TW201227010A - Antireflective polarizing plate and image display apparatus comprising the same - Google Patents

Antireflective polarizing plate and image display apparatus comprising the same Download PDF

Info

Publication number
TW201227010A
TW201227010A TW100142504A TW100142504A TW201227010A TW 201227010 A TW201227010 A TW 201227010A TW 100142504 A TW100142504 A TW 100142504A TW 100142504 A TW100142504 A TW 100142504A TW 201227010 A TW201227010 A TW 201227010A
Authority
TW
Taiwan
Prior art keywords
wave plate
polarizing plate
plate
quarter
patent application
Prior art date
Application number
TW100142504A
Other languages
Chinese (zh)
Inventor
Bong-Choon Kim
Ki-Man Kim
Hyoung-Wook Kim
Original Assignee
Dongwoo Fine Chem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongwoo Fine Chem Co Ltd filed Critical Dongwoo Fine Chem Co Ltd
Publication of TW201227010A publication Critical patent/TW201227010A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Abstract

Disclosed are an anti-reflective polarizing plate and an image display apparatus including the same. The polarizing plate according to the present invention includes: a polarizer, a half-wave film (HWF) disposed on a bottom portion of the polarizer, and a quarter-wave film (QWF) disposed on a bottom portion of the half-wave film, wherein the half-wave film and the quarter-wave film are disposed so that slow axes thereof are formed at 40 to 80 DEG to each other and refractive index ratios of the half-wave film and the quarter-wave film are independently 0 < NZHWF < 1 and 0 < NZQWF < 1. By the above configuration, the present invention can implement the image display apparatus having excellent anti-reflective characteristics in an inclined direction of a screen as well as a front direction thereof.

Description

201227010 六、發明說明: 【相關申請案】 本申凊案主張2010年u月23日在韓國知識產權局呈 遞的申請案第10-20 1〇-〇 U6657號的優先權,並將其所揭露 的内容併入此處以作參考。 【發明所屬之技術領域】 本發明涉及能夠最大化在前端方向和傾斜方向的偏光 板的抗反射效果之偏光板,和包括内含該偏光板的液晶顯 示設備(LCD)及有機發光裝置(〇LED)之影像顯示裝置。 【先前技術】 偏光板是與用於產生只在一個方向振動的光之顯示器 相關的構件。偏光板具有一種結構,其中透明保護膜被層 疊在聚乙烯醇(PVA)基樹脂所製成的偏光片的兩個表面 上,其中透明保護膜可由具有相位差補償功能的膜所取代。 具有上述結構的偏光板已被廣泛地用於影像顯示設 備。一般情況下,根據目的,在液晶顯示裝置(LCD )中的 兩片偏光板被使用以控制從背光所發射的光量,並且在有 機發光二極體(OLED )中的一片偏光板係使用以控制入射 到面板的光的反射。 在影像顯示裝置的情況下,顯示出在螢幕上最明亮部 分和最黑暗部分之間的亮度差異之對比度被提高是非常重 要的議題。可考慮一種單純增加光源亮度的方法以提高對201227010 VI. INSTRUCTIONS: [Related Applications] This application claims the priority of Application No. 10-20 1〇-〇U6657 submitted by the Korean Intellectual Property Office on May 23, 2010, and discloses it. The content is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing plate capable of maximizing an antireflection effect of a polarizing plate in a front end direction and an oblique direction, and a liquid crystal display device (LCD) including the polarizing plate and an organic light emitting device (〇 LED) image display device. [Prior Art] A polarizing plate is a member related to a display for generating light that vibrates only in one direction. The polarizing plate has a structure in which a transparent protective film is laminated on both surfaces of a polarizing plate made of a polyvinyl alcohol (PVA)-based resin, wherein the transparent protective film can be replaced by a film having a phase difference compensating function. The polarizing plate having the above structure has been widely used for image display devices. In general, two polarizing plates in a liquid crystal display device (LCD) are used to control the amount of light emitted from the backlight according to the purpose, and a polarizing plate in the organic light emitting diode (OLED) is used to control The reflection of light incident on the panel. In the case of an image display device, it is an important issue to show that the contrast of the brightness difference between the brightest portion and the darkest portion on the screen is improved. A method of simply increasing the brightness of the light source can be considered to improve the pair

