WO2012090769A1 - Optical element and liquid crystal display device - Google Patents

Optical element and liquid crystal display device Download PDF

Info

Publication number
WO2012090769A1
WO2012090769A1 PCT/JP2011/079434 JP2011079434W WO2012090769A1 WO 2012090769 A1 WO2012090769 A1 WO 2012090769A1 JP 2011079434 W JP2011079434 W JP 2011079434W WO 2012090769 A1 WO2012090769 A1 WO 2012090769A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
birefringent layer
liquid crystal
optical element
crystal display
Prior art date
Application number
PCT/JP2011/079434
Other languages
French (fr)
Japanese (ja)
Inventor
坂井 彰
一義 櫻木
雅浩 長谷川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012090769A1 publication Critical patent/WO2012090769A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to an optical element and a liquid crystal display device. More specifically, the present invention relates to an optical element in which a polarizing plate and a birefringent layer are laminated, and a liquid crystal display device including the optical element.
  • the liquid crystal display device is usually configured to include an optical element such as a polarizing plate and a retardation film together with a liquid crystal panel and a backlight.
  • Liquid crystal display devices are widely used in electronic devices such as monitors, projectors, mobile phones, and personal digital assistants (PDAs) because of their excellent display characteristics.
  • PDAs personal digital assistants
  • a technique using a condensing element is known in order to control the viewing angle of a display such as a liquid crystal display device.
  • At least a first polarizer, a liquid crystal cell having a liquid crystal layer between the first substrate and the second substrate, an optical compensation element, a second polarizer, and a condensing backlight is known (for example, see Patent Document 1).
  • light-collecting sheets having an absorption linear polarizing layer, a negative birefringent layer, and a reflective linear polarizing layer, and a light control film having a sandwich structure in which a birefringent film is disposed between polarizing films.
  • a birefringent film is disposed between polarizing films.
  • CR contrast ratio
  • dimming backlights that improve the CR (hereinafter also referred to as “dynamic CR”) of a liquid crystal display device by dynamically adjusting the brightness of the backlight brightness according to the brightness of the image are known.
  • a liquid crystal display device having a dynamic CR of 10,000 or more is known.
  • the CR improvement effect by the dimming backlight is limited depending on the type of video, or there is room for improvement in that no effect can be obtained.
  • the white brightness of the white display is sacrificed and the backlight luminance cannot be reduced.
  • This problem is somewhat improved by the local dimming backlight that divides the backlight into multiple blocks whose brightness can be controlled independently, and dimming each block, but the above situation does not change inside the block, so the effect remains the same. It can be said that it is limited.
  • Patent Document 1 discloses that a collimated backlight having a luminance half-value angle of 3 to 30 ° reduces the amount of light incident obliquely on the liquid crystal panel, thereby reducing the amount of light leakage in the normal direction and CR.
  • a condensing-diffusion-type liquid crystal display device has been disclosed that improves and distributes light in the front direction in an oblique direction and expands the viewing angle by providing a diffusing element on the viewing side of the viewing side polarizer. .
  • the liquid crystal display device described in Patent Document 1 aims to reduce the luminance half-value angle (isotropically collimate) in all azimuth angles, as described in paragraph [0030].
  • paragraph [0047] there is a side effect that luminance in an oblique direction is reduced, and it is necessary to provide a diffusing element as a countermeasure. That is, since it is necessary to diffuse the collimated light again in order to improve the viewing angle characteristics, there is room for improvement in that the system is complex and wasteful. Further, it is technically difficult to diffuse collimated light isotropically, and it is technically difficult to collimate light isotropically in the first place. And if these technologies are adopted, it will lead to cost increase.
  • the light-condensing sheet described in Patent Document 2 and the light control film described in Patent Document 3 are also laminated so that the birefringent layer and the polarizer form an angle of 45 ° or 135 °, which is neither orthogonal nor parallel.
  • the objective is to perform isotropic collimation to reduce the transmittance at oblique viewing angles in all directions. Therefore, the condensing sheet described in Patent Document 2 and the light control film described in Patent Document 3 also have room for improvement, similar to the liquid crystal display device described in Patent Document 1.
  • lenses and micro blind films are conventionally known as light condensing elements, but these light condensing elements are difficult to apply to large liquid crystal display devices, and the liquid crystal display devices are thinned. There was room for improvement in that it would be difficult.
  • the present invention has been made in view of the above-described present situation, and an object thereof is to provide an optical element and a liquid crystal display device that are excellent in productivity and can realize a high CR.
  • the light leakage due to the light scattering is light that is obliquely incident on the liquid crystal panel, changes its traveling direction to the normal direction due to internal scattering, and leaks from the observation surface side polarizing plate.
  • CR can be improved by limiting the amount of obliquely incident light on the panel.
  • the present inventors have found that light leakage due to panel internal scattering, which causes a decrease in CR of the liquid crystal panel, is caused by oblique incident light in a specific direction.
  • the second polarizer is arranged on the back side (outside) of the back side polarizer (first polarizer) so that the two polarizers are in a parallel Nicol relationship, and the first polarizer and the second polarizer are arranged.
  • a so-called C plate having a small in-plane retardation that is, a birefringent layer satisfying NZ ⁇ -9 or 10 ⁇ NZ, is arranged, and the absolute value of the thickness direction retardation of the birefringent layer
  • the outgoing light in the oblique direction is limited in all directions.
  • Anisotropic rather than isotropic collimation which restricts incident light in an oblique direction in a specific direction where light leakage is noticeable It is possible to effectively collimate, effectively suppress light leakage due to internal scattering of liquid crystal panels, improve CR, and find that polarizing films and retardation films with excellent productivity can be used.
  • the present inventors have arrived at the present invention.
  • the present invention is an optical element comprising a first polarizer, a birefringent layer and a second polarizer, wherein the first polarizer, the birefringent layer and the second polarizer are laminated in this order,
  • the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, and the biaxial parameter NZ of the birefringent layer satisfies 10 ⁇ NZ or NZ ⁇ ⁇ 9.
  • of the thickness direction retardation of the birefringent layer is an optical element satisfying
  • the configuration of the first optical element of the present invention is not particularly limited by other components as long as such components are formed as essential.
  • the present invention is also an optical element comprising a first polarizer, a birefringent layer and a second polarizer, wherein the first polarizer, the birefringent layer and the second polarizer are laminated in this order,
  • the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, and the biaxial parameter NZ of the birefringent layer is 2 ⁇ NZ ⁇ 10 or ⁇ 9 ⁇ NZ ⁇ -1 and an optical element whose angle between the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer is not 45 ° or 135 ° (hereinafter referred to as “second invention It is also referred to as an “optical element”.
  • the configuration of the second optical element of the present invention is not particularly limited by other components as long as such components are formed as essential.
  • the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other.
  • the transmission axes of the two polarizers do not necessarily have to be strictly parallel to each other. More specifically, the angle formed by both transmission axes is preferably 0 ⁇ 10 ° (more preferably 0 ⁇ 5 °). Set within range. If it is set outside the preferred range, the transmittance in the normal direction may decrease.
  • the optical element of the present invention According to the optical element of the present invention, the following effects can be obtained.
  • the backlight is disposed so as to face the second polarizer and the absorption axis or reflection axis of the first and second polarizers is set to an azimuth of 90 ° will be described.
  • the effects of the invention can also be achieved in other cases.
  • the birefringent layer is used for incidence from the normal direction, incidence from an oblique direction from the direction parallel to the transmission axis, and incidence from an oblique direction from the direction parallel to the absorption axis or reflection axis. Since the polarization state after passing through the two polarizers is hardly changed, a high transmittance close to the parallel Nicol transmittance of the first polarizer and the second polarizer is observed. On the other hand, with respect to incidence from other directions typified by an azimuth of 45 °, a low transmittance is observed because the birefringent layer changes the polarization state after passing through the second polarizer.
  • the birefringent layer is used for incidence from the normal direction, incidence from an oblique direction from the direction parallel to the transmission axis, and incidence from an oblique direction from the direction parallel to the absorption axis or reflection axis. Since it is difficult to change the polarization state after passing through the two polarizers, a relatively high transmittance is observed. On the other hand, a relatively low transmittance is observed for incident light from other directions typified by a 45 ° azimuth direction because the birefringent layer changes the polarization state after passing through the second polarizer. .
  • collimation can be performed so that the distribution of light emitted from the backlight is selectively concentrated in the normal direction, the transmission axis direction, and the absorption axis or reflection axis direction (cross-shaped). Light distribution).
  • the light leakage due to the scattering is particularly conspicuous with respect to obliquely incident light having an azimuth angle of 45 °. Therefore, anisotropic collimation as in the present invention has a sufficient light leakage reducing effect, and a CR improving effect can be obtained.
  • the diffusion function can be omitted, or Simplification is possible.
  • a condensing-non-diffusing method other than the condensing-diffusing method is also possible.
  • a diffusing element from the viewpoint of obtaining bright display other than in the vertical and horizontal directions, but a diffusing element having a low diffusing ability as compared with conventional isotropic collimation. Is superior in that it can be used.
  • optical members such as a polarizer and a birefringent layer can be easily increased in size, and current technology can be used for mass production of large displays such as 60 to 100 inches.
  • these optical elements have a thickness on the order of several hundred micrometers to several millimeters, and do not require a large spatial distance as in the case of collimation using a lens or a point light source. Light weight and thickness can be reduced.
  • the 1st optical element of this invention has a light leak reduction effect more compared with the 2nd optical element of this invention, and can improve CR more.
  • the second optical element can use a biaxial film that has already been mass-produced, it is more productive than the first optical element of the present invention.
  • a liquid crystal display device is suitable, and in particular, a liquid crystal display device provided with a backlight is particularly suitable.
  • a liquid crystal display device including the first or second optical element of the present invention and a backlight (hereinafter also referred to as “first liquid crystal display device of the present invention”) is also one aspect of the present invention.
  • first liquid crystal display device of the present invention a liquid crystal display device having excellent productivity and high CR can be obtained.
  • the configuration of the first liquid crystal display device of the present invention is not particularly limited by other components as long as such components are essential.
  • the present invention further provides a liquid crystal display device comprising a liquid crystal panel, a first polarizer, a birefringent layer, a second polarizer and a backlight, wherein the first polarizer, the birefringent layer and the second polarizer are The liquid crystal panel and the backlight are arranged in this order, and the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, and the two axes of the birefringent layer
  • the liquidity display device NZ satisfies 10 ⁇ NZ or NZ ⁇ ⁇ 9, and the absolute value
  • the configuration of the second liquid crystal display device of the present invention is not particularly limited by other components as long as such components are essential.
  • the present invention is a liquid crystal display device comprising a liquid crystal panel, a first polarizer, a birefringent layer, a second polarizer and a backlight, wherein the first polarizer, the birefringent layer and the second polarizer are The liquid crystal panel and the backlight are arranged in this order, and the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, and the two axes of the birefringent layer
  • the property parameter NZ satisfies 2 ⁇ NZ ⁇ 10 or ⁇ 9 ⁇ NZ ⁇ ⁇ 1, and the angle formed by the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer is 45 °.
  • a liquid crystal display device that is not 135 ° hereinafter also referred to as “third liquid crystal display device of the present invention”.
  • the first polarizer, the birefringent layer, and the second polarizer may be arranged in this order from the liquid crystal panel side, or the back They may be arranged in this order from the light side.
  • an air layer may be provided between at least one of the members, for example, between the liquid crystal panel and the first polarizer, There is an air layer between at least one of the first polarizer and the birefringent layer, between the birefringent layer and the second polarizer, and between the second polarizer and the backlight. May be provided.
  • the configuration of the third liquid crystal display device of the present invention is not particularly limited by other components as long as such components are formed as essential.
  • the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other.
  • the transmission axes of the second polarizer do not necessarily have to be strictly parallel to each other. More specifically, the angle formed by both transmission axes is preferably 0 ⁇ 10 ° (more preferably 0 ⁇ 5 °). ). If it is set outside the preferred range, the transmittance in the normal direction may decrease.
  • At least one of the first polarizer and the second polarizer may be a reflective polarizer or a composite polarizer in which an absorptive polarizer and a reflective polarizer are stacked. Thereby, the light absorption loss by the absorption polarizer is reduced, and the reflected light is returned to the backlight and reused, whereby the light can be effectively used.
  • Each of the first polarizer and the second polarizer is an absorptive polarizer or a composite polarizer in which an absorptive polarizer and a reflective polarizer are laminated, and the first polarizer has a single transmittance. May be different from the second polarizer.
  • the single transmittance and the contrast of the polarizer are in a trade-off relationship.
  • the first and second polarizers function to complement each other's contrast of the polarizer. To do.
  • the transmittance that is, the light use efficiency can be improved while maintaining the contrast.
  • the single transmittance and contrast of a composite polarizer mean the single transmittance and contrast of a single absorption polarizer included in the composite polarizer, respectively.
  • the absolute value ( ⁇ T1
  • ) of the difference between the single transmittance (T1) of the first polarizer and the single transmittance (T2) of the second polarizer is preferably 0.2 to 3 0.0%, more preferably 0.5 to 2.0%.
  • ⁇ T1 is less than 0.2%, the effect of improving the transmittance of the entire system may not be sufficiently obtained.
  • ⁇ T1 exceeds 3.0%, the contrast in the entire system may be lowered.
  • the contrast (CR1) of the first polarizer and the contrast (CR2) of the second polarizer are not particularly limited and can be set as appropriate.
  • the single transmittance and the contrast of the polarizer are in a trade-off relationship.
  • both CR1 and CR2 are Higher is preferable.
  • the first optical element of the present invention preferably comprises a plurality of the birefringent layers, and the first polarizer, the plurality of birefringent layers, and the second polarizer are laminated in this order.
  • the second liquid crystal display device of the present invention preferably includes a plurality of the birefringent layers, and the first polarizer, the plurality of birefringent layers, and the second polarizer are stacked in this order. Thereby, a plurality of inexpensive birefringent layers can be stacked to produce a desired in-plane retardation.
  • the axial angles of the birefringent layers can be appropriately set independently of each other.
  • the in-plane slow axes may be laminated in the order of 90 °, 90 °, and 0 °, that is, birefringence in which the in-plane slow axes are orthogonal to each other. Birefringent layers that are parallel to each other may be mixed.
  • the second optical element of the present invention includes a plurality of the birefringent layers, and the first polarizer, the plurality of birefringent layers, and the second polarizer are stacked in this order,
  • the in-plane slow axes of the plurality of birefringent layers are preferably orthogonal to each other or parallel to each other.
  • the third liquid crystal display device of the present invention includes a plurality of the birefringent layers, and the first polarizer, the plurality of birefringent layers, and the second polarizer are arranged in this order, and the plurality of birefringent layers are arranged.
  • the in-plane slow axes of the refractive layer are preferably orthogonal to each other or parallel to each other.
  • a plurality of inexpensive birefringent layers can be stacked to produce a desired in-plane retardation.
  • the in-plane slow axes may be laminated in the order of 90 °, 90 °, and 0 °, that is, birefringence in which the in-plane slow axes are orthogonal to each other. Birefringent layers that are parallel to each other may be mixed.
  • the angle formed by the in-plane slow axes of the plurality of birefringent layers is strictly 90 °, or The angle is not limited to 0 °, and may be slightly shifted from 90 ° or 0 °. More specifically, the angle formed by the in-plane slow axes of the plurality of birefringent layers is preferably 90 ⁇ 10 ° (more preferably 90 ⁇ 5 °), or 0 ⁇ 10 ° ( More preferably, it is set within a range of 0 ⁇ 5 °. When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
  • the angle formed by the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer is 90
  • the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer are orthogonal to each other, or are mutually within a range of ⁇ 20 ° or 0 ⁇ 20 °. More preferably, the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer are more preferably parallel to each other.
  • the absorption axis (or reflection axis) of the first polarizer and the in-plane slow axis of the birefringent layer are more preferably orthogonal to each other.
  • the transmittance with respect to the incident from other directions represented by the azimuth 45 ° oblique direction can be obtained without sacrificing the transmittance with respect to the normal direction, the azimuth 0 ° oblique direction, and the azimuth 90 ° oblique direction. It can be further reduced.
  • the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer are orthogonal to each other or parallel to each other.
  • the angle formed with the inner slow axis is not limited to being strictly 90 ° or 0 °, and may be slightly shifted from 90 ° or 0 °. More specifically, the angle formed by the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer is within a range of 90 ⁇ 10 ° or 0 ⁇ 10 ° (preferably 90 ⁇ 5 ° or within a range of 0 ⁇ 5 °). When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
  • of the birefringent layer in the thickness direction is preferably 400 nm or more, and 600 nm or more. It is more preferable that Thereby, the transmittance
  • of the birefringent layer in the thickness direction is preferably 200 nm or more, and preferably 400 nm or more. It is more preferable that it is 600 nm or more. Thereby, the transmittance
  • the following forms (1) and (2) are preferable in the first optical element of the present invention.
  • the first optical element of the present invention further includes a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, and the first polarizer.
  • the second birefringent layer and the third polarizer are stacked in this order, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other, and the second birefringent layer
  • the biaxial parameter NZ satisfies 10 ⁇ NZ or NZ ⁇ ⁇ 9, and the absolute value
  • the first optical element of the present invention further includes a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, and the first polarizer.
  • the second birefringent layer and the third polarizer are stacked in this order, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other, and the second birefringent layer
  • the biaxial parameter NZ satisfies 2 ⁇ NZ ⁇ 10 or ⁇ 9 ⁇ NZ ⁇ ⁇ 1, and is formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer.
  • the angle is not 45 ° or 135 °, and the absolute value
  • the following forms (3) and (4) are preferable.
  • the second liquid crystal display device of the present invention further comprises a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, The second birefringent layer and the third polarizer are arranged in this order between the liquid crystal panel and the backlight, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are:
  • the biaxiality parameter NZ of the second birefringent layer satisfies 10 ⁇ NZ or NZ ⁇ ⁇ 9, and the absolute value
  • the second liquid crystal display device of the present invention further comprises a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, The second birefringent layer and the third polarizer are arranged in this order between the liquid crystal panel and the backlight, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are:
  • the biaxiality parameter NZ of the second birefringent layer satisfies 2 ⁇ NZ ⁇ 10 or ⁇ 9 ⁇ NZ ⁇ ⁇ 1, the transmission axis of the second polarizer, and the second birefringence layer are parallel to each other.
  • the angle formed by the in-plane slow axis of the birefringent layer is not 45 ° or 135 °, and the absolute value
  • of the thickness direction retardation of the second birefringent layer is the thickness direction of the birefringent layer The value is different from the absolute value of the phase difference.
  • the following form (5) is preferable.
  • the second optical element of the present invention further comprises a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, and the first polarizer.
  • the second birefringent layer and the third polarizer are stacked in this order, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other, and the second birefringent layer
  • the biaxial parameter NZ satisfies 2 ⁇ NZ ⁇ 10 or ⁇ 9 ⁇ NZ ⁇ ⁇ 1, and is formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer.
  • the angle is not 45 ° or 135 °, and the absolute value
  • the following mode (6) is preferable.
  • the third liquid crystal display device of the present invention further includes a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, The second birefringent layer and the third polarizer are arranged in this order between the liquid crystal panel and the backlight, and the transmission axis of the second polarizer and the transmission axis of the third polarizer Are parallel to each other, and the biaxial parameter NZ of the second birefringent layer satisfies 2 ⁇ NZ ⁇ 10 or ⁇ 9 ⁇ NZ ⁇ ⁇ 1, the transmission axis of the second polarizer,
  • the angle formed by the in-plane slow axis of the second birefringent layer is not 45 ° or 135 °, and the absolute value
  • the transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other.
  • the transmission axis of the child does not necessarily have to be strictly parallel, and more specifically, the angle formed by both transmission axes is preferably within a range of 0 ⁇ 10 ° (more preferably 0 ⁇ 5 °). Set to If it is set outside the preferred range, the transmittance in the normal direction may decrease.
  • said 1st polarizer, said birefringent layer, said 2nd polarizer, said 2nd birefringent layer, and said 3rd polarizer are said liquid crystals. It may be arranged in this order from the panel side, or may be arranged in this order from the backlight side.
  • An air layer may be provided between at least one of the third polarizer and the backlight.
  • preferred forms in the above forms (1) to (6) include the following forms.
  • At least one of the first polarizer, the second polarizer, and the third polarizer is a reflective polarizer, or an absorption polarizer and a reflective polarizer. It is preferable that the composite polarizer is laminated.
  • the first polarizer, the second polarizer, and the third polarizer are each an absorption polarizer, or an absorption polarizer and a reflection polarizer. It is preferable that at least one of the first polarizer, the second polarizer, and the third polarizer has a single transmittance different from that of the other polarizers.
  • ⁇ T2 is less than 0.2%, the effect of improving the transmittance of the entire system may not be sufficiently obtained.
  • ⁇ T2 exceeds 3.0%, the contrast of the entire system may be lowered.
  • the contrast (CR1) of the first polarizer, the contrast (CR2) of the second polarizer, and the contrast (CR3) of the third polarizer are not particularly limited, Can be set. If the contrast can be adjusted independently of the single transmittance, the higher CR1, CR2 and CR3 are preferable.
  • the first optical element of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer A form in which the layers are sequentially laminated (hereinafter also referred to as form (1-1)) is preferable.
  • the second liquid crystal display device of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer are A form in which the layers are laminated in this order (hereinafter also referred to as form (3-1)) is preferable.
  • the axial angles of the second birefringent layers are independent of each other.
  • the in-plane slow layer axes are preferably perpendicular to each other or parallel to each other.
  • the in-plane slow axes of the plurality of second birefringent layers being orthogonal to each other or parallel to each other means that the angle formed by the in-plane slow axes of the plurality of second birefringent layers is exactly 90.
  • the angle is not limited to 0 ° or 0 °, and may be slightly shifted from 90 ° or 0 °.
  • the angle formed by the in-plane slow axes of the plurality of second birefringent layers is preferably 90 ⁇ 10 ° (more preferably 90 ⁇ 5 °), or 0 ⁇ 10. It is set within the range of ° (more preferably 0 ⁇ 5 °). When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
  • the first optical element of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer It is preferable that the in-plane slow axes of the plurality of birefringent layers are laminated in order and are orthogonal to each other or parallel to each other (hereinafter also referred to as “form (2-1)”).
  • the second liquid crystal display device of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer are
  • the in-plane slow axes of the plurality of birefringent layers stacked in this order are preferably orthogonal to each other or parallel to each other (hereinafter also referred to as mode (4-1)).
  • the second optical element of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer It is preferable that the in-plane slow axes of the plurality of birefringent layers are stacked in order and are orthogonal to each other or parallel to each other (hereinafter also referred to as “form (5-1)”).
  • the third liquid crystal display device of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer are
  • the in-plane slow axes of the plurality of birefringent layers stacked in this order are preferably orthogonal to each other or parallel to each other (hereinafter also referred to as mode (6-1)).
  • the in-plane slow axes of the plurality of birefringent layers are orthogonal to each other or parallel to each other. Is not strictly limited to the angle formed by the in-plane slow axes of the plurality of birefringent layers being 90 ° or 0 °, and may be slightly shifted from 90 ° or 0 °. . More specifically, the angle formed by the in-plane slow axes of the plurality of birefringent layers is preferably 90 ⁇ 10 ° (more preferably 90 ⁇ 5 °), or 0 ⁇ 10 ° ( More preferably, it is set within a range of 0 ⁇ 5 °. When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
  • the angle formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer is 90 ⁇ 20. Or within the range of 0 ⁇ 20 °, and the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer are orthogonal to each other or mutually More preferably, the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer are more preferably parallel to each other. That is, it is more preferable that the absorption axis (or reflection axis) of the second polarizer and the in-plane slow axis of the second birefringent layer are orthogonal to each other.
  • the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer are orthogonal to each other or parallel to each other.
  • the angle formed with the in-plane slow axis of the refracting layer is not limited to being strictly 90 ° or 0 °, and may be slightly shifted from 90 ° or 0 °. More specifically, the angle formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer is within a range of 90 ⁇ 10 ° or 0 ⁇ 10 ° (preferably Within the range of 90 ⁇ 5 ° or 0 ⁇ 5 °). When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
  • of the thickness direction retardation of the second birefringent layer is preferably 400 nm or more, and more preferably 600 nm or more.
  • of the thickness direction retardation of the second birefringent layer is preferably 200 nm or more, and preferably 400 nm or more. It is more preferable that the thickness is 600 nm or more.
  • the display modes of the first, second and third liquid crystal display devices of the present invention are preferably vertical alignment modes. At this time, light leakage is particularly suppressed, and a very high CR can be obtained.
  • the first or second optical element of the present invention is disposed on the observation surface side of the backlight
  • the first liquid crystal display device of the present invention is the first liquid crystal display device of the present invention.
  • a liquid crystal panel disposed on the observation surface side of the first or second optical element; and a fourth polarizer disposed on the observation surface side of the liquid crystal panel, the first polarizer and the second polarizer.
  • each of the fourth polarizers is an absorptive polarizer or a composite polarizer in which an absorptive polarizer and a reflective polarizer are laminated, and at least one of the first polarizer and the second polarizer is
  • the single transmittance is preferably larger than that of the fourth polarizer.
  • the single transmittance and the contrast of the polarizer are in a trade-off relationship.
  • the first and second polarizers function to complement each other's contrast of the polarizer.
  • the transmittance of the polarizer and the transmittance of the liquid crystal display device are correlated, and the contrast of the polarizer and the CR of the liquid crystal display device are also correlated. ing.
  • the single transmittance of at least one of the first and second polarizers is made higher than the single transmittance of the fourth polarizer, the single transmittances of the first, second, and fourth polarizers are all the same. Compared with a certain liquid crystal display device, it is possible to improve the transmittance, that is, the light utilization efficiency, while suppressing the decrease in CR. When the single transmittance of only one of the first and second polarizers is made larger than the single transmittance of the fourth polarizer, the single transmittance of either polarizer may be increased.
  • the single transmittance of only one polarizer is larger than the single transmittance of the fourth polarizer
  • the single transmittance of the other polarizer is substantially equal to the single transmittance of the fourth polarizer. It may be smaller or smaller.
  • the first polarizer and the second polarizer arranged on the backlight side have a single transmittance larger than that of the fourth polarizer. It is preferable. Thereby, the manufacturing process of the conventional liquid crystal display device having only one polarizer on the backlight side of the liquid crystal panel can be easily used.
  • the above-described embodiment can be realized by adding a polarizer whose single transmittance is adjusted to be larger than that of the fourth polarizer to such a conventional liquid crystal display device.
  • each of the first and second polarizers has a single transmittance greater than that of the fourth polarizer.
  • the first and second polarizers may have the same single transmittance or may be different from each other.
  • the second and third liquid crystal display devices of the present invention include a fourth polarizer disposed on the observation surface side of the liquid crystal panel.
  • the first polarizer, the second polarizer and the fourth polarizer are each an absorption polarizer, or a composite polarizer in which an absorption polarizer and a reflection polarizer are laminated, It is preferable that at least one of the first polarizer and the second polarizer has a single transmittance larger than that of the fourth polarizer.
  • the single transmittance of either polarizer may be increased.
  • the single transmittance of the other polarizer is substantially equal to the single transmittance of the fourth polarizer. It may be smaller or smaller.
  • the first polarizer and the second polarizer arranged on the backlight side have a single transmittance larger than that of the fourth polarizer. More preferably, from the viewpoint of further improving the transmittance (light utilization efficiency), it is more preferable that the first and second polarizers both have a single transmittance greater than that of the fourth polarizer.
  • ⁇ T3 is less than 0.2%, the effect of improving the transmittance of the entire system may not be sufficiently obtained.
  • ⁇ T3 exceeds 3.0%, the contrast in the entire system may be lowered.
  • the contrast (CR1) of the first polarizer, the contrast (CR2) of the second polarizer, and the contrast (CR4) of the fourth polarizer are not particularly limited, Can be set as appropriate. If the contrast can be adjusted independently of the single transmittance, the higher CR1, CR2 and CR4 are all the higher.
  • the 1st liquid crystal display device of this invention contains the 1st optical element of this invention
  • the first optical element of the present invention has the above-described form (1) or (2) and is disposed on the observation surface side of the backlight.
  • the third polarizer and the fourth polarizer are each an absorption polarizer or a composite polarizer in which an absorption polarizer and a reflection polarizer are laminated, and the first polarizer and the second polarizer.
  • At least one of the polarizer and the third polarizer preferably has a single transmittance larger than that of the fourth polarizer. Since the transmission axis of the third polarizer is parallel to the transmission axis of the second polarizer (and the first polarizer), the first, second, and third polarizers are in contrast with each other. Functions to complement each other. As a result, if at least one single transmittance of the first, second and third polarizers is higher than a single transmittance of the fourth polarizer, the first, second, third and fourth polarizers Compared with a liquid crystal display device that has the same single transmittance, the transmittance (light utilization efficiency) can be improved while suppressing a decrease in CR.
  • the single transmittance of any one of the first, second, and third polarizers may be larger than the single transmittance of the fourth polarizer.
  • the polarizer disposed on the backlight side and / or the single transmittance of the second polarizer is More preferably, it is larger than the fourth polarizer.
  • the manufacturing process of the conventional liquid crystal display device having only one polarizer on the backlight side of the liquid crystal panel can be easily used. That is, the above-described embodiment can be realized by adding two polarizers in which at least one single transmittance is adjusted to be larger than that of the fourth polarizer to such a conventional liquid crystal display device.
  • the first, second and third polarizers have a single transmittance larger than that of the fourth polarizer.
  • the first polarizer, the second polarizer, and the third polarizer all preferably have a single transmittance larger than that of the fourth polarizer.
  • the polarizers having a single transmittance greater than that of the fourth polarizer may have the same or different single transmittance.
  • the first liquid crystal display device of the present invention includes the second optical element of the present invention
  • the following modes are preferable. That is, the second optical element of the present invention has the above-described form (5) and is arranged on the observation surface side of the backlight, and the first liquid crystal display device of the present invention is the second liquid crystal display of the present invention.
  • Each of the polarizer and the fourth polarizer is an absorptive polarizer, or a composite polarizer in which an absorptive polarizer and a reflective polarizer are laminated, and the first polarizer, the second polarizer, and the fourth polarizer.
  • At least one of the three polarizers preferably has a single transmittance greater than that of the fourth polarizer.
  • the single transmittance of any one of the first, second, and third polarizers may be larger than the single transmittance of the fourth polarizer.
  • the polarizer disposed on the backlight side and / or the single transmittance of the second polarizer is the fourth polarization. It is preferably larger than the child.
  • the first, second and third polarizers have a single transmittance larger than that of the fourth polarizer.
  • the first polarizer, the second polarizer, and the third polarizer all preferably have a single transmittance larger than that of the fourth polarizer.
  • the polarizers having a single transmittance greater than that of the fourth polarizer may have the same or different single transmittance.
  • the second liquid crystal display device of the present invention has the above-described form (3) or (4) and is on the observation surface side of the liquid crystal panel.
  • the first polarizer, the second polarizer, the third polarizer, and the fourth polarizer are each an absorption polarizer or an absorption polarizer.
  • a composite polarizer in which a reflective polarizer is laminated, and at least one of the first polarizer, the second polarizer, and the third polarizer has a single transmittance greater than that of the fourth polarizer. preferable.
  • the single transmittance of any one of the first, second, and third polarizers may be larger than the single transmittance of the fourth polarizer.
  • the polarizer disposed on the backlight side and / or the single transmittance of the second polarizer is the fourth polarization. It is preferably larger than the child.
  • the first, second and third polarizers have a single transmittance larger than that of the fourth polarizer.
  • the single transmittance is larger than that of the fourth polarizer.
  • the polarizers having a single transmittance greater than that of the fourth polarizer may have the same or different single transmittance.
  • the third liquid crystal display device of the present invention has the above-described form (6) and is disposed on the observation surface side of the liquid crystal panel.
  • the first polarizer, the second polarizer, the third polarizer, and the fourth polarizer are each an absorption polarizer, or an absorption polarizer and a reflection polarizer. It is preferable that at least one of the first polarizer, the second polarizer, and the third polarizer has a single transmittance greater than that of the fourth polarizer. At this time, the single transmittance of any one of the first, second, and third polarizers may be larger than the single transmittance of the fourth polarizer.
  • the first, second and third polarizers there may be a polarizer whose single transmittance is substantially equal to the single transmittance of the fourth polarizer, or the single polarizer of the fourth polarizer. There may be a polarizer smaller than the transmittance.
  • the polarizer disposed on the backlight side and / or the single transmittance of the second polarizer is the fourth polarization. It is preferably larger than the child.
  • it is more preferable that at least two of the first, second and third polarizers have a single transmittance larger than that of the fourth polarizer.
  • the first polarizer, the second polarizer, and the third polarizer all preferably have a single transmittance larger than that of the fourth polarizer.
  • the polarizers having a single transmittance greater than that of the fourth polarizer may have the same or different single transmittance.
  • the maximum value is Tmax3 and the minimum value is Tmin3 among the single transmittances of the first polarizer, the second polarizer, the third polarizer, and the fourth polarizer
  • the absolute value ( ⁇ T4
  • ) is preferably 0.2 to 3.0%, more preferably 0.5 to 2.0%. If ⁇ T4 is less than 0.2%, the effect of improving the transmittance of the entire system may not be sufficiently obtained. On the other hand, when ⁇ T4 exceeds 3.0%, the contrast of the entire system may be lowered.
  • the first polarizer contrast (CR1), the second polarizer contrast (CR2), the third polarizer contrast (CR3), and the fourth polarizer contrast. (CR4) is not particularly limited, and can be set as appropriate. When the contrast can be adjusted independently of the single transmittance, the higher CR1, CR2, CR3, and CR4 are preferable.
  • productivity can be improved and high CR can be realized.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 3.
  • FIG. 10 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element according to Embodiment 3.
  • FIG. It is the contour figure and graph which show the calculation result of the viewing angle characteristic of the transmittance
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 4.
  • FIG. It is a contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element concerning Embodiment 4.
  • 6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 5.
  • FIG. 10 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element according to Embodiment 5.
  • FIG. 7 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 6.
  • FIG. It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of the optical element concerning Embodiment 6.
  • 10 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 7.
  • FIG. 10 is a schematic cross-sectional view of a liquid crystal display device according to an eighth embodiment.
  • FIG. 10 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 9.
  • FIG. It is the contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element which concerns on Embodiment 9.
  • FIG. It is a figure which shows transition of the polarization state on the Poincare sphere in the optical element which concerns on Embodiment 8.
  • FIG. It is a figure which shows the transition of the polarization state on the Poincare sphere in the optical element which concerns on Embodiment 9.
  • FIG. 10 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 10. It is the contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element which concerns on Embodiment 10.
  • FIG. 14 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 11.
  • FIG. 14 It is the contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element which concerns on Embodiment 11.
  • FIG. 6 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is ⁇ 45 °.
  • FIG. 10 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is ⁇ 25 °.
  • FIG. 6 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is ⁇ 20 °.
  • FIG. 10 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is ⁇ 15 °.
  • FIG. 6 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is ⁇ 10 °. It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 0 degrees. It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 10 degrees. It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 15 degrees.
  • FIG. 53 is a contour diagram and a graph showing calculation results for viewing angle characteristics in the optical element of FIG. 52.
  • a polarizer has a function of extracting polarized light (linearly polarized light) that vibrates only in a specific direction from non-polarized light (natural light), partially polarized light, or polarized light.
  • the term “polarizer” in this specification refers to only a device having a polarizing function without including a protective film.
  • the absorptive polarizer has a function of absorbing light that vibrates in a specific direction and transmitting polarized light (linearly polarized light) that vibrates in a direction perpendicular thereto.
  • the reflective polarizer has a function of reflecting light that vibrates in a specific direction and transmitting polarized light (linearly polarized light) that vibrates in a direction perpendicular thereto.
  • ns indicates the larger one of nx and ny, and the nf indicates the smaller one.
  • nx and ny indicate the main refractive index in the in-plane direction of the birefringent layer (including the liquid crystal panel), and nz is the main refractive index in the out-of-plane direction, that is, the direction perpendicular to the surface of the birefringent layer.
  • D represents the thickness of the birefringent layer.
  • the measurement wavelength of optical parameters such as the main refractive index, the phase difference, and the Nz coefficient is 550 nm unless otherwise specified.
  • a birefringent layer is a layer (film) having optical anisotropy.
  • the birefringent layer means that one of the in-plane retardation R and the absolute value of the thickness direction retardation Rth has a value of 10 nm or more, and preferably has a value of 20 nm or more. .
  • the isotropic film means that both the in-plane retardation R and the absolute value of the thickness direction retardation Rth have a value of 10 nm or less, preferably 5 nm or less. Means.
  • the axis angle means an absorption axis (reflection axis) of a polarizer or a slow axis of a birefringent layer unless otherwise specified.
  • the single transmittance (T) of a polarizer is a transmittance when a single polarizer is used, and is obtained from the formula: (k1 + k2) / 2.
  • main transmittance k1 and k2 are referred to as main transmittance, and the main transmittance k1 refers to the transmittance when linearly polarized light that vibrates in a direction parallel to the transmission axis is incident on the polarizer.
  • the main transmittance k2 refers to the transmittance when linearly polarized light that vibrates in a direction perpendicular to the transmission axis is incident on the polarizer.
  • Examples of the measuring device for the main transmittance k1 and the main transmittance k2 include an ultraviolet-visible spectrophotometer (trade name “V-7100” manufactured by JASCO Corporation).
  • an ideal polarizing element such as a Glan-Thompson prism or a Gran Taylor prism, which is prepared as an option of the measurement device, may be used.
  • the spectral transmittance in the visible wavelength region (wavelength 380 nm to 780 nm) is measured, and the Y value that has been corrected for visibility with the two-degree field of view (C light source) defined in JIS Z8701-1982 is defined as the transmittance.
  • the parallel transmittance (Tp) is a value of transmittance when two polarizers of the same type are stacked and used so that their absorption axes are parallel to each other, and the formula: (k1 2 + k2 2 ) Calculated from / 2.
  • the orthogonal transmittance (Tc) is a transmittance value when two polarizers of the same type are stacked and used so that their absorption axes are orthogonal to each other, and is obtained from the equation: k1 ⁇ k2.
  • the contrast of the polarizer is obtained from the formula: Tp / Tc by measuring the parallel transmittance (Tp) and orthogonal transmittance (Tc) of the polarizer.
  • a polarizing plate containing members such as a protective film and a birefringent layer
  • unit can be obtained.
  • the liquid crystal display device 30 of the present embodiment is a transmissive liquid crystal display device.
  • a polarizer 24, a birefringent layer 23, a liquid crystal panel 22 including a liquid crystal layer This is a liquid crystal display device obtained by laminating the refractive layer 21, the polarizer 2, the birefringent layer 3, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 3, and the polarizer 1 constitute an optical element 10.
  • One of the polarizers 1 and 2 corresponds to the first polarizer in the present invention, and the other is the second polarizer in the present invention.
  • the birefringent layer 3 corresponds to the birefringent layer in the present invention.
  • the polarizers 1 and 2 are arranged in parallel Nicols.
  • the biaxial parameter of the birefringent layer 3 satisfies NZ ⁇ -9 or 10 ⁇ NZ, and the absolute value
  • birefringence is applied to light incident from the normal direction of the liquid crystal panel 22, the polarization axis directions of the polarizers 1 and 2, and the absorption axis or reflection axis direction of the polarizers 1 and 2. Since the layer 3 does not function substantially, a high transmittance is observed. On the other hand, the birefringent layer 3 functions effectively for light incident obliquely with respect to the axes of the polarizers 1 and 2 and obliquely with respect to the surface of the polarizer 1. Rate is observed. As a result, the emitted light from the backlight (BL) unit 25 can be selectively collimated (parallelized), and a cross-shaped light distribution can be realized.
  • BL backlight
  • the polarizers 1 and 2 are arranged in parallel Nicols, and the polarizers 2 and 24 are arranged in crossed Nicols. More specifically, the angle formed by the absorption axes or reflection axes of the polarizers 1 and 2 is set within a range of 0 ⁇ 10 ° (preferably within a range of 0 ⁇ 5 °). The angle formed by the absorption axis or the reflection axis is set within a range of 90 ⁇ 3 ° (preferably within a range of 90 ⁇ 1 °).
  • the polarizers 2 and 24 may be arranged in parallel Nicols, but are preferably arranged in crossed Nicols from the viewpoint of obtaining high CR.
  • the axial angles of the polarizers 1 and 2 can be set as appropriate, but the axial angles of the polarizers 1 and 2 are preferably set to an orientation within a range of 0 ⁇ 10 ° or 90 ⁇ 10 °. It is more preferable to set the azimuth within a range of ⁇ 5 ° or 90 ⁇ 5 °, and it is particularly preferable that the azimuth is set to substantially 0 ° or 90 °. Thereby, a bright display can be obtained in the normal direction and in the vertical and horizontal directions.
  • the substantially 0 ° or 90 ° azimuth is an orientation that can be achieved when the liquid crystal display device of this embodiment is designed and manufactured to be 0 ° or 90 ° azimuth. And may include errors that may occur in the manufacturing process.
  • of the birefringent layer 3 is preferably
  • the birefringent layer 3 preferably satisfies NZ ⁇ ⁇ 19.5 or 20.5 ⁇ NZ, and more preferably satisfies NZ ⁇ ⁇ 39.5 or 40.5 ⁇ NZ.
  • the in-plane retardation R of the birefringent layer 3 can be made 10 nm or less (preferably 5 nm or less), and substantially the same effect as a birefringent layer having no in-plane anisotropy is expected. be able to. Since the in-plane anisotropy is substantially eliminated, the degree of freedom in designing the axial angle can be increased.
  • the birefringent layer 3 is illustrated as being composed of a single birefringent layer, but the birefringent layer 3 may be composed of a plurality of birefringent layers. For example, three birefringent layers may be stacked to function as one birefringent layer as a total. This makes it possible to use a large-area and inexpensive birefringent layer that is widely used as a conventional optical compensation film for liquid crystal display devices.
  • a birefringent layer similar to the birefringent layer 3 and a polarizer similar to the polarizer 1 are disposed on the polarizer 1 side on the backlight (BL) unit 25 side of the polarizer 1. May be laminated in this order.
  • shaft of the polarizers 1 and 2 and diagonally with respect to the surface of the polarizer 1 can be reduced especially effectively.
  • the material of the birefringent layer used in Embodiment 1 is not particularly limited.
  • a stretched polymer film, a fixed liquid crystal material orientation, a thin plate made of an inorganic material, or the like can be used.
  • the method for forming the birefringent layer is not particularly limited. In the case of a birefringent layer formed from a polymer film, for example, a solvent casting method, a melt extrusion method, or the like can be used. A method of simultaneously forming a plurality of birefringent layers by a coextrusion method may be used.
  • the film may be unstretched or may be stretched.
