で、酸窒化ケイ素を含む膜の形成を行うことができる。なお、下記のエキシマ照射処理を行う際は、エキシマ照射処理に熱処理を併用することが好ましい。 The modification by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm which is larger than the interatomic bonding force in the silicon-containing compound (especially polysilazane compound). Preferably, light energy having a wavelength of 100 to 180 nm is used. By this vacuum ultraviolet irradiation, an oxidative reaction with active oxygen or ozone is advanced while the atoms are directly cut by the action of only photons called photon processes. Thus, a film containing silicon oxynitride can be formed at a relatively low temperature (about 200 ° C. or less). In addition, when performing the following excimer irradiation processing, it is preferable to use heat processing together with excimer irradiation processing.
 真空紫外線源は、100~180nmの波長の光を発生させるものであればよい。好適には、約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、230nm以下の波長成分を有する中圧及び高圧水銀蒸気ランプ、及び、約222nmに最大放射を有するエキシマランプである。 The vacuum ultraviolet ray source may be any source that generates light having a wavelength of 100 to 180 nm. Preferably, an excimer radiator (eg, an Xe excimer lamp) having a maximum emission at about 172 nm, a low pressure mercury vapor lamp having an emission line at about 185 nm, a medium and high pressure mercury vapor lamp having a wavelength component of 230 nm or less, and about Excimer lamp with maximum emission at 222 nm.
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間で塗膜の改質を実現できる。 Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. Moreover, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. The coating film can be modified in a short time by the high energy of the active oxygen, ozone and ultraviolet radiation.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域の短い波長でエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. Further, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated at a short wavelength in the ultraviolet region, so that an increase in the surface temperature of the irradiation object can be suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
 真空紫外線照射による反応では酸素が必要となるが、真空紫外線は酸素による吸収があるため、紫外線照射工程の効率が酸素によって低下しやすい。このため、真空紫外線の照射は、可能な限り酸素濃度及び水蒸気濃度が低い状態で行うことが好ましい。即ち、真空紫外線照射の際の酸素濃度は、10~20000体積ppm(0.001~2体積%)とすることが好ましく、50~10000体積ppm(0.005~1体積%)とすることがより好ましい。また、真空紫外線照射の際の水蒸気濃度は、好ましくは1000~4000体積ppmの範囲である。 Oxygen is required for the reaction by irradiation with vacuum ultraviolet rays, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency of the ultraviolet irradiation process is likely to be reduced by oxygen. For this reason, it is preferable to perform the irradiation with vacuum ultraviolet rays in a state where the oxygen concentration and the water vapor concentration are as low as possible. That is, the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 10 to 20000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10000 volume ppm (0.005 to 1 volume%). More preferred. Further, the water vapor concentration at the time of irradiation with vacuum ultraviolet rays is preferably in the range of 1000 to 4000 ppm by volume.
 真空紫外線照射に用いる照射雰囲気を満たすガスは、乾燥不活性ガスであることが好ましく、特にコストの観点から乾燥窒素ガスであることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス及び不活性ガスの流量を計測し、流量比を変えることで調整できる。 The gas satisfying the irradiation atmosphere used for the vacuum ultraviolet irradiation is preferably a dry inert gas, and particularly preferably a dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 真空紫外線照射工程において、塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、改質効率が向上する。10W/cm以下であれば、塗膜に生じ得るアブレーションや、樹脂基材21へのダメージを低減することができる。 In the vacuum ultraviolet ray irradiation step, the illuminance of the vacuum ultraviolet ray on the coating surface received by the coating film is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. and further preferably 50mW / cm 2 ~ 160mW / cm 2. If it is 1 mW / cm 2 or more, the reforming efficiency is improved. If it is 10 W / cm < 2 > or less, the ablation which may arise in a coating film and the damage to the resin base material 21 can be reduced.
 樹脂基材21側から順にケイ素含有層23と金属含有層24とを形成する場合、塗膜の表面における真空紫外線の照射エネルギー量(照射量)は、0.1~10J/cmであることが好ましく、0.1~7J/cmであることがより好ましく、0.1~3J/cmであることがさらに好ましい。樹脂基材21側から順に金属含有層24とケイ素含有層23とを形成する場合、塗膜の表面への真空紫外線の照射エネルギー量(照射量)は、1~10J/cmであることが好ましく、3~7J/cmであることがより好ましい。この範囲であれば、過剰改質によるクラックの発生や、樹脂基材21の熱変形を抑制することができ、また生産性が向上する。 When the silicon-containing layer 23 and the metal-containing layer 24 are formed in this order from the resin base material 21 side, the irradiation energy amount (irradiation amount) of vacuum ultraviolet rays on the surface of the coating film is 0.1 to 10 J / cm 2. Is preferably 0.1 to 7 J / cm 2 , and more preferably 0.1 to 3 J / cm 2 . When the metal-containing layer 24 and the silicon-containing layer 23 are formed in this order from the resin base material 21 side, the irradiation energy amount (irradiation amount) of vacuum ultraviolet rays onto the surface of the coating film is 1 to 10 J / cm 2. Preferably, it is 3-7 J / cm 2 . If it is this range, generation | occurrence | production of the crack by excessive modification | reformation and the thermal deformation of the resin base material 21 can be suppressed, and productivity will improve.
 塗膜の表面への照射に用いられる真空紫外線は、CO、CO及びCHの少なくとも一種を含むガスによって形成されるプラズマから発生させてもよい。さらに、CO、CO及びCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガス又はHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。 The vacuum ultraviolet rays used for irradiating the surface of the coating film may be generated from plasma formed by a gas containing at least one of CO, CO 2 and CH 4 . Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but the rare gas or H 2 is used as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
[金属含有層]
 ガスバリア性フィルム20は、ケイ素含有層23とともに、V、Nb、Ta、Ti、Zr、Hf、Mg、Y、及び、Alから選ばれる少なくとも1種以上の金属Mの化合物を含む金属含有層24を有する。上記金属Mを含有する金属含有層24は、電気化学的にケイ素含有層23よりも酸化されやすく、ケイ素含有層23の酸化を抑制する。金属含有層24は、上記金属Mを含む金属化合物を用いて、気相成膜法により形成されることが好ましい。
[Metal-containing layer]
The gas barrier film 20 includes a silicon-containing layer 23 and a metal-containing layer 24 containing a compound of at least one metal M selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al. Have. The metal-containing layer 24 containing the metal M is more easily oxidized than the silicon-containing layer 23, and suppresses oxidation of the silicon-containing layer 23. The metal-containing layer 24 is preferably formed by a vapor deposition method using a metal compound containing the metal M.
 主要な金属の標準酸化還元電位を下記表1に示す。 The standard redox potential of major metals is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 金属Mを含む金属化合物としては、特に限定されないが、例えば、金属Mの酸化物、窒化物、炭化物、酸窒化物、又は、酸炭化物が挙げられる。特に、ケイ素含有層23の酸化をより効果的に抑制するという観点からは、金属Mの酸化物であることが好ましい。金属化合物は1種単独であっても2種以上併用してもよい。 The metal compound containing the metal M is not particularly limited, and examples thereof include an oxide, nitride, carbide, oxynitride, or oxycarbide of the metal M. In particular, from the viewpoint of more effectively suppressing oxidation of the silicon-containing layer 23, an oxide of metal M is preferable. The metal compound may be used alone or in combination of two or more.
 また、金属化合物に含まれる金属Mは、ケイ素よりも酸化還元電位が低い金属であることが好ましい。ケイ素よりも酸化還元電位の低い金属の化合物を含む層とすることで、より良好なバリア性が得られる。ケイ素よりも酸化還元電位が低い金属の具体例としては、例えば、V、Nb、Ta、Zr、Ti、Hf、及び、Yが挙げられる。これら金属は、単独でも又は2種以上混合して用いてもよい。これらの中でも、特に第5族元素であるV、Nb、Taがケイ素含有層23の酸化を抑制する効果が高い。このため、金属含有層24は、金属MとしてV、Nb、及び、Taから選ばれる少なくとも1種の金属化合物を含むことが好ましい。さらに、金属含有層24は、光学特性の観点から、金属Mとして透明性が良好な化合物が得られるNbを含むことが好ましい。 Further, the metal M contained in the metal compound is preferably a metal having a lower redox potential than silicon. By using a layer containing a metal compound having a lower oxidation-reduction potential than silicon, better barrier properties can be obtained. Specific examples of the metal having a lower redox potential than silicon include V, Nb, Ta, Zr, Ti, Hf, and Y, for example. These metals may be used alone or in combination of two or more. Among these, V, Nb, and Ta, which are Group 5 elements, are particularly effective in suppressing the oxidation of the silicon-containing layer 23. For this reason, the metal-containing layer 24 preferably contains at least one metal compound selected from V, Nb, and Ta as the metal M. Furthermore, it is preferable that the metal containing layer 24 contains Nb from which the compound with favorable transparency is obtained as the metal M from a viewpoint of optical characteristics.
 金属含有層24中における金属化合物の含有量は、金属含有層24の全質量に対して50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%である(すなわち、金属含有層24は金属化合物からなる)ことが最も好ましい。 The content of the metal compound in the metal-containing layer 24 is preferably 50% by mass or more, more preferably 80% by mass or more, and 95% by mass or more with respect to the total mass of the metal-containing layer 24. More preferably, it is particularly preferably 98% by mass or more, and most preferably 100% by mass (that is, the metal-containing layer 24 is made of a metal compound).
(金属含有層の形成)
 金属含有層24の形成には、金属元素と酸素との組成比の調整しやすさの観点から、気相成膜法を用いることが好ましい。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法等の物理気相成長法(PVD)法、プラズマCVD(chemical vapor deposition)法、ALD(Atomic Layer Deposition)等の化学気相成長法が挙げられる。中でも、下層へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、スパッタ法を用いることが好ましい。
(Formation of metal-containing layer)
For the formation of the metal-containing layer 24, it is preferable to use a vapor deposition method from the viewpoint of easy adjustment of the composition ratio between the metal element and oxygen. The vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, plasma CVD (chemical vapor deposition), and ALD (Atomic Layer). Chemical vapor deposition methods such as Deposition). Among them, it is preferable to use a sputtering method because film formation can be performed without damaging the lower layer and high productivity is obtained.
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロン(DMS)スパッタリング、イオンビームスパッタリング、ECRスパッタリング等を、単独又は2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、及びRF(高周波)スパッタリングのいずれを用いてもよい。金属モードと、酸化物モードの中間である遷移モードを利用した反応性スパッタ法も用いることもできる。反応性スパッタ法は、遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。DCスパッタリングやDMSスパッタリングを行なう際には、そのターゲットに金属を用い、さらに、プロセスガス中に酸素を導入することで、金属酸化物の薄膜を形成することができる。また、RF(高周波)スパッタリングで成膜する場合は、金属の酸化物のターゲットを用いることができる。プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、金属の酸化物、窒化物、窒酸化物、炭酸化物等の金属化合物の薄膜を作製することができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、膜厚等に応じて適宜選択することができる。好ましくは、特に、成膜レートがより高く、より高い生産性を有することから、金属の酸化物をターゲットとするスパッタ法を用いる。 For the film formation by sputtering, bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more. The target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used. A reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used. The reactive sputtering method is preferable because the metal oxide film can be formed at a high film formation speed by controlling the sputtering phenomenon so as to be in the transition region. When DC sputtering or DMS sputtering is performed, a metal oxide thin film can be formed by using a metal for the target and introducing oxygen into the process gas. In the case of forming a film by RF (high frequency) sputtering, a metal oxide target can be used. As the inert gas used for the process gas, He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, a thin film of a metal compound such as a metal oxide, nitride, nitride oxide, or carbonate can be produced. Examples of film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like. Preferably, a sputtering method using a metal oxide as a target is particularly used because it has a higher film formation rate and higher productivity.
 金属含有層24は、単層でもよいし2層以上の積層構造であってもよい。金属含有層24が2層以上の積層構造である場合、金属含有層24に含まれる金属化合物は同じものであってもよいし異なるものであってもよい。 The metal-containing layer 24 may be a single layer or a laminated structure of two or more layers. When the metal-containing layer 24 has a laminated structure of two or more layers, the metal compounds contained in the metal-containing layer 24 may be the same or different.
 金属含有層24は、ケイ素含有層23の酸化を抑制しガスバリア性を維持する機能を有する層であると考えられるため、必ずしもガスバリア性は必要ではない。従って、金属含有層24は比較的薄い層でも効果を発揮し得る。具体的には、樹脂基材21/ケイ素含有層23/金属含有層24の層構成の場合、金属含有層24の厚さ(2層以上の積層構造である場合はその総厚)は、バリア性の面内均一性の観点から、1~200nmであることが好ましく、2~100nmであることがより好ましく、3~50nmであることがさらに好ましい。特に50nm以下であれば、金属含有層24の成膜の生産性がより向上する。また、樹脂基材21/金属含有層24/ケイ素含有層23の層構成の場合には、金属含有層24の厚さ(2層以上の積層構造である場合はその総厚)は、バリア性の面内均一性の観点から、1~200nmであることが好ましく、2~150nmであることがより好ましく、10~150nmであることがさらに好ましい。 Since the metal-containing layer 24 is considered to be a layer having a function of suppressing the oxidation of the silicon-containing layer 23 and maintaining the gas barrier property, the gas barrier property is not necessarily required. Accordingly, the metal-containing layer 24 can be effective even in a relatively thin layer. Specifically, in the case of the layer configuration of the resin base material 21 / the silicon-containing layer 23 / the metal-containing layer 24, the thickness of the metal-containing layer 24 (the total thickness in the case of a laminated structure of two or more layers) is the barrier From the viewpoint of in-plane uniformity of the property, the thickness is preferably 1 to 200 nm, more preferably 2 to 100 nm, and further preferably 3 to 50 nm. In particular, when the thickness is 50 nm or less, the productivity of the metal-containing layer 24 is further improved. Further, in the case of the layer structure of the resin base material 21 / the metal-containing layer 24 / the silicon-containing layer 23, the thickness of the metal-containing layer 24 (the total thickness in the case of a laminated structure of two or more layers) is a barrier property. From the viewpoint of in-plane uniformity, the thickness is preferably 1 to 200 nm, more preferably 2 to 150 nm, and even more preferably 10 to 150 nm.
[ガスバリア性フィルムの形成方法]
 ガスバリア性フィルム20が、樹脂基材21/ケイ素含有層23/金属含有層24の構成である場合、ケイ素含有層23を形成し、次に、金属含有層24を形成することが好ましい。領域Aを形成する場合には、ケイ素含有層23の真空紫外線照射による改質は行ってもよく、行わなくてもよい。領域Aが形成されれば、ケイ素含有層23の真空紫外線照射を行なわなくても良好なガスバリア性が得られる。このため、上記真空紫外線照射を行なわないことにより、高速成膜が可能となり、高い生産性が得られる。一方、領域Aをより効率的に形成させるという観点からは、3J/cm未満の照射エネルギー量でケイ素含有層23の真空紫外線照射による改質を行なうことが好ましく、1J/cm未満とすることがより好ましい。さらに、照射エネルギー量が0J/cm、即ち真空紫外線照射による改質を行わない態様も好ましく選択することができる。
[Method of forming gas barrier film]
When the gas barrier film 20 has a structure of resin base material 21 / silicon-containing layer 23 / metal-containing layer 24, it is preferable to form the silicon-containing layer 23 and then form the metal-containing layer 24. When the region A is formed, the silicon-containing layer 23 may be modified by vacuum ultraviolet irradiation or not. If the region A is formed, good gas barrier properties can be obtained without performing the vacuum ultraviolet irradiation of the silicon-containing layer 23. For this reason, by not performing the vacuum ultraviolet irradiation, high-speed film formation is possible, and high productivity can be obtained. On the other hand, from the viewpoint of more efficiently form regions A, it is preferred to perform the modification with the vacuum ultraviolet ray irradiation of the silicon-containing layer 23 at an irradiation energy amount of less than 3J / cm 2, and less than 1 J / cm 2 It is more preferable. Furthermore, an aspect in which the irradiation energy amount is 0 J / cm 2 , that is, the modification is not performed by vacuum ultraviolet irradiation can be preferably selected.
 ケイ素含有層23を形成する際、真空紫外線照射を行わない場合には、ケイ素含有層23は、ケイ素含有化合物を含有する塗布液を塗布及び乾燥して得られる塗膜を、5~40℃で、相対湿度0~60%RHの条件下で1~1000時間で保管して形成する。その後、金属含有層24を形成することが好ましい。 When forming the silicon-containing layer 23, when the vacuum ultraviolet irradiation is not performed, the silicon-containing layer 23 is a coating film obtained by applying and drying a coating solution containing a silicon-containing compound at 5 to 40 ° C. It is formed by storing for 1 to 1000 hours under conditions of a relative humidity of 0 to 60% RH. Thereafter, the metal-containing layer 24 is preferably formed.
 上記環境下に保管することにより、ケイ素含有層23の塗布乾燥後から金属含有層24を形成するまでの間に、ケイ素含有層23の表面組成に発生する望ましくない変化を抑制することができるため、高温高湿条件下でのガスバリア性能が向上する。望ましくない変化とは、例えば、ケイ素含有化合物としてポリシラザンを用いた場合では、大気中の水分とポリシラザンとの反応による、ケイ素含有層23の表面の窒素含有量の低下、及び、酸素含有量の増加等である。 By storing in the above-described environment, it is possible to suppress undesirable changes in the surface composition of the silicon-containing layer 23 from the time when the silicon-containing layer 23 is applied and dried until the metal-containing layer 24 is formed. The gas barrier performance under high temperature and high humidity conditions is improved. For example, when polysilazane is used as the silicon-containing compound, the undesirable change is a decrease in the nitrogen content on the surface of the silicon-containing layer 23 and an increase in the oxygen content due to the reaction between moisture in the atmosphere and polysilazane. Etc.
 樹脂基材21/ケイ素含有層23/金属含有層24の構成である場合、ケイ素含有層23の1層あたりの膜厚(2層以上の積層構造である場合はその総厚)は、ガスバリア性能の観点から、10~1000nmであることが好ましく、50~600nmであることがより好ましく、50~300nmであることがさらに好ましい。この範囲であれば、ガスバリア性と耐久性とのバランスが良好となり好ましい。 In the case of the structure of resin base material 21 / silicon-containing layer 23 / metal-containing layer 24, the film thickness per layer of the silicon-containing layer 23 (the total thickness in the case of a laminated structure of two or more layers) is the gas barrier performance. From this point of view, the thickness is preferably 10 to 1000 nm, more preferably 50 to 600 nm, and still more preferably 50 to 300 nm. If it is this range, the balance of gas barrier property and durability becomes favorable and is preferable.
 ガスバリア性フィルム20が、樹脂基材21/金属含有層24/ケイ素含有層23の構成である場合、金属含有層24を形成後、ケイ素含有化合物を含む塗布液を塗布及び乾燥して塗膜を形成し、この塗膜を真空紫外線処理によって改質する。 When the gas barrier film 20 has a structure of resin base material 21 / metal-containing layer 24 / silicon-containing layer 23, after forming the metal-containing layer 24, a coating solution containing a silicon-containing compound is applied and dried. Once formed, the coating is modified by vacuum UV treatment.
 金属含有層24によるケイ素含有層23の酸化抑制効果は、ケイ素含有層23が改質されている方が高い。このため、樹脂基材21/金属含有層24/ケイ素含有層23の構成である場合、ケイ素含有層23は、金属含有層24に近接する下面側まで改質されていることが好ましい。 The effect of suppressing the oxidation of the silicon-containing layer 23 by the metal-containing layer 24 is higher when the silicon-containing layer 23 is modified. For this reason, when it is the structure of the resin base material 21 / metal containing layer 24 / silicon containing layer 23, it is preferable that the silicon containing layer 23 is modified to the lower surface side close to the metal containing layer 24.
 従って、上面側から172nmの真空紫外線を照射してケイ素含有層23を改質する場合、ケイ素含有層23の下面まで172nm光を到達させるために、ケイ素含有層23の厚さは、比較的薄いことが好ましい。具体的には、ケイ素含有層23の1層あたりの膜厚(2層以上の積層構造である場合はその総厚)は、300nm以下であることが好ましく、200nm以下であることがより好ましく、150nm以下であることがさら好ましく、100nm以下であることが特に好ましい。一方、ケイ素含有層23は、薄すぎるとガスバリア性が劣化する。このため、ケイ素含有層23のガスバリア性を考慮すると、厚さは5nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることがさらに好ましく、40nm以上であることが特に好ましい。 Therefore, when the silicon-containing layer 23 is modified by irradiating vacuum ultraviolet light of 172 nm from the upper surface side, the thickness of the silicon-containing layer 23 is relatively thin in order to allow 172 nm light to reach the lower surface of the silicon-containing layer 23. It is preferable. Specifically, the film thickness per layer of the silicon-containing layer 23 (the total thickness in the case of a laminated structure of two or more layers) is preferably 300 nm or less, more preferably 200 nm or less, The thickness is more preferably 150 nm or less, and particularly preferably 100 nm or less. On the other hand, if the silicon-containing layer 23 is too thin, the gas barrier properties deteriorate. For this reason, considering the gas barrier properties of the silicon-containing layer 23, the thickness is preferably 5 nm or more, more preferably 10 nm or more, further preferably 20 nm or more, and particularly preferably 40 nm or more. preferable.
 樹脂基材21/金属含有層24/ケイ素含有層23の構成である場合、領域Aの形成は、次のように行なうことができる。例えば、金属含有層24を形成した後、形成した金属含有層24を形成した5~40℃、相対湿度0~60%RHの条件下で1~1000時間保管する。この後、金属含有層24上にケイ素含有層23を形成することにより、領域Aを有するガスバリア層22を作製できる。 In the case of the structure of the resin base material 21 / the metal-containing layer 24 / the silicon-containing layer 23, the region A can be formed as follows. For example, after the metal-containing layer 24 is formed, it is stored for 1 to 1000 hours under the conditions of 5 to 40 ° C. and relative humidity 0 to 60% RH where the formed metal-containing layer 24 is formed. Thereafter, by forming the silicon-containing layer 23 on the metal-containing layer 24, the gas barrier layer 22 having the region A can be produced.
(種々の機能を有する層)
 ガスバリア性フィルム20には、上記構成の他、種々の機能を有する層を設けることができる。
(Layers with various functions)
In addition to the above configuration, the gas barrier film 20 can be provided with layers having various functions.
(アンカーコート層)
 金属含有層24及びケイ素含有層23を形成する側の樹脂基材21の表面には、樹脂基材21と金属含有層24又はケイ素含有層23との密着性の向上を目的として、アンカーコート層を形成してもよい。アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。
(Anchor coat layer)
For the purpose of improving the adhesion between the resin substrate 21 and the metal-containing layer 24 or the silicon-containing layer 23, the anchor coat layer is formed on the surface of the resin substrate 21 on the side on which the metal-containing layer 24 and the silicon-containing layer 23 are formed. May be formed. The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、及びアルキルチタネート等を単独又は2種以上組み合わせて使用することができる。 As anchor coating agents used in the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicone resins, alkyl titanates, etc. are used alone. Or it can use in combination of 2 or more types.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングを形成することができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。 Conventionally known additives can be added to these anchor coating agents. The anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and the anchor coating is applied by drying and removing the solvent, diluent, etc. Can be formed. The application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
 また、アンカーコート層は、物理蒸着法又は化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着層19性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。或いは、特開2004-314626号公報に記載されているように、アンカーコート層上に気相法で無機薄膜を形成する際、基材側から発生するガスをある程度遮断し、無機薄膜の組成を制御するために、アンカーコート層を形成することもできる。 Also, the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving the adhesive layer 19 property and the like. Alternatively, as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed on the anchor coat layer by a vapor phase method, the gas generated from the substrate side is blocked to some extent, and the composition of the inorganic thin film is changed. An anchor coat layer can also be formed for control.