S 201227010 比度。不過,兮方,土 —p A ^ 以方去可此會增加IXD或OLED的有機發来 物體的背光所洁扛沾丄* J匁俄發九 為耗的功率,從而提高加 置的應力。 ·*ΐ诼”、具不裝 &gt;此外,-種用於藉由層疊如影像顯示裝置的表面上 抗反射層的功能層而+祕A aL α 層而增加外部光線的反射之方法已被提 出。該方法可能在選擇材料上有所限制以及在均 膜上有所難度,並且可能需要額外的製造過程。 ’ 為了解決上述問題,句杯生、 括+波片和分之一波片的偏 先板議在韓國專利巾請公開號第簡Μ則號中, 其中母個包括配置在偏光片的底部上的聚合或玻璃化的各 向異性材料。當偏光板係用於影像顯示裝置來使 晶顯示器(LCD)、古地技, 工 )有機發先二極體(OLED)或類似物, 抗反射效果在前端方向可能县 .^ ^ 门』疋優秀的,但抗反射效果在傾 斜方向仍然可能是退化的。 【發明内容】 本發明的目的是提供了能夠最大化在發幕的傾斜方向 以及在其之前端方向上的抗反射效果之偏光板。 本發明的另-個目的是提供了一種影像顯示裝置,如 =機發光二極體(0LED)、液晶顯示器(lcd)或類似物, 其能夠最大化在螢幕的傾斜方向以及在其之前端方向上的 抗反射效果。 為了實現上述目標,本發明提供了以下。 (1) 一種偏光板’其包括:-偏光片、-配置在偏光 201227010 片的底部上的半波片(HWF )和配置在半波片的底部上的 四分之一波片(QWF ),其中半波片和四分之一波片被配 置,使得其慢軸相對彼此呈40至80度處形成,並且半波 片和四分之一波片的折射率比獨立為0&lt;NZHWF&lt;1和 0&lt;NZQWF&lt;1。 (2 )關於如(1 )所列的偏光板,0.1SNZHWFS0.9。 (3)關於如(i )所列的偏光板,0_25$NZHWFS0.75。 (4 )關於如(1 )所列的偏光板’ 0.1SNZQWFS0.9。 (5 )關於如(1 )所列的偏光板’ 0.25SNZQWFS0.75。 (6 )關於如(1 )所列的偏光板,0_ 1SNZH WF£〇.9和 0.1$ NZQWFS0.9。 (7 )關於如(1 )所列的偏光板,0.25SNZHWFS0.75 和 0.25SNZQWFS0.75 ° (8 )關於如(1 )所列的偏光板,NZHWF + NZQWF20.75。 (9 )關於如(1 )所列的偏光板’ NZHWF + NZQWF21。 (10)關於如(1)所列的偏光板’半波片的平面内光 遲滞性(ROHWF )可以是在550 nm波長的200至360奈米。 (1 1 )關於如(1 )所列的偏光板’四分之一波片的平 面内光遲滞性(ROQWF)可以是在550nm波長的80至180 奈米。 (12 )關於如(1 )所列的偏光板’半波片可以是被配 置,使得其慢軸相對於穿透軸或吸收軸是在5至25度形 成,並且四分之一波片可被配置’使得其慢軸相對於偏光S 201227010 比度. However, the 兮方,土—p A ^ can be used to increase the organic emission of the LCD or OLED. The backlight of the object is clean and smeared* J匁Russian ninth is the power consumed, thereby increasing the added stress. *ΐ诼", with or without; in addition, a method for increasing the reflection of external light by laminating a functional layer such as an antireflection layer on the surface of an image display device + a secret A aL α layer has been It is proposed that this method may have limitations on the choice of materials and difficulty in the homogenization film, and may require additional manufacturing processes. 'In order to solve the above problems, sentence cups, including + wave plates and sub-wave plates In the Korean Patent Paper, please refer to the publication number, which includes a polymeric or vitrified anisotropic material disposed on the bottom of the polarizer. When the polarizing plate is used for an image display device The crystal display (LCD), the ancient technology, the work) organic first diode (OLED) or the like, the anti-reflection effect in the front direction may be county. ^ ^ door 疋 excellent, but the anti-reflection effect in the oblique direction It is still possible to degenerate. SUMMARY OF THE INVENTION An object of the present invention is to provide a polarizing plate capable of maximizing an anti-reflection effect in the oblique direction of the curtain and in the direction of the front end thereof. Another object of the present invention is to provide a kind Like a display device such as a OLED, a liquid crystal display (LCD) or the like, which is capable of maximizing the anti-reflection effect in the oblique direction of the screen and in the direction of the front end thereof. To achieve the above object, The present invention provides the following: (1) A polarizing plate which includes: - a polarizer, a half wave plate (HWF) disposed on the bottom of the polarized 201227010 piece, and a quarter disposed on the bottom of the half wave plate a wave plate (QWF) in which a half wave plate and a quarter wave plate are configured such that their slow axes are formed at 40 to 80 degrees with respect to each other, and the refractive indices of the half wave plate and the quarter wave plate are independent It is 0 &lt; NZHWF &lt; 1 and 0 &lt; NZQWF &lt; 1. (2) regarding the polarizing plate listed in (1), 0.1 SNZHWFS 0.9. (3) Regarding the polarizing plate as listed in (i), 0_25$NZHWFS0. 75. (4) Regarding the polarizing plate listed in (1) '0.1SNZQWFS0.9. (5) regarding the polarizing plate listed in (1) '0.25SNZQWFS0.75. (6) About as listed in (1) Polarizers, 0_ 1SNZH WF£〇.9 and 0.1$ NZQWFS0.9. (7)About the polarizing plates listed in (1), 0.25SNZHWFS0.75 and 0.25SNZQWFS 0.75 ° (8 ) Regarding the polarizing plate listed in (1), NZHWF + NZQWF 20.75. (9) Regarding the polarizing plate listed as (1) 'NZHWF + NZQWF21. (10) About as listed in (1) The in-plane optical retardation (ROHWF) of a polarizer 'half wave plate can be 200 to 360 nm at a wavelength of 550 nm. (1 1 ) The in-plane light hysteresis (ROQWF) with respect to the quarter-wave plate of the polarizing plate as listed in (1) may be 80 to 180 nm at a wavelength of 550 nm. (12) Regarding the polarizing plate as listed in (1), the half-wave plate may be configured such that its slow axis is formed at 5 to 25 degrees with respect to the transmission axis or the absorption axis, and the quarter-wave plate may be Configured to 'make its slow axis relative to polarized light