  • the stretching method is not particularly limited, and stretching is performed under the action of the shrinkage force of the heat-shrinkable film, in addition to the inter-roll tensile stretching method, the inter-roll compression stretching method, the tenter transverse uniaxial stretching method, the oblique stretching method, the longitudinal and transverse biaxial stretching method.
  • a special stretching method or the like can be used.
  • a birefringent layer formed of a liquid crystalline material for example, a method of applying a liquid crystalline material on an orientation-treated base film and fixing the orientation can be used.
  • a method of not performing a special orientation treatment on the base film a method of removing the base film from the base film and transferring it to another film may be used. . Further, a method that does not fix the alignment of the liquid crystal material may be used.
  • a birefringent layer formed from a non-liquid crystalline material the same formation method as that for a birefringent layer formed from a liquid crystalline material may be used.
  • more specific description will be given for each type of birefringent layer.
  • a birefringent layer (retardation film) of 2 ⁇ NZ ⁇ 10 is referred to as a first type birefringent layer.
  • a film obtained by stretching a film containing a material having a positive intrinsic birefringence as a component can be appropriately used.
  • the material having a positive intrinsic birefringence include polycarbonate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene, polyvinyl alcohol, norbornene, triacetylcellulose, and diacylcellulose.
  • a birefringent layer (retardation film) of ⁇ 9 ⁇ NZ ⁇ 1 is referred to as a second type birefringent layer.
  • the second kind of birefringent layer is a stretched film containing a material having a negative intrinsic birefringence as a component, and a film containing a material having a positive intrinsic birefringence as a component is acting on the shrinkage force of the heat shrinkable film. What extended
  • stretched and processed below can be used suitably.
  • a film obtained by stretching a film containing a material having a negative intrinsic birefringence as a component is preferable.
  • Examples of the material having a negative intrinsic birefringence include a resin composition containing an acrylic resin and a styrene resin, polystyrene, polyvinyl naphthalene, polyvinyl biphenyl, polyvinyl pyridine, polymethyl methacrylate, polymethyl acrylate, and an N-substituted maleimide copolymer. , Polycarbonate having a fluorene skeleton, and triacetyl cellulose (particularly those having a low degree of acetylation). Among these, from the viewpoint of optical properties, productivity, and heat resistance, a resin composition containing an acrylic resin and a styrene resin is preferable. A method for producing a film containing such a resin composition as a component is disclosed in, for example, JP-A-2008-146003.
  • a birefringent layer (retardation film) of 10 ⁇ NZ, a so-called negative C plate is referred to as a third type birefringent layer.
  • a film containing a material having a positive intrinsic birefringence as a component is subjected to a longitudinal and lateral biaxial stretching process, and a liquid crystal material such as a cholesteric (chiral nematic) liquid crystal or a discotic liquid crystal is applied.
  • a material coated with a non-liquid crystalline material containing polyimide, polyamide, or the like can be used as appropriate.
  • a birefringent layer (retardation film) of NZ ⁇ ⁇ 9, a so-called positive C plate is referred to as a fourth type birefringent layer.
  • a film containing a material having a negative intrinsic birefringence as a component and subjected to longitudinal and lateral biaxial stretching processing, a film coated with a liquid crystalline material such as a rod-like nematic liquid crystal, and the like can be used as appropriate. .
  • the birefringent layer 3 is a third birefringent layer or a fourth birefringent layer.
  • the material, characteristics, axial angle, and the like of the birefringent layers 21 and 23 can be appropriately set in consideration of the liquid crystal mode of the liquid crystal panel 22 and the like.
  • the polarizer used in Embodiment 1 is not particularly limited in terms of materials and optical performance, and for example, an absorbing polarizer, a reflective polarizer, or the like can be used as appropriate.
  • a co-extruded film made of two types of resins is uniaxially stretched in addition to an absorbing polarizer in which an anisotropic material such as an iodine complex having dichroism is adsorbed and oriented on a polyvinyl alcohol (PVA) film.
  • a reflective polarizer for example, DBEF manufactured by 3M
  • stacked the absorption type polarizer and the reflection type polarizer can also be used.
  • At least one of the polarizers 1 and 2 is preferably set to have a large single transmittance, and more preferably set to be larger than that of the polarizer 24.
  • the single transmittance of the polarizers 1 and 2 is more preferably larger than that of the polarizer 24.
  • the single transmittance of the absorption polarizer and the contrast (polarization degree) of the polarizer are in a trade-off relationship. Therefore, if the single transmittance is set large, the contrast of the polarizer is lowered.
  • the polarizer 1 and the polarizer 2 have a polarizer contrast with each other. Functions to complement each other. Accordingly, as long as the polarizer 1 and the polarizer 2 are considered as a single body, the CR of the entire liquid crystal display device can be sufficiently secured as long as the contrast of the polarizer is sufficient. On the other hand, lowering the contrast of the polarizer 24 directly leads to lowering of the CR of the liquid crystal display device, so it is not preferable to set the single transmittance of the polarizer 24 large.
  • the reflective polarizer Since the light is absorbed by the optical element, an optical loss occurs even when the composite polarizer is used. If the polarization performance of the reflective polarizer is perfect, sufficient performance can be obtained with the reflective polarizer itself, so there is little significance in stacking with an absorptive polarizer and using it as a composite polarizer. In other words, when it is used as a composite polarizer in which a reflective polarizer and an absorption polarizer are laminated, it is almost limited to the case where the performance of the reflective polarizer is insufficient. It can be said that light loss occurs in the later absorption polarizer.
  • At least one of the polarizers 1 and 2 is preferably set to have a large single transmittance, and more preferably set to be larger than that of the polarizer 24.
  • the single transmittance of the polarizers 1 and 2 is more preferably larger than that of the polarizer 24.
  • the relationship between the single transmittance of each of the polarizers 1, 2, and 24 and the contrast of the polarizer will be described using specific calculation results.
  • the polarizer 24, the polarizer 2, and the polarizer 1 are selected from the polarizers A to D shown in Table 1, the parallel transmittance, the orthogonal transmittance, and the contrast of the polarizer are simulated. It is shown in 2. Since the polarizer 2 and the polarizer 1 are used so that their transmission axes (absorption axes) are parallel to each other, it is considered that the two polarizers function as a single polarizer II.
  • the parallel transmittance and orthogonal transmittance when the polarizer I (corresponding to the polarizer 24) and the polarizer II were combined were calculated.
  • this simulation does not include a liquid crystal cell or a birefringent layer.
  • the transmittance of the polarizer alone and the transmittance of the liquid crystal display device are small. It is known that there is also a correlation between the magnitude of the contrast of the polarizer and the magnitude of the contrast (CR) of the liquid crystal display device. As shown in Table 2, in the polarizer 2 and the polarizer 1, the contrast of the entire system (combination of the polarizers I and II) can be achieved even if the single transmittance is set large instead of sacrificing the contrast to some extent. Has little effect. At this time, high transmittance can be achieved while maintaining high CR of the liquid crystal display device.
  • the light use efficiency is improved by positively adjusting at least one of the polarizer 1 and the polarizer 2 to high transmittance. Since there are a total of two polarizers, a polarizer 1 and a polarizer 2, on the back side of the liquid crystal panel, if a sufficient degree of polarization can be secured with these two sheets, the decrease in the CR of the liquid crystal display device is suppressed, and the light is reduced. Utilization efficiency can be improved.
  • the single transmittance of either polarizer may be increased.
  • the single transmittance of the other polarizer may be substantially equal to the single transmittance of the polarizer 24. Or smaller. From the viewpoint of manufacturing efficiency of the liquid crystal display device, it is preferable that the single transmittance of the polarizer 1 is larger than the single transmittance of the polarizer 24. As a result, the production line of the conventional liquid crystal display device can be diverted.
  • the polarizers 1 and 2 may have the same single transmittance or may be different from each other.
  • a reflective polarizer it is more preferable to use a reflective polarizer, and from the viewpoint of obtaining high contrast when using a reflective polarizer, at least one of the polarizer 24 and the polarizers 1 and 2 is used.
  • the polarizer 24 and one of the polarizers 1 and 2 more preferably include an absorptive polarizer.
  • a protective film such as a triacetyl cellulose (TAC) film may be laminated on both sides of the polarizer.
  • TAC triacetyl cellulose
  • the protective film is attached to the polarizer via any suitable adhesive layer (not shown).
  • the birefringent layer may have the function of a protective film.
  • the “adhesive layer” refers to a layer that joins surfaces of adjacent optical members and integrates them with practically sufficient adhesive force and adhesion time.
  • the material for forming the adhesive layer include an adhesive and an anchor coat agent.
  • the adhesive layer may have a multilayer structure in which an anchor coat layer is formed on the surface of an adherend and an adhesive layer is formed thereon. Further, it may be a thin layer that cannot be visually recognized.
  • the liquid crystal mode of the liquid crystal panel is not particularly limited, and the liquid crystal mode may be such that black display is performed by aligning the liquid crystal molecules in the liquid crystal layer perpendicularly to the substrate surface, or the liquid crystal molecules in the liquid crystal layer are horizontal to the substrate surface. Alternatively, black display may be performed by orientation in a direction that is neither vertical nor horizontal. From the viewpoint of obtaining a high CR, a vertical alignment (VA) mode that performs black display by aligning liquid crystal molecules in the liquid crystal layer substantially perpendicularly to the substrate surface is more preferable. That is, the display mode of the liquid crystal display device 30 is preferably a vertical alignment mode.
  • the liquid crystal panel may be driven by a simple matrix method (passive matrix method), a plasma address method, or the like.
  • a simple matrix method passive matrix method
  • a plasma address method or the like.
  • a liquid crystal layer is sandwiched between a pair of substrates each having an electrode formed thereon, and display is performed by applying a voltage between the electrodes.
  • the VA mode for example, an MVA (Multi-domain Vertical Alignment) mode, a CPA (Continuous Pinheal Alignment) mode, a PVA (Patterned Vertical Alignment) mode, and a BVA (Beared VT) mode.
  • UV2A Ultra Violet Induced VA
  • PSA Polymer Sustained Alignment
  • IPS-VA In Plane Switching-Vertical Alignment
  • TBA Transverse B) nd Alignment
  • the average pretilt angle of the liquid crystal molecules is preferably 80 ° or more (more preferably 85 ° or more).
  • the backlight (BL) unit 25 is not particularly limited, and, for example, a cold cathode fluorescent lamp (CCFL), a hot cathode tube (HCFL), a light emitting diode (LED: Light Emitting Diode).
  • a light source including at least a light source such as In general, it is more preferable to provide a diffusion layer such as a diffusion plate or a diffusion sheet in order to uniformize the light emitted from the light source that is a dot or a line in a planar shape.
  • collimation (condensation) of incident light to the liquid crystal panel is performed by the polarizer 1 and the birefringent layer 3 (including the polarizer 2) included between the polarizer 2 and the BL unit 25. Therefore, the BL unit itself does not necessarily have a collimating function. However, from the viewpoint of collimating the incident light on the liquid crystal panel to increase the brightness in the normal direction, further improving the CR, or diverting the conventional BL unit without change, the BL unit itself It may include an optical sheet such as a lens sheet or a prism sheet, and may have a collimating function to some extent.
  • a bright display can be obtained in the normal direction and four directions (preferably in the vertical and horizontal directions) without providing a diffusing element.
  • a diffusing element may be further provided on the observation surface side of the polarizer 24.
  • the birefringent layer 3 and the polarizer 1 are attached to the liquid crystal panel 22 side.
  • the polarizer 1 or the polarizer 1 and the birefringent layer 3 are attached to the BL unit 25. It may be done.
  • an isotropic film may be inserted between the members.
  • an air layer may be used.
  • the liquid crystal display device 31 of the present embodiment is a transmissive liquid crystal display device.
  • a polarizer 24, a birefringent layer 23, a liquid crystal panel 22 including a liquid crystal layer This is a liquid crystal display device obtained by laminating the refractive layer 21, the polarizer 2, the birefringent layer 4, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 4, and the polarizer 1 constitute an optical element 11.
  • the configuration of the liquid crystal display device 31 according to the second embodiment is the same as the configuration of the liquid crystal display device 30 according to the first embodiment, except that the birefringent layer 4 is used instead of the birefringent layer 3. is there.
  • the birefringent layer 4 a first type birefringent layer or a second type birefringent layer is used. That is, the birefringent layer 4 satisfies 2 ⁇ NZ ⁇ 10 or ⁇ 9 ⁇ NZ ⁇ ⁇ 1.
  • the birefringent layer 4 is arranged so that the angle formed by the transmission axis of the polarizer 1 and the in-plane slow layer axis of the birefringent layer 4 is not 45 °.
  • birefringence is applied to light incident from the normal direction of the liquid crystal panel 22, the polarization axis directions of the polarizers 1 and 2, and the absorption axis or reflection axis direction of the polarizers 1 and 2.
  • High transmission is observed because layer 3 does not function effectively.
  • the birefringent layer 3 functions effectively for light incident obliquely with respect to the axes of the polarizers 1 and 2 and obliquely with respect to the surface of the polarizer 1. Rate is observed.
  • the emitted light from the BL unit 25 can be selectively collimated (parallelized), and a cross-shaped light distribution can be realized. Accordingly, similarly to the case of the first embodiment, light leakage due to scattering inside the liquid crystal panel 22 can be sufficiently reduced, and as a result, CR can be effectively improved.
  • the angle formed between the transmission axis of the polarizer 1 and the in-plane slow layer axis of the birefringent layer 4 is preferably in the range of 90 ⁇ 20 ° or 0 ⁇ 20 °.
  • the in-plane slow layer axis of the birefringent layer 4 are preferably orthogonal to each other, more preferably parallel to each other, and still more preferably orthogonal to each other.
  • of the thickness direction retardation of the birefringent layer 4 is preferably
  • the birefringent layer 4 preferably satisfies NZ ⁇ ⁇ 2 or 3 ⁇ NZ, and more preferably satisfies NZ ⁇ ⁇ 3 or 4 ⁇ NZ.
  • shaft of the polarizers 1 and 2 and entered from the diagonal direction with respect to the surface of the polarizer 1 can be reduced more.
  • the birefringent layer 4 is illustrated as being composed of a single birefringent layer, but the birefringent layer 4 may be composed of a plurality of birefringent layers. For example, three birefringent layers may be stacked to function as one birefringent layer as a total. This makes it possible to use a large-area and inexpensive birefringent layer that is widely used as a conventional optical compensation film for liquid crystal display devices.
  • a birefringent layer similar to the birefringent layer 4 and a polarizer similar to the polarizer 1 are disposed on the polarizer 1 side on the backlight (BL) unit 25 side of the polarizer 1. May be laminated in this order.
  • shaft of the polarizers 1 and 2 and diagonally with respect to the surface of the polarizer 1 can be reduced especially effectively.
  • the birefringent layer 4 and the polarizer 1 are attached to the liquid crystal panel 22 side.
  • the polarizer 1 or the polarizer 1 and the birefringent layer 4 are provided in the BL unit 25. It may be attached to.
  • the axial angles and phase difference values of the respective polarizers, birefringent layers, and VA mode liquid crystal layers in the respective embodiments are shown in the corresponding drawings.
  • the VA liquid crystal layer (a kind of the fourth birefringent layer when no voltage is applied) has no in-plane anisotropy, and therefore does not indicate an axial angle.
  • the C plate (third birefringent layer, fourth birefringent layer) is also treated as having no in-plane anisotropy, so the axial angle is not shown, or the axial angle It is shown as 0 ° or 90 °.
  • the meaning of describing the axis angle is different from an ideal C plate in which the in-plane anisotropy is completely zero, and an actually manufactured C plate may have a minute in-plane anisotropy. Therefore, it indicates the axial angle in that case. Only in the case of the C plate, the axis angle represents a more preferable axis angle, and the effect of the present invention is not limited to the axis angle.
  • the liquid crystal display device 32 of this embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 5, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 5, and the polarizer 1 constitute an optical element 12, and the birefringent layer 5 corresponds to the birefringent layer of the present invention.
  • FIG. 4 is the polar at azimuth 0 °, azimuth 45 °, azimuth 90 °, and azimuth 135 °. It is a graph which shows the relationship between an angle
  • FIG. 5 shows a calculation result of transmittance viewing angle characteristics of one polarizer having an absorption axis azimuth 90 ° (transmission axis azimuth 0 °), and another polarizer having an absorption axis azimuth 90 °.
  • FIG. 6 shows the calculation result of the viewing angle characteristic of the transmittance when the sheets are stacked (two polarizers arranged in parallel Nicols).
  • the transmittance at azimuths of 45 ° and 135 ° is higher than the transmittance at azimuths of 0 ° and 90 ° at oblique viewing angles having large polar angles. It is low.
  • the transmittance in the normal direction (polar angle 0 °) and oblique viewing angles of 0 ° and 90 ° azimuth is completely the same as the calculation result in the case of only two polarizers (polarizers 1 and 2). is there.
  • the transmittance of the oblique viewing angle at 45 ° and 135 ° can be increased without affecting the transmittance of the oblique viewing angle at the normal direction and the orientations of 0 ° and 90 °. Can be reduced.
  • an optical element composed of such a polarizer and a birefringent layer on the BL unit, the light distribution of the light emitted from the BL unit is changed, and the light distribution of the incident light to the liquid crystal panel is changed.
  • Anisotropic collimation that selectively concentrates in the normal direction and the oblique directions of azimuths of 0 ° and 90 ° is possible. The operation principle will be described in detail as follows.
  • the birefringent layer 5 has a non-zero phase difference (birefringence) and functions as a birefringent layer.
  • the effective slow axis of the birefringent layer 5 is parallel to the absorption axis of the polarizer 1. Accordingly, also in this case, the birefringent layer 5 does not substantially change the polarization state of the light after passing through the polarizer 1, and the same transmittance as that obtained with only two polarizers is obtained.
  • the effective slow axis of the birefringent layer 5 is orthogonal to the absorption axis of the polarizer 1.
  • the polarization state of the light after passing through the polarizer 1 is not changed, and the same transmittance as in the case of using only two polarizers is obtained.
  • the effective slow axis of the birefringent layer 5 is neither parallel nor orthogonal to the absorption axis of the polarizer 1.
  • the layer 5 changes the polarization state of the light after passing through the polarizer 1. Therefore, the transmittance is lower than in the case of using only two polarizers. From the above, it is possible to reduce the transmittance of the oblique viewing angles of 45 ° and 135 ° without affecting the normal direction and the transmittance of the oblique viewing angles of 0 ° and 90 °.
  • the liquid crystal display device 33 of the present embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 6, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 6, and the polarizer 1 constitute an optical element 13, and the birefringent layer 6 corresponds to the birefringent layer of the present invention.
  • the liquid crystal display device 34 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 9, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side.
  • 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 7, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 7, and the polarizer 1 constitute an optical element 14, and the birefringent layer 7 corresponds to the birefringent layer of the present invention.
  • the liquid crystal display device 35 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 11, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side.
  • 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 8, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 8, and the polarizer 1 constitute an optical element 15, and the birefringent layer 8 corresponds to the birefringent layer of the present invention.
  • the liquid crystal display device 36 of this embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22, a liquid crystal display device obtained by laminating a birefringent layer 21, a polarizer 2, a birefringent layer 7, a polarizer 1, a birefringent layer 8, a polarizer 50, and a backlight (BL) unit 25 in this order. is there.
  • the polarizer 2, the birefringent layer 7, the polarizer 1, the birefringent layer 8, and the polarizer 50 constitute an optical element 16, and the birefringent layers 7 and 8 correspond to the birefringent layer of the present invention.
  • FIG. 14 shows the calculation result of the viewing angle characteristic of the transmittance observed at the position of * in FIG. 13 when stacked and illuminated with a BL unit assuming Lambertian. As shown in FIG.
  • the transmittance at azimuths of 45 ° and 135 ° is lower than the transmittance at azimuths of 0 ° and 90 °.
  • the seventh embodiment is designed for the purpose of obtaining a viewing angle characteristic that suppresses the transmittance at a polar angle of 40 ° to 60 ° and also suppresses the transmittance at around a polar angle of 70 °. It is a thing.
  • either one of the birefringent layers 7 and 8 may be the first type birefringent layer, or both the birefringent layers 7 and 8 may be the first type birefringent layers. It may be a layer.
  • the first birefringent layer and the absorption axis of the polarizer adjacent to the first birefringent layer are laminated so as to be 90 ° or 0 °.
  • the polarizers 1, 2, and 50 has a single transmittance larger than that of the polarizer 24.
  • the single transmittance of any one of the polarizers 1, 2, and 50 may be larger than the single transmittance of the polarizer 24.
  • the polarizers 1, 2, and 50 there may be a polarizer having a single transmittance substantially equal to the single transmittance of the polarizer 24, or a polarizer smaller than the single transmittance of the polarizer 24. There may be.
  • the single transmittance of the polarizer 1 and / or the polarizer 50 is larger than the single transmittance of the polarizer 24.
  • the polarizers 1, 2, and 50 have a single transmittance larger than that of the polarizer 24, and all three simplexes. It is particularly preferable that the transmittance is larger than that of the polarizer 24.
  • the polarizers (two or three of the polarizers 1, 2 and 50) having a single transmittance larger than that of the polarizer 24 may have the same single transmittance or different from each other. Also good.
  • the C plate When the C plate is used for the birefringent layer between the polarizer 1 and the polarizer 2 (hereinafter also referred to as the first birefringent layer) using FIGS.
  • the relationship between the Rth of the first birefringent layer and the change in transmittance will be described.
  • FIG. 16 shows the calculation result of the change in viewing angle characteristics when the Rth value of the first birefringent layer is changed from 0 nm to ⁇ 1000 nm. Regardless of the magnitude of Rth, the transmissivity at the azimuths of 0 ° and 90 ° is the same as in the case without the first birefringent layer, and the transmissivity at the azimuth of 45 ° and the transmissivity at the azimuth of 135 °. Since the rate is always the same, the graph in FIG. 16 shows only the relationship between the polar angle and the transmittance at an azimuth of 45 °.
  • the transmittance at an oblique viewing angle of less than 40 ° polar angle decreases.
  • the decrease in transmittance was clearly confirmed at 400 nm or more, and the decrease in transmittance was confirmed more remarkably at 600 nm or more.
  • the transmittance with a polar angle of less than 40 ° is lower than when -600 nm is selected. Since both the reduction of the light leakage due to the increase and the increase of the light leakage due to the increase in the transmittance of the polar angle of 40 ° or more are observed, good results are not necessarily obtained. As described above, it is dependent on the viewing angle characteristics of the liquid crystal panel which of the Rth first birefringent layers can provide a greater light leakage reduction effect.
  • the optimum Rth of the first birefringent layer is determined according to the properties of the liquid crystal panel and the usage pattern.
  • Rth ⁇ 600 nm, which is the last Rth that does not cause inversion bumps, is employed.
  • the transmittance can be increased over a wide polar angle range by using a combination of the first birefringent layers having different Rths. It can also be kept low.
  • the liquid crystal display device 37 of this embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 9, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 9, and the polarizer 1 constitute an optical element 17, and the birefringent layer 9 corresponds to the birefringent layer of the present invention.
  • FIG. 19 shows a simulation result regarding the viewing angle characteristics of the optical element 17 according to the eighth embodiment.
  • 18 shows the calculation result of the viewing angle characteristic of the transmittance observed at the position of ⁇ in FIG. 18 when illuminated. As shown in FIG. 19, at an oblique viewing angle having a large polar angle, the transmittance at azimuths of 45 ° and 135 ° is lower than the transmittance at azimuths of 0 ° and 90 °.
  • substantially the same transmittance can be obtained as in the case where there is no birefringent layer 9, that is, only two polarizers.
  • the effective slow axis of the birefringent layer 9 is orthogonal or parallel to the absorption axis of the polarizer 1 (or orthogonal in the case of Embodiment 8).
  • the birefringent layer 9 does not substantially change the polarization state of the light after passing through the polarizer 1, and the same transmittance as in the case of using only two polarizers is obtained.
  • the effective slow axis of the birefringent layer 9 is orthogonal or parallel to the absorption axis of the polarizer 1 (or orthogonal in the case of Embodiment 8). Also in this case, the birefringent layer 9 does not substantially change the polarization state of the light after passing through the polarizer 1, and the same transmittance as in the case of using only two polarizers is obtained.
  • the effective slow axis of the birefringent layer 9 is neither parallel nor orthogonal to the absorption axis of the polarizer 1, and in this case, the polarizer 1 Changes the polarization state of the light after passing through the polarizer 1. Therefore, the transmittance is lower than in the case of using only two polarizers. From the above, it is possible to reduce the transmittance of the oblique viewing angles of 45 ° and 135 ° without affecting the normal direction and the transmittance of the oblique viewing angles of 0 ° and 90 °.
  • the liquid crystal display device 38 of this embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 9, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 9, and the polarizer 1 constitute an optical element 18, and the birefringent layer 9 corresponds to the birefringent layer of the present invention.
  • FIG. 21 shows a simulation result regarding the viewing angle characteristics of the optical element 18 according to the ninth embodiment.
  • FIG. 21 shows the calculation result of the viewing angle characteristic of the transmittance observed at the position of ⁇ in FIG. 20 when illuminated. As shown in FIG.
  • the transmittance at the azimuths of 45 ° and 135 ° is lower than the transmittance at the azimuths of 0 ° and 90 ° at an oblique viewing angle having a large polar angle.
  • the effect is limited as compared with the case of the eighth embodiment using the birefringent layer 9 having the same retardation value. That is, it can be seen that the in-plane slow axis of the birefringent layer 9 is more preferably orthogonal to the absorption axis of the polarizer 1. The reason is analyzed in detail and shown below.
  • second polarizer 2 shows the collimating optical elements (second polarizer 2, first birefringent layer 6, and first polarizer 1) of Embodiments 8 and 9, respectively, with an azimuth of 45 ° and a polar angle of 60 °. It is a figure which shows transition of a polarization state on the Poincare sphere at the time of observing from the diagonal viewing angle.
  • Poincare sphere The concept of Poincare sphere is widely known in the field of crystal optics and the like as a useful technique for tracking the polarization state changing through the birefringent layer (for example, Hiroshi Takasaki, “Crystal optics”, Morikita Publishing, 1975, p.146-163).
  • right-handed polarized light is represented in the upper hemisphere
  • left-handed polarized light is represented in the lower hemisphere
  • linearly polarized light is represented in the equator
  • right circularly polarized light and left circularly polarized light are represented in the upper and lower poles.
  • the two polarization states that are symmetric with respect to the center of the sphere have the same absolute value of the ellipticity angle and the opposite polarities, so that a pair of polarized light whose angle between the polarization axes of each other is 90 °. It is made. Also, the effect of the birefringent layer on the Poincare sphere is that the polarization state immediately before passing through the birefringent layer is expressed by the slow axis on the Poincare sphere (more precisely, the natural vibration of two birefringent layers).
  • Points P0 and P1 representing the state are illustrated on the S1-S2 plane of the Poincare sphere as shown in FIG.
  • Point E is a point representing the polarization state of the extinction position (polarized light oscillating in the absorption axis direction) of the polarizer 2 when viewed from an oblique direction with an azimuth of 45 ° and a polar angle of 60 °.
  • the points representing the respective polarization states are actually on the Poincare sphere, they are projected onto the S1-S2 plane for illustration.
  • the point P0 representing the polarization state of the light after passing through the polarizer 1 connects the point R3 representing the slow axis of the birefringent layer 9 on the Poincare sphere by passing through the birefringent layer 9 and the center O of the Poincare sphere.
  • the line segment R3O is rotated counterclockwise and converted into P1, and then enters the polarizer 2.
  • light is transmitted according to the distance between the point P1 representing the polarization state and the point E representing the polarization state of the extinction position of the polarizer 2. More precisely, the transmittance is proportional to sin 2 ((1/2) ⁇ ⁇ P1OE).
  • the angle formed by the slow axis of the birefringent layer 9 and the absorption axis of the polarizer 2 is 0 ° (when observed from the normal direction).
  • the points R3 and E are close to each other. For this reason, even if rotational movement about the line segment R3O is performed, the point P1 cannot reach the vicinity of the point E, and the transmittance is not so small.
  • the angle formed by the slow axis of the birefringent layer 9 and the absorption axis of the polarizer 2 is 90 °. E is away. Therefore, by performing rotational movement around the line segment R3O, the point P1 can reach close to the point E, and low transmission can be realized as compared with the case of the eighth embodiment.
  • the position of the point R3 representing the slow axis when the birefringent layer 9 is observed from an oblique direction with an azimuth of 45 ° and a polar angle of 60 ° depends on the NZ coefficient.
  • the birefringent layer 9 approaches the third type of birefringent layer (negative C plate), and therefore the angle formed by the slow axis of the birefringent layer 9 and the absorption axis of the polarizer 2 is 0 °.
  • the point R3 approaches the + S1 axis, and in the limit of 1 ⁇ NZ (NZ ⁇ + ⁇ ), the birefringent layer 9 becomes a completely negative C plate, and the point R3 coincides with the + S1 axis.
  • the NZ coefficient is reduced, the birefringent layer 9 approaches the positive C plate, so the angle formed by the slow axis of the birefringent layer 9 and the absorption axis of the polarizer 2 is 0 ° or 90 °.
  • the point R3 approaches the -S1 axis.
  • NZ 10.5
  • the first birefringent layer approaches the negative C plate, so that the transmittance in the oblique direction is sufficiently lowered in both the orthogonal arrangement and the parallel arrangement.
  • NZ exceeds 10
  • it may be either orthogonal arrangement or parallel arrangement.
  • the point P1 can exist only on the line segment P0P1 (on the S1-S2 plane of the Poincare sphere) or its extension line, and a sufficient collimating effect cannot be obtained.
  • the slow axis of the first birefringent layer and the absorption axis of the polarizer 2 are arranged orthogonally (however, 10 ⁇ In the case of NZ, it is preferable to satisfy the condition that it may be either orthogonal or parallel, and (2) the NZ coefficient is as large as possible.
  • the in-plane retardation R is scanned for each NZ coefficient, and the design guideline of minimizing the transmittance T (45, 60) at an azimuth of 45 ° and a polar angle of 60 ° is used. The result of optimization is shown. T (45, 60) at the time of selecting the optimum R is shown as a function of the NZ coefficient.
  • numbers obtained by normalizing T (45, 60) with values in the case of no first birefringent layer are used. As shown in FIG. 26, T (45, 60) can be kept low as NZ increases.
  • the liquid crystal display device 39 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 27, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side.
  • 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 29, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 29, and the polarizer 1 constitute an optical element 19, and the birefringent layer 29 corresponds to the birefringent layer of the present invention.
  • the transmittance viewing angle characteristic of an optical element sandwiched between two birefringent layers and a fast axis angle ⁇ ° ( slow axis angle ⁇ ° + 90 °) between two polarizers having an absorption axis angle of 90 °.
  • the transmittance at the azimuths of 45 ° and 135 ° is lower than the transmittance at the azimuths of 0 ° and 90 ° at an oblique viewing angle with a large polar angle.
  • the liquid crystal display device 39 (optical element 19) of the present embodiment and the liquid crystal display device 37 (optical element 17) of the eighth embodiment showed the same viewing angle characteristics (FIGS. 19 and 19). 28).
  • the liquid crystal display device 40 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 29, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side.
  • 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 29, the polarizer 1, and the backlight (BL) unit 25 in this order.
  • the polarizer 2, the birefringent layer 29, and the polarizer 1 constitute the optical element 20, and the birefringent layer 29 corresponds to the birefringent layer of the present invention.
  • the liquid crystal display device 40 (optical element 20) of the present embodiment and the liquid crystal display device 38 (optical element 18) of the ninth embodiment are expected to exhibit the same viewing angle characteristics.
  • the liquid crystal display device 40 (optical element 20) of the present embodiment and the liquid crystal display device 38 (optical element 18) of the ninth embodiment showed the same viewing angle characteristics (FIGS. 21 and 29). .
  • the absorption axis of the polarizer and the in-plane of the birefringent layer are used.
  • the relationship between the angle formed by the slow axis and the transmittance will be described.
  • the transmittance in the oblique direction of 0 ° or 90 ° may be higher than the transmittance in the oblique direction of 45 ° or 135 °, which is not preferable. It was found from FIG. 31 to FIG. 41 that the allowable shaft angle is 0 ⁇ 20 °.
  • the azimuth angle 45 ° or 135 ° such as the axial angle 0 ⁇ 25 ° shown in FIGS.
  • the polar angle range in which the transmittance in the oblique direction exceeds the transmittance in the azimuth 0 ° or 90 ° becomes wider than the lower polar angle range, and the CR improvement effect may be limited.
  • the allowable shaft angle is more preferably 0 ⁇ 10 °.
  • the transmittance in the oblique direction of 45 ° or 135 ° does not exceed the transmittance of 0 ° or 90 ° in any polar angle within this range. Therefore, a high CR improvement effect can be obtained.
  • the azimuth 45 ° or 135 ° such as the axial angle 90 ⁇ 25 ° shown in FIGS.
  • the polar angle range in which the transmittance in the oblique direction exceeds the transmittance in the azimuth 0 ° or 90 ° becomes wider than the lower polar angle range, and the CR improvement effect may be limited.
  • the allowable shaft angle is more preferably 0 ⁇ 10 °.
  • the transmittance in the oblique direction of 45 ° or 135 ° does not exceed the transmittance of 0 ° or 90 ° in any polar angle within this range. Therefore, a high CR improvement effect can be obtained.
  • a plurality of birefringences are laminated so that the angle formed between the slow axes of each other is 0 ° or 90 °, and the effective position as a laminate is obtained.
  • a method of setting the phase difference to 0 is conceivable.
  • the simplest configuration is a method of laminating two birefringent layers 103 and 104 having the same in-plane retardation R so that the angle formed between the axes is 90 °. .
  • two birefringent layers having the same in-plane phase difference and an angle of 90 ° between each other act to compensate for each other's phase difference.
  • the transmittance does not decrease with respect to incidence in the normal direction.
  • the effective phase difference is not zero because the angle formed by the effective axis of each birefringent layer is not 90 ° with respect to the incidence from the oblique direction at 0 ° or 90 °.
  • So-called elliptical birefringence related to optical rotation (a phenomenon of rotating the direction of polarized light) remains.
  • the transmittance is reduced with respect to incidence from an oblique direction at an azimuth of 0 ° or 90 ° as compared to the case where there is no birefringent layer or the case of the eighth embodiment.
  • this method also has a problem from the viewpoint of realizing cross-shaped collimation that does not reduce the transmittance with respect to the normal direction and the oblique direction at 0 ° or 90 ° in the azimuth direction. The same can be said for Comparative Example 2 described later.
  • the liquid crystal display device 130 of the present embodiment is a transmissive liquid crystal display device, and as shown in FIG. 54, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in order from the observation surface side.
  • 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, and the backlight (BL) unit 25 in this order. Except for not having the birefringent layer 5 and the polarizer 1, it is the same as the liquid crystal display device of the third embodiment.
  • the liquid crystal display device 131 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 55, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in order from the viewing surface side.
  • 22 is a liquid crystal display device obtained by laminating a birefringent layer 21, a polarizer 2, two birefringent layers 9, a polarizer 1, and a backlight (BL) unit 25 in this order.
  • the two birefringent layers 9 are inserted so that the axial angles are 45 ° and 135 °, respectively.
  • FIG. 55 shows the calculation result of the viewing angle characteristic of the transmittance observed at the position of * in FIG. 55 when it is inserted so as to be at 0 ° and illuminated with a BL unit assuming Lambertian. As shown in FIG.
  • the transmittance is low compared to the case where there is no birefringent layer at an oblique viewing angle with a large polar angle (see, for example, FIG. 6). It can be said that the optical element composed of such a combination of a polarizer and a birefringent layer aims at isotropic collimation that selectively concentrates the light distribution of incident light on the liquid crystal panel in the normal direction. Unlike Embodiments 1 to 11 of the present invention, the transmittance decreases even when the orientation is 0 ° and 90 ° because the slow axis of the birefringent layer 9 is neither parallel nor orthogonal to the absorption axis of the first polarizer 1.
  • the effective slow axis of the birefringent layer 9 is neither parallel nor orthogonal to the absorption axis of the polarizer 1, and the birefringent layer 9 passes through the polarizer 1. This is to change the polarization state of the later light.
  • the two birefringent layers 9 are laminated at an angle of 45 ° and 135 °, respectively, and the angle formed by the two slow axes is 90 °, and the in-plane retardation R is equal, so that when observing from the normal direction, The effective phase difference is zero, and the same transmittance as in the case where there is no birefringent layer in the normal direction, that is, only two polarizers, is obtained.
  • the laminate of the two birefringent layers 9 functions as a birefringent layer regardless of the viewing direction, and thus the transmittance is lower than that in the case where there is no birefringent layer.
  • Example 1 As the liquid crystal display device of Example 1, the liquid crystal display device 32 of Embodiment 3 was actually manufactured.
  • norbornene (NB) was used.
  • NB norbornene
  • TAC triacetyl cellulose
  • an absorptive polarizer in which a dichroic iodine complex was adsorbed and oriented on a polyvinyl alcohol (PVA) film was used.
  • each polarizer single transmittance, parallel transmittance (Tp), orthogonal transmittance (Tc), and contrast of the polarizer
  • Tp parallel transmittance
  • Tc orthogonal transmittance
  • contrast of the polarizer was set to be A in Table 1 above.
  • the configuration of the backlight unit was an LED light source, a diffusion plate, a diffusion sheet, and a lens sheet laminated in this order.
  • Example 2 As the liquid crystal display device of Example 2, the liquid crystal display device 34 of Embodiment 5 was actually manufactured.
  • As a material for these birefringent layers norbornene (NB) was used. The rest is the same as the first embodiment.
  • Example 3 As the liquid crystal display device of Example 3, the liquid crystal display device 35 of Embodiment 6 was actually manufactured.
  • As a material for these birefringent layers norbornene (NB) was used. The rest is the same as the first embodiment.
  • Example 4 As the liquid crystal display device of Example 4, the liquid crystal display device 36 of Embodiment 7 was actually manufactured.
  • norbornene (NB) was used.
  • cholesteric liquid crystal (ChLC) was used as a material for the birefringent layer 9. The rest is the same as the first embodiment.
  • Example 5 As the liquid crystal display device of Example 5, the liquid crystal display device 37 of Embodiment 8 was actually manufactured.
  • TAC Triacetyl cellulose
  • Example 5 is the same as Example 5 except that the characteristics (single transmittance, parallel transmittance (Tp), orthogonal transmittance (Tc), and contrast of the polarizer) of each polarizer are changed.
  • Example 6 As the liquid crystal display device of Example 6, the liquid crystal display device 38 of Embodiment 9 was actually manufactured.
  • Example 7 As a liquid crystal display device of Example 7, a liquid crystal display device 37 of Embodiment 8 was actually manufactured.
  • Comparative Example 1 As a liquid crystal display device of comparative example 1, a liquid crystal display device of comparative form 1 was actually made. Except for not having the birefringent layer 5, it is the same as the liquid crystal display device of Example 1.
  • Comparative Example 2 As a liquid crystal display device of Comparative Example 2, a liquid crystal display device of Comparative Example 2 was actually produced.
  • the birefringent layer 9 two birefringent layers 9 used in Example 5 were inserted between the polarizer 1 and the polarizer 2 so that the axial angles were 45 ° and 135 °, respectively. The rest is the same as the liquid crystal display device of Example 5.
  • the liquid crystal display devices of Examples 1 to 7 according to the present invention a high CR was obtained as compared with Comparative Example 1, and high CR and an excellent display characteristic were confirmed by visual subjective evaluation.
  • the liquid crystal display devices of Examples 1 to 7 of the present invention do not include a diffusing element outside the viewing side of the third polarizer 24.
  • Bright display was obtained even from oblique viewing angles of 0 ° and 90 ° (up, down, left and right), and sufficient viewing angle characteristics were obtained for practical use, confirming the effect of anisotropic collimation.
  • high white luminance was obtained as compared with Example 5 while high CR was obtained as in Example 5.
  • Example 7 high CR and high white luminance were obtained while high CR was obtained as in Example 5. Further, when an anti-glare (AG) film having a haze of 41% is provided as a diffusing element outside the viewing side of the polarizer 1 of the liquid crystal display devices of Examples 1 to 7, bright display can be obtained even at azimuths of 45 ° and 135 °. A viewing angle characteristic comparable to that of the liquid crystal display device of Comparative Example 1 in which the incident light on the liquid crystal panel was not collimated was obtained.
  • AG anti-glare
  • Optical element 22 Liquid crystal panel 25: Backlight (BL) units 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 130, 131: Liquid crystal display device

Abstract

The present invention provides: an optical element which has excellent productivity and is capable of providing high CR; and a liquid crystal display device. The present invention is an optical element which is provided with a first polarizer, a birefringent layer and a second polarizer. The first polarizer, the birefringent layer and the second polarizer are sequentially laminated in this order, and the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other. The biaxiality parameter NZ of the birefringent layer satisfies 10 ≤ NZ or NZ ≤ -9, and the absolute value |Rth| of the retardation of the birefringent layer in the thickness direction satisfies |Rth| ≥ 200 nm.

Description

光学素子、及び、液晶表示装置Optical element and liquid crystal display device
本発明は、光学素子、及び、液晶表示装置に関する。より詳しくは、偏光板と複屈折層とが積層された光学素子、及び、該光学素子を備えた液晶表示装置に関するものである。 The present invention relates to an optical element and a liquid crystal display device. More specifically, the present invention relates to an optical element in which a polarizing plate and a birefringent layer are laminated, and a liquid crystal display device including the optical element.
液晶表示装置は、通常、液晶パネル、バックライトとともに、偏光板、位相差フィルム等の光学素子を含んで構成される。液晶表示装置は、その優れた表示特性から、モニター、プロジェクタ、携帯電話、携帯情報端末(PDA)等の電子機器に幅広く利用されている。また、液晶表示装置等のディスプレイの視野角を制御するために、集光素子を利用する技術が知られている。 The liquid crystal display device is usually configured to include an optical element such as a polarizing plate and a retardation film together with a liquid crystal panel and a backlight. Liquid crystal display devices are widely used in electronic devices such as monitors, projectors, mobile phones, and personal digital assistants (PDAs) because of their excellent display characteristics. In addition, a technique using a condensing element is known in order to control the viewing angle of a display such as a liquid crystal display device.
具体的には、例えば、少なくとも、第1の偏光子、第1の基板と第2の基板との間に液晶層を有する液晶セル、光学補償素子、第2の偏光子、集光バックライトを、視認側からこの順に備える液晶表示装置が知られている(例えば、特許文献1参照。)。 Specifically, for example, at least a first polarizer, a liquid crystal cell having a liquid crystal layer between the first substrate and the second substrate, an optical compensation element, a second polarizer, and a condensing backlight A liquid crystal display device provided in this order from the viewing side is known (for example, see Patent Document 1).
