WO2018188113A1 - 柔性基板 - Google Patents

柔性基板 Download PDF

Info

Publication number
WO2018188113A1
WO2018188113A1 PCT/CN2017/081679 CN2017081679W WO2018188113A1 WO 2018188113 A1 WO2018188113 A1 WO 2018188113A1 CN 2017081679 W CN2017081679 W CN 2017081679W WO 2018188113 A1 WO2018188113 A1 WO 2018188113A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
flexible substrate
polyimide
substrate according
layer
Prior art date
Application number
PCT/CN2017/081679
Other languages
English (en)
French (fr)
Inventor
李明辉
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/534,889 priority Critical patent/US10379390B2/en
Publication of WO2018188113A1 publication Critical patent/WO2018188113A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/06Substrate layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a flexible substrate.
  • Display devices such as LCD and OLED have become the main carrier and material basis for information exchange and transmission, and have become the focus of more and more people, and are widely used in all aspects of work and life.
  • flexible displays have become the object of favor for the industry and consumers.
  • flexible TFT-LCDs and flexible OLEDs have gradually developed into the most promising high-tech industries.
  • Various research institutes and companies have launched a variety of flexible display devices, such as TV screens, mobile phone screens, wearable devices, large commercial displays, computers and so on.
  • LCD and OLED as two important development areas of flexible display, face the same problem in the development of flexible display, namely the material and process of flexible substrate.
  • the performance requirements of the flexible display device for the substrate material are mainly reflected in the following aspects: (1) heat resistance and high temperature dimensional stability, which are determined by the process and process requirements of the display screen.
  • the high temperature in the process and the process causes the substrate to be deformed at a high temperature, thereby reducing the alignment accuracy, and the substrate size change excessively occurs due to poor display effect due to internal stress between the material interfaces and peeling between layers at the time of bending.
  • Flexibility requirements the development trend of flexible displays is flat type ⁇ bendable type ⁇ rollable type ⁇ foldable type, the bending radius of the flexible display is getting smaller and smaller, and the substrate is getting thinner and thinner.
  • the substrate material as a flexible display device mainly includes ultra-thin glass, metal foil, polymer film and the like.
  • the characteristics of the integrated flexible substrate, polymer film has unique advantages in optical properties, mechanical properties and chemical properties, and has strong mass production, and is suitable for any size, low cost, and therefore in flexible display It has received extensive attention in development.
  • Common polymer substrate materials include polyethylene terephthalate (PET), polycarbonate (PC), and polyimide (PI). Among them, PI substrate materials have excellent high temperature resistance and penetration. The rate, mechanical properties and chemical stability have attracted much attention. Its rigid polyimine ring gives PI an excellent combination of properties, making PI the material of choice for flexible substrates.
  • the conventional PI film has a large phase retardation.
  • the PI film formed by the spin coating method has a phase retardation in the thickness direction, and as the thickness increases, the phase retardation increases, that is, has a birefringence effect.
  • the phase retardation (birefringence) of the flexible substrate in the thickness direction is liable to cause light leakage in the side viewing direction, thereby affecting the display effect.
  • the present invention proposes a flexible substrate, the comprehensive performance of the flexible substrate is improved, and the flexible substrate can be realized. It is thin and light, thereby achieving ultra-thinness of the display device.
  • the flexible substrate provided by the present invention comprises a first layer film and a second layer film disposed in order from bottom to top, the second layer film being arranged to cancel the birefringence effect generated by the first layer film, eliminating phase delay .
  • the first layer of film is a negative PI film having an optical axis perpendicular to the film surface.
  • the flexible substrate eliminates the phase retardation because the second film can cancel the birefringence effect produced by the first film, thereby avoiding the influence of the increase in film thickness on the substrate.
  • the first film is a negative PI film, that is, the first film is a negative C-Plate PI film, so that the flexible substrate has excellent high temperature resistance, transmittance, mechanical properties and chemical stability. .
  • the material constituting the second layer film includes a positive uniaxial polymer material. Since the first layer is a negative PI film whose optical axis is perpendicular to the film surface, the second layer film needs to use a positive uniaxial polymer material, and the positive uniaxial polymer material can cancel the birefringence generated by the negative PI film. Effect, which eliminates phase delay and improves display.
  • the positive uniaxial polymer material comprises a positive uniaxial liquid crystal.