(ハードコート層)
 樹脂基材21は、表面(片面又は両面)にハードコート層を有していてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独又は2種以上組み合わせても用いることができる。
(Hard coat layer)
The resin base material 21 may have a hard coat layer on the surface (one side or both sides). Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold. Such curable resins can be used singly or in combination of two or more.
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む材料が好ましく用いられる。この材料を、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちハードコート層を形成する。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。また、予めハードコート層が形成されている市販の樹脂基材21を用いてもよい。 The active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a material containing a monomer having an ethylenically unsaturated double bond is preferably used. This material is cured by irradiating active energy rays such as ultraviolet rays and electron beams to form a layer containing a cured product of the active energy ray curable resin, that is, a hard coat layer. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. Moreover, you may use the commercially available resin base material 21 in which the hard-coat layer is formed previously.
(平滑化層)
 ガスバリア性フィルム20は、樹脂基材21と金属含有層24又はケイ素含有層23との間に、平滑化層を有してもよい。平滑化層は、突起等が存在する樹脂基材21の粗面を平坦化するため、又は、樹脂基材21に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑化層は、基本的には感光性材料、又は、熱硬化性材料を硬化させて作製される。
(Smoothing layer)
The gas barrier film 20 may have a smoothing layer between the resin base material 21 and the metal-containing layer 24 or the silicon-containing layer 23. The smoothing layer is flattened to flatten the rough surface of the resin substrate 21 where protrusions and the like are present, or to fill the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin substrate 21 To be provided. Such a smoothing layer is basically produced by curing a photosensitive material or a thermosetting material.
 平滑化層の感光性材料としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含む樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含む樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材が挙げられる。 Examples of the photosensitive material for the smoothing layer include a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, and polyester. Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. Specifically, a UV curable organic / inorganic hybrid hard coat material manufactured by JSR Corporation may be mentioned.
 また、平滑化層の感光性材料としては、OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。 Further, as the photosensitive material for the smoothing layer, OPSTAR (registered trademark) series can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
 熱硬化性材料として、具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標)EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。 Specific examples of thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, Unico manufactured by DIC, Inc. Dick (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic and organic nanocomposite materials manufactured by Nittobo Co., Ltd. Examples thereof include SSG coat, thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicon resin. Among these, an epoxy resin-based material having heat resistance is particularly preferable.
 平滑化層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、又は、蒸着法等のドライコーティング法により形成することが好ましい。 The method for forming the smoothing layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as an evaporation method.
 平滑化層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑化層の積層位置に関係なく、いずれの平滑化層においても、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。 In the formation of the smoothing layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary. Further, regardless of the position where the smoothing layer is laminated, in any smoothing layer, an appropriate resin or additive may be used for improving the film forming property and preventing the generation of pinholes in the film.
 平滑化層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、さらに好ましくは、2μm~7μmの範囲にすることが好ましい。
 平滑化層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、十点平均粗さRzが、10nm以上、30nm以下であることが好ましい。
The thickness of the smoothing layer is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 7 μm from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. It is preferable.
The smoothness of the smoothing layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the ten-point average roughness Rz is preferably 10 nm or more and 30 nm or less.
[内部光取り出し層]
 有機EL素子10において、内部光取り出し層は、光散乱層14と、少なくとも1層の平滑化層11とから構成される。光散乱層14は、平均粒径0.2μm以上1μm未満の光散乱粒子及びバインダーを含有することが好ましい。平滑化層11は、ケイ素の酸化物、ニオブの酸化物、ケイ素の窒化物若しくはニオブの窒化物を主成分とする。また、水蒸気透過度が0.1g/(m・24h)未満であることが好ましい。特に、水分の侵入を効果的に防ぎ、有機EL素子の長寿命化に繋がるため、平滑化層11が無機ケイ素化合物若しくは有機ケイ素化合物の反応生成物、又は、酸化ニオブを主成分とすることが好ましい。
[Internal light extraction layer]
In the organic EL element 10, the internal light extraction layer includes a light scattering layer 14 and at least one smoothing layer 11. The light scattering layer 14 preferably contains light scattering particles having an average particle diameter of 0.2 μm or more and less than 1 μm and a binder. The smoothing layer 11 is mainly composed of silicon oxide, niobium oxide, silicon nitride, or niobium nitride. The water vapor permeability is preferably less than 0.1 g / (m 2 · 24 h). In particular, the smoothing layer 11 may contain a reaction product of an inorganic silicon compound or an organic silicon compound, or niobium oxide as a main component in order to effectively prevent moisture from entering and lead to a long life of the organic EL element. preferable.
 長期保存性の観点から、ガスバリア層22の水蒸気透過度Wg、光散乱層14の水蒸気透過度Ws、及び、平滑化層11の水蒸気透過度Wfが、下記条件式を満たすことが好ましい。
 Wg≦Wf<Ws
From the viewpoint of long-term storage stability, it is preferable that the water vapor transmission rate Wg of the gas barrier layer 22, the water vapor transmission rate Ws of the light scattering layer 14, and the water vapor transmission rate Wf of the smoothing layer 11 satisfy the following conditional expression.
Wg ≦ Wf <Ws
 光散乱層14の水蒸気透過度Wsの絶対値は低い方が好ましいが、原理的に光散乱層14のガス透過性は大きく、光散乱層14の水蒸気透過度Wsも大きくなる。これに対し、Wfを一番低くして性能向上を図ることも原理的に可能であるが、光散乱層14のガス吸着量の変化は、素子の発光効率低下や、膜強度劣化を引き起こすことがある。このため、有機EL素子10では、ガスバリア層22の水蒸気透過度Wgを一番低く設計することが好ましい。ガスバリア層22の水蒸気透過度Wgを低くするために、樹脂基材21の反対側の面(光の射出面側)にガスバリア層を設けること、樹脂基材21/ガスバリア層22の基本構成部材を2以上重ねて使用することできる。 Although it is preferable that the absolute value of the water vapor transmission rate Ws of the light scattering layer 14 is low, in principle the gas permeability of the light scattering layer 14 is large and the water vapor transmission rate Ws of the light scattering layer 14 is also large. On the other hand, it is possible in principle to improve the performance by making Wf the lowest, but a change in the amount of gas adsorbed on the light scattering layer 14 causes a decrease in the light emission efficiency of the device and a deterioration in the film strength. There is. For this reason, in the organic EL element 10, it is preferable to design the water vapor permeability Wg of the gas barrier layer 22 to be the lowest. In order to lower the water vapor transmission rate Wg of the gas barrier layer 22, a gas barrier layer is provided on the opposite surface (light emission surface side) of the resin base material 21, and basic constituent members of the resin base material 21 / gas barrier layer 22 are provided. Two or more can be used in layers.
 また、発光ユニット13への水分の侵入や、各種素材からのガスを遮断する観点から、平滑化層11を構成するケイ素又はニオブの酸化物又は窒化物を主成分とする層が、ドライプロセスにより成膜されることが好ましい。
 平滑化層11の平滑性向上の観点からは、平滑化層11の表面側(第1電極12)がウェットプロセスにより成膜されることが好ましい。
In addition, from the viewpoint of blocking moisture from entering the light-emitting unit 13 and gas from various materials, the layer mainly composed of oxide or nitride of silicon or niobium constituting the smoothing layer 11 is formed by a dry process. It is preferable to form a film.
From the viewpoint of improving the smoothness of the smoothing layer 11, it is preferable that the surface side (first electrode 12) of the smoothing layer 11 is formed by a wet process.
 平滑化層11による光取り出し効率阻害を抑制する観点から、平滑化層11の屈折率は、1.7~3.0の範囲内であることが好ましい。平滑化層11の屈折率の調整手段として、屈折率が1.7~3.0の範囲内であるナノ粒子を、平滑化層に含有させることが好ましい。 From the viewpoint of suppressing the light extraction efficiency inhibition by the smoothing layer 11, the refractive index of the smoothing layer 11 is preferably in the range of 1.7 to 3.0. As a means for adjusting the refractive index of the smoothing layer 11, it is preferable that nanoparticles having a refractive index in the range of 1.7 to 3.0 are contained in the smoothing layer.
 発光ユニット13への水分の侵入防止する、各種素材からのガスを遮断する、及び、平滑化層11の平滑性向上等の各特性を向上させるためには、平滑化層11が複数の層からなることが好ましい。平滑化層11を複数の層で形成する場合には、各層は同一プロセスで形成されてもよく、異なるプロセスで形成されてもよい。また、同一の材料で形成されてもよく、異なる材料で形成されてもよい。 In order to prevent moisture from entering the light emitting unit 13, shut off gas from various materials, and improve the smoothness of the smoothing layer 11, the smoothing layer 11 includes a plurality of layers. It is preferable to become. When the smoothing layer 11 is formed of a plurality of layers, each layer may be formed by the same process or may be formed by different processes. Further, they may be formed of the same material or different materials.
 このような組合せとしては、例えば、ウェットプロセスによる積層、ドライプロセスによる積層、ウェットプロセスにより成膜した層上にドライプロセスにより成膜した層を積層、ドライプロセスにより成膜した層上にウェットプロセスにより成膜した層を積層、等を挙げることができる。好ましくは、第1電極12側の層をドライプロセスで形成し、光散乱層14側の層をウェットプロセスで形成する。具体的には、光散乱層14の表面の凹凸をより平坦にするため、平滑化層11を、樹脂基材21側から順に、ケイ素又はニオブの酸化物又は窒化物を主成分とする層と、ウェットプロセスにより成膜された層とを有する構成をすることが好ましい。 Examples of such combinations include, for example, lamination by a wet process, lamination by a dry process, lamination of a layer formed by a dry process on a layer formed by a wet process, and formation by a wet process on a layer formed by a dry process. For example, the deposited layers can be stacked. Preferably, the layer on the first electrode 12 side is formed by a dry process, and the layer on the light scattering layer 14 side is formed by a wet process. Specifically, in order to make the unevenness of the surface of the light scattering layer 14 more flat, the smoothing layer 11 is a layer mainly composed of an oxide or nitride of silicon or niobium in order from the resin base material 21 side. It is preferable to have a structure having a layer formed by a wet process.
 水分の侵入を効果的に防ぎ、有機EL素子の長寿命化に繋がるため、平滑化層11は酸化ニオブ又は無機ケイ素化合物又は有機ケイ素化合物の反応生成物を主成分とすることが好ましい。また、発光効率の観点からは、平滑化層11の屈折率が、1.7~3.0の範囲内であることが好ましい。平滑化層11が複数の層から構成される場合には、各層の折率が、すべて1.7~3.0の範囲内であることが好ましい。これらの特性を両立する観点から、平滑化層11は酸化ニオブ、窒化ケイ素又は酸窒化ケイ素を主成分とすることが特に好ましい。
 また、最小限の平滑化層11で光散乱層14を保護し、また、大気中の水蒸気等の侵入を防止する観点から、光散乱層14が封止領域内にパターニングされていることが好ましい。
The smoothing layer 11 preferably contains a reaction product of niobium oxide, an inorganic silicon compound, or an organic silicon compound as a main component in order to effectively prevent moisture from entering and lead to a long life of the organic EL element. From the viewpoint of luminous efficiency, the smoothing layer 11 preferably has a refractive index in the range of 1.7 to 3.0. In the case where the smoothing layer 11 is composed of a plurality of layers, it is preferable that the folding ratio of each layer is in the range of 1.7 to 3.0. From the viewpoint of achieving both of these characteristics, the smoothing layer 11 is particularly preferably composed mainly of niobium oxide, silicon nitride, or silicon oxynitride.
Further, from the viewpoint of protecting the light scattering layer 14 with the minimum smoothing layer 11 and preventing intrusion of water vapor or the like in the atmosphere, the light scattering layer 14 is preferably patterned in the sealing region. .
[平滑化層]
 平滑化層11は、ケイ素(Si)若しくはニオブ(Nb)の酸化物若しくは窒化物を主成分とすること、又は、水蒸気透過度が0.1g/(m・24h)未満であることを特徴とする。これにより、後述する光散乱層14、平滑化層11から放出されるガスや大気中の水分等の透過を効率よく防止するとともに、ガスバリア層22又は光散乱層14の表面の凹凸に起因する高温・高湿雰囲気下での保存性の劣化や電気的短絡(ショート)等の弊害を防止することができる。ここで、主成分とは、平滑化層11を構成する成分のうち、構成比率が最も高い成分をいう。
[Smoothing layer]
The smoothing layer 11 is mainly composed of an oxide or nitride of silicon (Si) or niobium (Nb), or has a water vapor permeability of less than 0.1 g / (m 2 · 24 h). And This effectively prevents transmission of gas emitted from the light scattering layer 14 and the smoothing layer 11, which will be described later, moisture in the atmosphere, and the like, and also causes high temperatures due to irregularities on the surface of the gas barrier layer 22 or the light scattering layer 14. -It is possible to prevent adverse effects such as deterioration of storage stability and electrical short circuit (short circuit) in a high humidity atmosphere. Here, the main component means a component having the highest constituent ratio among the components constituting the smoothing layer 11.
 ここで、平滑化層11の水蒸気透過度とは、JIS K 7129-1992に準拠した方法で測定された値であり、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.1g/(m・24h)未満であり、0.01g/(m・24h)以下であることが好ましく、0.001g/(m・24h)以下であることがより好ましい。 Here, the water vapor permeability of the smoothing layer 11 is a value measured by a method according to JIS K 7129-1992, and the water vapor permeability (25 ± 0.5 ° C., relative humidity 90 ± 2% RH). Is less than 0.1 g / (m 2 · 24 h), preferably 0.01 g / (m 2 · 24 h) or less, and more preferably 0.001 g / (m 2 · 24 h) or less.
 また、平滑化層11の屈折率は、1.7~3.0の範囲内にあることが好ましく、より好ましくは1.7~2.5の範囲内、特に好ましくは1.7~2.2の範囲内である。屈折率は、エリプソメーターで25℃において測定される波長633nmでの値を代表値として扱う。 The refractive index of the smoothing layer 11 is preferably in the range of 1.7 to 3.0, more preferably in the range of 1.7 to 2.5, and particularly preferably 1.7 to 2. Within the range of 2. For the refractive index, a value at a wavelength of 633 nm measured at 25 ° C. with an ellipsometer is treated as a representative value.
 平滑化層11が低屈折率材料(屈折率1.7未満)からなる場合、その層厚は薄い程好ましく、100nm未満であることがより好ましい。ただし、平滑化層11は、一定のガスバリア性を有することが好ましく、その点で連続膜が形成される層厚が下限となる。この点から、5nm以上が必要であり、10nm以上であることが好ましくは、30nm以上であることが特に好ましい。 When the smoothing layer 11 is made of a low refractive index material (refractive index less than 1.7), the layer thickness is preferably as thin as possible, and more preferably less than 100 nm. However, the smoothing layer 11 preferably has a certain gas barrier property, and the layer thickness at which a continuous film is formed is the lower limit. In this respect, 5 nm or more is necessary, 10 nm or more is preferable, and 30 nm or more is particularly preferable.
 一方、平滑化層11が高屈折率材料(屈折率1.7以上)からなる場合、その層厚の上限としては特に制限はなく、層厚の下限としては上記低屈折率材料からなる場合と同様である。ただし、平滑化層11の膜に可視光吸収がある場合は、層厚が薄い程好ましく、必要なガスバリア性と取り出し効率の観点で最適な層厚に設定することができる。 On the other hand, when the smoothing layer 11 is made of a high refractive index material (refractive index of 1.7 or more), the upper limit of the layer thickness is not particularly limited, and the lower limit of the layer thickness is made of the low refractive index material. It is the same. However, when the film of the smoothing layer 11 has visible light absorption, it is preferable that the layer thickness is as thin as possible, and an optimum layer thickness can be set in view of necessary gas barrier properties and extraction efficiency.
 さらに、平滑化層11は、厚さ100nmの層の全可視光域での吸収(積分球付きの分光波長測定におけるT%R%の合算値を除した値)が小さいことが好ましく、好ましくは10%未満、より好ましくは5%未満、更に好ましくは3%未満、最も好ましくは1%未満である。 Further, the smoothing layer 11 preferably has a small absorption (a value obtained by dividing the total value of T% R% in the spectral wavelength measurement with an integrating sphere) in the entire visible light region of the layer having a thickness of 100 nm, preferably It is less than 10%, more preferably less than 5%, still more preferably less than 3%, most preferably less than 1%.
 加えて、平滑化層11は、厚さ100nmでの曲げ耐性が重要である。PETフィルム上にガスバリア層22を設け、その上に厚さ100nmの平滑化層11を形成し、100回の凹凸曲げ試験にて割れの発生する直径が、30mmφ未満であることが好ましく、15mmφ未満であることがより好ましく、10mmφ未満であることが特に好ましい。 In addition, the smoothing layer 11 is important for bending resistance at a thickness of 100 nm. A gas barrier layer 22 is provided on a PET film, a smoothing layer 11 having a thickness of 100 nm is formed thereon, and the diameter at which cracks occur in 100 uneven bending tests is preferably less than 30 mmφ, and less than 15 mmφ It is more preferable that it is less than 10 mmφ.
 以下、平滑化層11の成膜方法として、ドライプロセスである場合と、ウェットプロセスである場合とで分けて説明する。 Hereinafter, the method for forming the smoothing layer 11 will be described separately for a dry process and a wet process.
(ドライプロセスによる成膜)
 平滑化層11に含有されるケイ素又はニオブの酸化物又は窒化物としては、例えば、無機ケイ素化合物の反応生成物、有機ケイ素化合物の反応生成物、酸化ニオブ、酸窒化ニオブ、窒化ニオブ、酸化炭化ニオブ、又は、窒化炭化ニオブ等が挙げられる。これらの中でも、平滑化層11に含有されるケイ素又はニオブの酸化物又は窒化物としては、窒化ケイ素若しくは酸窒化ケイ素、又は、酸化ニオブが好ましい。
(Film formation by dry process)
Examples of the oxide or nitride of silicon or niobium contained in the smoothing layer 11 include, for example, a reaction product of an inorganic silicon compound, a reaction product of an organic silicon compound, niobium oxide, niobium oxynitride, niobium nitride, and carbonized oxide. Niobium, niobium nitride niobium, or the like can be given. Among these, as the oxide or nitride of silicon or niobium contained in the smoothing layer 11, silicon nitride, silicon oxynitride, or niobium oxide is preferable.
 無機ケイ素化合物の反応生成物としては、例えば、酸化ケイ素、酸窒化ケイ素、窒化ケイ素、酸化炭化ケイ素、窒化炭化ケイ素等が挙げられる。
 有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,13,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。中でも、成膜の際の取扱い、及び、得られる平滑化層11のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,13,3-テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
Examples of the reaction product of the inorganic silicon compound include silicon oxide, silicon oxynitride, silicon nitride, silicon oxide carbide, and silicon nitride carbide.
Examples of the organosilicon compound include hexamethyldisiloxane, 1,13,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, Examples include phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane. Among these, hexamethyldisiloxane and 1,13,3-tetramethyldisiloxane are preferable from the viewpoint of handling during film formation and characteristics such as gas barrier properties of the resulting smoothing layer 11. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
 例えば、プラズマCVD法を用いて、ヘキサメチルジシロキサンの反応生成物を含む平滑化層11を成膜する場合、原料ガスとしてのヘキサメチルジシロキサンのモル量(流量)に対し、反応ガスとしての酸素のモル量(流量)は、化学量論比である12倍量以下、より好ましくは10倍量以下であることが好ましい。また、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 For example, when the smoothing layer 11 containing the reaction product of hexamethyldisiloxane is formed by plasma CVD, the reaction gas as a reaction gas with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material gas is used. The molar amount (flow rate) of oxygen is preferably 12 times or less, more preferably 10 times or less the stoichiometric ratio. In addition, the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas should be greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane. It is more preferable that the amount be more than 0.5 times.
 このような比で、ヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子が平滑化層11中に取り込まれ、所望の平滑化層11を形成することが可能となる。そして、得られる平滑化層11に優れたガスバリア性及び耐屈曲性を発揮させることが可能となる。 By containing hexamethyldisiloxane and oxygen at such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the smoothing layer 11, and a desired smoothing layer is obtained. 11 can be formed. And it becomes possible to exhibit the outstanding gas barrier property and bending resistance in the smoothing layer 11 obtained.
 また、酸化ニオブからなる平滑化層11を成膜する場合、例えば、成膜装置として、RFマグネトロンプラズマ発生部と、酸化ニオブ(Nb)ターゲットとを備え、これらが、導入部により真空処理室に接続されている装置が挙げられる。この成膜装置は、RFマグネトロンプラズマ発生部とターゲットとにより、RFマグネトロンスパッタ源が構成されている。RFマグネトロンプラズマ発生部によりアルゴンガスのプラズマを生成し、円板状のターゲットにRFを印加することで、ターゲットのニオブ原子及び酸素原子がスパッタされ(RFマグネトロンスパッタ)、これらを下流に位置する基板の表面に付着させ、平滑化層11を形成することができる。 When the smoothing layer 11 made of niobium oxide is formed, for example, as a film forming apparatus, an RF magnetron plasma generation unit and a niobium oxide (Nb 2 O 5 ) target are provided, and these are vacuumed by the introduction unit. An apparatus connected to the processing chamber can be given. In this film forming apparatus, an RF magnetron sputtering source is constituted by an RF magnetron plasma generation unit and a target. A plasma of argon gas is generated by an RF magnetron plasma generation unit, and RF is applied to a disk-shaped target, so that niobium atoms and oxygen atoms of the target are sputtered (RF magnetron sputtering), and these are positioned downstream. The smoothing layer 11 can be formed by adhering to the surface.
 さらに、酸化ニオブからなる平滑化層11を成膜する方法として、特開2006-28624号公報に開示されて方法を挙げることができる。この方法では、ターゲットとしてニオブメタルを用いる。また、スパッタリング法により基板表面に酸化ニオブ薄膜を成膜する際に、プラズマエミッションモニタリング(Plasma Emission Monitoring:PEM)法により、反応性ガスの導入量を調整する。これにより、ターゲットのニオブメタルから発生するプラズマの強度を制御することができる。この方法は、成膜速度に優れ、かつ、良好な光学特性を有する酸化ニオブ薄膜を作製することができる。 Furthermore, as a method of forming the smoothing layer 11 made of niobium oxide, the method disclosed in Japanese Patent Application Laid-Open No. 2006-28624 can be cited. In this method, niobium metal is used as a target. In addition, when a niobium oxide thin film is formed on the substrate surface by sputtering, the amount of reactive gas introduced is adjusted by plasma emission monitoring (PEM). Thereby, the intensity of the plasma generated from the niobium metal of the target can be controlled. This method can produce a niobium oxide thin film having excellent film formation speed and good optical properties.