また、吸収型直線偏光層、負の複屈折層、及び、反射型直線偏光層を有する集光シートや、偏光フィルム間に複屈折性フィルムが配置されたサンドイッチ構造を有するライトコントロールフィルムが知られている(例えば、特許文献2及び3参照。)。 Also known are light-collecting sheets having an absorption linear polarizing layer, a negative birefringent layer, and a reflective linear polarizing layer, and a light control film having a sandwich structure in which a birefringent film is disposed between polarizing films. (For example, refer to Patent Documents 2 and 3.)
特開2010-15038号公報JP 2010-15038 A 特開2009-265124号公報JP 2009-265124 A 特許第2561483号明細書Japanese Patent No. 2561483
ところで、液晶表示装置(液晶パネル)には、黒表示における光漏れと、それによりコントラスト比(以下では、「CR」ともいう。また、特に断りがなければ、「CR」とは、液晶パネルの基板平面に対して法線方向のCRをいう。)が低いという課題がある。製品化されている液晶パネルの単体のCR(以下では、「ネイティブCR」ともいう。)は3000~5000である。 By the way, in a liquid crystal display device (liquid crystal panel), light leakage in black display and thereby a contrast ratio (hereinafter also referred to as “CR”. Unless otherwise specified, “CR” means “CR”. There is a problem that CR in the normal direction with respect to the substrate plane is low. The single CR (hereinafter also referred to as “native CR”) of the liquid crystal panel that has been commercialized is 3000 to 5000.
これに対して、映像の明暗に合わせてバックライト輝度の明暗をダイナミックに調整し、液晶表示装置のCR(以下では、「ダイナミックCR」ともいう。)を向上させるディミングバックライトが知られており、ダイナミックCRが10000以上の液晶表示装置が知られている。 On the other hand, dimming backlights that improve the CR (hereinafter also referred to as “dynamic CR”) of a liquid crystal display device by dynamically adjusting the brightness of the backlight brightness according to the brightness of the image are known. A liquid crystal display device having a dynamic CR of 10,000 or more is known.
しかし、ディミングバックライトによるCR改善効果は、映像の種類によっては限定的であるか、或いは、全く効果が得られない点で改善の余地があった。例えば、星空、映画の字幕、白黒の市松模様等、同一フレーム内に真黒と真白が混在する映像を表示する場合、白表示の白さが犠牲になるため、バックライト輝度を低減させることができない。バックライトをその輝度を独立に制御できる複数のブロックに分割し、ブロック毎に調光を行うローカルディミングバックライトによりこの問題は多少改善されるが、ブロック内部では上記事情は変わりないので相変わらず効果は限定的であるといえる。また、ディミングバックライトを導入することで、コストアップを伴う点でも改良の余地があった。このような状況下、液晶パネルのネイティブCRの改善が望まれている。 However, the CR improvement effect by the dimming backlight is limited depending on the type of video, or there is room for improvement in that no effect can be obtained. For example, when displaying a video with a mixture of pure black and pure white within the same frame, such as a starry sky, movie subtitles, and black and white checkered patterns, the white brightness of the white display is sacrificed and the backlight luminance cannot be reduced. . This problem is somewhat improved by the local dimming backlight that divides the backlight into multiple blocks whose brightness can be controlled independently, and dimming each block, but the above situation does not change inside the block, so the effect remains the same. It can be said that it is limited. In addition, there is room for improvement in terms of cost increase by introducing a dimming backlight. Under such circumstances, it is desired to improve the native CR of the liquid crystal panel.
この点について、特許文献1には、輝度半値角が3~30°のコリメートバックライトにより、液晶パネルへの斜め入射光量を減らすことで、法線方向への光漏れ量を低減し、CRを改善するとともに、視認側偏光子の視認側に拡散素子を設けることで、正面方向の光を斜め方向に配光し、視野角を拡大する集光-拡散方式の液晶表示装置が開示されている。 With regard to this point, Patent Document 1 discloses that a collimated backlight having a luminance half-value angle of 3 to 30 ° reduces the amount of light incident obliquely on the liquid crystal panel, thereby reducing the amount of light leakage in the normal direction and CR. A condensing-diffusion-type liquid crystal display device has been disclosed that improves and distributes light in the front direction in an oblique direction and expands the viewing angle by providing a diffusing element on the viewing side of the viewing side polarizer. .
しかし、特許文献1に記載の液晶表示装置は、段落[0030]に記載があるように、全方位角において輝度半値角を小さくする(等方的にコリメートする)ことを目指していることから、段落[0047]にも記載があるように、斜め方向での輝度が小さくなるという副作用が起こり、その手当てとして拡散素子を設ける必要がある。すなわち、わざわざコリメートした光を視野角特性を向上させるために再度拡散させる必要があるため、複雑で無駄の多いシステムとなっている点で改善の余地があった。また、等方的にコリメート光を拡散させることは技術的に困難である上、そもそも光を等方的にコリメートさせることが技術的に困難である。そして、これらの技術を採用するとコストアップにつながってしまう。 However, the liquid crystal display device described in Patent Document 1 aims to reduce the luminance half-value angle (isotropically collimate) in all azimuth angles, as described in paragraph [0030]. As described in paragraph [0047], there is a side effect that luminance in an oblique direction is reduced, and it is necessary to provide a diffusing element as a countermeasure. That is, since it is necessary to diffuse the collimated light again in order to improve the viewing angle characteristics, there is room for improvement in that the system is complex and wasteful. Further, it is technically difficult to diffuse collimated light isotropically, and it is technically difficult to collimate light isotropically in the first place. And if these technologies are adopted, it will lead to cost increase.
更に、特許文献2に記載の集光シート、及び、特許文献3に記載のライトコントロールフィルムも、複屈折層と偏光子が直交でも平行でもない45°又は135°の角度を成すように積層されており、全方位斜め視角で透過率を低下させる等方的コリメーションを行うことを目的としている。したがって、特許文献2に記載の集光シート、及び、特許文献3に記載のライトコントロールフィルムも、又、特許文献1に記載の液晶表示装置と同様に改善の余地があった。 Furthermore, the light-condensing sheet described in Patent Document 2 and the light control film described in Patent Document 3 are also laminated so that the birefringent layer and the polarizer form an angle of 45 ° or 135 °, which is neither orthogonal nor parallel. The objective is to perform isotropic collimation to reduce the transmittance at oblique viewing angles in all directions. Therefore, the condensing sheet described in Patent Document 2 and the light control film described in Patent Document 3 also have room for improvement, similar to the liquid crystal display device described in Patent Document 1.
なお、集光素子としては、レンズや、マイクロブラインドフィルムも従来知られているが、これらの集光素子は、大型の液晶表示装置への適用が困難であり、また、液晶表示装置の薄型化も困難となってしまう点で改良の余地があった。 In addition, lenses and micro blind films are conventionally known as light condensing elements, but these light condensing elements are difficult to apply to large liquid crystal display devices, and the liquid crystal display devices are thinned. There was room for improvement in that it would be difficult.
本発明は、上記現状に鑑みてなされたものであり、生産性に優れた、高CRを実現できる光学素子及び液晶表示装置を提供することを目的とするものである。 The present invention has been made in view of the above-described present situation, and an object thereof is to provide an optical element and a liquid crystal display device that are excellent in productivity and can realize a high CR.
本発明者らは、液晶表示装置において、CRが低下する原因について、検討した結果、(I)偏光板性能が完全ではないことによる光漏れ、及び、(II)液晶パネル内部(下基板、液晶層、上基板)の光散乱による光漏れが原因であることを見出した。ただし、現在の液晶パネルに使用される典型的な偏光板のCRは10000~30000であるので、液晶パネルのCRが3000~5000であることの主要因は上記(II)にあると考えてよい。 As a result of examining the cause of the decrease in CR in the liquid crystal display device, the present inventors have found that (I) light leakage due to incomplete polarizing plate performance, and (II) the inside of the liquid crystal panel (lower substrate, liquid crystal It was found that light leakage due to light scattering of the layer and the upper substrate was the cause. However, since the CR of a typical polarizing plate used in a current liquid crystal panel is 10,000 to 30,000, it can be considered that the main factor that the CR of the liquid crystal panel is 3000 to 5000 is the above (II). .
上記(II)の液晶パネル内部の光散乱による光漏れについて、図57を用いて説明する。図57中の(1)に示すように、まず、液晶パネルへの斜め入射光が複屈折層(位相差フィルム)や液晶で楕円偏光に変調される。その後、(2)に示すように、散乱により進行方向を法線方向に変える(散乱前後で偏光状態は殆ど変化しない)。そして、(3)に示すように、楕円偏光のまま偏光板に到達し偏光板を透過するため、楕円率に応じて光漏れとして観測されることとなる。 Light leakage due to light scattering inside the liquid crystal panel (II) will be described with reference to FIG. As shown in (1) in FIG. 57, first, obliquely incident light on the liquid crystal panel is modulated into elliptically polarized light by a birefringent layer (retardation film) or liquid crystal. Thereafter, as shown in (2), the traveling direction is changed to the normal direction by scattering (the polarization state hardly changes before and after scattering). Then, as shown in (3), the light reaches the polarizing plate while being elliptically polarized and passes through the polarizing plate, so that light leakage is observed according to the ellipticity.
このように、前記の光散乱による光漏れとは、液晶パネルに斜め入射した光が内部散乱により法線方向へと進行方向を変え、観察面側偏光板から漏れる光のことであるので、液晶パネルへの斜め入射光量を制限することでCRは改善可能である。そして、この光漏れと斜め入射光との関係について、本発明者らは、更に鋭意検討した結果、液晶パネルのCR低下の原因となるパネル内部散乱による光漏れは、特定方位の斜め入射光に対して顕著であることを見出し、この方位での入射を制限するようなコリメートバックライトにより、CR改善効果が得られることを見出した。そして、背面側偏光子(第一偏光子)のさらに背面側(外側)に、第二偏光子を、2つの偏光子をパラレルニコルの関係になるように配し、第一偏光子及び第二偏光子の間に、(1)面内位相差が小さい所謂Cプレート、すなわちNZ≦-9、又は、10≦NZを満たす複屈折層を配し、複屈折層の厚み方向位相差の絶対値|Rth|を200nm以上にするか、又は、(2)面内位相差が小さくない複屈折層、なかでも2≦NZ<10、又は、-9<NZ≦-1を満たす複屈折層を、第一偏光子の透過軸と複屈折層の面内遅相軸とのなす角度が45°、又は、135°とならないように配することで、全方位で斜め方向への出射光を制限する等方的コリメーションではなく、光漏れが顕著となる特定方位で斜め方向への入射光を制限する異方的コリメーションが可能となり、液晶パネル内部散乱による光漏れを効果的に抑制し、CRが改善されるとともに、生産性に優れた偏光フィルムや位相差フィルムを利用できることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 As described above, the light leakage due to the light scattering is light that is obliquely incident on the liquid crystal panel, changes its traveling direction to the normal direction due to internal scattering, and leaks from the observation surface side polarizing plate. CR can be improved by limiting the amount of obliquely incident light on the panel. As a result of further diligent investigations on the relationship between the light leakage and the oblique incident light, the present inventors have found that light leakage due to panel internal scattering, which causes a decrease in CR of the liquid crystal panel, is caused by oblique incident light in a specific direction. On the other hand, it has been found that it is remarkable, and it has been found that a CR improving effect can be obtained by a collimated backlight that limits the incidence in this direction. The second polarizer is arranged on the back side (outside) of the back side polarizer (first polarizer) so that the two polarizers are in a parallel Nicol relationship, and the first polarizer and the second polarizer are arranged. Between the polarizers, (1) a so-called C plate having a small in-plane retardation, that is, a birefringent layer satisfying NZ ≦ -9 or 10 ≦ NZ, is arranged, and the absolute value of the thickness direction retardation of the birefringent layer | Rth | is set to 200 nm or more, or (2) a birefringent layer in which the in-plane retardation is not small, particularly a birefringent layer satisfying 2 ≦ NZ <10 or −9 <NZ ≦ −1. By arranging the angle between the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer not to be 45 ° or 135 °, the outgoing light in the oblique direction is limited in all directions. Anisotropic rather than isotropic collimation, which restricts incident light in an oblique direction in a specific direction where light leakage is noticeable It is possible to effectively collimate, effectively suppress light leakage due to internal scattering of liquid crystal panels, improve CR, and find that polarizing films and retardation films with excellent productivity can be used. The present inventors have arrived at the present invention.
すなわち、本発明は、第一偏光子、複屈折層及び第二偏光子を備える光学素子であって、前記第一偏光子、前記複屈折層及び前記第二偏光子は、この順に積層され、前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であり、前記複屈折層の2軸性パラメータNZは、10≦NZ、又は、NZ≦-9を満たし、前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧200nmを満たす光学素子(以下では、「本発明の第一の光学素子」ともいう。)である。 That is, the present invention is an optical element comprising a first polarizer, a birefringent layer and a second polarizer, wherein the first polarizer, the birefringent layer and the second polarizer are laminated in this order, The transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, and the biaxial parameter NZ of the birefringent layer satisfies 10 ≦ NZ or NZ ≦ −9. The absolute value | Rth | of the thickness direction retardation of the birefringent layer is an optical element satisfying | Rth | ≧ 200 nm (hereinafter also referred to as “first optical element of the present invention”).
本発明の第一の光学素子の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。 The configuration of the first optical element of the present invention is not particularly limited by other components as long as such components are formed as essential.
本発明はまた、第一偏光子、複屈折層及び第二偏光子を備える光学素子であって、前記第一偏光子、前記複屈折層及び前記第二偏光子は、この順に積層され、前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であり、前記複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とがなす角度が45°、又は、135°でない光学素子(以下では、「本発明の第二の光学素子」ともいう。)でもある。 The present invention is also an optical element comprising a first polarizer, a birefringent layer and a second polarizer, wherein the first polarizer, the birefringent layer and the second polarizer are laminated in this order, The transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, and the biaxial parameter NZ of the birefringent layer is 2 ≦ NZ <10 or −9 <NZ ≦ -1 and an optical element whose angle between the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer is not 45 ° or 135 ° (hereinafter referred to as “second invention It is also referred to as an “optical element”.
本発明の第二の光学素子の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。 The configuration of the second optical element of the present invention is not particularly limited by other components as long as such components are formed as essential.
なお、本発明の第一及び第二の光学素子において、第一偏光子の透過軸と、第二偏光子の透過軸とが互いに平行であるとは、第一偏光子の透過軸と、第二偏光子の透過軸が必ずしも厳密に互いに平行である必要はなく、より具体的には、両透過軸のなす角度は、好適には0±10°(より好適には0±5°)の範囲内に設定される。前記好適な範囲外に設定される場合は、法線方向の透過率が低下してしまうおそれがある。 In the first and second optical elements of the present invention, the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other. The transmission axes of the two polarizers do not necessarily have to be strictly parallel to each other. More specifically, the angle formed by both transmission axes is preferably 0 ± 10 ° (more preferably 0 ± 5 °). Set within range. If it is set outside the preferred range, the transmittance in the normal direction may decrease.
本発明の光学素子によれば、以下のような作用効果を奏することができる。なお、以下では、便宜上、バックライトを第二偏光子に対向するように配置し、第一及び第二の偏光子の吸収軸又は反射軸を方位90°に設定した場合について説明するが、本発明の作用効果は、この場合以外でも奏することができる。 According to the optical element of the present invention, the following effects can be obtained. Hereinafter, for the sake of convenience, the case where the backlight is disposed so as to face the second polarizer and the absorption axis or reflection axis of the first and second polarizers is set to an azimuth of 90 ° will be described. The effects of the invention can also be achieved in other cases.
まず、本発明の第一の光学素子について説明する。法線方向からの入射と、透過軸に平行な方位からの斜め方向からの入射と、吸収軸又は反射軸に平行な方位からの斜め方向からの入射とに対しては、複屈折層が第二偏光子通過後の偏光状態をほとんど変化させないので、第一偏光子と第二偏光子のパラレルニコル透過率に近い高透過率が観測される。一方、方位45°斜め方向に代表されるその他の方向からの入射に対しては、複屈折層が第二偏光子通過後の偏光状態を変化させるため、低い透過率が観測される。 First, the first optical element of the present invention will be described. The birefringent layer is used for incidence from the normal direction, incidence from an oblique direction from the direction parallel to the transmission axis, and incidence from an oblique direction from the direction parallel to the absorption axis or reflection axis. Since the polarization state after passing through the two polarizers is hardly changed, a high transmittance close to the parallel Nicol transmittance of the first polarizer and the second polarizer is observed. On the other hand, with respect to incidence from other directions typified by an azimuth of 45 °, a low transmittance is observed because the birefringent layer changes the polarization state after passing through the second polarizer.
次に、本発明の第二の光学素子について説明する。法線方向からの入射と、透過軸に平行な方位からの斜め方向からの入射と、吸収軸又は反射軸に平行な方位からの斜め方向からの入射とに対しては、複屈折層が第二偏光子通過後の偏光状態を変化させにくいので、相対的に高い透過率が観測される。一方、方位45°斜め方向に代表されるその他の方向からの入射に対しては、複屈折層が第二偏光子通過後の偏光状態を変化させるため、相対的に低い透過率が観測される。 Next, the second optical element of the present invention will be described. The birefringent layer is used for incidence from the normal direction, incidence from an oblique direction from the direction parallel to the transmission axis, and incidence from an oblique direction from the direction parallel to the absorption axis or reflection axis. Since it is difficult to change the polarization state after passing through the two polarizers, a relatively high transmittance is observed. On the other hand, a relatively low transmittance is observed for incident light from other directions typified by a 45 ° azimuth direction because the birefringent layer changes the polarization state after passing through the second polarizer. .
以上、本発明によれば、バックライトからの出射光の分布を、法線方向と、透過軸方向と、吸収軸又は反射軸方向とに選択的に集中させるようなコリメーションができる(十字型の配光分布)。前記散乱による光漏れとは、特に方位45°斜め入射光に対して顕著なので、本発明のような異方的コリメーションで充分に光漏れ低減効果があり、CR改善効果が得られる。 As described above, according to the present invention, collimation can be performed so that the distribution of light emitted from the backlight is selectively concentrated in the normal direction, the transmission axis direction, and the absorption axis or reflection axis direction (cross-shaped). Light distribution). The light leakage due to the scattering is particularly conspicuous with respect to obliquely incident light having an azimuth angle of 45 °. Therefore, anisotropic collimation as in the present invention has a sufficient light leakage reducing effect, and a CR improving effect can be obtained.
また、本発明によれば、観察面側の偏光子のさらに観察面側にわざわざ拡散素子を設けなくても、法線方向以外の複数方位で明るい表示が得られるため、拡散機能の省略、又は簡略化が可能である。集光-拡散方式ならぬ、集光-無拡散方式も可能である。例えば、方位45°、135°、225°、及び、315°への斜め出射光を制限するような異方的コリメーションを行った場合にも、それ以外の方位0°、90°、180°、及び、270°への斜め出射光、すなわち、上下左右への斜め出射光は存在するので、拡散素子の拡散機能に頼らなくとも、法線方向と上下左右方向では明るい表示が得られる。拡散素子を設けない場合には法線方向でしか明るい表示が得られない等方的コリメーションとはこの点が大きく異なる。もちろん、本発明を用いた場合においても、上下左右方向以外でも明るい表示を得るという観点からは、拡散素子を設けることがより好ましいが、従来の等方的コリメーションに比べて拡散能の低い拡散素子が使えるという点に優位性がある。 Further, according to the present invention, since a bright display can be obtained in a plurality of directions other than the normal direction without providing a diffusing element on the observation surface side of the polarizer on the observation surface side, the diffusion function can be omitted, or Simplification is possible. A condensing-non-diffusing method other than the condensing-diffusing method is also possible. For example, even when anisotropic collimation is performed to limit oblique emission light to azimuths of 45 °, 135 °, 225 °, and 315 °, the other azimuths of 0 °, 90 °, 180 °, In addition, since there is obliquely emitted light to 270 °, that is, obliquely emitted light vertically and horizontally, bright display can be obtained in the normal direction and vertically and horizontally without depending on the diffusion function of the diffusing element. This is very different from isotropic collimation in which a bright display is obtained only in the normal direction when no diffusing element is provided. Of course, even in the case of using the present invention, it is more preferable to provide a diffusing element from the viewpoint of obtaining bright display other than in the vertical and horizontal directions, but a diffusing element having a low diffusing ability as compared with conventional isotropic collimation. Is superior in that it can be used.
一方、特許文献1に記載のように、等方的にコリメートさせてしまうと、拡散素子を用いない場合は視点が一点のみに限定されてしまう。そのため、拡散素子が必須であった。 On the other hand, if the isotropic collimation is performed as described in Patent Document 1, the viewpoint is limited to only one point when the diffusion element is not used. Therefore, a diffusing element has been essential.
更に、偏光子、複屈折層といった光学部材は、容易に大型化でき、現在の技術でも、60~100インチといった大型ディスプレイ用のものも量産可能である。また、これらの光学素子は、数百マイクロメートルオーダーから数ミリメートルオーダーの厚みしかなく、また、レンズや点光源を用いてコリメーションを行う場合のように大きな空間的距離を必要としないので、ディスプレイの軽量化及び薄型化が可能である。 Furthermore, optical members such as a polarizer and a birefringent layer can be easily increased in size, and current technology can be used for mass production of large displays such as 60 to 100 inches. In addition, these optical elements have a thickness on the order of several hundred micrometers to several millimeters, and do not require a large spatial distance as in the case of collimation using a lens or a point light source. Light weight and thickness can be reduced.
なお、本発明の第一の光学素子は、本発明の第二の光学素子に比べ、より光漏れ低減効果があり、よりCRを改善することができる。一方、第二の光学素子は、既に量産されている2軸性フィルムを用いることができるので、本発明の第一の光学素子よりも生産性に優れている。 In addition, the 1st optical element of this invention has a light leak reduction effect more compared with the 2nd optical element of this invention, and can improve CR more. On the other hand, since the second optical element can use a biaxial film that has already been mass-produced, it is more productive than the first optical element of the present invention.
本発明の第一及び第二の光学素子の用途としては、液晶表示装置が好適であり、なかでもバックライトを備えた液晶表示装置が特に好適である。 As the application of the first and second optical elements of the present invention, a liquid crystal display device is suitable, and in particular, a liquid crystal display device provided with a backlight is particularly suitable.
このように、本発明の第一又は第二の光学素子と、バックライトとを含む液晶表示装置(以下では、「本発明の第一の液晶表示装置」ともいう。)もまた本発明の一つである。これにより、生産性に優れ、高CRである液晶表示装置を得ることができる。 Thus, a liquid crystal display device including the first or second optical element of the present invention and a backlight (hereinafter also referred to as “first liquid crystal display device of the present invention”) is also one aspect of the present invention. One. Thereby, a liquid crystal display device having excellent productivity and high CR can be obtained.
本発明の第一の液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。 The configuration of the first liquid crystal display device of the present invention is not particularly limited by other components as long as such components are essential.
本発明は更に、液晶パネル、第一偏光子、複屈折層、第二偏光子及びバックライトを備える液晶表示装置であって、前記第一偏光子、前記複屈折層及び前記第二偏光子は、前記液晶パネル及び前記バックライトの間に、この順に配され、前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であり、前記複屈折層の2軸性パラメータNZは、10≦NZ、又は、NZ≦-9を満たし、前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧200nmを満たす液晶表示装置(以下では、「本発明の第二の液晶表示装置」ともいう。)でもある。 The present invention further provides a liquid crystal display device comprising a liquid crystal panel, a first polarizer, a birefringent layer, a second polarizer and a backlight, wherein the first polarizer, the birefringent layer and the second polarizer are The liquid crystal panel and the backlight are arranged in this order, and the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, and the two axes of the birefringent layer The liquidity display device NZ satisfies 10 ≦ NZ or NZ ≦ −9, and the absolute value | Rth | of the thickness direction retardation of the birefringent layer is a liquid crystal display device satisfying | Rth | ≧ 200 nm (hereinafter, “ It is also referred to as a “second liquid crystal display device of the present invention”.
本発明の第二の液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。 The configuration of the second liquid crystal display device of the present invention is not particularly limited by other components as long as such components are essential.
本発明はそして、液晶パネル、第一偏光子、複屈折層、第二偏光子及びバックライトを備える液晶表示装置であって、前記第一偏光子、前記複屈折層及び前記第二偏光子は、前記液晶パネル及び前記バックライトの間に、この順に配され、前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であり、前記複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とがなす角度が45°、又は、135°でない液晶表示装置(以下では、「本発明の第三の液晶表示装置」ともいう。)でもある。 The present invention is a liquid crystal display device comprising a liquid crystal panel, a first polarizer, a birefringent layer, a second polarizer and a backlight, wherein the first polarizer, the birefringent layer and the second polarizer are The liquid crystal panel and the backlight are arranged in this order, and the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, and the two axes of the birefringent layer The property parameter NZ satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1, and the angle formed by the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer is 45 °. Or a liquid crystal display device that is not 135 ° (hereinafter also referred to as “third liquid crystal display device of the present invention”).
なお、本発明の第二及び第三の液晶表示装置において、前記第一偏光子、前記複屈折層及び前記第二偏光子は、前記液晶パネル側からこの順に配されてもよいし、前記バックライト側からこの順に配されてもよい。 In the second and third liquid crystal display devices of the present invention, the first polarizer, the birefringent layer, and the second polarizer may be arranged in this order from the liquid crystal panel side, or the back They may be arranged in this order from the light side.
また、本発明の第二及び第三の液晶表示装置において、各部材間の少なくとも一つの間には空気層が設けられてもよく、例えば、前記液晶パネル及び前記第一偏光子の間と、前記第一偏光子及び前記複屈折層の間と、前記複屈折層及び前記第二偏光子の間と、前記第二偏光子及び前記バックライトの間との少なくとも一つの間には、空気層が設けられてもよい。 In the second and third liquid crystal display devices of the present invention, an air layer may be provided between at least one of the members, for example, between the liquid crystal panel and the first polarizer, There is an air layer between at least one of the first polarizer and the birefringent layer, between the birefringent layer and the second polarizer, and between the second polarizer and the backlight. May be provided.
本発明の第三の液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。 The configuration of the third liquid crystal display device of the present invention is not particularly limited by other components as long as such components are formed as essential.
なお、本発明の第二及び第三の液晶表示装置において、第一偏光子の透過軸と、第二偏光子の透過軸とが互いに平行であるとは、第一偏光子の透過軸と、第二偏光子の透過軸とが必ずしも厳密に互いに平行である必要はなく、より具体的には、両透過軸のなす角度は、好適には0±10°(より好適には0±5°)の範囲内に設定される。前記好適な範囲外に設定される場合は、法線方向の透過率が低下してしまうおそれがある。 In the second and third liquid crystal display devices of the present invention, the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other. The transmission axes of the second polarizer do not necessarily have to be strictly parallel to each other. More specifically, the angle formed by both transmission axes is preferably 0 ± 10 ° (more preferably 0 ± 5 °). ). If it is set outside the preferred range, the transmittance in the normal direction may decrease.
本発明の第二及び第三の液晶表示装置によれば、本発明の光学素子と同様の作用効果を奏することができる。 According to the second and third liquid crystal display devices of the present invention, the same effects as the optical element of the present invention can be achieved.
本発明の第一及び第二の光学素子と、本発明の第一、第二及び第三の液晶表示装置とにおける好ましい形態について以下に詳しく説明する。 Preferred embodiments of the first and second optical elements of the present invention and the first, second and third liquid crystal display devices of the present invention will be described in detail below.
前記第一偏光子及び前記第二偏光子の少なくとも一方は、反射型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であってもよい。これにより、吸収型偏光子による光吸収ロスを減らし、更に、反射した光をバックライトに戻して再利用することで、光の有効活用が可能となる。 At least one of the first polarizer and the second polarizer may be a reflective polarizer or a composite polarizer in which an absorptive polarizer and a reflective polarizer are stacked. Thereby, the light absorption loss by the absorption polarizer is reduced, and the reflected light is returned to the backlight and reused, whereby the light can be effectively used.
前記第一偏光子及び前記第二偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、前記第一偏光子は、単体透過率が前記第二偏光子と異なってもよい。一般に吸収型偏光子において、単体透過率と偏光子のコントラストとはトレードオフの関係にある。一方、前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であるため、前記第一及び第二偏光子は互いに偏光子のコントラストを補完し合うように機能する。したがって、前記第一及び第二偏光子のいずれか一方の単体透過率を高くしても、偏光子のコントラストの低下を抑制することができる。その結果、第一及び第二偏光子を含む系全体(例えば、液晶表示装置)おいて、コントラストを維持しつつ透過率、すなわち光利用効率を向上することができる。 Each of the first polarizer and the second polarizer is an absorptive polarizer or a composite polarizer in which an absorptive polarizer and a reflective polarizer are laminated, and the first polarizer has a single transmittance. May be different from the second polarizer. In general, in an absorptive polarizer, the single transmittance and the contrast of the polarizer are in a trade-off relationship. Meanwhile, since the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, the first and second polarizers function to complement each other's contrast of the polarizer. To do. Therefore, even if the single transmittance of one of the first and second polarizers is increased, it is possible to suppress a decrease in the contrast of the polarizer. As a result, in the entire system (for example, a liquid crystal display device) including the first and second polarizers, the transmittance, that is, the light use efficiency can be improved while maintaining the contrast.
なお、本明細書において、複合偏光子の単体透過率及びコントラストは各々、当該複合偏光子に含まれる吸収型偏光子単体の単体透過率及びコントラストを意味する。 In the present specification, the single transmittance and contrast of a composite polarizer mean the single transmittance and contrast of a single absorption polarizer included in the composite polarizer, respectively.
前記第一偏光子の単体透過率(T1)と、前記第二偏光子の単体透過率(T2)との差の絶対値(ΔT1=|T1-T2|)は、好ましくは0.2~3.0%であり、より好ましくは0.5~2.0%である。ΔT1が0.2%未満であると、系全体における透過率の向上効果が充分に得られないことがある。一方、ΔT1が3.0%を超えると、系全体におけるコントラストが低下することがある。 The absolute value (ΔT1 = | T1-T2 |) of the difference between the single transmittance (T1) of the first polarizer and the single transmittance (T2) of the second polarizer is preferably 0.2 to 3 0.0%, more preferably 0.5 to 2.0%. When ΔT1 is less than 0.2%, the effect of improving the transmittance of the entire system may not be sufficiently obtained. On the other hand, when ΔT1 exceeds 3.0%, the contrast in the entire system may be lowered.
前記第一偏光子のコントラスト(CR1)と、前記第二偏光子のコントラスト(CR2)とについては特に限定されず、各々、適宜設定することができる。なお、上述のように、一般に吸収型偏光子において、単体透過率と偏光子のコントラストとはトレードオフの関係にあるが、単体透過率と独立にコントラストが調整できる場合は、CR1及びCR2は共に高ければ高い程好ましい。 The contrast (CR1) of the first polarizer and the contrast (CR2) of the second polarizer are not particularly limited and can be set as appropriate. As described above, in the absorption polarizer, in general, the single transmittance and the contrast of the polarizer are in a trade-off relationship. However, when the contrast can be adjusted independently of the single transmittance, both CR1 and CR2 are Higher is preferable.
本発明の第一の光学素子は、前記複屈折層を複数備え、前記第一偏光子、前記複数の複屈折層及び前記第二偏光子は、この順に積層されることが好ましい。また、本発明の第二の液晶表示装置は、前記複屈折層を複数備え、前記第一偏光子、前記複数の複屈折層及び前記第二偏光子は、この順に積層されることが好ましい。これにより、安価な複屈折層を複数積層させて所望の面内位相差を作り出すことができる。なお、複数の複屈折層が微小な面内異方向性を有するとき、各複屈折層の軸角度は、相互に独立して、適宜、設定することができるが、これらの面内遅層軸は、互いに直交するか、又は、互いに平行であることが好ましい。また、例えば、複屈折層が3枚のとき、面内遅相軸が方位90°、90°、及び0°の順に積層されてもよく、すなわち、面内遅相軸が互いに直交する複屈折層と互いに平行である複屈折層が混在していてもよい。 The first optical element of the present invention preferably comprises a plurality of the birefringent layers, and the first polarizer, the plurality of birefringent layers, and the second polarizer are laminated in this order. The second liquid crystal display device of the present invention preferably includes a plurality of the birefringent layers, and the first polarizer, the plurality of birefringent layers, and the second polarizer are stacked in this order. Thereby, a plurality of inexpensive birefringent layers can be stacked to produce a desired in-plane retardation. When a plurality of birefringent layers have minute in-plane anisotropic properties, the axial angles of the birefringent layers can be appropriately set independently of each other. Are preferably orthogonal to each other or parallel to each other. For example, when there are three birefringent layers, the in-plane slow axes may be laminated in the order of 90 °, 90 °, and 0 °, that is, birefringence in which the in-plane slow axes are orthogonal to each other. Birefringent layers that are parallel to each other may be mixed.
同様の観点からは、本発明の第二の光学素子は、前記複屈折層を複数備え、前記第一偏光子、前記複数の複屈折層及び前記第二偏光子は、この順に積層され、前記複数の複屈折層の面内遅相軸は、互いに直交するか、又は、互いに平行であることが好ましい。また、本発明の第三の液晶表示装置は、前記複屈折層を複数備え、前記第一偏光子、前記複数の複屈折層及び前記第二偏光子は、この順に配され、前記複数の複屈折層の面内遅相軸は、互いに直交するか、又は、互いに平行であることが好ましい。これにより、安価な複屈折層を複数積層させて所望の面内位相差を作り出すことができる。また、例えば、複屈折層が3枚のとき、面内遅相軸が方位90°、90°、及び0°の順に積層されてもよく、すなわち、面内遅相軸が互いに直交する複屈折層と互いに平行である複屈折層が混在していてもよい。 From the same viewpoint, the second optical element of the present invention includes a plurality of the birefringent layers, and the first polarizer, the plurality of birefringent layers, and the second polarizer are stacked in this order, The in-plane slow axes of the plurality of birefringent layers are preferably orthogonal to each other or parallel to each other. The third liquid crystal display device of the present invention includes a plurality of the birefringent layers, and the first polarizer, the plurality of birefringent layers, and the second polarizer are arranged in this order, and the plurality of birefringent layers are arranged. The in-plane slow axes of the refractive layer are preferably orthogonal to each other or parallel to each other. Thereby, a plurality of inexpensive birefringent layers can be stacked to produce a desired in-plane retardation. For example, when there are three birefringent layers, the in-plane slow axes may be laminated in the order of 90 °, 90 °, and 0 °, that is, birefringence in which the in-plane slow axes are orthogonal to each other. Birefringent layers that are parallel to each other may be mixed.
なお、複数の複屈折層の面内遅相軸が互いに直交するか、又は、互いに平行であるとは、複数の複屈折層の面内遅相軸のなす角度が厳密に90°、又は、0°であることに限定されず、多少90°、又は、0°からずれてもよい。より具体的には、前記複数の複屈折層の面内遅相軸とのなす角度は、好適には、90±10°(より好適には90±5°)、又は、0±10°(より好適には0±5°)の範囲内に設定される。前記好適な範囲外に設定される場合は、法線方向や方位0°又は90°の斜め方向の透過率が低下してしまうおそれがある。 Note that the in-plane slow axes of the plurality of birefringent layers are orthogonal to each other or parallel to each other, the angle formed by the in-plane slow axes of the plurality of birefringent layers is strictly 90 °, or The angle is not limited to 0 °, and may be slightly shifted from 90 ° or 0 °. More specifically, the angle formed by the in-plane slow axes of the plurality of birefringent layers is preferably 90 ± 10 ° (more preferably 90 ± 5 °), or 0 ± 10 ° ( More preferably, it is set within a range of 0 ± 5 °. When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
本発明の第二の光学素子と、本発明の第三の液晶表示装置とにおいては、前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とがなす角度は、90±20°、又は、0±20°の範囲内であることが好ましく、前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とは、互いに直交するか、又は、互いに平行であることがより好ましく、前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とは、互いに平行であることが更に好ましい。すなわち、前記第一偏光子の吸収軸(又は、反射軸)と、前記複屈折層の面内遅相軸とは、互いに直交することが更に好ましい。これにより、法線方向、方位0°斜め方向及び方位90°斜め方向からの入射に対する透過率を犠牲にすることなく、方位45°斜め方向に代表されるその他の方向からの入射に対する透過率をより低減することができる。 In the second optical element of the present invention and the third liquid crystal display device of the present invention, the angle formed by the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer is 90 Preferably, the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer are orthogonal to each other, or are mutually within a range of ± 20 ° or 0 ± 20 °. More preferably, the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer are more preferably parallel to each other. That is, the absorption axis (or reflection axis) of the first polarizer and the in-plane slow axis of the birefringent layer are more preferably orthogonal to each other. Thus, the transmittance with respect to the incident from other directions represented by the azimuth 45 ° oblique direction can be obtained without sacrificing the transmittance with respect to the normal direction, the azimuth 0 ° oblique direction, and the azimuth 90 ° oblique direction. It can be further reduced.
なお、第一偏光子の透過軸と、複屈折層の面内遅相軸とが互いに直交するか、又は、互いに平行であるとは、第一偏光子の透過軸と、複屈折層の面内遅相軸とのなす角度が厳密に90°、又は、0°であることに限定されず、多少90°、又は、0°からずれてもよい。より具体的には、第一偏光子の透過軸と、複屈折層の面内遅相軸とのなす角度は、90±10°、又は、0±10°の範囲内(好適には90±5°、又は0±5°の範囲内)に設定される。前記好適な範囲外に設定される場合は、法線方向や方位0°又は90°の斜め方向の透過率が低下してしまうおそれがある。 The transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer are orthogonal to each other or parallel to each other. The angle formed with the inner slow axis is not limited to being strictly 90 ° or 0 °, and may be slightly shifted from 90 ° or 0 °. More specifically, the angle formed by the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer is within a range of 90 ± 10 ° or 0 ± 10 ° (preferably 90 ± 5 ° or within a range of 0 ± 5 °). When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
本発明の第一の光学素子、及び、本発明の第二の液晶表示装置においては、前記複屈折層の厚み方向位相差の絶対値|Rth|は、400nm以上であることが好ましく、600nm以上であることがより好ましい。これにより、方位45°斜め方向に代表されるその他の方向からの入射に対する透過率をより低減することができる。 In the first optical element of the present invention and the second liquid crystal display device of the present invention, the absolute value | Rth | of the birefringent layer in the thickness direction is preferably 400 nm or more, and 600 nm or more. It is more preferable that Thereby, the transmittance | permeability with respect to the incident from the other direction represented by the 45 degrees azimuth | direction diagonal direction can be reduced more.
本発明の第二の光学素子、及び、本発明の第三の液晶表示装置においては、前記複屈折層の厚み方向位相差の絶対値|Rth|は、200nm以上であることが好ましく、400nm以上であることがより好ましく、600nm以上であることが特に好ましい。これにより、不要な方向からの入射に対する透過率をより低減することができる。 In the second optical element of the present invention and the third liquid crystal display device of the present invention, the absolute value | Rth | of the birefringent layer in the thickness direction is preferably 200 nm or more, and preferably 400 nm or more. It is more preferable that it is 600 nm or more. Thereby, the transmittance | permeability with respect to the incident from an unnecessary direction can be reduced more.
斜め方向に代表されるその他の方向からの入射に対する透過率を広い範囲で低減する観点からは、本発明の第一の光学素子において、下記形態(1)、(2)が好適である。 From the viewpoint of reducing the transmittance with respect to incidence from other directions represented by the oblique direction in a wide range, the following forms (1) and (2) are preferable in the first optical element of the present invention.
形態(1)において、本発明の第一の光学素子は、更に、第二複屈折層及び第三偏光子を備え、前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層及び前記第三偏光子は、この順に積層され、前記第二偏光子の透過軸と、前記第三偏光子の透過軸とは、互いに平行であり、前記第二複屈折層の2軸性パラメータNZは、10≦NZ、又は、NZ≦-9を満たし、前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧200nmを満たすとともに、前記複屈折層の厚み方向位相差の絶対値とは値が異なる。 In the form (1), the first optical element of the present invention further includes a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, and the first polarizer. The second birefringent layer and the third polarizer are stacked in this order, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other, and the second birefringent layer The biaxial parameter NZ satisfies 10 ≦ NZ or NZ ≦ −9, and the absolute value | Rth | of the thickness direction retardation of the second birefringent layer satisfies | Rth | ≧ 200 nm. The value is different from the absolute value of the thickness direction retardation of the refractive layer.
形態(2)において、本発明の第一の光学素子は、更に、第二複屈折層及び第三偏光子を備え、前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層及び前記第三偏光子は、この順に積層され、前記第二偏光子の透過軸と、前記第三偏光子の透過軸とは、互いに平行であり、前記第二複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、前記第二偏光子の透過軸と、前記第二複屈折層の面内遅相軸とがなす角度が45°、又は、135°でなく、前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、前記複屈折層の厚み方向位相差の絶対値とは値が異なる。 In the form (2), the first optical element of the present invention further includes a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, and the first polarizer. The second birefringent layer and the third polarizer are stacked in this order, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other, and the second birefringent layer The biaxial parameter NZ satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1, and is formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer. The angle is not 45 ° or 135 °, and the absolute value | Rth | of the thickness direction retardation of the second birefringent layer is different from the absolute value of the thickness direction retardation of the birefringent layer.
同様の観点からは、本発明の第二の液晶表示装置において、下記形態(3)、(4)が好適である。 From the same viewpoint, in the second liquid crystal display device of the present invention, the following forms (3) and (4) are preferable.
形態(3)において、本発明の第二の液晶表示装置は、更に、第二複屈折層及び第三偏光子を備え、前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層及び前記第三偏光子は、前記液晶パネル及び前記バックライトの間に、この順に配され、前記第二偏光子の透過軸と、前記第三偏光子の透過軸とは、互いに平行であり、前記第二複屈折層の2軸性パラメータNZは、10≦NZ、又は、NZ≦-9を満たし、前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧200nmを満たすとともに、前記複屈折層の厚み方向位相差の絶対値とは値が異なる。 In the form (3), the second liquid crystal display device of the present invention further comprises a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, The second birefringent layer and the third polarizer are arranged in this order between the liquid crystal panel and the backlight, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are: The biaxiality parameter NZ of the second birefringent layer satisfies 10 ≦ NZ or NZ ≦ −9, and the absolute value | Rth | of the thickness direction retardation of the second birefringent layer is , | Rth | ≧ 200 nm, and a value different from the absolute value of the thickness direction retardation of the birefringent layer.