  • the liquid crystal material is a commonly used material in the field of display technology, and the positive uniaxial liquid crystal has a property of canceling the birefringence effect of the negative PI film, and therefore, when a positive uniaxial liquid crystal is used as the second layer film, the process is greatly reduced. The difficulty and cost savings.
  • the second film comprises a positive uniaxial liquid crystal layer and at least one protective film, and the liquid crystal layer is disposed between the first film and the protective film.
  • the protective film is a negative PI film whose optical axis is perpendicular to the film surface.
  • the liquid crystal has an anisotropic structure and can produce a birefringence effect.
  • the birefringence effect produced by the positive uniaxial liquid crystal layer can cancel the negative birefringence effect produced by the first film and the protective film, eliminate the phase delay, and improve the display effect. This avoids the influence of the increase in film thickness on the substrate. Therefore, the number of layers of the protective film can be set according to actual needs, and the thickness of the flexible substrate can be determined as needed.
  • the first film includes at least one base film which is a negative PI film whose optical axis is perpendicular to the film surface.
  • the second film includes a positive uniaxial liquid crystal layer and at least one protective film disposed between the first layer film and the protective film.
  • the flexible substrate provided in such a structure can also achieve the effect of eliminating the phase delay and improving the display effect. At the same time, the influence of the increase of the film thickness on the substrate is avoided. Therefore, the number of layers of the base film and the protective film can be set according to actual needs, and the thickness of the flexible substrate can be determined as needed.
  • the second layer film includes an equal number of positive uniaxial liquid crystal layers and a protective film, and the positive uniaxial liquid crystal layer and the protective film are alternately disposed, the first film It is disposed on the side of the positive uniaxial liquid crystal layer of the second film.
  • the first layer film is a negative polyimide film whose optical axis is perpendicular to the film surface.
  • the protective film is a negative polyimide film whose optical axis is perpendicular to the film surface.
  • the multilayer positive uniaxial liquid crystal layer can cancel the birefringence effect produced by the negative PI film, eliminating the phase delay.
  • the number of positive uniaxial liquid crystal layers and protective films can be set according to the thickness of the substrate.
  • the polyimide constituting the PI film contains a sulfur group.
  • High molecular weight, low molar volume polymers contained in the molecular structure generally have a relatively high refractive index.
  • the results show that when a sulfur-containing group is introduced into the PI film to increase the sulfur element in the film, the refractive index of the PI film increases, and the flexible thioether chain contained in the molecular structure of the polyimide can effectively inhibit the molecule.
  • the orientation of the chain along the plane direction of the film reduces the birefringence of the PI film and enhances the display effect of the flexible substrate.
  • the invention also proposes a flexible display panel comprising the softness proposed by the invention Substrate.
  • the second layer film is arranged to cancel the birefringence effect produced by the first layer film, thereby eliminating the phase delay, improving the display effect, and avoiding the influence of the increase of the film thickness on the substrate, thereby
  • the thickness of the flexible substrate is required according to actual needs.
  • the flexible display panel proposed by the present invention has the flexible substrate proposed by the present invention, thereby greatly improving the display effect and achieving an ultra-thin design.
  • FIG. 1 is a schematic structural view of a flexible substrate according to Embodiment 1 of the present invention.
  • FIG. 2a is a schematic structural view of a flexible substrate including a protective film according to Embodiment 2 of the present invention
  • FIG. 2b is a schematic structural view of a flexible substrate including two protective films according to Embodiment 2 of the present invention.
  • 3a is a schematic structural view of a flexible substrate including two base films and a protective film according to Embodiment 3 of the present invention
  • 3b is a schematic structural view of a flexible substrate including two base films and two protective films according to Embodiment 3 of the present invention
  • Embodiment 4 is a schematic structural view of a flexible substrate according to Embodiment 5 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the flexible substrate includes a first layer film 11 and a second layer film 12 disposed in order from bottom to top, and the second layer film 12 It is set to cancel the birefringence effect produced by the first layer film 11 and eliminate the phase delay.
  • a birefringence effect occurs in the thickness direction of the first film 11, and a phase retardation occurs, and the phase retardation increases as the thickness of the first film 11 increases. It also increases, affecting the display effect.
  • the second film 12 eliminates the birefringence effect produced by the first film 11, the phase retardation is also eliminated, the display effect is improved, and the influence on the substrate due to the increase in film thickness is avoided.