 ドライプロセスとしては、例えば、蒸着法(抵抗加熱、EB法等)、プラズマCVD法、スパッタ法、イオンプレーティング法等を挙げることができるが、水蒸気透過度が小さく、低膜応力で緻密な膜を形成することができればいずれも好適に使用できる。また、ドライプロセスを用いた成膜においては、導入ガス以外にも微量のガスの存在により量論どおりの成分になることは稀である。具体的には、SiOが量論代表値であるが、実際の膜にはSiO(x=1.9~2.1)程度の幅が存在しているため、これらを含めてSiOとして取り扱う。上記の原子数比は、従来公知の方法で求めることが可能であるが、例えば、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いた分析装置等で測定することできる。 Examples of the dry process include a vapor deposition method (resistance heating, EB method, etc.), a plasma CVD method, a sputtering method, an ion plating method, etc., but a water vapor permeability is small and a dense film with low film stress is used. Any of them can be suitably used as long as they can be formed. In addition, in film formation using a dry process, it is rare that the component becomes a stoichiometric component due to the presence of a small amount of gas in addition to the introduced gas. Specifically, SiO 2 is a stoichiometric representative value, but since an actual film has a width of about SiO x (x = 1.9 to 2.1), SiO 2 including these is included. Treat as. The above-mentioned atomic ratio can be determined by a conventionally known method, and can be measured by, for example, an analyzer using X-ray photoelectron spectroscopy (XPS).
(ウェットプロセスによる成膜)
 平滑化層11を、ウェットプロセスを用いて成膜する場合、無機ケイ素化合物の反応生成物である二酸化ケイ素化合物を含有していることが好ましい。特に、無機ケイ素化合物としてポリシラザンを用いることが好ましいが、特にこれに限定されるものではなく、公知の材料を用いることができる。ポリシラザンとしては、上述の光散乱層14と同様に、上記一般式(I)で表されるポリシラザンを用いることができる。得られる平滑化層11の緻密性の観点からは、上記一般式(I)中のR、R及びRの全てが水素原子であるパーヒドロポリシラザン(PHPS)を用いることが好ましい。
(Deposition by wet process)
When forming the smoothing layer 11 using a wet process, it is preferable to contain the silicon dioxide compound which is a reaction product of an inorganic silicon compound. In particular, polysilazane is preferably used as the inorganic silicon compound, but is not particularly limited thereto, and a known material can be used. As polysilazane, polysilazane represented by the above general formula (I) can be used as in the case of the light scattering layer 14 described above. From the viewpoint of the denseness of the smoothing layer 11 to be obtained, it is preferable to use perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 in the general formula (I) are hydrogen atoms.
 平滑化層11は、ポリシラザンを含む塗布液を塗布し乾燥した後、真空紫外線を照射することにより形成することができる。ポリシラザンを含有する塗布液中のポリシラザンの濃度は、平滑化層11の層厚や塗布液のポットライフによっても異なるが、好ましくは0.2~35質量%程度である。 The smoothing layer 11 can be formed by applying a coating liquid containing polysilazane and drying it, followed by irradiation with vacuum ultraviolet rays. The concentration of polysilazane in the coating liquid containing polysilazane varies depending on the layer thickness of the smoothing layer 11 and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
 ポリシラザンを含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうような、低級アルコール系や水分を含有しない溶媒を用いることが好ましい。例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの有機溶媒は、ポリシラザンの溶解度や溶媒の蒸発速度等の目的にあわせて選択し、複数の有機溶媒を混合して用いてもよい。 As an organic solvent for preparing a coating liquid containing polysilazane, it is preferable to use a solvent that does not contain a lower alcohol or water that easily reacts with polysilazane. For example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used. Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran. These organic solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed and used.
 また、酸窒化ケイ素への変性を促進するため、ポリシラザンを含有する塗布液に、アミン触媒や、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒を添加することもできる。特に、アミン触媒を用いることが好ましい。具体的なアミン触媒としては、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N′,N′-テトラメチル-13-ジアミノプロパン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン等が挙げられる。 Further, in order to promote modification to silicon oxynitride, a coating solution containing polysilazane is added to an amine catalyst, a Pt compound such as Pt acetylacetonate, a Pd compound such as propionic acid Pd, or an Rh compound such as Rh acetylacetonate. A metal catalyst such as can also be added. In particular, it is preferable to use an amine catalyst. Specific amine catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-13 -Diaminopropane, N, N, N ', N'-tetramethyl-1,6-diaminohexane and the like.
 塗布液において、ポリシラザンに対する触媒の添加量は、0.1~10質量%の範囲内であることが好ましく、0.2~5質量%の範囲内であることがより好ましく、0.5~2質量%の範囲内であることが更に好ましい。触媒添加量をこの範囲内とすることで、反応の急激な進行による過剰なシラノール形成及び膜密度の低下、膜欠陥の増大等を避けることができる。 In the coating solution, the addition amount of the catalyst with respect to polysilazane is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.2 to 5% by mass, and 0.5 to 2%. More preferably, it is in the range of mass%. By making the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation, a decrease in film density, an increase in film defects, and the like due to rapid progress of the reaction.
 ポリシラザンを含有する塗布液を塗布する方法としては、任意の適切な方法が採用され得る。具体例としては、例えば、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。 Any appropriate method can be adopted as a method of applying the coating liquid containing polysilazane. Specific examples include a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a cast film forming method, a bar coating method, and a gravure printing method.
 塗膜の厚さは、目的に応じて適切に設定される。例えば、塗膜の厚さは、50nm~2μmの範囲内にあることが好ましく、より好ましくは70nm~1.5μmの範囲にあることがより好ましく、100nm~1μmの範囲にあることがさらに好ましい。 The thickness of the coating is appropriately set according to the purpose. For example, the thickness of the coating film is preferably in the range of 50 nm to 2 μm, more preferably in the range of 70 nm to 1.5 μm, and still more preferably in the range of 100 nm to 1 μm.
(エキシマ処理)
 平滑化層11は、ポリシラザンを含む層に真空紫外線を照射することにより、ポリシラザンの少なくとも一部が酸窒化ケイ素へと改質される。真空紫外光源としては、上述の希ガスエキシマランプが好ましく用いられる。
(Excimer processing)
The smoothing layer 11 is modified to at least part of polysilazane into silicon oxynitride by irradiating the layer containing polysilazane with vacuum ultraviolet rays. As the vacuum ultraviolet light source, the above rare gas excimer lamp is preferably used.
 平滑化層11において、ポリシラザンを含む塗膜が受ける塗膜面での真空紫外線の照度は、30~200mW/cmの範囲内であることが好ましく、50~160mW/cmの範囲内であることがより好ましい。30mW/cm以上であれば、改質効率が低下する懸念がなく、200mW/cm以下であれば、塗膜にアブレーションを生じず、基板にダメージを与えないため好ましい。 In the smoothing layer 11, the illuminance of vacuum ultraviolet rays on the coating surface received by the coating containing polysilazane is preferably in the range of 30 to 200 mW / cm 2 , and in the range of 50 to 160 mW / cm 2. It is more preferable. If it is 30 mW / cm 2 or more, there is no concern that the reforming efficiency is lowered, and if it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged.
 塗膜面における真空紫外線の照射エネルギー量は、200~10000mJ/cmの範囲内であることが好ましく、500~5000mJ/cmの範囲内であることがより好ましい。200mJ/cm以上では、改質が十分行える。また、10000mJ/cm以下では過剰改質にならず、クラック発生や基板の熱変形がない。 Irradiation energy amount of the VUV in the coated surface is preferably in the range of 200 ~ 10000mJ / cm 2, and more preferably in a range of 500 ~ 5000mJ / cm 2. At 200 mJ / cm 2 or more, the modification can be sufficiently performed. Further, if it is 10000 mJ / cm 2 or less, it is not excessively reformed, and there is no generation of cracks or thermal deformation of the substrate.
 真空紫外線照射による反応では酸素が必要となるが、真空紫外線は酸素による吸収があるため、紫外線照射工程の効率が酸素によって低下しやすい。このため、真空紫外線の照射は、可能な限り酸素濃度及び水蒸気濃度が低い状態で行うことが好ましい。即ち、真空紫外線照射時の酸素濃度は、10~10000ppmの範囲内とすることが好ましく、より好ましくは50~5000ppmの範囲内、更に好ましく1000~4500ppmの範囲内である。 Oxygen is required for the reaction by irradiation with vacuum ultraviolet rays, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency of the ultraviolet irradiation process is likely to be reduced by oxygen. For this reason, it is preferable to perform the irradiation with vacuum ultraviolet rays in a state where the oxygen concentration and the water vapor concentration are as low as possible. That is, the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably in the range of 10 to 10000 ppm, more preferably in the range of 50 to 5000 ppm, and still more preferably in the range of 1000 to 4500 ppm.
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては、乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は、照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 As the gas satisfying the irradiation atmosphere used at the time of vacuum ultraviolet irradiation, a dry inert gas is preferable, and a dry nitrogen gas is particularly preferable from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
(ナノ粒子)
 平滑化層11は、屈折率が1.7~3.0の範囲内であるナノ粒子を媒体としてのバインダー中に含有させて成膜することが好ましい。ナノ粒子の屈折率が1.7以上であれば、平滑化層11の屈折率調整が容易となる。また、ナノ粒子の屈折率が3.0以下であれば、層中での多重散乱を抑制し、透明性を低下させることがない。
 なお、ナノ粒子とは、分散媒中に分散される粒径がナノメートルオーダーの微粒子(コロイド状粒子)と定義される。粒子には、一つ一つばらばらの状態の粒子(1次粒子)と、凝集した状態の粒子(2次粒子)とが存在するが、2次粒子まで含めてナノ粒子と定義する。
(Nanoparticles)
The smoothing layer 11 is preferably formed by containing nanoparticles having a refractive index in the range of 1.7 to 3.0 in a binder as a medium. If the refractive index of the nanoparticles is 1.7 or more, the refractive index of the smoothing layer 11 can be easily adjusted. Moreover, if the refractive index of a nanoparticle is 3.0 or less, the multiple scattering in a layer will be suppressed and transparency will not be reduced.
Nanoparticles are defined as fine particles (colloidal particles) having a particle size dispersed in a dispersion medium of the order of nanometers. The particles include discrete particles (primary particles) and aggregated particles (secondary particles), which are defined as nanoparticles including secondary particles.
 ナノ粒子の粒子径の下限としては、通常5nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることがさらに好ましい。また、ナノ粒子の粒子径の上限としては、70nm以下であることが好ましく、60nm以下であることがより好ましく、50nm以下であることがさらに好ましい。ナノ粒子の粒子径が5~60nmの範囲内であることにより、高い透明性が得られる点で好ましい。平滑化層11としての機能を損なわない限り、ナノ粒子の粒子径の分布は制限されず、広くても狭くても複数の分布を持っていてもよい。 The lower limit of the particle diameter of the nanoparticles is usually preferably 5 nm or more, more preferably 10 nm or more, and further preferably 15 nm or more. Moreover, as an upper limit of the particle diameter of a nanoparticle, it is preferable that it is 70 nm or less, It is more preferable that it is 60 nm or less, It is further more preferable that it is 50 nm or less. When the particle diameter of the nanoparticles is in the range of 5 to 60 nm, it is preferable in that high transparency can be obtained. As long as the function as the smoothing layer 11 is not impaired, the particle size distribution of the nanoparticles is not limited and may be wide or narrow and may have a plurality of distributions.
 ナノ粒子としては、安定性の観点から、TiO(二酸化チタンゾル)であることがより好ましい。また、TiOの中でも、特にアナターゼ型よりルチル型の方が、触媒活性が低いため、平滑化層11や隣接した層の耐候性が高くなり、更に屈折率が高いことから好ましい。二酸化チタンゾルの調製方法としては、例えば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報等を参照することができる。 The nanoparticle is more preferably TiO 2 (titanium dioxide sol) from the viewpoint of stability. Among TiO 2 , rutile type is more preferable than anatase type, since the catalytic activity is low and the weather resistance of the smoothing layer 11 and the adjacent layer becomes high and the refractive index is high. As a method for preparing the titanium dioxide sol, for example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327 and the like can be referred to.
 平滑化層11は、ウェットプロセスやドライプロセス等によって形成されるが、これらの方式を組み合わせて用いてもよいし、一つの方式で同じ組成又は異なる組成の物を組み合わせて用いることもできる。複合膜、積層膜の場合は、全体で平滑化層11としての機能や作用を発現する。また、ウェットプロセスの場合、塗布後に乾燥・硬化・改質などを経た後の膜が、平滑化層11として形成されていればよく、平滑化層11が表面から深さ方向の成分の分布が傾斜を持っていても構わない。 The smoothing layer 11 is formed by a wet process, a dry process, or the like, but these methods may be used in combination, or one method may be used in combination with the same composition or different compositions. In the case of a composite film or a laminated film, the function and action as the smoothing layer 11 are expressed as a whole. In addition, in the case of a wet process, it is only necessary that the film after drying, curing, and modification after coating is formed as the smoothing layer 11, and the smoothing layer 11 has a distribution of components in the depth direction from the surface. You may have a slope.
 また、上述した観点を総合して両立できることから、ドライプロセスにおいては、酸窒化ケイ素、窒化ケイ素、酸化ニオブが特に優位であり好ましい。また、ウェットプロセスにおける塗布材料に関しては、ポリシラザンの低酸素濃度下におけるエキシマ硬化は特異的に屈折率が高く好ましい。さらに、塗布材料に関しては、ナノ粒子の添加/併用において、屈折率の調整が可能であり、このようなナノ粒子と組合せた適応が非常に好適である。 Also, since the above-mentioned viewpoints can be achieved together, silicon oxynitride, silicon nitride, and niobium oxide are particularly advantageous and preferable in the dry process. Regarding the coating material in the wet process, excimer curing under a low oxygen concentration of polysilazane is preferable because of its high refractive index. Furthermore, regarding the coating material, the refractive index can be adjusted in the addition / combination of nanoparticles, and adaptation in combination with such nanoparticles is very suitable.
 また、平滑化層11は、ガスバリア層22又は光散乱層14の上に発光ユニット13を設けた場合、当該ガスバリア層22又は光散乱層14の表面の凹凸に起因する高温・高湿雰囲気下での保存性の劣化や電気的短絡(ショート)等の弊害を防止することを主目的して設けられるものであり、光散乱層14と第1電極12との間に設けられる層である。 Further, when the light emitting unit 13 is provided on the gas barrier layer 22 or the light scattering layer 14, the smoothing layer 11 is in a high temperature / high humidity atmosphere due to the unevenness of the surface of the gas barrier layer 22 or the light scattering layer 14. It is provided mainly for the purpose of preventing adverse effects such as deterioration of storage stability and electrical short circuit (short circuit), and is a layer provided between the light scattering layer 14 and the first electrode 12.
(その他の平滑化層の構成)
 平滑化層11は、この上に第1電極12を良好に形成するために、平坦性を有することが重要である。平滑化層11の層厚としては、光散乱層14の表面粗さを緩和するためにある程度厚い必要があるが、一方で吸収によるエネルギーロスを生じない程度に薄い必要がある。
(Configuration of other smoothing layers)
It is important that the smoothing layer 11 has flatness in order to satisfactorily form the first electrode 12 thereon. The thickness of the smoothing layer 11 needs to be thick to some extent in order to reduce the surface roughness of the light scattering layer 14, but it needs to be thin enough not to cause energy loss due to absorption.
 平滑化層11は、表面性は、算術平均粗さRaが0.5~50nmの範囲内であることが好ましく、更に好ましくは30nm以下、特に好ましくは10nm以下、最も好ましくは5nm以下である。算術平均粗さRaを0.5~50nmの範囲内とすることで、有機EL素子10のショート等の不良を抑制することができる。なお、算術平均粗さRaについては、0nmが好ましいが実用レベルの限界値として0.5nmを下限値とする。 The surface property of the smoothing layer 11 is preferably such that the arithmetic average roughness Ra is in the range of 0.5 to 50 nm, more preferably 30 nm or less, particularly preferably 10 nm or less, and most preferably 5 nm or less. By setting the arithmetic average roughness Ra within the range of 0.5 to 50 nm, it is possible to suppress defects such as a short circuit of the organic EL element 10. As for the arithmetic average roughness Ra, 0 nm is preferable, but 0.5 nm is set as a lower limit value as a practical level limit value.
 表面の算術平均粗さRaは、JIS B 0601-2001に準拠した算術平均粗さを表している。なお、表面粗さ(算術平均粗さRa)は、Digital Instruments社製の原子間力顕微鏡(Atomic Force Microscope:AFM)を用い、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が10μmの区間内を3回測定し、微細な凹凸の振幅に関する平均の粗さから求める。 The arithmetic average roughness Ra of the surface represents the arithmetic average roughness according to JIS B 0601-2001. The surface roughness (arithmetic average roughness Ra) was measured by using an atomic force microscope (AFM) manufactured by Digital Instruments, and continuously measured with a detector having a stylus having a minimum tip radius. It is calculated from the cross-section curve, and is measured three times in a section having a measurement direction of 10 μm with a stylus having a very small tip radius, and is obtained from the average roughness regarding the amplitude of fine irregularities.
 平滑化層11は、発光ユニット13からの発光光hが入射する。このため、平滑化層11の平均屈折率nfは、発光ユニット13に含まれる有機層の屈折率と近い値であることが好ましい。具体的には、発光ユニット13には一般的に高屈折率の有機材料が用いられる。このため、平滑化層11は、発光ユニット13からの発光光hの発光極大波長のうち最も短い発光極大波長において、平均屈折率nfが1.5以上、特に1.65より大きく2.5未満の高屈折率層であることが好ましい。平均屈折率nfが1.65より大きく2.5未満であれば、単独の材料で形成されていてもよいし、混合物で形成されていてもよい。平滑化層11が混合系の場合、各々の材料の屈折率は1.65以下又は2.5以上であってよく、混合した膜の平均屈折率nfとして1.65より大きく2.5未満を満たしていればよい。 The emitted light h from the light emitting unit 13 is incident on the smoothing layer 11. For this reason, the average refractive index nf of the smoothing layer 11 is preferably a value close to the refractive index of the organic layer included in the light emitting unit 13. Specifically, the light emitting unit 13 is generally made of an organic material having a high refractive index. Therefore, the smoothing layer 11 has an average refractive index nf of 1.5 or more, particularly more than 1.65 and less than 2.5 at the shortest emission maximum wavelength among the emission maximum wavelengths of the emitted light h from the light emitting unit 13. A high refractive index layer is preferred. As long as the average refractive index nf is greater than 1.65 and less than 2.5, it may be formed of a single material or a mixture. When the smoothing layer 11 is a mixed system, the refractive index of each material may be 1.65 or less or 2.5 or more, and the average refractive index nf of the mixed film is greater than 1.65 and less than 2.5. It only has to satisfy.
 平滑化層11の「平均屈折率nf」とは、単独の材料で形成されている場合は、単独の材料の屈折率であり、混合系の場合は、各々の材料固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率である。なお、屈折率の測定は、25℃の雰囲気下で、発光ユニット13からの発光光hの発光極大波長のうち最も短い発光極大波長の光線を照射し、アッベ屈折率計(ATAGO社製、DR-M2)を用いて行った。 The “average refractive index nf” of the smoothing layer 11 is the refractive index of a single material when it is formed of a single material. In the case of a mixed system, the mixing ratio is added to the refractive index specific to each material. It is a calculated refractive index calculated by the sum value multiplied by. The refractive index is measured by irradiating a light beam having the shortest light emission maximum wavelength among the light emission maximum wavelengths of the emitted light h from the light emitting unit 13 in an atmosphere of 25 ° C., and Abbe refractometer (manufactured by ATAGO, DR -M2).
 平滑化層11に用いられるバインダーとしては、公知の樹脂が特に制限なく使用可能であり、例えば、アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の樹脂フィルム、有機無機ハイブリッド構造を有する、シルセスキオキサン、ポリシロキサン、ポリシラザン、ポリシロキサザン等を基本骨格とした耐熱透明フィルム(たとえば、製品名Sila-DEC、チッソ株式会社製)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ-1,1,2,2-テトラデシル)トリエトキシシラン)の他、含フッ素モノマーと架橋性基付与のためのモノマーを構成単位とする含フッ素共重合体等が挙げられる。これら樹脂は、2種以上混合して使用することができる。これらの中でも、有機無機ハイブリッド構造を有するものが好ましい。 As the binder used for the smoothing layer 11, a known resin can be used without any particular limitation. For example, acrylic ester, methacrylic ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), Polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, Resin films such as polyimide and polyetherimide, heat-resistant transparent films having an organic-inorganic hybrid structure and having a basic skeleton of silsesquioxane, polysiloxane, polysilazane, polysiloxazan, etc. (for example, Product name Sila-DEC (manufactured by Chisso Corporation), perfluoroalkyl group-containing silane compounds (for example, (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane), crosslinkability with fluorine-containing monomers Examples thereof include a fluorinated copolymer having a monomer for group addition as a structural unit. These resins can be used in combination of two or more. Among these, those having an organic-inorganic hybrid structure are preferable.
 また、平滑化層11に用いられるバインダーとしては、以下の親水性樹脂を使うことも可能である。親水性樹脂としては水溶性の樹脂、水分散性の樹脂、コロイド分散樹脂又はそれらの混合物が挙げられる。親水性樹脂としては、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、フッ素系等の樹脂が挙げられ、例えば、ポリビニルアルコール、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、カゼイン、デンプン、寒天、カラギーナン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、セルロース、ヒドロキシルエチルセルロース、カルボキシルメチルセルロース、ヒドロキシルエチルセルロース、デキストラン、デキストリン、プルラン、水溶性ポリビニルブチラール等のポリマーを挙げることができるが、これらの中でも、ポリビニルアルコールが好ましい。バインダー樹脂として用いられるポリマーは、1種類を単独で用いてもよいし、必要に応じて2種類以上を混合して使用してもよい。また、同様に、従来公知の樹脂粒子(エマルジョン)等も好適にバインダーとして使用可能である。 Further, as the binder used for the smoothing layer 11, the following hydrophilic resins can be used. Examples of the hydrophilic resin include water-soluble resins, water-dispersible resins, colloid-dispersed resins, and mixtures thereof. Examples of the hydrophilic resin include acrylic resins, polyester resins, polyamide resins, polyurethane resins, fluorine resins, etc., for example, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinyl pyrrolidone, casein, starch, agar, carrageenan, polyacrylic. Polymers such as acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, water-soluble polyvinyl butyral can be mentioned, but these Among these, polyvinyl alcohol is preferable. As the polymer used as the binder resin, one type may be used alone, or two or more types may be mixed and used as necessary. Similarly, conventionally known resin particles (emulsion) and the like can also be suitably used as the binder.
 また、バインダーとしては、主として紫外線・電子線によって硬化する樹脂、すなわち、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤とを混合したものや熱硬化型樹脂も好適に使用できる。このようなバインダー樹脂としては、飽和炭化水素又はポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることがより好ましい。 Also, as the binder, a resin curable mainly by ultraviolet rays or an electron beam, that is, a mixture of a thermoplastic resin and a solvent in an ionizing radiation curable resin or a thermosetting resin can be suitably used. Such a binder resin is preferably a polymer having a saturated hydrocarbon or polyether as a main chain, and more preferably a polymer having a saturated hydrocarbon as a main chain.
 また、バインダーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーを得るためには、二つ以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。 Also, the binder is preferably crosslinked. The polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder, it is preferable to use a monomer having two or more ethylenically unsaturated groups.
 平滑化層11は次にように作製することができる。まず、ナノTiO粒子が分散する分散液と樹脂溶液を混合し、フィルターで濾過して平滑化層11の作製溶液を得る。そして、光散乱層14まで形成したガスバリア性フィルム20上に、平滑化層11の作製溶液を塗布し、乾燥した後、加熱することにより平滑化層11を作製することができる。 The smoothing layer 11 can be produced as follows. First, a dispersion liquid in which nano-TiO 2 particles are dispersed and a resin solution are mixed and filtered through a filter to obtain a solution for preparing the smoothing layer 11. And the smoothing layer 11 can be produced by apply | coating the preparation solution of the smoothing layer 11 on the gas-barrier film 20 formed to the light-scattering layer 14, drying, and heating.