形態(4)において、本発明の第二の液晶表示装置は、更に、第二複屈折層及び第三偏光子を備え、前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層及び前記第三偏光子は、前記液晶パネル及び前記バックライトの間に、この順に配され、前記第二偏光子の透過軸と、前記第三偏光子の透過軸とは、互いに平行であり、前記第二複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、前記第二偏光子の透過軸と、前記第二複屈折層の面内遅相軸とがなす角度が45°、又は、135°でなく、前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、前記複屈折層の厚み方向位相差の絶対値とは値が異なる。 In the form (4), the second liquid crystal display device of the present invention further comprises a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, The second birefringent layer and the third polarizer are arranged in this order between the liquid crystal panel and the backlight, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are: The biaxiality parameter NZ of the second birefringent layer satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1, the transmission axis of the second polarizer, and the second birefringence layer are parallel to each other. The angle formed by the in-plane slow axis of the birefringent layer is not 45 ° or 135 °, and the absolute value | Rth | of the thickness direction retardation of the second birefringent layer is the thickness direction of the birefringent layer The value is different from the absolute value of the phase difference.
同様の観点からは、本発明の第二の光学素子において、下記形態(5)が好適である。 From the same viewpoint, in the second optical element of the present invention, the following form (5) is preferable.
形態(5)において、本発明の第二の光学素子は、更に、第二複屈折層及び第三偏光子を備え、前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層及び前記第三偏光子は、この順に積層され、前記第二偏光子の透過軸と、前記第三偏光子の透過軸とは、互いに平行であり、前記第二複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、前記第二偏光子の透過軸と、前記第二複屈折層の面内遅相軸とがなす角度が45°、又は、135°でなく、前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、前記複屈折層の厚み方向位相差の絶対値とは値が異なる。 In form (5), the second optical element of the present invention further comprises a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, and the first polarizer. The second birefringent layer and the third polarizer are stacked in this order, and the transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other, and the second birefringent layer The biaxial parameter NZ satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1, and is formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer. The angle is not 45 ° or 135 °, and the absolute value | Rth | of the thickness direction retardation of the second birefringent layer is different from the absolute value of the thickness direction retardation of the birefringent layer.
同様の観点からは、本発明の第三の液晶表示装置において、下記形態(6)が好適である。 From the same viewpoint, in the third liquid crystal display device of the present invention, the following mode (6) is preferable.
形態(6)において、本発明の第三の液晶表示装置は、更に、第二複屈折層及び第三偏光子を備え、前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層、及び、前記第三偏光子は、前記液晶パネル及び前記バックライトの間に、この順に配され、前記第二偏光子の透過軸と、前記第三偏光子の透過軸とは、互いに平行であり、前記第二複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、前記第二偏光子の透過軸と、前記第二複屈折層の面内遅相軸とがなす角度が45°、又は、135°でなく、前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、前記複屈折層の厚み方向位相差の絶対値とは値が異なる。 In the form (6), the third liquid crystal display device of the present invention further includes a second birefringent layer and a third polarizer, and the first polarizer, the birefringent layer, the second polarizer, The second birefringent layer and the third polarizer are arranged in this order between the liquid crystal panel and the backlight, and the transmission axis of the second polarizer and the transmission axis of the third polarizer Are parallel to each other, and the biaxial parameter NZ of the second birefringent layer satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1, the transmission axis of the second polarizer, The angle formed by the in-plane slow axis of the second birefringent layer is not 45 ° or 135 °, and the absolute value | Rth | of the thickness direction retardation of the second birefringent layer is the value of the birefringent layer. The value is different from the absolute value of the thickness direction retardation.
なお、上記形態(1)~(6)において、第二偏光子の透過軸と、第三偏光子の透過軸とが互いに平行であるとは、第二偏光子の透過軸と、第三偏光子の透過軸とが必ずしも厳密に平行である必要はなく、より具体的には、両透過軸のなす角度は、好適には0±10°(より好適には0±5°)の範囲内に設定される。前記好適な範囲外に設定される場合は、法線方向の透過率が低下してしまうおそれがある。 In the above embodiments (1) to (6), the transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other. The transmission axis of the child does not necessarily have to be strictly parallel, and more specifically, the angle formed by both transmission axes is preferably within a range of 0 ± 10 ° (more preferably 0 ± 5 °). Set to If it is set outside the preferred range, the transmittance in the normal direction may decrease.
また、上記形態(3)、(4)、(6)において、前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層及び前記第三偏光子は、前記液晶パネル側からこの順に配されてもよいし、前記バックライト側からこの順に配されてもよい。 Moreover, in the said form (3), (4), (6), said 1st polarizer, said birefringent layer, said 2nd polarizer, said 2nd birefringent layer, and said 3rd polarizer are said liquid crystals. It may be arranged in this order from the panel side, or may be arranged in this order from the backlight side.
また、上記形態(3)、(4)、(6)において、前記第二偏光子及び前記第二複屈折層の間と、前記第二複屈折層及び前記第三偏光子の間と、前記第三偏光子及び前記バックライトの間との少なくとも一つの間には、空気層が設けられてもよい。 Moreover, in said form (3), (4), (6), between said 2nd polarizer and said 2nd birefringent layer, between said 2nd birefringent layer and said 3rd polarizer, An air layer may be provided between at least one of the third polarizer and the backlight.
上述の説明と同様の観点から、上記形態(1)~(6)における好ましい形態としては、以下の形態が挙げられる。 From the same point of view as described above, preferred forms in the above forms (1) to (6) include the following forms.
上記形態(1)~(6)において、前記第一偏光子、前記第二偏光子及び前記第三偏光子の少なくとも一つは、反射型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であることが好ましい。 In the embodiments (1) to (6), at least one of the first polarizer, the second polarizer, and the third polarizer is a reflective polarizer, or an absorption polarizer and a reflective polarizer. It is preferable that the composite polarizer is laminated.
また、上記形態(1)~(6)において、前記第一偏光子、前記第二偏光子及び前記第三偏光子が各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であるとき、前記第一偏光子、前記第二偏光子及び前記第三偏光子の少なくとも一つは、単体透過率が他の偏光子と異なることが好ましい。 In the above-described embodiments (1) to (6), the first polarizer, the second polarizer, and the third polarizer are each an absorption polarizer, or an absorption polarizer and a reflection polarizer. It is preferable that at least one of the first polarizer, the second polarizer, and the third polarizer has a single transmittance different from that of the other polarizers.
このとき、前記第一偏光子、前記第二偏光子及び前記第三偏光子の単体透過率のうち、最大値をTmax1、最小値をTmin1とすると、その差の絶対値(ΔT2=|Tmax1-Tmin1|)は、好ましくは0.2~3.0%であり、より好ましくは0.5~2.0%である。ΔT2が0.2%未満であると、系全体における透過率の向上効果が充分に得られないことがある。一方、ΔT2が3.0%を超えると、系全体におけるコントラストが低下することがある。 At this time, if the maximum value is Tmax1 and the minimum value is Tmin1 among the single transmittances of the first polarizer, the second polarizer, and the third polarizer, the absolute value of the difference (ΔT2 = | Tmax1- Tmin1 |) is preferably 0.2 to 3.0%, more preferably 0.5 to 2.0%. When ΔT2 is less than 0.2%, the effect of improving the transmittance of the entire system may not be sufficiently obtained. On the other hand, if ΔT2 exceeds 3.0%, the contrast of the entire system may be lowered.
また、このとき、前記第一偏光子のコントラスト(CR1)と、前記第二偏光子のコントラスト(CR2)と、前記第三偏光子のコントラスト(CR3)とについては特に限定されず、各々、適宜設定することができる。単体透過率と独立にコントラストが調整できる場合は、CR1、CR2及びCR3はいずれも高ければ高い程好ましい。 At this time, the contrast (CR1) of the first polarizer, the contrast (CR2) of the second polarizer, and the contrast (CR3) of the third polarizer are not particularly limited, Can be set. If the contrast can be adjusted independently of the single transmittance, the higher CR1, CR2 and CR3 are preferable.
上記形態(1)において、本発明の第一の光学素子は、前記第二複屈折層を複数備え、前記第二偏光子、前記複数の第二複屈折層及び前記第三偏光子は、この順に積層される形態(以下、形態(1-1)とも言う。)が好ましい。 In the mode (1), the first optical element of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer A form in which the layers are sequentially laminated (hereinafter also referred to as form (1-1)) is preferable.
上記形態(3)において、本発明の第二の液晶表示装置は、前記第二複屈折層を複数備え、前記第二偏光子、前記複数の第二複屈折層及び前記第三偏光子は、この順に積層される形態(以下、形態(3-1)とも言う。)が好ましい。 In the mode (3), the second liquid crystal display device of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer are A form in which the layers are laminated in this order (hereinafter also referred to as form (3-1)) is preferable.
なお、上記形態(1-1)、(3-1)において、複数の第二複屈折層が微小な面内異方向性を有するとき、各第二複屈折層の軸角度は、相互に独立して、適宜、設定することができるが、これらの面内遅層軸は、互いに直交するか、又は、互いに平行であることが好ましい。なお、複数の第二複屈折層の面内遅相軸が互いに直交するか、又は、互いに平行であるとは、複数の第二複屈折層の面内遅相軸のなす角度が厳密に90°、又は、0°であることに限定されず、多少90°、又は、0°からずれてもよい。より具体的には、前記複数の第二複屈折層の面内遅相軸とのなす角度は、好適には、90±10°(より好適には90±5°)、又は、0±10°(より好適には0±5°)の範囲内に設定される。前記好適な範囲外に設定される場合は、法線方向や方位0°又は90°の斜め方向の透過率が低下してしまうおそれがある。 In the above embodiments (1-1) and (3-1), when the plurality of second birefringent layers have minute in-plane different directions, the axial angles of the second birefringent layers are independent of each other. The in-plane slow layer axes are preferably perpendicular to each other or parallel to each other. The in-plane slow axes of the plurality of second birefringent layers being orthogonal to each other or parallel to each other means that the angle formed by the in-plane slow axes of the plurality of second birefringent layers is exactly 90. The angle is not limited to 0 ° or 0 °, and may be slightly shifted from 90 ° or 0 °. More specifically, the angle formed by the in-plane slow axes of the plurality of second birefringent layers is preferably 90 ± 10 ° (more preferably 90 ± 5 °), or 0 ± 10. It is set within the range of ° (more preferably 0 ± 5 °). When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
上記形態(2)において、本発明の第一の光学素子は、前記第二複屈折層を複数備え、前記第二偏光子、前記複数の第二複屈折層及び前記第三偏光子は、この順に積層され、前記複数の複屈折層の面内遅相軸は、互いに直交するか、又は、互いに平行である形態(以下、形態(2-1)とも言う。)が好ましい。 In the mode (2), the first optical element of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer It is preferable that the in-plane slow axes of the plurality of birefringent layers are laminated in order and are orthogonal to each other or parallel to each other (hereinafter also referred to as “form (2-1)”).
上記形態(4)において、本発明の第二の液晶表示装置は、前記第二複屈折層を複数備え、前記第二偏光子、前記複数の第二複屈折層及び前記第三偏光子は、この順に積層され、前記複数の複屈折層の面内遅相軸は、互いに直交するか、又は、互いに平行である形態(以下、形態(4-1)とも言う。)が好ましい。 In the aspect (4), the second liquid crystal display device of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer are The in-plane slow axes of the plurality of birefringent layers stacked in this order are preferably orthogonal to each other or parallel to each other (hereinafter also referred to as mode (4-1)).
上記形態(5)において、本発明の第二の光学素子は、前記第二複屈折層を複数備え、前記第二偏光子、前記複数の第二複屈折層及び前記第三偏光子は、この順に積層され、前記複数の複屈折層の面内遅相軸は、互いに直交するか、又は、互いに平行である形態(以下、形態(5-1)とも言う。)が好ましい。 In the aspect (5), the second optical element of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer It is preferable that the in-plane slow axes of the plurality of birefringent layers are stacked in order and are orthogonal to each other or parallel to each other (hereinafter also referred to as “form (5-1)”).
上記形態(6)において、本発明の第三の液晶表示装置は、前記第二複屈折層を複数備え、前記第二偏光子、前記複数の第二複屈折層及び前記第三偏光子は、この順に積層され、前記複数の複屈折層の面内遅相軸は、互いに直交するか、又は、互いに平行である形態(以下、形態(6-1)とも言う。)が好ましい。 In the mode (6), the third liquid crystal display device of the present invention includes a plurality of the second birefringent layers, and the second polarizer, the plurality of second birefringent layers, and the third polarizer are The in-plane slow axes of the plurality of birefringent layers stacked in this order are preferably orthogonal to each other or parallel to each other (hereinafter also referred to as mode (6-1)).
なお、上記形態(2-1)、(4-1)、(5-1)、(6-1)において、複数の複屈折層の面内遅相軸が互いに直交するか、又は、互いに平行であるとは、複数の複屈折層の面内遅相軸のなす角度が厳密に90°、又は、0°であることに限定されず、多少90°、又は、0°からずれてもよい。より具体的には、前記複数の複屈折層の面内遅相軸とのなす角度は、好適には、90±10°(より好適には90±5°)、又は、0±10°(より好適には0±5°)の範囲内に設定される。前記好適な範囲外に設定される場合は、法線方向や方位0°又は90°の斜め方向の透過率が低下してしまうおそれがある。 In the above embodiments (2-1), (4-1), (5-1), and (6-1), the in-plane slow axes of the plurality of birefringent layers are orthogonal to each other or parallel to each other. Is not strictly limited to the angle formed by the in-plane slow axes of the plurality of birefringent layers being 90 ° or 0 °, and may be slightly shifted from 90 ° or 0 °. . More specifically, the angle formed by the in-plane slow axes of the plurality of birefringent layers is preferably 90 ± 10 ° (more preferably 90 ± 5 °), or 0 ± 10 ° ( More preferably, it is set within a range of 0 ± 5 °. When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
上記形態(2)、(4)、(5)、(6)において、前記第二偏光子の透過軸と、前記第二複屈折層の面内遅相軸とがなす角度は、90±20°、又は、0±20°の範囲内であることが好ましく、前記第二偏光子の透過軸と、前記第二複屈折層の面内遅相軸とは、互いに直交するか、又は、互いに平行であることがより好ましく、前記第二偏光子の透過軸と、前記第二複屈折層の面内遅相軸とは、互いに平行であることが更に好ましい。すなわち、前記第二偏光子の吸収軸(又は、反射軸)と、前記第二複屈折層の面内遅相軸とは、互いに直交することが更に好ましい。 In the above forms (2), (4), (5), and (6), the angle formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer is 90 ± 20. Or within the range of 0 ± 20 °, and the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer are orthogonal to each other or mutually More preferably, the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer are more preferably parallel to each other. That is, it is more preferable that the absorption axis (or reflection axis) of the second polarizer and the in-plane slow axis of the second birefringent layer are orthogonal to each other.
なお、第二偏光子の透過軸と、第二複屈折層の面内遅相軸とが互いに直交するか、又は、互いに平行であるとは、第二偏光子の透過軸と、第二複屈折層の面内遅相軸とのなす角度が厳密に90°、又は、0°であることに限定されず、多少90°、又は、0°からずれてもよい。より具体的には、第二偏光子の透過軸と、第二複屈折層の面内遅相軸とのなす角度は、90±10°、又は、0±10°の範囲内(好適には90±5°、又は0±5°の範囲内)に設定される。前記好適な範囲外に設定される場合は、法線方向や方位0°又は90°の斜め方向の透過率が低下してしまうおそれがある。 Note that the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer are orthogonal to each other or parallel to each other. The angle formed with the in-plane slow axis of the refracting layer is not limited to being strictly 90 ° or 0 °, and may be slightly shifted from 90 ° or 0 °. More specifically, the angle formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer is within a range of 90 ± 10 ° or 0 ± 10 ° (preferably Within the range of 90 ± 5 ° or 0 ± 5 °). When it is set outside the preferable range, there is a risk that the transmittance in the normal direction or in an oblique direction with an azimuth of 0 ° or 90 ° may decrease.
上記形態(1)、(3)において、前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、400nm以上であることが好ましく、600nm以上であることがより好ましい。 In the above forms (1) and (3), the absolute value | Rth | of the thickness direction retardation of the second birefringent layer is preferably 400 nm or more, and more preferably 600 nm or more.
上記形態(2)、(4)、(5)、(6)において、前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、200nm以上であることが好ましく、400nm以上であることがより好ましく、600nm以上であることが特に好ましい。 In the above forms (2), (4), (5), and (6), the absolute value | Rth | of the thickness direction retardation of the second birefringent layer is preferably 200 nm or more, and preferably 400 nm or more. It is more preferable that the thickness is 600 nm or more.
本発明の第一、第二及び第三の液晶表示装置の表示モードは、垂直配向モードであることが好ましい。このとき、特に光漏れが抑制され、非常に高いCRを得ることができる。 The display modes of the first, second and third liquid crystal display devices of the present invention are preferably vertical alignment modes. At this time, light leakage is particularly suppressed, and a very high CR can be obtained.
本発明の第一の液晶表示装置において、本発明の第一又は第二の光学素子は、前記バックライトの観察面側に配され、本発明の第一の液晶表示装置は、本発明の第一又は第二の光学素子の観察面側に配された液晶パネルと、前記液晶パネルの観察面側に配された第四偏光子とを更に含み、前記第一偏光子、前記第二偏光子及び前記第四偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、前記第一偏光子及び前記第二偏光子の少なくとも一方は、単体透過率が前記第四偏光子よりも大きいことが好ましい。一般に吸収型偏光子において、単体透過率と偏光子のコントラストとはトレードオフの関係にある。一方、前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であるため、前記第一及び第二偏光子は互いに偏光子のコントラストを補完し合うように機能する。なお、本発明者らの検討の結果、偏光子の透過率と液晶表示装置の透過率とは相関があり、偏光子のコントラストと、液晶表示装置のCRも、又、相関があることが分かっている。したがって、前記第一及び第二偏光子の少なくとも一方の単体透過率を前記第四偏光子の単体透過率より高くすると、前記第一、第二及び第四偏光子の単体透過率が全て同じである液晶表示装置に比べて、CRの低下を抑制しながら、透過率、すなわち光利用効率を向上させることができる。前記第一及び第二偏光子の一方のみの単体透過率を前記第四偏光子の単体透過率より大きくするとき、どちらの偏光子の単体透過率を大きくしてもよい。また、一方のみの偏光子の単体透過率が前記第四偏光子の単体透過率より大きいとき、他方の偏光子の単体透過率は、前記第四偏光子の単体透過率と実質的に等しくしてもよいし、それより小さくてもよい。また、液晶表示装置の製造効率の観点からは、前記第一偏光子及び前記第二偏光子のうち、前記バックライト側に配された方は、単体透過率が前記第四偏光子よりも大きいことが好ましい。これにより、液晶パネルのバックライト側に1枚の偏光子のみを有する従来の液晶表示装置の製造工程を容易に流用できるようになる。すなわち、そのような従来の液晶表示装置に、単体透過率が前記第四偏光子よりも大きく調整された偏光子を加えて、上述の形態を実現することができる。一方、透過率(光利用効率)をより向上させる観点からは、前記第一及び第二偏光子は、いずれも単体透過率が前記第四偏光子よりも大きいことがより好ましい。このとき、前記第一及び第二偏光子は、互いに、単体透過率が同じであってもよいし、異なっていてもよい。 In the first liquid crystal display device of the present invention, the first or second optical element of the present invention is disposed on the observation surface side of the backlight, and the first liquid crystal display device of the present invention is the first liquid crystal display device of the present invention. A liquid crystal panel disposed on the observation surface side of the first or second optical element; and a fourth polarizer disposed on the observation surface side of the liquid crystal panel, the first polarizer and the second polarizer. And each of the fourth polarizers is an absorptive polarizer or a composite polarizer in which an absorptive polarizer and a reflective polarizer are laminated, and at least one of the first polarizer and the second polarizer is The single transmittance is preferably larger than that of the fourth polarizer. In general, in an absorptive polarizer, the single transmittance and the contrast of the polarizer are in a trade-off relationship. Meanwhile, since the transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other, the first and second polarizers function to complement each other's contrast of the polarizer. To do. As a result of the study by the present inventors, it is found that the transmittance of the polarizer and the transmittance of the liquid crystal display device are correlated, and the contrast of the polarizer and the CR of the liquid crystal display device are also correlated. ing. Therefore, if the single transmittance of at least one of the first and second polarizers is made higher than the single transmittance of the fourth polarizer, the single transmittances of the first, second, and fourth polarizers are all the same. Compared with a certain liquid crystal display device, it is possible to improve the transmittance, that is, the light utilization efficiency, while suppressing the decrease in CR. When the single transmittance of only one of the first and second polarizers is made larger than the single transmittance of the fourth polarizer, the single transmittance of either polarizer may be increased. Further, when the single transmittance of only one polarizer is larger than the single transmittance of the fourth polarizer, the single transmittance of the other polarizer is substantially equal to the single transmittance of the fourth polarizer. It may be smaller or smaller. Further, from the viewpoint of manufacturing efficiency of the liquid crystal display device, the first polarizer and the second polarizer arranged on the backlight side have a single transmittance larger than that of the fourth polarizer. It is preferable. Thereby, the manufacturing process of the conventional liquid crystal display device having only one polarizer on the backlight side of the liquid crystal panel can be easily used. That is, the above-described embodiment can be realized by adding a polarizer whose single transmittance is adjusted to be larger than that of the fourth polarizer to such a conventional liquid crystal display device. On the other hand, from the viewpoint of further improving the transmittance (light utilization efficiency), it is more preferable that each of the first and second polarizers has a single transmittance greater than that of the fourth polarizer. At this time, the first and second polarizers may have the same single transmittance or may be different from each other.
上述のようにCRの低下を抑制しながら透過率を向上する観点からは、本発明の第二及び第三の液晶表示装置は、前記液晶パネルの観察面側に配された第四偏光子を更に含み、前記第一偏光子、前記第二偏光子及び前記第四偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、前記第一偏光子及び前記第二偏光子の少なくとも一方は、単体透過率が前記第四偏光子よりも大きいことが好ましい。前記第一及び第二偏光子の一方のみの単体透過率を前記第四偏光子の単体透過率より大きくするとき、どちらの偏光子の単体透過率を大きくしてもよい。また、一方のみの偏光子の単体透過率が前記第四偏光子の単体透過率より大きいとき、他方の偏光子の単体透過率は、前記第四偏光子の単体透過率と実質的に等しくしてもよいし、それより小さくてもよい。また、液晶表示装置の製造効率の観点からは、前記第一偏光子及び前記第二偏光子のうち、前記バックライト側に配された方は、単体透過率が前記第四偏光子よりも大きいことがより好ましく、透過率(光利用効率)をより向上させる観点からは、前記第一及び第二偏光子は、いずれも単体透過率が前記第四偏光子よりも大きいことがより好ましい。 As described above, from the viewpoint of improving the transmittance while suppressing the reduction in CR, the second and third liquid crystal display devices of the present invention include a fourth polarizer disposed on the observation surface side of the liquid crystal panel. Further, the first polarizer, the second polarizer and the fourth polarizer are each an absorption polarizer, or a composite polarizer in which an absorption polarizer and a reflection polarizer are laminated, It is preferable that at least one of the first polarizer and the second polarizer has a single transmittance larger than that of the fourth polarizer. When the single transmittance of only one of the first and second polarizers is made larger than the single transmittance of the fourth polarizer, the single transmittance of either polarizer may be increased. Further, when the single transmittance of only one polarizer is larger than the single transmittance of the fourth polarizer, the single transmittance of the other polarizer is substantially equal to the single transmittance of the fourth polarizer. It may be smaller or smaller. Further, from the viewpoint of manufacturing efficiency of the liquid crystal display device, the first polarizer and the second polarizer arranged on the backlight side have a single transmittance larger than that of the fourth polarizer. More preferably, from the viewpoint of further improving the transmittance (light utilization efficiency), it is more preferable that the first and second polarizers both have a single transmittance greater than that of the fourth polarizer.
これらの形態において、前記第一偏光子、前記第二偏光子及び前記第四偏光子の単体透過率のうち、最大値をTmax2、最小値をTmin2とすると、その差の絶対値(ΔT3=|Tmax2-Tmin2|)は、好ましくは0.2~3.0%であり、より好ましくは0.5~2.0%である。ΔT3が0.2%未満であると、系全体における透過率の向上効果が充分に得られないことがある。一方、ΔT3が3.0%を超えると、系全体におけるコントラストが低下することがある。 In these forms, if the maximum value is Tmax2 and the minimum value is Tmin2 among the single transmittances of the first polarizer, the second polarizer, and the fourth polarizer, the absolute value of the difference (ΔT3 = | Tmax2-Tmin2 |) is preferably 0.2 to 3.0%, more preferably 0.5 to 2.0%. When ΔT3 is less than 0.2%, the effect of improving the transmittance of the entire system may not be sufficiently obtained. On the other hand, when ΔT3 exceeds 3.0%, the contrast in the entire system may be lowered.
また、これらの形態において、前記第一偏光子のコントラスト(CR1)と、前記第二偏光子のコントラスト(CR2)と、前記第四偏光子のコントラスト(CR4)とについては特に限定されず、各々、適宜設定することができる。単体透過率と独立にコントラストが調整できる場合は、CR1、CR2及びCR4はいずれも高ければ高い程好ましい。 In these embodiments, the contrast (CR1) of the first polarizer, the contrast (CR2) of the second polarizer, and the contrast (CR4) of the fourth polarizer are not particularly limited, Can be set as appropriate. If the contrast can be adjusted independently of the single transmittance, the higher CR1, CR2 and CR4 are all the higher.
また、本発明の第一の液晶表示装置が本発明の第一の光学素子を含む場合、以下の形態が好適である。すなわち、本発明の第一の光学素子は、上記形態(1)又は(2)を有し、かつ、前記バックライトの観察面側に配され、本発明の第一の液晶表示装置は、本発明の第一の光学素子の観察面側に配された液晶パネルと、前記液晶パネルの観察面側に配された第四偏光子とを更に含み、前記第一偏光子、前記第二偏光子、前記第三偏光子及び前記第四偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、前記第一偏光子、前記第二偏光子及び第三偏光子の少なくとも一つは、単体透過率が前記第四偏光子よりも大きいことが好ましい。前記第三偏光子の透過軸は、前記第二偏光子(及び前記第一偏光子)の透過軸と平行であるため、前記第一、第二及び第三偏光子は、互いに偏光子のコントラストを補完し合うように機能する。その結果、前記第一、第二及び第三偏光子の少なくとも1つの単体透過率を前記第四偏光子の単体透過率より高くすると、前記第一、第二、第三及び第四偏光子の単体透過率が全て同じである液晶表示装置に比べて、CRの低下を抑制しながら、透過率(光利用効率)を向上させることができる。このとき、前記第一、第二及び第三偏光子のいずれの偏光子の単体透過率が前記第四偏光子の単体透過率よりも大きくてもよい。また、前記第一、第二及び第三偏光子のうち、単体透過率が前記第四偏光子の単体透過率と実質的に等しい偏光子があってもよいし、前記第四偏光子の単体透過率よりも小さい偏光子があってもよい。また、液晶表示装置の製造効率の観点からは、前記第一、第二及び第三偏光子のうち、バックライト側に配された偏光子、及び/又は、第二偏光子の単体透過率が前記第四偏光子よりも大きいことがより好ましい。これにより、液晶パネルのバックライト側に1枚の偏光子のみを有する従来の液晶表示装置の製造工程を容易に流用できるようになる。すなわち、そのような従来の液晶表示装置に、少なくとも一方の単体透過率が前記第四偏光子よりも大きく調整された二つの偏光子を加えて、上述の形態を実現することができる。一方、透過率(光利用効率)をより向上させる観点からは、前記第一、第二及び第三偏光子の少なくとも二つは、単体透過率が前記第四偏光子よりも大きいことがより好ましく、前記第一偏光子、前記第二偏光子及び第三偏光子は、いずれも単体透過率が前記第四偏光子よりも大きいことが特に好ましい。このとき、前記第四偏光子よりも単体透過率が大きい偏光子は、互いに、単体透過率が同じであってもよいし、異なっていてもよい。 Moreover, when the 1st liquid crystal display device of this invention contains the 1st optical element of this invention, the following forms are suitable. That is, the first optical element of the present invention has the above-described form (1) or (2) and is disposed on the observation surface side of the backlight. The liquid crystal panel arranged on the observation surface side of the first optical element of the invention, and the fourth polarizer arranged on the observation surface side of the liquid crystal panel, further comprising the first polarizer and the second polarizer The third polarizer and the fourth polarizer are each an absorption polarizer or a composite polarizer in which an absorption polarizer and a reflection polarizer are laminated, and the first polarizer and the second polarizer. At least one of the polarizer and the third polarizer preferably has a single transmittance larger than that of the fourth polarizer. Since the transmission axis of the third polarizer is parallel to the transmission axis of the second polarizer (and the first polarizer), the first, second, and third polarizers are in contrast with each other. Functions to complement each other. As a result, if at least one single transmittance of the first, second and third polarizers is higher than a single transmittance of the fourth polarizer, the first, second, third and fourth polarizers Compared with a liquid crystal display device that has the same single transmittance, the transmittance (light utilization efficiency) can be improved while suppressing a decrease in CR. At this time, the single transmittance of any one of the first, second, and third polarizers may be larger than the single transmittance of the fourth polarizer. Further, among the first, second and third polarizers, there may be a polarizer whose single transmittance is substantially equal to the single transmittance of the fourth polarizer, or the single polarizer of the fourth polarizer. There may be a polarizer smaller than the transmittance. Further, from the viewpoint of manufacturing efficiency of the liquid crystal display device, among the first, second and third polarizers, the polarizer disposed on the backlight side and / or the single transmittance of the second polarizer is More preferably, it is larger than the fourth polarizer. Thereby, the manufacturing process of the conventional liquid crystal display device having only one polarizer on the backlight side of the liquid crystal panel can be easily used. That is, the above-described embodiment can be realized by adding two polarizers in which at least one single transmittance is adjusted to be larger than that of the fourth polarizer to such a conventional liquid crystal display device. On the other hand, from the viewpoint of further improving the transmittance (light utilization efficiency), it is more preferable that at least two of the first, second and third polarizers have a single transmittance larger than that of the fourth polarizer. The first polarizer, the second polarizer, and the third polarizer all preferably have a single transmittance larger than that of the fourth polarizer. At this time, the polarizers having a single transmittance greater than that of the fourth polarizer may have the same or different single transmittance.
上述のようにCRの低下を抑制しながら透過率を向上する観点からは、本発明の第一の液晶表示装置が本発明の第二の光学素子を含む場合、以下の形態が好適である。すなわち、本発明の第二の光学素子は、上記形態(5)を有し、かつ、前記バックライトの観察面側に配され、本発明の第一の液晶表示装置は、本発明の第二の光学素子の観察面側に配された液晶パネルと、前記液晶パネルの観察面側に配された第四偏光子とを更に含み、前記第一偏光子、前記第二偏光子、前記第三偏光子及び前記第四偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、前記第一偏光子、前記第二偏光子及び第三偏光子の少なくとも一つは、単体透過率が前記第四偏光子よりも大きいことが好ましい。このとき、前記第一、第二及び第三偏光子のいずれの偏光子の単体透過率が前記第四偏光子の単体透過率よりも大きくてもよい。また、前記第一、第二及び第三偏光子のうち、単体透過率が前記第四偏光子の単体透過率と実質的に等しい偏光子があってもよいし、前記第四偏光子の単体透過率よりも小さい偏光子があってもよい。また、製造効率の観点からは、前記第一、第二及び第三偏光子のうち、バックライト側に配された偏光子、及び/又は、第二偏光子の単体透過率が前記第四偏光子よりも大きいことが好ましい。一方、透過率(光利用効率)をより向上させる観点からは、前記第一、第二及び第三偏光子の少なくとも二つは、単体透過率が前記第四偏光子よりも大きいことがより好ましく、前記第一偏光子、前記第二偏光子及び第三偏光子は、いずれも単体透過率が前記第四偏光子よりも大きいことが特に好ましい。このとき、前記第四偏光子よりも単体透過率が大きい偏光子は、互いに、単体透過率が同じであってもよいし、異なっていてもよい。 From the viewpoint of improving the transmittance while suppressing the decrease in CR as described above, when the first liquid crystal display device of the present invention includes the second optical element of the present invention, the following modes are preferable. That is, the second optical element of the present invention has the above-described form (5) and is arranged on the observation surface side of the backlight, and the first liquid crystal display device of the present invention is the second liquid crystal display of the present invention. A liquid crystal panel disposed on the observation surface side of the optical element, and a fourth polarizer disposed on the observation surface side of the liquid crystal panel, wherein the first polarizer, the second polarizer, and the third polarizer Each of the polarizer and the fourth polarizer is an absorptive polarizer, or a composite polarizer in which an absorptive polarizer and a reflective polarizer are laminated, and the first polarizer, the second polarizer, and the fourth polarizer. At least one of the three polarizers preferably has a single transmittance greater than that of the fourth polarizer. At this time, the single transmittance of any one of the first, second, and third polarizers may be larger than the single transmittance of the fourth polarizer. Further, among the first, second and third polarizers, there may be a polarizer whose single transmittance is substantially equal to the single transmittance of the fourth polarizer, or the single polarizer of the fourth polarizer. There may be a polarizer smaller than the transmittance. Further, from the viewpoint of manufacturing efficiency, among the first, second and third polarizers, the polarizer disposed on the backlight side and / or the single transmittance of the second polarizer is the fourth polarization. It is preferably larger than the child. On the other hand, from the viewpoint of further improving the transmittance (light utilization efficiency), it is more preferable that at least two of the first, second and third polarizers have a single transmittance larger than that of the fourth polarizer. The first polarizer, the second polarizer, and the third polarizer all preferably have a single transmittance larger than that of the fourth polarizer. At this time, the polarizers having a single transmittance greater than that of the fourth polarizer may have the same or different single transmittance.
また、CRの低下を抑制しながら透過率を向上する観点から、本発明の第二の液晶表示装置は、上記形態(3)又は(4)を有し、かつ、前記液晶パネルの観察面側に配された第四偏光子を更に含み、前記第一偏光子、前記第二偏光子、前記第三偏光子及び前記第四偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、前記第一偏光子、前記第二偏光子及び第三偏光子の少なくとも一つは、単体透過率が前記第四偏光子よりも大きいことが好ましい。このとき、前記第一、第二及び第三偏光子のいずれの偏光子の単体透過率が前記第四偏光子の単体透過率よりも大きくてもよい。また、前記第一、第二及び第三偏光子のうち、単体透過率が前記第四偏光子の単体透過率と実質的に等しい偏光子があってもよいし、前記第四偏光子の単体透過率よりも小さい偏光子があってもよい。また、製造効率の観点からは、前記第一、第二及び第三偏光子のうち、バックライト側に配された偏光子、及び/又は、第二偏光子の単体透過率が前記第四偏光子よりも大きいことが好ましい。一方、透過率(光利用効率)をより向上させる観点からは、前記第一、第二及び第三偏光子の少なくとも二つは、単体透過率が前記第四偏光子よりも大きいことがより好ましく、いずれも単体透過率が前記第四偏光子よりも大きいことが特に好ましい。このとき、前記第四偏光子よりも単体透過率が大きい偏光子は、互いに、単体透過率が同じであってもよいし、異なっていてもよい。 In addition, from the viewpoint of improving the transmittance while suppressing a decrease in CR, the second liquid crystal display device of the present invention has the above-described form (3) or (4) and is on the observation surface side of the liquid crystal panel. The first polarizer, the second polarizer, the third polarizer, and the fourth polarizer are each an absorption polarizer or an absorption polarizer. A composite polarizer in which a reflective polarizer is laminated, and at least one of the first polarizer, the second polarizer, and the third polarizer has a single transmittance greater than that of the fourth polarizer. preferable. At this time, the single transmittance of any one of the first, second, and third polarizers may be larger than the single transmittance of the fourth polarizer. Further, among the first, second and third polarizers, there may be a polarizer whose single transmittance is substantially equal to the single transmittance of the fourth polarizer, or the single polarizer of the fourth polarizer. There may be a polarizer smaller than the transmittance. Further, from the viewpoint of manufacturing efficiency, among the first, second and third polarizers, the polarizer disposed on the backlight side and / or the single transmittance of the second polarizer is the fourth polarization. It is preferably larger than the child. On the other hand, from the viewpoint of further improving the transmittance (light utilization efficiency), it is more preferable that at least two of the first, second and third polarizers have a single transmittance larger than that of the fourth polarizer. In any case, it is particularly preferable that the single transmittance is larger than that of the fourth polarizer. At this time, the polarizers having a single transmittance greater than that of the fourth polarizer may have the same or different single transmittance.
更に、CRの低下を抑制しながら透過率を向上する観点から、本発明の第三の液晶表示装置は、上記形態(6)を有し、かつ、前記液晶パネルの観察面側に配された第四偏光子を更に含み、前記第一偏光子、前記第二偏光子、前記第三偏光子及び前記第四偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、前記第一偏光子、前記第二偏光子及び第三偏光子の少なくとも一つは、単体透過率が前記第四偏光子よりも大きいことが好ましい。このとき、前記第一、第二及び第三偏光子のいずれの偏光子の単体透過率が前記第四偏光子の単体透過率よりも大きくてもよい。また、前記第一、第二及び第三偏光子のうち、単体透過率が前記第四偏光子の単体透過率と実質的に等しい偏光子があってもよいし、前記第四偏光子の単体透過率よりも小さい偏光子があってもよい。また、製造効率の観点からは、前記第一、第二及び第三偏光子のうち、バックライト側に配された偏光子、及び/又は、第二偏光子の単体透過率が前記第四偏光子よりも大きいことが好ましい。一方、透過率(光利用効率)をより向上させる観点からは、前記第一、第二及び第三偏光子の少なくとも二つは、単体透過率が前記第四偏光子よりも大きいことがより好ましく、前記第一偏光子、前記第二偏光子及び第三偏光子は、いずれも単体透過率が前記第四偏光子よりも大きいことが特に好ましい。このとき、前記第四偏光子よりも単体透過率が大きい偏光子は、互いに、単体透過率が同じであってもよいし、異なっていてもよい。 Furthermore, from the viewpoint of improving the transmittance while suppressing a decrease in CR, the third liquid crystal display device of the present invention has the above-described form (6) and is disposed on the observation surface side of the liquid crystal panel. The first polarizer, the second polarizer, the third polarizer, and the fourth polarizer are each an absorption polarizer, or an absorption polarizer and a reflection polarizer. It is preferable that at least one of the first polarizer, the second polarizer, and the third polarizer has a single transmittance greater than that of the fourth polarizer. At this time, the single transmittance of any one of the first, second, and third polarizers may be larger than the single transmittance of the fourth polarizer. Further, among the first, second and third polarizers, there may be a polarizer whose single transmittance is substantially equal to the single transmittance of the fourth polarizer, or the single polarizer of the fourth polarizer. There may be a polarizer smaller than the transmittance. Further, from the viewpoint of manufacturing efficiency, among the first, second and third polarizers, the polarizer disposed on the backlight side and / or the single transmittance of the second polarizer is the fourth polarization. It is preferably larger than the child. On the other hand, from the viewpoint of further improving the transmittance (light utilization efficiency), it is more preferable that at least two of the first, second and third polarizers have a single transmittance larger than that of the fourth polarizer. The first polarizer, the second polarizer, and the third polarizer all preferably have a single transmittance larger than that of the fourth polarizer. At this time, the polarizers having a single transmittance greater than that of the fourth polarizer may have the same or different single transmittance.
これらの形態において、前記第一偏光子、前記第二偏光子、前記第三偏光子及び前記第四偏光子の単体透過率のうち、最大値をTmax3、最小値をTmin3とすると、その差の絶対値(ΔT4=|Tmax3-Tmin3|)は、好ましくは0.2~3.0%であり、より好ましくは0.5~2.0%である。ΔT4が0.2%未満であると、系全体における透過率の向上効果が充分に得られないことがある。一方、ΔT4が3.0%を超えると、系全体におけるコントラストが低下することがある。 In these forms, if the maximum value is Tmax3 and the minimum value is Tmin3 among the single transmittances of the first polarizer, the second polarizer, the third polarizer, and the fourth polarizer, The absolute value (ΔT4 = | Tmax3−Tmin3 |) is preferably 0.2 to 3.0%, more preferably 0.5 to 2.0%. If ΔT4 is less than 0.2%, the effect of improving the transmittance of the entire system may not be sufficiently obtained. On the other hand, when ΔT4 exceeds 3.0%, the contrast of the entire system may be lowered.
また、これらの形態において、前記第一偏光子のコントラスト(CR1)と、前記第二偏光子のコントラスト(CR2)と、前記第三偏光子のコントラスト(CR3)と、前記第四偏光子のコントラスト(CR4)とについては特に限定されず、各々、適宜設定することができる。単体透過率と独立にコントラストが調整できる場合は、CR1、CR2、CR3及びCR4はいずれも高ければ高い程好ましい。 In these embodiments, the first polarizer contrast (CR1), the second polarizer contrast (CR2), the third polarizer contrast (CR3), and the fourth polarizer contrast. (CR4) is not particularly limited, and can be set as appropriate. When the contrast can be adjusted independently of the single transmittance, the higher CR1, CR2, CR3, and CR4 are preferable.
本発明の第一及び第二の光学素子と、本発明の第一、第二及び第三の液晶表示装置とによれば、生産性を向上できるとともに、高CRを実現できる。 According to the first and second optical elements of the present invention and the first, second and third liquid crystal display devices of the present invention, productivity can be improved and high CR can be realized.
