WO2018186584A1 - 3차원 안면 진단 장치 - Google Patents

3차원 안면 진단 장치 Download PDF

Info

Publication number
WO2018186584A1
WO2018186584A1 PCT/KR2018/002044 KR2018002044W WO2018186584A1 WO 2018186584 A1 WO2018186584 A1 WO 2018186584A1 KR 2018002044 W KR2018002044 W KR 2018002044W WO 2018186584 A1 WO2018186584 A1 WO 2018186584A1
Authority
WO
WIPO (PCT)
Prior art keywords
face
camera
scanner unit
dimensional
facial
Prior art date
Application number
PCT/KR2018/002044
Other languages
English (en)
French (fr)
Inventor
도준형
김영민
장준수
Original Assignee
한국 한의학 연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국 한의학 연구원 filed Critical 한국 한의학 연구원
Priority to CN201880029620.4A priority Critical patent/CN110582227B/zh
Publication of WO2018186584A1 publication Critical patent/WO2018186584A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4854Diagnosis based on concepts of traditional oriental medicine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • G06V20/647Three-dimensional objects by matching two-dimensional images to three-dimensional objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • G06V40/171Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1032Determining colour for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/12Acquisition of 3D measurements of objects

Definitions

  • the present invention relates to an apparatus for diagnosing constitution and symptom by acquiring a face image and analyzing complexion information and the like from the acquired image.
  • the medical industry diagnoses the constitution by analyzing the shape and complexion of the patient, and provides customized medical behaviors to the patient according to the diagnosed constitution. Recently, with the development of science and technology, equipment for measuring and analyzing an image of a patient's face is being developed without the doctor directly analyzing the face of the patient.
  • a scanning device for scanning a three-dimensional face is disclosed in a three-dimensional face scanning device (Korean Patent Laid-Open No. 10-2014-0077751, published on June 24, 2014).
  • a scanning device for scanning a three-dimensional face is also disclosed in the three-dimensional face scanning device (Korean Patent Laid-Open No. 10-2015-0081714, published on 15 July 2015).
  • An object of the present invention is to provide a three-dimensional facial diagnostic apparatus that can accurately diagnose the disease characteristics for each constitution.
  • 3D facial diagnostic apparatus for achieving the above object is a scanner unit, three-dimensional model image generation unit, two-dimensional image extraction unit, facial feature point detection unit, facial feature information calculation unit, constitution and dialectic Includes an analysis section.
  • the scanner unit raises and lowers the camera in the vertical axis direction according to the shooting trajectory around the user's face by turning the camera, and pivots about the vertical axis to scan the periphery of the face.
  • the 3D model image generator generates a 3D model image using the 3D image information acquired by the scanner unit.
  • the 2D image extractor extracts front and side 2D images of the front and side surfaces of the face from the 3D model image generated by the 3D model generator.
  • the facial feature point detector detects the facial feature points from the front and side two-dimensional images extracted by the two-dimensional image extractor.
  • the facial feature information calculating unit calculates the facial feature information from the facial feature point detected by the facial feature point detector.
  • the constitution and dialectic analyzing unit analyzes the constitution and dialectic using the facial feature information calculated by the facial feature information calculating unit.
  • the present invention by accurately measuring the three-dimensional image information of the face to extract the front and side images of the face without distortion in two dimensions, and the extracted front and side two-dimensional image is used for the constitution and dialectic diagnosis, diseases by constitution Accurate diagnosis of characteristics
  • the present invention it is possible to use the existing diagnostic database for diagnosing constitution and dialectic based on the two-dimensional image of the face, it is possible to reduce the cost and increase the efficiency.
  • FIG. 1 is a block diagram of a three-dimensional facial diagnostic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram for describing an example of correcting a face posture from three-dimensional model image information.
  • FIG. 3 is a diagram for describing an example of detecting facial feature points from front and side two-dimensional images of a face.
  • FIG. 4 is a diagram for describing an example of detecting a facial feature point from a three-dimensional image of a face.
  • FIG. 5 is a block diagram of an example of a scanner unit.
  • FIG. 6 is a side configuration diagram of the scanner unit in FIG. 5.
  • FIG. 6 is a side configuration diagram of the scanner unit in FIG. 5.
  • FIG. 7 is a side view illustrating a process of photographing a color chart by a scanner unit in FIG. 6.
  • FIG. 8 is a diagram illustrating a mannequin with a color chart in FIG. 6.
  • FIG. 9 is a side view illustrating a process of photographing the mannequin shown in FIG. 8 by the scanner unit.
  • FIG. 10 is a perspective view of the scanner unit in FIG. 6.
  • FIG. 10 is a perspective view of the scanner unit in FIG. 6.
  • FIG. 11 is a perspective view illustrating the camera and the camera moving mechanism in FIG. 10.
  • FIG. 12 is a perspective view of the Z-axis moving mechanism taken from FIG. 11.
  • FIG. 12 is a perspective view of the Z-axis moving mechanism taken from FIG. 11.
  • FIG. 13 is a bottom view of the camera moving mechanism shown in FIG. 11.
  • FIG. 14 is a side view of FIG. 11.
  • FIG. 15 is a side view for explaining an operation example of a tilting mechanism in FIG. 14.
  • 1 is a block diagram of a three-dimensional facial diagnostic apparatus according to an embodiment of the present invention.
  • 2 is a diagram for describing an example of correcting a face posture from three-dimensional model image information.
  • 3 is a diagram for describing an example of detecting facial feature points from front and side two-dimensional images of a face.
  • 4 is a diagram for describing an example of detecting a facial feature point from a three-dimensional image of a face.
  • the 3D face diagnosis apparatus includes a scanner unit 100, a 3D model image generator 200, a 2D image extractor 300, a facial feature point detector 400, And a facial feature information calculator 500 and a constitution and dialectic analyzer 600.
  • the scanner unit 100 scans the periphery of the user's face to obtain 3D image information including face depth information over the front and side surfaces of the face.
  • the scanner unit 100 may acquire the three-dimensional image information of the face to the widest extent by scanning the front neck line, the side ear line, and the chin / neck line. .
  • the 3D model image generating unit 200 generates a 3D model image by using the 3D image information acquired by the scanner unit 100.
  • the 3D model image generator 200 may correct a face posture at an angle facing the front from the generated 3D model image information.
  • the 3D model image generating unit 200 calculates a degree of bowing, tilting and turning of the face from the generated 3D model image information, and corrects the face posture at an angle facing the front. Can be.
  • the 2D image extractor 300 extracts the front and side 2D images of the front and side surfaces of the face from the 3D model image generated by the 3D model generator 200.
  • the 2D image extractor 300 may extract the front and side 2D images by performing 2D projection at an angle facing the front of the face with respect to the 3D model image.
  • the facial feature point detector 400 detects facial feature points from the front and side two-dimensional images extracted by the two-dimensional image extractor 300. As illustrated in FIG. 3, the facial feature point detector 400 may detect facial feature points in front and side two-dimensional images. The facial feature point detector 400 may additionally detect the facial feature point from the 3D model image information. As illustrated in FIG. 4, the facial feature point detector 400 may detect facial feature points from the 3D model image information.
  • a user may manually edit feature points in a 3D space.
  • the 3D model image may be displayed through a monitor of the operating system.
  • the user may input an editing command to the operating system while viewing the 3D model image displayed on the monitor to modify the feature point in the 3D space.
  • the operating system may be computer based.
  • the 3D model image generator 200, the 2D image extractor 300, the face feature point detector 400, and the face feature information calculator 500 may be implemented as computer programs of an operating system.
  • the facial feature information calculator 500 calculates facial feature information from the facial feature points detected by the facial feature point detector 400. For example, as illustrated in FIG. 3, the facial feature information calculator 500 may calculate feature information such as a distance, an angle, a ratio, and an area between major feature points in the front and side two-dimensional images. In addition, the facial feature information calculator 500 may calculate feature information such as a circumference, a distance, a height, an area, and an angle between major feature points in the 3D model image.
  • the constitution and dialectic analyzer 600 analyzes the constitution and dialectic using the facial feature information calculated from the facial feature information calculator 500. At this time, the facial feature information calculated from the front and side two-dimensional images of the face Utilizes an existing diagnostic database for diagnosing constitution and dialectic based on two-dimensional images of the face, thereby reducing costs and increasing efficiency.
  • the three-dimensional image information of the face is accurately measured to extract the front and side images of the face without distortion in two dimensions, and the extracted front and side two-dimensional images are used for diagnosing and diagnosing diseases.
  • the characteristics can be diagnosed accurately.
  • the scanner unit 100 may include a camera 110, a camera moving mechanism 120, a drive controller 130, and an illuminator 140.
  • the camera 110 includes an image sensor 111 and a depth sensor 112.
  • the image sensor 111 acquires two-dimensional face image information.
  • the image sensor 111 converts the received optical image into an electrical signal, and may be configured as a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), or the like.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the depth sensor 112 obtains face depth information spatially synchronized with the corresponding 2D face image information.
  • the depth sensor 112 may be formed by a time of flight (TOF) method for measuring a distance by calculating infrared rays emitted from an object to reflect an object and returning from the object.
  • the depth sensor 112 may be an array depth sensor.
  • the camera moving mechanism 120 raises and lowers the camera 110 in the vertical axis direction according to the shooting trajectory around the face and pivots about the vertical axis.
  • the drive controller 130 controls to drive the camera moving mechanism 120.
  • Illuminator 140 provides illumination light around the face.
  • the illuminator 140 may be controlled by the drive controller 130.
  • the drive controller 130 may receive various commands of the user through the operation unit 150 to control power on / off, lighting on / off and brightness adjustment.
  • the operation unit 150 may include a power button and an illuminator button.
  • the operation unit 150 may be disposed at the front lower end of the dark room 160.
  • the scanner unit 100 may be supported on the support body 101.
  • the chair 102 may be provided in front of the support body 101.
  • the height of the support body 101 may be set in consideration of the height of the face of the user. That is, the height of the support body 101 may be set to position the face in the photographing area of the scanner unit 100 while the user is sitting on the chair 102.
  • the support body 101 may horizontally move the scanner unit 100 in a direction that is close to or spaced from the face, so that the distance between the scanner unit 100 and the face may be adjusted.
  • the guide rail 101a may be mounted on the upper surface of the support body 101, and the slider 100a may be mounted on the lower surface of the scanner unit 100.
  • the guide rail 101a may extend in a direction parallel to the horizontal movement direction of the scanner unit 100 to guide the horizontal movement of the slider 100a, thereby guiding the horizontal movement of the scanner unit 100.
  • the 3D face diagnosis apparatus may further include a color chart 700 and a color corrector 800.
  • the color chart 700 is arranged to be photographed by the scanner unit 100.
  • the color chart 700 is a systematic arrangement of colors.
  • the color chart 700 may be mounted in the dark room 160 of the scanner unit 100.
  • the color chart 700 may be mounted in the darkroom 160 to move to or away from the user's location.
  • the color chart 700 is folded on the outer upper end of the dark room 160 by the color chart moving mechanism 710 and then mounted to the dark room 160 in a form in which the color chart 700 is unfolded to face the face insertion hole 161 of the dark room 160. Can be.
  • the color chart 700 when the color chart 700 is moved to the position of the user before measuring the face of the user and photographed by the scanner unit 100, the face of the user may be photographed by the scanner unit 100 from the position of the user. To be.
  • the color corrector 800 generates color correction information using the color chart image obtained by the scanner 100 to correct the color of the 3D model image.
  • the color corrector 800 may calculate a color correction equation for converting the color of the photographed color chart into the color of the original color chart, and perform color correction of the input face image texture using the color correction equation. .
  • the photographed face image is color corrected, thereby making it possible to obtain accurate complexion information.
  • the mannequin 720 may be arranged to be photographed by the scanner unit 100 with the color chart 700 attached thereto.
  • the mannequin 720 may be mounted in the darkroom 160 to move to or away from the user's location.
  • the mannequin 720 is disposed such that the color chart 700 faces the face insertion hole 161 of the dark room 160 while being moved to the position of the user.
  • the mannequin 720 is moved to the position of the user before measuring the face of the user, and when photographed by the scanner unit 100, the user's face may be photographed by the scanner unit 100 from the position of the user.
  • a plurality of color charts 700 are attached to the forehead and both cheeks of the mannequin 720 by a plurality of color charts, and the color corrector 800 generates color correction information for each area of the mannequin 720 to generate colors of the 3D model image. Can be corrected.
  • Three color charts 700 may be attached to the forehead and both cheek portions of the mannequin 720.
  • the color corrector 800 calculates a color correction equation for converting the three color chart images photographed into the colors of the original color charts, respectively.
  • the color corrector 800 corrects the complexion of the cheek area in the input face image by using a color correction equation calculated in the forehead area of the mannequin 720.
  • the color correction equation calculated at the cheek area of the mannequin 720 may be used.
  • the scanner unit 100 may include a dark room 160.
  • the dark room 160 has a closed shape except for the front face insertion hole 161 so as to block external light in the vicinity of the face in addition to the illumination light provided from the illuminator 140.
  • the dark room 160 is illustrated as a hexahedron shape, but is not limited thereto.
  • the scanner unit 100 may further include a posture guide mechanism 170.
  • the posture guide mechanism 170 is mounted to the face insertion port 161 side of the dark room 160 to guide the posture of the user.
  • the posture guide mechanism 170 may include a rotation shaft 171, a pair of guide rods 172, a support rod 173, and a shock absorber 174.
  • the rotating shaft 171 is hinged rotatably about the horizontal axis to the front upper end of the dark room 160. Bearings are formed at the front upper end of the dark room 160, the rotating shaft 171 may be rotatably fitted to the bearings.
  • the guide rods 172 are disposed on both sides of the face insertion hole 161 so that each upper end is fixed to the rotating shaft 171.
  • the guide rods 172 may guide the user's face to be positioned therebetween.
  • the guide rods 172 may be formed in a rectangular cross-sectional shape, respectively.
  • Both ends of the support bar 173 are connected to lower ends of the guide bars 172 to support the user's chest.
  • the user is supported by the support rod 173 in a state where the face is positioned on the face insertion hole 161 of the dark room 160, thereby enabling a stable posture.
  • the support rod 173 may have a structure in which an outer circumferential surface is surrounded by a cushion member.
  • the support rod 173 may be rotatably coupled to the lower ends of the guide rods 172. The support rod 173 can comfortably support the user's chest.
  • the shock absorber 174 is mounted between the rotary shaft 171 and the dark chamber 160 to mitigate the impact.
  • one of the rod and the cylinder may be rotatably connected to the rotation shaft 171, and the other may be rotatably connected to the dark chamber 160.
  • the shock absorber 174 may allow the guide rods 172 to rotate slowly by varying the flow resistance of the hydraulic fluid while the rod is stretched relative to the cylinder upon rotation of the guide rods 172.
  • the shock absorbers 174 may be provided in pairs and mounted on both ends of the rotary shaft 171.
  • the scanner unit 100 may further include handles 180 mounted on both front sides of the dark room 160, respectively.
  • the user may position the face in the face insertion hole 161 of the dark room 160 in a stable posture by holding the handles 180 by hand.
  • FIG. 11 is a perspective view illustrating the camera and the camera moving mechanism in FIG. 10.
  • FIG. FIG. 12 is a perspective view of the Z-axis moving mechanism taken from FIG. 11.
  • FIG. 13 is a bottom view of the camera moving mechanism shown in FIG. 11.
  • 14 is a side view of FIG. 11.
  • FIG. 15 is a side view for explaining an operation example of a tilting mechanism in FIG. 14.
  • the camera moving mechanism 120 includes a Z-axis moving mechanism 121 for elevating the camera 110 in the vertical axis direction, and a Z-axis moving mechanism 121 as an aspherical track around the vertical axis. It may include a ⁇ axis moving mechanism 122 for turning.
  • the camera 110 is lifted by the Z-axis moving mechanism 121 and is photographed by turning the aspherical orbit around the vertical axis by the ⁇ -axis moving mechanism 122, so when shooting across the front and side of the face, You can shoot as wide a range as possible from the front neckline, side ear lines, and chin / neckline lines.
  • the Z-axis moving mechanism 121 may include a post 1211, a Z-axis linear guide 1212, and a Z-axis linear actuator 1213.
  • Post 1211 supports Z-axis linear guide 1212 and Z-axis linear actuator 1213.
  • the post 1211 is pivoted by the ⁇ axis moving mechanism 122.
  • the Z axis linear guide 1212 guides the Z axis movement of the lifting block 1214 with respect to the post 1211.
  • the lifting block 1214 is equipped with a camera 110.
  • the Z-axis linear guide 1212 is fitted into the Z-axis guide holes 1212a and the Z-axis guide holes 1212a respectively formed to penetrate the lifting block 1214 perpendicularly, and moves in the Z-axis direction of the lifting block 1214. It may be provided with a pair of Z-axis guide rods (1212b) to guide the. As another example, although not shown, the Z-axis linear guide 1212 includes sliders fixed to the elevating block 1214 and linear rails fixed to the post 1211 to guide the sliders in the Z-axis direction, respectively. It may be provided.
  • the Z-axis linear actuator 1213 may include a rotary motor 1213a and a ball screw 1213b for Z-axis movement.
  • the rotary motor 1213a for Z-axis movement is comprised so that forward and reverse rotation are possible.
  • the rotary motor 1213a for Z-axis movement is controlled by the drive controller 130.
  • the body In the Z-axis moving rotary motor 1213a, the body is fixed to the post 1211 in a state in which the driving shaft is vertically disposed.
  • the ball screw 1213b is screwed to the lifting block 1214 with both ends rotatably supported by the post 1211.
  • the ball screw 1213b raises and lowers the lifting block 1214 as it rotates forward and backward by the Z-axis moving rotary motor 1213a.
  • the Z-axis linear actuator 1213 is illustrated as being configured to transmit the driving force of the Z-axis moving rotary motor 1213a to the ball screw 1213b by the pulleys and the belt, the driving force of the Z-axis moving rotary motor 1213a is illustrated. It may also be delivered directly to the ball screw 1213b.
  • the lifting reciprocating range of the lifting block 1214 may be limited by position sensors.
  • the position sensor may be configured of various types of sensors such as an optical or hall element type.
  • the ⁇ axis moving mechanism 122 may include a ⁇ axis guide 1221 and a rotation actuator 1225.
  • the ⁇ -axis guide 1221 includes a horizontal plate 1222, first rollers 1223, and a second roller 1224.
  • the horizontal plate 1222 has first and second guide holes 1222a and 1222b.
  • the first guide hole 1222a is formed through the horizontal plate 1222 through an aspherical raceway.
  • the first guide hole 1222a may have a predetermined width and have a radius of curvature that increases toward both edges such as an elliptical surface or a hyperbolic surface.
  • the second guide hole 1222b is disposed closer to the rotational center axis than the first guide hole 1222a.
  • the second guide hole 1222b has the same shape as the first guide hole 1222a and is disposed at a predetermined distance from the first guide hole 1222a.
  • the first rollers 1223 are rotatably supported on the post 1211 of the Z-axis moving mechanism 121 about the vertical axis, and are fitted into the first guide holes 1222a, respectively. Each of the first rollers 1223 guides the post 1211 to pivot along the first guide hole 1222a by contacting each of the rolling surfaces with the inner and outer circumferential surfaces of the first guide hole 1222a.
  • the second roller 1224 is axially supported by the post 1211 and fitted into the second guide holes 1222b, respectively. The second roller 1224 guides the rolling surface to contact the inner circumferential surface of the first guide hole 1222a so that the post 1211 can pivot along the second guide hole 1222b.
  • the rotary actuator 1225 may include a rotary motor 1226 and a link member 1227 for ⁇ -axis movement.
  • the rotating shaft 1226 for ⁇ -axis movement is configured to be capable of forward and reverse rotation.
  • the rotary motor 1226 for ⁇ -axis movement is controlled by the drive controller 130.
  • the body In the ⁇ -axis moving rotary motor 1226, the body is fixed to the horizontal plate 1222 with the drive shaft disposed vertically.
  • the link member 1227 rotates in the forward and reverse rotation directions by the ⁇ -axis moving rotary motor 1226.
  • One end of the link member 1227 is fixed to the drive shaft of the rotary motor 1226 for ⁇ -axis movement.
  • the link member 1227 has a link guide hole 1227a.
  • the link guide hole 1227a has a predetermined width and extends long in the radial direction from the drive shaft of the rotary motor 1226 for ⁇ -axis movement.
  • the second roller 1224 is fitted into the link guide hole 1227a. When the link member 1227 rotates, the second roller 1224 moves along the link guide hole 1227a, so that the post 1211 of the Z-axis moving mechanism 121 can smoothly turn to the aspheric path. do.
  • the rotational position of the link member 1227 may be sensed by the position sensors 1228.
  • the position sensors 1228 may be disposed on the horizontal plate 1222 to sense the rotational limit position and the center position of the link member 1227.
  • the position sensor 1228 may be configured with various types of sensors such as an optical or hall element type.
  • the camera moving mechanism 120 may further include a tilting mechanism 123.
  • the tilting mechanism 123 tilts the camera 110 about the horizontal axis in connection with the lowering of the camera 110 while the camera 110 descends from the set point to the bottom dead center by the Z-axis moving mechanism 121. Accordingly, the photographing portion of the camera 110 is inclined upward. Accordingly, the camera 110 may photograph the neck of the user in detail as the camera 110 is inclined upward while descending from the set point to the bottom dead center.
  • the tilting mechanism 123 includes a camera mounting block 1231, a tilting guide member 1232, and an elastic member 1233.
  • the camera mounting block 1231 is hinged to the lifting block 1214 which is lifted and lowered by the Z-axis moving mechanism 121 about the horizontal axis to mount the camera 110.
  • the tilting guide member 1232 interacts with the camera mounting block 1231 while the camera 110 descends from the set point to the bottom dead center to tilt the camera mounting block 1231 about the horizontal axis.
  • the camera mounting block 1231 has a surface 1231a inclined upward as the bottom thereof goes backward.
  • the camera mounting block 1231 descends together with the lifting block 1214, the camera mounting block 1231 is brought into contact with the tilting inducing member 1232.
  • the camera mounting block 1231 is pushed by the tilting inducing member 1232 along the lower inclined surface 1231a to tilt the front portion to be lifted upward. Can be. Therefore, the camera 110 may be inclined upward while descending from the set point to the bottom dead center.
  • the elastic member 1233 returns the camera mounting block 1231 by applying an elastic force to the camera mounting block 1231.
  • the elastic member 1233 is elastically deformed.
  • the elastic member 1233 When the camera mounting block 1231 is lifted up and detached from the tilting inducing member 1232, the elastic member 1233 generates a restoring force on the camera mounting block 1231 to return the camera mounting block 1231 to the original position.
  • the elastic member 1233 may be formed of a torsion spring or the like, and may be installed on the hinge coupling shaft of the camera mounting block 1231 and the lifting block 1214.
  • the present invention can be used industrially in the field of constitution and dialectic diagnosis using image analysis and its application field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Processing (AREA)

Abstract

본 발명은 3차원 안면 진단 장치에 관한 것으로, 얼굴의 3차원 영상 정보를 정확히 측정하여 왜곡 없는 얼굴의 정면 및 측면 영상을 2차원으로 추출하고, 추출된 정면 및 측면 2차원 영상을 체질 및 변증 진단에 사용되므로, 체질별 질병 특성을 정확히 진단할 수 있다..

Description

3차원 안면 진단 장치
본 발명은 얼굴 영상을 획득하고 획득된 영상으로부터 안색 정보 등을 분석하여 체질 및 변증을 진단하는 장치에 관한 것이다.
의료업계에서는 환자의 얼굴 형상 및 안색을 분석하여 체질을 진단하고, 진단된 체질에 따라 환자에게 맞춤 의료행위를 제공하고 있다. 최근, 과학기술이 발전함에 따라 의사가 직접 환자의 얼굴을 분석하지 않고, 환자 얼굴의 영상을 측정하여 분석하는 장비들이 개발되고 있다.
예컨대, 3차원 얼굴 스캐닝 장치(한국공개특허 제10-2014-0077751호, 2014.06.24. 공개)에서는 3차원 얼굴을 스캐닝하기 위한 스캐닝 장치가 개시되어 있다. 또한, 3차원 얼굴 스캐닝 장치(한국공개특허 제10-2015-0081714호, 2015.07.15. 공개)에서도 3차원 얼굴을 스캐닝하기 위한 스캐닝 장치가 개시되어 있다.
이와 같은 종래 기술에서는 얼굴 측정의 범위가 좁고, 정확한 안색 정보를 얻기 위한 방안들이 구체화되어 있지 않아, 3차원 안면 정보를 정확히 획득하지 못하는 문제점이 있었다.
본 발명의 과제는 체질별 질병 특성을 정확히 진단할 수 있게 하는 3차원 안면 진단 장치를 제공함에 있다.
상기의 과제를 달성하기 위한 본 발명에 따른 3차원 안면 진단 장치는 스캐너부와, 3차원 모델 영상 생성부와, 2차원 영상 추출부와, 얼굴 특징점 검출부, 얼굴 특징 정보 산출부, 및 체질 및 변증 분석부를 포함한다. 스캐너부는 카메라를 카메라 이동기구에 의해 사용자 얼굴 주변의 촬영 궤도에 따라 수직축 방향으로 승강시키고 수직축을 중심으로 선회시켜 얼굴 주변을 스캐닝함에 따라 얼굴의 정면과 측면에 걸쳐 얼굴 깊이 정보를 포함한 3차원 영상 정보를 획득한다. 3차원 모델 영상 생성부는 스캐너부에 의해 획득된 3차원 영상 정보를 사용하여 3차원 모델 영상을 생성한다. 2차원 영상 추출부는 3차원 모델 생성부에 의해 생성된 3차원 모델 영상에서 얼굴의 정면 및 측면에 대한 정면 및 측면 2차원 영상을 추출한다. 얼굴 특징점 검출부는 2차원 영상 추출부에 의해 추출된 정면 및 측면 2차원 영상으로부터 얼굴 특징점을 검출한다. 얼굴 특징 정보 산출부는 얼굴 특징점 검출부에 의해 검출된 얼굴 특징점으로부터 얼굴 특징 정보를 산출한다. 체질 및 변증 분석부는 얼굴 특징 정보 산출부에 의해 산출된 얼굴 특징 정보를 사용하여 체질 및 변증을 분석한다.
본 발명에 따르면, 얼굴의 3차원 영상 정보를 정확히 측정하여 왜곡 없는 얼굴의 정면 및 측면 영상을 2차원으로 추출하고, 추출된 정면 및 측면 2차원 영상을 체질 및 변증 진단에 사용되므로, 체질별 질병 특성을 정확히 진단할 수 있다. 또한, 본 발명에 따르면, 얼굴의 2차원 영상을 기반으로 체질 및 변증을 진단하는 기존의 진단 데이터베이스를 활용할 수 있게 하므로, 비용을 절감하고 효율성을 높일 수 있다.
도 1은 본 발명의 일 실시예에 따른 3차원 안면 진단 장치에 대한 블록도이다.
도 2는 3차원 모델 영상 정보로부터 얼굴 자세를 보정하는 예를 설명하기 위한 도면이다.
도 3은 얼굴의 정면 및 측면 2차원 영상으로부터 얼굴 특징점을 검출하는 예를 설명하기 위한 도면이다.
도 4는 얼굴의 3차원 영상으로부터 얼굴 특징점을 검출하는 예를 설명하기 위한 도면이다.
도 5는 스캐너부의 일 예에 대한 블록도이다.
도 6은 도 5에 있어서, 스캐너부에 대한 측면 구성도이다
도 7은 도 6에 있어서, 컬러 차트를 스캐너부에 의해 촬영하는 과정을 나타낸 측면도이다.
도 8은 도 6에 있어서, 컬러 차트를 부착한 마네킹을 도시한 도면이다.
도 9는 도 8에 도시된 마네킹을 스캐너부에 의해 촬영하는 과정을 나타낸 측면도이다.
도 10은 도 6에 있어서, 스캐너부에 대한 사시도이다.
도 11은 도 10에 있어서, 카메라 및 카메라 이동기구를 발췌하여 도시한 사시도이다.
도 12는 도 11에 있어서, Z축 이동기구를 발췌하여 도시한 사시도이다.
도 13은 도 11에 도시된 카메라 이동기구에 대한 저면도이다.
도 14는 도 11에 대한 측면도이다.
도 15는 도 14에 있어서, 틸팅 기구의 동작 예를 설명하기 위한 측면도이다.
본 발명에 대해 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
도 1은 본 발명의 일 실시예에 따른 3차원 안면 진단 장치에 대한 블록도이다. 도 2는 3차원 모델 영상 정보로부터 얼굴 자세를 보정하는 예를 설명하기 위한 도면이다. 도 3은 얼굴의 정면 및 측면 2차원 영상으로부터 얼굴 특징점을 검출하는 예를 설명하기 위한 도면이다. 도 4는 얼굴의 3차원 영상으로부터 얼굴 특징점을 검출하는 예를 설명하기 위한 도면이다.
도 1 내지 도 4를 참조하면, 3차원 안면 진단 장치는 스캐너부(100)와, 3차원 모델 영상 생성부(200)와, 2차원 영상 추출부(300)와, 얼굴 특징점 검출부(400), 얼굴 특징 정보 산출부(500), 및 체질 및 변증 분석부(600)를 포함한다.
스캐너부(100)는 사용자의 얼굴 주변을 스캐닝하여 얼굴의 정면과 측면에 걸쳐 얼굴 깊이 정보를 포함한 3차원 영상 정보를 획득한다. 스캐너부(100)는 얼굴의 정면과 측면에 걸쳐 스캐닝할 때, 정면의 목선과 측면의 귀 라인, 턱/목선 라인까지 스캐닝함으로써, 얼굴에 대한 3차원 영상 정보를 최대한 넓은 범위로 획득할 수 있다.
3차원 모델 영상 생성부(200)는 스캐너부(100)에 의해 획득된 3차원 영상 정보를 사용하여 3차원 모델 영상을 생성한다. 여기서, 3차원 모델 영상 생성부(200)는 생성된 3차원 모델 영상 정보로부터 정면을 바라보는 각도로 얼굴 자세를 보정할 수 있다. 도 2에 도시된 바와 같이, 3차원 모델 영상 생성부(200)는 생성된 3차원 모델 영상 정보로부터 얼굴의 숙임, 기울기, 돌아감 정도를 계산하여, 정면을 바라보는 각도로 얼굴 자세를 보정할 수 있다.
2차원 영상 추출부(300)는 3차원 모델 생성부(200)에 의해 생성된 3차원 모델 영상에서 얼굴의 정면 및 측면에 대한 정면 및 측면 2차원 영상을 추출한다. 2차원 영상 추출부(300)는 3차원 모델 영상에 대해 얼굴 정면을 바라보는 각도로 2차원 프로젝션(projection)하여, 정면 및 측면 2차원 영상을 추출할 수 있다.
얼굴 특징점 검출부(400)는 2차원 영상 추출부(300)에 의해 추출된 정면 및 측면 2차원 영상으로부터 얼굴 특징점을 검출한다. 도 3에 도시된 바와 같이, 얼굴 특징점 검출부(400)는 정면 및 측면 2차원 영상에서 얼굴 주요 특징점들을 검출할 수 있다. 얼굴 특징점 검출부(400)는 3차원 모델 영상 정보에서 얼굴 특징점을 추가로 검출할 수 있다. 도 4에 도시된 바와 같이, 얼굴 특징점 검출부(400)는 3차원 모델 영상 정보에서 얼굴 주요 특징점들을 검출할 수 있다.
얼굴 특징점 검출부(400)에서 자동 검출되지 않은 특징점에 대해서는 사용자가 3차원 공간에서의 특징점을 수동으로 편집할 수 있다. 예컨대, 3차원 모델 영상은 운영 시스템의 모니터를 통해 표시될 수 있다. 사용자는 모니터에 표시된 3차원 모델 영상을 보면서 편집 명령을 운영 시스템으로 입력하여, 3차원 공간에서의 특징점을 수정할 수 있다. 운영 시스템은 컴퓨터 기반으로 구성될 수 있다. 3차원 모델 영상 생성부(200)와, 2차원 영상 추출부(300)와, 얼굴 특징점 검출부(400), 및 얼굴 특징 정보 산출부(500)는 운영 시스템의 컴퓨터 프로그램으로 구현될 수 있다.
얼굴 특징 정보 산출부(500)는 얼굴 특징점 검출부(400)에 의해 검출된 얼굴 특징점으로부터 얼굴 특징 정보를 산출한다. 예컨대, 도 3에 도시된 바와 같이, 얼굴 특징 정보 산출부(500)는 정면 및 측면 2차원 영상에서 주요 특징점들 간의 거리, 각도, 비율, 면적 등의 특징 정보를 산출할 수 있다. 또한, 얼굴 특징 정보 산출부(500)는 3차원 모델 영상에서 주요 특징점들 간의 둘레, 거리, 높이, 면적, 각도 등의 특징 정보를 산출할 수 있다.
체질 및 변증 분석부(600)는 얼굴 특징 정보 산출부(500)로부터 산출된 얼굴 특징 정보를 사용하여 체질 및 변증을 분석한다.. 이때, 얼굴의 정면 및 측면 2차원 영상에서 산출된 얼굴 특징 정보는 얼굴의 2차원 영상을 기반으로 체질 및 변증을 진단하는 기존의 진단 데이터베이스를 활용할 수 있게 하므로, 비용을 절감하고 효율성을 높일 수 있다.
전술한 바와 같이, 얼굴의 3차원 영상 정보를 정확히 측정하여 왜곡 없는 얼굴의 정면 및 측면 영상을 2차원으로 추출하고, 추출된 정면 및 측면 2차원 영상을 체질 및 변증 진단에 사용되므로, 체질별 질병 특성을 정확히 진단할 수 있게 된다.
한편, 일 예로, 도 5에 도시된 바와 같이, 스캐너부(100)는 카메라(110)와, 카메라 이동기구(120)와, 구동 컨트롤러(130), 및 조명기(140)를 포함할 수 있다. 카메라(110)는 이미지 센서(111) 및 깊이 센서(depth sensor, 112)를 구비한다. 이미지 센서(111)는 2차원 얼굴 영상 정보를 획득한다. 이미지 센서(111)는 수신한 광학적 이미지를 전기적 신호로 변환하는 것으로, CCD(Charge Coupled Device), CMOS(complementary metal oxide semiconductor) 등으로 구성될 수 있다.
깊이 센서(112)는 해당 2차원 얼굴 영상 정보와 공간적으로 동기화된 얼굴 깊이 정보를 획득한다. 깊이 센서(112)는 적외선을 물체로 출사하여 물체로부터 반사되어 돌아오는 시간차를 계산하여 거리를 측정하는 TOF(Time of Flight) 방식 등으로 이루어질 수 있다. 깊이 센서(112)는 어레이 깊이 센서로 이루어질 수 있다.
카메라 이동기구(120)는 카메라(110)를 얼굴 주변의 촬영 궤도에 따라 수직축 방향으로 승강시키고 수직축을 중심으로 선회시킨다. 구동 컨트롤러(130)는 카메라 이동기구(120)를 구동 제어한다. 조명기(140)는 얼굴 주변으로 조명광을 제공한다. 조명기(140)는 구동 컨트롤러(130)에 의해 제어될 수 있다. 구동 컨트롤러(130)는 조작부(150)를 통해 사용자의 각종 명령을 입력 받아, 전원 온/오프, 조명기의 온/오프 및 밝기 조절을 제어할 수 있다. 이 경우, 조작부(150)는 전원 버튼과, 조명기 버튼 등을 포함할 수 있다. 조작부(150)는 암실(160)의 정면 하단에 배치될 수 있다.
도 6에 도시된 바와 같이, 스캐너부(100)는 지지 바디(101) 상에 지지될 수 있다. 지지 바디(101)의 전방에는 의자(102)가 마련될 수 있다. 지지 바디(101)의 높이는 사용자의 얼굴 높이를 고려해서 설정될 수 있다. 즉, 지지 바디(101)의 높이는 사용자가 의자(102)에 앉은 상태에서 얼굴을 스캐너부(100)의 촬영 영역에 위치시키도록 설정될 수 있다.
지지 바디(101)는 스캐너부(100)를 얼굴에 대해 근접 또는 이격되는 방향으로 수평 이동 가능하게 지지하여, 스캐너부(100)와 얼굴의 간격이 조절되게 할 수 있다. 이 경우, 가이드 레일(101a)이 지지 바디(101)의 상면에 장착되고, 슬라이더(100a)가 스캐너부(100)의 하면에 장착될 수 있다. 가이드 레일(101a)은 스캐너부(100)의 수평 이동 방향과 나란한 방향으로 연장되어 슬라이더(100a)의 수평 이동을 안내함으로써, 스캐너부(100)의 수평 이동을 안내할 수 있다.
도 7에 도시된 바와 같이, 3차원 안면 진단 장치는 컬러 차트(700), 및 색상 보정부(800)를 더 포함할 수 있다. 컬러 차트(700)는 스캐너부(100)에 의해 촬영되도록 배치된다. 컬러 차트(700)는 색이 계통적으로 배열된 것이다.
컬러 차트(700)는 스캐너부(100)의 암실(160)에 장착될 수 있다. 컬러 차트(700)는 사용자의 위치로 이동되거나 사용자의 위치로부터 벗어나도록 암실(160)에 장착될 수 있다. 컬러 차트(700)는 컬러 차트 이동기구(710)에 의해 암실(160)의 외부 상단에 접혀 있다가 암실(160)의 얼굴 삽입구(161)와 마주하도록 펼쳐지는 형태로 암실(160)에 장착될 수 있다.
따라서, 컬러 차트(700)는 사용자의 얼굴 측정 전에 사용자의 위치로 이동된 후, 스캐너부(100)에 의해 촬영되면, 사용자의 위치로부터 벗어나 사용자의 얼굴이 스캐너부(100)에 의해 촬영될 수 있게 한다.
색상 보정부(800)는 스캐너부(100)에 의해 획득된 컬러 차트 영상을 사용하여 색상 보정 정보를 생성하여 3차원 모델 영상의 색상을 보정한다. 이때, 색상 보정부(800)는 촬영된 컬러 차트의 색상을 원래 컬러 차트의 색상으로 변환하는 컬러 보정식을 계산하고, 입력된 얼굴 영상 텍스쳐의 색상 보정을 컬러 보정식을 이용하여 수행할 수 있다. 이와 같이, 촬영된 얼굴 영상은 색상 보정되므로, 정확한 안색 정보를 획득할 수 있게 한다.
다른 예로, 도 8 및 도 9에 도시된 바와 같이, 마네킹(720)이 컬러 차트(700)를 부착한 상태로 스캐너부(100)에 의해 촬영되도록 배치될 수 있다. 마네킹(720)은 사용자의 위치로 이동되거나 사용자의 위치로부터 벗어나도록 암실(160)에 장착될 수 있다. 마네킹(720)은 사용자의 위치로 이동된 상태에서 컬러 차트(700)가 암실(160)의 얼굴 삽입구(161)와 마주하도록 배치된다. 마네킹(720)은 사용자의 얼굴 측정 전에 사용자의 위치로 이동된 후, 스캐너부(100)에 의해 촬영되면, 사용자의 위치로부터 벗어나 사용자의 얼굴이 스캐너부(100)에 의해 촬영될 수 있게 한다.
컬러 차트(700)는 복수 개로 이루어져 마네킹(720)의 이마, 양쪽 뺨에 영역별로 부착되며, 색상 보정부(800)는 마네킹(720)의 영역별로 색상 보정 정보를 생성하여 3차원 모델 영상의 색상을 보정할 수 있다.
3개의 컬러 차트(700)들이 마네킹(720)의 이마와 양쪽 뺨 부분에 부착될 수 있다. 색상 보정부(800)는 촬영된 3개의 컬러 차트 영상들을 원래 컬러 차트들의 색상으로 변환하는 컬러 보정식을 각각 계산한다. 그리고, 색상 보정부(800)는 입력된 얼굴 영상에서 이마 영역의 안색을 보정할 때 마네킹(720)의 이마 영역에서 계산된 컬러 보정식을 사용하고, 입력된 얼굴 영상에서 뺨 영역의 안색을 보정할 때 마네킹(720)의 뺨 영역에서 계산된 컬러 보정식을 사용할 수 있다.
도 10에 도시된 바와 같이, 스캐너부(100)는 암실(160)을 포함할 수 있다. 암실(160)은 조명기(140)로부터 제공되는 조명광 외에 외부 광을 얼굴 주변에서 차단하도록 전방의 얼굴 삽입구(161)를 제외한 부위가 폐쇄된 형태로 이루어진다. 암실(160)은 육면체 형상으로 예시되어 있으나, 이에 한정되지는 않는다.
스캐너부(100)는 자세 안내 기구(170)를 더 포함할 수 있다. 자세 안내 기구(170)는 암실(160)의 얼굴 삽입구(161) 쪽에 장착되어 사용자의 자세를 안내한다. 자세 안내 기구(170)는 회전 샤프트(171)와, 한 쌍의 안내 봉(172)들과, 지지 봉(173), 및 쇼크 업소버(174)를 구비할 수 있다.
회전 샤프트(171)는 암실(160)의 전방 상단에 수평축을 중심으로 회전 가능하게 힌지 결합된다. 암실(160)의 전방 상단에 축받이들이 형성되며, 회전 샤프트(171)는 축받이들에 회전 가능하게 끼워져 지지될 수 있다.
안내 봉(172)들은 얼굴 삽입구(161)의 양측에 각각 배치되어 각 상단이 회전 샤프트(171)에 고정된다. 안내 봉(172)들은 그 사이에 사용자의 얼굴이 위치되도록 안내할 수 있다. 안내 봉(172)들은 사각 단면 형상으로 각각 이루어질 수 있다.
지지 봉(173)은 양단이 안내 봉(172)들의 하단들에 각각 연결되어 사용자의 가슴을 지지한다. 사용자는 얼굴을 암실(160)의 얼굴 삽입구(161)에 위친 상태에서 가슴이 지지 봉(173)에 의해 지지되므로, 안정된 자세를 취할 수 있게 된다. 지지 봉(173)은 바깥 둘레면이 쿠션 부재에 의해 감싸진 구조로 이루어질 수 있다. 또한, 지지 봉(173)은 안내 봉(172)들에 하단들에 회전 가능하게 결합될 수 있다. 이러한 지지 봉(173)은 사용자의 가슴을 편안하게 지지할 수 있다.
쇼크 업소버(174)는 회전 샤프트(171)와 암실(160) 사이에 장착되어 충격을 완화한다. 쇼크 업소버(174)는 로드와 실린더 중 하나가 회전 샤프트(171)에 회전 가능하게 연결되고, 나머지 하나가 암실(160)에 회전 가능하게 연결될 수 있다. 쇼크 업소버(174)는 안내 봉(172)들의 회전시 로드가 실린더에 대해 신축 동작하면서 작동유의 유동 저항을 변화시킴으로써, 안내 봉(172)들이 천천히 회전하도록 할 수 있다. 쇼크 업소버(174)는 한 쌍으로 구비되어 회전 샤프트(171)의 양단에 각각 장착될 수 있다.
스캐너부(100)는 암실(160)의 전방 양측에 각각 장착되는 손잡이(180)들을 더 포함할 수 있다. 사용자는 손잡이(180)들을 손으로 쥐고서 안정된 자세로 얼굴을 암실(160)의 얼굴 삽입구(161)에 위치시킬 수 있다.
도 11은 도 10에 있어서, 카메라 및 카메라 이동기구를 발췌하여 도시한 사시도이다. 도 12는 도 11에 있어서, Z축 이동기구를 발췌하여 도시한 사시도이다. 도 13은 도 11에 도시된 카메라 이동기구에 대한 저면도이다. 도 14는 도 11에 대한 측면도이다. 도 15는 도 14에 있어서, 틸팅 기구의 동작 예를 설명하기 위한 측면도이다.
도 11 내지 도 15를 참조하면, 카메라 이동기구(120)는 카메라(110)를 수직축 방향으로 승강시키는 Z축 이동기구(121), 및 Z축 이동기구(121)를 수직축을 중심으로 비구면 궤도로 선회시키는 θ축 이동기구(122)를 포함할 수 있다. 카메라(110)는 Z축 이동기구(121)에 의해 승강하고 θ축 이동기구(122)에 의해 수직축을 중심으로 비구면 궤도로 선회하면서 얼굴을 촬영하게 되므로, 얼굴의 정면과 측면에 걸쳐 촬영할 때, 정면의 목선과 측면의 귀 라인, 턱/목선 라인까지 최대한 넓은 범위로 촬영할 수 있다.
Z축 이동기구(121)는 포스트(1211)와, Z축 리니어 가이드(1212), 및 Z축 리니어 액추에이터(1213)를 구비할 수 있다. 포스트(1211)는 Z축 리니어 가이드(1212) 및 Z축 리니어 액추에이터(1213)를 지지한다. 포스트(1211)는 θ축 이동기구(122)에 의해 선회한다. Z축 리니어 가이드(1212)는 포스트(1211)에 대해 승강 블록(1214)의 Z축 방향 이동을 안내한다. 승강 블록(1214)에는 카메라(110)가 장착된다.
Z축 리니어 가이드(1212)는 승강 블록(1214)에 수직으로 관통되어 형성된 Z축 가이드 홀(1212a)들과, Z축 가이드 홀(1212a)들에 각각 끼워져 승강 블록(1214)의 Z축 방향 이동을 안내하는 한 쌍의 Z축 가이드 봉(1212b)들을 구비할 수 있다. 다른 예로, 도시하고 있지 않지만, Z축 리니어 가이드(1212)는 승강 블록(1214)에 고정되는 슬라이더들, 및 포스트(1211)에 고정되어 슬라이더들을 각각 Z축 방향으로 이동 가능하게 안내하는 리니어 레일들을 구비할 수도 있다.
Z축 리니어 액추에이터(1213)는 Z축 이동용 회전 모터(1213a) 및 볼 스크류(1213b)를 구비할 수 있다. Z축 이동용 회전 모터(1213a)는 정,역 회전 가능하게 구성된다. Z축 이동용 회전 모터(1213a)는 구동 컨트롤러(130)에 의해 제어된다. Z축 이동용 회전 모터(1213a)는 구동축이 수직으로 배치된 상태로 몸체가 포스트(1211)에 고정된다. 볼 스크류(1213b)는 양단이 포스트(1211)에 회전 가능하게 지지된 상태로 승강 블록(1214)에 나사 결합된다. 볼 스크류(1213b)는 Z축 이동용 회전 모터(1213a)에 의해 정,역 회전함에 따라 승강 블록(1214)을 승강시킨다.
Z축 리니어 액추에이터(1213)는 Z축 이동용 회전 모터(1213a)의 구동력을 풀리들과 벨트에 의해 볼 스크류(1213b)로 전달하도록 구성된 것으로 예시되어 있으나, Z축 이동용 회전 모터(1213a)의 구동력을 볼 스크류(1213b)로 직접적으로 전달할 수도 있다. 도시하고 있지 않지만, 승강 블록(1214)의 승강 왕복 범위는 위치 센서들에 의해 제한될 수 있다. 위치 센서는 광학식 또는 홀 소자 방식 등의 다양한 방식의 센서로 구성될 수 있다.
θ축 이동기구(122)는 θ축 가이드(1221), 및 회전 액추에이터(1225)를 구비할 수 있다. θ축 가이드(1221)는 수평 플레이트(1222)와, 제1 롤러(1223)들과, 제2 롤러(1224)를 구비한다. 수평 플레이트(1222)는 제1,2 가이드 홀(1222a, 1222b)을 갖는다. 제1 가이드 홀(1222a)은 수평 플레이트(1222)에 비구면 궤도로 관통되어 형성된다. 예컨대, 제1 가이드 홀(1222a)은 일정 폭을 갖고 타원면 또는 쌍곡면 등과 같이 양쪽 가장자리로 갈수록 곡률 반경이 커지는 형태를 가질 수 있다. 제2 가이드 홀(1222b)은 제1 가이드 홀(1222a)보다 회전 중심 축에 가깝게 배치된다. 제2 가이드 홀(1222b)은 제1 가이드 홀(1222a)과 동일한 형태를 갖고 제1 가이드 홀(1222a)과 일정 간격을 두고 배치된다.
제1 롤러(1223)들은 Z축 이동기구(121)의 포스트(1211)에 수직 축을 중심으로 회전 가능하게 지지되며, 제1 가이드 홀(1222a)에 각각 끼워진다. 제1 롤러(1223)들은 각 구름 면이 제1 가이드 홀(1222a)의 내,외주면에 맞닿아 포스트(1211)가 제1 가이드 홀(1222a)을 따라 선회할 수 있도록 안내한다. 제2 롤러(1224)는 포스트(1211)에 축 지지되며, 제2 가이드 홀(1222b)에 각각 끼워진다. 제2 롤러(1224)는 구름 면이 제1 가이드 홀(1222a)의 내주면에 맞닿아 포스트(1211)가 제2 가이드 홀(1222b)을 따라 선회할 수 있도록 안내한다.
회전 액추에이터(1225)는 θ축 이동용 회전 모터(1226) 및 링크 부재(1227)를 포함할 수 있다. θ축 이동용 회전 모터(1226)는 정,역 회전 가능하게 구성된다. θ축 이동용 회전 모터(1226)는 구동 컨트롤러(130)에 의해 제어된다. θ축 이동용 회전 모터(1226)는 구동축이 수직으로 배치된 상태로 몸체가 수평 플레이트(1222)에 고정된다.
링크 부재(1227)는 θ축 이동용 회전 모터(1226)에 의해 정,역 회전 방향으로 회전한다. 링크 부재(1227)는 한쪽 단부가 θ축 이동용 회전 모터(1226)의 구동축에 고정된다. 링크 부재(1227)는 링크 가이드 홀(1227a)을 갖는다. 링크 가이드 홀(1227a)은 일정 폭을 갖고 θ축 이동용 회전 모터(1226)의 구동축으로부터 반경 방향으로 길게 연장된다. 제2 롤러(1224)는 링크 가이드 홀(1227a)에 끼워진다. 링크 부재(1227)의 회전시, 제2 롤러(1224)는 링크 가이드 홀(1227a)을 따라 이동하게 되므로, Z축 이동기구(121)의 포스트(1211)가 비구면 궤적으로 원활하게 선회할 수 있게 된다.
링크 부재(1227)의 회전 위치는 위치 센서(1228)들에 의해 감지될 수 있다. 위치 센서(1228)들은 링크 부재(1227)의 회전 한계 위치 및 센터 위치를 감지하도록 수평 플레이트(1222)에 배치될 수 있다. 위치 센서(1228)는 광학식 또는 홀 소자 방식 등의 다양한 방식의 센서로 구성될 수 있다.
카메라 이동기구(120)는 틸팅 기구(123)를 더 포함할 수 있다. 틸팅 기구(123)는 카메라(110)가 Z축 이동기구(121)에 의해 설정 지점부터 하사점까지 하강하는 동안 카메라(110)의 하강과 연계되어 카메라(110)를 수평축을 중심으로 틸팅시킴에 따라 카메라(110)의 촬영 부위를 상방으로 경사지게 한다. 따라서, 카메라(110)는 설정 지점부터 하사점까지 하강하는 동안 상방으로 경사짐에 따라 사용자의 목 부분을 자세히 촬영할 수 있게 된다.
틸팅 기구(123)는 카메라 장착 블록(1231)과, 틸팅 유도 부재(1232), 및 탄성 부재(1233)를 포함한다. 카메라 장착 블록(1231)은 Z축 이동기구(121)에 의해 승강하는 승강 블록(1214)에 수평축을 중심으로 틸팅 가능하게 힌지 결합되어 카메라(110)를 장착한다. 틸팅 유도 부재(1232)는 카메라(110)가 설정 지점부터 하사점까지 하강하는 동안 카메라 장착 블록(1231)과 상호 작용하여 카메라 장착 블록(1231)을 수평축을 중심으로 틸팅시킨다.
카메라 장착 블록(1231)은 하단이 후방으로 갈수록 상향 경사진 면(1231a)을 갖는다. 카메라 장착 블록(1231)은 승강 블록(1214)과 함께 하강하면, 틸팅 유도 부재(1232)와 맞닿게 된다. 이 상태에서, 카메라 장착 블록(1231)이 계속하여 하강하게 되면, 카메라 장착 블록(1231)은 하단 경사면(1231a)을 따라 틸팅 유도 부재(1232)에 의해 밀려나 전방 부위가 상방으로 들어올려지게 틸팅될 수 있다. 따라서, 카메라(110)는 설정 지점부터 하사점까지 하강하는 동안 촬영 부위가 상방으로 경사질 수 있게 된다.
탄성 부재(1233)는 카메라 장착 블록(1231)에 탄성력을 가하여 카메라 장착 블록(1231)을 복귀시킨다. 카메라 장착 블록(1231)이 하강하여 틸팅 유도 부재(1232)에 의해 밀려 틸팅될 때, 탄성 부재(1233)는 탄성 변형된다. 카메라 장착 블록(1231)이 상승하여 틸팅 유도 부재(1232)로부터 분리되면, 탄성 부재(1233)는 카메라 장착 블록(1231)에 복원력을 발생시켜 카메라 장착 블록(1231)을 원래 위치로 복귀시킨다. 탄성 부재(1233)는 토션 스프링 등으로 이루어져 카메라 장착 블록(1231)과 승강 블록(1214)의 힌지 결합 축에 설치될 수 있다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.
본 발명은 영상 분석을 이용한 체질 및 변증 진단 기술분야 및 이의 응용 기술분야에서 산업상으로 이용 가능하다.

Claims (15)

  1. 카메라를 카메라 이동기구에 의해 사용자 얼굴 주변의 촬영 궤도에 따라 수직축 방향으로 승강시키고 수직축을 중심으로 선회시켜 얼굴 주변을 스캐닝함에 따라 얼굴의 정면과 측면에 걸쳐 얼굴 깊이 정보를 포함한 3차원 영상 정보를 획득하는 스캐너부;
    상기 스캐너부에 의해 획득된 3차원 영상 정보를 사용하여 3차원 모델 영상을 생성하는 3차원 모델 영상 생성부;
    상기 3차원 모델 생성부에 의해 생성된 3차원 모델 영상에서 얼굴의 정면 및 측면에 대한 정면 및 측면 2차원 영상을 추출하는 2차원 영상 추출부;
    상기 2차원 영상 추출부에 의해 추출된 정면 및 측면 2차원 영상으로부터 얼굴 특징점을 검출하는 얼굴 특징점 검출부;
    상기 얼굴 특징점 검출부에 의해 검출된 얼굴 특징점으로부터 얼굴 특징 정보를 산출하는 얼굴 특징 정보 산출부; 및
    상기 얼굴 특징 정보 산출부에 의해 산출된 얼굴 특징 정보를 사용하여 체질 및 변증을 분석하는 체질 및 변증 분석부;
    를 포함하는 3차원 안면 진단 장치.
  2. 제1항에 있어서,
    상기 3차원 모델 영상 생성부는,
    생성된 3차원 모델 영상 정보로부터 정면을 바라보는 각도로 얼굴 자세를 보정하는 3차원 안면 진단 장치.
  3. 제1항에 있어서,
    상기 얼굴 특징점 추출부는,
    3차원 모델 영상에서 얼굴 특징점을 추가로 추출하는 3차원 안면 진단 장치.
  4. 제1항에 있어서,
    상기 스캐너부에 의해 촬영되도록 배치되는 컬러 차트; 및
    상기 스캐너부에 의해 획득된 컬러 차트 영상을 사용하여 색상 보정 정보를 생성하여 3차원 모델 영상의 색상을 보정하는 색상 보정부;
    를 더 포함하는 3차원 안면 진단 장치.
  5. 제1항에 있어서,
    컬러 차트를 부착한 상태로 상기 스캐너부에 의해 촬영되도록 배치되는 마네킹; 및
    상기 스캐너부에 의해 획득된 컬러 차트 영상을 사용하여 색상 보정 정보를 생성하여 3차원 모델 영상의 색상을 보정하는 색상 보정부;
    를 더 포함하는 3차원 안면 진단 장치.
  6. 제5항에 있어서,
    상기 컬러 차트는 복수 개로 이루어져 상기 마네킹의 이마, 양쪽 뺨에 영역별로 부착되며;
    상기 색상 보정부는 상기 마네킹의 영역별로 색상 보정 정보를 생성하여 3차원 모델 영상의 색상을 보정하는 3차원 안면 진단 장치.
  7. 제1항에 있어서,
    상기 카메라는,
    2차원 얼굴 영상 정보를 획득하는 이미지 센서와, 해당 2차원 얼굴 영상 정보와 공간적으로 동기화된 얼굴 깊이 정보를 획득하는 깊이 센서(depth sensor)를 구비하는 3차원 안면 진단 장치.
  8. 제1항에 있어서,
    상기 카메라 이동기구는,
    상기 카메라를 수직축 방향으로 승강시키는 Z축 이동기구, 및
    상기 Z축 이동기구를 수직축을 중심으로 비구면 궤도로 선회시키는 θ축 이동기구를 포함하는 3차원 안면 진단 장치.
  9. 제8항에 있어서,
    상기 카메라 이동기구는,
    상기 카메라가 상기 Z축 이동기구에 의해 설정 지점부터 하사점까지 하강하는 동안 상기 카메라의 하강과 연계되어 상기 카메라를 수평축을 중심으로 틸팅시킴에 따라 상기 카메라의 촬영 부위를 상방으로 경사지게 하는 틸팅 기구를 더 포함하는 3차원 안면 진단 장치.
  10. 제9항에 있어서,
    상기 틸팅 기구는,
    상기 Z축 이동기구에 의해 승강하는 승강 블록에 수평축을 중심으로 틸팅 가능하게 힌지 결합되어 상기 카메라를 장착하는 카메라 장착 블록과,
    상기 카메라가 설정 지점부터 하사점까지 하강하는 동안 상기 카메라 장착 블록과 상호 작용하여 상기 카메라 장착 블록을 수평축을 중심으로 틸팅시키는 틸팅 유도 부재, 및
    상기 카메라 장착 블록에 탄성력을 가하여 상기 카메라 장착 블록을 복귀시키는 탄성 부재를 포함하는 3차원 안면 진단 장치.
  11. 제1항에 있어서,
    상기 스캐너부는,
    얼굴 주변으로 조명광을 제공하는 조명기; 및
    상기 조명기로부터 제공되는 조명광 외에 외부 광을 얼굴 주변에서 차단하도록 전방의 얼굴 삽입구를 제외한 부위가 폐쇄된 형태로 이루어지는 암실;
    을 더 포함하는 3차원 안면 진단 장치.
  12. 제11항에 있어서,
    상기 스캐너부는,
    상기 얼굴 삽입구 쪽에 장착되어 사용자의 자세를 안내하는 자세 안내 기구를 더 포함하는 3차원 안면 진단 장치.
  13. 제12항에 있어서,
    상기 자세 안내 기구는,
    상기 암실의 전방 상단에 수평축을 중심으로 회전 가능하게 힌지 결합되는 회전 샤프트와,
    상기 얼굴 삽입구의 양측에 각각 배치되어 각 상단이 상기 회전 샤프트에 고정되는 한 쌍의 안내 봉들과,
    양단이 상기 안내 봉들의 하단들에 각각 연결되어 사용자의 가슴을 지지하는 지지 봉, 및
    상기 회전 샤프트와 암실 사이에 장착되어 충격을 완화하는 쇼크 업소버를 포함하는 3차원 안면 진단 장치.
  14. 제11항에 있어서,
    상기 스캐너부는,
    상기 암실의 전방 양측에 각각 장착되는 손잡이들을 더 포함하는 3차원 안면 진단 장치.
  15. 제1항에 있어서,
    상기 스캐너부를 얼굴에 대해 근접 또는 이격되는 방향으로 수평 이동 가능하게 지지하여 상기 스캐너부와 얼굴의 간격이 조절되게 하는 지지 바디를 더 포함하는 3차원 안면 진단 장치.
PCT/KR2018/002044 2017-04-06 2018-02-20 3차원 안면 진단 장치 WO2018186584A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880029620.4A CN110582227B (zh) 2017-04-06 2018-02-20 三维颜面诊断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0044895 2017-04-06
KR1020170044895A KR102002279B1 (ko) 2017-04-06 2017-04-06 3차원 안면 진단 장치

Publications (1)

Publication Number Publication Date
WO2018186584A1 true WO2018186584A1 (ko) 2018-10-11

Family

ID=63712119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002044 WO2018186584A1 (ko) 2017-04-06 2018-02-20 3차원 안면 진단 장치

Country Status (3)

Country Link
KR (1) KR102002279B1 (ko)
CN (1) CN110582227B (ko)
WO (1) WO2018186584A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181134B1 (ko) * 2019-01-02 2020-11-20 한국 한의학 연구원 3차원 안면 측정 장치
KR102578122B1 (ko) * 2019-11-29 2023-09-14 문명일 얼굴 피부 진단기기 및 이를 이용하는 얼굴 피부 진단 방법
KR102180922B1 (ko) * 2020-04-13 2020-11-19 주식회사 룰루랩 멀티모달 센서 어셈블리를 포함하는 분산형 엣지 컴퓨팅 기반 피부 질환 분석 디바이스
CN112220450B (zh) * 2020-08-21 2023-08-15 上海交通大学医学院附属第九人民医院 基于三维模型的眼眶病筛查方法、系统以及终端
KR102378783B1 (ko) * 2020-08-28 2022-03-25 (주) 엠엔비젼 바디 스캐너

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068842A (ja) * 2005-09-08 2007-03-22 Hitachi Medical Corp 画像診断装置、画像診断システム
KR20100002800A (ko) * 2008-06-30 2010-01-07 한국 한의학 연구원 사상 체질 구분을 위한 3차원 영상 비교 방법
KR20100128942A (ko) * 2009-05-29 2010-12-08 한국 한의학 연구원 한의학적 체질 구분을 위한 3차원 정보 획득 장치 및 방법
KR20140014826A (ko) * 2012-07-26 2014-02-06 한국 한의학 연구원 안면측정 장치 및 방법
KR20140077751A (ko) * 2012-12-14 2014-06-24 한국전자통신연구원 3차원 얼굴 스캐닝 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570576B2 (ja) * 1995-06-19 2004-09-29 株式会社日立製作所 マルチモダリティに対応した3次元画像合成表示装置
JP3489510B2 (ja) * 1999-11-02 2004-01-19 日本電気株式会社 カメラシステム及び表示装置
US7463262B2 (en) * 2004-09-30 2008-12-09 Kabushiki Kaisha Toshiba Image processing apparatus and method
JP4585471B2 (ja) * 2006-03-07 2010-11-24 株式会社東芝 特徴点検出装置及びその方法
JP2006320724A (ja) * 2006-05-22 2006-11-30 Fujitsu Ltd 撮影装置、撮影方法、およびコンピュータプログラム
JP2010042065A (ja) * 2008-08-08 2010-02-25 Toshiba Corp 医用画像処理装置、処理方法
US20120065499A1 (en) * 2009-05-20 2012-03-15 Hitachi Medical Corporation Medical image diagnosis device and region-of-interest setting method therefore
KR101220399B1 (ko) * 2010-10-01 2013-01-09 한국 한의학 연구원 통합정보를 이용한 체질정보 분석방법
JP2012160039A (ja) * 2011-02-01 2012-08-23 Fujifilm Corp 画像処理装置、立体画像印刷システム、画像処理方法およびプログラム
CN103099602B (zh) * 2011-11-10 2016-04-06 深圳泰山在线科技有限公司 基于光学识别的体质检测方法与系统
MX341042B (es) * 2012-02-27 2016-08-05 Implicitcare Llc Sistema de captura de imagenes en 360°.
CN108322653B (zh) * 2012-06-12 2020-11-13 奥林巴斯株式会社 摄像装置
KR101309999B1 (ko) * 2012-07-26 2013-09-24 한국 한의학 연구원 일체화된 측정부 및 반사경을 구비하는 안면측정 장치 및 방법
CN202710906U (zh) * 2012-08-10 2013-01-30 陈天铭 镜头移轴/倾斜装置
KR101538658B1 (ko) * 2012-11-20 2015-07-22 삼성메디슨 주식회사 의료 영상 표시 방법 및 장치
CN203554615U (zh) * 2013-10-10 2014-04-16 中国航空工业集团公司上海航空测控技术研究所 一种摄像头可视角度测试装置
CN104574504A (zh) * 2014-12-26 2015-04-29 上海沙斐网络科技有限公司 一种基于终端的眼镜虚拟试戴方法和眼镜虚拟试戴装置
US9852543B2 (en) * 2015-03-27 2017-12-26 Snap Inc. Automated three dimensional model generation
CN104786646B (zh) * 2015-04-09 2017-09-19 中国电子科技集团公司第四十五研究所 一种多方位镜头ccd调节装置
CN106264476B (zh) * 2016-10-28 2024-03-29 合肥京东方光电科技有限公司 舌象检测设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068842A (ja) * 2005-09-08 2007-03-22 Hitachi Medical Corp 画像診断装置、画像診断システム
KR20100002800A (ko) * 2008-06-30 2010-01-07 한국 한의학 연구원 사상 체질 구분을 위한 3차원 영상 비교 방법
KR20100128942A (ko) * 2009-05-29 2010-12-08 한국 한의학 연구원 한의학적 체질 구분을 위한 3차원 정보 획득 장치 및 방법
KR20140014826A (ko) * 2012-07-26 2014-02-06 한국 한의학 연구원 안면측정 장치 및 방법
KR20140077751A (ko) * 2012-12-14 2014-06-24 한국전자통신연구원 3차원 얼굴 스캐닝 장치

Also Published As

Publication number Publication date
CN110582227B (zh) 2022-06-24
KR102002279B1 (ko) 2019-07-23
CN110582227A (zh) 2019-12-17
KR20180113392A (ko) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018186584A1 (ko) 3차원 안면 진단 장치
WO2017204571A1 (ko) 물체의 3차원 정보 획득을 위한 카메라 센싱 장치 및 이를 이용한 가상 골프 시뮬레이션 장치
WO2011074867A2 (ko) 구강용 스캐너
WO2016200185A1 (ko) 3차원 스캐닝 시스템 및 이를 위한 라인레이저 정렬용 표적기구
CN106091926A (zh) 多点光源异步曝光的小型工件内槽尺寸的检测装置与方法
CN111528880A (zh) 一种x射线成像系统及方法
WO2013036074A2 (ko) X선 파노라마 촬영장치 및 이를 이용한 치아악궁 x선 파노라마 촬영방법
CN107014829A (zh) 基于全反射动态图像采集的孔内表面质量缺陷检测装置及方法
WO2017007086A1 (ko) 유방암 진단장치
CN114577135B (zh) 基于单镜头的芯片引脚翘曲的3d检测方法及系统
WO2014171647A1 (ko) 다양한 촬영 모드로 촬영 가능한 엑스선 촬영장치
WO2014054899A1 (ko) 엑스선 촬영장치
WO2015178593A1 (ko) 물체 전방위 촬영 3차원 실물화상기
CN106790900A (zh) 一种手机温度检测方法及系统
WO2022080853A1 (ko) 휴대용 3차원 영상 측정 장치, 이를 이용한 3차원 영상 측정 방법 및 의료 영상 정합 시스템
CN115462838A (zh) 一种采样机构及采样机器人
US20220202353A1 (en) A dermatoscopy device and a method for checking skin lesions
WO2017039054A1 (ko) 카메라를 이용한 골프공 인식장치
WO2021172751A1 (ko) 동적 제어가 가능한 콜리메이터를 구비한 콘빔 ct 장치
JP3047370B2 (ja) X線ct装置
WO2013069842A1 (ko) 컴퓨터 단층촬영장치
CN110301925B (zh) 一种方便调整各部件物理对齐的x光成像系统
CN113757503B (zh) 一种面部生物特征采集方法及采集装置
CN219480061U (zh) 一种干眼检测设备
KR102508304B1 (ko) 길이조정 및 회전 가능형 3차원 인체 형상 스캐닝 시스템 및 이를 이용한 인체 형상 스캐닝 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780705

Country of ref document: EP

Kind code of ref document: A1