  • the first layer film 11 is a negative PI film whose optical axis is perpendicular to the film surface.
  • the excellent high temperature resistance, transmittance, mechanical properties and chemical stability of the PI film further enhance the quality of the flexible substrate.
  • the material constituting the second layer film 12 includes a positive uniaxial polymer material, and the second layer film composed of such a material can cancel the birefringence effect by the negative PI film and eliminate the phase retardation.
  • the positive uniaxial polymer material is a positive uniaxial liquid crystal material.
  • the liquid crystal material is a material commonly used in the field of display technology, and the positive uniaxial liquid crystal material has a characteristic capable of canceling the birefringence effect of the negative PI film, and therefore, when a positive uniaxial liquid crystal material is used as the second layer film, the film is greatly reduced. The difficulty of the process saves manufacturing costs.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 2a is a schematic structural view of a flexible substrate in the embodiment.
  • the flexible substrate is provided with a first film 21 and a second film 22 in this order from bottom to top, where the second film 22 is disposed to be able to cancel the double generated by the first film 21.
  • Refraction effect eliminates phase delay.
  • a birefringence effect occurs in the thickness direction of the first film 21, and a phase retardation occurs, and as the thickness of the first film 11 increases, the display effect is affected.
  • the second film 22 eliminates the birefringence effect produced by the first film 21, the phase retardation is also eliminated, the display effect is improved, and the influence on the substrate due to the increase in film thickness is avoided.
  • the second film 22 further includes a positive uniaxial liquid crystal layer 221 and at least one protective film 222, and the positive uniaxial liquid crystal layer 221 is disposed on the first film 21 and the protective film 222.
  • the first film 21 and the protective film 222 are each a negative PI film whose optical axis is perpendicular to the film surface.
  • the flexible substrate in the present embodiment can be simply understood to be composed of two PI films having the same birefringence and a positive uniaxial liquid crystal layer interposed therebetween, and the liquid crystal layer here can be used as a compensation film for the PI film. In order to offset the phase delay generated by the PI film, the purpose of eliminating birefringence and improving the viewing angle is achieved.
  • FIG. 2b is a schematic structural view of the flexible substrate including the two protective films 222 in the embodiment.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 3a is a schematic structural view of a flexible substrate in the embodiment.
  • the first film 21 includes at least one base film 211, and preferably, the base film 211 is a negative PI film whose optical axis is perpendicular to the film surface.
  • the flexible substrate in this embodiment can achieve the same technical effects as the flexible substrate in the second embodiment.
  • the thickness of the flexible substrate can be changed by simultaneously setting the number of layers of the base film 211 and the protective film 222.
  • FIG. 3b is a flexible substrate structure including two base films 211 and two protective films 222 in the embodiment. schematic diagram.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the structure of the flexible substrate of any one of Embodiments 1 to 3 can be employed, except that the polyimide constituting the PI film in the present embodiment contains a sulfur group.
  • the results show that when a sulfur-containing group is introduced into the PI film to increase the sulfur element in the film, the refractive index of the PI film increases, and the flexible thioether chain contained in the molecular structure of the polyimide can effectively inhibit the molecule.
  • the orientation of the chain along the plane direction of the film reduces the birefringence of the PI film and enhances the display effect of the flexible substrate.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the second film 32 includes an equal number of positive uniaxial liquid crystal layers 221 and a protective film 222, and the positive uniaxial liquid crystal layer 221 and the protective film 222 are alternately disposed at one time, and the first film 31 is provided.
  • the positive uniaxial liquid crystal layer 221 side of the second film 32 is disposed.
  • the first layer film 31 is a negative PI film whose optical axis is perpendicular to the film surface.
  • the protective film 222 is a negative PI film whose optical axis is perpendicular to the film surface.
  • the protective film in this embodiment can also be disposed as a multi-layer negative C-Plate PI film superposition, and the second film 32 can also be provided as a multi-layer negative C-Plate.
  • the PI film is superimposed.
  • the polyimide constituting the PI film may contain a sulfur group.
  • the multilayer positive uniaxial liquid crystal layer can cancel the birefringence effect produced by the negative PI film, eliminating the phase delay.
  • the number of positive uniaxial liquid crystal layers and protective films can be set according to the thickness of the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