[光散乱層]
 有機EL素子10に形成される光散乱層14は、発光ユニット13からの発光光hが平滑化層11を通って入射する。このため、光散乱層14の平均屈折率nsが発光ユニット13の有機層及び隣接する平滑化層11とできるだけ近い方がよい。光散乱層14の平均屈折率nsは、発光ユニット13からの発光光hの発光極大波長のうち最も短い発光極大波長において、1.5以上、特に1.6以上2.5未満の範囲内であることが好ましい。この場合、光散乱層14は、平均屈折率nsが1.6以上2.5未満を有する材料を用いて単独で形成されていてもよく、また、2種類以上の材料の混合物を用いて形成されていてもよい。光散乱層14が混合系の場合、光散乱層14の平均屈折率nsは、各々の材料固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率を用いる。また、この場合、各々の材料の屈折率は、1.6未満若しくは2.5以上であってもよく、混合した膜の平均屈折率nsとして1.6以上2.5未満を満たしていればよい。
 ここで、「平均屈折率ns」とは、単独の材料で形成されている場合は、単独の材料の屈折率であり、混合系の場合は、各々の材料固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率である。
[Light scattering layer]
In the light scattering layer 14 formed in the organic EL element 10, the emitted light h from the light emitting unit 13 enters through the smoothing layer 11. For this reason, the average refractive index ns of the light scattering layer 14 is preferably as close as possible to the organic layer of the light emitting unit 13 and the adjacent smoothing layer 11. The average refractive index ns of the light scattering layer 14 is within the range of 1.5 or more, particularly 1.6 or more and less than 2.5 at the shortest emission maximum wavelength among the emission maximum wavelengths of the emitted light h from the light emitting unit 13. Preferably there is. In this case, the light scattering layer 14 may be formed alone using a material having an average refractive index ns of 1.6 or more and less than 2.5, or formed using a mixture of two or more materials. May be. When the light-scattering layer 14 is a mixed system, the average refractive index ns of the light-scattering layer 14 uses a calculated refractive index that is calculated by adding a refractive index specific to each material and a mixing ratio. In this case, the refractive index of each material may be less than 1.6 or 2.5 or more as long as the average refractive index ns of the mixed film satisfies 1.6 or more and less than 2.5. Good.
Here, the “average refractive index ns” is the refractive index of a single material when formed of a single material, and in the case of a mixed system, the refractive index specific to each material is multiplied by the mixing ratio. It is the calculated refractive index calculated by the combined value.
 光散乱層14は、光取り出し効率を向上させる層であり、ガスバリア性フィルム20の第1電極12側の最表面に形成されることが好ましい。また、光散乱層14は、層媒体であるバインダーと光散乱粒子との混合物であることが好ましい。光散乱層14は、光散乱粒子よりもが低い屈折率を有するバインダーと、バインダーよりも高い屈折率を有する光散乱粒子との混合物による、屈折率差を利用した散乱膜とすることが好ましい。 The light scattering layer 14 is a layer that improves light extraction efficiency, and is preferably formed on the outermost surface of the gas barrier film 20 on the first electrode 12 side. The light scattering layer 14 is preferably a mixture of a binder that is a layer medium and light scattering particles. The light scattering layer 14 is preferably a scattering film using a refractive index difference by a mixture of a binder having a lower refractive index than the light scattering particles and a light scattering particle having a higher refractive index than the binder.
 低屈折率を有するバインダーは、その屈折率nbが1.9未満であり、1.6未満が特に好ましい。バインダーの屈折率nbは、単独の材料で形成されている場合は、単独の材料の屈折率であり、混合系の場合は、各々の材料固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率である。 The binder having a low refractive index has a refractive index nb of less than 1.9, particularly preferably less than 1.6. The refractive index nb of the binder is the refractive index of a single material when it is formed of a single material. In the case of a mixed system, the refractive index nb is calculated by adding the refractive index specific to each material and the mixing ratio. Is the calculated refractive index.
 また、光散乱粒子は、その屈折率npが1.5以上であり、1.8以上が好ましく、2.0以上が特に好ましい。光散乱粒子の屈折率npとは、単独の材料で形成されている場合は、単独の材料の屈折率であり、混合系の場合は、各々の材料固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率である。 Further, the light scattering particles have a refractive index np of 1.5 or more, preferably 1.8 or more, and particularly preferably 2.0 or more. The refractive index np of the light scattering particle is the refractive index of a single material when it is formed of a single material. In the case of a mixed system, the total refractive index of each material is multiplied by the mixing ratio. Calculated refractive index calculated by value.
 また、光散乱層14の光散乱粒子の役割として、導波光の散乱機能が挙げられる。導波光の散乱機能を向上させるためには、光散乱粒子とバインダーの屈折率差を大きくすること、層厚を厚くすること、粒子密度を大きくすることが考えられる。この中で最も他の性能とのトレードオフが小さいものが、光散乱粒子とバインダーとの屈折率差を大きくすることである。 Further, the role of the light scattering particles of the light scattering layer 14 includes a guided light scattering function. In order to improve the guided light scattering function, it is conceivable to increase the refractive index difference between the light scattering particles and the binder, increase the layer thickness, and increase the particle density. Among them, the one with the smallest trade-off with other performance is to increase the difference in refractive index between the light scattering particles and the binder.
 層媒体であるバインダーと含有される光散乱粒子との屈折率差|nb-np|は、好ましくは0.2以上であり、特に好ましくは0.3以上である。層媒体と光散乱粒子との屈折率差|nb-np|が0.03以上であれば、層媒体と光散乱粒子との界面で散乱効果が発生する。屈折率差|nb-np|が大きいほど、界面での屈折が大きくなり、散乱効果が向上するため好ましい。具体的には、光散乱層14の平均屈折率nsが、1.6以上、2.5未満の範囲内である高屈折率層であることが好ましい。このため、例えば、バインダーの屈折率nbが1.6より小さく、光散乱粒子の屈折率npが1.8より大きいことが好ましい。なお、屈折率の測定は、平滑化層11と同様に、25℃の雰囲気下で、発光ユニット13からの発光光hの発光極大波長のうち最も短い発光極大波長の光線を照射し、アッベ屈折率計(ATAGO社製、DR-M2)を用いて行った。 The refractive index difference | nb−np | between the binder as the layer medium and the contained light scattering particles is preferably 0.2 or more, and particularly preferably 0.3 or more. When the refractive index difference | nb−np | between the layer medium and the light scattering particles is 0.03 or more, a scattering effect occurs at the interface between the layer medium and the light scattering particles. A larger refractive index difference | nb−np | is preferable because refraction at the interface increases and the scattering effect is improved. Specifically, it is preferably a high refractive index layer in which the average refractive index ns of the light scattering layer 14 is in the range of 1.6 or more and less than 2.5. For this reason, for example, the refractive index nb of the binder is preferably smaller than 1.6, and the refractive index np of the light scattering particles is preferably larger than 1.8. The refractive index is measured in the same manner as the smoothing layer 11 by irradiating a light beam having the shortest light emission maximum wavelength among the light emission maximum wavelengths of the emitted light h from the light emitting unit 13 in an atmosphere at 25 ° C. The measurement was performed using a rate meter (manufactured by ATAGO, DR-M2).
 光散乱層14の層厚は、散乱を生じるための光路長を確保するためにある程度厚い必要がある。一方で吸収によるエネルギーロスを生じない程度に薄い必要がある。具体的に、光散乱層14の層厚は、0.1~5μmの範囲内が好ましく、0.2~2μmの範囲内がより好ましい。 The layer thickness of the light scattering layer 14 needs to be thick to some extent in order to ensure the optical path length for causing scattering. On the other hand, it should be thin enough not to cause energy loss due to absorption. Specifically, the thickness of the light scattering layer 14 is preferably in the range of 0.1 to 5 μm, and more preferably in the range of 0.2 to 2 μm.
[光散乱粒子]
 光散乱層14は、上述のように、層媒体と光散乱粒子との屈折率の違いにより光を拡散させる層であることが好ましい。このため、含有される光散乱粒子としては、他の層への悪影響を及ぼさず、かつ発光ユニット13からの発光光hを散乱させることが求められる。散乱粒子は、実際には、多分散粒子であることや規則的に配置することが難しいことから、局部的には回折効果を有するものの、多くは拡散により光の方向を変化させ光取り出し効率を向上させる。
[Light scattering particles]
As described above, the light scattering layer 14 is preferably a layer that diffuses light due to a difference in refractive index between the layer medium and the light scattering particles. For this reason, the contained light scattering particles are required to scatter the emitted light h from the light emitting unit 13 without adversely affecting other layers. Scattering particles are actually polydisperse particles and difficult to arrange regularly, so they have a diffraction effect locally, but in many cases, the direction of light is changed by diffusion to improve light extraction efficiency. Improve.
 散乱とは、光散乱層14の単層のヘイズ値(全光線透過率に対する散乱透過率の割合)が、20%以上、より好ましくは25%以上、特に好ましくは30%以上を示す状態を表す。ヘイズ値が20%以上であれば、発光効率を向上させることができる。ヘイズ値とは、(i)膜中の組成物の屈折率差による影響と、(ii)表面形状による影響とを受けて算出される物性値である。すなわち、表面粗さを一定程度未満に抑えてヘイズ値を測定することにより、上記(ii)による影響を排除したヘイズ値が測定されることとなる。具体的には、ヘイズメーター(日本電色工業(株)製、NDH-5000等)を用いて測定することができる。 Scattering represents a state in which the haze value of the single layer of the light scattering layer 14 (the ratio of the scattering transmittance to the total light transmittance) is 20% or more, more preferably 25% or more, and particularly preferably 30% or more. . If the haze value is 20% or more, the luminous efficiency can be improved. The haze value is a physical property value calculated under the influence of (i) the influence of the refractive index difference of the composition in the film and (ii) the influence of the surface shape. That is, by measuring the haze value while suppressing the surface roughness below a certain level, the haze value excluding the influence of (ii) is measured. Specifically, it can be measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., NDH-5000, etc.).
 例えば、光散乱層14は、光散乱粒子の粒子径を調整することにより、光散乱性を向上させることができるとともに、ショート等の不良を抑制することができる。具体的には、可視光域のMie散乱を生じさせる領域以上の粒子径を有する、透明な光散乱粒子を用いることが好ましい。 For example, the light scattering layer 14 can improve the light scattering property by adjusting the particle diameter of the light scattering particles, and can suppress defects such as a short circuit. Specifically, it is preferable to use transparent light scattering particles having a particle diameter equal to or larger than a region that causes Mie scattering in the visible light region.
 光散乱粒子の平均粒子径は、0.2μm以上であることが好ましい。また、光散乱粒子の平均粒子径が大き過ぎると、光散乱粒子を含有した光散乱層14の粗さを平坦化する隣接する平滑化層11も厚くする必要があり、工程の負荷、膜の吸収の観点で不利な点がある。このため、光散乱粒子の平均粒子径は、1μm未満であることが好ましい。光散乱粒子の平均粒子径は、例えば、日機装社製ナノトラックUPA-EX150といった動的光散乱法を利用した装置や、電子顕微鏡写真の画像処理により測定することができる。 The average particle diameter of the light scattering particles is preferably 0.2 μm or more. If the average particle diameter of the light scattering particles is too large, the adjacent smoothing layer 11 for flattening the roughness of the light scattering layer 14 containing the light scattering particles also needs to be thickened. There are disadvantages in terms of absorption. For this reason, it is preferable that the average particle diameter of light-scattering particle | grains is less than 1 micrometer. The average particle diameter of the light scattering particles can be measured, for example, by an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or by image processing of an electron micrograph.
 また、光散乱層14に複数の種類の粒子を用いる場合、上記範囲の粒径の光散乱粒子以外に、平均粒子径が100nm~3μmの範囲内の光散乱粒子を少なくとも1種含み、かつ3μm以上の光散乱粒子を含まないことが好ましく、特に、200nm~1μmの範囲内の光散乱粒子を少なくとも1種含み、かつ1μm以上の光散乱粒子を含まないことが好ましい。 Further, when a plurality of types of particles are used for the light scattering layer 14, in addition to the light scattering particles having a particle size in the above range, at least one kind of light scattering particles having an average particle diameter in the range of 100 nm to 3 μm is included, and 3 μm. It is preferable that the above light scattering particles are not included, and it is particularly preferable that at least one kind of light scattering particles within a range of 200 nm to 1 μm is included and light scattering particles of 1 μm or more are not included.
 このような光散乱粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、有機微粒子であってもよく、無機微粒子であってもよい。特に、光散乱粒子が高屈折率を有する無機微粒子であることが好ましい。また、国際公開第2009/014707号や米国特許第6608439号明細書等に記載の量子ドットも、光散乱粒子として好適に用いることができる。 The material of such light scattering particles is not particularly limited and can be appropriately selected according to the purpose. For example, organic fine particles or inorganic fine particles may be used. In particular, the light scattering particles are preferably inorganic fine particles having a high refractive index. In addition, quantum dots described in International Publication No. 2009/014707 and US Pat. No. 6,608,439 can also be suitably used as light scattering particles.
 高屈折率を有する有機微粒子としては、例えば、ポリメチルメタクリレートビーズ、アクリル-スチレン共重合体ビーズ、メラミンビーズ、ポリカーボネートビーズ、スチレンビーズ、架橋ポリスチレンビーズ、ポリ塩化ビニルビーズ、ベンゾグアナミン-メラミンホルムアルデヒドビーズ等が挙げられる。 Examples of organic fine particles having a high refractive index include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, cross-linked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like. Can be mentioned.
 高屈折率を有する無機微粒子としては、例えば、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、スズ、アンチモン等の中から選ばれる少なくとも一つの酸化物からなる無機酸化物粒子が挙げられる。無機酸化物粒子として、具体的には、ZrO、TiO、BaTiO、Al、In、ZnO、SnO、Sb、ITO、SiO、ZrSiO、ゼオライト等が挙げられる。中でも、TiO、BaTiO、ZrO、ZnO、SnOが好ましく、TiOが最も好ましい。また、TiOの中でも、アナターゼ型よりルチル型の方が、触媒活性が低いため光散乱層14や隣接した層の耐候性が高くなり、更に屈折率が高いことから好ましい。 Examples of the inorganic fine particles having a high refractive index include inorganic oxide particles made of at least one oxide selected from zirconium, titanium, aluminum, indium, zinc, tin, antimony and the like. Specific examples of inorganic oxide particles include ZrO 2 , TiO 2 , BaTiO 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO, SiO 2 , ZrSiO 4 , zeolite, and the like. Is mentioned. Among these, TiO 2 , BaTiO 3 , ZrO 2 , ZnO and SnO 2 are preferable, and TiO 2 is most preferable. Of TiO 2, the rutile type is more preferable than the anatase type because the weather resistance of the light scattering layer 14 and the adjacent layer is high because the catalytic activity is low, and the refractive index is high.
 また、これらの光散乱粒子は、光散乱粒子を含む分散液の分散性や安定性向上の観点から、表面処理を施して用いてもよい。表面処理を行う場合、表面処理の具体的な材料としては、酸化ケイ素や酸化ジルコニウム等の異種無機酸化物、水酸化アルミニウム等の金属水酸化物、オルガノシロキサン、ステアリン酸等の有機酸等が挙げられる。これら表面処理材は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。中でも、分散液の安定性の観点から、表面処理材としては、異種無機酸化物及び/又は金属水酸化物が好ましく、金属水酸化物がより好ましい。 Further, these light scattering particles may be used after being subjected to a surface treatment from the viewpoint of improving the dispersibility and stability of the dispersion containing the light scattering particles. When performing the surface treatment, specific materials for the surface treatment include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, and the like. It is done. These surface treatment materials may be used individually by 1 type, and may be used in combination of multiple types. Among these, from the viewpoint of the stability of the dispersion, the surface treatment material is preferably a different inorganic oxide and / or metal hydroxide, more preferably a metal hydroxide.
 無機酸化物粒子が、表面処理材で表面被覆処理されている場合、被覆量は、0.01~99質量%であることが好ましい。被覆量をこの範囲内とすることで、表面処理による分散性や安定性の向上効果を十分に得ることができ、また、光散乱層14の高屈折率により光取り出し効率を向上させることができる。一般的に、被覆量は、粒子の質量に対する当該粒子の表面に用いた表面処理材の質量割合で示される。 When the inorganic oxide particles are surface-coated with a surface treatment material, the coating amount is preferably 0.01 to 99% by mass. By making the coating amount within this range, the effect of improving the dispersibility and stability by the surface treatment can be sufficiently obtained, and the light extraction efficiency can be improved by the high refractive index of the light scattering layer 14. . Generally, the coating amount is indicated by the mass ratio of the surface treatment material used on the surface of the particle with respect to the mass of the particle.
 上記光散乱粒子の配置は、光散乱粒子が光散乱層14と隣接する平滑化層11との界面に、接触又は近接するように光散乱粒子1個分に相当する層厚で配置されるのが好ましい。これにより、平滑化層11と光散乱層14との界面で全反射が起きたときに、光散乱層14に染み出してくるエバネッセント光を光散乱粒子で散乱させることができ、光取り出し効率が向上する。 The light scattering particles are arranged in a layer thickness corresponding to one light scattering particle so that the light scattering particles are in contact with or close to the interface between the light scattering layer 14 and the adjacent smoothing layer 11. Is preferred. Thereby, when total reflection occurs at the interface between the smoothing layer 11 and the light scattering layer 14, the evanescent light that oozes out to the light scattering layer 14 can be scattered by the light scattering particles, and the light extraction efficiency is improved. improves.
 高屈折率粒子の光散乱層14における含有量は、体積充填率で、1.0~70%の範囲内であることが好ましく、5.0~50%の範囲内であることがより好ましい。これにより、光散乱層14と隣接する平滑化層11又は平滑化層11との界面に屈折率分布の疎密を作ることができ、光散乱量を増加させて光取り出し効率を向上させることができる。 The content of the high refractive index particles in the light scattering layer 14 is preferably in the range of 1.0 to 70%, more preferably in the range of 5.0 to 50% in terms of volume filling factor. As a result, the refractive index distribution can be made sparse / dense at the smoothing layer 11 adjacent to the light scattering layer 14 or the interface between the smoothing layer 11, and the light extraction efficiency can be improved by increasing the amount of light scattering. .
 光散乱層14の形成方法としては、例えば、層媒体が樹脂材料の場合、媒体となる樹脂材料(ポリマー)溶液に上記光散乱粒子を分散し、樹脂基材21上に塗布することで形成する。このとき、溶媒としては、粒子の溶解しないものを用いる。 As a method for forming the light scattering layer 14, for example, when the layer medium is a resin material, the light scattering particles are dispersed in a resin material (polymer) solution serving as a medium and applied onto the resin substrate 21. . At this time, a solvent in which particles are not dissolved is used as the solvent.
[バインダー]
 光散乱層14に用いるバインダーは、平滑化層11と同様の樹脂が挙げられる。
 また、光散乱層14では、特定の雰囲気下で紫外線照射によって、金属酸化物、金属窒化物又は金属酸化窒化物を形成し得る化合物が特に好適に使用される。この化合物としては、特開平8-112879号公報に記載されている比較的低温で改質処理され得る化合物が好ましい。
[binder]
Examples of the binder used for the light scattering layer 14 include the same resin as that of the smoothing layer 11.
In the light scattering layer 14, a compound capable of forming a metal oxide, a metal nitride, or a metal oxynitride by ultraviolet irradiation under a specific atmosphere is particularly preferably used. As this compound, a compound which can be modified at a relatively low temperature described in JP-A-8-112879 is preferable.
 低温で改質処理され得る化合物として具体的には、Si-O-Si結合を有するポリシロキサン(ポリシルセスキオキサンを含む)、Si-N-Si結合を有するポリシラザン、Si-O-Si結合とSi-N-Si結合の両方を含むポリシロキサザン等を挙げることができる。これらは、2種以上を混合して使用することができる。また、異なる化合物を逐次積層、又は、同時積層して使用可能である。 Specific examples of compounds that can be modified at low temperatures include polysiloxanes having Si—O—Si bonds (including polysilsesquioxane), polysilazanes having Si—N—Si bonds, and Si—O—Si bonds. And polysiloxazan containing both Si and N—Si bonds. These can be used in combination of two or more. Further, different compounds can be used by sequentially laminating or simultaneously laminating.
(ポリシロキサン)
 光散乱層14で用いられるポリシロキサンとしては、一般構造単位としての[RSiO1/2]、[RSiO]、[RSiO3/2]及び[SiO]を含むことができる。ここで、Rは、水素原子、1~20の炭素原子を含むアルキル基(例えば、メチル、エチル、プロピル等)、アリール基(例えば、フェニル等)、及び不飽和アルキル基(例えば、ビニル等)からなる群より独立して選択される。特定のポリシロキサン基の例としては、[PhSiO3/2]、[MeSiO3/2]、[HSiO3/2]、[MePhSiO]、[PhSiO]、[PhViSiO]、[ViSiO3/2](Viはビニル基を表す。)、[MeHSiO]、[MeViSiO]、[MeSiO]、[MeSiO1/2]等が挙げられる。また、ポリシロキサンの混合物やコポリマーも使用可能である。
(Polysiloxane)
The polysiloxane used in the light scattering layer 14 can include [R 3 SiO 1/2 ], [R 2 SiO], [RSiO 3/2 ], and [SiO 2 ] as general structural units. Here, R represents a hydrogen atom, an alkyl group containing 1 to 20 carbon atoms (for example, methyl, ethyl, propyl, etc.), an aryl group (for example, phenyl), and an unsaturated alkyl group (for example, vinyl). Independently selected from the group consisting of Examples of specific polysiloxane groups include [PhSiO 3/2 ], [MeSiO 3/2 ], [HSiO 3/2 ], [MePhSiO], [Ph 2 SiO], [PhViSiO], [ViSiO 3/2 ]. (Vi represents a vinyl group), [MeHSiO], [MeViSiO], [Me 2 SiO], [Me 3 SiO 1/2 ] and the like. Mixtures and copolymers of polysiloxanes can also be used.
(ポリシルセスキオキサン)
 光散乱層14においては、上述のポリシロキサンの中でもポリシルセスキオキサンを用いることが好ましい。ポリシルセスキオキサンは、シルセスキオキサンを構造単位に含む化合物である。「シルセスキオキサン」とは、[RSiO3/2]で表される化合物であり、通常、RSiXで表される。ここでRは、水素原子、アルキル基、アルケニル基、アリール基、アラアルキル基(ラルキル基ともいう)等であり、Xは、ハロゲン、アルコキシ基等である。
 ポリシルセスキオキサンの分子配列の形状としては、代表的には無定形構造、ラダー状構造、籠型構造、その部分開裂構造体(籠型構造からケイ素原子が一原子欠けた構造や籠型構造のケイ素-酸素結合が一部切断された構造)等が知られている。
(Polysilsesquioxane)
In the light scattering layer 14, it is preferable to use polysilsesquioxane among the above-mentioned polysiloxanes. Polysilsesquioxane is a compound containing silsesquioxane in a structural unit. The “silsesquioxane” is a compound represented by [RSiO 3/2 ] and is usually represented by RSiX 3 . Here, R is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group (also referred to as an aralkyl group), and the like, and X is a halogen, an alkoxy group, or the like.
The molecular arrangement of polysilsesquioxane is typically an amorphous structure, a ladder structure, a cage structure, or a partially cleaved structure (a structure in which a silicon atom is missing from a cage structure or a cage structure). A structure in which the silicon-oxygen bond in the structure is partially broken) is known.