実施形態1に係る液晶表示装置の断面模式図である。1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1. FIG. 実施形態2に係る液晶表示装置の断面模式図である。6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 2. FIG. 実施形態3に係る液晶表示装置の断面模式図である。6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 3. FIG. 実施形態3に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。10 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element according to Embodiment 3. FIG. 偏光子の透過率の視野角特性の計算結果を示すコンター図及びグラフである。It is the contour figure and graph which show the calculation result of the viewing angle characteristic of the transmittance | permeability of a polarizer. 2つの偏光子の透過率の視野角特性の計算結果を示すコンター図及びグラフである。It is the contour figure and graph which show the calculation result of the viewing angle characteristic of the transmittance | permeability of two polarizers. 実施形態4に係る液晶表示装置の断面模式図である。6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 4. FIG. 実施形態4に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element concerning Embodiment 4. 実施形態5に係る液晶表示装置の断面模式図である。6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 5. FIG. 実施形態5に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。10 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element according to Embodiment 5. FIG. 実施形態6に係る液晶表示装置の断面模式図である。7 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 6. FIG. 実施形態6に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of the optical element concerning Embodiment 6. 実施形態7に係る液晶表示装置の断面模式図である。10 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 7. FIG. 実施形態7に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element concerning Embodiment 7. 実施形態5~7に係る光学素子の透過率の計算結果を示すグラフである。10 is a graph showing calculation results of transmittance of optical elements according to Embodiments 5 to 7. 第一複屈折層のRthの値を0nmから-1000nmまで変化させたときの視野角特性についての計算結果を示すグラフである。It is a graph which shows the calculation result about the viewing angle characteristic when the value of Rth of a 1st birefringent layer is changed from 0 nm to -1000 nm. 第一複屈折層のRthの値を0nmから-1000nmまで変化させたときの視野角特性についての計算結果を示すコンター図である。FIG. 6 is a contour diagram showing calculation results for viewing angle characteristics when the Rth value of the first birefringent layer is changed from 0 nm to −1000 nm. 実施形態8に係る液晶表示装置の断面模式図である。FIG. 10 is a schematic cross-sectional view of a liquid crystal display device according to an eighth embodiment. 実施形態8に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is the contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element which concerns on Embodiment 8. 実施形態9に係る液晶表示装置の断面模式図である。10 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 9. FIG. 実施形態9に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is the contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element which concerns on Embodiment 9. FIG. 実施形態8に係る光学素子におけるポアンカレ球上での偏光状態の変遷を示す図である。It is a figure which shows transition of the polarization state on the Poincare sphere in the optical element which concerns on Embodiment 8. FIG. 実施形態9に係る光学素子におけるポアンカレ球上での偏光状態の変遷を示す図である。It is a figure which shows the transition of the polarization state on the Poincare sphere in the optical element which concerns on Embodiment 9. FIG. NZを変化させたときの光学素子におけるポアンカレ球上での偏光状態の変遷を示す図である。It is a figure which shows transition of the polarization state on the Poincare sphere in an optical element when NZ is changed. NZを変化させたときの光学素子の視野角特性についての計算結果を示すコンター図である。It is a contour figure which shows the calculation result about the viewing angle characteristic of the optical element when NZ is changed. NZと透過率T(45、60)との関係を示すグラフである。It is a graph which shows the relationship between NZ and the transmittance | permeability T (45, 60). 実施形態10に係る液晶表示装置の断面模式図である。FIG. 10 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 10. 実施形態10に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is the contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element which concerns on Embodiment 10. FIG. 実施形態11に係る液晶表示装置の断面模式図である。14 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 11. FIG. 実施形態11に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is the contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element which concerns on Embodiment 11. FIG. 複屈折層の軸角度の方位を-45°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。FIG. 6 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is −45 °. 複屈折層の軸角度の方位を-25°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。FIG. 10 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is −25 °. 複屈折層の軸角度の方位を-20°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。FIG. 6 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is −20 °. 複屈折層の軸角度の方位を-15°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。FIG. 10 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is −15 °. 複屈折層の軸角度の方位を-10°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。FIG. 6 is a contour diagram and a graph showing calculation results for viewing angle characteristics of an optical element when the axial angle direction of a birefringent layer is −10 °. 複屈折層の軸角度の方位を0°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 0 degrees. 複屈折層の軸角度の方位を10°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 10 degrees. 複屈折層の軸角度の方位を15°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 15 degrees. 複屈折層の軸角度の方位を20°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 20 degrees. 複屈折層の軸角度の方位を25°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 25 degrees. 複屈折層の軸角度の方位を45°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 45 degrees. 複屈折層の軸角度の方位を65°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 65 degrees. 複屈折層の軸角度の方位を70°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 70 degrees. 複屈折層の軸角度の方位を75°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 75 degrees. 複屈折層の軸角度の方位を80°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 80 degrees. 偏光子及び複屈折層の軸角度を両方とも90°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element in case the axial angle of both a polarizer and a birefringent layer is 90 degrees. 複屈折層の軸角度の方位を100°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 100 degrees. 複屈折層の軸角度の方位を105°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and a graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 105 degrees. 複屈折層の軸角度の方位を110°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 110 degrees. 複屈折層の軸角度の方位を115°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 115 degrees. 複屈折層の軸角度の方位を135°とした場合における光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is a contour figure and graph which show the calculation result about the viewing angle characteristic of an optical element when the direction of the axis angle of a birefringent layer is 135 degrees. 光学素子の断面模式図である。It is a cross-sectional schematic diagram of an optical element. 図52の光学素子における視野角特性についての計算結果を示すコンター図及びグラフである。FIG. 53 is a contour diagram and a graph showing calculation results for viewing angle characteristics in the optical element of FIG. 52. 比較形態1に係る液晶表示装置の断面模式図である。It is a cross-sectional schematic diagram of the liquid crystal display device which concerns on the comparative form 1. 比較形態2に係る液晶表示装置の断面模式図である。It is a cross-sectional schematic diagram of the liquid crystal display device which concerns on the comparative form 2. 比較形態2に係る光学素子の視野角特性についての計算結果を示すコンター図及びグラフである。It is the contour figure and graph which show the calculation result about the viewing angle characteristic of the optical element which concerns on the comparative form 2. 液晶パネル内における斜め入射光の散乱を示す模式図である。It is a schematic diagram which shows the scattering of the oblique incident light in a liquid crystal panel.
本明細書において、偏光子は、無偏光(自然光)、部分偏光又は偏光から、特定方向にのみ振動する偏光(直線偏光)を取り出す機能を有するものである。特に断りのない限り、本明細書中で「偏光子」というときは保護フィルムを含まず、偏光機能を有する素子だけを指す。吸収型偏光子とは、特定方向に振動する光を吸収し、それに垂直な方向に振動する偏光(直線偏光)を透過する機能を有するものである。反射型偏光子とは、特定方向に振動する光を反射し、それに垂直な方向に振動する偏光(直線偏光)を透過する機能を有するものである。 In this specification, a polarizer has a function of extracting polarized light (linearly polarized light) that vibrates only in a specific direction from non-polarized light (natural light), partially polarized light, or polarized light. Unless otherwise specified, the term “polarizer” in this specification refers to only a device having a polarizing function without including a protective film. The absorptive polarizer has a function of absorbing light that vibrates in a specific direction and transmitting polarized light (linearly polarized light) that vibrates in a direction perpendicular thereto. The reflective polarizer has a function of reflecting light that vibrates in a specific direction and transmitting polarized light (linearly polarized light) that vibrates in a direction perpendicular thereto.
面内位相差Rは、R=(ns-nf)dで定義される。また、厚み方向位相差Rthは、Rth=(nz-(nx+ny)/2)dで定義される。そして、Nz係数(2軸性パラメータ)は、NZ=(ns-nz)/(ns-nf)で定義される。 The in-plane retardation R is defined by R = (ns−nf) d. The thickness direction retardation Rth is defined by Rth = (nz− (nx + ny) / 2) d. The Nz coefficient (biaxial parameter) is defined by NZ = (ns−nz) / (ns−nf).
なお、上記nsはnx、nyのうち大きい方を、上記nfは小さい方を指す。また、nx及びnyは、複屈折層(液晶パネルを含む)の面内方向の主屈折率を示し、nzは、面外方向、すなわち、複屈折層の面に対して垂直方向の主屈折率を示し、dは、複屈折層の厚みを示す。 The ns indicates the larger one of nx and ny, and the nf indicates the smaller one. Further, nx and ny indicate the main refractive index in the in-plane direction of the birefringent layer (including the liquid crystal panel), and nz is the main refractive index in the out-of-plane direction, that is, the direction perpendicular to the surface of the birefringent layer. D represents the thickness of the birefringent layer.
なお、本明細書中で主屈折率、位相差、Nz係数等の光学パラメータの測定波長は、特に断りのない限り550nmとする。 In the present specification, the measurement wavelength of optical parameters such as the main refractive index, the phase difference, and the Nz coefficient is 550 nm unless otherwise specified.
本明細書において、複屈折層(位相差フィルム)とは、光学的異方性を有する層(フィルム)のことである。複屈折層は、面内位相差Rと、厚み方向位相差Rthの絶対値とのいずれか一方が10nm以上の値を有するものを意味し、好ましくは、20nm以上の値を有するものを意味する。 In this specification, a birefringent layer (retardation film) is a layer (film) having optical anisotropy. The birefringent layer means that one of the in-plane retardation R and the absolute value of the thickness direction retardation Rth has a value of 10 nm or more, and preferably has a value of 20 nm or more. .
また、等方性フィルムとは、面内位相差Rと、厚み方向位相差Rthの絶対値とのいずれもが10nm以下の値を有するものを意味し、好ましくは、5nm以下の値を有するものを意味する。 The isotropic film means that both the in-plane retardation R and the absolute value of the thickness direction retardation Rth have a value of 10 nm or less, preferably 5 nm or less. Means.
本明細書において、軸角度とは、特に断りのない限り偏光子の吸収軸(反射軸)、又は、複屈折層の遅相軸を意味する。 In this specification, the axis angle means an absorption axis (reflection axis) of a polarizer or a slow axis of a birefringent layer unless otherwise specified.
また、本明細書で偏光子の単体透過率(T)は、偏光子を1枚で使用する場合の透過率であり、式:(k1+k2)/2より求める。 Further, in this specification, the single transmittance (T) of a polarizer is a transmittance when a single polarizer is used, and is obtained from the formula: (k1 + k2) / 2.
k1及びk2は主透過率といい、主透過率k1は、偏光子にその透過軸と平行な方向に振動する直線偏光を入射させたときの透過率をいう。主透過率k2は、偏光子にその透過軸と直交する方向に振動する直線偏光を入射させたときの透過率をいう。 k1 and k2 are referred to as main transmittance, and the main transmittance k1 refers to the transmittance when linearly polarized light that vibrates in a direction parallel to the transmission axis is incident on the polarizer. The main transmittance k2 refers to the transmittance when linearly polarized light that vibrates in a direction perpendicular to the transmission axis is incident on the polarizer.
主透過率k1及び主透過率k2の測定機器としては、例えば、紫外可視分光光度計(日本分光社製、商品名「V-7100」)が挙げられる。測定光(偏光子試料への入射光)を直線偏光とするためには、測定機器のオプションとして用意されているグラントムソンプリズム、グランテーラープリズム等の理想的な偏光素子を用いればよい。可視波長域(波長380nm~780nm)における分光透過率を測定し、JIS Z8701-1982に規定の2度視野(C光源)により、視感度補正を行ったY値を透過率とする。 Examples of the measuring device for the main transmittance k1 and the main transmittance k2 include an ultraviolet-visible spectrophotometer (trade name “V-7100” manufactured by JASCO Corporation). In order to make the measurement light (light incident on the polarizer sample) linearly polarized light, an ideal polarizing element such as a Glan-Thompson prism or a Gran Taylor prism, which is prepared as an option of the measurement device, may be used. The spectral transmittance in the visible wavelength region (wavelength 380 nm to 780 nm) is measured, and the Y value that has been corrected for visibility with the two-degree field of view (C light source) defined in JIS Z8701-1982 is defined as the transmittance.
平行透過率(Tp)は、同じ種類の2枚の偏光子を、互いの吸収軸が平行となるように積層して使用する場合の透過率の値であり、式:(k1+k2)/2より求める。 The parallel transmittance (Tp) is a value of transmittance when two polarizers of the same type are stacked and used so that their absorption axes are parallel to each other, and the formula: (k1 2 + k2 2 ) Calculated from / 2.
直交透過率(Tc)は、同じ種類の2枚の偏光子を、互いに吸収軸が直交するように積層して使用する場合の透過率の値であり、式:k1×k2より求める。 The orthogonal transmittance (Tc) is a transmittance value when two polarizers of the same type are stacked and used so that their absorption axes are orthogonal to each other, and is obtained from the equation: k1 × k2.
偏光子のコントラストは、偏光子の平行透過率(Tp)及び直交透過率(Tc)を測定し、式:Tp/Tcより求める。 The contrast of the polarizer is obtained from the formula: Tp / Tc by measuring the parallel transmittance (Tp) and orthogonal transmittance (Tc) of the polarizer.
なお、偏光子のこれらの特性は、保護フィルム、複屈折層等の部材を含む所謂、偏光板を用いて測定しても、偏光子単体で測定した場合と同じ結果を得ることができる。 In addition, even if these characteristics of a polarizer are measured using what is called a polarizing plate containing members, such as a protective film and a birefringent layer, the same result as the case where it measures with a polarizer single-piece | unit can be obtained.
また、反射型偏光子と吸収型偏光子とを積層した複合偏光子におけるこれらの特性は、吸収型偏光子単体での測定結果を意味する。 In addition, these characteristics of a composite polarizer in which a reflective polarizer and an absorption polarizer are stacked mean a measurement result of the absorption polarizer alone.
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Embodiments will be described below, and the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited only to these embodiments.
[実施形態1]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置30は、透過型の液晶表示装置であり、図1に示すように、観察面側から順に、偏光子24、複屈折層23、液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層3、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層3、及び、偏光子1は光学素子10を構成し、偏光子1、2の一方が本発明における第一偏光子に相当し、他方が本発明における第二偏光子に相当し、複屈折層3は、本発明における複屈折層に相当する。偏光子1、2は、パラレルニコルに配置される。複屈折層3の2軸性パラメータは、NZ≦-9、又は、10≦NZを満たし、複屈折層3の厚み方向位相差Rthの絶対値|Rth|は、|Rth|≧200nmを満たす。
[Embodiment 1]
(Optical element and liquid crystal display device)
The liquid crystal display device 30 of the present embodiment is a transmissive liquid crystal display device. As shown in FIG. 1, a polarizer 24, a birefringent layer 23, a liquid crystal panel 22 including a liquid crystal layer, This is a liquid crystal display device obtained by laminating the refractive layer 21, the polarizer 2, the birefringent layer 3, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 3, and the polarizer 1 constitute an optical element 10. One of the polarizers 1 and 2 corresponds to the first polarizer in the present invention, and the other is the second polarizer in the present invention. The birefringent layer 3 corresponds to the birefringent layer in the present invention. The polarizers 1 and 2 are arranged in parallel Nicols. The biaxial parameter of the birefringent layer 3 satisfies NZ ≦ -9 or 10 ≦ NZ, and the absolute value | Rth | of the thickness direction retardation Rth of the birefringent layer 3 satisfies | Rth | ≧ 200 nm.
光学素子10によれば、液晶パネル22の法線方向と、偏光子1、2の偏光軸方向と、偏光子1、2の吸収軸又は反射軸方向から入射した光に対しては、複屈折層3が実質的に機能しないため、高い透過率が観測される。他方、偏光子1、2の軸に対して斜め方位、かつ、偏光子1の面に対して斜め方向から入射した光に対しては、複屈折層3が効果的に機能するため、低い透過率が観測される。その結果、バックライト(BL)ユニット25からの出射光を選択的にコリメート(平行化)させることができ、十字型の配光分布を実現することができる。また、上述のように、液晶パネル22内部の散乱に起因する光漏れは、特定方位の斜め入射光に対して顕著である。したがって、光漏れが発生しやすい方位において低い透過率が得られ、光漏れが発生し難い方位において高い透過率が得られるように光学素子10を配置することによって、液晶パネル22内部の散乱に起因する光漏れを充分に低減することができ、その結果、CRを効果的に向上することができる。 According to the optical element 10, birefringence is applied to light incident from the normal direction of the liquid crystal panel 22, the polarization axis directions of the polarizers 1 and 2, and the absorption axis or reflection axis direction of the polarizers 1 and 2. Since the layer 3 does not function substantially, a high transmittance is observed. On the other hand, the birefringent layer 3 functions effectively for light incident obliquely with respect to the axes of the polarizers 1 and 2 and obliquely with respect to the surface of the polarizer 1. Rate is observed. As a result, the emitted light from the backlight (BL) unit 25 can be selectively collimated (parallelized), and a cross-shaped light distribution can be realized. Further, as described above, light leakage due to scattering inside the liquid crystal panel 22 is significant for obliquely incident light in a specific direction. Therefore, by arranging the optical element 10 so that a low transmittance is obtained in an orientation in which light leakage is likely to occur and a high transmittance is obtained in an orientation in which light leakage is unlikely to occur, the optical element 10 is scattered due to scattering inside the liquid crystal panel 22. Light leakage can be sufficiently reduced, and as a result, CR can be effectively improved.
偏光子1、2は、パラレルニコルに配置され、偏光子2、24は、クロスニコルに配置される。より詳細には、偏光子1、2の吸収軸又は反射軸のなす角度は、0±10°の範囲内(好適には0±5°の範囲内)に設定され、偏光子2、24の吸収軸又は反射軸のなす角度は、90±3°の範囲内(好適には90±1°の範囲内)に設定される。 The polarizers 1 and 2 are arranged in parallel Nicols, and the polarizers 2 and 24 are arranged in crossed Nicols. More specifically, the angle formed by the absorption axes or reflection axes of the polarizers 1 and 2 is set within a range of 0 ± 10 ° (preferably within a range of 0 ± 5 °). The angle formed by the absorption axis or the reflection axis is set within a range of 90 ± 3 ° (preferably within a range of 90 ± 1 °).
なお、偏光子2、24は、パラレルニコルに配置されてもよいが、高CRを得る観点からは、クロスニコルに配置されることが好ましい。 The polarizers 2 and 24 may be arranged in parallel Nicols, but are preferably arranged in crossed Nicols from the viewpoint of obtaining high CR.
偏光子1、2の軸角度は適宜設定することができるが、偏光子1、2の軸角度は、0±10°又は90±10°の範囲内の方位に設定されることが好ましく、0±5°又は90±5°の範囲内の方位に設定されることがより好ましく、実質的に0°又は90°方位に設定されることが特に好ましい。これにより、法線方向と上下左右方向で明るい表示を得ることができる。なお、ここで、実質的に0°又は90°方位とは、0°又は90°方位となるように本実施形態の液晶表示装置が設計及び製造された場合に達成しうる程度の方位であればよく、製造プロセス上発生しうる誤差を含んでもよい。 The axial angles of the polarizers 1 and 2 can be set as appropriate, but the axial angles of the polarizers 1 and 2 are preferably set to an orientation within a range of 0 ± 10 ° or 90 ± 10 °. It is more preferable to set the azimuth within a range of ± 5 ° or 90 ± 5 °, and it is particularly preferable that the azimuth is set to substantially 0 ° or 90 °. Thereby, a bright display can be obtained in the normal direction and in the vertical and horizontal directions. Here, the substantially 0 ° or 90 ° azimuth is an orientation that can be achieved when the liquid crystal display device of this embodiment is designed and manufactured to be 0 ° or 90 ° azimuth. And may include errors that may occur in the manufacturing process.
複屈折層3の|Rth|は、好適には、|Rth|≧400nmであり、より好適には、|Rth|≧600nmである。これにより、偏光子1、2の軸に対して斜め方位、かつ、偏光子1の面に対して斜め方向から入射した光に対する透過率をより低減することができる。 | Rth | of the birefringent layer 3 is preferably | Rth | ≧ 400 nm, and more preferably | Rth | ≧ 600 nm. Thereby, the transmittance | permeability with respect to the light which slanted with respect to the axis | shaft of the polarizers 1 and 2 and entered from the diagonal direction with respect to the surface of the polarizer 1 can be reduced more.
複屈折層3は、NZ≦-19.5、又は、20.5≦NZを満たすことが好ましく、NZ≦-39.5、又は、40.5≦NZを満たすことがより好ましい。これにより、複屈折層3の面内位相差Rを10nm以下(好適には5nm以下)にすることができ、面内異方性がない複屈折層と実質的に同等の作用効果を期待することができる。面内異方性が実質的になくなることで、軸角度の設計自由度も増すことができる。 The birefringent layer 3 preferably satisfies NZ ≦ −19.5 or 20.5 ≦ NZ, and more preferably satisfies NZ ≦ −39.5 or 40.5 ≦ NZ. Thereby, the in-plane retardation R of the birefringent layer 3 can be made 10 nm or less (preferably 5 nm or less), and substantially the same effect as a birefringent layer having no in-plane anisotropy is expected. be able to. Since the in-plane anisotropy is substantially eliminated, the degree of freedom in designing the axial angle can be increased.
図1では複屈折層3が単一の複屈折層からなるように図示したが、複屈折層3は、複数の複屈折層から構成されてもよい。例えば、複屈折層を3枚積層することでトータルとして1つの複屈折層として機能するようにしてもよい。これにより、従来の液晶表示装置用の光学補償フィルムとして広く実用化されている大面積で安価な複屈折層を使用することができる。 In FIG. 1, the birefringent layer 3 is illustrated as being composed of a single birefringent layer, but the birefringent layer 3 may be composed of a plurality of birefringent layers. For example, three birefringent layers may be stacked to function as one birefringent layer as a total. This makes it possible to use a large-area and inexpensive birefringent layer that is widely used as a conventional optical compensation film for liquid crystal display devices.
本実施形態の液晶表示装置30は、偏光子1のバックライト(BL)ユニット25側に、複屈折層3と同様の複屈折層と、偏光子1と同様の偏光子とが偏光子1側からこの順に積層されていてもよい。これにより、偏光子1、2の軸に対して斜め方位、かつ、偏光子1の面に対して斜め方向から入射した光に対する透過率を特に効果的に低減することができる。 In the liquid crystal display device 30 of this embodiment, a birefringent layer similar to the birefringent layer 3 and a polarizer similar to the polarizer 1 are disposed on the polarizer 1 side on the backlight (BL) unit 25 side of the polarizer 1. May be laminated in this order. Thereby, the transmittance | permeability with respect to the light which injected into the diagonal azimuth | direction with respect to the axis | shaft of the polarizers 1 and 2 and diagonally with respect to the surface of the polarizer 1 can be reduced especially effectively.
以下、光学素子及び液晶表示装置を構成する各構成要素について詳述する。
(複屈折層)
実施形態1に用いられる複屈折層の材料としては特に限定されず、例えば、ポリマーフィルムを延伸したもの、液晶性材料の配向を固定したもの、無機材料から構成される薄板等を用いることができる。複屈折層の形成方法としては特に限定されない。ポリマーフィルムから形成される複屈折層の場合、例えば、溶剤キャスト法、溶融押出し法等を用いることができる。共押出し法により、複数の複屈折層を同時に形成する方法を用いてもよい。所望の位相差が発現しさえすれば、無延伸であってもよいし、延伸が施されてもよい。延伸方法も特に限定されず、ロール間引張り延伸法、ロール間圧縮延伸法、テンター横一軸延伸法、斜め延伸法、縦横二軸延伸法の他、熱収縮性フィルムの収縮力の作用下に延伸を行う特殊延伸法等を用いることができる。また、液晶性材料から形成される複屈折層の場合、例えば、配向処理を施した基材フィルムの上に液晶性材料を塗布し、配向固定する方法等を用いることができる。所望の位相差が発現しさえすれば、基材フィルムに特別な配向処理を行わない方法や、配向固定した後、基材フィルムから剥がして別のフィルムに転写加工する方法等であってもよい。更に、液晶性材料の配向を固定しない方法を用いてもよい。また、非液晶性材料から形成される複屈折層の場合も、液晶性材料から形成される複屈折層と同様の形成方法を用いてもよい。以下、複屈折層の種類別にさらに具体的に説明する。
Hereafter, each component which comprises an optical element and a liquid crystal display device is explained in full detail.
(Birefringent layer)
The material of the birefringent layer used in Embodiment 1 is not particularly limited. For example, a stretched polymer film, a fixed liquid crystal material orientation, a thin plate made of an inorganic material, or the like can be used. . The method for forming the birefringent layer is not particularly limited. In the case of a birefringent layer formed from a polymer film, for example, a solvent casting method, a melt extrusion method, or the like can be used. A method of simultaneously forming a plurality of birefringent layers by a coextrusion method may be used. As long as the desired phase difference is expressed, the film may be unstretched or may be stretched. The stretching method is not particularly limited, and stretching is performed under the action of the shrinkage force of the heat-shrinkable film, in addition to the inter-roll tensile stretching method, the inter-roll compression stretching method, the tenter transverse uniaxial stretching method, the oblique stretching method, the longitudinal and transverse biaxial stretching method. A special stretching method or the like can be used. In the case of a birefringent layer formed of a liquid crystalline material, for example, a method of applying a liquid crystalline material on an orientation-treated base film and fixing the orientation can be used. As long as a desired phase difference is developed, a method of not performing a special orientation treatment on the base film, a method of removing the base film from the base film and transferring it to another film may be used. . Further, a method that does not fix the alignment of the liquid crystal material may be used. In the case of a birefringent layer formed from a non-liquid crystalline material, the same formation method as that for a birefringent layer formed from a liquid crystalline material may be used. Hereinafter, more specific description will be given for each type of birefringent layer.
(第一種の複屈折層)
本明細書では2≦NZ<10の複屈折層(位相差フィルム)を第一種の複屈折層と呼ぶ。第一種の複屈折層としては、固有複屈折が正の材料を成分として含むフィルムを延伸加工したもの等を適宜用いることができる。固有複屈折が正の材料としては、例えば、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリエチレンテレフタレート、ポリエチレン、ポリビニルアルコール、ノルボルネン、トリアセチルセルロース、ジアチルセルロース等が挙げられる。
(First birefringent layer)
In this specification, a birefringent layer (retardation film) of 2 ≦ NZ <10 is referred to as a first type birefringent layer. As the first kind of birefringent layer, a film obtained by stretching a film containing a material having a positive intrinsic birefringence as a component can be appropriately used. Examples of the material having a positive intrinsic birefringence include polycarbonate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene, polyvinyl alcohol, norbornene, triacetylcellulose, and diacylcellulose.
(第二種の複屈折層)
本明細書では-9<NZ≦1の複屈折層(位相差フィルム)を第二種の複屈折層と呼ぶ。第二種の複屈折層としては、固有複屈折が負の材料を成分として含むフィルムを延伸加工したもの、固有複屈折が正の材料を成分として含むフィルムを熱収縮性フィルムの収縮力の作用下で延伸加工したもの等を適宜用いることができる。なかでも、製造方法の簡便化の観点からは、固有複屈折が負の材料を成分として含むフィルムを延伸加工したものが好ましい。固有複屈折が負の材料としては、例えば、アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物、ポリスチレン、ポリビニルナフタレン、ポリビニルビフェニル、ポリビニルピリジン、ポリメチルメタクリレート、ポリメチルアクリレート、N置換マレイミド共重合体、フルオレン骨格を有するポリカーボネート、トリアセチルセルロース(特にアセチル化度の小さいもの)等が挙げられる。なかでも、光学特性、生産性及び耐熱性の観点からは、アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物が好適である。このような樹脂組成物を成分として含むフィルムの製造方法については、例えば、特開2008-146003号公報に開示がある。
(Second birefringent layer)
In this specification, a birefringent layer (retardation film) of −9 <NZ ≦ 1 is referred to as a second type birefringent layer. The second kind of birefringent layer is a stretched film containing a material having a negative intrinsic birefringence as a component, and a film containing a material having a positive intrinsic birefringence as a component is acting on the shrinkage force of the heat shrinkable film. What extended | stretched and processed below can be used suitably. Among these, from the viewpoint of simplifying the production method, a film obtained by stretching a film containing a material having a negative intrinsic birefringence as a component is preferable. Examples of the material having a negative intrinsic birefringence include a resin composition containing an acrylic resin and a styrene resin, polystyrene, polyvinyl naphthalene, polyvinyl biphenyl, polyvinyl pyridine, polymethyl methacrylate, polymethyl acrylate, and an N-substituted maleimide copolymer. , Polycarbonate having a fluorene skeleton, and triacetyl cellulose (particularly those having a low degree of acetylation). Among these, from the viewpoint of optical properties, productivity, and heat resistance, a resin composition containing an acrylic resin and a styrene resin is preferable. A method for producing a film containing such a resin composition as a component is disclosed in, for example, JP-A-2008-146003.
(第三種の複屈折層)
本明細書では、10≦NZの複屈折層(位相差フィルム)、所謂ネガティブCプレートを第三種の複屈折層と呼ぶ。第三種の複屈折層としては、固有複屈折が正の材料を成分として含むフィルムを縦横二軸延伸加工したもの、コレステリック(カイラルネマチック)液晶やディスコチック液晶等の液晶性材料を塗布したもの、ポリイミドやポリアミド等を含む非液晶性材料を塗布したもの等を適宜用いることができる。
(Third kind of birefringent layer)
In this specification, a birefringent layer (retardation film) of 10 ≦ NZ, a so-called negative C plate is referred to as a third type birefringent layer. As the third birefringent layer, a film containing a material having a positive intrinsic birefringence as a component is subjected to a longitudinal and lateral biaxial stretching process, and a liquid crystal material such as a cholesteric (chiral nematic) liquid crystal or a discotic liquid crystal is applied. In addition, a material coated with a non-liquid crystalline material containing polyimide, polyamide, or the like can be used as appropriate.
(第四種の複屈折層)
本明細書では、NZ≦-9の複屈折層(位相差フィルム)、所謂ポジティブCプレートを第四種の複屈折層と呼ぶ。第四種の複屈折層としては、固有複屈折が負の材料を成分として含むフィルムを縦横二軸延伸加工したもの、棒状ネマチック液晶等の液晶性材料を塗布したもの等を適宜用いることができる。
(Fourth birefringent layer)
In the present specification, a birefringent layer (retardation film) of NZ ≦ −9, a so-called positive C plate is referred to as a fourth type birefringent layer. As the fourth type of birefringent layer, a film containing a material having a negative intrinsic birefringence as a component and subjected to longitudinal and lateral biaxial stretching processing, a film coated with a liquid crystalline material such as a rod-like nematic liquid crystal, and the like can be used as appropriate. .
このように、実施形態1では、複屈折層3として、第三種の複屈折層、又は、第四種の複屈折層が用いられる。他方、複屈折層21、23の材質や特性、軸角度等は、液晶パネル22の液晶モード等を考慮して、適宜、設定することができる。 As described above, in the first embodiment, the birefringent layer 3 is a third birefringent layer or a fourth birefringent layer. On the other hand, the material, characteristics, axial angle, and the like of the birefringent layers 21 and 23 can be appropriately set in consideration of the liquid crystal mode of the liquid crystal panel 22 and the like.
(偏光子)
実施形態1に用いられる偏光子としては、材料や光学的性能について特に限定されず、例えば、吸収型偏光子、反射型偏光子等を適宜用いることができる。具体的には、ポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体等の異方性材料を吸着配向させた吸収型偏光子の他、二種類の樹脂からなる共押出しフィルムを1軸延伸して得られる反射型偏光子(例えば、3M社のDBEF)、金属ワイヤーの細線を周期的に配列させた反射型偏光子(所謂ワイヤーグリッド偏光子)等を適宜用いることができる。また、吸収型偏光子と反射型偏光子とを積層した物を用いることもできる。
(Polarizer)
The polarizer used in Embodiment 1 is not particularly limited in terms of materials and optical performance, and for example, an absorbing polarizer, a reflective polarizer, or the like can be used as appropriate. Specifically, a co-extruded film made of two types of resins is uniaxially stretched in addition to an absorbing polarizer in which an anisotropic material such as an iodine complex having dichroism is adsorbed and oriented on a polyvinyl alcohol (PVA) film. A reflective polarizer (for example, DBEF manufactured by 3M), a reflective polarizer in which fine wires of metal wires are periodically arranged (so-called wire grid polarizer), and the like can be used as appropriate. Moreover, the thing which laminated | stacked the absorption type polarizer and the reflection type polarizer can also be used.
(吸収型偏光子又は複合偏光子を用いる場合)
吸収型偏光子のみを用いる場合は、特定の方位での斜め入射光が偏光子で吸収されることにより透過が制限され、ライトコリメーション効果が得られるため、液晶パネルへの入射光量が減少(光ロス)してしまう。したがって、吸収型偏光子のみを用いる場合は、ライトコリメーションを行わない従来構成(例えば、偏光子1を有さず、偏光子2及び偏光子24のみ備える液晶表示装置)に比べて、液晶パネルへの入射光量が低下してしまう。そこで、吸収型偏光子のみを用いる場合は、偏光子1、2のうちの少なくとも一枚は、その単体透過率を大きく設定することが好ましく、偏光子24よりも大きく設定することがより好ましい。そして、偏光子1、2の単体透過率は、いずれも、偏光子24より大きいことが更に好ましい。一般に、吸収型偏光子の単体透過率と偏光子のコントラスト(偏光度)とはトレードオフの関係にあるため、単体透過率を大きく設定すると偏光子のコントラストが低下してしまう。しかしながら、本実施形態の光学素子及び液晶表示装置においては、偏光子1及び偏光子2の透過軸(吸収軸)は互いに平行であるため、偏光子1及び偏光子2は互いに偏光子のコントラストを補完し合うように機能する。したがって、偏光子1及び偏光子2を一体として考えた場合の偏光子のコントラストが充分でさえあれば、液晶表示装置全体としてのCRは充分に確保できる。一方、偏光子24のコントラストを低下させるとそのまま液晶表示装置のCR低下に繋がるので、偏光子24の単体透過率を大きく設定することは好ましくない。
(When using absorption polarizer or composite polarizer)
When using only an absorptive polarizer, oblique incident light in a specific orientation is absorbed by the polarizer, limiting transmission and providing a light collimation effect. This reduces the amount of light incident on the liquid crystal panel (light Loss). Therefore, when only the absorption type polarizer is used, the liquid crystal panel is compared with a conventional configuration that does not perform light collimation (for example, a liquid crystal display device that does not include the polarizer 1 and includes only the polarizer 2 and the polarizer 24). The amount of incident light decreases. Therefore, when only an absorption polarizer is used, at least one of the polarizers 1 and 2 is preferably set to have a large single transmittance, and more preferably set to be larger than that of the polarizer 24. The single transmittance of the polarizers 1 and 2 is more preferably larger than that of the polarizer 24. In general, the single transmittance of the absorption polarizer and the contrast (polarization degree) of the polarizer are in a trade-off relationship. Therefore, if the single transmittance is set large, the contrast of the polarizer is lowered. However, in the optical element and the liquid crystal display device of the present embodiment, since the transmission axes (absorption axes) of the polarizer 1 and the polarizer 2 are parallel to each other, the polarizer 1 and the polarizer 2 have a polarizer contrast with each other. Functions to complement each other. Accordingly, as long as the polarizer 1 and the polarizer 2 are considered as a single body, the CR of the entire liquid crystal display device can be sufficiently secured as long as the contrast of the polarizer is sufficient. On the other hand, lowering the contrast of the polarizer 24 directly leads to lowering of the CR of the liquid crystal display device, so it is not preferable to set the single transmittance of the polarizer 24 large.
一方、吸収型偏光子と反射型偏光子とを積層した複合偏光子を用いる場合、すなわち、複合偏光子のみを用いる場合、又は、吸収型偏光子と複合偏光子とを組み合わせて用いる場合、反射型偏光子の方が吸収型偏光子よりもバックライト側になるように配置し、かつ、反射型偏光子の偏光性能が完全である場合には吸収型偏光子による吸収(光ロス)を完全に無くすことができる。しかし、実際には反射型偏光子の偏光性能は完全ではないため、本来は完全に反射して欲しい光の一部が反射型偏光子を透過してしまい、その一部が次の吸収型偏光子で吸収されてしまうため、複合偏光子を使用する場合にも光ロスが発生してしまう。仮に反射型偏光子の偏光性能が完全であれば、反射型偏光子それ自身だけで充分な性能が得られるため、吸収型偏光子と積層し複合偏光子として使用する意味はほとんどない。換言すれば、反射型偏光子と吸収型偏光子を積層した複合偏光子として使用する場合は、反射型偏光子の性能が不充分である場合にほとんど限られ、その場合は反射型偏光子透過後の吸収型偏光子で光ロスが生じると言える。したがって、反射型偏光子を使用する構成であっても、それが吸収型偏光子との積層体として使用される場合には、光ロスを最小化する観点から、吸収型偏光子のみを用いる場合の設計思想と同様に、偏光子1、2のうちの少なくとも一枚は、その単体透過率を大きく設定することが好ましく、偏光子24よりも大きく設定することがより好ましい。そして、偏光子1、2の単体透過率は、いずれも、偏光子24より大きいことが更に好ましい。 On the other hand, when using a composite polarizer in which an absorption polarizer and a reflection polarizer are laminated, that is, when using only a composite polarizer, or when using a combination of an absorption polarizer and a composite polarizer, reflection If the polarizing polarizer is placed on the backlight side of the absorptive polarizer, and the reflective polarizer has perfect polarization performance, the absorption by the absorptive polarizer (light loss) is complete. Can be eliminated. However, in reality, the polarization performance of the reflective polarizer is not perfect, so part of the light that you want to be completely reflected is transmitted through the reflective polarizer, and part of it is the next absorption-type polarized light. Since the light is absorbed by the optical element, an optical loss occurs even when the composite polarizer is used. If the polarization performance of the reflective polarizer is perfect, sufficient performance can be obtained with the reflective polarizer itself, so there is little significance in stacking with an absorptive polarizer and using it as a composite polarizer. In other words, when it is used as a composite polarizer in which a reflective polarizer and an absorption polarizer are laminated, it is almost limited to the case where the performance of the reflective polarizer is insufficient. It can be said that light loss occurs in the later absorption polarizer. Therefore, even if it is a configuration that uses a reflective polarizer, if it is used as a laminate with an absorptive polarizer, only the absorptive polarizer is used from the viewpoint of minimizing optical loss. As in the design concept, at least one of the polarizers 1 and 2 is preferably set to have a large single transmittance, and more preferably set to be larger than that of the polarizer 24. The single transmittance of the polarizers 1 and 2 is more preferably larger than that of the polarizer 24.
偏光子1、2、24それぞれの単体透過率と偏光子のコントラストとの関係について、具体的な計算結果を用いて説明する。偏光子24、偏光子2、偏光子1として、表1に示す偏光子A~Dのいずれかを選択した場合の偏光子の平行透過率、直交透過率、偏光子のコントラストのシミュレーション結果を表2に示す。偏光子2と偏光子1は透過軸(吸収軸)を互いに平行になるように使用するので、2枚合わせて1枚の偏光子IIとして機能すると考えられる。偏光子I(偏光子24に相当)と偏光子IIとを組み合わせたときの平行透過率、直交透過率を計算した。 The relationship between the single transmittance of each of the polarizers 1, 2, and 24 and the contrast of the polarizer will be described using specific calculation results. When the polarizer 24, the polarizer 2, and the polarizer 1 are selected from the polarizers A to D shown in Table 1, the parallel transmittance, the orthogonal transmittance, and the contrast of the polarizer are simulated. It is shown in 2. Since the polarizer 2 and the polarizer 1 are used so that their transmission axes (absorption axes) are parallel to each other, it is considered that the two polarizers function as a single polarizer II. The parallel transmittance and orthogonal transmittance when the polarizer I (corresponding to the polarizer 24) and the polarizer II were combined were calculated.
シミュレーションを簡略化するために、このシミュレーションには液晶セルや複屈折層を含めていないが、本発明者らの検討の結果、偏光子だけの透過率の大小と液晶表示装置の透過率の大小とは相関があり、偏光子のコントラストの大小と、液晶表示装置のコントラスト(CR)の大小とも、又、相関があることが分かっている。表2に示されるように、偏光子2、偏光子1においては、ある程度までコントラストを犠牲にする代わりに単体透過率を大きく設定しても、系全体(偏光子I及びIIの組み合わせ)のコントラストには殆ど影響しない。このとき、液晶表示装置のCRを高く維持しながら、高透過率とすることができる。一方、偏光子I(偏光子24)のコントラストを犠牲にしつつ単体透過率を大きく設定すると、偏光子II(偏光子2、偏光子1)のコントラストが充分であっても系全体のコントラストは大きく低下してしまい、その結果、液晶表示装置のCRも大きく低下してしまう。 In order to simplify the simulation, this simulation does not include a liquid crystal cell or a birefringent layer. However, as a result of the study by the present inventors, the transmittance of the polarizer alone and the transmittance of the liquid crystal display device are small. It is known that there is also a correlation between the magnitude of the contrast of the polarizer and the magnitude of the contrast (CR) of the liquid crystal display device. As shown in Table 2, in the polarizer 2 and the polarizer 1, the contrast of the entire system (combination of the polarizers I and II) can be achieved even if the single transmittance is set large instead of sacrificing the contrast to some extent. Has little effect. At this time, high transmittance can be achieved while maintaining high CR of the liquid crystal display device. On the other hand, if the single transmittance is set large while sacrificing the contrast of the polarizer I (polarizer 24), the contrast of the entire system is large even if the contrast of the polarizer II (polarizer 2 and polarizer 1) is sufficient. As a result, the CR of the liquid crystal display device is greatly reduced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
上記の通り、偏光子1及び偏光子2のうち少なくとも一方を積極的に高透過に調整することで、光利用効率が改善する。液晶パネルの背面側には偏光子1及び偏光子2の合計2の偏光子が存在するので、この2枚で充分な偏光度が確保できれば、液晶表示装置のCRの低下を抑制しながら、光利用効率を改善することができる。 As described above, the light use efficiency is improved by positively adjusting at least one of the polarizer 1 and the polarizer 2 to high transmittance. Since there are a total of two polarizers, a polarizer 1 and a polarizer 2, on the back side of the liquid crystal panel, if a sufficient degree of polarization can be secured with these two sheets, the decrease in the CR of the liquid crystal display device is suppressed, and the light is reduced. Utilization efficiency can be improved.
偏光子1、2の一方のみの単体透過率を偏光子24の単体透過率より高くするとき、どちらの偏光子の単体透過率を大きくしてもよい。また、一方のみの偏光子の単体透過率が偏光子24の単体透過率より高いとき、他方の偏光子の単体透過率は、偏光子24の単体透過率と実質的に等しくしてもよいし、それより小さくてもよい。液晶表示装置の製造効率の観点からは、偏光子1の単体透過率を偏光子24の単体透過率よりも大きくすることが好ましい。これにより、従来の液晶表示装置の製造ラインを流用できるようになる。一方、透過率(光利用効率)をより向上させる観点からは、偏光子1、2両方の単体透過率を偏光子24の単体透過率よりも大きくすることが好ましい。このとき、偏光子1、2は、互いに、単体透過率が同じであってもよいし、異なっていてもよい。 When the single transmittance of only one of the polarizers 1 and 2 is made higher than the single transmittance of the polarizer 24, the single transmittance of either polarizer may be increased. When the single transmittance of only one polarizer is higher than the single transmittance of the polarizer 24, the single transmittance of the other polarizer may be substantially equal to the single transmittance of the polarizer 24. Or smaller. From the viewpoint of manufacturing efficiency of the liquid crystal display device, it is preferable that the single transmittance of the polarizer 1 is larger than the single transmittance of the polarizer 24. As a result, the production line of the conventional liquid crystal display device can be diverted. On the other hand, from the viewpoint of further improving the transmittance (light utilization efficiency), it is preferable to make the single transmittance of both the polarizers 1 and 2 larger than the single transmittance of the polarizer 24. At this time, the polarizers 1 and 2 may have the same single transmittance or may be different from each other.