一种柔性基板,包括自下而上依次设置的第一层膜(11)和第二层膜(12),第二层膜(12)设置为能够抵消第一层膜(11)产生的双折射效应,消除柔性基板的相位延迟,从而提升了显示效果,同时避免了膜厚增加对基板产生的影响。同时,该柔性基板能够根据实际需要确定柔性基板的厚度。

Description

柔性基板
相关申请的交叉引用
本申请要求享有于2017年4月10日提交的名称为“柔性基板”的中国专利申请CN201710227479.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种柔性基板。
背景技术
显示器件如LCD和OLED等作为信息交换和传递的主要载体和物质基础,已经成为越来越多人关注的焦点,并广泛应用在工作和生活的方方面面。近年来,柔性显示成为业界及消费者青睐的对象,特别是柔性TFT-LCD及柔性OLED等已经逐渐发展成为最有前景的高科技产业。来自不同的研究机构和企业等均推出了各式各样的柔性显示设备,如电视屏幕、手机屏幕、穿戴设备、大型商业显示屏、电脑等。其中,LCD和OLED作为柔性显示的两个重要发展领域,在柔性显示屏开发的过程中面临着同样的问题,即柔性基板的材料和制程。
实现柔性显示技术不仅需要提升设计和制造技术,而且需要加强各种关键材料的研发与产业化。柔性基板作为柔性器件的支撑与保护组件,不仅对器件的显示品质有着重要影响,而且直接关系到器件的使用寿命,因此柔性基板的研制与开发对实现柔性显示的发展至关重要。
柔性显示器件对基板材料的性能要求主要体现在以下方面:(1)耐热性和高温尺寸稳定性,这是由显示屏的制程和工艺要求决定的。制程和工艺中的高温会导致基板高温变形,从而降低对位精度,而且基板尺寸变化过大会出现材料界面间的内应力引起的显示效果不良及弯曲时的层与层之间的剥离。(2)柔韧性要求,柔性显示器的发展趋势为平面型→可弯曲型→可卷曲型→可折叠型,其弯曲半径呈现越来越小的趋势,基板也会越来越薄。(3)阻水阻氧的特性,柔性显示器的显示介质,尤其是OLED中的有机材料在暴露于水汽和氧气的环境中 时,性能会很快恶化,因此,柔性基板要具有尽可能低的水汽透过率及氧气透过率。(4)表面平坦化要求,基板材料的表面质量如粗糙度、清洁度等对基板的机械性能和器件的显示效果有很大的影响。
目前作为柔性显示器件的基板材料主要包括超薄玻璃、金属箔及聚合物薄膜等。综合柔性基板的特性要求,聚合物薄膜在光学性能、机械性能和化学性能等方面具有独特的优势,而且具有较强的量产性,且适用于任何尺寸,成本较低,因此在柔性显示的发展中受到了广泛的重视。常见的聚合物基板材料有聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)以及聚酰亚胺(PI)等,其中PI基板材料以其优良的耐高温性、穿透率、力学性能以及耐化学稳定性而备受关注,其刚性的聚亚胺环赋予了PI优异的综合性能,从而使得PI成为柔性基板的首选材料。
但是,传统的PI膜具有较大的相位延迟,例如,通过旋涂法形成的PI膜在厚度方向具有相位延迟,且随着厚度的增加,相位延迟增加,即具有双折射效应。对于显示器件来说,柔性基板在厚度方向上的相位延迟(双折射)容易造成侧视角方向的漏光,从而影响显示效果。
发明内容
为了降低现有技术中PI膜构成的柔性基板的相位延迟特性,消除其双折射率,提升显示效果,本发明提出了一种柔性基板,该柔性基板的综合性能得以提升,能够实现柔性基板的轻薄化,从而实现显示器件的超薄化。
本发明提出的柔性基板,包括自下而上依次设置的第一层膜和第二层膜,所述第二层膜设置为能够抵消所述第一层膜产生的双折射效应,消除相位延迟。在一个优选的实施例中,所述第一层膜为光轴与膜面垂直的负性PI膜。
该柔性基板,由于第二层膜能够抵消第一层膜产生的双折射效应,从而消除了相位延迟,这样就避免了膜厚增加对基板产生的影响。尤其当第一层膜为负性PI膜时,即第一层膜为负性C-Plate的PI膜,使得该柔性基板具有优良的耐高温性、穿透率、力学性能以及耐化学稳定性。