 これらのポリシルセスキオキサンの中でも、いわゆる水素シルセスキオキサンポリマーを用いることが好ましい。水素シルセスキオキサンポリマーとしては、HSi(OH)(OR)z/2で表されるヒドリドシロキサンポリマーが挙げられる。各々のRは、有機基又は置換された有機基であり、酸素原子によってケイ素に結合した場合、加水分解性置換基を形成する。また、x=0~2、y=0~2、z=1~3、x+y+z=3である。Rとしては、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基等)、アリール基(例えば、フェニル基等)、アルケニル基(例えば、アリル基、ビニル基等)が挙げられる。これらの樹脂は、完全に縮合され(HSiO3/2、あるいは部分的にのみ加水分解され(すなわち、一部のSi-ORを含む)、及び/又は、部分的に縮合される(すなわち、一部のSi-OHを含む)ことができる。 Among these polysilsesquioxanes, it is preferable to use a so-called hydrogen silsesquioxane polymer. Examples of the hydrogen silsesquioxane polymer include a hydridosiloxane polymer represented by HSi (OH) x (OR) y O z / 2 . Each R is an organic group or a substituted organic group, and forms a hydrolyzable substituent when bonded to silicon by an oxygen atom. Further, x = 0 to 2, y = 0 to 2, z = 1 to 3, and x + y + z = 3. Examples of R include an alkyl group (eg, methyl group, ethyl group, propyl group, butyl group), an aryl group (eg, phenyl group), and an alkenyl group (eg, allyl group, vinyl group). These resins may be fully condensed (HSiO 3/2 ) n , or only partially hydrolyzed (ie, including some Si—OR) and / or partially condensed (ie, , Including some Si—OH).
(ポリシラザン)
 光散乱層14で用いられるポリシラザンとは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO(x=0.1~1.9、y=0.1~13)等の無機前駆体ポリマーである。
(Polysilazane)
The polysilazane used in the light scattering layer 14 is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, NH, etc., SiO 2 , Si 3 N 4, and both intermediate solid solutions SiO x N y. Inorganic precursor polymers such as (x = 0.1 to 1.9, y = 0.1 to 13).
 光散乱層14に好ましく用いられるポリシラザンとしては、上述の光散乱層14と同様に、上記一般式(I)で表されるポリシラザンを用いることができる。得られる光散乱層14の膜としての緻密性の観点からは、R、R及びRの全てが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。パーヒドロポリシラザンは、直鎖構造と6員環及び8員環を中心とする環構造が存在した構造と推定されており、その分子量は、数平均分子量(Mn)で約600~2000程度(ゲルパーミエーションクロマトグラフィによるポリスチレン換算)であり、液体又は固体の物質である。 As the polysilazane preferably used for the light scattering layer 14, the polysilazane represented by the above general formula (I) can be used as in the above-described light scattering layer 14. Perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness of the resulting light scattering layer 14 as a film. Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6-membered and 8-membered rings, and its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (gel Polystyrene conversion by permeation chromatography), which is a liquid or solid substance.
 ポリシラザンは、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-20、NAX120-20、NL120-20などが挙げられる。 Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is. Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials.
 また、バインダーとしては、電離放射線硬化型樹脂組成物用いることができるが、電離放射線硬化型樹脂組成物の硬化方法としては、電離放射線硬化型樹脂組成物の通常の硬化方法、すなわち、電子線又は紫外線の照射によって硬化することができる。例えば、電子線硬化の場合には、コックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される10~1000keV、好ましくは30~300keVのエネルギーを有する電子線等が使用され、紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。 Further, as the binder, an ionizing radiation curable resin composition can be used. As a curing method of the ionizing radiation curable resin composition, a normal curing method of the ionizing radiation curable resin composition, that is, an electron beam or It can be cured by UV irradiation. For example, in the case of electron beam curing, 10 to 1000 keV emitted from various electron beam accelerators such as a Cockrowalton type, a bandegraph type, a resonant transformation type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type. Preferably, an electron beam having an energy of 30 to 300 keV is used, and in the case of ultraviolet curing, ultraviolet rays emitted from rays of ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc, metal halide lamp, etc. Available.
(エキシマランプを有する真空紫外線照射装置)
 紫外線照射装置としては、例えば、100~230nmの範囲内で真空紫外線を発する希ガスエキシマランプが挙げられる。キセノン(Xe)、クリプトン(Kr)、アルゴン(Ar)、ネオン(Ne)等の希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は、他の原子と結合して分子を作ることができる。
(Vacuum ultraviolet irradiation device with excimer lamp)
Examples of the ultraviolet irradiation device include a rare gas excimer lamp that emits vacuum ultraviolet rays within a range of 100 to 230 nm. Atoms of noble gases such as xenon (Xe), krypton (Kr), argon (Ar), neon (Ne) and the like are called inert gases because they do not form molecules by chemically bonding. However, rare gas atoms (excited atoms) that have gained energy by discharge or the like can be combined with other atoms to form molecules.
 例えば、希ガスがXe(キセノン)の場合には、下記反応式で示されるように、励起されたエキシマ分子であるXe が基底状態に遷移するときに、172nmのエキシマ光を発光する。 For example, when the rare gas is Xe (xenon), excimer light of 172 nm is emitted when the excited excimer molecule Xe 2 * transitions to the ground state, as shown in the following reaction formula.
 e+Xe→Xe
 Xe+2Xe→Xe +Xe
 Xe →Xe+Xe+hν(172nm)
e + Xe → Xe *
Xe * + 2Xe → Xe 2 * + Xe
Xe 2 * → Xe + Xe + hν (172 nm)
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を比較的低く保つことができる。さらには、始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。 ¡Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Moreover, since extra light is not radiated | emitted, the temperature of a target object can be kept comparatively low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
 エキシマ光を効率よく照射する光源としては、誘電体バリア放電ランプが挙げられる。誘電体バリア放電ランプの構成としては、電極間に誘電体を介して放電を起こすものであり、一般的には、誘電体からなる放電容器とその外部とに少なくとも一方の電極が配置されていればよい。誘電体バリア放電ランプとして、例えば、石英ガラスで構成された太い管と細い管とからなる二重円筒状の放電容器中にキセノン等の希ガスが封入され、該放電容器の外部に網状の第1の電極を設け、内管の内側に他の電極を設けたものがある。誘電体バリア放電ランプは、電極間に高周波電圧等を加えることによって放電容器内部に誘電体バリア放電を発生させ、該放電により生成されたキセノン等のエキシマ分子が解離する際にエキシマ光を発生させる。 As a light source for efficiently irradiating excimer light, there is a dielectric barrier discharge lamp. A dielectric barrier discharge lamp has a structure in which a discharge is generated between electrodes via a dielectric. Generally, at least one electrode is disposed between a discharge vessel made of a dielectric and the outside thereof. That's fine. As a dielectric barrier discharge lamp, for example, a rare gas such as xenon is enclosed in a double cylindrical discharge vessel composed of a thick tube and a thin tube made of quartz glass, and a net-like second discharge vessel is formed outside the discharge vessel. There is one in which one electrode is provided and another electrode is provided inside the inner tube. A dielectric barrier discharge lamp generates a dielectric barrier discharge inside a discharge vessel by applying a high frequency voltage between electrodes, and generates excimer light when excimer molecules such as xenon generated by the discharge dissociate. .
 なお、隣接する平滑化層11に取り込まれた光を更に光散乱層14へ取り込むためには、光散乱層14のバインダーと隣接する平滑化層11との屈折率差が小さいことが好ましい。具体的には、光散乱層14のバインダーと平滑化層11との屈折率差が、0.1以下であることが好ましい。また、平滑化層11と光散乱層14とに含有されるバインダーは、同じ材料を用いることが好ましい。 In addition, in order to further capture the light taken into the adjacent smoothing layer 11 into the light scattering layer 14, it is preferable that the refractive index difference between the binder of the light scattering layer 14 and the adjacent smoothing layer 11 is small. Specifically, the refractive index difference between the binder of the light scattering layer 14 and the smoothing layer 11 is preferably 0.1 or less. Moreover, it is preferable to use the same material for the binder contained in the smoothing layer 11 and the light scattering layer 14.
 また、光散乱層14に平滑化層11を加えた厚さを調整することにより、水分の浸入やパターニングした場合のエッジの段差による配線不良を抑制し、散乱性を向上させることができる。具体的には、光散乱層14に平滑化層11を加えた厚さは、100nm~5μmの範囲内が好ましく、特に、300nm~2μmの範囲内であることが好ましい。 Further, by adjusting the thickness of the light scattering layer 14 and the smoothing layer 11 added, it is possible to suppress the wiring failure due to the ingress of moisture or the edge step when patterning, thereby improving the scattering property. Specifically, the thickness obtained by adding the smoothing layer 11 to the light scattering layer 14 is preferably in the range of 100 nm to 5 μm, and more preferably in the range of 300 nm to 2 μm.
[第1電極、第2電極]
 有機EL素子10は、第1電極12と第2電極15とからなる一対の電極に挟持された発光ユニット13を有する。第1電極12と第2電極15とは、いずれか一方が有機EL素子10の陽極となり、他方が陰極となる。以下に、当該陽極及び陰極について説明をする。
[First electrode, second electrode]
The organic EL element 10 includes a light emitting unit 13 sandwiched between a pair of electrodes including a first electrode 12 and a second electrode 15. One of the first electrode 12 and the second electrode 15 serves as the anode of the organic EL element 10, and the other serves as the cathode. Hereinafter, the anode and the cathode will be described.
[陽極]
 有機EL素子10における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au、Ag等の金属、CuI、酸化インジウムスズ(Indium Tin Oxide:ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
[anode]
As the anode in the organic EL element 10, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such an electrode substance include conductive transparent materials such as metals such as Au and Ag, CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 For the anode, a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when the pattern accuracy is not so high (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
 有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。陽極側から発光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。膜厚は材料にもよるが、通常10~1000nmの範囲内、好ましくは10~200nmの範囲内で選ばれる。
[陰極]
 陰極は、発光ユニット13に電子を供給する陰極(カソード)として機能する電極膜である。陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。
 このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
In the case of using a coatable material such as an organic conductive compound, a wet film forming method such as a printing method or a coating method can be used. When light emission is extracted from the anode side, it is desirable that the transmittance be greater than 10%. The sheet resistance as the anode is several hundred Ω / sq. The following is preferred. Although the film thickness depends on the material, it is usually selected within the range of 10 to 1000 nm, preferably within the range of 10 to 200 nm.
[cathode]
The cathode is an electrode film that functions as a cathode (cathode) that supplies electrons to the light emitting unit 13. As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物やアルミニウム等が好適である。陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, or the like is preferable. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
 陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、膜厚は通常10nm~5μmの範囲内、好ましくは50~200nmの範囲内で選ばれる。また、陰極として上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 The sheet resistance as a cathode is several hundred Ω / sq. The film thickness is usually selected from the range of 10 nm to 5 μm, preferably 50 to 200 nm. Further, after producing the above metal as a cathode with a film thickness of 1 to 20 nm, a transparent or semitransparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode thereon. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
[補助電極]
 補助電極18は、第1電極12の抵抗を下げる目的で設け、第1電極12に接して設けられることが好ましい。補助電極18を形成する材料としては、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面からの発光光hの取り出しに影響のない範囲でパターン形成される。
[Auxiliary electrode]
The auxiliary electrode 18 is provided for the purpose of reducing the resistance of the first electrode 12 and is preferably provided in contact with the first electrode 12. The material for forming the auxiliary electrode 18 is preferably a metal with low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range that does not affect the extraction of the emitted light h from the light extraction surface.
 補助電極18の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極18の厚さは、導電性の観点から1μm以上であることが好ましい。このような補助電極18の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法等が挙げられる。 The line width of the auxiliary electrode 18 is preferably 50 μm or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode 18 is preferably 1 μm or more from the viewpoint of conductivity. Examples of the method for forming the auxiliary electrode 18 include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method.
[取り出し電極]
 取り出し電極16は、第1電極12と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。
[Extraction electrode]
The extraction electrode 16 is for electrically connecting the first electrode 12 and an external power source, and the material thereof is not particularly limited, and a known material can be preferably used. A metal film such as a MAM electrode (Mo / Al · Nd alloy / Mo) made of can be used.
[発光ユニット]
 発光ユニット13は、少なくとも、各種有機化合物からなる発光材料を含有する発光層を主体として構成される発光体(単位)である。発光ユニット13は、陽極と陰極とからなる一対の電極の間に挟持されており、当該陽極から供給される正孔(ホール)と陰極から供給される電子とが当該発光体内で再結合することにより発光する。有機EL素子10は、所望の発光色に応じて、当該発光ユニット13を複数備えていてもよい。
[Light emitting unit]
The light emitting unit 13 is a light emitting body (unit) composed mainly of at least a light emitting layer containing a light emitting material made of various organic compounds. The light emitting unit 13 is sandwiched between a pair of electrodes composed of an anode and a cathode, and holes supplied from the anode and electrons supplied from the cathode are recombined in the light emitter. Emits light. The organic EL element 10 may include a plurality of the light emitting units 13 according to a desired light emission color.
 また、有機EL素子10は、少なくとも1層の発光層を含む発光ユニット13を複数積層した、いわゆるタンデム構造の素子であってもよい。タンデム構造の代表的な素子構成としては、例えば、以下の構成を挙げることができる。
 陽極/第1発光ユニット/中間コネクタ層/第2発光ユニット/中間コネクタ層/第3発光ユニット/陰極
The organic EL element 10 may be an element having a so-called tandem structure in which a plurality of light emitting units 13 including at least one light emitting layer are stacked. Examples of typical element configurations of the tandem structure include the following configurations.
Anode / first light emitting unit / intermediate connector layer / second light emitting unit / intermediate connector layer / third light emitting unit / cathode
 ここで、上記第1発光ユニット、第2発光ユニット、及び、第3発光ユニットは全て同じであっても、異なっていてもよい。また、二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
 複数の発光ユニット13は直接積層されていても、中間コネクタ層を介して積層されていてもよい。
Here, the first light emitting unit, the second light emitting unit, and the third light emitting unit may all be the same or different. Further, the two light emitting units may be the same, and the remaining one may be different.
The plurality of light emitting units 13 may be directly stacked or may be stacked via an intermediate connector layer.
 中間コネクタ層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。中間コネクタ層に用いられる材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、これらに限定されない。 The intermediate connector layer is also commonly referred to as an intermediate electrode, intermediate conductive layer, charge generation layer, electron extraction layer, connection layer, or intermediate insulating layer. Electrons are transferred to the anode side adjacent layer and holes are connected to the cathode side adjacent layer. A known material structure can be used as long as the layer has a function of supplying. Examples of materials used for the intermediate connector layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, and GaN. , CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , Al and other conductive inorganic compound layers, Au / Bi 2 O 3 and other two-layer films, SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 and other multilayer films, C 60 and other fullerenes, oligothiophene and other conductive materials Conductive organic compound layers such as conductive organic layers, metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, metal-free porphyrins, etc. It is, but is not limited thereto.
 発光ユニット13内の好ましい構成としては、例えば、上記の代表的な素子構成で挙げた構成から、陽極と陰極とを除いたもの等が挙げられるが、これらに限定されない。
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられる。
Examples of a preferable configuration in the light emitting unit 13 include, but are not limited to, a configuration in which the anode and the cathode are removed from the configuration described in the representative element configuration.
Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A-2006-228712, JP-A-2006-24791, JP-A-2006-49393, JP-A-2006-49394 JP-A-2006-49396, JP-A-2011-96679, JP-A-2005-340187, JP-A-4711424, JP-A-3496868, JP-A-3848564, JP-A-4421169, JP 2010-192719, JP 009-076929, JP 2008-078414, JP 2007-059848, JP 2003-272860, JP 2003-045676, WO 2005/094130, etc. Examples of the structure and constituent materials are given.
[発光層]
 発光層13cは、電子輸送層13dから注入された電子と、正孔輸送層13bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層13cの層内であっても発光層13cと隣接する層との界面であってもよい。
[Light emitting layer]
The light emitting layer 13c is a layer that emits light by recombination of electrons injected from the electron transport layer 13d and holes injected from the hole transport layer 13b, and the light emitting portion is within the layer of the light emitting layer 13c. Even if it exists, the interface of the light emitting layer 13c and the adjacent layer may be sufficient.
 このような発光層13cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層13c間には、非発光性の補助層(図示略)を有していることが好ましい。 The configuration of the light emitting layer 13c is not particularly limited as long as the light emitting material included satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting auxiliary layer (not shown) between the light emitting layers 13c.
 発光層13cの層厚の総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内であることがより好ましい。発光層13cの層厚の総和とは、発光層13c間に非発光性の中間層が存在する場合には、当該中間層も含む層厚である。 The total thickness of the light emitting layer 13c is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. The total layer thickness of the light emitting layer 13c is a layer thickness including the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers 13c.
 複数層を積層した構成の発光層13cの場合、個々の発光層の層厚としては、1~50nmの範囲内に調整することが好ましく、1~20nmの範囲内に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の層厚の関係については、特に制限はない。 In the case of the light emitting layer 13c having a structure in which a plurality of layers are laminated, the thickness of each light emitting layer is preferably adjusted within a range of 1 to 50 nm, and more preferably within a range of 1 to 20 nm. When the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
 発光層13cの構成として、ホスト化合物(発光ホスト等)、発光材料(発光ドーパント)を含有し、発光材料より発光させることが好ましい。発光層13cは、複数の発光材料を混合してもよく、例えば、リン光発光性化合物(リン光性化合物、リン光発光材料)と蛍光発光材料(蛍光ドーパント、蛍光性化合物)とを同一発光層13c中に混合して用いてもよい。発光層13cは、発光材料としてリン光発光化合物が含有されていることが好ましい。発光層13cは、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。 The structure of the light emitting layer 13c preferably contains a host compound (light emitting host or the like) and a light emitting material (light emitting dopant) and emits light from the light emitting material. The light emitting layer 13c may be a mixture of a plurality of light emitting materials. For example, a phosphorescent compound (phosphorescent compound, phosphorescent light emitting material) and a fluorescent light emitting material (fluorescent dopant, fluorescent compound) emit the same light. You may mix and use in the layer 13c. The light emitting layer 13c preferably contains a phosphorescent light emitting compound as a light emitting material. The light emitting layer 13c can be formed by forming a light emitting material or a host compound described later by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
(1.ホスト化合物)
 発光層13cに含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらに好ましくはリン光量子収率が0.01未満である。また、発光層13cに含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
(1. Host compound)
As a host compound contained in the light emitting layer 13c, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 13c.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 ホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host).
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)の化合物であることが好ましい。
 ここでいうガラス転移点(Tg)とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS K 7121に準拠した方法により求められる値である。
The known host compound is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from becoming longer, and has a high Tg (glass transition temperature).
The glass transition point (Tg) here is a value determined by a method based on JIS K 7121 using DSC (Differential Scanning Calorimetry).
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を用いることができる。例えば、特開2010-251675号公報、特開2001-257076号公報、同2002-308855号公報、同2001313179号公報、同2002-319491号公報、同2001357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。 As specific examples of known host compounds, compounds described in the following documents can be used. For example, Japanese Patent Application Laid-Open Nos. 2010-251675, 2001-257076, 2002-308855, 2001131179, 2002-319491, 2001359777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002 -338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227 No. 2002-231453, No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060, No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, and the like.
(2.発光材料)
 発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料)と蛍光発光性化合物(蛍光性化合物、蛍光発光材料)が挙げられる。
(2. Luminescent material)
Examples of the light emitting material include phosphorescent compounds (phosphorescent compounds and phosphorescent materials) and fluorescent compounds (fluorescent compounds and fluorescent materials).
(リン光発光性化合物)
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物である。具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物と定義される。好ましいリン光量子収率は0.1以上である。
(Phosphorescent compound)
A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. A preferable phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、リン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. The phosphorescence quantum yield in solution can be measured using various solvents, but when using a phosphorescent compound, the above phosphorescence quantum yield (0.01 or more) can be achieved in any solvent. That's fine.
 リン光発光性化合物の発光の原理としては、2種挙げられる。
 一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性化合物に移動させることでリン光発光性化合物からの発光を得るというエネルギー移動型である。
 もう一つは、リン光発光性化合物がキャリアトラップとなり、リン光発光性化合物上でキャリアの再結合が起こり、リン光発光性化合物からの発光が得られるというキャリアトラップ型である。
 いずれの場合においても、リン光発光性化合物の励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件となる。
There are two types of light emission principle of the phosphorescent compound.
One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent compound to emit light from the phosphorescent compound. Energy transfer type.
The other is a carrier trap type in which a phosphorescent compound serves as a carrier trap, carrier recombination occurs on the phosphorescent compound, and light emission from the phosphorescent compound is obtained.
In either case, the condition is that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される中から適宜選択して用いることができる。好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物又は白金化合物(白金錯体系化合物)又は希土類錯体である。特にイリジウム化合物が好ましい。
 リン光発光性化合物の具体例としては、特開2010-251675号公報に記載の化合物を用いることができるが、これらに限定されない。
The phosphorescent compound can be appropriately selected from those used in a light emitting layer of a general organic EL device. Preferred are complex compounds containing a group 8-10 metal in the periodic table of elements, and more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes. In particular, iridium compounds are preferred.
Specific examples of the phosphorescent compound include, but are not limited to, compounds described in JP2010-251675A.
 リン光発光性化合物は、好ましくは発光層13cの総量に対し、0.1体積%以上30体積%未満である。発光層13cは、2種以上のリン光発光性化合物を含有していてもよく、発光層13cにおけるリン光発光性化合物の濃度比が発光層13cの厚さ方向で変化していてもよい。 The phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 13c. The light emitting layer 13c may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer 13c may change in the thickness direction of the light emitting layer 13c.
(蛍光発光性化合物)
 蛍光発光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
(Fluorescent compound)
Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. System dyes, polythiophene dyes, rare earth complex phosphors, and the like.
[注入層:正孔注入層、電子注入層]
 注入層とは、駆動電圧低下や発光輝度向上のために、電極と発光層13cとの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層13aと電子注入層13eとがある。
[Injection layer: hole injection layer, electron injection layer]
The injection layer is a layer provided between the electrode and the light emitting layer 13c in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (November 30, 1998 2) Chapter 2 “Electrode Materials” (pages 123 to 166) of the second edition of “TS Co., Ltd.”, which includes a hole injection layer 13a and an electron injection layer 13e.
 注入層は、必要に応じて設けることができる。正孔注入層13aであれば、陽極と発光層13c又は正孔輸送層13bとの間、電子注入層13eであれば陰極と発光層13c又は電子輸送層13dとの間に存在させてもよい。 The injection layer can be provided as necessary. The hole injection layer 13a may be present between the anode and the light emitting layer 13c or the hole transport layer 13b, and the electron injection layer 13e may be present between the cathode and the light emitting layer 13c or the electron transport layer 13d. .
 正孔注入層13aは、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。 The details of the hole injection layer 13a are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like. Specific examples thereof include phthalocyanine represented by copper phthalocyanine. Examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 電子注入層13eは、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。電子注入層13eはごく薄い膜からなる層であることが望ましく、素材にもよるがその層厚は1nm~10μmの範囲内であることが好ましい。 The details of the electron injection layer 13e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically represented by strontium, aluminum, and the like. Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide. The electron injection layer 13e is preferably a very thin layer, and its layer thickness is preferably in the range of 1 nm to 10 μm, although it depends on the material.
[正孔輸送層]
 正孔輸送層13bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層13a、電子阻止層も正孔輸送層13bに含まれる。
 正孔輸送層13bは、単層又は複数層設けることができる。正孔輸送層13bは、下記材料の1種又は2種以上からなる一層構造であってもよい。
[Hole transport layer]
The hole transport layer 13b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 13a and the electron blocking layer are also included in the hole transport layer 13b.