S 6 201227010 片的穿透軸或吸收軸是在65至85度形成。 (1 3 )關於如(1 )所列的偏光板,偏光板的頂部可以 是額外地被設置選自保護膜、相位差板和觸控螢幕所組成 的群組中的一者。 (14) 一種影像顯示設備,包括在上述(1)至(13) 任何一個中所提出的偏光板》 (15 )關於如(14 )所列的影像顯示裝置,影像顯示 裝置可以是有機發光二極體(OLED )或液晶顯示器(LcD )。 [有益效果] 根據本發明的實施例’具有折射率比的偏光板顯示了 反向波分散效果’並且包括偏光板的影像顯示裝置顯示了 在螢幕的傾斜方向及其前端方向的低反射。 根據本發明的實施例的偏光板可以藉由以卷對卷 (roll-to-roll)的方式將卷形式的半波片和四分之一波片結合 到偏光片來製造,並且因此可以適合大量生產。 【實施方式】 根據本發明,提供了具有在螢幕的傾斜方向以及其之 月’J端方向上優秀的抗反射的特性之影像顯示裝置,其包括 偏光片和配置在偏光片底部上的半波片(Hwf )及配置在 半波片底部上的四分之一波片(QWF ),並且半波片和四 分之一波片的慢軸係配置在偏光板中,使得慢軸相對彼此 呈40至80度形成,並且半波片和四分之一波片的每個折 射率比是 0 &lt;NZHWF &lt;1 和 〇 &lt;NZQWF &lt;1。 201227010 以下’本發明將詳細加以介紹。 本發明的偏光板包括偏光片、配置在其之底部的半波 片(HWF)和配置在其之底部的四分之一波片(qWf)。 本發明的偏光片是大致被製造以在影像顯示裝置的— 個方向上來獲得偏光振動。 半波片(HWF) ( 1/2相位差板或λ/2膜)和四分之— 波片(QWF ) ( 1/4相位差板或λ/2臈)可藉由例如在單軸 方向、雙軸方向或其他適當方法配向聚合物膜而獲得。 建構聚合物膜的聚合物化合物種類是沒有特別限制 的。不過,最好是使用具有高透明度的聚合物化合物以適 用於影像顯示裝置。化合物的例子可包括聚碳酸酯化合 物、聚酯化合物、聚砜化合物、聚醚砜化合物、聚苯化合 物、聚烯烴類化合物、聚乙烯醇化合物、醋酸纖維素化合 物、聚甲基丙烯酸化合物、聚氣乙烯化合物、聚丙烯聚氯 乙烯化合物、聚醯胺聚氣乙烯化合物或類似物。 半波片(HWF)和四分之一波片(QWF)可以是由相 同的材料或不同的材料所製成。例如,半波片(HWF)和 四分之一波片(QWF)可以是由向列型或層列型液晶材料 所製成,最佳的是,向列型液晶材料可通過原位聚合(in_shu polymerization)所聚合。較佳的製造方法可塗覆可聚合材料 在基板上,在平面方向配向該可聚合材料,以及以熱或紫 外線不斷地曝光和聚合該可聚合材料。 在半波片(HWF )和四分之一波片(QWF )中,藉由 下列公式所定義的折射率比(NZ )個別是〇&lt;nz&lt;1。 201227010 [公式1] NZ = ( nx - nz ) /( nx - ny ) (其中nx和ny是在平面内的折射率,nx&gt;ny,並且nz 是在膜的厚度方向振盪之光折射率) 在 NZHWF 中,0.1&lt;NZHWF&lt;0.9 ,最好是 0.25SNZHWFS0.75 ’ 並在 NZQWF 中,0.1SNZQWFS0.9,最 好是 0.25SNZQWFS0.75,當 NZHWF 和 NZQWF 同時滿足 上述範圍時,0.1SNZHWF £0.9和0_1$NZQWF$0.9是較佳 的,並且 0.25SNZHWFS0.75 和 0.25SNZQWFS0.75 是更佳 的。 此外,NZHWF+NZQWF20.75是較佳的,並且NZHWF + NZQWF21是更佳的。 首先,在半波片中,由下列公式2所定義的平面内光 遲滞性(ROHWF )可在滿足NZ值的範圍内適當地選擇。 例如,在波長550 nm處,半波片最好是使用200到360 nm, 但半波片更好是使用220至260 nm。 [公式2] RO = ( nx - ny ) x d (其中nx和ny是在平面内的折射率,nx之ny,並且d 是膜厚度) 考慮到所使用的膜之情況下,半波片的厚度是不特別 予以限制的,但可以是例如1 〇至1 〇〇微米,最好是20至 80微米。 此外,在四分之一波片(QWF)中,由上述公式2所 9 201227010 定義的平面内光遲滯性(ROHWF )可在滿足NZ值的範圍 内適當地選擇。例如,在55〇 nm波長處,四分之一波片較 佳疋使用80至180奈米,但四分之一波片更佳是使用1〇〇 到1 3 0奈米。 在考慮普遍使用的膜之情況下,四分之一波片的厚度 是不特別予以限制的,但可以是例如i 〇至i 〇〇微米,最好 是20至80微米。 當NZ和RO是如上述所定義時,半波片(hWF )和四 分之一波片(Q WF )的厚度遲滯性值(Rth )可根據下列公 式而適當地定義。 [公式3] NZ = Rth / RO + 0.5 (其中NZ是折射率比,Rth是厚度遲滯性,並且R〇 是平面内光遲滞性)。 偏光片、半波片(HWF )和四分‘之一波片(qWF )可 具有以片狀和卷狀纏繞的形狀。 半波片(HWF )和四分之一波片(QWF )的面可以是 相互平行的’因此其慢軸可配置以形成4〇至8〇度,更佳 是55至65度。 此處,“互相平行”是數學並行的情況的概念,並且該情 況目前可以實質上獲得的效果是由於在製造偏光板的過程 中所實施的平行。 半波片(HWF)可被配置,所以其慢軸形成相對於偏 光片的穿透軸或吸收軸5至25度,更佳為10至2〇度。 201227010 祕Γ分之一波片(QWF)可被配置,所以其慢轴形成相 片的穿透軸或吸收軸65至85度,更佳為70至80 度。 當本發明的偏光板依序包括偏光片、在其底部部分的 半波片和配置在其底部部分的四分之一波片時,透明保護 膜額外的相位差板、硬塗覆層、觸控營幕或_物可— 起配置在偏光片的頂部部分。 根據本發明的偏光板可以使用於扭轉向列型(TN)、 :度扭轉向列型(HTN)和超扭轉向列型(stn)模式顯示 器主動矩陣衍生扭轉向列型(AMD-Tn )顯示器、平面轉 換(IPS :模式顯示器、劑量面積乘積(DA”或垂直配向 (VA )模式顯不器,例如,電性控制雙折&amp; ( )、色 彩超垂直分子排列(CSH)和VAN或VAC(垂直配向向列 型或膽固醇式)顯示器、MVA (多域垂直配向)顯示器、 彎曲模式顯示11或混合顯示器,例如,光學補償f曲細胞 或光學補償雙折射(〇CB)、反M 〇CB (R_〇CB)、混合 配向向列型(HAN )、光氫離子化(Phi)細胞顯示器或有機 發光二極體(0LED)。 根據本發明的偏光板可較佳地使用以在有機發光二極 體(OLED)、反射或透射式LCD中改善光抗反射特性。 本發明的其他配置可採用先前技術的影像顯示設備的 構件,如有機發光二極體(〇LED )、液晶顯示器(LCD ) 或類似物,除了根據本發明的偏光板係使用在先前技術的 偏光板的位置處。 201227010 例如,包含根據本發明的偏光板之有機發光二極體 (OLED)的抗反射操作將是參照圖6來描述。這同樣可以 適用於反射式LCD。 …圖6顯示了 一種有機發光二極體(〇led),而偏光片、 =波片、四分之一波片和〇LED面板的金屬電極(反射層) 是依此順序層疊其中。在有機發光二極體(〇led)是線性 扁振的致使入射光透過偏光片通過有機發光二極體 (OLED ),然後在_個方向上振動。線性偏振是分別依此 順序通過半波片(即o&lt;NZ&lt;1)和四分之—波片(()&lt;NZ&lt;1)後的 圓偏振。圓偏振是藉由遇到QLED面板的金屬電極所反射, 然後,0&lt;NZ&lt;1之四分之—波片和G&lt;NZ&lt;1之半波片個別依 序通過,然後具有不同於第一次通過偏光片之線性偏振的 振動方向,以免通過偏光片,從而提高了抗反射的特點。 在下文中,較佳的實施例將被描述以更具體地了解本 發明的例子和對照例子。然而,對該領域中具有通常知識 者顯而易見的是,為了說明之目的而提供此等實施例,並 且各種修改及替換是可能的,而不脫離本發明的範疇和精 神,並且這樣的修改和替換是適當地包含在所附的申請專 利範圍中所界定的本發明内。 範例 範例1 在如圖1所示的LCD光學模擬器的Techwiz 1D p〇lar (Sanai系統’韓國)中,在反射層(鏡子)上的四分之一 波片(Zeonoa’Zeone)、半波片(Ze〇n〇a,Ze〇ne)、偏The penetration or absorption axis of the S 6 201227010 sheet is formed at 65 to 85 degrees. (1 3) Regarding the polarizing plate as listed in (1), the top of the polarizing plate may be additionally provided in a group selected from the group consisting of a protective film, a phase difference plate, and a touch screen. (14) An image display apparatus comprising the polarizing plate proposed in any one of (1) to (13) above. (15) Regarding the image display device as listed in (14), the image display device may be an organic light emitting device Polar body (OLED) or liquid crystal display (LcD). [Advantageous Effects] According to the embodiment of the present invention, the polarizing plate having the refractive index ratio exhibits the reverse wave dispersion effect' and the image display device including the polarizing plate shows the low reflection in the oblique direction of the screen and the front end direction thereof. The polarizing plate according to the embodiment of the present invention can be manufactured by bonding a half wave plate and a quarter wave plate in the form of a roll to a polarizer in a roll-to-roll manner, and thus can be adapted Mass