作为对本发明的柔性基板的进一步改进,构成所述第二层膜的材料包括正单轴性高分子材料。由于第一层膜为光轴与膜面垂直的负性PI膜,因此第二层膜需要使用正单轴性高分子材料,正单轴性高分子材料能够抵消负性PI膜产生的双折射效应,从而能够消除相位延迟,提升显示效果。
优选地,正单轴性高分子材料包括正单轴性液晶。液晶材料为显示技术领域常用的材料,且正单轴性液晶具有能够抵消负性PI膜的双折射效应的特性,因此,当使用正单轴性液晶作为第二层膜时,大大降低了工艺的难度,节省了成本。
在另一个优选的实施例中,第二层膜包括正单轴性液晶层和至少一层保护膜,且液晶层设置在第一层膜和保护膜之间。所述保护膜为光轴与膜面垂直的负性PI膜。
液晶具有各向异性结构,能够产生双折射效应,正单轴性液晶层产生的双折射效应能够抵消第一层膜和保护膜产生的负性双折射效应,消除相位延迟,提升显示效果。这就避免了膜厚增加对基板产生的影响,因此,可以根据实际需求设置保护膜的层数,进而根据需要确定柔性基板的厚度。
作为对本发明的柔性基板的改进,第一层膜包括至少一层基底膜,所述基底膜为光轴与膜面垂直的负性PI膜。第二层膜包括正单轴性液晶层和至少一层保护膜,所述液晶层设置在所述第一层膜和所述保护膜之间。
这种结构设置的柔性基板,同样能够达到消除相位延迟、提升显示效果的作用。同时避免了膜厚增加对基板产生的影响,因此,可以根据实际需要设置基底膜和保护膜的层数,进而根据需要确定柔性基板的厚度。
作为对本发明的进一步改进,所述第二层膜包括数量相等的正单轴性液晶层和保护膜,所述正单轴性液晶层和所述保护膜依次交替设置,所述第一层膜设置在所述第二层膜的正单轴性液晶层侧。进一步,所述第一层膜为光轴与膜面垂直的负性聚酰亚胺膜。进一步,所述保护膜为光轴与膜面垂直的负性聚酰亚胺膜。
这种设置的柔性基板,多层正单轴性液晶层能够抵消负性PI膜产生的双折射效应,消除了相位延迟。正单轴性液晶层和保护膜的数量可以根据基板的厚度需要设定。
作为对PI膜的进一步改进,构成所述PI膜的聚酰亚胺中含有硫基团。
分子结构中含有的高摩尔折射率、低摩尔体积的聚合物通常具有较高的折射率。研究结果表明,当向PI薄膜中引入含硫基团从而增加薄膜中的硫元素时,PI膜的折射率增加,同时,聚酰亚胺分子结构中含有的柔性硫醚链节能够有效抑制分子链沿着薄膜平面方向的取向,从而降低了PI膜的双折射率,提升了柔性基板的显示效果。
本发明同时提出了一种柔性显示面板,该柔性显示面板包含本发明提出的柔 性基板。
本发明提出的柔性基板,第二层膜设置为能够抵消第一层膜产生的双折射效应,从而消除了相位延迟,提升了显示效果,同时避免了膜厚增加对基板产生的影响,从而可以根据实际需要柔性基板的厚度。本发明提出的柔性显示面板,由于具有本发明提出的柔性基板,从而使得显示效果大大提升,同时实现了超薄化设计。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1为本发明实施例一中的柔性基板的结构示意图;
图2a为本发明实施例二中包含一层保护膜的柔性基板的结构示意图;
图2b为本发明实施例二中的包含两层保护膜的柔性基板的结构示意图;
图3a为本发明实施例三中包含两层基底膜和一层保护膜的柔性基板的结构示意图;
图3b为本发明实施例三中包含两层基底膜和两层保护膜的柔性基板的结构示意图;
图4为本发明实施例五中的柔性基板的结构示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。
具体实施方式
以下将结合附图对本发明的内容作出详细的说明,下文中的“上”“下”“左”“右”均为相对于图示方向,不应理解为对本发明的限制。
实施例一:
图1为本实施例中的柔性基板的结构示意图,从图1中可以看出,该柔性基板包括自下而上依次设置的第一层膜11和第二层膜12,第二层膜12设置为能够抵消第一层膜11产生的双折射效应,消除相位延迟。当光线沿法线方向穿过第一层膜11时,在第一层膜11的厚度方向上会产生双折射效应,进而出现相位延迟,而且随着第一层膜11厚度的增加,相位延迟也增加,影响了显示效果,当第二层膜12消除第一层膜11产生的双折射效果后,同样消除了相位延迟,提升了显示效果,同时避免了由于膜厚增加对基板的影响。
优选地,第一层膜11为光轴与膜面垂直的负性PI膜。PI膜具有的优良的耐高温性、穿透率、力学性能以及耐化学稳定性进一步提升了柔性基板的品质。此时,构成第二层膜12的材料包括正单轴性高分子材料,此种材料构成的第二层膜能够抵消负性PI膜产生的双折射效应,消除相位延迟。优选地,正单轴性高分子材料为正单轴性液晶材料。液晶材料为显示技术领域常用的材料,且正单轴性液晶材料具有能够抵消负性PI膜的双折射效应的特性,因此,当使用正单轴性液晶材料作为第二层膜时,大大降低了工艺的难度,节省了制造成本。
实施例二:
图2a为本实施例中的柔性基板的结构示意图。从图2中可以看出,该柔性基板自下而上依次设置有第一层膜21和第二层膜22,在这里,第二层膜22设置为能够抵消第一层膜21产生的双折射效应,消除相位延迟。当光线沿法线方向穿过第一层膜21时,在第一层膜21的厚度方向会产生双折射效应,进而出现相位延迟,而且随着第一层膜11厚度的增加,影响显示效果,当第二层膜22消除第一层膜21产生的双折射效果后,同样消除了相位延迟,提升了显示效果,同时避免了由于膜厚增加对基板的影响。
从图2a中可以看出,第二层膜22进一步包括正单轴性液晶层221和至少一层保护膜222,且正单轴性液晶层221设置在第一层膜21和保护膜222之间,优选地,第一层膜21和保护膜222均为光轴与膜面垂直的负性PI膜。此时,本实施例中的柔性基板可简单理解为由两层具有相同双折射性的PI膜和位于二者中间的正单轴性液晶层构成,这里的液晶层能够作为PI膜的补偿膜,从而抵消PI膜产生的相位延迟,达到消除双折射改善视野角的目的。
由于第二层膜22消除了第一层膜21的双折射效应,因此,就能避免膜厚增加对基板产生的影响,所以,在本实施例中,可以根据实际需要设置保护膜222的层数,进而改变柔性基板的厚度,如图2b为本实施例中包含两层保护膜222的柔性基板结构示意图。
实施例三:
图3a为本实施例中的柔性基板的结构示意图。与实施例二不同的是,在本实施例中,第一层膜21包括至少一层基底膜211,优选地,基底膜211为光轴与膜面垂直的负性PI膜。
本实施例中的柔性基板可以达到与实施例二中的柔性基板相同的技术效果。 在本实施例中,可以通过同时设置基底膜211和保护膜222的层数,改变柔性基板的厚度,图3b为本实施例中包含两层基底膜211和两层保护膜222的柔性基板结构示意图。
实施例四:
在本实施例中,可以采用实施例一至三中任意一种柔性基板的结构方式,不同的是,本实施例中的构成PI膜的聚酰亚胺中包含硫基团。研究结果表明,当向PI薄膜中引入含硫基团从而增加薄膜中的硫元素时,PI膜的折射率增加,同时,聚酰亚胺分子结构中含有的柔性硫醚链节能够有效抑制分子链沿着薄膜平面方向的取向,从而降低了PI膜的双折射率,提升了柔性基板的显示效果。
实施例五:
图4为本实施例的柔性基板的结构示意图。从图4中可以看出,第二层膜32包括数量相等的正单轴性液晶层221和保护膜222,且正单轴性液晶层221和保护膜222一次交替设置,第一层膜31设置在第二层膜32的正单轴性液晶层221侧。优选地,第一层膜31为光轴与膜面垂直的负性PI膜。优选地,保护膜222为光轴与膜面垂直的负性PI膜。通过实施例一至四中的内容,显然,本实施例中的保护膜也可以设置成多层负性C-Plate的PI膜叠加,第二层膜32也可以设置成多层负性C-Plate的PI膜叠加。同理,构成PI膜的聚酰亚胺中也可以包含硫基团。
这种设置的柔性基板,多层正单轴性液晶层能够抵消负性PI膜产生的双折射效应,消除了相位延迟。正单轴性液晶层和保护膜的数量可以根据基板的厚度需要设定。
最后说明的是,以上实施例仅用于说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换。尤其是,只要不存在结构上的冲突,各实施例中的特征均可相互结合起来,所形成的组合式特征仍属于本发明的范围内。只要不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (17)

  1. 一种柔性基板,其中,所述柔性基板包括自下而上依次设置的第一层膜和第二层膜,所述第二层膜设置为能够抵消所述第一层膜产生的双折射效应,消除相位延迟。
  2. 根据权利要求1所述的柔性基板,其中,所述第一层膜为光轴与膜面垂直的负性聚酰亚胺膜。
  3. 根据权利要求2所述的柔性基板,其中,构成所述第二层膜的材料包括正单轴性高分子材料。
  4. 根据权利要求3所述的柔性基板,其中,所述正单轴性高分子材料包括正单轴性液晶。
  5. 根据权利要求2所述的柔性基板,其中,所述第二层膜包括正单轴性液晶层和至少一层保护膜,所述正单轴性液晶层设置在所述第一层膜和所述保护膜之间。
  6. 根据权利要求5所述的柔性基板,其中,所述保护膜为光轴与膜面垂直的负性聚酰亚胺膜。
  7. 根据权利要求1所述的柔性基板,其中,所述第一层膜包括至少一层基底膜,所述基底膜为光轴与膜面垂直的负性聚酰亚胺膜。
  8. 根据权利要求7所述的柔性基板,其中,所述第二层膜包括正单轴性液晶层和至少一层保护膜,所述液晶层设置在所述第一层膜和所述保护膜之间。
  9. 根据权利要求2所述的柔性基板,其中,所述第二层膜包括数量相等的正单轴性液晶层和保护膜,所述正单轴性液晶层和所述保护膜依次交替设置,所述第一层膜设置在所述第二层膜的正单轴性液晶层侧。
  10. 根据权利要求2所述的柔性基板,其中,构成所述聚酰亚胺膜的聚酰亚胺中含有硫基团。
  11. 根据权利要求3所述的柔性基板,其中,构成所述聚酰亚胺膜的聚酰亚胺中含有硫基团。
  12. 根据权利要求4所述的柔性基板,其中,构成所述聚酰亚胺膜的聚酰亚胺中含有硫基团。
  13. 根据权利要求5所述的柔性基板,其中,构成所述聚酰亚胺膜的聚酰亚 胺中含有硫基团。
  14. 根据权利要求6所述的柔性基板,其中,构成所述聚酰亚胺膜的聚酰亚胺中含有硫基团。
  15. 根据权利要求7所述的柔性基板,其中,构成所述聚酰亚胺膜的聚酰亚胺中含有硫基团。
  16. 根据权利要求8所述的柔性基板,其中,构成所述聚酰亚胺膜的聚酰亚胺中含有硫基团。
  17. 根据权利要求9所述的柔性基板,其中,构成所述聚酰亚胺膜的聚酰亚胺中含有硫基团。
PCT/CN2017/081679 2017-04-10 2017-04-24 柔性基板 WO2018188113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/534,889 US10379390B2 (en) 2017-04-10 2017-04-24 Flexible Substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710227479.6 2017-04-10
CN201710227479.6A CN106842670B (zh) 2017-04-10 2017-04-10 柔性基板

Publications (1)

Publication Number Publication Date
WO2018188113A1 true WO2018188113A1 (zh) 2018-10-18

Family

ID=59146809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081679 WO2018188113A1 (zh) 2017-04-10 2017-04-24 柔性基板

Country Status (3)

Country Link
US (1) US10379390B2 (zh)
CN (1) CN106842670B (zh)
WO (1) WO2018188113A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742628A (zh) * 2017-09-12 2018-02-27 奕瑞影像科技(太仓)有限公司 柔性闪烁屏、放射线图像传感器及其制备方法
CN111124169B (zh) * 2018-10-31 2023-08-29 瀚宇彩晶股份有限公司 触控显示装置
CN111522164A (zh) * 2019-02-01 2020-08-11 群创光电股份有限公司 电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365979A (zh) * 2006-01-25 2009-02-11 新日本石油株式会社 液晶显示装置
CN101819353A (zh) * 2009-02-27 2010-09-01 富士胶片株式会社 液晶显示装置用基板和液晶显示装置
JP2014524512A (ja) * 2011-08-19 2014-09-22 アクロン ポリマー システムズ,インコーポレイテッド 耐熱性低複屈折ポリイミド共重合体膜
CN104903764A (zh) * 2013-01-10 2015-09-09 旭硝子株式会社 光聚合性液晶组合物、光学补偿膜、光学补偿层叠膜、电极基板、液晶显示装置用基板以及液晶显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750641A (en) * 1996-05-23 1998-05-12 Minnesota Mining And Manufacturing Company Polyimide angularity enhancement layer
GB2321529A (en) * 1997-01-24 1998-07-29 Sharp Kk Broadband cholesteric optical device
US6812983B2 (en) * 2000-05-17 2004-11-02 Fuji Photo Film Co., Ltd. Retardation plate and fabrication method thereof, and plate for circularly polarizing light, ½ wave plate and reflection-type liquid crystal display device utilizing the retardation plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365979A (zh) * 2006-01-25 2009-02-11 新日本石油株式会社 液晶显示装置
CN101819353A (zh) * 2009-02-27 2010-09-01 富士胶片株式会社 液晶显示装置用基板和液晶显示装置
JP2014524512A (ja) * 2011-08-19 2014-09-22 アクロン ポリマー システムズ,インコーポレイテッド 耐熱性低複屈折ポリイミド共重合体膜
CN104903764A (zh) * 2013-01-10 2015-09-09 旭硝子株式会社 光聚合性液晶组合物、光学补偿膜、光学补偿层叠膜、电极基板、液晶显示装置用基板以及液晶显示装置

Also Published As

Publication number Publication date
CN106842670B (zh) 2021-03-26
CN106842670A (zh) 2017-06-13
US10379390B2 (en) 2019-08-13
US20190094599A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2018188113A1 (zh) 柔性基板
TW201227010A (en) Antireflective polarizing plate and image display apparatus comprising the same
TW201510587A (zh) 偏振板和包括該偏振板的液晶顯示器
JP2011043628A (ja) 位相差フィルム、タッチパネル用透明導電性積層体の製造方法およびタッチパネル
CN105629543B (zh) 一种柔性液晶显示面板及显示装置
Shi et al. 43‐3: 14 inch flexible LCD panel with colorless polyimide
JP2011110757A (ja) 表示装置用基板
US20200132901A1 (en) Display module and polarizer thereof
TW201908943A (zh) 整合型觸控顯示器
CN103018952B (zh) 显示基板以及包括该显示基板的显示装置
US20070279561A1 (en) Systems for displaying images
Oka et al. 58‐1: Invited Paper: High Resolution IPS‐LCDs Fabricated with Transparent Polyimide Substrates
TW202018388A (zh) 液晶顯示器
EP2192439A3 (en) Liquid crystal display and its manufacture method
US10247973B2 (en) Liquid crystal display, liquid crystal display panel and manufacture method thereof
US7508473B2 (en) Device of liquid crystal for increasing aperture ratio and viewing angle thereof
JP2005181368A (ja) 液晶表示装置及びそれに用いる複合偏光板
TWI681222B (zh) 偏光板及包括該偏光板的液晶顯示裝置
US9721746B2 (en) Display device and method for manufacturing the same
US11239289B2 (en) Foldable AMOLED display employing all-in-one substrate and auxiliary means
TWI572948B (zh) Tn型液晶顯示器
US20180067364A1 (en) Liquid crystal panels
US20080278674A1 (en) Method for fabricating reflective optical film and reflective polarizing film and method for fabricating the same
CN101101410A (zh) 光学补偿结构及其制造法
US20130128191A1 (en) Display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905398

Country of ref document: EP

Kind code of ref document: A1