The hole transport layer 13b can be provided as a single layer or a plurality of layers. The hole transport layer 13b may have a single layer structure composed of one or more of the following materials.
 正孔輸送材料は、正孔の注入又は輸送、電子の障壁性のいずれかを有し、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。特に、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers. In particular, it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-[1,1′-ビフェニル]-4,4′-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-[4-(ジ-p-トリルアミノ)スチリル]スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、更には、米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 ′-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N-diphenylamino -(2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole, and two condensed fragrances described in US Pat. No. 5,061,569 Having an aromatic ring in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3086 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which triphenylamine units described in No. 8 publication are linked in three starburst types ( MTDATA) and the like.
 さらに、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。さらに、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されている、いわゆるp型正孔輸送材料を用いることもできる。より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。 Furthermore, polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material. Further, JP-A-11-251067, J. Org. Huang et. al. , Applied Physics Letters, 80 (2002), p. The so-called p-type hole transport material described in 139 can also be used. These materials are preferably used because a light emitting element with higher efficiency can be obtained.
 また、正孔輸送層13bの材料に不純物をドープしてp性を高くすることもできる。例えば、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載された材料が挙げられる。正孔輸送層13bのp性を高くすると、より低消費電力の素子を作製することができる。 It is also possible to increase the p property by doping impurities into the material of the hole transport layer 13b. For example, JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like. When the p property of the hole transport layer 13b is increased, a device with lower power consumption can be manufactured.
 正孔輸送層13bの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。
 正孔輸送層13bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することで形成することができる。
The layer thickness of the hole transport layer 13b is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm.
The hole transport layer 13b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. be able to.
[電子輸送層]
 電子輸送層13dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層13e、正孔阻止層(図示略)も電子輸送層13dに含まれる。
 電子輸送層13dは、単層構造又は複数層の積層構造として設けることができる。電子輸送層13dは、下記材料の1種又は2種以上からなる1層構造であってもよい。
[Electron transport layer]
The electron transport layer 13d is made of a material having a function of transporting electrons, and in a broad sense, the electron injection layer 13e and a hole blocking layer (not shown) are also included in the electron transport layer 13d.
The electron transport layer 13d can be provided as a single layer structure or a stacked structure of a plurality of layers. The electron transport layer 13d may have a single-layer structure made of one or more of the following materials.
 電子輸送層13dにおいて、発光層13cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層13cに伝達する機能を有していればよい。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層13dの材料として用いることができる。さらに、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
In the electron transport layer 13d, the electron transport material (also serving as a hole blocking material) constituting the layer portion adjacent to the light emitting layer 13c has a function of transmitting electrons injected from the cathode to the light emitting layer 13c. That's fine. As such a material, any one of conventionally known compounds can be selected and used.
Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group are also used as the material for the electron transport layer 13d. Can do. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層13dの材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc. and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material of the electron transport layer 13d.
 その他、メタルフリー若しくはメタルフタロシアニン、又は、それらの末端がアルキル基やスルホン酸基等で置換されたものも、電子輸送層13dの材料として好ましく用いることができる。また、発光層13cの材料としても用いられるジスチリルピラジン誘導体や、正孔注入層13a、正孔輸送層13bと同様のn型-Si、n型-SiC等の無機半導体も電子輸送層13dの材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those whose terminal is substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 13d. Further, distyrylpyrazine derivatives used as the material of the light emitting layer 13c, and inorganic semiconductors such as n-type-Si and n-type-SiC similar to the hole injection layer 13a and the hole transport layer 13b are also included in the electron transport layer 13d. It can be used as a material.
 また、電子輸送層13dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載された材料が挙げられる。さらに、電子輸送層13dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層13dのn性を高くすると、より低消費電力の素子を作製することができる。 Further, the electron transport layer 13d can be doped with impurities to increase the n property. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like. Furthermore, it is preferable that the electron transport layer 13d contains potassium, a potassium compound, or the like. As the potassium compound, for example, potassium fluoride can be used. Thus, when the n property of the electron transport layer 13d is increased, an element with lower power consumption can be manufactured.
 電子輸送層13dの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。
 電子輸送層13dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
The layer thickness of the electron transport layer 13d is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm.
The electron transport layer 13d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
[阻止層:正孔阻止層、電子阻止層]
 阻止層は、上記の有機化合物薄膜の基本構成層の他に、必要に応じて設けられる。例えば、特開平11-204258号公報、同11-204359号公報及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。阻止層の層厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。
[Blocking layer: hole blocking layer, electron blocking layer]
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, as described in JP-A Nos. 11-204258 and 11-204359 and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)”. There is a hole blocking layer. The thickness of the blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
 正孔阻止層とは、広い意味では、電子輸送層13dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層13dの構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層13cに隣接して設けられていることが好ましい。 The hole blocking layer has a function of the electron transport layer 13d in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of the electron carrying layer 13d can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer 13c.
 一方、電子阻止層とは、広い意味では、正孔輸送層13bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔との再結合確率を向上させることができる。また、正孔輸送層13bの構成を必要に応じて電子阻止層として用いることができる。 On the other hand, the electron blocking layer has a function of the hole transport layer 13b in a broad sense. The electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons. By blocking holes while transporting holes, the electron recombination probability is improved. Can be made. Moreover, the structure of the positive hole transport layer 13b can be used as an electron blocking layer as needed.
[封止部材]
 封止部材17は、有機EL素子10の上面を覆う板状(フィルム状)の部材であって、接着層19によって樹脂基材21側に固定される。また、封止部材17は、封止膜であってもよい。このような封止部材17は、有機EL素子10の電極端子部分を露出させ、少なくとも発光ユニット13を覆う状態で設けられている。また、封止部材17に電極を設け、有機EL素子10の電極端子部分と、封止部材17の電極とを導通させる構成でもよい。
[Sealing member]
The sealing member 17 is a plate-like (film-like) member that covers the upper surface of the organic EL element 10, and is fixed to the resin base material 21 side by the adhesive layer 19. Further, the sealing member 17 may be a sealing film. Such a sealing member 17 is provided in a state in which the electrode terminal portion of the organic EL element 10 is exposed and at least the light emitting unit 13 is covered. Further, an electrode may be provided on the sealing member 17 so that the electrode terminal portion of the organic EL element 10 and the electrode of the sealing member 17 are electrically connected.
 板状(フィルム状)の封止部材17としては、具体的には、ガラス基板、ポリマー基板、金属基板等が挙げられ、これらの基板さらに薄型のフィルム状にして用いてもよい。ガラス基板としては、特に、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属基板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。特に、素子を薄膜化できるということから、封止部材としてポリマー基板や金属基板を薄型のフィルム状にして使用することが好ましい。 Specific examples of the plate-like (film-like) sealing member 17 include a glass substrate, a polymer substrate, a metal substrate, and the like. These substrates may be used in the form of a thin film. Examples of the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal substrate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. In particular, since the element can be thinned, it is preferable to use a polymer substrate or a metal substrate as a thin film as the sealing member.
 また、基板材料は、凹板状に加工して封止部材17として用いてもよい。この場合、上述した基板部材に対して、サンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。 Further, the substrate material may be processed into a concave plate shape and used as the sealing member 17. In this case, the substrate member described above is subjected to processing such as sandblasting and chemical etching to form a concave shape.
 さらに、フィルム状としたポリマー基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下であることが好ましい。 Further, the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and conforms to JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a compliant method is preferably 1 × 10 −3 g / (m 2 · 24 h) or less. .
 また、封止部材17を樹脂基材21側に固定する接着層19は、封止部材17とガスバリア性フィルム20とで発光ユニット13を封止するためのシール剤として用いられる。接着層19としては、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型の接着層19、2-シアノアクリル酸エステル等の湿気硬化型等の接着層19を挙げることができる。 Further, the adhesive layer 19 that fixes the sealing member 17 to the resin base material 21 side is used as a sealing agent for sealing the light emitting unit 13 with the sealing member 17 and the gas barrier film 20. Specific examples of the adhesive layer 19 include a photo-curing and thermosetting adhesive layer 19 having a reactive vinyl group of an acrylic acid-based oligomer or a methacrylic acid-based oligomer, a moisture-curing type such as 2-cyanoacrylate, and the like. The adhesive layer 19 can be mentioned.
 また、接着層19としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂により接着層19を挙げることができる。 Also, examples of the adhesive layer 19 include epoxy-based heat and chemical curing types (two-component mixing). Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Further, the adhesive layer 19 can be exemplified by a cationic curing type ultraviolet curing epoxy resin.
 封止部材17とガスバリア性フィルム20との接着層19部分への接着層19の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 なお、有機EL素子を構成する有機材料は、熱処理により劣化する場合がある。このため、接着層19は、室温(25℃)から80℃までに接着層19硬化できるものが好ましい。また、接着層19中に乾燥剤を分散させておいてもよい。
Application | coating of the contact bonding layer 19 to the contact bonding layer 19 part of the sealing member 17 and the gas-barrier film 20 may use commercially available dispenser, and may print like screen printing.
In addition, the organic material which comprises an organic EL element may deteriorate with heat processing. For this reason, the adhesive layer 19 is preferably one that can cure the adhesive layer 19 from room temperature (25 ° C.) to 80 ° C. A desiccant may be dispersed in the adhesive layer 19.
 また、板状の封止部材17とガスバリア性フィルム20と間に隙間が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 Further, when a gap is formed between the plate-shaped sealing member 17 and the gas barrier film 20, in the gap and in the gas phase and the liquid phase, an inert gas such as nitrogen and argon, a fluorinated hydrocarbon, It is preferable to inject an inert liquid such as silicone oil. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 一方、封止部材17として封止膜を用いる場合、有機EL素子10における発光ユニット13を完全に覆い、かつ有機EL素子10の電極端子部分を露出させる状態で、ガスバリア性フィルム20上に封止膜が設けられる。このような封止膜は、無機材料や有機材料を用いて構成される。特に、水分や酸素等、有機EL素子10における発光ユニット13の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成される。このような材料としては、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機材料が用いられる。さらに、封止膜の脆弱性を改良するために、これら無機材料からなる膜とともに、有機材料からなる膜を用いて積層構造としてもよい。 On the other hand, when a sealing film is used as the sealing member 17, sealing is performed on the gas barrier film 20 in a state where the light emitting unit 13 in the organic EL element 10 is completely covered and the electrode terminal portion of the organic EL element 10 is exposed. A membrane is provided. Such a sealing film is configured using an inorganic material or an organic material. In particular, it is made of a material having a function of suppressing intrusion of a substance that causes deterioration of the light emitting unit 13 in the organic EL element 10 such as moisture and oxygen. As such a material, for example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used. Furthermore, in order to improve the brittleness of the sealing film, a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
 これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 The method for forming these films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
[保護部材]
 なお、ここでの図示は省略したが、有機EL素子10を機械的に保護するための保護膜又は保護板等の保護部材を設けてもよい。保護部材は、有機EL素子10及び封止部材17を、ガスバリア性フィルム20とで挟む位置に配置される。特に封止部材17が封止膜である場合には、有機EL素子10に対する機械的な保護が十分ではないため、このような保護部材を設けることが好ましい。
[Protective member]
Although illustration is omitted here, a protective member such as a protective film or a protective plate for mechanically protecting the organic EL element 10 may be provided. The protective member is disposed at a position where the organic EL element 10 and the sealing member 17 are sandwiched between the gas barrier film 20. In particular, when the sealing member 17 is a sealing film, mechanical protection for the organic EL element 10 is not sufficient, and thus such a protective member is preferably provided.
 以上のような保護部材は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち、特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。 For the protective member as described above, a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, or a polymer material film or a metal material film is applied. Among these, it is particularly preferable to use a polymer film because it is lightweight and thin.
[有機EL素子の製造方法]
 次に、有機EL素子10の製造方法の一例を説明する。
 まず、樹脂基材21上に、ガスバリア層22を形成する。まず、樹脂基材21上に、ポリシラザンを含む塗布膜を形成し、この塗布膜を乾燥後、真空紫外線照射による改質処理を行い、ケイ素と窒素とを含むケイ素含有層23を形成する。そして、ケイ素含有層23上に、気相成膜法を用いて金属Mの化合物を含む金属含有層24を形成する。これにより、ケイ素含有層23と金属含有層24とを含むガスバリア層22を形成する。このとき、ケイ素含有層23と金属含有層24との界面付近に、上述の領域Aが形成されていることが好ましい。
[Method of manufacturing organic EL element]
Next, an example of a method for manufacturing the organic EL element 10 will be described.
First, the gas barrier layer 22 is formed on the resin base material 21. First, a coating film containing polysilazane is formed on the resin base material 21, and after the coating film is dried, a modification treatment by vacuum ultraviolet irradiation is performed to form a silicon-containing layer 23 containing silicon and nitrogen. And the metal containing layer 24 containing the compound of the metal M is formed on the silicon containing layer 23 using a vapor phase film-forming method. Thereby, the gas barrier layer 22 including the silicon-containing layer 23 and the metal-containing layer 24 is formed. At this time, the region A described above is preferably formed in the vicinity of the interface between the silicon-containing layer 23 and the metal-containing layer 24.
 次に、ガスバリア層22上に、平均粒子径0.2μm以上の光散乱粒子が分散された樹脂材料溶液を塗布し、光散乱層14を形成する。次に、光散乱層14上に、ドライプロセス又はウェットプロセスにより、ケイ素又はニオブの酸化物又は窒化物を主成分とする平滑化層11を形成する。 Next, a resin material solution in which light scattering particles having an average particle diameter of 0.2 μm or more are dispersed is applied on the gas barrier layer 22 to form the light scattering layer 14. Next, the smoothing layer 11 mainly composed of silicon or niobium oxide or nitride is formed on the light scattering layer 14 by a dry process or a wet process.
 次に、平滑化層11上に、銀又は銀を主成分とする合金からなる第1電極12を、12nm以下、好ましくは4~9nmの層厚になるように、蒸着法等の適宜の方法により下地層上に形成し、アノードとなる第1電極12を作製する。同時に、第1電極12端部に、外部電源と接続される取り出し電極16を蒸着法等の適宜の方法に形成する。 Next, an appropriate method such as a vapor deposition method is applied so that the first electrode 12 made of silver or an alloy containing silver as a main component is formed on the smoothing layer 11 so as to have a layer thickness of 12 nm or less, preferably 4 to 9 nm. To form a first electrode 12 which is formed on the underlying layer and serves as an anode. At the same time, the extraction electrode 16 connected to the external power source is formed at the end of the first electrode 12 by an appropriate method such as vapor deposition.
 次に、この上に、正孔注入層13a、正孔輸送層13b、発光層13c、電子輸送層13d、電子注入層13eの順に成膜し、発光ユニット13を形成する。これらの各層の成膜方法としては、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。さらに、層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが好ましい。 Next, a hole injection layer 13a, a hole transport layer 13b, a light emitting layer 13c, an electron transport layer 13d, and an electron injection layer 13e are formed in this order on this, and the light emitting unit 13 is formed. As a film forming method of each of these layers, there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but from the point that a uniform film is easily obtained and pinholes are difficult to generate, etc. Vacuum deposition or spin coating is particularly preferred. Further, different film formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 × 10 −6 to 1 × 10 −2 Each condition is preferably selected as appropriate within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of −50 to 300 ° C., and layer thickness of 0.1 to 5 μm.
 発光ユニット13を形成した後、この上部にカソードとなる第2電極15を、蒸着法やスパッタ法などの適宜の成膜法によって形成する。この際、第2電極15は、発光ユニット13によって第1電極12に対して絶縁状態を保ちつつ、発光ユニット13の上方からガスバリア性フィルム20の周縁に端子部分を引き出した形状にパターン形成する。
 次に、有機EL素子10における取り出し電極16及び第2電極15の端子部分を露出させた状態で、少なくとも発光ユニット13を覆う封止部材17を設ける。
After the light emitting unit 13 is formed, a second electrode 15 serving as a cathode is formed thereon by an appropriate film forming method such as a vapor deposition method or a sputtering method. At this time, the second electrode 15 is formed in a pattern in which a terminal portion is drawn from the upper side of the light emitting unit 13 to the periphery of the gas barrier film 20 while being insulated from the first electrode 12 by the light emitting unit 13.
Next, a sealing member 17 that covers at least the light emitting unit 13 is provided with the terminal portions of the extraction electrode 16 and the second electrode 15 in the organic EL element 10 exposed.
 以上により、ガスバリア性フィルム20上に所望の有機EL素子10を形成することができる。このような有機EL素子10の作製においては、1回の真空引きで一貫して発光ユニット13から第2電極15まで作製するのが好ましいが、途中で真空雰囲気から樹脂基材21を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 Thus, the desired organic EL element 10 can be formed on the gas barrier film 20. In the production of such an organic EL element 10, it is preferable to produce the light emitting unit 13 to the second electrode 15 consistently by a single evacuation. However, the resin base material 21 is taken out from the vacuum atmosphere in the middle and is different. A film forming method may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 このようにして得られた有機EL素子10に直流電圧を印加する場合には、アノードである第1電極12を+の極性とし、カソードである第2電極15を-の極性として、電圧2~40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic EL element 10 thus obtained, the first electrode 12 serving as an anode has a positive polarity and the second electrode 15 serving as a cathode has a negative polarity. Luminescence can be observed when about 40 V is applied. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
[有機EL素子の効果]
 上述の有機EL素子10は、ガスバリア性フィルム20上に光散乱層14と平滑化層11とからなる内部光取り出し層を有する。さらに、ガスバリア性フィルム20が、ケイ素含有層23と金属含有層24とを含むガスバリア層22を備える。このガスバリア層22によって、樹脂基材21側からの不純物の侵入を阻止することができる。このため、有機EL素子10の信頼性、保存性を向上させることができる。
 また、ガスバリア性フィルム20上に、上述の光散乱層14、及び、平滑化層11を備えることにより、光取り出し効率の向上と、保存性の向上とを両立した発光装置を構成することができる。
[Effect of organic EL element]
The organic EL element 10 described above has an internal light extraction layer composed of the light scattering layer 14 and the smoothing layer 11 on the gas barrier film 20. Further, the gas barrier film 20 includes a gas barrier layer 22 including a silicon-containing layer 23 and a metal-containing layer 24. The gas barrier layer 22 can prevent impurities from entering from the resin base material 21 side. For this reason, the reliability and storability of the organic EL element 10 can be improved.
In addition, by providing the light scattering layer 14 and the smoothing layer 11 on the gas barrier film 20, it is possible to configure a light emitting device that achieves both improved light extraction efficiency and improved storage stability. .
[有機EL素子の用途]
 上述した各構成の有機EL素子は、上述したように面発光体であるため、各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定するものではなく、特に、カラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
[Uses of organic EL elements]
Since the organic EL elements having the above-described configurations are surface light emitters as described above, they can be used as various light emission sources. For example, lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include, but are not limited to, a light source of an optical sensor, and can be effectively used as a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
 また、有機EL素子は、照明用や露光光源のような1種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置及びディスプレイの大型化に伴い、有機EL素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化してもよい。 The organic EL element may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image. (Display) may be used. In this case, with the recent increase in the size of lighting devices and displays, the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic EL elements are joined together in a plane.
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また、異なる発光色を有する有機EL素子を2種以上使用することにより、カラー又はフルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. In addition, a color or full-color display device can be manufactured by using two or more organic EL elements having different emission colors.
[照明装置]
 有機EL素子の用途の一例としては、照明装置を挙げることができる。
 有機EL素子を用いる照明装置は、上述した構成の各有機EL素子に共振器構造を持たせた設計としてもよい。共振器構造として構成された有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより、上記用途に使用してもよい。
[Lighting device]
An example of the use of the organic EL element is a lighting device.
The lighting device using the organic EL element may be designed such that each organic EL element having the above-described configuration has a resonator structure. Examples of the purpose of use of the organic EL element configured as a resonator structure include, but are not limited to, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. . Moreover, you may use for the said use by making a laser oscillation.
 なお、有機EL素子に用いられる材料は、実質的に白色の発光を生じる有機EL素子(白色有機EL素子ともいう。)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の三原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。 Note that the material used for the organic EL element can be applied to an organic EL element that emits substantially white light (also referred to as a white organic EL element). For example, a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing. As a combination of a plurality of emission colors, those containing the three emission maximum wavelengths of the three primary colors of red, green and blue may be used, or two emission using the complementary colors such as blue and yellow, blue green and orange, etc. It may contain a maximum wavelength.
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機EL素子においては、発光ドーパントを複数組み合わせて混合したものでもよい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and excitation of light from the light emitting materials. Any combination with a pigment material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants may be used.
 このような白色有機EL素子は、各色発光の有機EL素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機EL素子自体が白色を発光する。このため、素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で成膜することができ、生産性も向上する。 Such a white organic EL element is different from a configuration in which organic EL elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic EL element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and deposition can be performed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is also improved. To do.
 また、このような白色有機EL素子の発光層に用いる発光材料としては、特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、上記した金属錯体や公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
 以上に説明した白色有機EL素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。
Moreover, there is no restriction | limiting in particular as a light emitting material used for the light emitting layer of such a white organic EL element, For example, if it is a backlight in a liquid crystal display element, it will fit in the wavelength range corresponding to CF (color filter) characteristic. As described above, any one of the above-described metal complexes and known light-emitting materials may be selected and combined to be whitened.
If the white organic EL element demonstrated above is used, it is possible to produce the illuminating device which produces substantially white light emission.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
〈試料101のガスバリア性フィルム、及び、有機EL素子の作製〉
[ガスバリア性フィルムの作製]
 樹脂基材として、両面に易接着処理した厚さ100μmのポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラー(登録商標)(U48))を準備した。そして、この樹脂基材のケイ素含有層を形成する面とは反対側の面に、厚さ0.5μmのアンチブロック機能を有するクリアハードコート層を形成した。すなわち、UV硬化型樹脂(アイカ工業株式会社製、品番:Z731L)を乾燥膜厚が0.5μmになるように塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。
<Production of Gas Barrier Film of Sample 101 and Organic EL Element>
[Production of gas barrier film]
As a resin substrate, a 100 μm thick polyethylene terephthalate film (Lumirror (registered trademark) (U48), manufactured by Toray Industries, Inc.) with easy adhesion treatment on both sides was prepared. And the clear hard-coat layer which has an antiblock function of thickness 0.5 micrometer was formed in the surface on the opposite side to the surface which forms the silicon-containing layer of this resin base material. That is, a UV curable resin (manufactured by Aika Kogyo Co., Ltd., product number: Z731L) was applied to a dry film thickness of 0.5 μm, dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 .
 次に、樹脂基材のケイ素含有層を形成する側の面に厚さ2μmのクリアハードコート層を以下のようにして形成した。JSR株式会社製、UV硬化型樹脂オプスター(登録商標)Z7527を、乾燥膜厚が2μmになるように塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。このようにして、ハードコート層付樹脂基材を得た。以降、実施例及び比較例においては、このハードコート層付樹脂基材を単に樹脂基材とする。 Next, a clear hard coat layer having a thickness of 2 μm was formed on the surface of the resin base on the side where the silicon-containing layer is to be formed as follows. A UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied to a dry film thickness of 2 μm, dried at 80 ° C., and then irradiated with a high-pressure mercury lamp in air. Curing was performed under the condition of 0.5 J / cm 2 . In this way, a resin base material with a hard coat layer was obtained. Hereinafter, in Examples and Comparative Examples, this resin substrate with a hard coat layer is simply referred to as a resin substrate.