production. [Embodiment] According to the present invention, there is provided an image display apparatus having excellent anti-reflection characteristics in an oblique direction of a screen and a 'J-end direction thereof, which includes a polarizer and a half-wave disposed on the bottom of the polarizer a sheet (Hwf) and a quarter-wave plate (QWF) disposed on the bottom of the half-wave plate, and a slow-axis system of the half-wave plate and the quarter-wave plate are disposed in the polarizing plate such that the slow axes are opposite to each other 40 to 80 degrees are formed, and each of the half-wave plate and the quarter-wave plate has a refractive index ratio of 0 &lt; NZHWF &lt; 1 and 〇 &lt; NZQWF &lt; 201227010 The following is a detailed description of the present invention. The polarizing plate of the present invention comprises a polarizer, a half-wave plate (HWF) disposed at the bottom thereof, and a quarter-wave plate (qWf) disposed at the bottom thereof. The polarizer of the present invention is roughly fabricated to obtain polarized vibration in the direction of the image display device. Half-wave plate (HWF) (1/2 phase difference plate or λ/2 film) and quarter-wave plate (QWF) (1/4 phase difference plate or λ/2臈) can be used, for example, in a uniaxial direction Obtained by biaxial orientation or other suitable method of aligning the polymer film. The kind of the polymer compound which constructs the polymer film is not particularly limited. However, it is preferable to use a polymer compound having high transparency to be suitable for an image display device. Examples of the compound may include a polycarbonate compound, a polyester compound, a polysulfone compound, a polyether sulfone compound, a polyphenyl compound, a polyolefin compound, a polyvinyl alcohol compound, a cellulose acetate compound, a polymethacrylic compound, and a gas gathering. A vinyl compound, a polypropylene polyvinyl chloride compound, a polyamine polyoxyethylene compound or the like. The half wave plate (HWF) and the quarter wave plate (QWF) may be made of the same material or different materials. For example, a half-wave plate (HWF) and a quarter-wave plate (QWF) may be made of a nematic or smectic liquid crystal material. Most preferably, the nematic liquid crystal material may be polymerized in situ ( In_shu polymerization) is aggregated. A preferred method of manufacture can coat the polymerizable material on the substrate, align the polymerizable material in a planar direction, and continuously expose and polymerize the polymerizable material with heat or ultraviolet rays. In the half-wave plate (HWF) and the quarter-wave plate (QWF), the refractive index ratio (NZ) defined by the following formula is 〇&lt;nz&lt;1. 201227010 [Formula 1] NZ = ( nx - nz ) / ( nx - ny ) (where nx and ny are refractive indices in a plane, nx > ny, and nz is the refractive index of light oscillating in the thickness direction of the film) In NZHWF, 0.1 &lt;NZHWF&lt;0.9, preferably 0.25SNZHWFS0.75' and in NZQWF, 0.1SNZQWFS0.9, preferably 0.25SNZQWFS0.75, when NZHWF and NZQWF meet the above range, 0.1SNZHWF £0.9 And 0_1$NZQWF$0.9 is better, and 0.25SNZHWFS0.75 and 0.25SNZQWFS0.75 are better. In addition, NZHWF+NZQWF20.75 is preferred, and NZHWF + NZQWF21 is better. First, in the half-wave plate, the in-plane optical hysteresis (ROHWF) defined by the following formula 2 can be appropriately selected within the range in which the NZ value is satisfied. For example, at a wavelength of 550 nm, a half-wave plate is preferably used at 200 to 360 nm, but a half-wave plate is preferably used at 220 to 260 nm. [Formula 2] RO = ( nx - ny ) xd (where nx and ny are refractive indices in the plane, ny of nx, and d is the film thickness) Considering the thickness of the half-wave plate in the case of the film used It is not particularly limited, but may be, for example, 1 Torr to 1 〇〇 micrometer, preferably 20 to 80 μm. Further, in the quarter-wave plate (QWF), the in-plane optical hysteresis (ROHWF) defined by the above formula 2, 20122010 can be appropriately selected within a range satisfying the NZ value. For example, at the 55 〇 nm wavelength, a quarter-wave plate is better than 80 to 180 nm, but a quarter-wave plate is preferably used from 1 1 to 130 nm. The thickness of the quarter-wave plate is not particularly limited in consideration of a film which is generally used, but may be, for example, i 〇 to i 〇〇 micron, preferably 20 to 80 μm. When NZ and RO are as defined above, the thickness hysteresis value (Rth) of the half-wave plate (hWF) and the quarter-wave plate (Q WF ) can be appropriately defined according to the following formula. [Formula 3] NZ = Rth / RO + 0.5 (where