(反射型偏光子を用いる場合)
一方、吸収型偏光子に代えて反射型偏光子を用いる場合、又は、反射型偏光子の方が吸収型偏光子よりもBL側になるように吸収型偏光子と反射型偏光子とを積層して組み合わせて用いる場合は、特定の方位での斜め入射光が偏光子で反射されることにより透過が制限され、ライトコリメーション効果が得られる。そして、前記反射光はBLユニットに戻され、BLユニット内で反射して再利用されるため、実質的な液晶パネルへの入射光量の減少を最小限に抑えることができる。このような観点から、反射型偏光子を用いることがより好ましく、また、反射型偏光子を用いる場合に高コントラストを得る観点からは、偏光子24、偏光子1、2のうちの少なくとも一枚は、吸収型偏光子を含むことが好ましく、偏光子24と、偏光子1、2の一方とは吸収型偏光子を含むことがより好ましい。
(When using a reflective polarizer)
On the other hand, when a reflective polarizer is used instead of an absorptive polarizer, or an absorptive polarizer and a reflective polarizer are laminated so that the reflective polarizer is closer to the BL side than the absorptive polarizer. When combined and used, obliquely incident light in a specific direction is reflected by the polarizer so that transmission is limited, and a light collimation effect is obtained. Since the reflected light is returned to the BL unit and is reflected and reused in the BL unit, a substantial decrease in the amount of incident light on the liquid crystal panel can be minimized. From such a viewpoint, it is more preferable to use a reflective polarizer, and from the viewpoint of obtaining high contrast when using a reflective polarizer, at least one of the polarizer 24 and the polarizers 1 and 2 is used. Preferably includes an absorptive polarizer, and the polarizer 24 and one of the polarizers 1 and 2 more preferably include an absorptive polarizer.
また、機械強度や耐湿熱性を確保するために、偏光子の両側にトリアセチルセルロース(TAC)フィルム等の保護フィルム(図示せず)がラミネートされてもよい。保護フィルムは、任意の適切な接着層(図示せず)を介して偏光子に貼り付けられる。また、複屈折層が保護フィルムの機能を兼ね備えてもよい。 Moreover, in order to ensure mechanical strength and heat-and-moisture resistance, a protective film (not shown) such as a triacetyl cellulose (TAC) film may be laminated on both sides of the polarizer. The protective film is attached to the polarizer via any suitable adhesive layer (not shown). In addition, the birefringent layer may have the function of a protective film.
本明細書において、「接着層」とは、隣り合う光学部材の面と面とを接合し、実用上充分な接着力と接着時間で一体化させるものをいう。上記接着層を形成する材料としては、例えば、接着剤、アンカーコート剤が挙げられる。上記接着層は、被着体の表面にアンカーコート層が形成され、その上に接着剤層が形成されたような、多層構造であってもよい。また、肉眼的に認知できないような薄い層であってもよい。 In this specification, the “adhesive layer” refers to a layer that joins surfaces of adjacent optical members and integrates them with practically sufficient adhesive force and adhesion time. Examples of the material for forming the adhesive layer include an adhesive and an anchor coat agent. The adhesive layer may have a multilayer structure in which an anchor coat layer is formed on the surface of an adherend and an adhesive layer is formed thereon. Further, it may be a thin layer that cannot be visually recognized.
(液晶パネル)
液晶パネルの液晶モードは特に限定されず、液晶層中の液晶分子を基板面に垂直に配向させることで黒表示を行うものであってもよいし、液晶層中の液晶分子を基板面に水平又は垂直でも水平でもない方向に配向させることで黒表示を行うものであってもよい。高いCRを得る観点からは、液晶層中の液晶分子を基板面に略垂直に配向させることで黒表示を行う垂直配向(VA:Vertical Alignment)モードのものがより好ましい。すなわち、液晶表示装置30の表示モードは、垂直配向モードであることが好ましい。また、液晶パネルの駆動形式としては、TFT方式(アクティブマトリクス方式)のほか、単純マトリクス方式(パッシブマトリクス方式)、プラズマアドレス方式等であってもよい。液晶パネルの構成としては、例えば、それぞれに電極が形成された一対の基板間に液晶層を狭持し、それぞれの電極間に電圧を印加することで表示を行うものが挙げられる。
(LCD panel)
The liquid crystal mode of the liquid crystal panel is not particularly limited, and the liquid crystal mode may be such that black display is performed by aligning the liquid crystal molecules in the liquid crystal layer perpendicularly to the substrate surface, or the liquid crystal molecules in the liquid crystal layer are horizontal to the substrate surface. Alternatively, black display may be performed by orientation in a direction that is neither vertical nor horizontal. From the viewpoint of obtaining a high CR, a vertical alignment (VA) mode that performs black display by aligning liquid crystal molecules in the liquid crystal layer substantially perpendicularly to the substrate surface is more preferable. That is, the display mode of the liquid crystal display device 30 is preferably a vertical alignment mode. In addition to the TFT method (active matrix method), the liquid crystal panel may be driven by a simple matrix method (passive matrix method), a plasma address method, or the like. As a configuration of the liquid crystal panel, for example, a liquid crystal layer is sandwiched between a pair of substrates each having an electrode formed thereon, and display is performed by applying a voltage between the electrodes.
なお、VAモードとしては、例えば、MVA(Multi-domain Vertical Alignment)モード、CPA(Continuous Pinwheel Alignment)モード、PVA(Patterned Vertical Alignment)モード、BVA(Biased Vertical Alignment)モード、RTN(Reverse Twisted Nematic)モード、UV2A(Ultra Violet Induced VA)モード、PSA(Polymer Sustained Alignment)モード、IPS-VA(In Plane Switching-Vertical Alignment)モード、TBA(Transverese Bend Alignment)モード等が挙げられる。VAモードにおいて、液晶分子の平均プレチルト角は、80°以上(より好適には85°以上)であることが好ましい。 As the VA mode, for example, an MVA (Multi-domain Vertical Alignment) mode, a CPA (Continuous Pinheal Alignment) mode, a PVA (Patterned Vertical Alignment) mode, and a BVA (Beared VT) mode. , UV2A (Ultra Violet Induced VA) mode, PSA (Polymer Sustained Alignment) mode, IPS-VA (In Plane Switching-Vertical Alignment) mode, TBA (Transverse B) nd Alignment) mode, and the like. In the VA mode, the average pretilt angle of the liquid crystal molecules is preferably 80 ° or more (more preferably 85 ° or more).
(バックライトユニット)
バックライト(BL)ユニット25については、特に限定されず、例えば、冷陰極蛍光ランプ(CCFL:Cold Cathode Fluorescent Lamp)、熱陰極管(HCFL:Hot Cathode Fluorescent Lamp)、発光ダイオード(LED:Light Emitting Diode)等の光源を少なくとも含むものを適宜用いることができる。一般的には点状、又は線状である光源からの出射光を面状に均一化するために、拡散板や拡散シート等の拡散層を備えることがより好ましい。また、実施形態1においては、液晶パネルへの入射光のコリメート(集光)は、偏光子2からBLユニット25までの間に含まれる偏光子1と複屈折層3(偏光子2も含む)とによって行われるため、BLユニット自身には必ずしもコリメート機能が備わっている必要がない。しかしながら、液晶パネルへの入射光をよりコリメートして法線方向の明るさを稼いだり、CRを更に改善したり、あるいは、従来のBLユニットを変更なくそのまま流用するという観点から、BLユニット自身がレンズシート、プリズムシート等の光学シートを含み、ある程度コリメート機能を備えるものであってもよい。
(Backlight unit)
The backlight (BL) unit 25 is not particularly limited, and, for example, a cold cathode fluorescent lamp (CCFL), a hot cathode tube (HCFL), a light emitting diode (LED: Light Emitting Diode). A light source including at least a light source such as In general, it is more preferable to provide a diffusion layer such as a diffusion plate or a diffusion sheet in order to uniformize the light emitted from the light source that is a dot or a line in a planar shape. In the first embodiment, collimation (condensation) of incident light to the liquid crystal panel is performed by the polarizer 1 and the birefringent layer 3 (including the polarizer 2) included between the polarizer 2 and the BL unit 25. Therefore, the BL unit itself does not necessarily have a collimating function. However, from the viewpoint of collimating the incident light on the liquid crystal panel to increase the brightness in the normal direction, further improving the CR, or diverting the conventional BL unit without change, the BL unit itself It may include an optical sheet such as a lens sheet or a prism sheet, and may have a collimating function to some extent.
(その他)
本実施形態においては、拡散素子を設けなくとも、法線方向と4方向(好適には、上下左右方向)で明るい表示が得られる。ただし、これら以外の方向でも明るい表示を得るという観点からは、偏光子24の観察面側に拡散素子を更に設けてもよい。
(Other)
In the present embodiment, a bright display can be obtained in the normal direction and four directions (preferably in the vertical and horizontal directions) without providing a diffusing element. However, from the viewpoint of obtaining bright display in directions other than these, a diffusing element may be further provided on the observation surface side of the polarizer 24.
実施形態1においては、複屈折層3及び偏光子1は、液晶パネル22側に取り付けられているが、例えば、偏光子1のみ、或いは、偏光子1及び複屈折層3がBLユニット25に取り付けられていてもよい。また、図示していないが、上記部材間に等方性フィルムが挿入されていてもよい。あるいは、空気層を介してもよい。 In the first embodiment, the birefringent layer 3 and the polarizer 1 are attached to the liquid crystal panel 22 side. For example, only the polarizer 1 or the polarizer 1 and the birefringent layer 3 are attached to the BL unit 25. It may be done. Although not shown, an isotropic film may be inserted between the members. Alternatively, an air layer may be used.
[実施形態2]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置31は、透過型の液晶表示装置であり、図2に示すように、観察面側から順に、偏光子24、複屈折層23、液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層4、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層4、及び、偏光子1は光学素子11を構成する。このように、複屈折層3に替えて、複屈折層4を用いたこと以外は、実施形態2に係る液晶表示装置31の構成は、実施形態1に係る液晶表示装置30の構成と同じである。
[Embodiment 2]
(Optical element and liquid crystal display device)
The liquid crystal display device 31 of the present embodiment is a transmissive liquid crystal display device. As shown in FIG. 2, a polarizer 24, a birefringent layer 23, a liquid crystal panel 22 including a liquid crystal layer, This is a liquid crystal display device obtained by laminating the refractive layer 21, the polarizer 2, the birefringent layer 4, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 4, and the polarizer 1 constitute an optical element 11. Thus, the configuration of the liquid crystal display device 31 according to the second embodiment is the same as the configuration of the liquid crystal display device 30 according to the first embodiment, except that the birefringent layer 4 is used instead of the birefringent layer 3. is there.
複屈折層4としては、第一種の複屈折層、又は、第二種の複屈折層が用いられる。すなわち、複屈折層4は、2≦NZ<10、又は、-9<NZ≦-1を満たす。偏光子1の透過軸と、複屈折層4の面内遅層軸とがなす角度は45°とならないように、複屈折層4は、配される。 As the birefringent layer 4, a first type birefringent layer or a second type birefringent layer is used. That is, the birefringent layer 4 satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1. The birefringent layer 4 is arranged so that the angle formed by the transmission axis of the polarizer 1 and the in-plane slow layer axis of the birefringent layer 4 is not 45 °.
光学素子11によれば、液晶パネル22の法線方向と、偏光子1、2の偏光軸方向と、偏光子1、2の吸収軸又は反射軸方向から入射した光に対しては、複屈折層3が有効に機能しないため、高い透過率が観測される。他方、偏光子1、2の軸に対して斜め方位、かつ、偏光子1の面に対して斜め方向から入射した光に対しては、複屈折層3が効果的に機能するため、低い透過率が観測される。その結果、BLユニット25からの出射光を選択的にコリメート(平行化)させることができ、十字型の配光分布を実現することができる。したがって、実施形態1の場合と同様にして、液晶パネル22内部の散乱に起因する光漏れを充分に低減することができ、その結果、CRを効果的に向上することができる。 According to the optical element 11, birefringence is applied to light incident from the normal direction of the liquid crystal panel 22, the polarization axis directions of the polarizers 1 and 2, and the absorption axis or reflection axis direction of the polarizers 1 and 2. High transmission is observed because layer 3 does not function effectively. On the other hand, the birefringent layer 3 functions effectively for light incident obliquely with respect to the axes of the polarizers 1 and 2 and obliquely with respect to the surface of the polarizer 1. Rate is observed. As a result, the emitted light from the BL unit 25 can be selectively collimated (parallelized), and a cross-shaped light distribution can be realized. Accordingly, similarly to the case of the first embodiment, light leakage due to scattering inside the liquid crystal panel 22 can be sufficiently reduced, and as a result, CR can be effectively improved.
偏光子1の透過軸と、複屈折層4の面内遅層軸とのなす角度は、90±20°、又は、0±20°の範囲内であることが好ましく、偏光子1の透過軸と、複屈折層4の面内遅層軸とは、互いに直交するか、又は、互いに平行であることがより好ましく、互いに直交することが更に好ましい。これにより、偏光子1、2の軸に対して斜め方位、かつ、偏光子1の面に対して斜め方向から入射した光に対する透過率をより低減することができる。 The angle formed between the transmission axis of the polarizer 1 and the in-plane slow layer axis of the birefringent layer 4 is preferably in the range of 90 ± 20 ° or 0 ± 20 °. And the in-plane slow layer axis of the birefringent layer 4 are preferably orthogonal to each other, more preferably parallel to each other, and still more preferably orthogonal to each other. Thereby, the transmittance | permeability with respect to the light which slanted with respect to the axis | shaft of the polarizers 1 and 2 and entered from the diagonal direction with respect to the surface of the polarizer 1 can be reduced more.
複屈折層4の厚み方向位相差の絶対値|Rth|は、好適には、|Rth|≧200nmであり、より好適には、|Rth|≧400nmであり、更に好適には、|Rth|≧600nmである。これにより、偏光子1、2の軸に対して斜め方位、かつ、偏光子1の面に対して斜め方向から入射した光に対する透過率をより低減することができる。 The absolute value | Rth | of the thickness direction retardation of the birefringent layer 4 is preferably | Rth | ≧ 200 nm, more preferably | Rth | ≧ 400 nm, and more preferably | Rth | ≧ 600 nm. Thereby, the transmittance | permeability with respect to the light which slanted with respect to the axis | shaft of the polarizers 1 and 2 and entered from the diagonal direction with respect to the surface of the polarizer 1 can be reduced more.
複屈折層4は、NZ≦-2、又は、3≦NZを満たすことが好ましく、NZ≦-3、又は、4≦NZを満たすことがより好ましい。これにより、偏光子1、2の軸に対して斜め方位、かつ、偏光子1の面に対して斜め方向から入射した光に対する透過率をより低減することができる。 The birefringent layer 4 preferably satisfies NZ ≦ −2 or 3 ≦ NZ, and more preferably satisfies NZ ≦ −3 or 4 ≦ NZ. Thereby, the transmittance | permeability with respect to the light which slanted with respect to the axis | shaft of the polarizers 1 and 2 and entered from the diagonal direction with respect to the surface of the polarizer 1 can be reduced more.
図2では複屈折層4が単一の複屈折層からなるように図示したが、複屈折層4は、複数の複屈折層から構成されてもよい。例えば、複屈折層を3枚積層することでトータルとして1つの複屈折層として機能するようにしてもよい。これにより、従来の液晶表示装置用の光学補償フィルムとして広く実用化されている大面積で安価な複屈折層を使用することができる。 In FIG. 2, the birefringent layer 4 is illustrated as being composed of a single birefringent layer, but the birefringent layer 4 may be composed of a plurality of birefringent layers. For example, three birefringent layers may be stacked to function as one birefringent layer as a total. This makes it possible to use a large-area and inexpensive birefringent layer that is widely used as a conventional optical compensation film for liquid crystal display devices.
本実施形態の液晶表示装置31は、偏光子1のバックライト(BL)ユニット25側に、複屈折層4と同様の複屈折層と、偏光子1と同様の偏光子とが偏光子1側からこの順に積層されていてもよい。これにより、偏光子1、2の軸に対して斜め方位、かつ、偏光子1の面に対して斜め方向から入射した光に対する透過率を特に効果的に低減することができる。 In the liquid crystal display device 31 of this embodiment, a birefringent layer similar to the birefringent layer 4 and a polarizer similar to the polarizer 1 are disposed on the polarizer 1 side on the backlight (BL) unit 25 side of the polarizer 1. May be laminated in this order. Thereby, the transmittance | permeability with respect to the light which injected into the diagonal azimuth | direction with respect to the axis | shaft of the polarizers 1 and 2 and diagonally with respect to the surface of the polarizer 1 can be reduced especially effectively.
また、実施形態2においては、複屈折層4及び偏光子1は、液晶パネル22側に取り付けられているが、例えば、偏光子1のみ、或いは、偏光子1及び複屈折層4がBLユニット25に取り付けられていてもよい。 In the second embodiment, the birefringent layer 4 and the polarizer 1 are attached to the liquid crystal panel 22 side. For example, only the polarizer 1 or the polarizer 1 and the birefringent layer 4 are provided in the BL unit 25. It may be attached to.
なお、実施形態1で説明した各種形態は、本実施形態にも適宜、適用することができる。 Note that the various forms described in the first embodiment can be applied to this embodiment as appropriate.
以下では、各実施形態における各偏光子、各複屈折層、VAモードの液晶層の軸角度や位相差値は、対応する図中に示した。なお、VA液晶層(電圧無印加状態においては第四の複屈折層の一種)には面内異方性がないので軸角度を示していない。また、本発明の技術分野では、Cプレート(第三の複屈折層、第四の複屈折層)も面内異方性がないものとして扱われるので軸角度を示していない、又は、軸角度0°又は90°と示してある。軸角度を表記している意味は、面内異方性が完全にゼロである理想的なCプレートとは異なり、実際に製造されたCプレートは微小な面内異方向性を有する場合があるので、その場合の軸角度のことを指しているのである。なお、Cプレートの場合に限り、軸角度とはより好ましい軸角度のことを表しているのであり、本発明の効果はその軸角度に限定されない。また、(ns-nf)=0又は(ns-nf)≒0のVAモードの液晶層、及び、CプレートにはNZが定義できないので、それを示していない、又は、便宜的にNZ=+∞(第三種の複屈折層)、又は、-∞(第四種の複屈折層)と示してある。 In the following, axial angles and phase difference values of the respective polarizers, birefringent layers, and VA mode liquid crystal layers in the respective embodiments are shown in the corresponding drawings. Note that the VA liquid crystal layer (a kind of the fourth birefringent layer when no voltage is applied) has no in-plane anisotropy, and therefore does not indicate an axial angle. Further, in the technical field of the present invention, the C plate (third birefringent layer, fourth birefringent layer) is also treated as having no in-plane anisotropy, so the axial angle is not shown, or the axial angle It is shown as 0 ° or 90 °. The meaning of describing the axis angle is different from an ideal C plate in which the in-plane anisotropy is completely zero, and an actually manufactured C plate may have a minute in-plane anisotropy. Therefore, it indicates the axial angle in that case. Only in the case of the C plate, the axis angle represents a more preferable axis angle, and the effect of the present invention is not limited to the axis angle. In addition, since NZ cannot be defined in the VA mode liquid crystal layer of (ns−nf) = 0 or (ns−nf) ≈0 and the C plate, it is not shown or, for convenience, NZ = + It is indicated as ∞ (third birefringent layer) or −∞ (fourth birefringent layer).
[実施形態3]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置32は、透過型の液晶表示装置であり、図3に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層5、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層5、及び、偏光子1は光学素子12を構成し、複屈折層5は、本発明の複屈折層に相当する。
[Embodiment 3]
(Optical element and liquid crystal display device)
The liquid crystal display device 32 of this embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 5, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 5, and the polarizer 1 constitute an optical element 12, and the birefringent layer 5 corresponds to the birefringent layer of the present invention.
複屈折層5には、R=0nm、Rth=-600nmの第三種の複屈折層(ネガティブCプレート)が用いられる。 The birefringent layer 5 is a third birefringent layer (negative C plate) having R = 0 nm and Rth = −600 nm.
図4に、実施形態3に係る光学素子12の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間に複屈折層5として、R=0nm、Rth=-600nmのネガティブCプレートを挿入し、ランバーシアンを想定したBLユニットで照明した場合に、図3中の★の位置で観測される透過率の視野角特性の計算結果を示す。計算には液晶光学シミュレータLCD Master(Shintech社製)を使用した。図4上は、極角(theta)及び方位角(phi)と透過率との関係を示すコンター図、図4下は方位0°、方位45°、方位90°、及び、方位135°における極角と透過率との関係を示すグラフである。また、比較用に、吸収軸方位90°(透過軸方位0°)の偏光子1枚の透過率の視野角特性の計算結果を図5に、更に吸収軸方位90°の偏光子をもう1枚重ねた場合(パラレルニコルに配置された2枚の偏光子)における透過率の視野角特性の計算結果を図6に示す。 FIG. 4 shows a simulation result regarding the viewing angle characteristics of the optical element 12 according to the third embodiment. That is, when a negative C plate of R = 0 nm and Rth = −600 nm is inserted as the birefringent layer 5 between the polarizers 1 and 2 and illuminated with a BL unit assuming Lambertian, The calculation result of the viewing angle characteristic of the transmittance observed at the position is shown. A liquid crystal optical simulator LCD Master (manufactured by Shintech) was used for the calculation. 4 is a contour diagram showing the relationship between polar angle (theta) and azimuth angle (phi) and transmittance, and the lower side of FIG. 4 is the polar at azimuth 0 °, azimuth 45 °, azimuth 90 °, and azimuth 135 °. It is a graph which shows the relationship between an angle | corner and the transmittance | permeability. For comparison, FIG. 5 shows a calculation result of transmittance viewing angle characteristics of one polarizer having an absorption axis azimuth 90 ° (transmission axis azimuth 0 °), and another polarizer having an absorption axis azimuth 90 °. FIG. 6 shows the calculation result of the viewing angle characteristic of the transmittance when the sheets are stacked (two polarizers arranged in parallel Nicols).
図4に示す通り、実施形態3の液晶表示装置(光学素子)においては、極角の大きな斜め視角において、方位45°及び135°における透過率が方位0°及び90°における透過率に比べて低くなっている。そして、法線方向(極角0°)や、方位0°及び90°の斜め視角における透過率は、偏光子2枚(偏光子1、2)だけの場合の計算結果と比べて全く同一である。すなわち、複屈折層5を挿入することで、法線方向と方位0°及び90°における斜め視角の透過率には何ら影響を及ぼすことなく、方位45°及び135°における斜め視角の透過率を低下させることができる。このような偏光子及び複屈折層の組み合わせからなる光学素子をBLユニット上に配置することで、BLユニットからの出射光の配光分布を変化させ、液晶パネルへの入射光の配光分布を法線方向と方位0°及び90°の斜め方向に選択的に集中させる異方的なコリメーションが可能となる。その動作原理を更に詳細に説明すると次の通りである。 As shown in FIG. 4, in the liquid crystal display device (optical element) of Embodiment 3, the transmittance at azimuths of 45 ° and 135 ° is higher than the transmittance at azimuths of 0 ° and 90 ° at oblique viewing angles having large polar angles. It is low. The transmittance in the normal direction (polar angle 0 °) and oblique viewing angles of 0 ° and 90 ° azimuth is completely the same as the calculation result in the case of only two polarizers (polarizers 1 and 2). is there. That is, by inserting the birefringent layer 5, the transmittance of the oblique viewing angle at 45 ° and 135 ° can be increased without affecting the transmittance of the oblique viewing angle at the normal direction and the orientations of 0 ° and 90 °. Can be reduced. By arranging an optical element composed of such a polarizer and a birefringent layer on the BL unit, the light distribution of the light emitted from the BL unit is changed, and the light distribution of the incident light to the liquid crystal panel is changed. Anisotropic collimation that selectively concentrates in the normal direction and the oblique directions of azimuths of 0 ° and 90 ° is possible. The operation principle will be described in detail as follows.
複屈折層5、すなわちネガティブCプレートはR=0nmであるので、法線方向からの入射に対して複屈折層として機能しない。したがって、法線方向では複屈折層5がない場合、すなわち、図6に示す偏光子2枚だけの場合と同じ透過率が得られる。一方、斜め視角からの入射の場合、複屈折層5はゼロではない位相差(複屈折)を持ち、複屈折層として機能する。しかしながら、方位0°の斜め視角から観察した場合、複屈折層5の実効的な遅相軸は、偏光子1の吸収軸と平行になる。したがって、この場合にも実質的には複屈折層5が偏光子1通過後の光の偏光状態を変化させることはなく、結局、偏光子2枚だけの場合と同じ透過率が得られる。方位角90°の斜め視角から観察した場合、複屈折層5の実効的な遅相軸は、偏光子1の吸収軸と直交となるため、この場合にも実質的には複屈折層5が偏光子1通過後の光の偏光状態を変化させることはなく、結局、偏光子2枚だけの場合と同じ透過率が得られる。一方、方位45°及び135°の斜め視角から観察した場合、複屈折層5の実効的な遅相軸は、偏光子1の吸収軸と平行でも直交でもなくなるため、この場合には、複屈折層5が偏光子1通過後の光の偏光状態を変化させる。そのため、偏光子2枚だけの場合と比べて、透過率が低くなる。以上から、法線方向と方位0°及び90°の斜め視角の透過率には何ら影響を及ぼすことなく、方位45°及び135°の斜め視角の透過率を低下させることが可能となる。 Since the birefringent layer 5, that is, the negative C plate has R = 0 nm, it does not function as a birefringent layer with respect to incidence from the normal direction. Therefore, in the normal direction, the same transmittance as that obtained when the birefringent layer 5 is not present, that is, when only two polarizers shown in FIG. 6 are obtained can be obtained. On the other hand, in the case of incidence from an oblique viewing angle, the birefringent layer 5 has a non-zero phase difference (birefringence) and functions as a birefringent layer. However, when observed from an oblique viewing angle of 0 °, the effective slow axis of the birefringent layer 5 is parallel to the absorption axis of the polarizer 1. Accordingly, also in this case, the birefringent layer 5 does not substantially change the polarization state of the light after passing through the polarizer 1, and the same transmittance as that obtained with only two polarizers is obtained. When observed from an oblique viewing angle with an azimuth angle of 90 °, the effective slow axis of the birefringent layer 5 is orthogonal to the absorption axis of the polarizer 1. The polarization state of the light after passing through the polarizer 1 is not changed, and the same transmittance as in the case of using only two polarizers is obtained. On the other hand, when observed from oblique viewing angles of 45 ° and 135 °, the effective slow axis of the birefringent layer 5 is neither parallel nor orthogonal to the absorption axis of the polarizer 1. The layer 5 changes the polarization state of the light after passing through the polarizer 1. Therefore, the transmittance is lower than in the case of using only two polarizers. From the above, it is possible to reduce the transmittance of the oblique viewing angles of 45 ° and 135 ° without affecting the normal direction and the transmittance of the oblique viewing angles of 0 ° and 90 °.
[実施形態4]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置33は、透過型の液晶表示装置であり、図7に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層6、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層6、及び、偏光子1は光学素子13を構成し、複屈折層6は、本発明の複屈折層に相当する。
[Embodiment 4]
(Optical element and liquid crystal display device)
The liquid crystal display device 33 of the present embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 6, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 6, and the polarizer 1 constitute an optical element 13, and the birefringent layer 6 corresponds to the birefringent layer of the present invention.
複屈折層6には、R=0nm、Rth=+600nmの第四種の複屈折層(ポジティブCプレート)が用いられる。 The birefringent layer 6 is a fourth birefringent layer (positive C plate) having R = 0 nm and Rth = + 600 nm.
図8に、実施形態4に係る光学素子13の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間に複屈折層6として、R=0nm、Rth=+600nmのポジティブCプレートを挿入し、ランバーシアンを想定したBLユニットで照明した場合に、図7中の★の位置で観測される透過率の視野角特性の計算結果を示す。図8に示す通り、極角の大きな斜め視角において、方位45°及び135°における透過率が、方位0°及び90°における透過率に比べて低くなっている。このような偏光子、複屈折層の組み合わせからなる光学素子をBLユニット上に配置することで、BLユニットからの出射光の配光分布を変化させ、液晶パネルへの入射光の配光分布を法線方向と方位0°及び90°の斜め方向に選択的に集中させる異方的なコリメーションが可能となる。この視野角特性計算結果は、位相差Rthの符号だけが異なる実施形態3の計算結果と全く同一である。 FIG. 8 shows a simulation result regarding the viewing angle characteristics of the optical element 13 according to the fourth embodiment. That is, when a positive C plate with R = 0 nm and Rth = + 600 nm is inserted between the polarizers 1 and 2 as the birefringent layer 6 and illuminated with a BL unit assuming Lambertian, The calculation result of the viewing angle characteristic of the transmittance observed at the position is shown. As shown in FIG. 8, the transmittance at the azimuths of 45 ° and 135 ° is lower than the transmittance at the azimuths of 0 ° and 90 ° at an oblique viewing angle having a large polar angle. By arranging an optical element composed of such a polarizer and a birefringent layer on the BL unit, the light distribution of the light emitted from the BL unit is changed, and the light distribution of the incident light on the liquid crystal panel is changed. Anisotropic collimation that selectively concentrates in the normal direction and the oblique directions of azimuths of 0 ° and 90 ° is possible. This viewing angle characteristic calculation result is exactly the same as the calculation result of the third embodiment, which differs only in the sign of the phase difference Rth.
[実施形態5]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置34は、透過型の液晶表示装置であり、図9に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層7、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層7、及び、偏光子1は光学素子14を構成し、複屈折層7は、本発明の複屈折層に相当する。
[Embodiment 5]
(Optical element and liquid crystal display device)
The liquid crystal display device 34 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 9, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 7, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 7, and the polarizer 1 constitute an optical element 14, and the birefringent layer 7 corresponds to the birefringent layer of the present invention.
複屈折層7には、R=0nm、Rth=-1000nmの第四種の複屈折層(ネガティブCプレート)が用いられる。 As the birefringent layer 7, a fourth birefringent layer (negative C plate) having R = 0 nm and Rth = −1000 nm is used.
図10に、実施形態5に係る光学素子14の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間に複屈折層7として、R=0nm、Rth=-1000nmのネガティブCプレートを挿入し、ランバーシアンを想定したBLユニットで照明した場合に、図9中の★の位置で観測される透過率の視野角特性の計算結果を示す。図10に示す通り、極角の大きな斜め視角において、方位45°及び135°における透過率が、方位0°及び90°における透過率に比べて低くなっている。このような偏光子、複屈折層の組み合わせからなる光学素子をBLユニット上に配置することで、BLユニットからの出射光の配光分布を変化させ、液晶パネルへの入射光の配光分布を法線方向と方位0°及び90°の斜め方向に選択的に集中させる異方的なコリメーションが可能となる。 FIG. 10 shows a simulation result regarding the viewing angle characteristics of the optical element 14 according to the fifth embodiment. That is, when a negative C plate with R = 0 nm and Rth = −1000 nm is inserted as the birefringent layer 7 between the polarizers 1 and 2 and illuminated with a BL unit assuming Lambertian, The calculation result of the viewing angle characteristic of the transmittance observed at the position is shown. As shown in FIG. 10, the transmittance at the azimuths of 45 ° and 135 ° is lower than the transmittance at the azimuths of 0 ° and 90 ° at an oblique viewing angle having a large polar angle. By arranging an optical element composed of such a polarizer and a birefringent layer on the BL unit, the light distribution of the light emitted from the BL unit is changed, and the light distribution of the incident light on the liquid crystal panel is changed. Anisotropic collimation that selectively concentrates in the normal direction and the oblique directions of azimuths of 0 ° and 90 ° is possible.
なお、図10では、方位45°及び135°において、極角70°付近で透過率の上昇(反転コブ)が観察されたが、偏光子1、2のみの場合(図6)よりも透過率が上昇している訳ではなく、光漏れ低減効果は得られるので問題ない。 In FIG. 10, an increase in transmittance (inverted bump) was observed near the polar angle of 70 ° at azimuths of 45 ° and 135 °. However, the transmittance is higher than that in the case of only the polarizers 1 and 2 (FIG. 6). However, there is no problem because light leakage reduction effect is obtained.
[実施形態6]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置35は、透過型の液晶表示装置であり、図11に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層8、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層8、及び、偏光子1は光学素子15を構成し、複屈折層8は、本発明の複屈折層に相当する。
[Embodiment 6]
(Optical element and liquid crystal display device)
The liquid crystal display device 35 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 11, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 8, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 8, and the polarizer 1 constitute an optical element 15, and the birefringent layer 8 corresponds to the birefringent layer of the present invention.
複屈折層8には、R=0nm、Rth=-2000nmの第四種の複屈折層(ネガティブCプレート)が用いられる。 As the birefringent layer 8, a fourth type birefringent layer (negative C plate) of R = 0 nm and Rth = −2000 nm is used.
図12に、実施形態6に係る光学素子15の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間に複屈折層8として、R=0nm、Rth=-2000nmのネガティブCプレートを挿入し、ランバーシアンを想定したBLユニットで照明した場合に、図11中の★の位置で観測される透過率の視野角特性の計算結果を示す。図12に示す通り、極角の大きな斜め視角において、方位45°及び135°における透過率が、方位0°及び90°における透過率に比べて低くなっている。このような偏光子、複屈折層の組み合わせからなる光学素子をBLユニット上に配置することで、BLユニットからの出射光の配光分布を変化させ、液晶パネルへの入射光の配光分布を法線方向と方位0°及び90°の斜め方向に選択的に集中させる異方的なコリメーションが可能となる。 FIG. 12 shows a simulation result regarding the viewing angle characteristics of the optical element 15 according to the sixth embodiment. That is, when a negative C plate of R = 0 nm and Rth = −2000 nm is inserted as the birefringent layer 8 between the polarizers 1 and 2 and illuminated with a BL unit assuming Lambertian, The calculation result of the viewing angle characteristic of the transmittance observed at the position is shown. As shown in FIG. 12, the transmittance at the azimuths of 45 ° and 135 ° is lower than the transmittance at the azimuths of 0 ° and 90 ° at an oblique viewing angle having a large polar angle. By arranging an optical element composed of such a polarizer and a birefringent layer on the BL unit, the light distribution of the light emitted from the BL unit is changed, and the light distribution of the incident light on the liquid crystal panel is changed. Anisotropic collimation that selectively concentrates in the normal direction and the oblique directions of azimuths of 0 ° and 90 ° is possible.
なお、図12では、方位45°及び135°において、2箇所の反転コブが観察されたが、偏光子1、2のみの場合(図6)よりも透過率が上昇している訳ではなく、光漏れ低減効果は得られるので問題ない。 In FIG. 12, two inverted bumps were observed at azimuths of 45 ° and 135 °, but the transmittance is not higher than in the case of only polarizers 1 and 2 (FIG. 6). There is no problem because the light leakage reduction effect can be obtained.
[実施形態7]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置36は、透過型の液晶表示装置であり、図13に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層7、偏光子1、複屈折層8、偏光子50、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層7、偏光子1、及び、複屈折層8、偏光子50は光学素子16を構成し、複屈折層7及び8は、本発明の複屈折層に相当する。
[Embodiment 7]
(Optical element and liquid crystal display device)
The liquid crystal display device 36 of this embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22, a liquid crystal display device obtained by laminating a birefringent layer 21, a polarizer 2, a birefringent layer 7, a polarizer 1, a birefringent layer 8, a polarizer 50, and a backlight (BL) unit 25 in this order. is there. The polarizer 2, the birefringent layer 7, the polarizer 1, the birefringent layer 8, and the polarizer 50 constitute an optical element 16, and the birefringent layers 7 and 8 correspond to the birefringent layer of the present invention.
複屈折層7は、実施形態5に用いられた、R=0nm、Rth=-1000nmの第四種の複屈折層(ネガティブCプレート)であり、複屈折層8は、実施形態6で用いられたR=0nm、Rth=-2000nmの第四種の複屈折層(ネガティブCプレート)である。 The birefringent layer 7 is the fourth birefringent layer (negative C plate) of R = 0 nm and Rth = −1000 nm used in the fifth embodiment, and the birefringent layer 8 is used in the sixth embodiment. A fourth birefringent layer (negative C plate) having R = 0 nm and Rth = −2000 nm.
図14に、実施形態7に係る光学素子16の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間にR=0nm、Rth=-2000nmのネガティブCプレートを挿入し、更にその外側に、R=0nm、Rth=-1000nmのネガティブCプレートと、偏光子50とを積層し、ランバーシアンを想定したBLユニットで照明した場合に、図13中の★の位置で観測される透過率の視野角特性の計算結果を示す。図14に示す通り、極角の大きな斜め視角において、方位45°及び135°における透過率が、方位0°及び90°における透過率に比べて低くなっている。このような偏光子、複屈折層の組み合わせからなる光学素子をBLユニット上に配置することで、BLユニットからの出射光の配光分布を変化させ、液晶パネルへの入射光の配光分布を法線方向と方位0°及び90°の斜め方向に選択的に集中させる異方的なコリメーションが可能となる。 FIG. 14 shows a simulation result regarding the viewing angle characteristics of the optical element 16 according to the seventh embodiment. That is, a negative C plate with R = 0 nm and Rth = −2000 nm is inserted between the polarizers 1 and 2, and further, a negative C plate with R = 0 nm and Rth = −1000 nm and the polarizer 50 are placed outside thereof. FIG. 14 shows the calculation result of the viewing angle characteristic of the transmittance observed at the position of * in FIG. 13 when stacked and illuminated with a BL unit assuming Lambertian. As shown in FIG. 14, at an oblique viewing angle having a large polar angle, the transmittance at azimuths of 45 ° and 135 ° is lower than the transmittance at azimuths of 0 ° and 90 °. By arranging an optical element composed of such a polarizer and a birefringent layer on the BL unit, the light distribution of the light emitted from the BL unit is changed, and the light distribution of the incident light on the liquid crystal panel is changed. Anisotropic collimation that selectively concentrates in the normal direction and the oblique directions of azimuths of 0 ° and 90 ° is possible.
実施形態7は、方位45°、135°において、極角40°~60°の間にある実施形態5(Rth=-1000nm)の光学素子の透過率視野角特性の谷(極小点)と、実施形態6(Rth=-2000nm)の光学素子の透過率視野角特性の山(極大点)とが重なっていることに注目してなされた。更に、実施形態5の光学素子においては、極角70°近辺に極大点があり、一方、実施形態6の光学素子においては、極角70°近辺の透過率が実施例2よりも低くなることに注目してなされた。すなわち、実施形態7は、図15に示すように、極角40°~60°における透過率を抑えるとともに、極角70°近辺における透過率も抑えた視野角特性を得ることを目的として設計されたものである。 In Embodiment 7, the valley (minimum point) of the transmittance viewing angle characteristics of the optical element of Embodiment 5 (Rth = −1000 nm) in the azimuth 45 ° and 135 ° between the polar angles 40 ° to 60 °, It was made by paying attention to the fact that the peak (maximum point) of the transmittance viewing angle characteristics of the optical element of Embodiment 6 (Rth = −2000 nm) overlapped. Furthermore, in the optical element of Embodiment 5, there is a maximum point in the vicinity of the polar angle of 70 °, while in the optical element of Embodiment 6, the transmittance in the vicinity of the polar angle of 70 ° is lower than that in Example 2. It was made paying attention to. That is, as shown in FIG. 15, the seventh embodiment is designed for the purpose of obtaining a viewing angle characteristic that suppresses the transmittance at a polar angle of 40 ° to 60 ° and also suppresses the transmittance at around a polar angle of 70 °. It is a thing.
なお、本実施形態においては、複屈折層7及び8のいずれか一方が、第一種の複屈折層であってもよいし、複屈折層7及び8の両方が、第一種の複屈折層であってもよい。このとき、第一種の複屈折層と、それに隣接する偏光子の吸収軸とのなす角度は、90°又は0°となるように積層される。 In the present embodiment, either one of the birefringent layers 7 and 8 may be the first type birefringent layer, or both the birefringent layers 7 and 8 may be the first type birefringent layers. It may be a layer. At this time, the first birefringent layer and the absorption axis of the polarizer adjacent to the first birefringent layer are laminated so as to be 90 ° or 0 °.
実施形態7においては、偏光子1、2及び50のうち、少なくとも一つは、単体透過率が偏光子24よりも大きいことが好ましい。このとき、偏光子1、2及び50のいずれの偏光子の単体透過率が偏光子24の単体透過率よりも大きくてもよい。また、偏光子1、2及び50のうち、単体透過率が偏光子24の単体透過率と実質的に等しい偏光子があってもよいし、偏光子24の単体透過率よりも小さい偏光子があってもよい。液晶表示装置の製造効率の観点からは、偏光子1及び/又は偏光子50の単体透過率を前記偏光子24の単体透過率より大きくすることがより好ましい。一方、透過率(光利用効率)をより向上させる観点からは、偏光子1、2及び50の少なくとも二つは、単体透過率が偏光子24よりも大きいことがより好ましく、三つ全ての単体透過率が偏光子24よりも大きいことが特に好ましい。このとき、偏光子24よりも単体透過率が大きい偏光子(偏光子1、2及び50のうちの二又は三つ)は、互いに、単体透過率が同じであってもよいし、異なっていてもよい。 In Embodiment 7, it is preferable that at least one of the polarizers 1, 2, and 50 has a single transmittance larger than that of the polarizer 24. At this time, the single transmittance of any one of the polarizers 1, 2, and 50 may be larger than the single transmittance of the polarizer 24. Of the polarizers 1, 2, and 50, there may be a polarizer having a single transmittance substantially equal to the single transmittance of the polarizer 24, or a polarizer smaller than the single transmittance of the polarizer 24. There may be. From the viewpoint of manufacturing efficiency of the liquid crystal display device, it is more preferable that the single transmittance of the polarizer 1 and / or the polarizer 50 is larger than the single transmittance of the polarizer 24. On the other hand, from the viewpoint of further improving the transmittance (light utilization efficiency), it is more preferable that at least two of the polarizers 1, 2, and 50 have a single transmittance larger than that of the polarizer 24, and all three simplexes. It is particularly preferable that the transmittance is larger than that of the polarizer 24. At this time, the polarizers (two or three of the polarizers 1, 2 and 50) having a single transmittance larger than that of the polarizer 24 may have the same single transmittance or different from each other. Also good.
上記実施形態3~7を踏まえ、図16及び図17を用いて、偏光子1及び偏光子2の間の複屈折層(以下、第一複屈折層ともいう。)にCプレートを用いたときの、第一複屈折層のRthと透過率の変化との関係について説明する。 When the C plate is used for the birefringent layer between the polarizer 1 and the polarizer 2 (hereinafter also referred to as the first birefringent layer) using FIGS. The relationship between the Rth of the first birefringent layer and the change in transmittance will be described.