 ケイ素含有化合物として、パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで適宜希釈し、塗布液を調製した。 As a silicon-containing compound, a dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6) -Dihydrohexane (TMDAH))-containing perhydropolysilazane 20% by mass dibutyl ether solution (manufactured by AZ Electronic Materials Co., Ltd., NAX120-20) was mixed at a ratio of 4: 1 (mass ratio) and further dried. A coating solution was prepared by appropriately diluting with dibutyl ether for film thickness adjustment.
 次に、上記樹脂基材上に、スピンコート法により塗布液を乾燥膜厚が150nmになるよう塗布し、80℃で2分間乾燥した。次に、乾燥した塗膜に対して、波長172nmのXeエキシマランプ(エキシマランプ光強度:130mW/cm)を有する真空紫外線照射装置(試料の塗布層表面とエキシマランプ管面との最短距離が3mm)を用い、真空紫外線の照射エネルギー量(照射量)2.5J/cmで真空紫外線照射処理を行った。この際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。 Next, the coating solution was applied onto the resin substrate by spin coating so that the dry film thickness was 150 nm, and dried at 80 ° C. for 2 minutes. Next, with respect to the dried coating film, the shortest distance between the vacuum ultraviolet irradiation apparatus (external layer surface of the sample and the excimer lamp tube surface) having a Xe excimer lamp (excimer lamp light intensity: 130 mW / cm 2 ) with a wavelength of 172 nm is used. 3 mm), and a vacuum ultraviolet ray irradiation treatment was performed with a vacuum ultraviolet ray irradiation energy amount (irradiation amount) of 2.5 J / cm 2 . At this time, the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume. The stage temperature for installing the sample was set to 80 ° C.
 真空紫外線照射工程で試料塗布層表面に照射されるエネルギーは、浜松ホトニクス社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを真空紫外線照射装置の試料ステージ中央に設置し、かつ、装置チャンバー内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージを0.5m/minの速度で移動させて測定を行った。測定に先立ち、Xeエキシマランプの照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。この測定で得られた照射エネルギーを基に、試料ステージの移動速度を調整し、上述の照射エネルギーとなるように調整した。尚、真空紫外線照射に際しては、10分間のエージング後に行った。 The energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using a UV integrating photometer: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics. At the time of measurement, the sensor head was installed at the center of the sample stage of the vacuum ultraviolet irradiation apparatus so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head was 3 mm, and the atmosphere in the apparatus chamber was Nitrogen and oxygen were supplied so as to have the same oxygen concentration as in the vacuum ultraviolet irradiation step, and the measurement was performed by moving the sample stage at a speed of 0.5 m / min. Prior to the measurement, in order to stabilize the illuminance of the Xe excimer lamp, an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement. Based on the irradiation energy obtained by this measurement, the moving speed of the sample stage was adjusted so that the above-mentioned irradiation energy was obtained. The vacuum ultraviolet irradiation was performed after aging for 10 minutes.
 次に、ケイ素含有層まで形成した樹脂基材を、20℃、相対湿度50%RHの環境下で24時間保管した。その後、ケイ素含有層上に、マグネトロンスパッタ装置を用い、下記に示すターゲット及び成膜条件を用い、金属含有層を形成した。 Next, the resin base material formed up to the silicon-containing layer was stored for 24 hours in an environment of 20 ° C. and a relative humidity of 50% RH. Thereafter, a metal-containing layer was formed on the silicon-containing layer using a magnetron sputtering apparatus and using the following target and film formation conditions.
 ターゲットとして酸素欠損型Nbターゲットを用い、プロセスガスにはArとOとを用いたDCスパッタにより成膜した。予めガラス基板を用いた成膜により、酸素分圧を調整することにより組成の条件出しを行い、表層から深さ10nm近傍の組成がNbとなる条件を見出した。この条件を適用し、厚さ15nmで成膜を行った。
 以上の工程により、試料101のガスバリア性フィルムを作製した。
A film was formed by DC sputtering using an oxygen-deficient Nb 2 O 5 target as a target and Ar and O 2 as process gases. The conditions of the composition were determined by adjusting the oxygen partial pressure in advance by film formation using a glass substrate, and the conditions were found such that the composition near the depth of 10 nm from the surface layer was Nb 2 O 3 . By applying these conditions, a film was formed with a thickness of 15 nm.
Through the above steps, a gas barrier film of Sample 101 was produced.
[領域Aの組成の測定]
 試料101のガスバリア性フィルムについて、後述の条件でXPS測定を行った。結果を下記表2に示す。下記表2のように、領域Aが形成されていることを確認した。
[Measurement of composition in region A]
The XPS measurement was performed on the gas barrier film of Sample 101 under the conditions described below. The results are shown in Table 2 below. As shown in Table 2 below, it was confirmed that the region A was formed.
(XPS組成分析条件)
 ・装置:アルバックファイ製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算で2.5nm相当のスパッタ後、測定を繰り返し、SiO換算深さ方向2.5nmごとのデプスプロファイルを得た
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いた。
(XPS composition analysis conditions)
・ Equipment: ULVAC-PHI QUANTERASXM
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: after sputtering equivalent to 2.5 nm in terms of SiO 2 , measurement was repeated to obtain a depth profile for every 2.5 nm in the depth direction of SiO 2 .Quantification: obtained by obtaining the background by the Shirley method Quantification was performed from the peak area using the relative sensitivity coefficient method. For data processing, MultiPak manufactured by ULVAC-PHI was used.
[光散乱層の作製]
 次に、作製したガスバリア性フィルム上に、以下の方法により光散乱層を作製した。
 まず、屈折率2.4、平均粒径0.25μmのTiO粒子(テイカ(株)製 JR600A)と、樹脂溶液(APM社製 ED230AL(有機無機ハイブリッド樹脂))との固形分比率を、40体積%/60体積%とし、プロピレングリコールモノメチルエーテル(PGME)中での固形分濃度が15質量%となるように調製した。そして、固形分(有効質量成分)に対し、0.4質量%の添加剤(ビックケミージャパン株式会社製 Disperbyk-2096)を加え、10ml量の比率で処方設計した。
[Production of light scattering layer]
Next, a light scattering layer was produced on the produced gas barrier film by the following method.
First, the solid content ratio of TiO 2 particles having a refractive index of 2.4 and an average particle diameter of 0.25 μm (JR600A, manufactured by Taca Co., Ltd.) and a resin solution (ED230AL (organic-inorganic hybrid resin) manufactured by APM) was set to 40. The solid content concentration in propylene glycol monomethyl ether (PGME) was adjusted to 15% by mass. Then, 0.4 mass% additive (Disperbyk-2096 manufactured by Big Chemie Japan Co., Ltd.) was added to the solid content (effective mass component), and the formulation was designed at a ratio of 10 ml.
 具体的には、上記TiO粒子と溶媒及び添加剤を、TiO粒子に対し10%の質量比で混合し、常温(25℃)で冷却しながら、超音波分散機(エスエムテー社製 UH-50)に、マイクロチップステップ(エスエムテー社製 MS-3 3mmφ)の標準条件で10分間分散を加え、TiOの分散液を作製した。
 次に、TiO分散液を100rpmで撹拌しながら、樹脂溶液を少量ずつ混合添加し、添加完了後、500rpmまで撹拌速度を上げ、10分間混合した後、疎水性PVDF 0.45μmフィルター(ワットマン社製)にて濾過し、目的の光散乱層用塗布液を得た。
Specifically, the the TiO 2 particles and a solvent and additives were mixed with 10% by weight ratio with respect to TiO 2 particles, while cooling at room temperature (25 ° C.), an ultrasonic dispersing machine (manufactured by SMT Co. UH- 50) was dispersed for 10 minutes under the standard conditions of a microchip step (MS-3, 3 mmφ manufactured by SMT Co., Ltd.) to prepare a TiO 2 dispersion.
Next, while stirring the TiO 2 dispersion at 100 rpm, the resin solution was mixed and added little by little. After the addition was completed, the stirring speed was increased to 500 rpm, and the mixture was mixed for 10 minutes, and then a hydrophobic PVDF 0.45 μm filter (Whatman) To obtain the desired coating solution for light scattering layer.
 作製した光散乱層用塗布液をインクジェット塗布法にて、ガスバリア性フィルム上に塗布した後、簡易乾燥(80℃、2分)し、更に、波長制御IRで基材温度80℃未満の出力条件で5分間乾燥処理を実行した。 The prepared coating solution for the light scattering layer is applied onto the gas barrier film by the ink jet coating method, and then simply dried (80 ° C., 2 minutes). Further, the output condition is that the substrate temperature is less than 80 ° C. by wavelength control IR. The drying process was performed for 5 minutes.
 次に、下記改質処理条件にて硬化反応を促進し、層厚0.3μmの光散乱層を得た。
(改質処理装置)
 株式会社エム・ディ・コム製エキシマ照射装置MODEL:MEIRH-M-1-200-222-H-KM-G、波長222nm、ランプ封入ガス KrCl
(改質処理条件)
 エキシマ光強度     8J/cm(222nm)
 ステージ加熱温度    60℃
 照射装置内の酸素濃度  大気
Next, the curing reaction was accelerated under the following modification treatment conditions to obtain a light scattering layer having a layer thickness of 0.3 μm.
(Modification equipment)
Excimer irradiation equipment MODEL: MEIRH-M-1-200-222-H-KM-G, wavelength 222 nm, lamp filled gas KrCl
(Reforming treatment conditions)
Excimer light intensity 8J / cm 2 (222nm)
Stage heating temperature 60 ℃
Oxygen concentration in the irradiation device
[平滑化層の作製]
 平滑化層用塗布液として、高屈折率UV硬化型樹脂(東洋インキ(株)社製、リオデュラスTYT82-01、ナノゾル粒子:TiO)を、プロピレングリコールモノメチルエーテル(PGME)と2-メチル-2,4-ペンタンジオール(PD)との溶媒比が90質量%/10質量%である有機溶媒中での固形分濃度が12質量%となるように、10ml量の比率で処方設計した。
[Production of smoothing layer]
As a coating solution for the smoothing layer, a high refractive index UV curable resin (manufactured by Toyo Ink Co., Ltd., Rio Duras TYT82-01, nanosol particles: TiO 2 ), propylene glycol monomethyl ether (PGME) and 2-methyl-2 The formulation was designed in a ratio of 10 ml so that the solid content concentration in an organic solvent having a solvent ratio of 90% by mass / 10% by mass with 1,4-pentanediol (PD) was 12% by mass.
 具体的には、上記高屈折率UV硬化型樹脂と溶媒を混合し、500rpmで1分間混合した後、疎水性PVDF 0.2μmフィルター(ワットマン社製)にて濾過し、目的の平滑化層用塗布液を得た。
 上記塗布液をインクジェット塗布法にて、光散乱層上に塗布した後、簡易乾燥(80℃、2分)し、更に波長制御IRで基材温度80℃未満の出力条件で5分間乾燥処理を実行した。
Specifically, the high refractive index UV curable resin and the solvent are mixed, mixed at 500 rpm for 1 minute, and then filtered through a hydrophobic PVDF 0.2 μm filter (manufactured by Whatman) for the intended smoothing layer. A coating solution was obtained.
After applying the coating solution on the light scattering layer by the inkjet coating method, it is simply dried (80 ° C., 2 minutes), and further subjected to a drying treatment for 5 minutes under an output condition with a substrate temperature of less than 80 ° C. by wavelength control IR. Executed.
 次に、下記改質処理条件にて硬化反応を促進し、層厚0.5μmの平滑化層を形成し、光散乱層及び平滑化層の2層構造からなる内部光取り出し層を作製した。 Next, the curing reaction was promoted under the following modification treatment conditions, a smoothing layer having a layer thickness of 0.5 μm was formed, and an internal light extraction layer having a two-layer structure of a light scattering layer and a smoothing layer was produced.
(改質処理装置)
 株式会社エム・ディ・コム製エキシマ照射装置MODEL:MEIRH-M-1-200-222-H-KM-G、波長222nm、ランプ封入ガス KrCl
(改質処理条件)
 エキシマ光強度     8J/cm(222nm)
 ステージ加熱温度    60℃
 照射装置内の酸素濃度  大気
(Modification equipment)
Excimer irradiation equipment MODEL: MEIRH-M-1-200-222-H-KM-G, wavelength 222 nm, lamp filled gas KrCl
(Reforming treatment conditions)
Excimer light intensity 8J / cm 2 (222nm)
Stage heating temperature 60 ℃
Oxygen concentration in the irradiation device
[第1電極の作製]
 内部光取り出し層が形成された樹脂基材を、市販の真空蒸着装置の基材ホルダーに固定し、下記例示化合物No.46をタンタル製抵抗加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
[Production of first electrode]
The resin base material on which the internal light extraction layer was formed was fixed to a base material holder of a commercially available vacuum deposition apparatus. 46 was put in a resistance heating boat made of tantalum, and the substrate holder and the heating boat were attached to the first vacuum chamber of the vacuum deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
 この状態で、まず、第1真空槽を4×10-4Paまで減圧した後、下記例示化合物No.46の入った加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で基材(平滑化層)上に層厚25nmの下記例示化合物No.46からなる下地層を設けた。 In this state, first, the first vacuum chamber was depressurized to 4 × 10 −4 Pa, and then the following exemplified compound No. The heating boat containing 46 was energized and heated, and the following exemplary compound No. 1 having a layer thickness of 25 nm was formed on the substrate (smoothing layer) within a deposition rate range of 0.1 to 0.2 nm / second. An underlayer consisting of 46 was provided.
 次に、下地層まで形成した樹脂基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、下地層上に層厚8nmの銀からなる電極層を形成し、第1電極を作製した。 Next, the resin base material formed up to the underlayer is transferred to the second vacuum chamber while being vacuumed, and after the pressure of the second vacuum chamber is reduced to 4 × 10 −4 Pa, the heating boat containing silver is energized and heated. Then, an electrode layer made of silver having a layer thickness of 8 nm was formed on the underlayer at a deposition rate of 0.1 to 0.2 nm / second to produce a first electrode.
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
[発光ユニットの作製]
 内部光取り出し層及び第1電極が形成された樹脂基材を、中央部に幅30mm×30mmの開口部があるマスクと重ねて市販の真空蒸着装置の基板ホルダーに固定した。また真空蒸着装置内の加熱ボートの各々に、発光ユニットを構成する各材料を、それぞれの層の形成に最適な量で充填した。なお、加熱ボートはタングステン製抵抗加熱用材料で作製されたものを用いた。
[Production of light emitting unit]
The resin base material on which the internal light extraction layer and the first electrode were formed was overlapped with a mask having an opening with a width of 30 mm × 30 mm at the center and fixed to a substrate holder of a commercially available vacuum deposition apparatus. Moreover, each material which comprises a light emission unit was filled in each heating boat in a vacuum evaporation system in the optimal quantity for formation of each layer. In addition, the heating boat used what was produced with the resistance heating material made from tungsten.
 次に、真空蒸着装置の蒸着室内を真空度4×10-4Paまで減圧し、各材料が入った加熱ボートを順次通電して加熱することにより、以下のように各層を形成した。
 まず、正孔輸送注入材料として下記構造式に示すα-NPDが入った加熱ボートに通電して加熱し、α-NPDからなる正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層を、第1電極上に形成した。この際、蒸着速度0.1~0.2nm/秒、層厚140nmとした。
Next, the inside of the vapor deposition chamber of the vacuum vapor deposition apparatus was depressurized to a vacuum degree of 4 × 10 −4 Pa, and each layer was formed as follows by sequentially energizing and heating the heating boat containing each material.
First, a hole-injecting hole transporting material serving as both a hole-injecting layer and a hole-transporting layer made of α-NPD is heated by energizing a heating boat containing α-NPD represented by the following structural formula as a hole-transporting injecting material. A layer was formed on the first electrode. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 140 nm.
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 次に、下記構造式に示すホスト材料H4の入った加熱ボートと、下記構造式に示すリン光発光性化合物Ir-4の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H4とリン光発光性化合物Ir-4とからなる発光層を、正孔輸送注入層上に形成した。この際、蒸着速度がホスト材料H4:リン光発光性化合物Ir-4=100:6となるように、加熱ボートの通電を調節した。また層厚30nmとした。
 次に、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqからなる正孔阻止層を、発光層上に形成した。この際、蒸着速度0.1~0.2nm/秒、層厚10nmとした。
Next, each of the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were energized independently, respectively. A light emitting layer composed of the photoluminescent compound Ir-4 was formed on the hole transport injection layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was the host material H4: phosphorescent compound Ir-4 = 100: 6. The layer thickness was 30 nm.
Next, a hole-blocking layer made of BAlq was formed on the light-emitting layer by heating a heated boat containing BAlq represented by the following structural formula as a hole-blocking material. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 その後、下記例示化合物10の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、例示化合物10とフッ化カリウムとからなる電子輸送層を、正孔阻止層上に形成した。この際、蒸着速度が例示化合物10:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また層厚30nmとした。
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートに通電して加熱し、フッ化カリウムからなる電子注入層を、電子輸送層上に形成した。この際、蒸着速度0.01~0.02nm/秒、層厚1nmとした。
Thereafter, a heating boat containing the following exemplary compound 10 and a heating boat containing potassium fluoride were energized independently, and an electron transport layer composed of the exemplary compound 10 and potassium fluoride was placed on the hole blocking layer. Formed. At this time, the energization of the heating boat was adjusted so that the vapor deposition rate was 10: potassium fluoride = 75: 25. The layer thickness was 30 nm.
Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
[第2電極の作製~封止]
 発光ユニットまで形成した樹脂基材を、アルミニウム(Al)を入れたタングステン製の抵抗加熱ボートが取り付けられた第2真空槽へ、真空状態を保持したまま移送した。そして、アノードと直行するように配置された幅20mm×20mmの開口部があるマスクと重ねて固定した。次に、処理室内において、成膜速度0.3~0.5nm/秒で、膜厚100nmのAlからなる反射性の第2電極をカソードとして成膜した。
[Preparation of second electrode to sealing]
The resin base material formed up to the light emitting unit was transferred to a second vacuum tank equipped with a tungsten resistance heating boat containing aluminum (Al) while maintaining a vacuum state. And it overlapped and fixed to the mask with the opening part of width 20mm * 20mm arrange | positioned so that it may be orthogonal to an anode. Next, a reflective second electrode made of Al having a thickness of 100 nm was formed as a cathode at a film formation rate of 0.3 to 0.5 nm / second in the processing chamber.
 次に、作製した試料101のガスバリア性フィルムと同様の構成の封止部材の片面に、封止樹脂層として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで形成した。そして、この封止樹脂層を設けた封止部材を、第2電極までを形成した試料に重ね合わせた。このとき、第1電極及び第2電極の取出し部の端部が外に出るように、封止部材の封止樹脂層形成面を、有機EL素子のガスバリア性フィルム側に連続的に重ね合わせた。 Next, a thermosetting liquid adhesive (epoxy resin) having a thickness of 25 μm was formed as a sealing resin layer on one surface of a sealing member having the same configuration as the gas barrier film of the prepared sample 101. And the sealing member which provided this sealing resin layer was piled up on the sample in which even the 2nd electrode was formed. At this time, the sealing resin layer forming surface of the sealing member was continuously superimposed on the gas barrier film side of the organic EL element so that the end portions of the extraction portions of the first electrode and the second electrode were exposed. .
 次に、封止部材を貼り合せた試料を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で押圧をかけて5分間保持した。続いて、試料を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させた。 Next, the sample to which the sealing member was bonded was placed in a decompression device, and pressed at 90 ° C. under a decompression condition of 0.1 MPa and held for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive.
 上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppm以下の大気圧で行った。なお、第1電極及び第2電極からの取出し部等の形成に関する記載は省略してある。 The sealing process is performed under atmospheric pressure and in a nitrogen atmosphere with a moisture content of 1 ppm or less in accordance with JIS B 9920. The measured cleanliness is class 100, the dew point temperature is −80 ° C. or less, and the oxygen concentration is 0.8 ppm or less. At atmospheric pressure. In addition, the description regarding formation of the extraction part etc. from the 1st electrode and the 2nd electrode is omitted.
〈試料102~107のガスバリア性フィルム、及び、有機EL素子の作製〉
 領域Aの組成を下記表2に示す構成となるように作製した以外は、上述の試料101と同様の手法を用いて、試料102~107のガスバリア性フィルム、及び、有機EL素子を作製した。各試料のガスバリア性フィルムの領域Aにおける、ケイ素原子組成比(Si)を100としたときの窒素原子組成比(N)、金属原子組成比(M)と、ケイ素原子組成比(Si)を100としたとき酸素原子組成比(O)を表2に示す。
<Production of Gas Barrier Film and Organic EL Element of Samples 102 to 107>
Gas barrier films and organic EL elements of Samples 102 to 107 were prepared using the same method as Sample 101 described above, except that the composition of region A was made to have the configuration shown in Table 2 below. The nitrogen atom composition ratio (N), the metal atom composition ratio (M), and the silicon atom composition ratio (Si) when the silicon atom composition ratio (Si) in the region A of the gas barrier film of each sample is 100 are set to 100. Table 2 shows the oxygen atom composition ratio (O).
〈試料108のガスバリア性フィルム、及び、有機EL素子の作製〉
 ガスバリア層の作製において金属含有層を形成しなかったこと以外は、上述の試料101と同様の手法を用いて、試料108のガスバリア性フィルム、及び、有機EL素子を作製した。試料108のガスバリア性フィルム、及び、有機EL素子では、ガスバリア層がケイ素含有層のみにより構成されている。試料108のガスバリア性フィルムのケイ素含有層の界面(平滑化層側)におけるケイ素原子組成比(Si)を100としたときの窒素原子組成比(N)、金属原子組成比(M)と、ケイ素原子組成比(Si)を100としたとき酸素原子組成比(O)を表2に示す。
<Production of Gas Barrier Film of Sample 108 and Organic EL Element>
A gas barrier film of Sample 108 and an organic EL element were produced using the same method as Sample 101 described above, except that the metal-containing layer was not formed in the production of the gas barrier layer. In the gas barrier film of sample 108 and the organic EL element, the gas barrier layer is constituted only by the silicon-containing layer. Nitrogen atom composition ratio (N), metal atom composition ratio (M) when silicon atom composition ratio (Si) at the interface (smoothing layer side) of the silicon-containing layer of the gas barrier film of sample 108 is 100, silicon Table 2 shows the oxygen atomic composition ratio (O) when the atomic composition ratio (Si) is 100.
〈試料109のガスバリア性フィルム、及び、有機EL素子の作製〉
 下記の方法によりCoからなる金属含有層を形成した以外は、上述の試料101と同様の手法を用いて、試料109のガスバリア性フィルム、及び、有機EL素子を作製した。試料109のガスバリア性フィルムの領域Aにおける、ケイ素原子組成比(Si)を100としたときの窒素原子組成比(N)、金属原子組成比(M)と、ケイ素原子組成比(Si)を100としたとき酸素原子組成比(O)を表2に示す。
<Production of Gas Barrier Film of Sample 109 and Organic EL Element>
A gas barrier film of Sample 109 and an organic EL element were produced using the same method as Sample 101 described above, except that a metal-containing layer made of Co was formed by the following method. In region A of the gas barrier film of sample 109, the nitrogen atom composition ratio (N), the metal atom composition ratio (M), and the silicon atom composition ratio (Si) are 100 when the silicon atom composition ratio (Si) is 100. Table 2 shows the oxygen atom composition ratio (O).
[金属含有層の作製]
 ケイ素含有層まで形成した樹脂基材を、20℃、相対湿度50%RHの環境下で24時間保管した。その後、ケイ素含有層上に、ターゲットとしてCoターゲットを用い、プロセスガスにArとOとを用いたDCスパッタにより、金属含有層を形成した。予めガラス基板を用いた成膜により、酸素分圧を調整することにより組成の条件出しを行い、表層から深さ10nm近傍の組成がCoとなる条件を見出した。この条件を適用し、厚さ15nmで成膜を行い、試料109のガスバリア性フィルムを作製した。
[Production of metal-containing layer]
The resin base material formed up to the silicon-containing layer was stored for 24 hours in an environment of 20 ° C. and a relative humidity of 50% RH. Thereafter, a metal-containing layer was formed on the silicon-containing layer by DC sputtering using a Co target as a target and Ar and O 2 as process gases. The condition of the composition was determined in advance by adjusting the oxygen partial pressure by film formation using a glass substrate, and the condition was found that the composition in the vicinity of a depth of 10 nm from the surface layer becomes Co 3 O 4 . A film with a thickness of 15 nm was applied under these conditions to produce a gas barrier film of Sample 109.
〈評価方法〉
 作製した試料101~109のガスバリア性フィルム、及び、有機EL素子に対し、下記の評価を行なった。評価結果を表2に示す。
<Evaluation methods>
The following evaluations were performed on the gas barrier films and organic EL elements of the produced samples 101 to 109. The evaluation results are shown in Table 2.
[保存性:ガスバリア性フィルムのCa法評価]
 下記の方法で作製したCa法評価試料(透過濃度により評価するタイプ)を85℃85%RH環境に保存して一定時間ごとに、Caの腐食率を観察した。1時間、5時間、10時間、20時間、それ以降は20時間ごとに観察・透過濃度測定(任意4点の平均)し、測定した透過濃度が透過濃度初期値の50%未満となった時点の観察時間を有機EL素子の保存性の指標とした。
 5:400時間以上
 4:300時間以上400時間未満
 3:200時間以上300時間未満
 2:100時間以上200時間未満
 1:100時間未満
[Preservability: Ca method evaluation of gas barrier film]
A Ca method evaluation sample (type evaluated by permeation concentration) prepared by the following method was stored in an 85 ° C. and 85% RH environment, and the corrosion rate of Ca was observed at regular intervals. 1 hour, 5 hours, 10 hours, 20 hours, and thereafter, observation and transmission density measurement (average of 4 points) every 20 hours, and when the measured transmission density is less than 50% of the initial transmission density value Was used as an index of storability of the organic EL device.
5: 400 hours or more 4: 300 hours or more and less than 400 hours 3: 200 hours or more and less than 300 hours 2: 100 hours or more and less than 200 hours 1: 1: 100 hours or less
(Ca法評価試料)
 各試料101~109において、ガスバリア性フィルム上に光散乱層及び平滑化層の内部光取り出し層までを形成した、内部光取り出し層付きガスバリア性フィルムを準備した。そして、この内部光取り出し層付きガスバリア性フィルムに対し、平滑化層表面と平滑化層の周辺部のガスバリア層表面とをUV洗浄した後、ガスバリア層面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した。これを50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。
(Ca method evaluation sample)
In each of the samples 101 to 109, a gas barrier film with an internal light extraction layer was prepared in which the light scattering layer and the internal light extraction layer of the smoothing layer were formed on the gas barrier film. Then, for this gas barrier film with an internal light extraction layer, the surface of the smoothing layer and the gas barrier layer surface around the smoothing layer are UV-cleaned, and then a thermosetting sheet as a sealing resin layer on the gas barrier layer surface An adhesive (epoxy resin) was bonded at a thickness of 20 μm. This was punched out to a size of 50 mm × 50 mm, then placed in a glove box and dried for 24 hours.
 次に、50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)の片面をUV洗浄した。株式会社エイエルエステクノロジー製の真空蒸着装置を用い、ガラス板の中央に、マスクを介して20mm×20mmのサイズでCaを蒸着した。Caの厚さは80nmとした。そして、Ca蒸着済のガラス板をグローブボックス内に移し、ガスバリア性フィルムの封止樹脂層面と、ガラス板のCa蒸着面とを接するように配置し、真空ラミネートにより接着した。この際、110℃の加熱を行った。さらに、接着した試料を110℃に設定したホットプレート上にガラス板を下にして置き、30分間硬化させて、Ca法評価用セルを作製した。 Next, one side of a 50 mm × 50 mm non-alkali glass plate (thickness 0.7 mm) was UV cleaned. Ca was vapor-deposited by the size of 20 mm x 20 mm through the mask in the center of the glass plate using the vacuum vapor deposition apparatus made from an EILS technology. The thickness of Ca was 80 nm. Then, the Ca vapor-deposited glass plate was moved into the glove box, placed so that the sealing resin layer surface of the gas barrier film and the Ca vapor-deposited surface of the glass plate were in contact, and adhered by vacuum lamination. At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down and cured for 30 minutes to produce a Ca method evaluation cell.
[折り曲げ保存性試験]
 各試料101~109の有機EL素子を、曲率が6mmφのプラスチック製ローラーに、有機EL素子形成面が外側になるように巻き付けた状態で、85℃、85%RHの環境下で、500時間保存した。その後、ローラーからはずした各有機EL素子に、1mA/cmの電流を印加して発光させた。次に、100倍の光学顕微鏡(株式会社モリテックス製 MS-804、レンズMP-ZE25-200)で、有機EL素子の発光部の一部分を拡大して撮影した。次に、撮影画像を2mm四方に切り抜き、それぞれの画像について、ダークスポット発生の有無を観察した。観察結果より、発光面積に対するダークスポットの発生面積比率を求め、下記の基準に従って、ダークスポット耐性を評価した。
[Bending preservation test]
The organic EL elements of Samples 101 to 109 are stored for 500 hours in an environment of 85 ° C. and 85% RH in a state where the organic EL element forming surface is wound around a plastic roller having a curvature of 6 mmφ. did. Thereafter, a current of 1 mA / cm 2 was applied to each organic EL element removed from the roller to emit light. Next, a part of the light emitting portion of the organic EL element was enlarged and photographed with a 100 × optical microscope (MS-804 manufactured by Moritex Co., Ltd., lens MP-ZE25-200). Next, the captured image was cut out in a 2 mm square, and the presence or absence of dark spots was observed for each image. From the observation results, the ratio of the dark spot generation area to the light emission area was determined, and the dark spot resistance was evaluated according to the following criteria.
 5:ダークスポットの発生は全く認められない
 4:ダークスポットの発生面積が、0.1%以上、1.0%未満である
 3:ダークスポットの発生面積が、1.0%以上、3.0%未満である
 2:ダークスポットの発生面積が、3.0%以上、6.0%未満である
 1:ダークスポットの発生面積が、6.0%以上である
5: Generation of dark spots is not recognized at all 4: Dark spot generation area is 0.1% or more and less than 1.0% 3: Dark spot generation area is 1.0% or more; Less than 0% 2: Dark spot generation area is 3.0% or more and less than 6.0% 1: Dark spot generation area is 6.0% or more
 上記試料101~109のガスバリア性フィルム、及び、有機EL素子における金属含有層に含まれる金属M、領域Aの組成、及び、各評価結果を表2に示す。 Table 2 shows the gas barrier films of the samples 101 to 109, the metal M contained in the metal-containing layer in the organic EL element, the composition of the region A, and the evaluation results.
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
 表2に示すように、金属含有層にNb、Ti、又は、Taを含む試料101~107は、金属含有層を有さない試料108、及び、Coを含む試料109に比べ、保存性、折り曲げ保存性ともに、良好な結果が得られた。
 特に、金属含有層にNbを含み、領域Aの組成が、ケイ素原子組成比を100としたとき、窒素原子組成比が0を超えて60以下、且つ、金属原子組成比が20以上300以下、さらに、酸素原子組成比が40以上300以下を満たす試料103は、保存性、折り曲げ保存性ともに、最もよい結果が得られた。
As shown in Table 2, the samples 101 to 107 containing Nb, Ti, or Ta in the metal-containing layer are more storable and bent than the sample 108 having no metal-containing layer and the sample 109 containing Co. Good results were obtained for both storage stability.
In particular, when the metal-containing layer contains Nb and the composition of region A has a silicon atom composition ratio of 100, the nitrogen atom composition ratio exceeds 0 and is 60 or less, and the metal atom composition ratio is 20 or more and 300 or less, Further, the sample 103 having an oxygen atom composition ratio of 40 or more and 300 or less obtained the best results in both storage stability and folding storage stability.
 金属含有層にNbを含み、領域Aの組成が、ケイ素原子組成比を100としたとき、窒素原子組成比が0を超えて60以下、且つ、金属原子組成比が20以上300以下を満たすものの、ケイ素原子組成比を100としたときの酸素原子組成比が40以上300以下を満たさない試料102は、試料103よりも保存性、折り曲げ保存性ともに低い結果となった。
 また、領域Aの組成が、ケイ素原子組成比を100としたとき、窒素原子組成比が0を超えて60以下、又は、金属原子組成比が20以上300以下のいずれかを満たさない試料104、及び、試料105は、試料103よりも保存性、折り曲げ保存性ともに低い結果となった。
 この結果から、ガスバリア層が、ケイ素原子組成比を100としたとき、窒素原子組成比が0を超えて60以下、且つ、金属原子組成比が20以上300以下、さらに、酸素原子組成比が40以上300以下を満たす領域Aを有することにより、有機EL素子の信頼性を向上させることができる。
Nb is contained in the metal-containing layer, and the composition of region A has a silicon atom composition ratio of 100, a nitrogen atom composition ratio exceeding 0 and 60 or less, and a metal atom composition ratio satisfying 20 or more and 300 or less. The sample 102 having an oxygen atom composition ratio of 40 or more and 300 or less when the silicon atom composition ratio was 100 was lower in both storage stability and folding storage stability than the sample 103.
In addition, when the composition of the region A is defined as 100 as the silicon atom composition ratio, the sample 104 does not satisfy any of the nitrogen atom composition ratio exceeding 0 and 60 or less, or the metal atom composition ratio of 20 or more and 300 or less. In addition, the sample 105 was lower in both storage stability and folding storage stability than the sample 103.
From this result, when the gas barrier layer has a silicon atom composition ratio of 100, the nitrogen atom composition ratio exceeds 0 and is 60 or less, the metal atom composition ratio is 20 or more and 300 or less, and the oxygen atom composition ratio is 40. By having the region A that satisfies the above 300 or less, the reliability of the organic EL element can be improved.
 金属含有層にTa、又は、Tiを含み、領域Aの組成が、ケイ素原子組成比を100としたとき、窒素原子組成比が0を超えて60以下、且つ、金属原子組成比が20以上300以下、さらに、酸素原子組成比が40以上300以下を満たす試料106、及び、試料107は、保存性、折り曲げ保存性ともに、良好な結果が得られた。
 この結果から、Nb以外の金属においても、ガスバリア層が領域Aを有することにより有機EL素子の信頼性を向上させることができる。
When the metal-containing layer contains Ta or Ti and the composition of the region A is defined as a silicon atom composition ratio of 100, the nitrogen atom composition ratio exceeds 0 and is 60 or less, and the metal atom composition ratio is 20 or more and 300. Hereinafter, the sample 106 and the sample 107 satisfying an oxygen atomic composition ratio of 40 or more and 300 or less obtained good results in both storage stability and folding storage stability.
From this result, even in metals other than Nb, the reliability of the organic EL element can be improved by having the region A in the gas barrier layer.
〈試料201~209の有機EL素子の作製〉
 上述の試料101~109の有機EL素子において、平滑化層の作製方法を下記に示すCVD成膜法に変更した以外は、同様の手法を用いて試料201~209の有機EL素子を作製した。
<Preparation of organic EL elements of samples 201 to 209>
In the organic EL elements of the samples 101 to 109 described above, the organic EL elements of samples 201 to 209 were manufactured using the same method except that the method for forming the smoothing layer was changed to the CVD film forming method shown below.
[平滑化層]
 光散乱層を形成したガスバリア性フィルムを、平行平板型プラズマCVD装置(アネルバ製、PED-401)のチャンバーの下部電極側に装着した。次に、プラズマCVD装置のチャンバーを油回転ポンプ及びターボ分子ポンプにより、到達真空度1.0×10-2Paまで減圧した。その後、原料供給装置から窒素ガス(N)を、原料供給ノズルを経由して、チャンバー内に30sccmで導入した。チャンバーと真空排気ポンプとの間にある、圧力調整用バルブを調節して、チャンバー内圧力を20Paとなるよう調整した。次に、下部電極に90kHzの周波数を有する電力(投入電力:200W)が印加され、下部電極と上部電極との間で(チャンバー内の原料供給ノズルの開口部(ガス導入口)近傍で)、グロー放電プラズマを発生させた。基材の窒化ケイ素膜に対し、窒素プラズマ処理を1分間行って、窒化ケイ素からなる層厚90nmの平滑化層を形成した。
[Smoothing layer]
The gas barrier film on which the light scattering layer was formed was mounted on the lower electrode side of the chamber of a parallel plate type plasma CVD apparatus (manufactured by Anelva, PED-401). Next, the chamber of the plasma CVD apparatus was depressurized to an ultimate vacuum of 1.0 × 10 −2 Pa using an oil rotary pump and a turbo molecular pump. Thereafter, nitrogen gas (N 2 ) was introduced from the raw material supply apparatus into the chamber at 30 sccm via the raw material supply nozzle. The pressure adjusting valve between the chamber and the vacuum pump was adjusted to adjust the pressure in the chamber to 20 Pa. Next, power having a frequency of 90 kHz (applied power: 200 W) is applied to the lower electrode, and between the lower electrode and the upper electrode (in the vicinity of the opening (gas inlet) of the raw material supply nozzle in the chamber), A glow discharge plasma was generated. The silicon nitride film of the substrate was subjected to nitrogen plasma treatment for 1 minute to form a smoothing layer made of silicon nitride and having a layer thickness of 90 nm.
〈評価方法〉
 作製した試料201~209の有機EL素子に対し、上述のCa法評価による保存性の評価、及び、折り曲げ保存性試験による評価を行なった。
<Evaluation methods>
The organic EL elements of the produced samples 201 to 209 were evaluated for storage stability by the above-described Ca method evaluation and evaluation by bending storage stability test.
 上記試料201~209の有機EL素子における金属含有層に含まれる金属M、領域Aの組成、及び、各評価結果を表3に示す。 Table 3 shows the metal M contained in the metal-containing layer in the organic EL elements of the samples 201 to 209, the composition of the region A, and the evaluation results.
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 表3に示すように、平滑化層として、プラズマCVD法を用いて窒化ケイ素を形成した試料201~209は、上述の試料101~109に比べて、保存性と折り曲げ保存性の両方が向上している。この結果から、有機EL素子としては、ウェットプロセスにより形成された平滑化層よりも、ドライプロセスにより形成された平滑化層を備える方が、保存性の向上の観点から好ましいことがわかる。これは、ドライプロセスにより形成された層は、ウェットプロセスにより形成された層よりもガスを遮断する効果(バリア性)が高いためと考えられる。 As shown in Table 3, samples 201 to 209 in which silicon nitride is formed using a plasma CVD method as the smoothing layer have both improved storage stability and folding storage stability compared to the above samples 101 to 109. ing. From this result, it can be seen that, as an organic EL element, it is preferable to provide a smoothing layer formed by a dry process rather than a smoothing layer formed by a wet process from the viewpoint of improving the storage stability. This is presumably because the layer formed by the dry process has a higher gas blocking effect (barrier property) than the layer formed by the wet process.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 10 有機EL素子、11 平滑化層、12 第1電極、13 発光ユニット、13a 正孔注入層、13b 正孔輸送層、13c 発光層、13d 電子輸送層、13e 電子注入層、14 光散乱層、15 第2電極、16 取り出し電極、17 封止部材、18 補助電極、19 接着層、20 ガスバリア性フィルム、21 樹脂基材、22 ガスバリア層、23 ケイ素含有層、24 金属含有層
 
DESCRIPTION OF SYMBOLS 10 Organic EL element, 11 Smoothing layer, 12 1st electrode, 13 Light emission unit, 13a Hole injection layer, 13b Hole transport layer, 13c Light emission layer, 13d Electron transport layer, 13e Electron injection layer, 14 Light scattering layer, 15 Second electrode, 16 Extraction electrode, 17 Sealing member, 18 Auxiliary electrode, 19 Adhesive layer, 20 Gas barrier film, 21 Resin substrate, 22 Gas barrier layer, 23 Silicon-containing layer, 24 Metal-containing layer

Claims (5)

  1.  樹脂基材上にガスバリア層が形成されたガスバリア性フィルムと、
     前記ガスバリア性フィルム上に設けられた、光散乱層、及び、前記光散乱層上に設けられた平滑化層からなる内部光取り出し層と、
     前記内部光取り出し層上に設けられた第1電極、第2電極、及び、前記第1電極と前記第2電極とに挟持された発光ユニットと、を備え、
     前記ガスバリア層が、V、Nb、Ta、Ti、Zr、Hf、Mg、Y、及び、Alから選ばれる少なくとも1種以上の金属の化合物を含む金属含有層と、ケイ素と窒素とを含むケイ素含有層とを有する
     有機エレクトロルミネッセンス素子。
    A gas barrier film having a gas barrier layer formed on a resin substrate;
    An internal light extraction layer comprising a light scattering layer provided on the gas barrier film, and a smoothing layer provided on the light scattering layer;
    A first electrode provided on the internal light extraction layer, a second electrode, and a light emitting unit sandwiched between the first electrode and the second electrode,
    The gas barrier layer includes a metal-containing layer containing a compound of at least one metal selected from V, Nb, Ta, Ti, Zr, Hf, Mg, Y, and Al, and a silicon-containing material containing silicon and nitrogen An organic electroluminescence device having a layer.
  2.  前記ガスバリア層は、層厚方向にXPS組成分析を行った際に得られる原子組成分布プロファイルにおいて、ケイ素原子組成比を100としたとき、窒素原子組成比が0を超えて60以下、且つ、金属原子組成比が20以上300以下となる領域を有し、
     前記金属含有層と前記ケイ素含有層とが前記領域を介して接触している
     請求項1に記載の有機エレクトロルミネッセンス素子。
    In the atomic composition distribution profile obtained when XPS composition analysis is performed in the layer thickness direction, the gas barrier layer has a silicon atom composition ratio of 100 and a nitrogen atom composition ratio of more than 0 and 60 or less, and a metal A region having an atomic composition ratio of 20 or more and 300 or less;
    The organic electroluminescent element according to claim 1, wherein the metal-containing layer and the silicon-containing layer are in contact via the region.
  3.  前記領域における、ケイ素原子組成比を100としたとき、酸素原子組成比が40以上300以下である請求項2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 2, wherein the oxygen atom composition ratio is 40 or more and 300 or less when the silicon atom composition ratio in the region is 100.
  4.  前記金属含有層に含まれる金属がNbである請求項1に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1, wherein the metal contained in the metal-containing layer is Nb.
  5.  前記平滑化層が、酸化ケイ素、窒化ケイ素、酸化ニオブ、及び、窒化ニオブから選ばれる1種以上を主成分とし、水蒸気透過度が0.1g/(m・24h)未満である請求項1に記載の有機エレクトロルミネッセンス素子。
     
    2. The smoothing layer is mainly composed of at least one selected from silicon oxide, silicon nitride, niobium oxide, and niobium nitride, and has a water vapor permeability of less than 0.1 g / (m 2 · 24h). The organic electroluminescent element of description.
PCT/JP2016/058274 2015-04-09 2016-03-16 Organic electroluminescent element WO2016163215A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017511520A JPWO2016163215A1 (en) 2015-04-09 2016-03-16 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-080219 2015-04-09
JP2015080219 2015-04-09

Publications (1)

Publication Number Publication Date
WO2016163215A1 true WO2016163215A1 (en) 2016-10-13

Family

ID=57072569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058274 WO2016163215A1 (en) 2015-04-09 2016-03-16 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JPWO2016163215A1 (en)
WO (1) WO2016163215A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073710A (en) * 2016-11-01 2018-05-10 株式会社ジャパンディスプレイ Display device and method for manufacturing display device
WO2018110244A1 (en) * 2016-12-16 2018-06-21 コニカミノルタ株式会社 Organic electroluminescence element
WO2018154887A1 (en) * 2017-02-22 2018-08-30 株式会社半導体エネルギー研究所 Display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040229051A1 (en) * 2003-05-15 2004-11-18 General Electric Company Multilayer coating package on flexible substrates for electro-optical devices
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
WO2014129536A1 (en) * 2013-02-22 2014-08-28 コニカミノルタ株式会社 Method for manufacturing organic light emitting element, and organic light emitting element
WO2014188913A1 (en) * 2013-05-22 2014-11-27 コニカミノルタ株式会社 Transparent electrode and electronic device
WO2015083660A1 (en) * 2013-12-06 2015-06-11 コニカミノルタ株式会社 Organic electroluminescence element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040229051A1 (en) * 2003-05-15 2004-11-18 General Electric Company Multilayer coating package on flexible substrates for electro-optical devices
JP2014151571A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Gas barrier film, production method of the same and electronic device including the gas barrier film
WO2014129536A1 (en) * 2013-02-22 2014-08-28 コニカミノルタ株式会社 Method for manufacturing organic light emitting element, and organic light emitting element
WO2014188913A1 (en) * 2013-05-22 2014-11-27 コニカミノルタ株式会社 Transparent electrode and electronic device
WO2015083660A1 (en) * 2013-12-06 2015-06-11 コニカミノルタ株式会社 Organic electroluminescence element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073710A (en) * 2016-11-01 2018-05-10 株式会社ジャパンディスプレイ Display device and method for manufacturing display device
WO2018110244A1 (en) * 2016-12-16 2018-06-21 コニカミノルタ株式会社 Organic electroluminescence element
JP7093725B2 (en) 2016-12-16 2022-06-30 メルク パテント ゲーエムベーハー Organic electroluminescence element
WO2018154887A1 (en) * 2017-02-22 2018-08-30 株式会社半導体エネルギー研究所 Display device
JPWO2018154887A1 (en) * 2017-02-22 2020-01-30 株式会社半導体エネルギー研究所 Display device
JP7118045B2 (en) 2017-02-22 2022-08-15 株式会社半導体エネルギー研究所 Display device

Also Published As

Publication number Publication date
JPWO2016163215A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
KR101885053B1 (en) Organic electroluminescence element
JP6288086B2 (en) Organic light emitting device
KR101828662B1 (en) Organic electroluminescent element and lighting device
US10074825B2 (en) Organic electroluminescent element
WO2014142036A1 (en) Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
JP5835083B2 (en) Organic electronics devices
JP2022010127A (en) Method for manufacturing gas barrier film, method for manufacturing transparent conductive member, and method for manufacturing organic electroluminescent element
WO2016063869A1 (en) Light extraction substrate, method for manufacturing light extraction substrate, organic electroluminescent element, and method for manufacturing organic electroluminescent element
WO2016163215A1 (en) Organic electroluminescent element
JP2016219254A (en) Gas barrier film, transparent conductive member, and organic electroluminescent element
US9577217B2 (en) Organic electroluminescent element
JP6812429B2 (en) Light extraction film and organic electroluminescence light emitting device
WO2014185392A1 (en) Organic electroluminescence element
WO2015178245A1 (en) Organic electroluminescent element
WO2014148595A1 (en) Organic electroluminescent element and lighting device
CN108293279B (en) Light emitting device
JP2016190442A (en) Gas barrier film, transparent conductive member, and organic electroluminescent element
WO2016174950A1 (en) Organic electroluminescent element
JP2016054097A (en) Organic electroluminescent element and substrate
WO2014208315A1 (en) Organic electroluminescence element
JP2015170443A (en) Organic electroluminescent element and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776384

Country of ref document: EP

Kind code of ref document: A1