NZ is the refractive index ratio, Rth is the thickness hysteresis, and R 〇 is the in-plane optical hysteresis). The polarizer, the half-wave plate (HWF), and the quarter-wave plate (qWF) may have a shape wound in a sheet shape and a roll shape. The faces of the half wave plate (HWF) and the quarter wave plate (QWF) may be parallel to each other' such that their slow axes are configurable to form 4 to 8 degrees, more preferably 55 to 65 degrees. Here, "parallel to each other" is a concept of the case of mathematical parallelism, and the effect that can be substantially obtained in this case is due to the parallelism performed in the process of manufacturing the polarizing plate. The half wave plate (HWF) can be configured such that its slow axis forms 5 to 25 degrees, more preferably 10 to 2 degrees, with respect to the transmission axis or absorption axis of the polarizer. The 201227010 Secret Wave Plate (QWF) can be configured so that its slow axis forms the penetration axis or absorption axis of the film from 65 to 85 degrees, more preferably from 70 to 80 degrees. When the polarizing plate of the present invention sequentially includes a polarizer, a half wave plate at a bottom portion thereof, and a quarter wave plate disposed at a bottom portion thereof, the transparent protective film has an additional phase difference plate, a hard coating layer, and a touch The control camp or the object can be placed in the top part of the polarizer. The polarizing plate according to the present invention can be used in a twisted nematic (TN), a twisted nematic (HTN), and a super twisted nematic (stn) mode display active matrix derivative twisted nematic (AMD-Tn) display. , Planar Conversion (IPS: Mode Display, Dose Area Product (DA) or Vertical Alignment (VA) Mode Display, for example, Electrical Control Bi-Fold & ( ), Color Super Vertical Molecular Alignment (CSH) and VAN or VAC (vertical alignment nematic or cholesteric) display, MVA (multi-domain vertical alignment) display, curved mode display 11 or hybrid display, for example, optically compensated f-cell or optically compensated birefringence (〇CB), anti-M 〇CB (R_〇CB), mixed alignment nematic (HAN), photo-hydrogen ionization (Phi) cell display or organic light-emitting diode (0LED). The polarizing plate according to the present invention can be preferably used for organic light emission. Improved light anti-reflection characteristics in a diode (OLED), reflective or transmissive LCD. Other configurations of the present invention may employ components of prior art image display devices, such as organic light emitting diodes (〇LEDs), liquid crystal displays (LCDs). ) or similar In addition to the polarizing plate according to the present invention, it is used at the position of the polarizing plate of the prior art. 201227010 For example, an anti-reflection operation of an organic light-emitting diode (OLED) including a polarizing plate according to the present invention will be described with reference to FIG. This also applies to reflective LCDs. ... Figure 6 shows an organic light-emitting diode (〇led), while polarizers, = wave plates, quarter-wave plates and metal electrodes of the 〇LED panel (reflective layer) It is laminated in this order. The organic light-emitting diode is linearly flattened so that incident light passes through the polarizer through the organic light-emitting diode (OLED) and then vibrates in _ direction. Linear polarization is The circular polarization after the half-wave plate (ie, o &lt; NZ &lt; 1) and the quarter-wave plate (() &lt; NZ &lt; 1) is respectively passed in this order. The circular polarization is achieved by the metal electrode of the QLED panel. Reflection, then, the 0&lt;NZ&lt;1 quarter-wave plate and the G&lt;NZ&lt;1 half-wave plate are individually passed sequentially, and then have a different vibration direction than the linear polarization of the first pass through the polarizer to avoid passing Polarizer, which enhances anti-reflection In the following, preferred embodiments will be described to more specifically understand examples and comparative examples of the present invention. However, it will be apparent to those skilled in the art that such embodiments are provided for the purpose of illustration And various modifications and alterations are possible without departing from the scope and spirit of the invention, and such modifications and alterations are appropriately included in the invention as defined in the appended claims. In the Techwiz 1D p〇lar (Sanai System 'Korea) of the LCD optical simulator shown in Figure 1, a quarter wave plate (Zeonoa'Zeone) and a half wave plate (Ze〇n) on a reflective layer (mirror) 〇a,Ze〇ne), partial

S 12 201227010 光片(PVA偏光片,東友精細化工有限公司,韓國)和透 明保護膜(TAC , Conica)係被疊層,使得偏光片的吸收軸 和半波片的慢軸的角度成為15度並且偏光片的吸收轴和四 分之一波片的慢軸的角度成為75度,從而計算抗反射效 果。在這種情況下’半波片和四分之一波片的NZ係數為 0.5。 如上所述,圖2是顯示根據範例1的疊層中的邦加球 (Poincare Sphere)上,以方位角φ= 45度且入射角0= 6〇度 發出的光之偏振狀態的變化的視圖,並且圖3是顯示根據 範例1的疊層之光度因素全方位穿透率(luminosityfaetw omnidirectional transmittance)模擬結果的視圖。 參考圖2,當從層疊之外入射和從其反射層(鏡子)反 射的光完全被偏光片所吸收時,完全的抗反射效果被顯 現。反射光被偏光片完全吸收的偏振狀態之情況顯示在對 應於圖2的邦加球上的P1。可以從圖2體認到,在通過根 據這個範例的疊層之偏光片之前的偏振狀態6接近pi,從 而顯現出相當出色的抗反射效果。作為參考,圖2的參考 符號3代表當自然光作為外部光線通過偏光板且然後通過 半波片(HWF)和四分之一波片(QWF)之偏振狀態,參 考符號4代表當光線被反射之偏振狀態,參考符號5代表 反射光通過四分之一波片(QWF )之偏振狀態,並且參考 符號6代表當反射光通過半波片(HWF)之偏振狀態。 本範例顯示了如圖3的良好效果,即使是具有最大反 射率的鏡子被使用作為反射層時。因此,在藉由諸如具有 13 201227010 比鏡子還低的反射率之金屬電極的反射所產生的例如有機 發光-極體(OLED )、液晶顯示器(LCD )或類似物的影 像顯示設備中’在螢幕的傾斜方向上的抗反射特性可以: 相當優秀的。 對照範例1 八有士範例1中所述的結構之疊層被產生,除了半波 片和四刀之一波片的Nz係數為丨5。如同相似於範例1的 方法,顯示在邦加球上的對照範例i的疊層的φ== 45度和㊀二 6〇度處之偏振狀態變化之結果如圖4所示相同層疊的光 度因素全方位穿透率模擬結果之結果如圖5所示,並且亮 層疊的光度因素全方位穿透率模擬結果如圖5所示相同。 參考圖4,參考圖2所述的反射光完全被偏光片吸收之 偏振狀態是顯示在對應圖4的邦加球上的ρι。在圖4中, 在通過對照範例之層疊的偏光片之前的偏振狀態6遠離 P1。作為參考’圖4的參考符號3代表#自然光作為外部 光線通過偏光板且然後通過半波片(HWF)和四分之一波 片(QWF)之偏振狀態,參考符號4代表當光線被反射之 偏振狀態,參考符號5代表反射光通過四分之一波片(qwf) 之偏振狀態,並且參考符號6代表當反射光通過半波片 (HWF)之偏振狀態。 當與圖2的偏振狀態比較可清楚顯示出不同。體認到 的是,對照範例的層疊與該層疊相比,顯著降低在傾斜的 方向上的抗反射效果。 範例2至13和對照範例2和3 201227010 範例2到13和對照範例2和3之層疊是藉由範例^中 描述的相同程序所製造,除了層疊的半波片和四分之一波 片的NZ係數分別如下表所設置。 表1 群組 範例 -1—---------—__—-- — NZHWF NZQWF _2_ 0.75 0.25 _3_ 0.75 0.5 ' 4 0.75 0.75 &quot; 0.5 0.25 &quot; 0.5 0.75 7 0.25 ~〇^25 8 0.25 0.5 9 0.25 0.75 10 0.1 0.5 11 0.9 0.5 12 0.5 0.1 — 13 0.5 0.9 對照範例 2 0 ] 0 3 1 1 藉由與範例1相同方法所量測的範例2和3的光度因 子全方位穿透率模擬結果是與圖7至18所示相同,並且對 照桃例2和3的光度因子全方位穿透率模擬結果是與圖19 至20所示相同。 比較圖7至18和圖19和20 ’可體認到的是,本發明 的範例具有比對照範例更加優異的抗反射特性。特別是, 層疊的半波片和四分之一波片的NZ係數為 0.25SNZHWFS0_75 和 0.25SNZQWFS0.75 時,可體認到的 15 201227010 是,NZHWF+NZQWF^l的情況下,抗反射特性可能會更加 出色。 【圖式簡單說明】 圖1是根據本發明的第一實施例來概略地顯示層疊結 構之示視圖; 圖2是根據範例1來顯示在層疊中的邦加球上,以方 位角φ= 45。且入射角θ= 60。發出的光的偏振狀態的變化之 視圖; 圖3是根據範例1來顯示層疊的亮度因素全方位的穿 透率模擬結果之視圖; 圖4疋根據對照範例1來顯示在層疊中的邦加球上, 以方位角φ= 45。且入射角θ= 6〇。發出的光的偏振狀態的變 化之視圖; 圖5是根據對照範例1來顯示層疊的亮度因素全方位 的穿透率模擬結果之視圖; 圖6是顯示根據本發明的偏光板是作為有機發光二極 體(OLED )使用的情況下之視圖; 圖7至20顯示根據範例2至13和對照範例2和3的 層疊的亮度因素全方位的穿透率模擬結果。 【主要元件符號說明】 無 16S 12 201227010 Light sheet (PVA polarizer, Dongyou Fine Chemical Co., Ltd., Korea) and transparent protective film (TAC, Conica) were laminated so that the angle between the absorption axis of the polarizer and the slow axis of the half-wave plate became 15 The angle of the absorption axis of the polarizer and the slow axis of the quarter-wave plate was 75 degrees, thereby calculating the anti-reflection effect. In this case, the half-wave plate and the quarter-wave plate have an NZ coefficient of 0.5. As described above, FIG. 2 is a view showing a change in the polarization state of light emitted by the azimuth angle φ=45 degrees and the incident angle 0=6 上 on the Poincare Sphere in the stack according to the example 1. And FIG. 3 is a view showing a simulation result of the luminosity factor omnidirectional transmittance of the laminate according to Example 1. Referring to Fig. 2, when light incident from outside the stack and reflected from the reflective layer (mirror) is completely absorbed by the polarizer, a complete anti-reflection effect is exhibited. The state of polarization in which the reflected light is completely absorbed by the polarizer is shown on P1 corresponding to the Bangka ball of Fig. 2. It can be seen from Fig. 2 that the polarization state 6 before passing through the laminated polarizer according to this example is close to pi, thereby exhibiting a remarkable excellent anti-reflection effect. For reference, reference numeral 3 of FIG. 2 represents a polarization state when natural light passes through a polarizing plate as external light and then passes through a half wave plate (HWF) and a quarter wave plate (QWF), and reference symbol 4 represents when the light is reflected. In the polarization state, reference symbol 5 represents the polarization state of the reflected light passing through the quarter-wave plate (QWF), and reference symbol 6 represents the polarization state when the reflected light passes through the half-wave plate (HWF). This example shows a good effect as shown in Fig. 3 even when a mirror having the largest reflectance is used as the reflective layer. Therefore, in an image display device such as an organic light-emitting body (OLED), a liquid crystal display (LCD) or the like, which is produced by reflection of a metal electrode having a reflectance lower than that of a mirror of 13 201227010, on the screen The anti-reflective properties in the oblique direction can be: quite good. A stack of structures as described in Example 1 of the Eight Vasculars Example 1 was produced except that the half-wave plate and the four-blade one-wave plate had an Nz coefficient of 丨5. As in the method similar to that of the example 1, the result of the change of the polarization state at φ== 45 degrees and 126 degrees of the laminate of the comparative example i displayed on the Bangka ball is the same laminated photometric factor as shown in FIG. The results of the omni-directional transmittance simulation results are shown in Fig. 5, and the luminosity factor omnidirectional transmittance simulation results of the bright stack are the same as shown in Fig. 5. Referring to Fig. 4, the polarization state in which the reflected light is completely absorbed by the polarizer as described with reference to Fig. 2 is displayed on the Bangka ball corresponding to Fig. 4. In Fig. 4, the polarization state 6 before passing through the laminated polarizers of the comparative example is far from P1. As a reference, the reference symbol 3 of FIG. 4 represents #natural light as the external light passes through the polarizing plate and then passes through the polarization states of the half-wave plate (HWF) and the quarter-wave plate (QWF), and reference symbol 4 represents when the light is reflected. In the polarization state, reference symbol 5 represents the polarization state of the reflected light passing through the quarter-wave plate (qwf), and reference symbol 6 represents the polarization state when the reflected light passes through the half-wave plate (HWF). The difference is clearly shown when compared with the polarization state of FIG. 2. It is recognized that the lamination of the comparative example significantly reduces the anti-reflection effect in the oblique direction as compared with the lamination. Examples 2 to 13 and Comparative Examples 2 and 3 201227010 The stacks of Examples 2 to 13 and Comparative Examples 2 and 3 were fabricated by the same procedure as described in the example, except for laminated half-wave plates and quarter-wave plates. The NZ coefficients are set as shown in the table below. Table 1 Group example-1—---------___————— NZHWF NZQWF _2_ 0.75 0.25 _3_ 0.75 0.5 ' 4 0.75 0.75 &quot; 0.5 0.25 &quot; 0.5 0.75 7 0.25 ~〇^25 8 0.25 0.5 9 0.25 0.75 10 0.1 0.5 11 0.9 0.5 12 0.5 0.1 — 13 0.5 0.9 Comparative Example 2 0 ] 0 3 1 1 Photometric factor omnidirectional penetration of Examples 2 and 3 as measured by the same method as Example 1. The simulation results are the same as those shown in Figs. 7 to 18, and the luminosity factor omnidirectional transmittance simulation results of the peaches 2 and 3 are the same as those shown in Figs. Comparing Figures 7 to 18 and Figures 19 and 20', it is apparent that the examples of the present invention have more excellent anti-reflection characteristics than the comparative examples. In particular, when the NZ coefficients of the laminated half-wave plate and the quarter-wave plate are 0.25SNZHWFS0_75 and 0.25SNZQWFS0.75, the recognizable 15 201227010 is, in the case of NZHWF+NZQWF^l, the anti-reflection characteristics may be It will be even better. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view schematically showing a laminated structure according to a first embodiment of the present invention; FIG. 2 is a view showing an azimuth angle φ=45 on a Bangka ball in a stack according to Example 1. . And the incident angle θ = 60. A view showing a change in the polarization state of the emitted light; FIG. 3 is a view showing a simulation result of the omnidirectional transmittance of the laminated luminance factors according to Example 1. FIG. 4A shows the Bangka ball in the cascading according to Comparative Example 1. Upper, with azimuth angle φ = 45. And the incident angle θ = 6 〇. A view showing a change in the polarization state of the emitted light; FIG. 5 is a view showing a simulation result of the omnidirectional transmittance of the laminated luminance factor according to Comparative Example 1; FIG. 6 is a view showing the polarizing plate according to the present invention as an organic light-emitting diode A view of the case where the polar body (OLED) is used; FIGS. 7 to 20 show simulation results of the omnidirectional transmittance of the luminance factors of the stacked layers according to the examples 2 to 13 and the comparative examples 2 and 3. [Main component symbol description] None 16

Claims (1)

201227010 七、申請專利範圍: 1. 一種偏光板,其包括:一偏光板、一配置在該偏光 片的底部上的半波片(HWF )和一配置在該半波片的底部 上的四分之一波片(QWF ),其中該半波片和四分之一波 片被配置,使得其慢軸相對彼此呈40至80度形成’並且 該半波片和四分之一波片的折射率比疋獨立為 0&lt;NZHWF&lt;1 和 〇&lt;NZQWF&lt;l。 2. 根據申請專利範圍第1項之偏光板,其中 0.1SNZHWF50.9。 3. 根據申請專利範圍第1項之偏光板,其中 0.25SNZHWFS0.75。 4. 根據申請專利範圍第 1項之偏光板,其中 0.1SNZQWFS0.9。 5. 根據申請專利範圍第1項之偏光板,其中 0.25SNZQWFS0.75。 6. 根據申請專利範圍第1項之偏光板,其中 0.1SNZHWFS0.9 和 0.1&lt; NZQWFS0.9。 7·根據申請專利範圍第1項之偏光板,其中 0.25SNZHWFS0.75 和 0.25SNZQWF仝0_75。 8. 根據申請專利範圍第1項之偏光板,其中NZHWF + NZQWF20.75。 9. 根據申請專利範圍第1項之偏光板,其中NZHWF + NZQWF21。 1 〇·根據申請專利範圍第1項之偏光板,其中該半波片 17 201227010 的平面内光遲滯性(ROHWF)是在550 nm波長的200至 360奈米。 11.根據申請專利範圍第1項之偏光板,其中該四分之 一波片的平面内光遲滯性(ROQWF)是在550 nm波長的 80至180奈米。 12.根據申請專利範圍第丨項之偏光板,其中該半波片 疋被配置,使得其慢軸相對於該偏光片的一穿透軸或一吸 收軸疋在5至25度形成,並且該四分之一波片係配置,使 得其陵轴相對於該穿透軸或吸收軸是在65至度形成。 1 3.根據申請專利範圍第丨項之偏光板,其中該偏光板 的頂部是額外地被設置選自一保護膜'一相位差板和一觸 控螢幕所組成的群組中的一者。 14. 一種影像顯示設備’其包括如申請專利範圍第1 至13項任何一項中所提出的偏光板。 •根據中請專利範圍第14項之影像顯示裝置,其 影像顯示裝置是一有機發光二極體(〇led)或是一液 示器(LCD) 八、圖式: (如次頁) S 18201227010 VII. Patent application scope: 1. A polarizing plate comprising: a polarizing plate, a half wave plate (HWF) disposed on the bottom of the polarizing plate, and a quarter disposed on the bottom of the half wave plate a wave plate (QWF), wherein the half wave plate and the quarter wave plate are configured such that their slow axes form at 40 to 80 degrees with respect to each other and the refraction of the half wave plate and the quarter wave plate The rate ratio is independent of 0 &lt; NZHWF &lt; 1 and 〇 &lt; NZQWF &lt; l. 2. Polarized plate according to item 1 of the patent application, which is 0.1SNZHWF50.9. 3. Polarized plate according to item 1 of the patent application, which is 0.25 SNZHWFS 0.75. 4. Polarized plate according to item 1 of the patent application, which is 0.1SNZQWFS0.9. 5. Polarized plate according to item 1 of the patent application, of which 0.25SNZQWFS0.75. 6. The polarizing plate according to item 1 of the patent application, wherein 0.1SNZHWFS0.9 and 0.1&lt; NZQWFS0.9. 7. The polarizing plate according to item 1 of the patent application, wherein 0.25SNZHWFS0.75 and 0.25SNZQWF are the same as 0_75. 8. Polarized plate according to item 1 of the patent application, NZHWF + NZQWF 20.75. 9. Polarized plate according to item 1 of the patent application, NZHWF + NZQWF21. 1 偏 According to the polarizing plate of claim 1, wherein the half-wave plate 17 201227010 has an in-plane light hysteresis (ROHWF) of 200 to 360 nm at a wavelength of 550 nm. 11. The polarizing plate of claim 1, wherein the one-quarter wave plate has an in-plane optical retardation (ROQWF) of 80 to 180 nm at a wavelength of 550 nm. 12. The polarizing plate of claim 3, wherein the half wave plate is configured such that a slow axis thereof is formed at 5 to 25 degrees with respect to a transmission axis or an absorption axis of the polarizer, and The quarter-wave plate configuration is such that its axis is formed at 65 to degrees with respect to the penetration or absorption axis. The polarizing plate according to claim 2, wherein the top of the polarizing plate is additionally provided with one selected from the group consisting of a protective film 'a phase difference plate and a touch screen. An image display apparatus comprising a polarizing plate as set forth in any one of claims 1 to 13. • According to the image display device of the 14th patent range, the image display device is an organic light emitting diode (LED) or a liquid crystal display (LCD). 8. Pattern: (eg page) S 18
TW100142504A 2010-11-23 2011-11-21 Antireflective polarizing plate and image display apparatus comprising the same TW201227010A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100116657A KR20120055129A (en) 2010-11-23 2010-11-23 Antireflective polarizing plate and image display apparatus comprising the same

Publications (1)

Publication Number Publication Date
TW201227010A true TW201227010A (en) 2012-07-01

Family

ID=46146258

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100142504A TW201227010A (en) 2010-11-23 2011-11-21 Antireflective polarizing plate and image display apparatus comprising the same

Country Status (3)

Country Link
KR (1) KR20120055129A (en)
TW (1) TW201227010A (en)
WO (1) WO2012070808A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076902A (en) * 2014-09-26 2017-08-18 日本瑞翁株式会社 The wave plate of circular polarizing disk and its manufacture method, broadband λ/4, organic electroluminescence display device and method of manufacturing same and liquid crystal display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207426B (en) * 2013-03-28 2015-09-16 京东方科技集团股份有限公司 A kind of polaroid and display device
EP2813201B1 (en) 2013-06-14 2017-11-01 The Procter and Gamble Company Absorbent article and absorbent core forming channels when wet
WO2015046983A1 (en) * 2013-09-27 2015-04-02 주식회사 엘지화학 Optical film
TWI547719B (en) 2013-09-27 2016-09-01 Lg化學股份有限公司 Optical film
KR102355365B1 (en) * 2013-10-28 2022-01-24 니폰 제온 가부시키가이샤 Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods
CN105676318B (en) 2014-12-08 2018-06-05 三星电子株式会社 Anti-reflective film and the organic luminescent device for including it
KR101623086B1 (en) 2014-12-08 2016-05-20 삼성전자 주식회사 Antireflection film and organic light emitting device provided with the same
KR20160079687A (en) 2014-12-26 2016-07-06 삼성전자주식회사 Antireflection film and organic light emitting diode device provided with the same
KR102304889B1 (en) 2015-02-11 2021-09-23 삼성전자주식회사 Organic light emitting device and method of manufacturing the same
KR102126051B1 (en) * 2017-10-23 2020-06-23 삼성에스디아이 주식회사 Liquid crystal retardation film, polarizing plate for light emitting display apparatus comprising the same and light emitting display apparatus compsiring the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231132A (en) * 1998-02-12 1999-08-27 Nitto Denko Corp 1/4-wavelength plate, circular polarizing plate, and liquid crystal display device
JP4276392B2 (en) * 2001-07-25 2009-06-10 龍男 内田 Circularly polarizing plate and liquid crystal display using the same
JP4109914B2 (en) * 2002-06-24 2008-07-02 日東電工株式会社 Laminated optical film and use thereof
JP4997591B2 (en) * 2007-03-30 2012-08-08 Nltテクノロジー株式会社 Liquid crystal display device with touch panel and terminal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076902A (en) * 2014-09-26 2017-08-18 日本瑞翁株式会社 The wave plate of circular polarizing disk and its manufacture method, broadband λ/4, organic electroluminescence display device and method of manufacturing same and liquid crystal display device

Also Published As

Publication number Publication date
WO2012070808A3 (en) 2012-09-27
KR20120055129A (en) 2012-05-31
WO2012070808A2 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
TW201227010A (en) Antireflective polarizing plate and image display apparatus comprising the same
TWI240128B (en) In-planes switching liquid crystal display comprising compensation film for angular field of view using +A-plate and +C-plate
JP4920664B2 (en) Composite birefringent medium, polarizing plate and liquid crystal display device
TWI352858B (en) Liquid crystal display device
WO2010058633A1 (en) Circularly polarizing plate and display device
WO2010087058A1 (en) Liquid crystal display apparatus
WO2012133137A1 (en) Liquid crystal display device
WO2012090769A1 (en) Optical element and liquid crystal display device
TWI709771B (en) Elliptical polarizing plate and organic light emitting device
JP6925588B2 (en) Anti-reflection optical filter and organic light emitting device
TWI244558B (en) Optical film and image display
TW201827866A (en) Optical filter for anti-reflection and organic light-emitting device
JP2007286141A (en) Circularly polarizing element, liquid crystal panel and electronic equipment
JPWO2018151295A1 (en) Liquid crystal display
TW201944152A (en) Elliptical polarizing plate and organic light emitting device
TW201802502A (en) Ultra-thin broadband retardation film
CN111149047B (en) Laminate and liquid crystal display device including the same
WO2013111867A1 (en) Liquid crystal display device
WO2020203316A1 (en) Phase difference film, polarizing plate, and image display device
TWI708078B (en) Elliptical polarizing plate and organic light emitting device
TW201825934A (en) Optical filter for anti-reflection and organic light-emitting device
JP2017122864A (en) Optical film, image display device, and method for manufacturing optical film
WO2016122313A1 (en) Electro-optical device stack
WO2012133155A1 (en) Liquid crystal display device
JP6756106B2 (en) Optical film and image display device