図16は、第一複屈折層のRthの値を0nmから-1000nmまで変化させたときの視野角特性の変化を計算した結果である。Rthの大きさに関わらず、いずれの場合も方位0°及び90°における透過率は、第一複屈折層がない場合と同じになり、また、方位45°における透過率と方位135°における透過率とは常に同じになるので、図16のグラフにおいては、方位45°における極角と透過率との関係のみ示した。また、Rth=0nmの第一複屈折層を挿入する場合とは、第一複屈折層を挿入しない場合、すなわち、偏光子が2枚だけの場合と実質的に同じである。図17に示すように、Rthの絶対値の増加とともに、極角40°未満の斜め視角における透過率は低減する。400nm以上で透過率の低下が明確に確認され、特に600nm以上で透過率の低下がより顕著に確認された。一方、Rthの絶対値が600nmを超えると、極角40°未満の斜め視角において極角の増加と共に透過率が再度上昇を始める反転領域(反転コブ)が確認されるが、この反転領域においても第一複屈折層を挿入しない場合(Rth=0nmの場合)よりも方位45°における透過率は低く抑えられているため、黒表示の光漏れ低減効果は得られる。極角40°以上の入射光が光漏れとなりにくい液晶パネルの場合は、この反転コブを許容し、-1000nmを選択することでよりよい結果が得られる。一方、逆に、極角40°以上の入射光が光漏れとなやすい液晶パネルで-1000nmを選択する場合は、-600nmを選択する場合と比べて、極角40°未満の透過率が低くなることによる光漏れの低減と、極角40°以上の透過率が高くなることによる光漏れの増大との両方が観測されるので、必ずしも良い結果が得られる訳ではない。このように、いずれのRthの第一複屈折層を選択する方がより大きな光漏れ低減効果が得られるかは液晶パネルの視野角特性に依存する。以上から、液晶パネルの性質や使用形態に応じて第一複屈折層の最適なRthは定められる。なお、実施形態3では、反転コブが発生しないギリギリのRthであるRth=-600nmを採用した。 FIG. 16 shows the calculation result of the change in viewing angle characteristics when the Rth value of the first birefringent layer is changed from 0 nm to −1000 nm. Regardless of the magnitude of Rth, the transmissivity at the azimuths of 0 ° and 90 ° is the same as in the case without the first birefringent layer, and the transmissivity at the azimuth of 45 ° and the transmissivity at the azimuth of 135 °. Since the rate is always the same, the graph in FIG. 16 shows only the relationship between the polar angle and the transmittance at an azimuth of 45 °. The case where the first birefringent layer with Rth = 0 nm is inserted is substantially the same as the case where the first birefringent layer is not inserted, that is, the case where only two polarizers are used. As shown in FIG. 17, as the absolute value of Rth increases, the transmittance at an oblique viewing angle of less than 40 ° polar angle decreases. The decrease in transmittance was clearly confirmed at 400 nm or more, and the decrease in transmittance was confirmed more remarkably at 600 nm or more. On the other hand, when the absolute value of Rth exceeds 600 nm, there is an inversion region (inversion bump) where the transmittance starts increasing again with an increase in the polar angle at an oblique viewing angle of less than 40 °. Since the transmittance at an azimuth of 45 ° is kept lower than when the first birefringent layer is not inserted (when Rth = 0 nm), an effect of reducing light leakage in black display can be obtained. In the case of a liquid crystal panel in which incident light with a polar angle of 40 ° or more is unlikely to leak, better results can be obtained by allowing this inversion bump and selecting -1000 nm. On the other hand, when -1000 nm is selected on a liquid crystal panel in which incident light with a polar angle of 40 ° or more is likely to leak, the transmittance with a polar angle of less than 40 ° is lower than when -600 nm is selected. Since both the reduction of the light leakage due to the increase and the increase of the light leakage due to the increase in the transmittance of the polar angle of 40 ° or more are observed, good results are not necessarily obtained. As described above, it is dependent on the viewing angle characteristics of the liquid crystal panel which of the Rth first birefringent layers can provide a greater light leakage reduction effect. From the above, the optimum Rth of the first birefringent layer is determined according to the properties of the liquid crystal panel and the usage pattern. In the third embodiment, Rth = −600 nm, which is the last Rth that does not cause inversion bumps, is employed.
また、図15で示したように、反転コブが観察される第一複屈折層であっても、異なるRthの第一複屈折層を組み合わせて用いることで、極角の広い範囲で透過率を低く抑えることも可能となる。 Further, as shown in FIG. 15, even in the case of the first birefringent layer in which the inversion bump is observed, the transmittance can be increased over a wide polar angle range by using a combination of the first birefringent layers having different Rths. It can also be kept low.
[実施形態8]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置37は、透過型の液晶表示装置であり、図18に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層9、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層9、及び、偏光子1は光学素子17を構成し、複屈折層9は、本発明の複屈折層に相当する。
[Embodiment 8]
(Optical element and liquid crystal display device)
The liquid crystal display device 37 of this embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 9, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 9, and the polarizer 1 constitute an optical element 17, and the birefringent layer 9 corresponds to the birefringent layer of the present invention.
複屈折層9には、R=165nm、Rth=-600nm、NZ=4.1の第一種の複屈折層が用いられる。また、偏光子1の吸収軸と複屈折層9の面内遅層軸とがなす角度が90°となるように積層される。 As the birefringent layer 9, a first type birefringent layer of R = 165 nm, Rth = −600 nm, and NZ = 4.1 is used. Further, the polarizer 1 and the birefringent layer 9 are laminated so that the angle formed by the absorption axis of the polarizer 1 and the in-plane slow layer axis of the birefringent layer 9 is 90 °.
図19に、実施形態8に係る光学素子17の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間に複屈折層9として、R=165nm、Rth=-600nm、NZ=4.1の第一種の複屈折層を挿入し、ランバーシアンを想定したBLユニットで照明した場合に、図18中の★の位置で観測される透過率の視野角特性の計算結果を示す。図19に示す通り、極角の大きな斜め視角において、方位45°及び135°における透過率が、方位0°及び90°における透過率に比べて低くなっている。このような偏光子、複屈折層の組み合わせからなる光学素子をBLユニット上に配置することで、BLユニットからの出射光の配光分布を変化させ、液晶パネルへの入射光の配光分布を法線方向と方位0°及び90°の斜め方向に選択的に集中させる異方的なコリメーションが可能となる。 FIG. 19 shows a simulation result regarding the viewing angle characteristics of the optical element 17 according to the eighth embodiment. In other words, as a birefringent layer 9 between the polarizers 1 and 2, a first birefringent layer of R = 165 nm, Rth = −600 nm, NZ = 4.1 is inserted, and a BL unit assuming Lambertian is used. 18 shows the calculation result of the viewing angle characteristic of the transmittance observed at the position of ★ in FIG. 18 when illuminated. As shown in FIG. 19, at an oblique viewing angle having a large polar angle, the transmittance at azimuths of 45 ° and 135 ° is lower than the transmittance at azimuths of 0 ° and 90 °. By arranging an optical element composed of such a polarizer and a birefringent layer on the BL unit, the light distribution of the light emitted from the BL unit is changed, and the light distribution of the incident light on the liquid crystal panel is changed. Anisotropic collimation that selectively concentrates in the normal direction and the oblique directions of azimuths of 0 ° and 90 ° is possible.
R=165nm、Rth=-600nm、NZ=4.1の複屈折層9を選択することで、BLユニットからの出射光を異方的にコリメートし、液晶パネルに入射することができるようになる理由は、上述のネガティブCプレートを選択した実施形態1と同様である。すなわち、複屈折層9はR≠0nmであるが、その面内遅相軸を偏光子1の吸収軸と平行、又は、直交(実施形態8の場合は直交)の相対角度をなすように設置すれば、複屈折層9は法線方向からの入射に対して複屈折層として実質的に機能しない。したがって、法線方向では複屈折層9がない場合、すなわち、偏光子2枚だけの場合と実質的に同じ透過率が得られる。また、方位0°における斜め視角から観察した場合、複屈折層9の実効的な遅相軸は偏光子1の吸収軸と直交又は平行(実施形態8の場合は直交)になるため、この場合にも実質的には複屈折層9が偏光子1通過後の光の偏光状態を実質的に変化させることはなく、結局、偏光子2枚だけの場合と同じ透過率が得られる。同様に、方位90°の斜め視角から観察した場合にも、複屈折層9の実効的な遅相軸は偏光子1の吸収軸と直交又は平行(実施形態8の場合は直交)となるため、この場合にも実質的には複屈折層9が偏光子1通過後の光の偏光状態を変化させることはなく、結局、偏光子2枚だけの場合と同じ透過率が得られる。一方、方位45°、135°において斜め視角から観察した場合、複屈折層9の実効的な遅相軸は偏光子1の吸収軸と平行でも直交でもなくなるため、この場合には、偏光子1が偏光子1通過後の光の偏光状態を変化させる。そのため、偏光子2枚だけの場合と比べて、透過率が低くなる。以上から、法線方向と方位0°及び90°の斜め視角の透過率には何ら影響を及ぼすことなく、方位45°及び135°の斜め視角の透過率を低下させることが可能となる。 By selecting the birefringent layer 9 with R = 165 nm, Rth = −600 nm, and NZ = 4.1, the emitted light from the BL unit can be collimated anisotropically and incident on the liquid crystal panel. The reason is the same as in the first embodiment in which the negative C plate is selected. That is, the birefringent layer 9 has R ≠ 0 nm, but its in-plane slow axis is set to be parallel to the absorption axis of the polarizer 1 or at a relative angle orthogonal (in the case of the eighth embodiment, orthogonal). In this case, the birefringent layer 9 does not substantially function as a birefringent layer with respect to incidence from the normal direction. Therefore, in the normal direction, substantially the same transmittance can be obtained as in the case where there is no birefringent layer 9, that is, only two polarizers. When observed from an oblique viewing angle at an azimuth of 0 °, the effective slow axis of the birefringent layer 9 is orthogonal or parallel to the absorption axis of the polarizer 1 (or orthogonal in the case of Embodiment 8). However, the birefringent layer 9 does not substantially change the polarization state of the light after passing through the polarizer 1, and the same transmittance as in the case of using only two polarizers is obtained. Similarly, when observed from an oblique viewing angle of 90 °, the effective slow axis of the birefringent layer 9 is orthogonal or parallel to the absorption axis of the polarizer 1 (or orthogonal in the case of Embodiment 8). Also in this case, the birefringent layer 9 does not substantially change the polarization state of the light after passing through the polarizer 1, and the same transmittance as in the case of using only two polarizers is obtained. On the other hand, when observed from an oblique viewing angle at azimuths of 45 ° and 135 °, the effective slow axis of the birefringent layer 9 is neither parallel nor orthogonal to the absorption axis of the polarizer 1, and in this case, the polarizer 1 Changes the polarization state of the light after passing through the polarizer 1. Therefore, the transmittance is lower than in the case of using only two polarizers. From the above, it is possible to reduce the transmittance of the oblique viewing angles of 45 ° and 135 ° without affecting the normal direction and the transmittance of the oblique viewing angles of 0 ° and 90 °.
[実施形態9]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置38は、透過型の液晶表示装置であり、図20に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層9、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層9、及び、偏光子1は光学素子18を構成し、複屈折層9は、本発明の複屈折層に相当する。
[Embodiment 9]
(Optical element and liquid crystal display device)
The liquid crystal display device 38 of this embodiment is a transmissive liquid crystal display device, and includes a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side, as shown in FIG. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 9, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 9, and the polarizer 1 constitute an optical element 18, and the birefringent layer 9 corresponds to the birefringent layer of the present invention.
複屈折層9には、R=165nm、Rth=-600nm、NZ=4.1の第一種の複屈折層が用いられる。また、偏光子1の吸収軸と複屈折層9の面内遅層軸とがなす角度が0°となるように積層される。 As the birefringent layer 9, a first type birefringent layer of R = 165 nm, Rth = −600 nm, and NZ = 4.1 is used. Further, the polarizer 1 and the birefringent layer 9 are stacked so that the angle formed by the absorption axis of the polarizer 1 and the in-plane slow layer axis of the birefringent layer 9 is 0 °.
図21に、実施形態9に係る光学素子18の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間に複屈折層9として、R=165nm、Rth=-600nm、NZ=4.1の第一種の複屈折層を挿入し、ランバーシアンを想定したBLユニットで照明した場合に、図20中の★の位置で観測される透過率の視野角特性の計算結果を示す。図21に示す通り、極角の大きな斜め視角において、方位45°及び135°における透過率が、方位0°及び90°における透過率に比べて低くなっている。このような偏光子、複屈折層の組み合わせからなる光学素子をBLユニット上に配置することで、BLユニットからの出射光の配光分布を変化させ、液晶パネルへの入射光の配光分布を法線方向と方位0°及び90°の斜め方向に選択的に集中させる異方的なコリメーションが可能となる。 FIG. 21 shows a simulation result regarding the viewing angle characteristics of the optical element 18 according to the ninth embodiment. In other words, as a birefringent layer 9 between the polarizers 1 and 2, a first birefringent layer of R = 165 nm, Rth = −600 nm, NZ = 4.1 is inserted, and a BL unit assuming Lambertian is used. FIG. 21 shows the calculation result of the viewing angle characteristic of the transmittance observed at the position of ★ in FIG. 20 when illuminated. As shown in FIG. 21, the transmittance at the azimuths of 45 ° and 135 ° is lower than the transmittance at the azimuths of 0 ° and 90 ° at an oblique viewing angle having a large polar angle. By arranging an optical element composed of such a polarizer and a birefringent layer on the BL unit, the light distribution of the light emitted from the BL unit is changed, and the light distribution of the incident light on the liquid crystal panel is changed. Anisotropic collimation that selectively concentrates in the normal direction and the oblique directions of azimuths of 0 ° and 90 ° is possible.
しかしながら、同じ位相差値の複屈折層9を用いた実施形態8の場合と比べると効果は限定的である。すなわち、複屈折層9の面内遅相軸は、偏光子1の吸収軸と直交の関係にある方がより好ましいことが分かる。その理由を詳細に分析し、以下に示す。 However, the effect is limited as compared with the case of the eighth embodiment using the birefringent layer 9 having the same retardation value. That is, it can be seen that the in-plane slow axis of the birefringent layer 9 is more preferably orthogonal to the absorption axis of the polarizer 1. The reason is analyzed in detail and shown below.
図22及び図23は、実施形態8及び実施形態9それぞれのコリメート光学素子(第二偏光子2、第一複屈折層6、及び、第一偏光子1)を方位45°、極角60°の斜め視角から観察した場合のポアンカレ球上で偏光状態の変遷を示す図である。 22 and 23 show the collimating optical elements (second polarizer 2, first birefringent layer 6, and first polarizer 1) of Embodiments 8 and 9, respectively, with an azimuth of 45 ° and a polar angle of 60 °. It is a figure which shows transition of a polarization state on the Poincare sphere at the time of observing from the diagonal viewing angle.
ポアンカレ球による考え方は、複屈折層を通して変化する偏光状態の追跡に有用な手法として結晶光学等の分野で広く知られている(例えば、高崎宏著、「結晶光学」、森北出版、1975年、p.146-163参照)。ポアンカレ球では、上半球には右周り偏光、下半球には左周り偏光が表され、赤道には直線偏光、上下両極には右円偏光及び左円偏光がそれぞれ表される。球の中心に対して対称な関係にある二つの偏光状態は、楕円率角の絶対値が等しくかつ極性が逆であることから、互いの偏光軸のなす角度が90°である一対の偏光を成している。また、ポアンカレ球上における複屈折層の効果は、複屈折層通過直前の偏光状態を表す点を、ポアンカレ球上での遅相軸(より正確に言い換えると、二つある複屈折層の固有振動モードのうち、遅い方の偏光状態を表わすポアンカレ球上での点の位置とポアンカレ球の原点Oを結ぶ線分。)を中心に(2π)×(位相差)/(波長)(単位:rad)で決定される角度だけ反時計回りに回転移動させた点に変換することである(進相軸を中心に時計回りに回転移動させても同じことである。)。斜め方向から観察した場合の回転中心と回転角度は、その観察角度での遅相軸(又は進相軸)と位相差により決定される。詳しい説明は省略するが、これらは、例えばフレネルの波面法線方程式を解き、複屈折層中の固有振動モードの振動方向と波数ベクトルを知ることで計算できる。斜め方向から観察した場合の遅相軸は、観察角度及びNZ係数に依存し、斜め方向から観察した場合の位相差は、観察角度、NZ係数及び面内位相差R(又は厚み方向位相差Rth)に依存する。 The concept of Poincare sphere is widely known in the field of crystal optics and the like as a useful technique for tracking the polarization state changing through the birefringent layer (for example, Hiroshi Takasaki, “Crystal optics”, Morikita Publishing, 1975, p.146-163). In the Poincare sphere, right-handed polarized light is represented in the upper hemisphere, left-handed polarized light is represented in the lower hemisphere, linearly polarized light is represented in the equator, and right circularly polarized light and left circularly polarized light are represented in the upper and lower poles. The two polarization states that are symmetric with respect to the center of the sphere have the same absolute value of the ellipticity angle and the opposite polarities, so that a pair of polarized light whose angle between the polarization axes of each other is 90 °. It is made. Also, the effect of the birefringent layer on the Poincare sphere is that the polarization state immediately before passing through the birefringent layer is expressed by the slow axis on the Poincare sphere (more precisely, the natural vibration of two birefringent layers). (2π) × (phase difference) / (wavelength) (unit: rad) centering on the line segment connecting the position of the point on the Poincare sphere representing the slower polarization state of the modes and the origin O of the Poincare sphere) ) Is converted into a point that is rotated counterclockwise by an angle determined in () (the same is true if it is rotated clockwise around the fast axis). A rotation center and a rotation angle when observed from an oblique direction are determined by a slow axis (or a fast axis) and a phase difference at the observation angle. Although detailed explanation is omitted, these can be calculated by, for example, solving Fresnel's wavefront normal equation and knowing the vibration direction and wave number vector of the natural vibration mode in the birefringent layer. The slow axis when observed from the oblique direction depends on the observation angle and the NZ coefficient, and the phase difference when observed from the oblique direction is the observation angle, the NZ coefficient and the in-plane retardation R (or the thickness direction retardation Rth). ).
実施形態8の光学素子17に方位45°極角60°の斜め方向から光が入射した場合を考え、BLユニットから出射した光が偏光子1、及び、複屈折層9を透過する毎の偏光状態を表わす点P0、P1をポアンカレ球のS1-S2平面で図示すると図22のようになる。点Eは方位45°極角60°の斜め方向から見た場合の偏光子2の消光位(吸収軸方向に振動する偏光)の偏光状態を表わす点である。各偏光状態を表す点は実際にはポアンカレ球面上にあるが、それらをS1-S2平面に投影して図示している。偏光子1透過後の光の偏光状態を表わす点P0は、複屈折層9を通過することで複屈折層9のポアンカレ球上での遅相軸を表わす点R3とポアンカレ球の中心Oを結ぶ線分R3Oを回転中心として反時計周りの回転移動を受けP1に変換された後、偏光子2に入射する。この時、偏光状態を表わす点P1と偏光子2の消光位の偏光状態を表わす点Eとの距離に応じて光が透過する。より正確に言うと、その透過率はsin((1/2)×∠P1OE)に比例する。 Considering the case where light is incident on the optical element 17 of Embodiment 8 from an oblique direction with an azimuth angle of 45 ° and a polar angle of 60 °, polarized light every time the light emitted from the BL unit passes through the polarizer 1 and the birefringent layer 9. Points P0 and P1 representing the state are illustrated on the S1-S2 plane of the Poincare sphere as shown in FIG. Point E is a point representing the polarization state of the extinction position (polarized light oscillating in the absorption axis direction) of the polarizer 2 when viewed from an oblique direction with an azimuth of 45 ° and a polar angle of 60 °. Although the points representing the respective polarization states are actually on the Poincare sphere, they are projected onto the S1-S2 plane for illustration. The point P0 representing the polarization state of the light after passing through the polarizer 1 connects the point R3 representing the slow axis of the birefringent layer 9 on the Poincare sphere by passing through the birefringent layer 9 and the center O of the Poincare sphere. The line segment R3O is rotated counterclockwise and converted into P1, and then enters the polarizer 2. At this time, light is transmitted according to the distance between the point P1 representing the polarization state and the point E representing the polarization state of the extinction position of the polarizer 2. More precisely, the transmittance is proportional to sin 2 ((1/2) × ∠P1OE).
実施形態9の光学素子18に方位45°極角60°の斜め方向から光が入射した場合も同様に考えると図23のようになる。偏光子1を透過後の光の偏光状態を表わす点P0は、複屈折層9を通過することで、複屈折層9のポアンカレ球上での遅相軸を表わす点R3と、ポアンカレ球の中心Oを結ぶ線分を回転中心として反時計周りの回転移動を受けP1に変換された後、偏光子2に入射する。実施形態9の場合は、(法線方向から観察した場合に)複屈折層9の遅相軸と偏光子2の吸収軸とのなす角度は0°であるため、斜め視角から観察した場合にも、点R3と点Eは近くにある。そのため、線分R3Oを中心とした回転移動を行っても、点P1は点Eの近くにまで到達することができず、透過率はあまり小さくならない。一方、先に説明した実施形態8の場合は、複屈折層9の遅相軸と偏光子2の吸収軸のなす角度が90°であるため、斜め視角から観察した場合に、点R3と点Eは離れている。そのため、線分R3Oを中心とした回転移動を行うことで点P1は点Eの近くにまで到達することができ、実施形態8の場合と比べて低透過が実現できるのである。 The case where light enters the optical element 18 of the ninth embodiment from an oblique direction with an azimuth angle of 45 ° and a polar angle of 60 ° is as shown in FIG. The point P0 representing the polarization state of the light after passing through the polarizer 1 passes through the birefringent layer 9, thereby causing the point R3 representing the slow axis of the birefringent layer 9 on the Poincare sphere and the center of the Poincare sphere. It receives a rotational movement counterclockwise around the line connecting O and is converted into P1, and then enters the polarizer 2. In the case of the ninth embodiment, the angle formed by the slow axis of the birefringent layer 9 and the absorption axis of the polarizer 2 is 0 ° (when observed from the normal direction). However, the points R3 and E are close to each other. For this reason, even if rotational movement about the line segment R3O is performed, the point P1 cannot reach the vicinity of the point E, and the transmittance is not so small. On the other hand, in the case of the eighth embodiment described above, the angle formed by the slow axis of the birefringent layer 9 and the absorption axis of the polarizer 2 is 90 °. E is away. Therefore, by performing rotational movement around the line segment R3O, the point P1 can reach close to the point E, and low transmission can be realized as compared with the case of the eighth embodiment.
なお、複屈折層9を方位45°、極角60°の斜め方向から観察した場合の遅相軸を表わす点R3の位置は、NZ係数に依存する。NZ係数を大きくすると、複屈折層9は第三種の複屈折層(ネガティブCプレート)に近づくため、複屈折層9の遅相軸と偏光子2の吸収軸のなす角度が0°の場合も90°の場合も、点R3は+S1軸に接近し、1<<NZ(NZ→+∞)の極限で複屈折層9は完全にネガティブCプレートとなり、点R3は+S1軸に一致する。逆に、NZ係数を小さくすると、複屈折層9はポジティブCプレートに近づくため、複屈折層9の遅相軸と偏光子2の吸収軸とのなす角度が0°の場合も90°の場合も、点R3は-S1軸に接近する。 Note that the position of the point R3 representing the slow axis when the birefringent layer 9 is observed from an oblique direction with an azimuth of 45 ° and a polar angle of 60 ° depends on the NZ coefficient. When the NZ coefficient is increased, the birefringent layer 9 approaches the third type of birefringent layer (negative C plate), and therefore the angle formed by the slow axis of the birefringent layer 9 and the absorption axis of the polarizer 2 is 0 °. Even when the angle is 90 °, the point R3 approaches the + S1 axis, and in the limit of 1 << NZ (NZ → + ∞), the birefringent layer 9 becomes a completely negative C plate, and the point R3 coincides with the + S1 axis. On the contrary, when the NZ coefficient is reduced, the birefringent layer 9 approaches the positive C plate, so the angle formed by the slow axis of the birefringent layer 9 and the absorption axis of the polarizer 2 is 0 ° or 90 °. However, the point R3 approaches the -S1 axis.
NZ係数別に動作原理を確認するために、先に説明したNZ=4.1の場合の他に、NZ=1.0、NZ=10.5、NZ=+∞の場合の偏光状態の変遷を第一複屈折層の遅相軸と偏光子2の吸収軸のなす角度が0°の場合と90°の場合とに分けて、ポアンカレ球上に図24として図示した(NZ=+∞の場合は0°と90°の区別はないので1種類のみ。)。また、それぞれの視野角特性についての計算結果を示すコンター図を図25として図示した。それぞれの場合でRthは-600nmに固定した。 In order to confirm the operation principle for each NZ coefficient, in addition to the case of NZ = 4.1 described above, the transition of the polarization state in the case of NZ = 1.0, NZ = 10.5, NZ = + ∞ is described. The angle formed by the slow axis of the first birefringent layer and the absorption axis of the polarizer 2 is divided into the case of 0 ° and the case of 90 ° as shown in FIG. 24 on the Poincare sphere (in the case of NZ = + ∞) There is no distinction between 0 ° and 90 °, so there is only one type.) In addition, a contour diagram showing calculation results for each viewing angle characteristic is shown in FIG. In each case, Rth was fixed at −600 nm.
図24に示される通り、第一複屈折層の遅相軸と偏光子2の吸収軸のなす角度が0°の場合は、90°の場合と比べて点P1は点Eに近づくことができないため、充分な透過率低減、コリメート効果が得られない。特に、NZ=1の場合は回転中心軸である線分R3O上に点P0が重なるため、コリメート効果は全く得られない。したがって、面内位相差がゼロではない第一複屈折層を用いる場合は、第一複屈折層の遅相軸と偏光子2の吸収軸が直交となるように配置するのがより好ましい。ただし、NZ=10.5の結果を見てわかるように、NZが大きくなるにつれ、第一複屈折層はネガティブCプレートに近づくため、直交配置でも平行配置でも充分に斜め方向における透過率を低下させ、光学素子においてコリメート効果が得られるようになる。NZが10を超えるような場合は、直交配置でも平行配置でもどちらでもよい。そして、NZ=1の場合は、直交となるように配置したとしても、点P0と点R3が近すぎるため、線分R3Oを中心とした回転移動を行うことで点P1が点Eの近くにまで到達することができず、ほとんどコリメート効果が得られないこともわかる。位相差値をいかに調整したとても、点P1は(ポアンカレ球のS1-S2平面上で)線分P0P1、もしくは、その延長線上にしか存在できず、充分なコリメート効果が得られることはない。 As shown in FIG. 24, when the angle formed by the slow axis of the first birefringent layer and the absorption axis of the polarizer 2 is 0 °, the point P1 cannot approach the point E compared to the case of 90 °. Therefore, sufficient transmittance reduction and collimating effect cannot be obtained. In particular, when NZ = 1, since the point P0 overlaps the line segment R3O that is the rotation center axis, no collimating effect is obtained. Therefore, when using the first birefringent layer whose in-plane retardation is not zero, it is more preferable to arrange the slow axis of the first birefringent layer and the absorption axis of the polarizer 2 to be orthogonal. However, as can be seen from the result of NZ = 10.5, as the NZ increases, the first birefringent layer approaches the negative C plate, so that the transmittance in the oblique direction is sufficiently lowered in both the orthogonal arrangement and the parallel arrangement. Thus, a collimating effect can be obtained in the optical element. When NZ exceeds 10, it may be either orthogonal arrangement or parallel arrangement. In the case of NZ = 1, even if they are arranged so as to be orthogonal, the point P0 and the point R3 are too close, so that the point P1 is close to the point E by performing rotational movement around the line segment R3O. It can also be seen that almost no collimating effect can be obtained. Regardless of how the phase difference value is adjusted, the point P1 can exist only on the line segment P0P1 (on the S1-S2 plane of the Poincare sphere) or its extension line, and a sufficient collimating effect cannot be obtained.
以上の結果をまとめると、充分なコリメート効果を得るためには、(1)第一複屈折層の遅相軸と偏光子2の吸収軸は直交配置(ただし、第一複屈折層において10<NZの場合は、直交でも平行でもどちらでもよい)であること、及び、(2)NZ係数はなるべく大きいこと、という条件を満たすことが好ましい。 Summarizing the above results, in order to obtain a sufficient collimating effect, (1) the slow axis of the first birefringent layer and the absorption axis of the polarizer 2 are arranged orthogonally (however, 10 < In the case of NZ, it is preferable to satisfy the condition that it may be either orthogonal or parallel, and (2) the NZ coefficient is as large as possible.
次に、第一複屈折層のNZ係数の好ましい値について説明する。図26は、NZ係数別に面内位相差Rをスキャンし、方位45°、極角60°の透過率T(45、60)を最小にするという設計指針のもとで、NZ係数別にRの最適化を行った結果を示す。最適R選択時のT(45、60)をNZ係数の関数として示す。図26では、T(45、60)を第一複屈折層なしの場合の値で規格化した数字を用いている。図26に示す通り、NZが大きくなるほどT(45、60)を低く抑えることができる。発明者らが別に検討した結果によると、T(45、60)を第一複屈折層なしの場合のそれに比べて半分以下にすることが、光漏れ低減効果を得るためには必要であることが分かった。そのような観点から、第一複屈折層のNZ係数は、2<NZを満足することが好ましい。 Next, a preferable value of the NZ coefficient of the first birefringent layer will be described. In FIG. 26, the in-plane retardation R is scanned for each NZ coefficient, and the design guideline of minimizing the transmittance T (45, 60) at an azimuth of 45 ° and a polar angle of 60 ° is used. The result of optimization is shown. T (45, 60) at the time of selecting the optimum R is shown as a function of the NZ coefficient. In FIG. 26, numbers obtained by normalizing T (45, 60) with values in the case of no first birefringent layer are used. As shown in FIG. 26, T (45, 60) can be kept low as NZ increases. According to the results of separate investigations by the inventors, it is necessary to make T (45, 60) less than half that of the case without the first birefringent layer in order to obtain the light leakage reduction effect. I understood. From such a viewpoint, it is preferable that the NZ coefficient of the first birefringent layer satisfies 2 <NZ.
[実施形態10]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置39は、透過型の液晶表示装置であり、図27に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層29、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層29、及び、偏光子1は光学素子19を構成し、複屈折層29は、本発明の複屈折層に相当する。
[Embodiment 10]
(Optical element and liquid crystal display device)
The liquid crystal display device 39 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 27, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 29, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 29, and the polarizer 1 constitute an optical element 19, and the birefringent layer 29 corresponds to the birefringent layer of the present invention.
複屈折層29には、R=165nm、Rth=+595nm、NZ=-3.1の第二種の複屈折層が用いられる。また、偏光子1の吸収軸と複屈折層9の面内遅層軸とのなす角度が0°となるように積層される。 As the birefringent layer 29, a second birefringent layer of R = 165 nm, Rth = + 595 nm, and NZ = −3.1 is used. Further, the polarizer 1 is laminated so that the angle formed by the absorption axis of the polarizer 1 and the in-plane slow layer axis of the birefringent layer 9 is 0 °.
詳細な説明は省略するが、本発明者らが検討した結果、吸収軸角度90°の2枚の偏光子の間に遅相軸角度α°、面内位相差R、NZ係数=NZの第二種の複屈折層が挟まれた光学素子の透過率視野角特性と、吸収軸角度90°の2枚の偏光子の間に進相軸角度α°(=遅相軸角度α°+90°)、面内位相差R、NZ係数=1-NZの第一種の複屈折層が挟まれた光学素子の透過率視野角特性とはほぼ同一であることがわかっている。したがって、本実施形態の液晶表示装置39(光学素子19)と、実施形態8の液晶表示装置37(光学素子17)とは同じ視野角特性を示すことが予想される。 Although detailed description is omitted, as a result of the study by the present inventors, a slow axis angle α °, an in-plane phase difference R, and a NZ coefficient = NZ are obtained between two polarizers having an absorption axis angle of 90 °. The transmittance viewing angle characteristic of an optical element sandwiched between two birefringent layers and a fast axis angle α ° (= slow axis angle α ° + 90 °) between two polarizers having an absorption axis angle of 90 °. It is known that the transmittance viewing angle characteristic of the optical element in which the first-type birefringent layer having in-plane retardation R and NZ coefficient = 1-NZ is sandwiched is almost the same. Therefore, the liquid crystal display device 39 (optical element 19) of the present embodiment and the liquid crystal display device 37 (optical element 17) of the eighth embodiment are expected to exhibit the same viewing angle characteristics.
図28に、実施形態10に係る光学素子19の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間に複屈折層29として、R=165nm、Rth=+595nm、NZ=-3.1の第二種の複屈折層を偏光子1の吸収軸と複屈折層29の面内遅層軸とのなす角度が0°となるように挿入し、ランバーシアンを想定したBLユニットで照明した場合に、図27中の★の位置で観測される透過率の視野角特性の計算結果を示す。図28に示す通り、極角の大きな斜め視角において、方位45°及び135°における透過率が、方位0°及び90°における透過率に比べて低くなっている。このような偏光子、複屈折層の組み合わせからなる光学素子をBLユニット上に配置することで、BLユニットからの出射光の配光分布を変化させ、液晶パネルへの入射光の配光分布を法線方向と方位0°及び90°の斜め方向に選択的に集中させる異方的なコリメーションが可能となる。 FIG. 28 shows a simulation result regarding the viewing angle characteristics of the optical element 19 according to the tenth embodiment. That is, as the birefringent layer 29 between the polarizers 1 and 2, the second birefringent layer of R = 165 nm, Rth = + 595 nm, NZ = −3.1 is used as the absorption axis of the polarizer 1 and the birefringent layer 29. 27 is inserted at an angle of 0 ° with the in-plane slow layer axis and illuminated with a BL unit assuming Lambertian, and the viewing angle characteristics of the transmittance observed at the position of ★ in FIG. The calculation result of is shown. As shown in FIG. 28, the transmittance at the azimuths of 45 ° and 135 ° is lower than the transmittance at the azimuths of 0 ° and 90 ° at an oblique viewing angle with a large polar angle. By arranging an optical element composed of such a polarizer and a birefringent layer on the BL unit, the light distribution of the light emitted from the BL unit is changed, and the light distribution of the incident light on the liquid crystal panel is changed. Anisotropic collimation that selectively concentrates in the normal direction and the oblique directions of azimuths of 0 ° and 90 ° is possible.
なお、予想された通り、本実施形態の液晶表示装置39(光学素子19)と、実施形態8の液晶表示装置37(光学素子17)とは同一の視野角特性を示した(図19及び図28)。 As expected, the liquid crystal display device 39 (optical element 19) of the present embodiment and the liquid crystal display device 37 (optical element 17) of the eighth embodiment showed the same viewing angle characteristics (FIGS. 19 and 19). 28).
[実施形態11]
(光学素子及び液晶表示装置)
本実施形態の液晶表示装置40は、透過型の液晶表示装置であり、図29に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、複屈折層29、偏光子1、及びバックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。偏光子2、複屈折層29、及び、偏光子1は光学素子20を構成し、複屈折層29は、本発明の複屈折層に相当する。
[Embodiment 11]
(Optical element and liquid crystal display device)
The liquid crystal display device 40 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 29, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in this order from the viewing surface side. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, the birefringent layer 29, the polarizer 1, and the backlight (BL) unit 25 in this order. The polarizer 2, the birefringent layer 29, and the polarizer 1 constitute the optical element 20, and the birefringent layer 29 corresponds to the birefringent layer of the present invention.
複屈折層29には、R=165nm、Rth=+595nm、NZ=-3.1の第二種の複屈折層が用いられる。また、偏光子1の吸収軸と複屈折層29の面内遅層軸とのなす角度が90°となるように積層される。 As the birefringent layer 29, a second birefringent layer of R = 165 nm, Rth = + 595 nm, and NZ = −3.1 is used. Further, the polarizer 1 and the birefringent layer 29 are laminated so that the angle formed by the absorption axis of the polarizer 1 and the in-plane slow layer axis of the birefringent layer 29 is 90 °.
本実施形態の液晶表示装置40(光学素子20)と、実施形態9の液晶表示装置38(光学素子18)とは同じ視野角特性を示すことが予想される。 The liquid crystal display device 40 (optical element 20) of the present embodiment and the liquid crystal display device 38 (optical element 18) of the ninth embodiment are expected to exhibit the same viewing angle characteristics.
図30に、実施形態11に係る光学素子20の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間に複屈折層29として、R=165nm、Rth=+595nm、NZ=-3.1の第二種の複屈折層を偏光子1の吸収軸と複屈折層29の面内遅層軸とのなす角度が90°となるように挿入し、ランバーシアンを想定したBLユニットで照明した場合に、図29中の★の位置で観測される透過率の視野角特性の計算結果を示す。 FIG. 30 shows a simulation result regarding the viewing angle characteristics of the optical element 20 according to the eleventh embodiment. That is, as the birefringent layer 29 between the polarizers 1 and 2, the second birefringent layer of R = 165 nm, Rth = + 595 nm, NZ = −3.1 is used as the absorption axis of the polarizer 1 and the birefringent layer 29. 29 is inserted at an angle of 90 ° with the in-plane slow layer axis and illuminated with a BL unit assuming Lambertian, and the viewing angle characteristics of the transmittance observed at the position of ★ in FIG. The calculation result of is shown.
予想された通り、本実施形態の液晶表示装置40(光学素子20)と、実施形態9の液晶表示装置38(光学素子18)とは同一の視野角特性を示した(図21及び図29)。 As expected, the liquid crystal display device 40 (optical element 20) of the present embodiment and the liquid crystal display device 38 (optical element 18) of the ninth embodiment showed the same viewing angle characteristics (FIGS. 21 and 29). .
次に、図31~図41を用いて、複屈折層として、第一種の複屈折層又は第二種の複屈折層を用いたときの、偏光子の吸収軸と複屈折層の面内遅層軸とがなす角度と透過率との関係について説明する。図31~図41は、吸収軸方位90°の偏光子1、2の間に複屈折層として、R=165nm、Rth=-600nm、NZ=4.1の第一種の複屈折層を方位0±45°となるように挿入した場合の透過率視野角特性の計算結果である。 Next, with reference to FIGS. 31 to 41, when the first type birefringent layer or the second type birefringent layer is used as the birefringent layer, the absorption axis of the polarizer and the in-plane of the birefringent layer are used. The relationship between the angle formed by the slow axis and the transmittance will be described. 31 to 41 show a birefringent layer of R = 165 nm, Rth = −600 nm, and NZ = 4.1 as a birefringent layer between polarizers 1 and 2 having an absorption axis direction of 90 °. It is the calculation result of the transmittance | permeability viewing angle characteristic at the time of inserting so that it may become 0 +/- 45 degrees.
面内位相差が0ではない第一種の複屈折層又は第二種の複屈折層を用いる場合は、軸角度が0°ではなくなると、法線方向での透過率が低下したり、方位45°又は135°の斜め方向の透過率よりも、方位0°又は90°の斜め方向の透過率の方が高くなってしまう場合があり好ましくない。許容される軸角度は、図31~図41より、0±20°であることが判明した。その範囲を超えて最適値よりも外にずれると、法線方向の透過率低下に加えて、例えば、図32及び図40に示す軸角度0±25°のように、方位45°又は135°斜め方向の透過率が方位0°又は90°の透過率を上回る極角範囲の方が下回る極角範囲よりも広くなってしまい、CR改善の効果も限定的になってしまうおそれがある。また、許容される軸角度は、0±10°であることがより好ましいことが判明した。図35~図37に示すように、この範囲内であれば、いずれの極角においても、方位45°又は135°斜め方向の透過率が方位0°又は90°の透過率を上回ることがないため、高いCR改善効果が得られる。 When the first-type birefringent layer or the second-type birefringent layer whose in-plane retardation is not 0 is used, if the axial angle is not 0 °, the transmittance in the normal direction is reduced or the orientation The transmittance in the oblique direction of 0 ° or 90 ° may be higher than the transmittance in the oblique direction of 45 ° or 135 °, which is not preferable. It was found from FIG. 31 to FIG. 41 that the allowable shaft angle is 0 ± 20 °. When the deviation is outside the optimum value beyond the range, in addition to the decrease in the transmittance in the normal direction, for example, the azimuth angle 45 ° or 135 °, such as the axial angle 0 ± 25 ° shown in FIGS. The polar angle range in which the transmittance in the oblique direction exceeds the transmittance in the azimuth 0 ° or 90 ° becomes wider than the lower polar angle range, and the CR improvement effect may be limited. It has also been found that the allowable shaft angle is more preferably 0 ± 10 °. As shown in FIGS. 35 to 37, the transmittance in the oblique direction of 45 ° or 135 ° does not exceed the transmittance of 0 ° or 90 ° in any polar angle within this range. Therefore, a high CR improvement effect can be obtained.
第一種の複屈折層又は第二種の複屈折層を用いる場合の、軸角度が90°からずれるときの許容される軸角度についても検討した。図41~図51は、吸収軸方位90°の偏光子1、2の間に複屈折層として、R=165nm、Rth=-600nm、NZ=4.1の第一種の複屈折層を方位90±45°となるように挿入した場合の透過率視野角特性の計算結果である。その結果、軸角度が0°からずれるときと同様に、許容される角度は、90±20°であることが判明した。その範囲を超えて最適値よりも外にずれると、法線方向の透過率低下に加えて、例えば、図42及び図50に示す軸角度90±25°のように、方位45°又は135°斜め方向の透過率が方位0°又は90°の透過率を上回る極角範囲の方が下回る極角範囲よりも広くなってしまい、CR改善の効果も限定的になってしまうおそれがある。また、許容される軸角度は、0±10°であることがより好ましいことが判明した。図45~図47に示すように、この範囲内であれば、いずれの極角においても、方位45°又は135°斜め方向の透過率が方位0°又は90°の透過率を上回ることがないため、高いCR改善効果が得られる。 In the case of using the first type birefringent layer or the second type birefringent layer, the allowable axis angle when the axis angle deviates from 90 ° was also examined. FIGS. 41 to 51 show a first birefringent layer of R = 165 nm, Rth = −600 nm, and NZ = 4.1 as a birefringent layer between polarizers 1 and 2 having an absorption axis orientation of 90 °. It is the calculation result of the transmittance | permeability viewing angle characteristic at the time of inserting so that it may become 90 +/- 45 degrees. As a result, it was found that the allowable angle was 90 ± 20 ° as in the case where the shaft angle deviated from 0 °. When the deviation is outside the optimum value beyond the range, in addition to the decrease in the transmittance in the normal direction, for example, the azimuth 45 ° or 135 °, such as the axial angle 90 ± 25 ° shown in FIGS. The polar angle range in which the transmittance in the oblique direction exceeds the transmittance in the azimuth 0 ° or 90 ° becomes wider than the lower polar angle range, and the CR improvement effect may be limited. It has also been found that the allowable shaft angle is more preferably 0 ± 10 °. As shown in FIGS. 45 to 47, the transmittance in the oblique direction of 45 ° or 135 ° does not exceed the transmittance of 0 ° or 90 ° in any polar angle within this range. Therefore, a high CR improvement effect can be obtained.
なお、法線方向の透過率低下を防ぐだけであれば、複数の複屈折を互いの遅相軸のなす角度が0°又は90°になるように積層し、積層体としての実効的な位相差を0とする方法が考えられる。最も簡単な構成は、図52に示すように、面内位相差Rが略同じである2枚の複屈折層103、104を互いの軸のなす角度が90°となるよう積層する方法である。法線方向入射に対しては、面内位相差が同じで互いの軸のなす角度が90°となる2枚の複屈折層が互いの位相差を補償しあうように作用し、2枚の複屈折層の実効的な位相差は0となるため、法線方向入射に対しては透過率が低下しない。しかし、方位0°又は90°における斜め方向からの入射に対してはそれぞれの複屈折層の実効的な軸がなす角度が90°とならなくなるため、実効的な位相差は0ではなくなる。旋光性(偏光の方位を回転させる現象)と関係するいわゆる楕円複屈折が残留する。これにより、図53に示すように、方位0°又は90°における斜め方向からの入射に対しては、複屈折層がない場合や実施形態8の場合と比べて透過率が低下してしまう。したがって、法線方向と方位0°又は90°における斜め方向に対しては透過率を低下させない十字型コリメーションを実現するという観点でみると、この方式にも課題がある。また、後述する比較形態2についても同様のことが言える。 In order to prevent only a decrease in the transmittance in the normal direction, a plurality of birefringences are laminated so that the angle formed between the slow axes of each other is 0 ° or 90 °, and the effective position as a laminate is obtained. A method of setting the phase difference to 0 is conceivable. As shown in FIG. 52, the simplest configuration is a method of laminating two birefringent layers 103 and 104 having the same in-plane retardation R so that the angle formed between the axes is 90 °. . For normal incidence, two birefringent layers having the same in-plane phase difference and an angle of 90 ° between each other act to compensate for each other's phase difference. Since the effective phase difference of the birefringent layer is 0, the transmittance does not decrease with respect to incidence in the normal direction. However, the effective phase difference is not zero because the angle formed by the effective axis of each birefringent layer is not 90 ° with respect to the incidence from the oblique direction at 0 ° or 90 °. So-called elliptical birefringence related to optical rotation (a phenomenon of rotating the direction of polarized light) remains. As a result, as shown in FIG. 53, the transmittance is reduced with respect to incidence from an oblique direction at an azimuth of 0 ° or 90 ° as compared to the case where there is no birefringent layer or the case of the eighth embodiment. Therefore, this method also has a problem from the viewpoint of realizing cross-shaped collimation that does not reduce the transmittance with respect to the normal direction and the oblique direction at 0 ° or 90 ° in the azimuth direction. The same can be said for Comparative Example 2 described later.
[比較形態1]
本実施形態の液晶表示装置130は、透過型の液晶表示装置であり、図54に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、及び、バックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。複屈折層5と偏光子1を有さないこと以外は、実施形態3の液晶表示装置と同じである。
[Comparison 1]
The liquid crystal display device 130 of the present embodiment is a transmissive liquid crystal display device, and as shown in FIG. 54, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in order from the observation surface side. 22 is a liquid crystal display device obtained by laminating the birefringent layer 21, the polarizer 2, and the backlight (BL) unit 25 in this order. Except for not having the birefringent layer 5 and the polarizer 1, it is the same as the liquid crystal display device of the third embodiment.
[比較形態2]
本実施形態の液晶表示装置131は、透過型の液晶表示装置であり、図55に示すように、観察面側から順に、偏光子24、複屈折層23、VAモードの液晶層を含む液晶パネル22、複屈折層21、偏光子2、2枚の複屈折層9、偏光子1、及び、バックライト(BL)ユニット25をこの順に積層して得られた液晶表示装置である。2枚の複屈折層9は、それぞれ軸角度が45°及び135°となるように挿入される。
[Comparison 2]
The liquid crystal display device 131 of this embodiment is a transmissive liquid crystal display device, and as shown in FIG. 55, a liquid crystal panel including a polarizer 24, a birefringent layer 23, and a VA mode liquid crystal layer in order from the viewing surface side. 22 is a liquid crystal display device obtained by laminating a birefringent layer 21, a polarizer 2, two birefringent layers 9, a polarizer 1, and a backlight (BL) unit 25 in this order. The two birefringent layers 9 are inserted so that the axial angles are 45 ° and 135 °, respectively.
図56に、比較形態2に係る光学素子の視野角特性に関するシミュレーション結果を示す。すなわち、偏光子1、2の間に複屈折層9として、R=165nm、Rth=-600nm、NZ=4.1の第一種の複屈折層を2枚、それぞれ軸角度が45°及び135°となるように挿入し、ランバーシアンを想定したBLユニットで照明した場合に、図55中の★の位置で観測される透過率の視野角特性の計算結果を示す。図56に示す通り、方位角によらず、極角の大きな斜め視角において、複屈折層がない場合と比べて透過率が低くなっている(例えば、図6を参照。)。このような偏光子、複屈折層の組み合わせからなる光学素子は、液晶パネルへの入射光の配光分布を法線方向に選択的に集中させる等方的なコリメーションを目的としているといえる。本発明の実施形態1~11とは異なり、方位0°及び90°でも透過率が下がるのは、複屈折層9の遅相軸が第一偏光子1の吸収軸と平行でも直交でもないため、方位0°及び90の斜め視角から観察した場合にも、複屈折層9の実効的な遅相軸は偏光子1の吸収軸と平行でも直交でもなく、複屈折層9が偏光子1通過後の光の偏光状態を変化させるためである。2枚の複屈折層9はそれぞれ方位45°及び135°で2つの遅層軸がなす角度が90°に積層されており、かつ面内位相差Rが等しいので、法線方向からの観察時は実効的な位相差がゼロとなり、法線方向では複屈折層がない場合、すなわち、偏光子2枚だけの場合と同じ透過率が得られる。一方、斜め方向ではその観察方位によらず、2枚の複屈折層9の積層体が複屈折層として機能するため、複屈折層がない場合と比べて透過率が低くなってしまう。 In FIG. 56, the simulation result regarding the viewing angle characteristic of the optical element which concerns on the comparative form 2 is shown. That is, two birefringent layers of R = 165 nm, Rth = −600 nm, and NZ = 4.1 are used as the birefringent layer 9 between the polarizers 1 and 2, and the axial angles are 45 ° and 135 °, respectively. FIG. 55 shows the calculation result of the viewing angle characteristic of the transmittance observed at the position of * in FIG. 55 when it is inserted so as to be at 0 ° and illuminated with a BL unit assuming Lambertian. As shown in FIG. 56, regardless of the azimuth angle, the transmittance is low compared to the case where there is no birefringent layer at an oblique viewing angle with a large polar angle (see, for example, FIG. 6). It can be said that the optical element composed of such a combination of a polarizer and a birefringent layer aims at isotropic collimation that selectively concentrates the light distribution of incident light on the liquid crystal panel in the normal direction. Unlike Embodiments 1 to 11 of the present invention, the transmittance decreases even when the orientation is 0 ° and 90 ° because the slow axis of the birefringent layer 9 is neither parallel nor orthogonal to the absorption axis of the first polarizer 1. Even when observed from oblique viewing angles of 0 ° and 90 °, the effective slow axis of the birefringent layer 9 is neither parallel nor orthogonal to the absorption axis of the polarizer 1, and the birefringent layer 9 passes through the polarizer 1. This is to change the polarization state of the later light. The two birefringent layers 9 are laminated at an angle of 45 ° and 135 °, respectively, and the angle formed by the two slow axes is 90 °, and the in-plane retardation R is equal, so that when observing from the normal direction, The effective phase difference is zero, and the same transmittance as in the case where there is no birefringent layer in the normal direction, that is, only two polarizers, is obtained. On the other hand, in the oblique direction, the laminate of the two birefringent layers 9 functions as a birefringent layer regardless of the viewing direction, and thus the transmittance is lower than that in the case where there is no birefringent layer.
(実施例1)
実施例1の液晶表示装置として、実施形態3の液晶表示装置32を実際に作製した。複屈折層5としては、R=1nm、Rth=-99nmの複屈折層を6枚積層したものを用いた。これらの複屈折層の材料としては、ノルボルネン(NB)を用いた。複屈折層21、複屈折層23の材料としては、トリアセチルセルロース(TAC)を用いた。各偏光子には、ポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体を吸着配向させた吸収型偏光子を用いた。各偏光子の特性(単体透過率、平行透過率(Tp)、直交透過率(Tc)、及び偏光子のコントラスト)は、上記表1のAとなるように設定した。各偏光子の両面には、TACフィルム(R=0nm、Rth=52nm)を貼り付けた。バックライトユニット25としては、シャープ社製液晶テレビ(商品名:LC40-SE1)に搭載されたバックライトユニットを用いた。このバックライトユニットの構成は、LED光源、拡散板、拡散シート、レンズシートがこの順に積層されたものであった。
Example 1
As the liquid crystal display device of Example 1, the liquid crystal display device 32 of Embodiment 3 was actually manufactured. As the birefringent layer 5, a stack of six birefringent layers having R = 1 nm and Rth = −99 nm was used. As a material for these birefringent layers, norbornene (NB) was used. As a material of the birefringent layer 21 and the birefringent layer 23, triacetyl cellulose (TAC) was used. For each polarizer, an absorptive polarizer in which a dichroic iodine complex was adsorbed and oriented on a polyvinyl alcohol (PVA) film was used. The characteristics of each polarizer (single transmittance, parallel transmittance (Tp), orthogonal transmittance (Tc), and contrast of the polarizer) were set to be A in Table 1 above. A TAC film (R = 0 nm, Rth = 52 nm) was attached to both surfaces of each polarizer. As the backlight unit 25, a backlight unit mounted on a Sharp liquid crystal television (trade name: LC40-SE1) was used. The configuration of the backlight unit was an LED light source, a diffusion plate, a diffusion sheet, and a lens sheet laminated in this order.
(実施例2)
実施例2の液晶表示装置として、実施形態5の液晶表示装置34を実際に作製した。複屈折層6としては、R=1nm、Rth=-99nmの複屈折層を10枚積層したものを用いた。これらの複屈折層の材料としては、ノルボルネン(NB)を用いた。それ以外は、実施例1と同じである。
(Example 2)
As the liquid crystal display device of Example 2, the liquid crystal display device 34 of Embodiment 5 was actually manufactured. As the birefringent layer 6, a stack of 10 birefringent layers having R = 1 nm and Rth = −99 nm was used. As a material for these birefringent layers, norbornene (NB) was used. The rest is the same as the first embodiment.
(実施例3)
実施例3の液晶表示装置として、実施形態6の液晶表示装置35を実際に作製した。複屈折層8としては、R=1nm、Rth=-202nmの複屈折層を10枚積層したものを用いた。これらの複屈折層の材料としては、ノルボルネン(NB)を用いた。それ以外は、実施例1と同じである。
(Example 3)
As the liquid crystal display device of Example 3, the liquid crystal display device 35 of Embodiment 6 was actually manufactured. As the birefringent layer 8, a layer in which ten birefringent layers having R = 1 nm and Rth = −202 nm were stacked was used. As a material for these birefringent layers, norbornene (NB) was used. The rest is the same as the first embodiment.
(実施例4)
実施例4の液晶表示装置として、実施形態7の液晶表示装置36を実際に作製した。複屈折層8としては、R=1nm、Rth=-99nmの複屈折層を10枚積層したものを用いた。複屈折層8の材料としては、ノルボルネン(NB)を用いた。また、複屈折層9としては、R=0nm、Rth=-202nmの複屈折層を10枚積層したものを用いた。複屈折層9の材料としては、コレステリック液晶(ChLC)を用いた。それ以外は、実施例1と同じである。
Example 4
As the liquid crystal display device of Example 4, the liquid crystal display device 36 of Embodiment 7 was actually manufactured. As the birefringent layer 8, a stack of 10 birefringent layers having R = 1 nm and Rth = −99 nm was used. As the material of the birefringent layer 8, norbornene (NB) was used. Further, as the birefringent layer 9, a layer in which ten birefringent layers having R = 0 nm and Rth = −202 nm were stacked was used. As a material for the birefringent layer 9, cholesteric liquid crystal (ChLC) was used. The rest is the same as the first embodiment.
(実施例5)
実施例5の液晶表示装置として、実施形態8の液晶表示装置37を実際に作製した。複屈折層9としては、R=55nm、Rth=-198nmの複屈折層を3枚積層したものを用いた。これらの複屈折層の材料としては、トリアセチルセルロース(TAC)を用いた。それ以外は、実施例1と同じである。
(Example 5)
As the liquid crystal display device of Example 5, the liquid crystal display device 37 of Embodiment 8 was actually manufactured. As the birefringent layer 9, a laminate of three birefringent layers with R = 55 nm and Rth = −198 nm was used. Triacetyl cellulose (TAC) was used as a material for these birefringent layers. The rest is the same as the first embodiment.
(実施例5-1~5-6)
各偏光子の特性(単体透過率、平行透過率(Tp)、直交透過率(Tc)、及び偏光子のコントラスト)を変更したこと以外は実施例5と同じである。
(Examples 5-1 to 5-6)
Example 5 is the same as Example 5 except that the characteristics (single transmittance, parallel transmittance (Tp), orthogonal transmittance (Tc), and contrast of the polarizer) of each polarizer are changed.
(実施例6)
実施例6の液晶表示装置として、実施形態9の液晶表示装置38を実際に作製した。複屈折層9は、実施例5で用いたR=55nm、Rth=-198nmの複屈折層を3枚積層したものと同じものを用いた。それ以外は、実施例5と同じである。
(Example 6)
As the liquid crystal display device of Example 6, the liquid crystal display device 38 of Embodiment 9 was actually manufactured. As the birefringent layer 9, the same layer as that obtained by laminating three birefringent layers of R = 55 nm and Rth = −198 nm used in Example 5 was used. Other than that is the same as Example 5.
(実施例7)
実施例7の液晶表示装置として、実施形態8の液晶表示装置37を実際に作製した。複屈折層は、実施例5で用いたR=55nm、Rth=-198nmの複屈折層を3枚積層したものと同じものを用い、各偏光子の特性を変更したこと以外は、実施例5と同じである。
(Example 7)
As a liquid crystal display device of Example 7, a liquid crystal display device 37 of Embodiment 8 was actually manufactured. The birefringent layer was the same as that obtained by laminating three birefringent layers of R = 55 nm and Rth = −198 nm used in Example 5, and the characteristics of each polarizer were changed, except that the characteristics of each polarizer were changed. Is the same.
(比較例1)
比較例1の液晶表示装置として、比較形態1の液晶表示装置を実際に作成した。複屈折層5を有さないこと以外は、実施例1の液晶表示装置と同じである。
(Comparative Example 1)
As a liquid crystal display device of comparative example 1, a liquid crystal display device of comparative form 1 was actually made. Except for not having the birefringent layer 5, it is the same as the liquid crystal display device of Example 1.
(比較例2)
比較例2の液晶表示装置として、比較形態2の液晶表示装置を実際に作成した。複屈折層9として、実施例5で用いた複屈折層9を2枚、偏光子1及び偏光子2の間にそれぞれ軸角度が45°及び135°となるように挿入した。それ以外は、実施例5の液晶表示装置と同じである。
(Comparative Example 2)
As a liquid crystal display device of Comparative Example 2, a liquid crystal display device of Comparative Example 2 was actually produced. As the birefringent layer 9, two birefringent layers 9 used in Example 5 were inserted between the polarizer 1 and the polarizer 2 so that the axial angles were 45 ° and 135 °, respectively. The rest is the same as the liquid crystal display device of Example 5.
実施例1~7、比較例1、及び、比較例2に係る液晶表示装置についてCRの評価と視野角の目視による主観評価を行った。結果を表3に示す。 Regarding the liquid crystal display devices according to Examples 1 to 7, Comparative Example 1 and Comparative Example 2, CR evaluation and visual evaluation of viewing angle were performed. The results are shown in Table 3.
(R、Rth、NZ係数、nx、ny、nzの測定方法)
デュアル・リターダー・ローテート方式のポーラリメータ(Axometrics社製、商品名:Axo-scan)を用いて測定した。面内位相差R0は複屈折層の法線方向から実測した。主屈折率nx、ny、nz、厚み方向位相差Rth及びNZ係数は、複屈折層の法線方向、法線方向から-50°~50°傾斜した各斜め方向から位相差を測定し、公知の屈折率楕円体式のカーブフィッティングにより算出した。傾斜方位は面内遅相軸とのなす角度が90°となる方位とした。また、nx、ny、nz、R及びNzは、カーブフィッティングの計算条件として与える平均屈折率=(nx+ny+nz)/3に依存するが、各複屈折層の平均屈折率を1.5に統一して計算した。実際の平均屈折率が1.5と異なる複屈折層についても平均屈折率1.5を想定して換算した。
(Measurement method of R, Rth, NZ coefficient, nx, ny, nz)
The measurement was performed using a dual retarder rotation type polarimeter (manufactured by Axometrics, trade name: Axo-scan). The in-plane retardation R0 was measured from the normal direction of the birefringent layer. The main refractive indexes nx, ny, nz, thickness direction retardation Rth and NZ coefficient are measured by measuring the phase difference from the normal direction of the birefringent layer and each oblique direction inclined by −50 ° to 50 ° from the normal direction. The refractive index ellipsoidal curve fitting was used. The tilt azimuth was such that the angle formed with the in-plane slow axis was 90 °. Further, nx, ny, nz, R and Nz depend on the average refractive index = (nx + ny + nz) / 3 given as the curve fitting calculation condition, but the average refractive index of each birefringent layer is unified to 1.5. Calculated. The birefringent layer having an actual average refractive index different from 1.5 was also converted assuming an average refractive index of 1.5.
(液晶表示装置の輝度及びCR測定方法)
超低輝度分光放射計(トプコン(TOPCON)社製、商品名:SR-Ul1)を用いて測定した。法線方向における白表示の輝度(白輝度)と黒表示の輝度(黒輝度)とを測定した。白輝度と黒輝度との比をCRとした。
(Brightness and CR measurement method of liquid crystal display device)
Measurement was performed using an ultra-low luminance spectroradiometer (trade name: SR-Ul1 manufactured by TOPCON). The brightness of white display (white brightness) and the brightness of black display (black brightness) in the normal direction were measured. The ratio of white luminance to black luminance was taken as CR.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
本発明に係る実施例1~7の液晶表示装置においては、いずれも比較例1と比べて高いCRが得られ、目視主観評価でも高CRと優れた表示特性が確認された。また、視野角特性に注目した目視主観評価を行うと、本発明の実施例1~7の液晶表示装置は第三偏光子24の視認側の外側に拡散素子を設けていないにも関わらず、方位0°及び90°(上下左右)の斜め視角からも明るい表示が得られ、実用充分な視野角特性が得られており、異方的コリメーションの効果が確認された。また、実施例5-1~5-6の液晶表示装置においては、実施例5と同じく高CRが得られながらも、実施例5と比べて高い白輝度が得られた。同様に、実施例7においても、実施例5と同じく高CRが得られながらも、高CRでかつ高い白輝度が得られた。更に、実施例1~7の液晶表示装置の偏光子1の視認側の外側に拡散素子としてヘイズ41%のアンチグレア(AG)フィルムを設けると、方位45°及び135°でも明るい表示が得られ、液晶パネルへの入射光をコリメートしていない比較例1の液晶表示装置と比べて遜色ない視野角特性が得られた。 In each of the liquid crystal display devices of Examples 1 to 7 according to the present invention, a high CR was obtained as compared with Comparative Example 1, and high CR and an excellent display characteristic were confirmed by visual subjective evaluation. In addition, when visual subjective evaluation focusing on viewing angle characteristics is performed, the liquid crystal display devices of Examples 1 to 7 of the present invention do not include a diffusing element outside the viewing side of the third polarizer 24. Bright display was obtained even from oblique viewing angles of 0 ° and 90 ° (up, down, left and right), and sufficient viewing angle characteristics were obtained for practical use, confirming the effect of anisotropic collimation. Further, in the liquid crystal display devices of Examples 5-1 to 5-6, high white luminance was obtained as compared with Example 5 while high CR was obtained as in Example 5. Similarly, in Example 7, high CR and high white luminance were obtained while high CR was obtained as in Example 5. Further, when an anti-glare (AG) film having a haze of 41% is provided as a diffusing element outside the viewing side of the polarizer 1 of the liquid crystal display devices of Examples 1 to 7, bright display can be obtained even at azimuths of 45 ° and 135 °. A viewing angle characteristic comparable to that of the liquid crystal display device of Comparative Example 1 in which the incident light on the liquid crystal panel was not collimated was obtained.
一方、比較例2の液晶表示装置においては、等方的コリメーションの効果で高CRが観測されたものの、法線方向以外の全ての斜め視角において表示が暗く、実用充分な視野角特性が得られていなかった。また、比較例2の液晶表示装置の第三偏光子24の視認側の外側に拡散素子としてヘイズ41%のAGフィルムを設けると、多少の視野角改善効果は確認されたものの、比較例1の液晶表示装置の視野角特性と比べて遜色ない視野角は得られなかった。 On the other hand, in the liquid crystal display device of Comparative Example 2, although high CR was observed due to the effect of isotropic collimation, the display was dark at all oblique viewing angles other than the normal direction, and a practically sufficient viewing angle characteristic was obtained. It wasn't. Further, when an AG film having a haze of 41% was provided as a diffusing element on the outside of the viewing side of the third polarizer 24 of the liquid crystal display device of Comparative Example 2, a slight viewing angle improvement effect was confirmed, but Comparative Example 1 A viewing angle comparable to that of the liquid crystal display device was not obtained.
なお、本願は、2010年12月28日に出願された日本国特許出願2010-293849号、及び、2011年4月22日に出願された日本国特許出願2011-096525号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 The present application is based on Japanese Patent Application 2010-293849 filed on December 28, 2010 and Japanese Patent Application 2011-096525 filed on April 22, 2011. Or claim priority based on laws and regulations in the country of transition. The contents of the application are hereby incorporated by reference in their entirety.
1、2、24、50:偏光子
3、4、5、6、7、8、9、21、23、29:複屈折層
10、11、12、13、14、15、16、17、18、19、20:光学素子
22:液晶パネル
25:バックライト(BL)ユニット
30、31、32、33、34、35、36、37、38、39、40、130、131:液晶表示装置
 
 
1, 2, 24, 50: Polarizers 3, 4, 5, 6, 7, 8, 9, 21, 23, 29: Birefringent layers 10, 11, 12, 13, 14, 15, 16, 17, 18 19, 20: Optical element 22: Liquid crystal panel 25: Backlight (BL) units 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 130, 131: Liquid crystal display device

Claims (26)

  1. 第一偏光子、複屈折層及び第二偏光子を備える光学素子であって、
    前記第一偏光子、前記複屈折層及び前記第二偏光子は、この順に積層され、
    前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であり、
    前記複屈折層の2軸性パラメータNZは、10≦NZ、又は、NZ≦-9を満たし、
    前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧200nmを満たす
    ことを特徴とする光学素子。
    An optical element comprising a first polarizer, a birefringent layer and a second polarizer,
    The first polarizer, the birefringent layer, and the second polarizer are laminated in this order,
    The transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other,
    The biaxial parameter NZ of the birefringent layer satisfies 10 ≦ NZ or NZ ≦ −9,
    The optical element characterized in that the absolute value | Rth | of the thickness direction retardation of the birefringent layer satisfies | Rth | ≧ 200 nm.
  2. 前記第一偏光子及び前記第二偏光子の少なくとも一方は、反射型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であることを特徴とする請求項1記載の光学素子。 The at least one of the first polarizer and the second polarizer is a reflective polarizer, or a composite polarizer in which an absorption polarizer and a reflective polarizer are stacked. Optical elements.
  3. 前記第一偏光子及び前記第二偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、
    前記第一偏光子は、単体透過率が前記第二偏光子と異なることを特徴とする請求項1記載の光学素子。
    Each of the first polarizer and the second polarizer is an absorptive polarizer, or a composite polarizer in which an absorptive polarizer and a reflective polarizer are laminated,
    The optical element according to claim 1, wherein the first polarizer has a single transmittance different from that of the second polarizer.
  4. 前記光学素子は、前記複屈折層を複数備え、前記第一偏光子、前記複数の複屈折層及び前記第二偏光子は、この順に積層されることを特徴とする請求項1~3のいずれかに記載の光学素子。 The optical element includes a plurality of the birefringent layers, and the first polarizer, the plurality of birefringent layers, and the second polarizer are stacked in this order. An optical element according to any one of the above.
  5. 前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧400nmを満たすことを特徴とする請求項1~4のいずれかに記載の光学素子。 5. The optical element according to claim 1, wherein the absolute value | Rth | of the thickness direction retardation of the birefringent layer satisfies | Rth | ≧ 400 nm.
  6. 前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧600nmを満たすことを特徴とする請求項5記載の光学素子。 6. The optical element according to claim 5, wherein the absolute value | Rth | of the thickness direction retardation of the birefringent layer satisfies | Rth | ≧ 600 nm.
  7. 前記光学素子は、更に、第二複屈折層及び第三偏光子を備え、
    前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層及び前記第三偏光子は、この順に積層され、
    前記第二偏光子の透過軸と、前記第三偏光子の透過軸とは、互いに平行であり、
    前記第二複屈折層の2軸性パラメータNZは、10≦NZ、又は、NZ≦-9を満たし、
    前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧200nmを満たすとともに、前記複屈折層の厚み方向位相差の絶対値とは値が異なる
    ことを特徴とする請求項1~6のいずれかに記載の光学素子。
    The optical element further includes a second birefringent layer and a third polarizer,
    The first polarizer, the birefringent layer, the second polarizer, the second birefringent layer, and the third polarizer are laminated in this order,
    The transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other,
    The biaxial parameter NZ of the second birefringent layer satisfies 10 ≦ NZ or NZ ≦ −9,
    The absolute value | Rth | of the thickness direction retardation of the second birefringent layer satisfies | Rth | ≧ 200 nm and is different from the absolute value of the thickness direction retardation of the birefringent layer. The optical element according to any one of claims 1 to 6.
  8. 前記光学素子は、更に、第二複屈折層及び第三偏光子を備え、
    前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層及び前記第三偏光子は、この順に積層され、
    前記第二偏光子の透過軸と、前記第三偏光子の透過軸とは、互いに平行であり、
    前記第二複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、
    前記第二偏光子の透過軸と、前記第二複屈折層の面内遅相軸とがなす角度が45°、又は、135°でなく、
    前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、前記複屈折層の厚み方向位相差の絶対値とは値が異なる
    ことを特徴とする請求項1~6のいずれかに記載の光学素子。
    The optical element further includes a second birefringent layer and a third polarizer,
    The first polarizer, the birefringent layer, the second polarizer, the second birefringent layer, and the third polarizer are laminated in this order,
    The transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other,
    The biaxial parameter NZ of the second birefringent layer satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1,
    The angle formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer is not 45 ° or 135 °,
    7. The absolute value | Rth | of the thickness direction retardation of the second birefringent layer is different from the absolute value of the thickness direction retardation of the birefringent layer. The optical element described.
  9. 第一偏光子、複屈折層及び第二偏光子を備える光学素子であって、
    前記第一偏光子、前記複屈折層及び前記第二偏光子は、この順に積層され、
    前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であり、
    前記複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、
    前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とがなす角度が45°、又は、135°でない
    ことを特徴とする光学素子。
    An optical element comprising a first polarizer, a birefringent layer and a second polarizer,
    The first polarizer, the birefringent layer, and the second polarizer are laminated in this order,
    The transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other,
    The biaxial parameter NZ of the birefringent layer satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1,
    An optical element, wherein an angle formed between a transmission axis of the first polarizer and an in-plane slow axis of the birefringent layer is not 45 ° or 135 °.
  10. 前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とがなす角度は、90±20°、又は、0±20°の範囲内であることを特徴とする請求項9記載の光学素子。 The angle formed by the transmission axis of the first polarizer and the in-plane slow axis of the birefringent layer is in the range of 90 ± 20 ° or 0 ± 20 °. The optical element described.
  11. 前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とは、互いに直交するか、又は、互いに平行であることを特徴とする請求項10記載の光学素子。 The optical element according to claim 10, wherein a transmission axis of the first polarizer and an in-plane slow axis of the birefringent layer are orthogonal to each other or parallel to each other.
  12. 前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とは、互いに平行であることを特徴とする請求項11記載の光学素子。 The optical element according to claim 11, wherein a transmission axis of the first polarizer and an in-plane slow axis of the birefringent layer are parallel to each other.
  13. 前記第一偏光子及び前記第二偏光子の少なくとも一方は、反射型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であることを特徴とする請求項9~12のいずれかに記載の光学素子。 10. The at least one of the first polarizer and the second polarizer is a reflective polarizer or a composite polarizer in which an absorption polarizer and a reflective polarizer are laminated. 12. The optical element according to any one of 12.
  14. 前記第一偏光子及び前記第二偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、
    前記第一偏光子は、単体透過率が前記第二偏光子と異なることを特徴とする請求項9~12のいずれかに記載の光学素子。
    Each of the first polarizer and the second polarizer is an absorptive polarizer, or a composite polarizer in which an absorptive polarizer and a reflective polarizer are laminated,
    The optical element according to any one of claims 9 to 12, wherein the first polarizer has a single transmittance different from that of the second polarizer.
  15. 前記光学素子は、前記複屈折層を複数備え、
    前記第一偏光子、前記複数の複屈折層及び前記第二偏光子は、この順に積層され、
    前記複数の複屈折層の面内遅相軸は、互いに直交するか、又は、互いに平行であることを特徴とする請求項9~14のいずれかに記載の光学素子。
    The optical element includes a plurality of the birefringent layers,
    The first polarizer, the plurality of birefringent layers, and the second polarizer are laminated in this order,
    The optical element according to any one of claims 9 to 14, wherein in-plane slow axes of the plurality of birefringent layers are orthogonal to each other or parallel to each other.
  16. 前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧200nmを満たすことを特徴とする請求項9~15のいずれかに記載の光学素子。 16. The optical element according to claim 9, wherein the absolute value | Rth | of the thickness direction retardation of the birefringent layer satisfies | Rth | ≧ 200 nm.
  17. 前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧400nmを満たすことを特徴とする請求項16記載の光学素子。 17. The optical element according to claim 16, wherein the absolute value | Rth | of the thickness direction retardation of the birefringent layer satisfies | Rth | ≧ 400 nm.
  18. 前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧600nmを満たすことを特徴とする請求項17記載の光学素子。 18. The optical element according to claim 17, wherein the absolute value | Rth | of the thickness direction retardation of the birefringent layer satisfies | Rth | ≧ 600 nm.
  19. 前記光学素子は、更に、第二複屈折層及び第三偏光子を備え、
    前記第一偏光子、前記複屈折層、前記第二偏光子、前記第二複屈折層及び前記第三偏光子は、この順に積層され、
    前記第二偏光子の透過軸と、前記第三偏光子の透過軸とは、互いに平行であり、
    前記第二複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、
    前記第二偏光子の透過軸と、前記第二複屈折層の面内遅相軸とがなす角度が45°、又は、135°でなく、
    前記第二複屈折層の厚み方向位相差の絶対値|Rth|は、前記複屈折層の厚み方向位相差の絶対値とは値が異なる
    ことを特徴とする請求項9~18のいずれかに記載の光学素子。
    The optical element further includes a second birefringent layer and a third polarizer,
    The first polarizer, the birefringent layer, the second polarizer, the second birefringent layer, and the third polarizer are laminated in this order,
    The transmission axis of the second polarizer and the transmission axis of the third polarizer are parallel to each other,
    The biaxial parameter NZ of the second birefringent layer satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1,
    The angle formed by the transmission axis of the second polarizer and the in-plane slow axis of the second birefringent layer is not 45 ° or 135 °,
    The absolute value | Rth | of the thickness direction retardation of the second birefringent layer is different from the absolute value of the thickness direction retardation of the birefringent layer. The optical element described.
  20. 請求項1~19のいずれかに記載の光学素子と、バックライトとを含む液晶表示装置。 A liquid crystal display device comprising the optical element according to any one of claims 1 to 19 and a backlight.
  21. 前記液晶表示装置の表示モードは、垂直配向モードであることを特徴とする請求項20記載の液晶表示装置。 The liquid crystal display device according to claim 20, wherein the display mode of the liquid crystal display device is a vertical alignment mode.
  22. 前記光学素子は、前記バックライトの観察面側に配され、
    前記液晶表示装置は、前記光学素子の観察面側に配された液晶パネルと、前記液晶パネルの観察面側に配された第四偏光子とを更に含み、
    前記第一偏光子、前記第二偏光子及び前記第四偏光子は各々、吸収型偏光子、又は、吸収型偏光子と反射型偏光子とを積層した複合偏光子であり、
    前記第一偏光子及び前記第二偏光子の少なくとも一方は、単体透過率が前記第四偏光子よりも大きいことを特徴とする請求項20又は21記載の液晶表示装置。
    The optical element is disposed on the observation surface side of the backlight,
    The liquid crystal display device further includes a liquid crystal panel disposed on the observation surface side of the optical element, and a fourth polarizer disposed on the observation surface side of the liquid crystal panel,
    Each of the first polarizer, the second polarizer, and the fourth polarizer is an absorptive polarizer, or a composite polarizer in which an absorptive polarizer and a reflective polarizer are laminated,
    The liquid crystal display device according to claim 20 or 21, wherein at least one of the first polarizer and the second polarizer has a single transmittance larger than that of the fourth polarizer.
  23. 前記第一偏光子及び前記第二偏光子のうち、前記バックライト側に配された方は、単体透過率が前記第四偏光子よりも大きいことを特徴とする請求項22記載の液晶表示装置。 23. The liquid crystal display device according to claim 22, wherein one of the first polarizer and the second polarizer disposed on the backlight side has a single transmittance larger than that of the fourth polarizer. .
  24. 前記第一偏光子及び前記第二偏光子は、いずれも単体透過率が前記第四偏光子よりも大きいことを特徴とする請求項22記載の液晶表示装置。 23. The liquid crystal display device according to claim 22, wherein each of the first polarizer and the second polarizer has a single transmittance greater than that of the fourth polarizer.
  25. 液晶パネル、第一偏光子、複屈折層、第二偏光子及びバックライトを備える液晶表示装置であって、
    前記第一偏光子、前記複屈折層及び前記第二偏光子は、前記液晶パネル及び前記バックライトの間に、この順に配され、
    前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であり、
    前記複屈折層の2軸性パラメータNZは、10≦NZ、又は、NZ≦-9を満たし、
    前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧200nmを満たす
    ことを特徴とする液晶表示装置。
    A liquid crystal display device comprising a liquid crystal panel, a first polarizer, a birefringent layer, a second polarizer and a backlight,
    The first polarizer, the birefringent layer, and the second polarizer are arranged in this order between the liquid crystal panel and the backlight,
    The transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other,
    The biaxial parameter NZ of the birefringent layer satisfies 10 ≦ NZ or NZ ≦ −9,
    The absolute value | Rth | of the thickness direction retardation of the birefringent layer satisfies | Rth | ≧ 200 nm.
  26. 液晶パネル、第一偏光子、複屈折層、第二偏光子及びバックライトを備える液晶表示装置であって、
    前記第一偏光子、前記複屈折層及び前記第二偏光子は、前記液晶パネル及び前記バックライトの間に、この順に配され、
    前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であり、
    前記複屈折層の2軸性パラメータNZは、2≦NZ<10、又は、-9<NZ≦-1を満たし、
    前記第一偏光子の透過軸と、前記複屈折層の面内遅相軸とがなす角度が45°、又は、135°でない
    ことを特徴とする液晶表示装置。
    A liquid crystal display device comprising a liquid crystal panel, a first polarizer, a birefringent layer, a second polarizer and a backlight,
    The first polarizer, the birefringent layer, and the second polarizer are arranged in this order between the liquid crystal panel and the backlight,
    The transmission axis of the first polarizer and the transmission axis of the second polarizer are parallel to each other,
    The biaxial parameter NZ of the birefringent layer satisfies 2 ≦ NZ <10 or −9 <NZ ≦ −1,
    The liquid crystal display device, wherein an angle formed between a transmission axis of the first polarizer and an in-plane slow axis of the birefringent layer is not 45 ° or 135 °.
PCT/JP2011/079434 2010-12-28 2011-12-20 Optical element and liquid crystal display device WO2012090769A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010293849 2010-12-28
JP2010-293849 2010-12-28
JP2011096525 2011-04-22
JP2011-096525 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012090769A1 true WO2012090769A1 (en) 2012-07-05

Family

ID=46382880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079434 WO2012090769A1 (en) 2010-12-28 2011-12-20 Optical element and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012090769A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257529A (en) * 2012-05-18 2013-12-26 Sharp Corp Optical system
JP2014002019A (en) * 2012-06-18 2014-01-09 Asahi Kasei E-Materials Corp Polarization axis direction measuring instrument and polarization axis direction measuring method
WO2014027459A1 (en) * 2012-08-14 2014-02-20 日本電気株式会社 Optical element, optical device, and video display device
WO2014034481A1 (en) * 2012-08-27 2014-03-06 シャープ株式会社 Liquid crystal display device
EP3422057A1 (en) * 2017-06-15 2019-01-02 Young Lighting Technology Inc. Polarized type viewing angle control element, polarized type viewing angle control display module, and polarized type viewing angle control light source module
US10429679B2 (en) 2016-12-29 2019-10-01 Coretronic Corporation Display device
US10641936B2 (en) 2016-05-24 2020-05-05 Coretronic Corporation Composite film and display device
US20210373382A1 (en) * 2020-05-29 2021-12-02 Sharp Kabushiki Kaisha Liquid crystal display device and polarizing plate
US11402676B2 (en) 2017-01-25 2022-08-02 Coretronic Corporation Viewing angle switchable display apparatus
US20230077158A1 (en) * 2021-08-31 2023-03-09 Sharp Display Technology Corporation Optical element and liquid crystal display device including the same
US11822181B1 (en) 2022-05-17 2023-11-21 Sharp Display Technology Corporation Liquid crystal display device comprising a prism sheet and having a light diffusion property curve obtained by plotting a luminance in a white display state
US11927850B2 (en) 2022-05-16 2024-03-12 Sharp Display Technology Corporation Liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026781A (en) * 2006-07-25 2008-02-07 Sony Corp Liquid crystal display
JP2008090288A (en) * 2006-09-06 2008-04-17 Fujifilm Corp Liquid crystal display device
JP2009031746A (en) * 2007-06-29 2009-02-12 Nitto Denko Corp Liquid crystal display device, laminated polarizing plate and polarizing light source device
JP2009265124A (en) * 2008-04-22 2009-11-12 Nitto Denko Corp Light condensing sheet, back light unit, and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026781A (en) * 2006-07-25 2008-02-07 Sony Corp Liquid crystal display
JP2008090288A (en) * 2006-09-06 2008-04-17 Fujifilm Corp Liquid crystal display device
JP2009031746A (en) * 2007-06-29 2009-02-12 Nitto Denko Corp Liquid crystal display device, laminated polarizing plate and polarizing light source device
JP2009265124A (en) * 2008-04-22 2009-11-12 Nitto Denko Corp Light condensing sheet, back light unit, and liquid crystal display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257529A (en) * 2012-05-18 2013-12-26 Sharp Corp Optical system
JP2014002019A (en) * 2012-06-18 2014-01-09 Asahi Kasei E-Materials Corp Polarization axis direction measuring instrument and polarization axis direction measuring method
WO2014027459A1 (en) * 2012-08-14 2014-02-20 日本電気株式会社 Optical element, optical device, and video display device
JPWO2014027459A1 (en) * 2012-08-14 2016-07-25 日本電気株式会社 Optical element, optical device, and image display device
WO2014034481A1 (en) * 2012-08-27 2014-03-06 シャープ株式会社 Liquid crystal display device
CN104755999A (en) * 2012-08-27 2015-07-01 夏普株式会社 Liquid crystal display device
US10641936B2 (en) 2016-05-24 2020-05-05 Coretronic Corporation Composite film and display device
US10429679B2 (en) 2016-12-29 2019-10-01 Coretronic Corporation Display device
US11402676B2 (en) 2017-01-25 2022-08-02 Coretronic Corporation Viewing angle switchable display apparatus
EP3422057A1 (en) * 2017-06-15 2019-01-02 Young Lighting Technology Inc. Polarized type viewing angle control element, polarized type viewing angle control display module, and polarized type viewing angle control light source module
CN109143622A (en) * 2017-06-15 2019-01-04 扬升照明股份有限公司 Polarization type viewing angle control element, polarization type viewing angle control display module and polarization type viewing angle control light source module
US20210373382A1 (en) * 2020-05-29 2021-12-02 Sharp Kabushiki Kaisha Liquid crystal display device and polarizing plate
CN113741084A (en) * 2020-05-29 2021-12-03 夏普株式会社 Liquid crystal display device and polarizing plate
US11604379B2 (en) 2020-05-29 2023-03-14 Sharp Kabushiki Kaisha Liquid crystal display device and polarizing plate
US20230077158A1 (en) * 2021-08-31 2023-03-09 Sharp Display Technology Corporation Optical element and liquid crystal display device including the same
JP2023034954A (en) * 2021-08-31 2023-03-13 シャープディスプレイテクノロジー株式会社 Optical element and liquid crystal device equipped with the same
JP7364631B2 (en) 2021-08-31 2023-10-18 シャープディスプレイテクノロジー株式会社 liquid crystal display device
US11934069B2 (en) 2021-08-31 2024-03-19 Sharp Display Technology Corporation Optical element and liquid crystal display device including the same
US11927850B2 (en) 2022-05-16 2024-03-12 Sharp Display Technology Corporation Liquid crystal display device
US11822181B1 (en) 2022-05-17 2023-11-21 Sharp Display Technology Corporation Liquid crystal display device comprising a prism sheet and having a light diffusion property curve obtained by plotting a luminance in a white display state

Similar Documents

Publication Publication Date Title
US9348176B2 (en) Liquid crystal display device
WO2012090769A1 (en) Optical element and liquid crystal display device
JP5248546B2 (en) Liquid crystal display
JP4792545B2 (en) Liquid crystal display
JP4538096B2 (en) Liquid crystal display
JP5330529B2 (en) Liquid crystal display
US11604379B2 (en) Liquid crystal display device and polarizing plate
JP5259824B2 (en) Liquid crystal display
WO2012133137A1 (en) Liquid crystal display device
JPWO2008029555A1 (en) Polarization control system and display device
WO2013129375A1 (en) Liquid crystal display device
WO2013111867A1 (en) Liquid crystal display device
WO2010001920A1 (en) Liquid crystal display device
WO2012133155A1 (en) Liquid crystal display device
WO2012105428A1 (en) Liquid crystal display device
JP2023147936A (en) liquid crystal display device
JP2021189421A (en) Liquid crystal display and polarizing plate
WO2012133140A1 (en) Liquid crystal display device
WO2012133141A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP