WO2018185879A1 - Stator core piece and rotary electric machine - Google Patents

Stator core piece and rotary electric machine Download PDF

Info

Publication number
WO2018185879A1
WO2018185879A1 PCT/JP2017/014241 JP2017014241W WO2018185879A1 WO 2018185879 A1 WO2018185879 A1 WO 2018185879A1 JP 2017014241 W JP2017014241 W JP 2017014241W WO 2018185879 A1 WO2018185879 A1 WO 2018185879A1
Authority
WO
WIPO (PCT)
Prior art keywords
width
stator core
groove
tip
inner peripheral
Prior art date
Application number
PCT/JP2017/014241
Other languages
French (fr)
Japanese (ja)
Inventor
雄一朗 中村
智也 内村
信一 山口
治之 長谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020197015172A priority Critical patent/KR102077593B1/en
Priority to CN201780074495.4A priority patent/CN110036552B/en
Priority to PCT/JP2017/014241 priority patent/WO2018185879A1/en
Priority to JP2017555730A priority patent/JP6309178B1/en
Priority to TW107105772A priority patent/TWI672891B/en
Publication of WO2018185879A1 publication Critical patent/WO2018185879A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • the present invention relates to a stator core piece composed of a back yoke and a plurality of teeth provided on the inner peripheral side of the back yoke, and a rotating electrical machine.
  • a stator iron core of a rotating electrical machine disclosed in Patent Document 1 includes a yoke and a plurality of teeth provided on the yoke, and is arranged at the center of the stator iron core on the radially inner side of the teeth to reduce vibration due to torque pulsation.
  • a notch that opens toward the top is formed. The width of the notch in the radial direction of the rotating electrical machine is wider than the width of the notch in the circumferential direction of the central axis of the rotating electrical machine.
  • the present invention has been made in view of the above, and is capable of reducing both the cogging torque generated due to the combination of the number of magnetic poles and the number of slots and the cogging torque generated due to variations in the magnetic force of the magnet. Aim to obtain child core pieces.
  • the stator core piece of the present invention is a plurality of stator core pieces constituting an annular stator core, and the stator core piece includes a back yoke and A tooth provided on the inner peripheral side of the back yoke, and the tooth includes a base portion extending in the central axis direction from the circumferential center of the back yoke, and a tip portion provided on the inner peripheral side of the base portion, A groove having a shape in which the width in the circumferential direction changes stepwise toward the outer side in the radial direction of the stator core is formed in the inner peripheral portion of the distal end portion.
  • the radial width to the intersection is the first width, and from the first intersection to the bottom of the groove A third radial width to the intersection with bisector, when the second width, the second width, and wherein the narrower than the first width.
  • the stator core piece according to the present invention has an effect of reducing both the cogging torque generated due to the combination of the number of magnetic poles and the number of slots and the cogging torque generated due to variations in the magnetic force of the magnet.
  • FIG. 1 The perspective view of the stator core piece shown in FIG.
  • the figure which shows the 1st modification of the stator core piece shown in FIG. The figure which shows the 2nd modification of the stator core piece shown in FIG.
  • FIG. 1st figure which shows the relationship between the cogging torque which arises with the rotor which concerns on Embodiment 1, 2 and the width
  • channel. 2nd figure which shows the relationship between the cogging torque which arises with the rotor which concerns on Embodiment 1, 2 and the width
  • stator core piece and a rotating electrical machine according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
  • FIG. 1 is a cross-sectional view in a direction orthogonal to the axial direction of the central axis of the rotating electrical machine including the stator core according to the first embodiment.
  • FIG. 2 is a perspective view of the stator core piece shown in FIG.
  • FIG. 3 is a view of the stator core piece shown in FIG. 1 as viewed from the end face side of the stator core in the axial direction of the central axis of the rotating electrical machine.
  • a rotating electrical machine 100 shown in FIG. 1 includes a stator 1 and a rotor 2 provided inside the stator 1.
  • the rotating electrical machine 100 is a 10-pole 12-slot motor.
  • the rotor 2 includes a rotor core 21, a shaft 22 provided on the rotor core 21, and a plurality of permanent magnets 23.
  • the number of magnetic poles 24 by the permanent magnet 23 is ten.
  • the rotor core 21 is configured by laminating a plurality of thin plates punched out from an electromagnetic steel plate base material (not shown) in the axial direction of the central axis AX of the annular stator core 11.
  • the axial direction of the central axis AX of the stator core 11 is the direction indicated by the arrow D1 in FIG. 2 and is equal to the axial direction of the central axis of the rotating electrical machine 100.
  • the plurality of thin plates are fixed to each other by caulking, welding, or bonding.
  • a gap is secured between the rotor core 21 and the stator 1.
  • the plurality of permanent magnets 23 may be embedded in the rotor core 21 or may be provided on the outer peripheral surface of the rotor core 21.
  • the shaft 22 is fixed to the axial center portion of the rotor core 21 by shrink fitting, cold fitting or press fitting.
  • the stator 1 includes a stator core 11 configured by annularly connecting a plurality of stator core pieces 11a, and a winding 12 formed by winding a coil that generates a rotating magnetic field around the stator core 11.
  • the stator core piece 11a is configured by laminating a plurality of thin plates punched out in a T shape from an electromagnetic steel plate base material (not shown) in the axial direction D1. The plurality of thin plates are fixed to each other by caulking, welding, or bonding.
  • the cross-sectional shape perpendicular to the axial direction D1 is symmetric with respect to the bisector CP10 of the cross-sectional shape.
  • the bisector CP10 is a line that bisects the distal end portion 11a21 in the circumferential direction D2. This is a line extending from the circumferential center 11a111 of the back yoke 11a1 in the direction of the central axis AX. The center 11a111 in the circumferential direction is located on the line 8 that bisects the width of the outer peripheral portion 11a11 of the back yoke 11a1 in the circumferential direction D2.
  • Each of the plurality of stator core pieces 11a includes a back yoke 11a1 and teeth 11a2 provided on the inner peripheral side 11a1a of the back yoke 11a1.
  • the teeth 11a2 extend from the back yoke 11a1 toward the central axis AX.
  • the teeth 11a2 include a base portion 11a22 extending from the circumferential center 11a111 of the back yoke 11a1 in the central axis AX direction, and a distal end portion 11a21 provided on the inner peripheral side of the base portion 11a22.
  • a line indicated by reference numeral 11a22a represents a boundary between the base portion 11a22 and the distal end portion 11a21.
  • Each of the plurality of teeth 11a2 is radially spaced apart from each other in the circumferential direction D2 of the stator 1.
  • the circumferential direction D2 is equal to the circumferential direction of the stator core 11.
  • a slot 11a3 is formed in a region between adjacent teeth 11a2.
  • the teeth 11a2 include a base portion 11a22 and a tip portion 11a21 extending from the back yoke 11a1 toward the central axis AX.
  • the tip portion 11a21 is formed on the center side of the stator core of the tooth 11a2 in the radial direction D3.
  • a base portion 11a23 is formed between the base portion 11a22 and the tip portion 11a21.
  • the base portion 11a23 is located at a boundary 11a22a between the base portion 11a22 and the distal end portion 11a21.
  • the tip portion 11a21 has a shape extending in the circumferential direction D2.
  • the inner peripheral portion 4 of the tip portion 11a21 faces the rotor 2 shown in FIG.
  • a groove 3 is formed in the inner peripheral portion 4 of the tip portion 11a21.
  • the groove 3 is formed at the central portion in the circumferential direction D2 of the tip portion 11a21.
  • the groove 3 is constituted by the first groove 31 and the second groove 32, and has a shape in which the width in the circumferential direction D2 is gradually reduced toward the outside in the radial direction D3.
  • Each of the first groove 31 and the second groove 32 has a shape that is recessed from the central axis AX shown in FIG. 1 toward the outer peripheral portion 11a11 of the back yoke 11a1.
  • the first groove 31 extends from one end surface of the teeth 11a2 to the other end surface in the axial direction D1 of the central axis AX of the stator core 11.
  • the second groove 32 is formed at the center of the first groove 31 in the circumferential direction D2 and is formed outside the radial direction D3 of the first groove 31.
  • the second groove 32 extends from one end surface of the teeth 11a2 to the other end surface in the axial direction D1 of the central axis AX of the stator core 11.
  • a corner 5 is formed at the tip 11a21.
  • the corner portion 5 is formed between the inner peripheral portion 4 of the distal end portion 11 a 21 and the first groove 31.
  • the width in the circumferential direction D2 of the first groove 31 is W1
  • the width in the circumferential direction D2 of the base portion 11a22 of the teeth 11a2 is W2
  • the width in the circumferential direction D2 of the second groove 32 is W3.
  • the width W1 is narrower than the width W2 and wider than the width W3.
  • the width W4 is Narrower than W5.
  • the width W4 is equal to the maximum depth of the groove 3.
  • the width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the groove 3 is shallower than the minimum radial thickness of the distal end portion 11a21.
  • the first intersection point IP1 is an intersection point between the bisector CP10 and the virtual curve 11a4.
  • the virtual curve 11a4 is a line obtained by extending the curve of the inner peripheral surface of the tip end portion 11a21 to the groove 3 in a cross section perpendicular to the direction of the central axis AX.
  • the radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point.
  • the radial width up to IP3 is the second width (W4), the second width is narrower than the first width.
  • the third intersection point IP3 is an intersection point between the bottom surface 32a of the groove 3 and the bisector CP10.
  • the width in the circumferential direction D2 of the groove 3 is reduced stepwise toward the outside in the radial direction D3, resulting in a combination of the number of magnetic poles and the number of slots.
  • Both the cogging torque generated and the cogging torque generated due to variations in the magnetic force of the permanent magnet 23 can be reduced.
  • the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W1 of the first groove 31, and the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is the second This is reduced by adjusting the width W3 of the groove 32.
  • the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is 60th order and 120th order when the rotor 2 shown in FIG. Occurs in order.
  • the 60th order is the least common multiple of 10 and 12.
  • cogging torque generated due to variations in the magnetic force of the permanent magnet 23 is generated in orders such as the 12th order and the 24th order when the rotor 2 shown in FIG. .
  • the 12th and 24th orders are integer multiples of the number of slots.
  • the width W1 of the first groove 31 by adjusting the width W1 of the first groove 31, the cogging torque generated in the orders such as the 60th order and the 120th order is reduced.
  • the 12th order cogging torque is reduced by adjusting the width W3.
  • the width of the groove 3 in the circumferential direction D2 is increased.
  • the groove 3 of the stator core piece 11a may be formed in a shape that satisfies the relationship of W1> W3 ⁇ 2.
  • FIG. 4 is a view showing a first modification of the stator core piece shown in FIG.
  • a groove 3A is formed in the teeth 11a2 of the stator core piece 11A shown in FIG. 4 instead of the groove 3 shown in FIG.
  • the groove 3A is formed in the center portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21.
  • the groove 3 ⁇ / b> A includes a first groove 31, a second groove 32, and a third groove 33.
  • the groove 3A has a shape in which the width in the circumferential direction D2 becomes gradually smaller toward the outside of the radial direction D3, and the width in the circumferential direction D2 changes in three stages.
  • the third groove 33 is formed at the center of the second groove 32 in the circumferential direction D2.
  • the third groove 33 extends from one end surface of the tooth 11a2 to the other end surface in the axial direction D1 of the central axis AX of the stator core 11 shown in FIG.
  • the width W6 is narrower than the width W3.
  • the width W4 is Narrower than width W5.
  • the width W4 is equal to the maximum depth of the groove 3A.
  • the width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the groove 3A is shallower than the minimum radial thickness of the tip portion 11a21.
  • the radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point.
  • the radial width up to IP3 is the second width (W4), the second width is narrower than the first width.
  • the third intersection point IP3 is an intersection point between the bottom surface 33a of the groove 3A and the bisector CP10.
  • the orders are generated at orders of integer multiples of the number of slots such as 12th order, 24th order and 60th order. And the cogging torque generated at orders other than an integral multiple of the number of slots is reduced.
  • FIG. 5 is a view showing a second modification of the stator core piece shown in FIG.
  • a groove 3B is formed instead of the groove 3 shown in FIG.
  • the groove 3B is formed in the center portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21.
  • the groove 3B has a shape in which the width in the circumferential direction D2 gradually increases toward the outside in the radial direction D3.
  • the groove 3B has a shape in which the width in the circumferential direction D2 becomes narrower in steps toward the inside of the radial direction D3.
  • the width of the groove 3B in the circumferential direction D2 on the back yoke 11a1 side is W1
  • the width of the base 11a22 of the teeth 11a2 in the circumferential direction D2 is W2
  • the width of the groove 3B in the circumferential direction D2 opposite to the back yoke 11a1 is W3.
  • the width W1 is narrower than the width W2 and wider than the width W3.
  • a corner 5 is formed at the tip 11a21.
  • the corner portion 5 is formed between the inner peripheral portion 4 of the tip portion 11a21 and the groove 3B.
  • W4 width from the bottom surface 3B1 of the groove 3B to the corner portion 5 in the radial direction D3
  • the width W4 is larger than the width W5.
  • the width W4 is equal to the maximum depth of the groove 3B.
  • the width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the groove 3B is shallower than the minimum radial thickness of the tip portion 11a21.
  • the radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point.
  • the radial width up to IP3 is the second width (W4), the second width is narrower than the first width.
  • the third intersection point IP3 is an intersection point between the bottom surface 3B1 of the groove 3B and the bisector CP10.
  • the orders are generated at orders of integral multiples of the number of slots such as 12th order, 24th order and 60th order. And the cogging torque generated at orders other than an integral multiple of the number of slots is reduced. Further, according to the stator core 11 using the stator core piece 11B, since the width W1 is wider than the width W3, the leakage magnetic flux between the slots is reduced, and a decrease in torque at high load is suppressed. If demonstrating it concretely, in the rotary electric machine 100 at the time of high load, the leakage magnetic flux which flows into the adjacent teeth 11a2 through the front-end
  • the upper slot portion is a portion corresponding to a region closer to the root portion 11a23 than the tip portion 11a21 in the slot 11a3 shown in FIG.
  • FIG. 6 is a view showing a third modification of the stator core piece shown in FIG.
  • a groove group 3C is formed in the tooth 11a2 of the stator core piece 11C shown in FIG. 6 instead of the groove 3 shown in FIG.
  • the groove group 3C is formed at the central portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21.
  • the groove group 3 ⁇ / b> C includes two first grooves 31 formed on the inner peripheral portion 4 of the tip end portion 11 a 21 and a second groove 32 formed on the inner peripheral portion 4 of the tip end portion 11 a 21.
  • the second groove 32 is provided between the two first grooves 31, and the two first grooves 31 and the second groove 32 are the first groove 31 and the second groove in the circumferential direction D2. 32 and the first groove 31 are arranged in this order.
  • the first groove 31 and the second groove 32 are arranged apart from each other in the circumferential direction D2.
  • a protrusion 41 is formed between the first groove 31 and the second groove 32.
  • a corner 51 is formed between the inner periphery 4 of the tip 11a21 and the first groove 31.
  • a corner portion 52 is formed between the inner peripheral portion 4 of the distal end portion 11 a 21 and the second groove 32.
  • the width from the bottom surface 31a of the first groove 31 to the corner portion 51 in the radial direction D3 is W41
  • the width from the bottom surface 32a of the second groove 32 to the corner portion 52 in the radial direction D3 is W42
  • the width in the radial direction D3 is W4
  • the width W42 is narrower than the width W5 and wider than the width W41.
  • the width W42 is equal to the maximum depth of the second groove 32.
  • the width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the second groove 32 is shallower than the minimum radial thickness of the tip end portion 11a21.
  • the radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point.
  • the radial width up to IP3 is the second width (W4), the second width is narrower than the first width.
  • the third intersection point IP3 is an intersection point between the bottom surface 32a of the second groove 32 and the bisector CP10.
  • the width from one corner 51 in the circumferential direction D2 to the other corner 51 is W1
  • the width in the circumferential direction D2 of the first groove 31 is W11
  • the width in the circumferential direction D2 of the base 11a22 of the tooth 11a2 is W2.
  • the width W1 is narrower than the width W2
  • the width W11 is narrower than the width W2 and wider than the width W3.
  • the groove group 3 ⁇ / b> C has a shape in which the width in the circumferential direction D ⁇ b> 2 gradually decreases toward the outer side in the radial direction D ⁇ b> 3, similarly to the groove 3 illustrated in FIG. 3.
  • the stator core 11 using the stator core piece 11C shown in FIG. 6 the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W11 of the first groove 31.
  • the width W3 of the second groove 32 By adjusting the width W3 of the second groove 32, the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is reduced.
  • the shape of the first groove 31 and the second groove 32 is not a simple shape such as a circle and a rectangle, but a complicated shape such as a star shape and a V shape, the shape of a die for punching the magnetic steel sheet base material is In some cases, it becomes complicated and it becomes difficult to manufacture a metal mold and it is difficult to punch the base material of the electromagnetic steel sheet.
  • FIG. 7 is a view showing a fourth modification of the stator core piece shown in FIG.
  • a through hole 6 is formed in the tooth 11a2 of the stator core piece 11D shown in FIG. 7 instead of the groove 3 shown in FIG.
  • the through hole 6 is formed at the center of the distal end portion 11a21 in the circumferential direction D2.
  • the through hole 6 penetrates the one end surface and the other end surface of the tooth 11a2 in the axial direction D1 shown in FIG.
  • the through hole 6 includes a first region 6a having a width W1 in the circumferential direction D2 that is narrower than the width W2 of the base portion 11a22, and a second region 6b having a width W3 in the circumferential direction D2 that is narrower than the width W1.
  • the second region 6b communicates with the first region 6a and is formed at the center of the first region 6a in the circumferential direction D2.
  • the second region 6b is formed closer to the base 11a22 than the first region 6a.
  • the width from the end surface 6d of the second region 6b in the radial direction D3 to the end surface 6c of the first region 6a in the radial direction D3 on the side opposite to the teeth 11a2 is W4, and from the root 11a23 in the radial direction D3 to the first.
  • W5 width to the intersection IP1
  • W5 width to the intersection IP1
  • W5 width to the width W4
  • the width W4 is equal to the maximum depth of the through hole 6 that extends radially outward from the inner peripheral portion 4 of the distal end portion 11a21.
  • the width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the through hole 6 is shallower than the minimum radial thickness of the tip end portion 11a21.
  • the first intersection point IP1 is an intersection point between the bisector CP10 and the inner peripheral surface of the tip end portion 11a21.
  • the radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point.
  • the radial width up to IP3 is the second width (W4), the second width is narrower than the first width.
  • the third intersection point IP3 is an intersection point between the radially outer end face of the through hole 6 and the bisector CP10.
  • the through-hole 6 has a shape in which the width in the circumferential direction D2 is gradually reduced toward the outside in the radial direction D3.
  • the cogging torque caused by the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W1 of the first region 6a.
  • the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is reduced by adjusting the width W3 of the second region 6b.
  • the stator core 11 using the stator core piece 11D shown in FIG. 7 since only one through hole 6 has to be formed without providing a plurality of through holes in one tooth 11a2, it depends on the mold. Punching becomes easy.
  • the grooves 3, 3A, 3B and the groove group 3C shown in FIGS. 3 to 6 are not provided, so the grooves 3, 3A, 3B are not provided.
  • the roundness of the stator inner diameter caused by the manufacturing variation of the through-hole 6 does not decrease, and the roundness of the stator core 11 is improved. Play.
  • FIG. 8 is a view showing a fifth modification of the stator core piece shown in FIG. A through hole group 6A is formed in the tooth 11a2 of the stator core piece 11E shown in FIG. 8 instead of the groove 3 shown in FIG. 6 A of through-hole groups are formed in the center part in the circumferential direction D2 of the front-end
  • the through-hole group 6 ⁇ / b> A includes two first through-holes 61 and a second through-hole 62.
  • the second through hole 62 is provided between the two first through holes 61, and the two first through holes 61 and the second through holes 62 are the first through holes 61 in the circumferential direction D ⁇ b> 2.
  • the second through hole 62 and the first through hole 61 are arranged in this order.
  • the first through hole 61 and the second through hole 62 are arranged to be separated from each other in the circumferential direction D2.
  • the position of the end surface of the first through hole 61 opposite to the back yoke 11a1 in the radial direction D3 is the portion closest to the second through hole 62, and the second through hole 62 in the radial direction D3. This is the same as the position of the end surface opposite to the back yoke 11a1.
  • the width from the end face on the back yoke 11a1 side of the first through hole 61 in the radial direction D3 to the end face on the opposite side of the back yoke 11a1 of the first through hole 61 in the radial direction D3 is W41, and in the radial direction D3
  • the width from the end face on the back yoke 11a1 side of the second through hole 62 to the end face on the opposite side of the back yoke 11a1 of the second through hole 62 in the radial direction D3 is W42, and from the root part 11a23 in the radial direction D3.
  • the width W42 is equal to the maximum depth of the second through hole 62 that extends radially outward from the inner peripheral portion 4 of the distal end portion 11a21.
  • the width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the second through hole 62 is shallower than the minimum radial thickness of the tip end portion 11a21.
  • the first intersection point IP1 is an intersection point between the bisector CP10 and the inner peripheral surface of the tip end portion 11a21.
  • the radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point.
  • the radial width up to IP3 is the second width (W4), the second width is narrower than the first width.
  • the third intersection point IP3 is an intersection point between the radially outer end face of the second through hole 62 and the bisector CP10.
  • the width from one end surface of one first through hole 61 in the circumferential direction D2 to the other end surface of the other first through hole 61 in the circumferential direction D2 is W1, and the first through hole 61 in the circumferential direction D2 is defined as W1.
  • W11 the width in the circumferential direction D2 of the base portion 11a22 of the tooth 11a2 is W2
  • the width in the circumferential direction D2 of the second through hole 62 is W3
  • the width W1 is narrower than the width W2 and the width W11. Is narrower than the width W2 and wider than the width W3.
  • the through-hole group 6A has a shape in which the width in the circumferential direction D2 is gradually reduced toward the outside in the radial direction D3.
  • the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is adjusted by adjusting the width W11 of the first through hole 61.
  • the cogging torque that is reduced and caused by the variation in the magnetic force of the permanent magnet 23 is reduced by adjusting the width W ⁇ b> 3 of the second through hole 62.
  • stator core 11 using the stator core piece 11E similarly to the first groove 31 and second groove 32 shown in FIG. Since the shape of the second through hole 62 can be a simple rectangle, the mold can be easily manufactured, and the stator core 11 can be easily manufactured. Further, in the stator core 11 using the stator core piece 11E shown in FIG. 8, since the grooves 3, 3A, 3B and the groove group 3C shown in FIGS. 3 to 6 are not provided, the grooves 3, 3A, 3B are not provided. Compared with the case where the groove group 3C is provided, the roundness of the stator inner diameter due to the manufacturing variation of the through-hole group 6A does not decrease, and the roundness of the stator core 11 is improved. There is an effect.
  • FIG. 9 is a view showing a sixth modification of the stator core piece shown in FIG.
  • a through hole group 6B is formed in the tooth 11a2 of the stator core piece 11F shown in FIG. 9 instead of the groove 3 shown in FIG.
  • the through-hole group 6B is formed at the center portion in the circumferential direction D2 of the tip portion 11a21.
  • the through-hole group 6B includes a first through-hole 61 and a second through-hole 62 that are arranged in the radial direction D3.
  • the first through hole 61 and the second through hole 62 are arranged to be separated from each other in the radial direction D3.
  • the first through hole 61 is provided closer to the inner peripheral portion 4 of the tip end portion 11a21, and the second through hole 62 is provided on the back yoke 11a1 side of the first through hole 61 and the first through hole. 61 is provided at the center in the circumferential direction D2.
  • the width from the end face on the back yoke 11a1 side of the second through hole 62 in the radial direction D3 to the end face on the opposite side of the back yoke 11a1 of the first through hole 61 in the radial direction D3 is W4, and in the radial direction D3.
  • W5 When the width from the base portion 11a23 to the first intersection point IP1 is W5, the width W4 is narrower than the width W5.
  • the width W4 is equal to the maximum width from the inside in the radial direction of the first through hole 61 to the outside in the radial direction of the second through hole 62.
  • the width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum width from the inside in the radial direction of the first through hole 61 to the outside in the radial direction of the second through hole 62 is narrower than the minimum thickness in the radial direction of the tip end portion 11a21.
  • the first intersection point IP1 is an intersection point between the bisector CP10 and the inner peripheral surface of the tip end portion 11a21.
  • the radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point.
  • the radial width up to IP3 is the second width (W4), the second width is narrower than the first width.
  • the third intersection point IP3 is an intersection point between the radially outer end face of the second through hole 62 and the bisector CP10.
  • the width in the circumferential direction D2 of the first through hole 61 is W1
  • the width in the circumferential direction D2 of the base portion 11a22 of the teeth 11a2 is W2
  • the width in the circumferential direction D2 of the second through hole 62 is W3
  • the width W1 is narrower than the width W2 and wider than the width W3.
  • the through-hole group 6B has a shape in which the width in the circumferential direction D2 is gradually reduced toward the outside in the radial direction D3.
  • the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is adjusted by adjusting the width W1 of the first through hole 61.
  • the cogging torque that is reduced and caused by the variation in the magnetic force of the permanent magnet 23 is reduced by adjusting the width W ⁇ b> 3 of the second through hole 62.
  • the stator core 11 using the stator core piece 11F similarly to the first groove 31 and the second groove 32 shown in FIG.
  • the stator core 11 can be easily manufactured.
  • the stator core piece 11E shown in FIG. 8 has three through holes provided in the teeth 11a2
  • the stator core piece 11F shown in FIG. 9 has two through holes provided in the teeth 11a2. Therefore, the number of through holes can be reduced. Therefore, the stator core 11 using the stator core piece 11F shown in FIG.
  • FIG. 10 is a view showing a seventh modification of the stator core piece shown in FIG. A tooth 3a and a through hole 6C are formed in the teeth 11a2 of the stator core piece 11G shown in FIG. 10 instead of the groove 3 shown in FIG.
  • the groove 3D is formed in the center portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21.
  • 6 C of through-holes are formed in the center part in the circumferential direction D2 of the front-end
  • the through hole 6C is formed on the back yoke 11a1 side of the groove 3D in the radial direction D3.
  • a corner 5 is formed at the tip 11a21.
  • the corner portion 5 is formed between the inner peripheral portion 4 of the tip end portion 11a21 and the groove 3D.
  • the width W4 is , Narrower than width W5.
  • the width W4 is equal to the maximum width from the corner portion 5 between the inner peripheral surface of the tip end portion 11a21 and the groove 3D to the outside in the radial direction of the through hole 6C.
  • the width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22.
  • the first intersection point IP1 is an intersection point between the bisector CP10 and the virtual curve 11a4.
  • the radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point.
  • the radial width up to IP3 is the second width (W4), the second width is narrower than the first width.
  • the third intersection point IP3 is an intersection point between the radially outer end face of the through hole 6C and the bisector CP10.
  • width in the circumferential direction D2 of the groove 3D is W1
  • width in the circumferential direction D2 of the base portion 11a22 of the teeth 11a2 is W2
  • the width in the circumferential direction D2 of the through hole 6C is W3
  • the width W1 is larger than the width W2. Narrow and wider than width W3.
  • the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W1 of the groove 3D.
  • the width W ⁇ b> 3 of the hole 6 ⁇ / b> C the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is reduced.
  • the shape of the through-hole 6C and the groove 3D can be made a simple rectangle, like the first groove 31 and the second groove 32 shown in FIG. Therefore, the mold can be easily manufactured, and the stator core 11 can be easily manufactured.
  • the gap WD density is reduced by making the width W1 of the groove 3D larger than the width W3 of the through hole 6C, thereby minimizing torque reduction. To the limit.
  • FIG. 11 is a view showing an eighth modification of the stator core piece shown in FIG.
  • two grooves 3E and through holes 6D are formed instead of the grooves 3 shown in FIG.
  • the two grooves 3E and the through-hole 6D are formed in the center portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21.
  • the through hole 6D is provided between the two grooves 3E, and the two grooves 3E and the through hole 6D are arranged in the order of the groove 3E, the through hole 6D, and the groove 3E in the circumferential direction D2.
  • a corner portion 5 is formed between the inner peripheral portion 4 of the tip portion 11a21 and the groove 3E.
  • the width from the end face on the back yoke 11a1 side of the through hole 6D in the radial direction D3 to the corner portion 5 is W41
  • the width from the bottom surface 3E1 to the corner portion 5 of the groove 3E in the radial direction D3 is W42
  • the width W4 is equal to the maximum width from the corner portion 5 between the inner peripheral surface of the tip end portion 11a21 and the groove 3E to the radially outer side of the through hole 6D.
  • the width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22.
  • the first intersection point IP1 is an intersection point between the bisector CP10 and the inner peripheral surface of the tip end portion 11a21.
  • the radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point.
  • the radial width up to IP3 is the second width (W4), the second width is narrower than the first width.
  • the third intersection point IP3 is an intersection point between the radially outer end face of the through hole 6D and the bisector CP10.
  • the width from one end surface of one groove 3E in the circumferential direction D2 to the other end surface of the other groove 3E in the circumferential direction D2 is W1
  • the width in the circumferential direction D2 of the groove 3E is W11
  • the circumference of the base portion 11a22 of the teeth 11a2 When the width in the direction D2 is W2 and the width of the through hole 6D in the circumferential direction D2 is W3, the width W1 is narrower than the width W2, and the width W3 is narrower than the width W1 and equal to the width W11.
  • the cogging torque caused by the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W1 including the two grooves 3E.
  • the width W3 of the through hole 6D By adjusting the width W3 of the through hole 6D, the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is reduced.
  • the shapes of the through holes 6D and the grooves 3E can be made into a simple rectangle, similarly to the first groove 31 and the second groove 32 shown in FIG. Therefore, the mold can be easily manufactured, and the stator core 11 can be easily manufactured.
  • the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is further reduced by providing the plurality of grooves 3E.
  • FIG. FIG. 12 is a perspective view of a stator core according to the second embodiment.
  • the stator core 1A includes a plurality of stator core pieces 11J instead of the plurality of stator core pieces 11a shown in FIG.
  • Grooves 3 shown in FIG. 3 are formed at a plurality of locations in the tip 11a21 of the teeth 11a2 of the stator core piece 11J.
  • Each of the plurality of grooves 3 is arranged to be separated from each other in the axial direction D1.
  • the stator core piece 11J includes a first steel plate group 7a constituted by a plurality of thin plates in which the grooves 3 are formed, and a second steel plate group 7b constituted by a plurality of thin plates in which the grooves are not formed.
  • the layers are alternately stacked in the axial direction D1.
  • the first groove 31 and the second groove shown in FIG. 3 are reversed so that the phases of the cogging torque generated in the first steel plate group 7a and the cogging torque generated in the second steel plate group 7b are reversed.
  • the width of each groove 32 in the circumferential direction D2 is adjusted.
  • the phase and amplitude of the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is adjusted by the width W1 of the first groove 31, and the phase and amplitude of the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23. Is adjusted by the width W3 of the second groove 32.
  • the amplitude of the cogging torque whose phase is reversed in each tooth is adjusted, and the cogging torque generated in each tooth is adjusted. Addition reduces the cogging torque of the entire stator.
  • the groove 3 is partially formed in the distal end portion 11a21, so that the gap magnetic flux density is higher than that in the case where the groove 3 is formed from one end to the other end in the axial direction D1 of the distal end portion 11a21. The effect is that the decrease is suppressed and the torque is improved.
  • three grooves 3 are formed from one end to the other end of the tip end portion 11a21 in the axial direction D1, but the number of grooves 3 is limited to the illustrated example as long as the number is three or more. is not.
  • the example in which the groove 3 is formed has been described.
  • the groove shown in FIGS. 4 to 6 or the through hole shown in FIGS. The same effect can be obtained even when two or more tip portions 11a21 in the direction D1 are formed from one end to the other end.
  • the example in which the groove 3 is formed has been described.
  • the set of the groove and the through-hole shown in FIG. 10 or 11 is replaced with one end of the tip end portion 11a21 in the axial direction D1. Even when two or more are formed from the first to the other end, the same effect can be obtained.
  • the grooves or the through holes described in the first and second embodiments are linear. The same effect can be obtained when applied to a stator of a motor.
  • the groove or the through hole is formed at the center portion in the circumferential direction D2 of the tooth tip portion, but the groove or the through hole is located at a position near the end portion in the circumferential direction D2 of the tooth tip portion. Even if it is formed, the same effect can be obtained as long as the width of the groove or the through hole in the circumferential direction D2 is gradually narrowed toward the outside or the inside of the radial direction D3.
  • the groove or the through hole is formed symmetrically in the circumferential direction D2 with respect to the center portion in the circumferential direction D2 of the tooth tip, but the width of the groove or the through hole in the circumferential direction D2 is The same effect can be obtained even if the shape is asymmetrical as long as the shape becomes narrower stepwise toward the outside or inside of the radial direction D3.
  • stator core configured by connecting a plurality of stator core pieces in a ring shape
  • stator core configured by a plurality of stator core pieces
  • a stator core formed by stacking the stator core pieces punched out into a joint, a joint wrap core in which a part of the stator core is connected, a joint wrap core in which the stator core partially overlaps
  • the groove or the through-hole having a shape in which the width in the circumferential direction D2 of the groove or the through-hole is gradually reduced toward the outside or the inside in the radial direction D3.
  • FIG. 13 is a first diagram showing the relationship between the cogging torque generated in the rotor according to the first and second embodiments and the groove width.
  • the vertical axis in FIG. 13 represents the cogging torque T1 caused by the variation in the magnetic force of the magnet
  • the horizontal axis in FIG. 13 represents the ratio of the width W3 of the second groove 32 shown in FIG. It is represented by.
  • FIG. 14 is a second diagram showing the relationship between the cogging torque generated in the rotor according to the first and second embodiments and the groove width.
  • the vertical axis in FIG. 14 represents the cogging torque T2 generated due to the combination of the number of magnetic poles and the number of slots
  • the horizontal axis in FIG. 14 represents the width W1 of the first groove 31 shown in FIG. Is expressed as a ratio.
  • the permeance distribution of the gap changes, and the amplitude and phase of cogging torque caused by the permeance change.
  • the slope of the cogging torque changes when the width W1 of the first groove 31 is 0.4 [p.u] to 0.7 [p.u].
  • the relationship between the cogging torque and the groove width is considered, and the width of the groove or the through hole is set.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • stator 1 stator, 2 rotor, 3, 3A, 3B, 3D, 3E groove, 3B1, 3E1, 31a, 32a, 33a bottom surface, 3C groove group, 4, inner periphery, 5, 51, 52 corner, 6, 6C , 6D through-hole, 6A, 6B through-hole group, 6a first region, 6b second region, 6c, 6d end face, 7a first steel plate group, 7b second steel plate group, 8-wire, 11 stator core 11a, 11A, 11B, 11C, 11D, 11E, 11F, 11G, 11H, 11J Stator core piece, 11a1 back yoke, 11a1a inner peripheral side, 11a22a boundary, 11a11 outer peripheral part, 11a111 peripheral direction center, 11a2 teeth, 11a21 Tip, 11a22 base, 11a23 root, 11a3 slot, 11a4 virtual curve, 12 windings, 21 rotor core , 22 shaft, 23 permanent magnet, 24 magnetic pole, 31 first groove, 32 second groove

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The present invention is characterized in that: a plurality of stator core pieces (11a) constituting an annular stator core are configured from a back yoke (11a1) and teeth (11a2) provided on the inner peripheral side of the back yoke (11a1); the teeth (11a2) are provided with a base section (11a22) extending from the peripheral center of the back yoke (11a1) in the direction toward a central axis, and a tip section (11a21) provided on the inner peripheral side of the base section (11a22); on an inner peripheral section of the tip section (11a21), a groove (3) is formed to have a shape in which the circumferential width thereof changes in stages toward the outside in a radial direction of the stator core; and when the width in the radius vector direction from a first intersection point (IP1) to a second intersection point (IP2) is a first width, and the width in the radius vector direction from the first intersection point (IP1) to a third intersection point (IP3) is a second width, the second width is narrower than the first width.

Description

固定子コア片及び回転電機Stator core piece and rotating electric machine
 本発明はバックヨークとバックヨークの内周側に設けられる複数のティースとで構成される固定子コア片及び回転電機に関する。 The present invention relates to a stator core piece composed of a back yoke and a plurality of teeth provided on the inner peripheral side of the back yoke, and a rotating electrical machine.
 特許文献1に開示される回転電機の固定子鉄心は、ヨークとヨークに設けられる複数のティースとを備え、トルク脈動による振動低減のためにティースの径方向内側には、固定子鉄心の中心に向かって開口する切欠きが形成されている。回転電機の径方向における切欠きの幅は、回転電機の中心軸の周方向における切欠きの幅よりも広い。 A stator iron core of a rotating electrical machine disclosed in Patent Document 1 includes a yoke and a plurality of teeth provided on the yoke, and is arranged at the center of the stator iron core on the radially inner side of the teeth to reduce vibration due to torque pulsation. A notch that opens toward the top is formed. The width of the notch in the radial direction of the rotating electrical machine is wider than the width of the notch in the circumferential direction of the central axis of the rotating electrical machine.
特許第4114372号公報Japanese Patent No. 4114372
 しかしながら、特許文献1に開示される固定子鉄心では、磁極数及びスロット数の組合せに起因して生じるコギングトルクと、磁石の磁力のばらつきに起因して生じるコギングトルクとの一方しか低減できないという課題があった。 However, in the stator core disclosed in Patent Document 1, there is a problem that only one of the cogging torque generated due to the combination of the number of magnetic poles and the number of slots and the cogging torque generated due to variation in the magnetic force of the magnet can be reduced. was there.
 本発明は、上記に鑑みてなされたものであって、磁極数及びスロット数の組合せに起因して生じるコギングトルクと、磁石の磁力のばらつきに起因して生じるコギングトルクとの双方を低減できる固定子コア片を得ることを目的とする。 The present invention has been made in view of the above, and is capable of reducing both the cogging torque generated due to the combination of the number of magnetic poles and the number of slots and the cogging torque generated due to variations in the magnetic force of the magnet. Aim to obtain child core pieces.
 上述した課題を解決し、目的を達成するために、本発明の固定子コア片は、環状の固定子コアを構成する複数の固定子コア片であって、固定子コア片は、バックヨークと、バックヨークの内周側に設けられるティースと、で構成され、ティースは、バックヨークの周方向中心から中心軸方向に伸びる基部と、基部の内周側に設けられる先端部と、を備え、先端部の内周部には、周方向における幅が固定子コアの径方向の外側に向かって段階的に変化する形状の溝が形成され、中心軸方向に垂直な断面内において先端部の内周面の曲線を溝まで伸ばした仮想曲線と先端部を周方向に二等分する二等分線との第1の交点から、基部及び先端部の境界と二等分線との第2の交点までの動径方向の幅を、第1の幅とし、第1の交点から、溝の底面と二等分線との第3の交点までの動径方向の幅を、第2の幅としたとき、第2の幅は、第1の幅よりも狭いことを特徴とする。 In order to solve the above-described problems and achieve the object, the stator core piece of the present invention is a plurality of stator core pieces constituting an annular stator core, and the stator core piece includes a back yoke and A tooth provided on the inner peripheral side of the back yoke, and the tooth includes a base portion extending in the central axis direction from the circumferential center of the back yoke, and a tip portion provided on the inner peripheral side of the base portion, A groove having a shape in which the width in the circumferential direction changes stepwise toward the outer side in the radial direction of the stator core is formed in the inner peripheral portion of the distal end portion. From the first intersection of a virtual curve obtained by extending the circumferential curve to the groove and a bisector that bisects the tip in the circumferential direction, the second of the boundary between the base and the tip and the bisector The radial width to the intersection is the first width, and from the first intersection to the bottom of the groove A third radial width to the intersection with bisector, when the second width, the second width, and wherein the narrower than the first width.
 本発明に係る固定子コア片は、磁極数及びスロット数の組合せに起因して生じるコギングトルクと、磁石の磁力のばらつきに起因して生じるコギングトルクとの双方を低減できるという効果を奏する。 The stator core piece according to the present invention has an effect of reducing both the cogging torque generated due to the combination of the number of magnetic poles and the number of slots and the cogging torque generated due to variations in the magnetic force of the magnet.
実施の形態1に係る固定子コアを備えた回転電機の中心軸の軸線方向と直交する方向の断面図Sectional drawing of the direction orthogonal to the axial direction of the center axis | shaft of the rotary electric machine provided with the stator core which concerns on Embodiment 1 図1に示す固定子コア片の斜視図The perspective view of the stator core piece shown in FIG. 図1に示す固定子コア片を回転電機の中心軸の軸線方向における固定子コアの端面側から見た図The figure which looked at the stator core piece shown in FIG. 1 from the end surface side of the stator core in the axial direction of the central axis of a rotary electric machine 図1に示す固定子コア片の第1の変形例を示す図The figure which shows the 1st modification of the stator core piece shown in FIG. 図1に示す固定子コア片の第2の変形例を示す図The figure which shows the 2nd modification of the stator core piece shown in FIG. 図1に示す固定子コア片の第3の変形例を示す図The figure which shows the 3rd modification of the stator core piece shown in FIG. 図1に示す固定子コア片の第4の変形例を示す図The figure which shows the 4th modification of the stator core piece shown in FIG. 図1に示す固定子コア片の第5の変形例を示す図The figure which shows the 5th modification of the stator core piece shown in FIG. 図1に示す固定子コア片の第6の変形例を示す図The figure which shows the 6th modification of the stator core piece shown in FIG. 図1に示す固定子コア片の第7の変形例を示す図The figure which shows the 7th modification of the stator core piece shown in FIG. 図1に示す固定子コア片の第8の変形例を示す図The figure which shows the 8th modification of the stator core piece shown in FIG. 実施の形態2に係る固定子コアの斜視図The perspective view of the stator core which concerns on Embodiment 2. FIG. 実施の形態1,2に係る回転子で生じるコギングトルクと溝の幅との関係を示す第1の図1st figure which shows the relationship between the cogging torque which arises with the rotor which concerns on Embodiment 1, 2 and the width | variety of a groove | channel. 実施の形態1,2に係る回転子で生じるコギングトルクと溝の幅との関係を示す第2の図2nd figure which shows the relationship between the cogging torque which arises with the rotor which concerns on Embodiment 1, 2 and the width | variety of a groove | channel.
 以下に、本発明の実施の形態に係る固定子コア片及び回転電機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a stator core piece and a rotating electrical machine according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は実施の形態1に係る固定子コアを備えた回転電機の中心軸の軸線方向と直交する方向の断面図である。図2は図1に示す固定子コア片の斜視図である。図3は図1に示す固定子コア片を回転電機の中心軸の軸線方向における固定子コアの端面側から見た図である。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view in a direction orthogonal to the axial direction of the central axis of the rotating electrical machine including the stator core according to the first embodiment. FIG. 2 is a perspective view of the stator core piece shown in FIG. FIG. 3 is a view of the stator core piece shown in FIG. 1 as viewed from the end face side of the stator core in the axial direction of the central axis of the rotating electrical machine.
 図1に示す回転電機100は、固定子1と固定子1の内側に設けられる回転子2とを備える。回転電機100は10極12スロットの電動機である。 A rotating electrical machine 100 shown in FIG. 1 includes a stator 1 and a rotor 2 provided inside the stator 1. The rotating electrical machine 100 is a 10-pole 12-slot motor.
 回転子2は、回転子コア21と回転子コア21に設けられるシャフト22と複数の永久磁石23とを備える。回転子2は、永久磁石23による磁極24の数が10である。 The rotor 2 includes a rotor core 21, a shaft 22 provided on the rotor core 21, and a plurality of permanent magnets 23. In the rotor 2, the number of magnetic poles 24 by the permanent magnet 23 is ten.
 回転子コア21は、不図示の電磁鋼板母材から環状に打ち抜かれた複数の薄板を、環状の固定子コア11の中心軸AXの軸線方向に積層して構成される。固定子コア11の中心軸AXの軸線方向は、図2中に矢印D1で示される方向であり、回転電機100の中心軸の軸線方向と等しい。複数の薄板は、かしめ、溶接又は接着で相互に固定される。回転子コア21と固定子1との間には隙間が確保されている。複数の永久磁石23は、回転子コア21に埋め込まれたものでもよいし、回転子コア21の外周面に設けられたものでもよい。シャフト22は、回転子コア21の軸心部に、焼嵌め、冷嵌め又は圧入されることにより固定される。 The rotor core 21 is configured by laminating a plurality of thin plates punched out from an electromagnetic steel plate base material (not shown) in the axial direction of the central axis AX of the annular stator core 11. The axial direction of the central axis AX of the stator core 11 is the direction indicated by the arrow D1 in FIG. 2 and is equal to the axial direction of the central axis of the rotating electrical machine 100. The plurality of thin plates are fixed to each other by caulking, welding, or bonding. A gap is secured between the rotor core 21 and the stator 1. The plurality of permanent magnets 23 may be embedded in the rotor core 21 or may be provided on the outer peripheral surface of the rotor core 21. The shaft 22 is fixed to the axial center portion of the rotor core 21 by shrink fitting, cold fitting or press fitting.
 固定子1は、複数の固定子コア片11aを環状に連結して構成される固定子コア11と、回転磁界を発生させるコイルを固定子コア11に巻付けて形成される巻線12とを備える。固定子コア片11aは、不図示の電磁鋼板母材からT字状に打ち抜かれた複数枚の薄板を軸線方向D1に積層して構成される。複数の薄板は、かしめ、溶接又は接着で相互に固定される。固定子コア片11aは、軸線方向D1に対して垂直な断面形状が、当該断面形状の二等分線CP10に対して対称である。二等分線CP10は、先端部11a21を周方向D2に二等分する線である。バックヨーク11a1の周方向中心11a111から中心軸AX方向に伸びる線である。周方向中心11a111は、周方向D2におけるバックヨーク11a1の外周部11a11の幅を二等分する線8上に位置する。 The stator 1 includes a stator core 11 configured by annularly connecting a plurality of stator core pieces 11a, and a winding 12 formed by winding a coil that generates a rotating magnetic field around the stator core 11. Prepare. The stator core piece 11a is configured by laminating a plurality of thin plates punched out in a T shape from an electromagnetic steel plate base material (not shown) in the axial direction D1. The plurality of thin plates are fixed to each other by caulking, welding, or bonding. In the stator core piece 11a, the cross-sectional shape perpendicular to the axial direction D1 is symmetric with respect to the bisector CP10 of the cross-sectional shape. The bisector CP10 is a line that bisects the distal end portion 11a21 in the circumferential direction D2. This is a line extending from the circumferential center 11a111 of the back yoke 11a1 in the direction of the central axis AX. The center 11a111 in the circumferential direction is located on the line 8 that bisects the width of the outer peripheral portion 11a11 of the back yoke 11a1 in the circumferential direction D2.
 複数の固定子コア片11aのそれぞれは、バックヨーク11a1と、バックヨーク11a1の内周側11a1aに設けられるティース11a2とを備える。ティース11a2は、バックヨーク11a1から中心軸AXに向かって伸びる。ティース11a2は、バックヨーク11a1の周方向中心11a111から中心軸AX方向に伸びる基部11a22と、基部11a22の内周側に設けられる先端部11a21とを備える。符号11a22aで示す線は、基部11a22と先端部11a21との間の境界を表す。複数のティース11a2のそれぞれは、固定子1の周方向D2に離間して放射状に配列される。周方向D2は固定子コア11の周方向に等しい。固定子1には、隣り合うティース11a2の間の領域にスロット11a3が形成されている。 Each of the plurality of stator core pieces 11a includes a back yoke 11a1 and teeth 11a2 provided on the inner peripheral side 11a1a of the back yoke 11a1. The teeth 11a2 extend from the back yoke 11a1 toward the central axis AX. The teeth 11a2 include a base portion 11a22 extending from the circumferential center 11a111 of the back yoke 11a1 in the central axis AX direction, and a distal end portion 11a21 provided on the inner peripheral side of the base portion 11a22. A line indicated by reference numeral 11a22a represents a boundary between the base portion 11a22 and the distal end portion 11a21. Each of the plurality of teeth 11a2 is radially spaced apart from each other in the circumferential direction D2 of the stator 1. The circumferential direction D2 is equal to the circumferential direction of the stator core 11. In the stator 1, a slot 11a3 is formed in a region between adjacent teeth 11a2.
 図2及び図3には図1に示す複数の固定子コア片11aの内の1つが示される。ティース11a2は、バックヨーク11a1から中心軸AXに向かって伸びる基部11a22と先端部11a21とを備える。先端部11a21は、径方向D3におけるティース11a2の固定子コア中心側に形成される。基部11a22と先端部11a21との間には付け根部11a23が形成される。付け根部11a23は、基部11a22と先端部11a21との境界11a22aに位置する。先端部11a21は、周方向D2に伸びる形状である。先端部11a21の内周部4は、図1に示す回転子2と対向する。 2 and 3 show one of the plurality of stator core pieces 11a shown in FIG. The teeth 11a2 include a base portion 11a22 and a tip portion 11a21 extending from the back yoke 11a1 toward the central axis AX. The tip portion 11a21 is formed on the center side of the stator core of the tooth 11a2 in the radial direction D3. A base portion 11a23 is formed between the base portion 11a22 and the tip portion 11a21. The base portion 11a23 is located at a boundary 11a22a between the base portion 11a22 and the distal end portion 11a21. The tip portion 11a21 has a shape extending in the circumferential direction D2. The inner peripheral portion 4 of the tip portion 11a21 faces the rotor 2 shown in FIG.
 先端部11a21の内周部4には溝3が形成されている。溝3は、先端部11a21の周方向D2における中心部に形成される。溝3は、第1の溝31及び第2の溝32により構成され、周方向D2における幅が径方向D3の外側に向かって段階的に狭くなる形状である。 A groove 3 is formed in the inner peripheral portion 4 of the tip portion 11a21. The groove 3 is formed at the central portion in the circumferential direction D2 of the tip portion 11a21. The groove 3 is constituted by the first groove 31 and the second groove 32, and has a shape in which the width in the circumferential direction D2 is gradually reduced toward the outside in the radial direction D3.
 第1の溝31及び第2の溝32のそれぞれは、図1に示す中心軸AXからバックヨーク11a1の外周部11a11に向かって窪む形状である。第1の溝31は、固定子コア11の中心軸AXの軸線方向D1におけるティース11a2の一端面から他端面まで伸びる。第2の溝32は、第1の溝31の周方向D2における中心部に形成されると共に第1の溝31の径方向D3の外側に形成される。第2の溝32は、固定子コア11の中心軸AXの軸線方向D1におけるティース11a2の一端面から他端面まで伸びる。 Each of the first groove 31 and the second groove 32 has a shape that is recessed from the central axis AX shown in FIG. 1 toward the outer peripheral portion 11a11 of the back yoke 11a1. The first groove 31 extends from one end surface of the teeth 11a2 to the other end surface in the axial direction D1 of the central axis AX of the stator core 11. The second groove 32 is formed at the center of the first groove 31 in the circumferential direction D2 and is formed outside the radial direction D3 of the first groove 31. The second groove 32 extends from one end surface of the teeth 11a2 to the other end surface in the axial direction D1 of the central axis AX of the stator core 11.
 先端部11a21には角部5が形成される。角部5は、先端部11a21の内周部4と第1の溝31との間に形成される。 A corner 5 is formed at the tip 11a21. The corner portion 5 is formed between the inner peripheral portion 4 of the distal end portion 11 a 21 and the first groove 31.
 図3に示すように、第1の溝31の周方向D2における幅をW1とし、ティース11a2の基部11a22の周方向D2における幅をW2とし、第2の溝32の周方向D2における幅をW3としたとき、幅W1は、幅W2よりも狭くかつ幅W3よりも広い。 As shown in FIG. 3, the width in the circumferential direction D2 of the first groove 31 is W1, the width in the circumferential direction D2 of the base portion 11a22 of the teeth 11a2 is W2, and the width in the circumferential direction D2 of the second groove 32 is W3. , The width W1 is narrower than the width W2 and wider than the width W3.
 径方向D3における第2の溝32の底面32aから角部5までの幅をW4とし、径方向D3における付け根部11a23から第1の交点IP1までの幅をW5としたとき、幅W4は、幅W5よりも狭い。幅W4は、溝3の最大深さに等しい。幅W5は、先端部11a21の内周部4から先端部11a21と基部11a22との境界11a22aまでの先端部11a21の径方向最小厚さに等しい。すなわち溝3の最大深さは先端部11a21の径方向最小厚さよりも浅い。第1の交点IP1は、二等分線CP10と仮想曲線11a4との交点である。仮想曲線11a4は、中心軸AX方向に垂直な断面内において先端部11a21の内周面の曲線を溝3まで伸ばした線である。 When the width from the bottom surface 32a of the second groove 32 to the corner 5 in the radial direction D3 is W4 and the width from the root 11a23 to the first intersection IP1 in the radial direction D3 is W5, the width W4 is Narrower than W5. The width W4 is equal to the maximum depth of the groove 3. The width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the groove 3 is shallower than the minimum radial thickness of the distal end portion 11a21. The first intersection point IP1 is an intersection point between the bisector CP10 and the virtual curve 11a4. The virtual curve 11a4 is a line obtained by extending the curve of the inner peripheral surface of the tip end portion 11a21 to the groove 3 in a cross section perpendicular to the direction of the central axis AX.
 第1の交点IP1から、境界11a22aと二等分線CP10との第2の交点IP2までの動径方向の幅を、第1の幅(W5)とし、第1の交点IP1から第3の交点IP3までの動径方向の幅を、第2の幅(W4)としたとき、第2の幅は、第1の幅よりも狭い。第3の交点IP3は、溝3の底面32aと二等分線CP10との交点である。 The radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point. When the radial width up to IP3 is the second width (W4), the second width is narrower than the first width. The third intersection point IP3 is an intersection point between the bottom surface 32a of the groove 3 and the bisector CP10.
 実施の形態1に係る固定子コア11によれば、溝3の周方向D2における幅を径方向D3の外側に向かって段階的に狭くすることにより、磁極数及びスロット数の組合せに起因して生じるコギングトルクと、永久磁石23の磁力のばらつきに起因して生じるコギングトルクとの両方を低減することができる。磁極数及びスロット数の組合せに起因して生じるコギングトルクは、第1の溝31の幅W1を調節することにより低減され、永久磁石23の磁力のばらつきに起因して生じるコギングトルクは、第2の溝32の幅W3を調節することにより低減される。 According to the stator core 11 according to the first embodiment, the width in the circumferential direction D2 of the groove 3 is reduced stepwise toward the outside in the radial direction D3, resulting in a combination of the number of magnetic poles and the number of slots. Both the cogging torque generated and the cogging torque generated due to variations in the magnetic force of the permanent magnet 23 can be reduced. The cogging torque generated due to the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W1 of the first groove 31, and the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is the second This is reduced by adjusting the width W3 of the groove 32.
 具体的には、10極12スロットの回転電機の場合、磁極数及びスロット数の組合せに起因して生じるコギングトルクは、図1に示す回転子2が1回転する際、60次及び120次といった次数で発生する。60次は10及び12の最小公倍数である。また10極12スロットの回転電機の場合、永久磁石23の磁力のばらつきに起因して生じるコギングトルクは、図1に示す回転子2が1回転する際、12次及び24次といった次数で発生する。12次及び24次はスロット数の整数倍である。 Specifically, in the case of a rotating machine with 10 poles and 12 slots, the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is 60th order and 120th order when the rotor 2 shown in FIG. Occurs in order. The 60th order is the least common multiple of 10 and 12. In the case of a 10-pole 12-slot rotating electrical machine, cogging torque generated due to variations in the magnetic force of the permanent magnet 23 is generated in orders such as the 12th order and the 24th order when the rotor 2 shown in FIG. . The 12th and 24th orders are integer multiples of the number of slots.
 実施の形態1に係る固定子コア11によれば、第1の溝31の幅W1を調節することで、60次及び120次といった次数で発生するコギングトルクが低減され、第2の溝32の幅W3を調節することで12次のコギングトルクが低減される。また実施の形態1に係る固定子コア11では、第2の溝32を設けることにより、24次のパーミアンスが増加して24次のコギングトルクは増加するが、溝3の周方向D2における幅を径方向D3に向かって段階的に変化させることにより、パーミアンスの変化がなだらかになるため、24次のコギングトルクが減少する。 According to the stator core 11 according to the first embodiment, by adjusting the width W1 of the first groove 31, the cogging torque generated in the orders such as the 60th order and the 120th order is reduced. The 12th order cogging torque is reduced by adjusting the width W3. Further, in the stator core 11 according to the first embodiment, by providing the second groove 32, the 24th-order permeance increases and the 24th-order cogging torque increases, but the width of the groove 3 in the circumferential direction D2 is increased. By changing stepwise in the radial direction D3, the change in permeance becomes gentle, so the 24th order cogging torque decreases.
 また図1に示す固定子コア11では、径方向D3における第2の溝32の底面32aから角部5までの幅W4を、径方向D3における付け根部11a23から第1の交点IP1までの幅W5よりも狭くすることにより、ギャップ磁束密度の低下によるトルクの低下を防止できる。また図1に示す固定子コア11では、第1の溝31の底面に第2の溝32が形成されているため、先端部11a21の内周部4に第1の溝31及び第2の溝32が個別に形成されている場合に比べて、金型による打ち抜きが容易になる。また図1に示す固定子コア11には、W1>W3の関係が成り立つ形状の溝3が形成されているため、ギャップ磁束密度の低下が抑制され、トルクの低下が抑制される。 Further, in the stator core 11 shown in FIG. 1, the width W4 from the bottom surface 32a of the second groove 32 to the corner portion 5 in the radial direction D3 and the width W5 from the root portion 11a23 to the first intersection point IP1 in the radial direction D3. By making it narrower than this, it is possible to prevent a decrease in torque due to a decrease in gap magnetic flux density. Further, in the stator core 11 shown in FIG. 1, since the second groove 32 is formed on the bottom surface of the first groove 31, the first groove 31 and the second groove are formed in the inner peripheral portion 4 of the tip end portion 11a21. Compared with the case where 32 is formed individually, punching with a mold becomes easier. Further, since the stator core 11 shown in FIG. 1 is formed with the groove 3 having a shape satisfying the relationship of W1> W3, a decrease in gap magnetic flux density is suppressed, and a decrease in torque is suppressed.
 また固定子コア片11aの溝3は、W1>W3×2の関係が成り立つ形状に形成したものでもよい。このように構成することにより、W1>W3の関係が成り立つ形状の溝3が形成されている場合に比べて、ギャップ磁束密度の低下がより一層抑制され、トルクの低下がより一層抑制される。 Further, the groove 3 of the stator core piece 11a may be formed in a shape that satisfies the relationship of W1> W3 × 2. By comprising in this way, compared with the case where the groove | channel 3 of the shape where the relationship of W1> W3 is formed is formed, the fall of a gap magnetic flux density is further suppressed and the fall of a torque is further suppressed.
 図4は図1に示す固定子コア片の第1の変形例を示す図である。図4に示す固定子コア片11Aのティース11a2には、図3に示す溝3の代わりに溝3Aが形成されている。溝3Aは、先端部11a21の内周部4において、先端部11a21の周方向D2における中心部に形成される。溝3Aは、第1の溝31、第2の溝32及び第3の溝33により構成される。溝3Aは、周方向D2における幅が径方向D3の外側に向かって段階的に狭くなる形状であり、周方向D2における幅が3段階に変化する。 FIG. 4 is a view showing a first modification of the stator core piece shown in FIG. A groove 3A is formed in the teeth 11a2 of the stator core piece 11A shown in FIG. 4 instead of the groove 3 shown in FIG. The groove 3A is formed in the center portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21. The groove 3 </ b> A includes a first groove 31, a second groove 32, and a third groove 33. The groove 3A has a shape in which the width in the circumferential direction D2 becomes gradually smaller toward the outside of the radial direction D3, and the width in the circumferential direction D2 changes in three stages.
 第3の溝33は、第2の溝32の周方向D2における中心部に形成される。第3の溝33は、図1に示す固定子コア11の中心軸AXの軸線方向D1におけるティース11a2の一端面から他端面まで伸びる。 The third groove 33 is formed at the center of the second groove 32 in the circumferential direction D2. The third groove 33 extends from one end surface of the tooth 11a2 to the other end surface in the axial direction D1 of the central axis AX of the stator core 11 shown in FIG.
 第2の溝32の周方向D2における幅をW3とし、第3の溝33の周方向D2における幅をW6としたとき、幅W6は、幅W3よりも狭い。また径方向D3における第3の溝33の底面33aから角部5までの幅をW4とし、径方向D3における付け根部11a23から第1の交点IP1までの幅をW5としたとき、幅W4は、幅W5よりも狭い。幅W4は、溝3Aの最大深さに等しい。幅W5は、先端部11a21の内周部4から先端部11a21と基部11a22との境界11a22aまでの先端部11a21の径方向最小厚さに等しい。すなわち溝3Aの最大深さは先端部11a21の径方向最小厚さよりも浅い。 When the width in the circumferential direction D2 of the second groove 32 is W3 and the width in the circumferential direction D2 of the third groove 33 is W6, the width W6 is narrower than the width W3. When the width from the bottom surface 33a of the third groove 33 to the corner 5 in the radial direction D3 is W4, and the width from the root 11a23 to the first intersection IP1 in the radial direction D3 is W5, the width W4 is Narrower than width W5. The width W4 is equal to the maximum depth of the groove 3A. The width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the groove 3A is shallower than the minimum radial thickness of the tip portion 11a21.
 第1の交点IP1から、境界11a22aと二等分線CP10との第2の交点IP2までの動径方向の幅を、第1の幅(W5)とし、第1の交点IP1から第3の交点IP3までの動径方向の幅を、第2の幅(W4)としたとき、第2の幅は、第1の幅よりも狭い。第3の交点IP3は、溝3Aの底面33aと二等分線CP10との交点である。 The radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point. When the radial width up to IP3 is the second width (W4), the second width is narrower than the first width. The third intersection point IP3 is an intersection point between the bottom surface 33a of the groove 3A and the bisector CP10.
 図4に示す固定子コア片11Aを用いた固定子コア11によれば、永久磁石23の磁力のばらつきに起因して、12次、24次及び60次といったスロット数の整数倍の次数で発生するコギングトルクが低減されると共に、スロット数の整数倍以外の次数で発生するコギングトルクも低減される。 According to the stator core 11 using the stator core piece 11A shown in FIG. 4, due to variations in the magnetic force of the permanent magnet 23, the orders are generated at orders of integer multiples of the number of slots such as 12th order, 24th order and 60th order. And the cogging torque generated at orders other than an integral multiple of the number of slots is reduced.
 図5は図1に示す固定子コア片の第2の変形例を示す図である。図5に示す固定子コア片11Bのティース11a2には、図3に示す溝3の代わりに溝3Bが形成されている。溝3Bは、先端部11a21の内周部4において、先端部11a21の周方向D2における中心部に形成される。溝3Bは、周方向D2における幅が径方向D3の外側に向かって段階的に広くなる形状である。言い換えると溝3Bは、周方向D2における幅が径方向D3の内側に向かって段階的に狭くなる形状である。 FIG. 5 is a view showing a second modification of the stator core piece shown in FIG. In the teeth 11a2 of the stator core piece 11B shown in FIG. 5, a groove 3B is formed instead of the groove 3 shown in FIG. The groove 3B is formed in the center portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21. The groove 3B has a shape in which the width in the circumferential direction D2 gradually increases toward the outside in the radial direction D3. In other words, the groove 3B has a shape in which the width in the circumferential direction D2 becomes narrower in steps toward the inside of the radial direction D3.
 溝3Bのバックヨーク11a1側の周方向D2における幅をW1とし、ティース11a2の基部11a22の周方向D2における幅をW2とし、溝3Bのバックヨーク11a1とは反対側の周方向D2における幅をW3としたとき、幅W1は、幅W2よりも狭くかつ幅W3よりも広い。 The width of the groove 3B in the circumferential direction D2 on the back yoke 11a1 side is W1, the width of the base 11a22 of the teeth 11a2 in the circumferential direction D2 is W2, and the width of the groove 3B in the circumferential direction D2 opposite to the back yoke 11a1 is W3. , The width W1 is narrower than the width W2 and wider than the width W3.
 先端部11a21には角部5が形成される。角部5は、先端部11a21の内周部4と溝3Bとの間に形成される。径方向D3における溝3Bの底面3B1から角部5までの幅をW4とし、径方向D3における付け根部11a23から第1の交点IP1までの幅をW5としたとき、幅W4は、幅W5よりも狭い。幅W4は、溝3Bの最大深さに等しい。幅W5は、先端部11a21の内周部4から先端部11a21と基部11a22との境界11a22aまでの先端部11a21の径方向最小厚さに等しい。すなわち溝3Bの最大深さは先端部11a21の径方向最小厚さよりも浅い。 A corner 5 is formed at the tip 11a21. The corner portion 5 is formed between the inner peripheral portion 4 of the tip portion 11a21 and the groove 3B. When the width from the bottom surface 3B1 of the groove 3B to the corner portion 5 in the radial direction D3 is W4 and the width from the root portion 11a23 to the first intersection point IP1 in the radial direction D3 is W5, the width W4 is larger than the width W5. narrow. The width W4 is equal to the maximum depth of the groove 3B. The width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the groove 3B is shallower than the minimum radial thickness of the tip portion 11a21.
 第1の交点IP1から、境界11a22aと二等分線CP10との第2の交点IP2までの動径方向の幅を、第1の幅(W5)とし、第1の交点IP1から第3の交点IP3までの動径方向の幅を、第2の幅(W4)としたとき、第2の幅は、第1の幅よりも狭い。第3の交点IP3は、溝3Bの底面3B1と二等分線CP10との交点である。 The radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point. When the radial width up to IP3 is the second width (W4), the second width is narrower than the first width. The third intersection point IP3 is an intersection point between the bottom surface 3B1 of the groove 3B and the bisector CP10.
 図5に示す固定子コア片11Bを用いた固定子コア11によれば、永久磁石23の磁力のばらつきに起因して、12次、24次及び60次といったスロット数の整数倍の次数で発生するコギングトルクが低減されると共に、スロット数の整数倍以外の次数で発生するコギングトルクも低減される。また固定子コア片11Bを用いた固定子コア11によれば、幅W1が幅W3よりも広いため、スロット間の漏れ磁束が低減され、高負荷時のトルクの低下が抑制される。具体的に説明すると、高負荷時の回転電機100では、先端部11a21を通って隣接するティース11a2に流れる漏れ磁束が大きくなる。そのためスロット開口幅が大きい回転電機100ではトルクの低下が大きくなる。幅W1が幅W3よりも広い場合、先端部11a21を通って隣接するティース11a2に流れる漏れ磁束がスロット上段部分で抑制されるため、漏れ磁束が小さくなり、トルクの低下が小さくなる。スロット上段部分とは、図2に示すスロット11a3の内、先端部11a21よりも付け根部11a23側の領域に相当する部分である。 According to the stator core 11 using the stator core piece 11B shown in FIG. 5, due to variations in the magnetic force of the permanent magnet 23, the orders are generated at orders of integral multiples of the number of slots such as 12th order, 24th order and 60th order. And the cogging torque generated at orders other than an integral multiple of the number of slots is reduced. Further, according to the stator core 11 using the stator core piece 11B, since the width W1 is wider than the width W3, the leakage magnetic flux between the slots is reduced, and a decrease in torque at high load is suppressed. If demonstrating it concretely, in the rotary electric machine 100 at the time of high load, the leakage magnetic flux which flows into the adjacent teeth 11a2 through the front-end | tip part 11a21 will become large. Therefore, in the rotary electric machine 100 having a large slot opening width, the torque is greatly reduced. When the width W1 is wider than the width W3, the leakage magnetic flux that flows to the adjacent teeth 11a2 through the distal end portion 11a21 is suppressed at the upper portion of the slot, so that the leakage magnetic flux is reduced and the reduction in torque is reduced. The upper slot portion is a portion corresponding to a region closer to the root portion 11a23 than the tip portion 11a21 in the slot 11a3 shown in FIG.
 図6は図1に示す固定子コア片の第3の変形例を示す図である。図6に示す固定子コア片11Cのティース11a2には、図3に示す溝3の代わりに溝群3Cが形成されている。溝群3Cは、先端部11a21の内周部4において、先端部11a21の周方向D2における中心部に形成される。溝群3Cは、先端部11a21の内周部4に形成される2つの第1の溝31と、先端部11a21の内周部4に形成される第2の溝32とにより構成される。 FIG. 6 is a view showing a third modification of the stator core piece shown in FIG. A groove group 3C is formed in the tooth 11a2 of the stator core piece 11C shown in FIG. 6 instead of the groove 3 shown in FIG. The groove group 3C is formed at the central portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21. The groove group 3 </ b> C includes two first grooves 31 formed on the inner peripheral portion 4 of the tip end portion 11 a 21 and a second groove 32 formed on the inner peripheral portion 4 of the tip end portion 11 a 21.
 第2の溝32は2つの第1の溝31の間に設けられ、2つの第1の溝31と第2の溝32とは、周方向D2において、第1の溝31、第2の溝32及び第1の溝31の順で配列される。第1の溝31と第2の溝32とは、周方向D2において互いに離間して配列される。第1の溝31と第2の溝32との間には突起41が形成される。 The second groove 32 is provided between the two first grooves 31, and the two first grooves 31 and the second groove 32 are the first groove 31 and the second groove in the circumferential direction D2. 32 and the first groove 31 are arranged in this order. The first groove 31 and the second groove 32 are arranged apart from each other in the circumferential direction D2. A protrusion 41 is formed between the first groove 31 and the second groove 32.
 先端部11a21の内周部4と第1の溝31との間には、角部51が形成される。先端部11a21の内周部4と第2の溝32との間には、角部52が形成される。 A corner 51 is formed between the inner periphery 4 of the tip 11a21 and the first groove 31. A corner portion 52 is formed between the inner peripheral portion 4 of the distal end portion 11 a 21 and the second groove 32.
 径方向D3における第1の溝31の底面31aから角部51までの幅をW41とし、径方向D3における第2の溝32の底面32aから角部52までの幅をW42とし、径方向D3における付け根部11a23から第1の交点IP1までの幅をW5としたとき、幅W42は、幅W5よりも狭くかつ幅W41よりも広い。幅W42は、第2の溝32の最大深さに等しい。幅W5は、先端部11a21の内周部4から先端部11a21と基部11a22との境界11a22aまでの先端部11a21の径方向最小厚さに等しい。すなわち第2の溝32の最大深さは先端部11a21の径方向最小厚さよりも浅い。 The width from the bottom surface 31a of the first groove 31 to the corner portion 51 in the radial direction D3 is W41, the width from the bottom surface 32a of the second groove 32 to the corner portion 52 in the radial direction D3 is W42, and the width in the radial direction D3. When the width from the base portion 11a23 to the first intersection point IP1 is W5, the width W42 is narrower than the width W5 and wider than the width W41. The width W42 is equal to the maximum depth of the second groove 32. The width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the second groove 32 is shallower than the minimum radial thickness of the tip end portion 11a21.
 第1の交点IP1から、境界11a22aと二等分線CP10との第2の交点IP2までの動径方向の幅を、第1の幅(W5)とし、第1の交点IP1から第3の交点IP3までの動径方向の幅を、第2の幅(W4)としたとき、第2の幅は、第1の幅よりも狭い。第3の交点IP3は、第2の溝32の底面32aと二等分線CP10との交点である。 The radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point. When the radial width up to IP3 is the second width (W4), the second width is narrower than the first width. The third intersection point IP3 is an intersection point between the bottom surface 32a of the second groove 32 and the bisector CP10.
 周方向D2における一方の角部51から他方の角部51までの幅をW1とし、第1の溝31の周方向D2における幅をW11とし、ティース11a2の基部11a22の周方向D2における幅をW2とし、第2の溝32の周方向D2における幅をW3としたとき、幅W1は、幅W2よりも狭く、幅W11は、幅W2よりも狭くかつ幅W3よりも広い。 The width from one corner 51 in the circumferential direction D2 to the other corner 51 is W1, the width in the circumferential direction D2 of the first groove 31 is W11, and the width in the circumferential direction D2 of the base 11a22 of the tooth 11a2 is W2. When the width in the circumferential direction D2 of the second groove 32 is W3, the width W1 is narrower than the width W2, and the width W11 is narrower than the width W2 and wider than the width W3.
 溝群3Cは、図3に示す溝3と同様に、周方向D2における幅が径方向D3の外側に向かって段階的に狭くなる形状である。図6に示す固定子コア片11Cを用いた固定子コア11によれば、第1の溝31の幅W11を調節することで、磁極数及びスロット数の組合せに起因して生じるコギングトルクが低減され、第2の溝32の幅W3を調節することで、永久磁石23の磁力のばらつきに起因して生じるコギングトルクが低減される。また第1の溝31及び第2の溝32の形状が円形及び長方形といった単純な形状ではなく、星形及びV字形状といった複雑な形状である場合、電磁鋼板母材を打ち抜く金型の形状が複雑になり、金型の製作が困難になると共に電磁鋼板母材打ち抜きが困難になる場合がある。図6に示す固定子コア片11Cを用いた固定子コア11によれば、溝群3Cを構成する第1の溝31及び第2の溝32の形状を単純な長方形にできるため、金型の製作が容易であり、また固定子コア11の製作が容易である。 The groove group 3 </ b> C has a shape in which the width in the circumferential direction D <b> 2 gradually decreases toward the outer side in the radial direction D <b> 3, similarly to the groove 3 illustrated in FIG. 3. According to the stator core 11 using the stator core piece 11C shown in FIG. 6, the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W11 of the first groove 31. By adjusting the width W3 of the second groove 32, the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is reduced. Moreover, when the shape of the first groove 31 and the second groove 32 is not a simple shape such as a circle and a rectangle, but a complicated shape such as a star shape and a V shape, the shape of a die for punching the magnetic steel sheet base material is In some cases, it becomes complicated and it becomes difficult to manufacture a metal mold and it is difficult to punch the base material of the electromagnetic steel sheet. According to the stator core 11 using the stator core piece 11C shown in FIG. 6, since the shape of the first groove 31 and the second groove 32 constituting the groove group 3C can be made a simple rectangle, Manufacture is easy and manufacture of the stator core 11 is easy.
 図3から図6では、周方向D2における幅が径方向D3の外側又は内側に向かって段階的に狭くなる形状の溝部が形成されている例を説明した。以下では、周方向D2における幅が径方向D3の外側に向かって段階的に狭くなる形状の貫通孔が形成されている例を説明する。 3 to 6, the example in which the groove portion having a shape in which the width in the circumferential direction D2 becomes narrower in steps toward the outer side or the inner side in the radial direction D3 has been described. Below, the example in which the through-hole of the shape where the width | variety in the circumferential direction D2 becomes narrow in steps toward the outer side of the radial direction D3 is demonstrated.
 図7は図1に示す固定子コア片の第4の変形例を示す図である。図7に示す固定子コア片11Dのティース11a2には、図3に示す溝3の代わりに貫通孔6が形成されている。貫通孔6は、先端部11a21の周方向D2における中心部に形成される。貫通孔6は、図1に示す軸線方向D1におけるティース11a2の一端面及び他端面を貫通する。 FIG. 7 is a view showing a fourth modification of the stator core piece shown in FIG. A through hole 6 is formed in the tooth 11a2 of the stator core piece 11D shown in FIG. 7 instead of the groove 3 shown in FIG. The through hole 6 is formed at the center of the distal end portion 11a21 in the circumferential direction D2. The through hole 6 penetrates the one end surface and the other end surface of the tooth 11a2 in the axial direction D1 shown in FIG.
 貫通孔6は、周方向D2における幅W1が基部11a22の幅W2よりも狭い第1の領域6aと、周方向D2における幅W3が幅W1よりも狭い第2の領域6bとにより構成される。第2の領域6bは、第1の領域6aと連通して、第1の領域6aの周方向D2における中心部に形成される。第2の領域6bは、第1の領域6aよりも基部11a22側に形成される。 The through hole 6 includes a first region 6a having a width W1 in the circumferential direction D2 that is narrower than the width W2 of the base portion 11a22, and a second region 6b having a width W3 in the circumferential direction D2 that is narrower than the width W1. The second region 6b communicates with the first region 6a and is formed at the center of the first region 6a in the circumferential direction D2. The second region 6b is formed closer to the base 11a22 than the first region 6a.
 径方向D3における第2の領域6bの端面6dから、径方向D3における第1の領域6aのティース11a2とは反対側の端面6cまでの幅をW4とし、径方向D3における付け根部11a23から第1の交点IP1までの幅をW5としたとき、幅W4は幅W5よりも狭い。幅W4は、先端部11a21の内周部4から径方向の外側に向かう貫通孔6の最大深さに等しい。幅W5は、先端部11a21の内周部4から先端部11a21と基部11a22との境界11a22aまでの先端部11a21の径方向最小厚さに等しい。すなわち貫通孔6の最大深さは先端部11a21の径方向最小厚さよりも浅い。第1の交点IP1は、二等分線CP10と、先端部11a21の内周面との交点である。 The width from the end surface 6d of the second region 6b in the radial direction D3 to the end surface 6c of the first region 6a in the radial direction D3 on the side opposite to the teeth 11a2 is W4, and from the root 11a23 in the radial direction D3 to the first. When the width to the intersection IP1 is W5, the width W4 is narrower than the width W5. The width W4 is equal to the maximum depth of the through hole 6 that extends radially outward from the inner peripheral portion 4 of the distal end portion 11a21. The width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the through hole 6 is shallower than the minimum radial thickness of the tip end portion 11a21. The first intersection point IP1 is an intersection point between the bisector CP10 and the inner peripheral surface of the tip end portion 11a21.
 第1の交点IP1から、境界11a22aと二等分線CP10との第2の交点IP2までの動径方向の幅を、第1の幅(W5)とし、第1の交点IP1から第3の交点IP3までの動径方向の幅を、第2の幅(W4)としたとき、第2の幅は、第1の幅よりも狭い。第3の交点IP3は、貫通孔6の径方向外側の端面と二等分線CP10との交点である。 The radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point. When the radial width up to IP3 is the second width (W4), the second width is narrower than the first width. The third intersection point IP3 is an intersection point between the radially outer end face of the through hole 6 and the bisector CP10.
 このように貫通孔6は、周方向D2における幅が径方向D3の外側に向かって段階的に狭くなる形状である。図7に示す固定子コア片11Dを用いた固定子コア11によれば、磁極数及びスロット数の組合せに起因して生じるコギングトルクは、第1の領域6aの幅W1を調節することにより低減され、永久磁石23の磁力のばらつきに起因して生じるコギングトルクは、第2の領域6bの幅W3を調節することにより低減される。また図7に示す固定子コア片11Dを用いた固定子コア11によれば、1つのティース11a2に複数の貫通孔を設けることなく、1つの貫通孔6のみ形成すればよいため、金型による打ち抜きが容易になる。また図7に示す固定子コア片11Dを用いた固定子コア11では、図3から図6に示される溝3,3A,3B及び溝群3Cが設けられていないため、溝3,3A,3B及び溝群3Cが設けられている場合に比べて、貫通孔6の製造ばらつきに起因する固定子内径の真円度が低下することがなく、固定子コア11の真円度が向上するという効果を奏する。 Thus, the through-hole 6 has a shape in which the width in the circumferential direction D2 is gradually reduced toward the outside in the radial direction D3. According to the stator core 11 using the stator core piece 11D shown in FIG. 7, the cogging torque caused by the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W1 of the first region 6a. The cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is reduced by adjusting the width W3 of the second region 6b. Further, according to the stator core 11 using the stator core piece 11D shown in FIG. 7, since only one through hole 6 has to be formed without providing a plurality of through holes in one tooth 11a2, it depends on the mold. Punching becomes easy. Further, in the stator core 11 using the stator core piece 11D shown in FIG. 7, the grooves 3, 3A, 3B and the groove group 3C shown in FIGS. 3 to 6 are not provided, so the grooves 3, 3A, 3B are not provided. Compared with the case where the groove group 3C is provided, the roundness of the stator inner diameter caused by the manufacturing variation of the through-hole 6 does not decrease, and the roundness of the stator core 11 is improved. Play.
 図8は図1に示す固定子コア片の第5の変形例を示す図である。図8に示す固定子コア片11Eのティース11a2には、図3に示す溝3の代わりに、貫通孔群6Aが形成されている。貫通孔群6Aは、先端部11a21の周方向D2における中心部に形成される。貫通孔群6Aは、2つの第1の貫通孔61と第2の貫通孔62とにより構成される。第2の貫通孔62は2つの第1の貫通孔61の間に設けられ、2つの第1の貫通孔61と第2の貫通孔62とは、周方向D2において、第1の貫通孔61、第2の貫通孔62及び第1の貫通孔61の順で配列される。第1の貫通孔61と第2の貫通孔62とは、周方向D2において互いに離間して配列される。 FIG. 8 is a view showing a fifth modification of the stator core piece shown in FIG. A through hole group 6A is formed in the tooth 11a2 of the stator core piece 11E shown in FIG. 8 instead of the groove 3 shown in FIG. 6 A of through-hole groups are formed in the center part in the circumferential direction D2 of the front-end | tip part 11a21. The through-hole group 6 </ b> A includes two first through-holes 61 and a second through-hole 62. The second through hole 62 is provided between the two first through holes 61, and the two first through holes 61 and the second through holes 62 are the first through holes 61 in the circumferential direction D <b> 2. The second through hole 62 and the first through hole 61 are arranged in this order. The first through hole 61 and the second through hole 62 are arranged to be separated from each other in the circumferential direction D2.
 図8では、径方向D3における第1の貫通孔61のバックヨーク11a1とは反対側の端面の位置は、第2の貫通孔62に最も近い部分が、径方向D3における第2の貫通孔62のバックヨーク11a1とは反対側の端面の位置と同じである。 In FIG. 8, the position of the end surface of the first through hole 61 opposite to the back yoke 11a1 in the radial direction D3 is the portion closest to the second through hole 62, and the second through hole 62 in the radial direction D3. This is the same as the position of the end surface opposite to the back yoke 11a1.
 径方向D3における第1の貫通孔61のバックヨーク11a1側の端面から、径方向D3における第1の貫通孔61のバックヨーク11a1とは反対側の端面までの幅をW41とし、径方向D3における第2の貫通孔62のバックヨーク11a1側の端面から、径方向D3における第2の貫通孔62のバックヨーク11a1とは反対側の端面までの幅をW42とし、径方向D3における付け根部11a23から第1の交点IP1までの幅をW5としたとき、幅W42は幅W5よりも狭くかつ幅W41よりも広い。幅W42は、先端部11a21の内周部4から径方向の外側に向かう第2の貫通孔62の最大深さに等しい。幅W5は、先端部11a21の内周部4から先端部11a21と基部11a22との境界11a22aまでの先端部11a21の径方向最小厚さに等しい。すなわち第2の貫通孔62の最大深さは先端部11a21の径方向最小厚さよりも浅い。第1の交点IP1は、二等分線CP10と、先端部11a21の内周面との交点である。 The width from the end face on the back yoke 11a1 side of the first through hole 61 in the radial direction D3 to the end face on the opposite side of the back yoke 11a1 of the first through hole 61 in the radial direction D3 is W41, and in the radial direction D3 The width from the end face on the back yoke 11a1 side of the second through hole 62 to the end face on the opposite side of the back yoke 11a1 of the second through hole 62 in the radial direction D3 is W42, and from the root part 11a23 in the radial direction D3. When the width to the first intersection point IP1 is W5, the width W42 is narrower than the width W5 and wider than the width W41. The width W42 is equal to the maximum depth of the second through hole 62 that extends radially outward from the inner peripheral portion 4 of the distal end portion 11a21. The width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum depth of the second through hole 62 is shallower than the minimum radial thickness of the tip end portion 11a21. The first intersection point IP1 is an intersection point between the bisector CP10 and the inner peripheral surface of the tip end portion 11a21.
 第1の交点IP1から、境界11a22aと二等分線CP10との第2の交点IP2までの動径方向の幅を、第1の幅(W5)とし、第1の交点IP1から第3の交点IP3までの動径方向の幅を、第2の幅(W4)としたとき、第2の幅は、第1の幅よりも狭い。第3の交点IP3は、第2の貫通孔62の径方向外側の端面と二等分線CP10との交点である。 The radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point. When the radial width up to IP3 is the second width (W4), the second width is narrower than the first width. The third intersection point IP3 is an intersection point between the radially outer end face of the second through hole 62 and the bisector CP10.
 周方向D2における一方の第1の貫通孔61の一端面から、周方向D2における他方の第1の貫通孔61の他端面までの幅をW1とし、第1の貫通孔61の周方向D2における幅をW11とし、ティース11a2の基部11a22の周方向D2における幅をW2とし、第2の貫通孔62の周方向D2における幅をW3としたとき、幅W1は、幅W2よりも狭く、幅W11は、幅W2よりも狭くかつ幅W3よりも広い。 The width from one end surface of one first through hole 61 in the circumferential direction D2 to the other end surface of the other first through hole 61 in the circumferential direction D2 is W1, and the first through hole 61 in the circumferential direction D2 is defined as W1. When the width is W11, the width in the circumferential direction D2 of the base portion 11a22 of the tooth 11a2 is W2, and the width in the circumferential direction D2 of the second through hole 62 is W3, the width W1 is narrower than the width W2 and the width W11. Is narrower than the width W2 and wider than the width W3.
 このように貫通孔群6Aは、周方向D2における幅が径方向D3の外側に向かって段階的に狭くなる形状である。図8に示す固定子コア片11Eを用いた固定子コア11によれば、磁極数及びスロット数の組合せに起因して生じるコギングトルクは、第1の貫通孔61の幅W11を調節することにより低減され、永久磁石23の磁力のばらつきに起因して生じるコギングトルクは、第2の貫通孔62の幅W3を調節することにより低減される。 Thus, the through-hole group 6A has a shape in which the width in the circumferential direction D2 is gradually reduced toward the outside in the radial direction D3. According to the stator core 11 using the stator core piece 11E shown in FIG. 8, the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is adjusted by adjusting the width W11 of the first through hole 61. The cogging torque that is reduced and caused by the variation in the magnetic force of the permanent magnet 23 is reduced by adjusting the width W <b> 3 of the second through hole 62.
 また固定子コア片11Eを用いた固定子コア11によれば、図6に示す第1の溝31及び第2の溝32と同様に、貫通孔群6Aを構成する第1の貫通孔61及び第2の貫通孔62の形状を単純な長方形にできるため、金型の製作が容易であり、また固定子コア11の製作が容易である。また図8に示す固定子コア片11Eを用いた固定子コア11では、図3から図6に示される溝3,3A,3B及び溝群3Cが設けられていないため、溝3,3A,3B及び溝群3Cが設けられている場合に比べて、貫通孔群6Aの製造ばらつきに起因する固定子内径の真円度が低下することがなく、固定子コア11の真円度が向上するという効果を奏する。 Further, according to the stator core 11 using the stator core piece 11E, similarly to the first groove 31 and second groove 32 shown in FIG. Since the shape of the second through hole 62 can be a simple rectangle, the mold can be easily manufactured, and the stator core 11 can be easily manufactured. Further, in the stator core 11 using the stator core piece 11E shown in FIG. 8, since the grooves 3, 3A, 3B and the groove group 3C shown in FIGS. 3 to 6 are not provided, the grooves 3, 3A, 3B are not provided. Compared with the case where the groove group 3C is provided, the roundness of the stator inner diameter due to the manufacturing variation of the through-hole group 6A does not decrease, and the roundness of the stator core 11 is improved. There is an effect.
 図9は図1に示す固定子コア片の第6の変形例を示す図である。図9に示す固定子コア片11Fのティース11a2には、図3に示す溝3の代わりに貫通孔群6Bが形成されている。貫通孔群6Bは、先端部11a21の周方向D2における中心部に形成される。貫通孔群6Bは、径方向D3に配列される第1の貫通孔61及び第2の貫通孔62により構成される。第1の貫通孔61と第2の貫通孔62とは、径方向D3において互いに離間して配列される。第1の貫通孔61は、先端部11a21の内周部4寄りに設けられ、第2の貫通孔62は、第1の貫通孔61のバックヨーク11a1側に設けられると共に、第1の貫通孔61の周方向D2における中心部に設けられている。 FIG. 9 is a view showing a sixth modification of the stator core piece shown in FIG. A through hole group 6B is formed in the tooth 11a2 of the stator core piece 11F shown in FIG. 9 instead of the groove 3 shown in FIG. The through-hole group 6B is formed at the center portion in the circumferential direction D2 of the tip portion 11a21. The through-hole group 6B includes a first through-hole 61 and a second through-hole 62 that are arranged in the radial direction D3. The first through hole 61 and the second through hole 62 are arranged to be separated from each other in the radial direction D3. The first through hole 61 is provided closer to the inner peripheral portion 4 of the tip end portion 11a21, and the second through hole 62 is provided on the back yoke 11a1 side of the first through hole 61 and the first through hole. 61 is provided at the center in the circumferential direction D2.
 径方向D3における第2の貫通孔62のバックヨーク11a1側の端面から、径方向D3における第1の貫通孔61のバックヨーク11a1とは反対側の端面までの幅をW4とし、径方向D3における付け根部11a23から第1の交点IP1までの幅をW5としたとき、幅W4は、幅W5よりも狭い。幅W4は、第1の貫通孔61の径方向の内側から第2の貫通孔62の径方向の外側までの最大幅に等しい。幅W5は、先端部11a21の内周部4から先端部11a21と基部11a22との境界11a22aまでの先端部11a21の径方向最小厚さに等しい。すなわち第1の貫通孔61の径方向の内側から第2の貫通孔62の径方向の外側までの最大幅は、先端部11a21の径方向最小厚さよりも狭い。第1の交点IP1は、二等分線CP10と、先端部11a21の内周面との交点である。 The width from the end face on the back yoke 11a1 side of the second through hole 62 in the radial direction D3 to the end face on the opposite side of the back yoke 11a1 of the first through hole 61 in the radial direction D3 is W4, and in the radial direction D3. When the width from the base portion 11a23 to the first intersection point IP1 is W5, the width W4 is narrower than the width W5. The width W4 is equal to the maximum width from the inside in the radial direction of the first through hole 61 to the outside in the radial direction of the second through hole 62. The width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. That is, the maximum width from the inside in the radial direction of the first through hole 61 to the outside in the radial direction of the second through hole 62 is narrower than the minimum thickness in the radial direction of the tip end portion 11a21. The first intersection point IP1 is an intersection point between the bisector CP10 and the inner peripheral surface of the tip end portion 11a21.
 第1の交点IP1から、境界11a22aと二等分線CP10との第2の交点IP2までの動径方向の幅を、第1の幅(W5)とし、第1の交点IP1から第3の交点IP3までの動径方向の幅を、第2の幅(W4)としたとき、第2の幅は、第1の幅よりも狭い。第3の交点IP3は、第2の貫通孔62の径方向外側の端面と二等分線CP10との交点である。 The radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point. When the radial width up to IP3 is the second width (W4), the second width is narrower than the first width. The third intersection point IP3 is an intersection point between the radially outer end face of the second through hole 62 and the bisector CP10.
 第1の貫通孔61の周方向D2における幅をW1とし、ティース11a2の基部11a22の周方向D2における幅をW2とし、第2の貫通孔62の周方向D2における幅をW3としたとき、幅W1は、幅W2よりも狭くかつ幅W3よりも広い。 When the width in the circumferential direction D2 of the first through hole 61 is W1, the width in the circumferential direction D2 of the base portion 11a22 of the teeth 11a2 is W2, and the width in the circumferential direction D2 of the second through hole 62 is W3, the width W1 is narrower than the width W2 and wider than the width W3.
 このように貫通孔群6Bは、周方向D2における幅が径方向D3の外側に向かって段階的に狭くなる形状である。図9に示す固定子コア片11Fを用いた固定子コア11によれば、磁極数及びスロット数の組合せに起因して生じるコギングトルクは、第1の貫通孔61の幅W1を調節することにより低減され、永久磁石23の磁力のばらつきに起因して生じるコギングトルクは、第2の貫通孔62の幅W3を調節することにより低減される。また固定子コア片11Fを用いた固定子コア11によれば、図6に示す第1の溝31及び第2の溝32と同様に、貫通孔群6Bを構成する第1の貫通孔61及び第2の貫通孔62の形状を単純な長方形にできるため、金型の製作が容易であり、また固定子コア11の製作が容易である。また図8に示される固定子コア片11Eではティース11a2に設けられる貫通孔が3つであるのに対して、図9に示される固定子コア片11Fではティース11a2に設けられる貫通孔が2つであるため、貫通孔の数を低減できる。従って、図9に示される固定子コア片11Fを用いた固定子コア11は固定子コア11の製作が容易である。 Thus, the through-hole group 6B has a shape in which the width in the circumferential direction D2 is gradually reduced toward the outside in the radial direction D3. According to the stator core 11 using the stator core piece 11F shown in FIG. 9, the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is adjusted by adjusting the width W1 of the first through hole 61. The cogging torque that is reduced and caused by the variation in the magnetic force of the permanent magnet 23 is reduced by adjusting the width W <b> 3 of the second through hole 62. Further, according to the stator core 11 using the stator core piece 11F, similarly to the first groove 31 and the second groove 32 shown in FIG. 6, the first through-hole 61 and the through-hole group 6B, Since the shape of the second through hole 62 can be a simple rectangle, the mold can be easily manufactured, and the stator core 11 can be easily manufactured. Further, the stator core piece 11E shown in FIG. 8 has three through holes provided in the teeth 11a2, whereas the stator core piece 11F shown in FIG. 9 has two through holes provided in the teeth 11a2. Therefore, the number of through holes can be reduced. Therefore, the stator core 11 using the stator core piece 11F shown in FIG.
 図10は図1に示す固定子コア片の第7の変形例を示す図である。図10に示す固定子コア片11Gのティース11a2には、図3に示す溝3の代わりに、溝3D及び貫通孔6Cが形成されている。溝3Dは、先端部11a21の内周部4において、先端部11a21の周方向D2における中心部に形成される。貫通孔6Cは、先端部11a21の周方向D2における中心部に形成される。貫通孔6Cは、径方向D3における溝3Dのバックヨーク11a1側に形成される。 FIG. 10 is a view showing a seventh modification of the stator core piece shown in FIG. A tooth 3a and a through hole 6C are formed in the teeth 11a2 of the stator core piece 11G shown in FIG. 10 instead of the groove 3 shown in FIG. The groove 3D is formed in the center portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21. 6 C of through-holes are formed in the center part in the circumferential direction D2 of the front-end | tip part 11a21. The through hole 6C is formed on the back yoke 11a1 side of the groove 3D in the radial direction D3.
 先端部11a21には角部5が形成される。角部5は、先端部11a21の内周部4と溝3Dとの間に形成される。 A corner 5 is formed at the tip 11a21. The corner portion 5 is formed between the inner peripheral portion 4 of the tip end portion 11a21 and the groove 3D.
 径方向D3における貫通孔6Cのバックヨーク11a1側の端面から角部5までの幅をW4とし、径方向D3における付け根部11a23から第1の交点IP1までの幅をW5としたとき、幅W4は、幅W5よりも狭い。幅W4は、先端部11a21の内周面と溝3Dとの間の角部5から貫通孔6Cの径方向の外側までの最大幅に等しい。幅W5は、先端部11a21の内周部4から先端部11a21と基部11a22との境界11a22aまでの先端部11a21の径方向最小厚さに等しい。第1の交点IP1は、二等分線CP10と仮想曲線11a4との交点である。 When the width from the end face on the back yoke 11a1 side of the through hole 6C in the radial direction D3 to the corner 5 is W4, and the width from the base 11a23 to the first intersection IP1 in the radial direction D3 is W5, the width W4 is , Narrower than width W5. The width W4 is equal to the maximum width from the corner portion 5 between the inner peripheral surface of the tip end portion 11a21 and the groove 3D to the outside in the radial direction of the through hole 6C. The width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. The first intersection point IP1 is an intersection point between the bisector CP10 and the virtual curve 11a4.
 第1の交点IP1から、境界11a22aと二等分線CP10との第2の交点IP2までの動径方向の幅を、第1の幅(W5)とし、第1の交点IP1から第3の交点IP3までの動径方向の幅を、第2の幅(W4)としたとき、第2の幅は、第1の幅よりも狭い。第3の交点IP3は、貫通孔6Cの径方向外側の端面と二等分線CP10との交点である。 The radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point. When the radial width up to IP3 is the second width (W4), the second width is narrower than the first width. The third intersection point IP3 is an intersection point between the radially outer end face of the through hole 6C and the bisector CP10.
 溝3Dの周方向D2における幅をW1とし、ティース11a2の基部11a22の周方向D2における幅をW2とし、貫通孔6Cの周方向D2における幅をW3としたとき、幅W1は、幅W2よりも狭くかつ幅W3よりも広い。 When the width in the circumferential direction D2 of the groove 3D is W1, the width in the circumferential direction D2 of the base portion 11a22 of the teeth 11a2 is W2, and the width in the circumferential direction D2 of the through hole 6C is W3, the width W1 is larger than the width W2. Narrow and wider than width W3.
 図10に示す固定子コア片11Gを用いた固定子コア11によれば、溝3Dの幅W1を調節することで、磁極数及びスロット数の組合せに起因して生じるコギングトルクが低減され、貫通孔6Cの幅W3を調節することで、永久磁石23の磁力のばらつきに起因して生じるコギングトルクが低減される。また固定子コア片11Gを用いた固定子コア11によれば、図6に示す第1の溝31及び第2の溝32と同様に、貫通孔6C及び溝3Dの形状を単純な長方形にできるため、金型の製作が容易であり、また固定子コア11の製作が容易である。また固定子コア片11Gを用いた固定子コア11によれば、貫通孔6Cの幅W3よりも溝3Dの幅W1を大きくすることで、ギャップ磁束密度の低下が抑制され、トルクの低下を最小限に抑えることができる。 According to the stator core 11 using the stator core piece 11G shown in FIG. 10, the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W1 of the groove 3D. By adjusting the width W <b> 3 of the hole 6 </ b> C, the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is reduced. In addition, according to the stator core 11 using the stator core piece 11G, the shape of the through-hole 6C and the groove 3D can be made a simple rectangle, like the first groove 31 and the second groove 32 shown in FIG. Therefore, the mold can be easily manufactured, and the stator core 11 can be easily manufactured. In addition, according to the stator core 11 using the stator core piece 11G, the gap WD density is reduced by making the width W1 of the groove 3D larger than the width W3 of the through hole 6C, thereby minimizing torque reduction. To the limit.
 なお図10では、溝3Dの幅W1が貫通孔6Cの幅W3よりも広い場合の例を説明したが、溝3Dの幅W1は貫通孔6Cの幅W3よりも狭くした場合でも、同様の効果が得られる。 In FIG. 10, the example in which the width W1 of the groove 3D is wider than the width W3 of the through hole 6C has been described. However, the same effect can be obtained even when the width W1 of the groove 3D is narrower than the width W3 of the through hole 6C. Is obtained.
 図11は図1に示す固定子コア片の第8の変形例を示す図である。図11に示す固定子コア片11Hのティース11a2には、図3に示す溝3の代わりに、2つの溝3E及び貫通孔6Dが形成されている。2つの溝3E及び貫通孔6Dは、先端部11a21の内周部4において、先端部11a21の周方向D2における中心部に形成される。貫通孔6Dは、2つの溝3Eの間に設けられ、2つの溝3Eと貫通孔6Dとは、周方向D2において、溝3E、貫通孔6D及び溝3Eの順で配列される。 FIG. 11 is a view showing an eighth modification of the stator core piece shown in FIG. In the teeth 11a2 of the stator core piece 11H shown in FIG. 11, two grooves 3E and through holes 6D are formed instead of the grooves 3 shown in FIG. The two grooves 3E and the through-hole 6D are formed in the center portion in the circumferential direction D2 of the tip end portion 11a21 in the inner peripheral portion 4 of the tip end portion 11a21. The through hole 6D is provided between the two grooves 3E, and the two grooves 3E and the through hole 6D are arranged in the order of the groove 3E, the through hole 6D, and the groove 3E in the circumferential direction D2.
 先端部11a21の内周部4と溝3Eとの間には角部5が形成される。径方向D3における貫通孔6Dのバックヨーク11a1側の端面から角部5までの幅をW41とし、径方向D3における溝3Eの底面3E1から角部5までの幅をW42とし、径方向D3における付け根部11a23から第1の交点IP1までの幅をW5としたとき、幅W41は、幅W5よりも狭くかつ幅W42よりも広い。また幅W42は、径方向D3における貫通孔6Dの幅よりも狭い。幅W4は、先端部11a21の内周面と溝3Eとの間の角部5から貫通孔6Dの径方向の外側までの最大幅に等しい。幅W5は、先端部11a21の内周部4から先端部11a21と基部11a22との境界11a22aまでの先端部11a21の径方向最小厚さに等しい。第1の交点IP1は、二等分線CP10と、先端部11a21の内周面との交点である。 A corner portion 5 is formed between the inner peripheral portion 4 of the tip portion 11a21 and the groove 3E. The width from the end face on the back yoke 11a1 side of the through hole 6D in the radial direction D3 to the corner portion 5 is W41, the width from the bottom surface 3E1 to the corner portion 5 of the groove 3E in the radial direction D3 is W42, and the root in the radial direction D3. When the width from the portion 11a23 to the first intersection IP1 is W5, the width W41 is narrower than the width W5 and wider than the width W42. The width W42 is narrower than the width of the through hole 6D in the radial direction D3. The width W4 is equal to the maximum width from the corner portion 5 between the inner peripheral surface of the tip end portion 11a21 and the groove 3E to the radially outer side of the through hole 6D. The width W5 is equal to the minimum radial thickness of the distal end portion 11a21 from the inner peripheral portion 4 of the distal end portion 11a21 to the boundary 11a22a between the distal end portion 11a21 and the base portion 11a22. The first intersection point IP1 is an intersection point between the bisector CP10 and the inner peripheral surface of the tip end portion 11a21.
 第1の交点IP1から、境界11a22aと二等分線CP10との第2の交点IP2までの動径方向の幅を、第1の幅(W5)とし、第1の交点IP1から第3の交点IP3までの動径方向の幅を、第2の幅(W4)としたとき、第2の幅は、第1の幅よりも狭い。第3の交点IP3は、貫通孔6Dの径方向外側の端面と二等分線CP10との交点である。 The radial width from the first intersection point IP1 to the second intersection point IP2 between the boundary 11a22a and the bisector CP10 is defined as the first width (W5), and the first intersection point IP1 to the third intersection point. When the radial width up to IP3 is the second width (W4), the second width is narrower than the first width. The third intersection point IP3 is an intersection point between the radially outer end face of the through hole 6D and the bisector CP10.
 周方向D2における一方の溝3Eの一端面から、周方向D2における他方の溝3Eの他端面までの幅をW1とし、溝3Eの周方向D2における幅をW11とし、ティース11a2の基部11a22の周方向D2における幅をW2とし、貫通孔6Dの周方向D2における幅をW3としたとき、幅W1は、幅W2よりも狭く、幅W3は、幅W1より狭くかつ幅W11と等しい。 The width from one end surface of one groove 3E in the circumferential direction D2 to the other end surface of the other groove 3E in the circumferential direction D2 is W1, the width in the circumferential direction D2 of the groove 3E is W11, and the circumference of the base portion 11a22 of the teeth 11a2 When the width in the direction D2 is W2 and the width of the through hole 6D in the circumferential direction D2 is W3, the width W1 is narrower than the width W2, and the width W3 is narrower than the width W1 and equal to the width W11.
 図11に示す固定子コア片11Hを用いた固定子コア11によれば、2つの溝3Eを含む幅W1を調節することで、磁極数及びスロット数の組合せに起因して生じるコギングトルクが低減され、貫通孔6Dの幅W3を調節することで、永久磁石23の磁力のばらつきに起因して生じるコギングトルクが低減される。また固定子コア片11Hを用いた固定子コア11によれば、図6に示す第1の溝31及び第2の溝32と同様に、貫通孔6D及び溝3Eの形状を単純な長方形にできるため、金型の製作が容易であり、また固定子コア11の製作が容易である。また固定子コア片11Hを用いた固定子コア11によれば、複数の溝3Eを設けることで、磁極数及びスロット数の組合せに起因して生じるコギングトルクがより一層低減される。 According to the stator core 11 using the stator core piece 11H shown in FIG. 11, the cogging torque caused by the combination of the number of magnetic poles and the number of slots is reduced by adjusting the width W1 including the two grooves 3E. By adjusting the width W3 of the through hole 6D, the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23 is reduced. Further, according to the stator core 11 using the stator core piece 11H, the shapes of the through holes 6D and the grooves 3E can be made into a simple rectangle, similarly to the first groove 31 and the second groove 32 shown in FIG. Therefore, the mold can be easily manufactured, and the stator core 11 can be easily manufactured. Moreover, according to the stator core 11 using the stator core piece 11H, the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is further reduced by providing the plurality of grooves 3E.
実施の形態2.
 図12は実施の形態2に係る固定子コアの斜視図である。固定子コア1Aは、図1に示す複数の固定子コア片11aに代えて、複数の固定子コア片11Jにより構成される。固定子コア片11Jのティース11a2の先端部11a21には、図3に示す溝3が複数箇所に形成されている。複数の溝3のそれぞれは、軸線方向D1において互いに離間して配列される。固定子コア片11Jは、溝3が形成された複数の薄板により構成される第1の鋼板群7aと、当該溝が形成されていない複数の薄板により構成される第2の鋼板群7bとが軸線方向D1に交互に積層されたものである。
Embodiment 2. FIG.
FIG. 12 is a perspective view of a stator core according to the second embodiment. The stator core 1A includes a plurality of stator core pieces 11J instead of the plurality of stator core pieces 11a shown in FIG. Grooves 3 shown in FIG. 3 are formed at a plurality of locations in the tip 11a21 of the teeth 11a2 of the stator core piece 11J. Each of the plurality of grooves 3 is arranged to be separated from each other in the axial direction D1. The stator core piece 11J includes a first steel plate group 7a constituted by a plurality of thin plates in which the grooves 3 are formed, and a second steel plate group 7b constituted by a plurality of thin plates in which the grooves are not formed. The layers are alternately stacked in the axial direction D1.
 固定子コア1Aでは、第1の鋼板群7aで生じるコギングトルクと第2の鋼板群7bで生じるコギングトルクとのそれぞれの位相が反転するように、図3に示す第1の溝31及び第2の溝32のそれぞれの周方向D2における幅が調節される。磁極数及びスロット数の組合せに起因して生じるコギングトルクの位相及び振幅は、第1の溝31の幅W1により調節され、永久磁石23の磁力のばらつきに起因して生じるコギングトルクの位相及び振幅は、第2の溝32の幅W3により調節される。 In the stator core 1A, the first groove 31 and the second groove shown in FIG. 3 are reversed so that the phases of the cogging torque generated in the first steel plate group 7a and the cogging torque generated in the second steel plate group 7b are reversed. The width of each groove 32 in the circumferential direction D2 is adjusted. The phase and amplitude of the cogging torque generated due to the combination of the number of magnetic poles and the number of slots is adjusted by the width W1 of the first groove 31, and the phase and amplitude of the cogging torque generated due to the variation in the magnetic force of the permanent magnet 23. Is adjusted by the width W3 of the second groove 32.
 なお第1の鋼板群7a及び第2の鋼板群7bの軸線方向D1における積厚を調節することにより、各ティースにおいて位相が反転したコギングトルクの振幅が調節され、各ティースで発生するコギングトルクを足し合わせることで固定子全体のコギングトルクが低減される。また先端部11a21に溝3が部分的に形成されることにより、先端部11a21の軸線方向D1における一端から他端まで全体に渡って溝3が形成されている場合に比べて、ギャップ磁束密度の低下が抑制され、トルクが向上するという効果を奏する。 By adjusting the stack thickness in the axial direction D1 of the first steel plate group 7a and the second steel plate group 7b, the amplitude of the cogging torque whose phase is reversed in each tooth is adjusted, and the cogging torque generated in each tooth is adjusted. Addition reduces the cogging torque of the entire stator. Further, the groove 3 is partially formed in the distal end portion 11a21, so that the gap magnetic flux density is higher than that in the case where the groove 3 is formed from one end to the other end in the axial direction D1 of the distal end portion 11a21. The effect is that the decrease is suppressed and the torque is improved.
 なお実施の形態2では、軸線方向D1における先端部11a21の一端から他端までに3つの溝3が形成されているが、溝3の数は2つ以上であれば図示例に限定されるものではない。 In the second embodiment, three grooves 3 are formed from one end to the other end of the tip end portion 11a21 in the axial direction D1, but the number of grooves 3 is limited to the illustrated example as long as the number is three or more. is not.
 また実施の形態2では、溝3が形成されている例を説明したが、溝3に代えて、図4から図6に示される溝、又は図7から図9に示される貫通孔を、軸線方向D1における先端部11a21の一端から他端までに2つ以上形成した場合でも同様の効果が得られる。 In the second embodiment, the example in which the groove 3 is formed has been described. However, instead of the groove 3, the groove shown in FIGS. 4 to 6 or the through hole shown in FIGS. The same effect can be obtained even when two or more tip portions 11a21 in the direction D1 are formed from one end to the other end.
 また実施の形態2では溝3が形成されている例を説明したが、溝3に代えて、図10又は図11に示される溝及び貫通孔の組を、軸線方向D1における先端部11a21の一端から他端までに2つ以上形成した場合でも同様の効果が得られる。 In the second embodiment, the example in which the groove 3 is formed has been described. However, instead of the groove 3, the set of the groove and the through-hole shown in FIG. 10 or 11 is replaced with one end of the tip end portion 11a21 in the axial direction D1. Even when two or more are formed from the first to the other end, the same effect can be obtained.
 なお実施の形態1,2では、回転電機の固定子コアに設けられたティースに溝又は貫通孔を形成した例を説明したが、実施の形態1,2で説明した溝又は貫通孔は、リニアモータの固定子に適用しても同様の効果が得られる。 In the first and second embodiments, the example in which the grooves or the through holes are formed in the teeth provided in the stator core of the rotating electrical machine has been described. However, the grooves or the through holes described in the first and second embodiments are linear. The same effect can be obtained when applied to a stator of a motor.
 また実施の形態1,2では、溝又は貫通孔がティース先端部の周方向D2における中心部に形成されているが、溝又は貫通孔はティース先端部の周方向D2における端部寄りの位置に形成されている場合でも、溝又は貫通孔の周方向D2における幅が径方向D3の外側又は内側に向かって段階的に狭くなる形状であれば、同様の効果が得られる。 In the first and second embodiments, the groove or the through hole is formed at the center portion in the circumferential direction D2 of the tooth tip portion, but the groove or the through hole is located at a position near the end portion in the circumferential direction D2 of the tooth tip portion. Even if it is formed, the same effect can be obtained as long as the width of the groove or the through hole in the circumferential direction D2 is gradually narrowed toward the outside or the inside of the radial direction D3.
 また実施の形態1,2では、溝又は貫通孔をティース先端部の周方向D2における中心部に対して周方向D2に対称に形成されているが、溝又は貫通孔の周方向D2における幅が径方向D3の外側又は内側に向かって段階的に狭くなる形状であれば、非対称であっても同様の効果が得られる。 Further, in the first and second embodiments, the groove or the through hole is formed symmetrically in the circumferential direction D2 with respect to the center portion in the circumferential direction D2 of the tooth tip, but the width of the groove or the through hole in the circumferential direction D2 is The same effect can be obtained even if the shape is asymmetrical as long as the shape becomes narrower stepwise toward the outside or inside of the radial direction D3.
 また実施の形態1,2では、複数の固定子コア片を環状に連結して構成される固定子コアを説明したが、複数の固定子コア片で構成された固定子コアの代わりに、環状に打ち抜かれた固定子コア片を積層して構成される固定子鉄心と、固定子鉄心の一部がつながっているジョイントラップ鉄心と、固定子鉄心が部分的に重なっているジョイントラップ鉄心と、コアバック及びティースが分離する固定子内外分割鉄心との何れでも、溝又は貫通孔の周方向D2における幅が径方向D3の外側又は内側に向かって段階的に狭くなる形状の溝又は貫通孔を形成することにより、同様の効果が得られる。 In the first and second embodiments, the stator core configured by connecting a plurality of stator core pieces in a ring shape has been described. Instead of the stator core configured by a plurality of stator core pieces, A stator core formed by stacking the stator core pieces punched out into a joint, a joint wrap core in which a part of the stator core is connected, a joint wrap core in which the stator core partially overlaps, In any of the core inner and outer divided cores from which the core back and the teeth are separated, the groove or the through-hole having a shape in which the width in the circumferential direction D2 of the groove or the through-hole is gradually reduced toward the outside or the inside in the radial direction D3. By forming, the same effect can be obtained.
 図13は実施の形態1,2に係る回転子で生じるコギングトルクと溝の幅との関係を示す第1の図である。図13の縦軸は、磁石の磁力のばらつきに起因して生じるコギングトルクT1を表し、図13の横軸は、基準値を1として図3などに示す第2の溝32の幅W3を比率で表したものである。図14は実施の形態1,2に係る回転子で生じるコギングトルクと溝の幅との関係を示す第2の図である。図14の縦軸は、磁極数及びスロット数の組合せに起因して生じるコギングトルクT2を表し、図14の横軸は、基準値を1として図3などに示す第1の溝31の幅W1を比率で表したものである。 FIG. 13 is a first diagram showing the relationship between the cogging torque generated in the rotor according to the first and second embodiments and the groove width. The vertical axis in FIG. 13 represents the cogging torque T1 caused by the variation in the magnetic force of the magnet, and the horizontal axis in FIG. 13 represents the ratio of the width W3 of the second groove 32 shown in FIG. It is represented by. FIG. 14 is a second diagram showing the relationship between the cogging torque generated in the rotor according to the first and second embodiments and the groove width. The vertical axis in FIG. 14 represents the cogging torque T2 generated due to the combination of the number of magnetic poles and the number of slots, and the horizontal axis in FIG. 14 represents the width W1 of the first groove 31 shown in FIG. Is expressed as a ratio.
 第2の溝32の幅W3を変化させることにより、ギャップのパーミアンス分布が変化し、パーミアンスが原因で生じるコギングトルクの振幅と位相が変化する。第2の溝32の幅W3が0.4[p.u]よりも小さい領域でのコギングトルクの傾きと、第2の溝32の幅W3が0.4[p.u]よりも大きい領域でのコギングトルクの傾きとが異なることが分かる。また、第1の溝31の幅W1が0.4[p.u]よりも小さい領域でのコギングトルクの傾きと、第1の溝31の幅W1が0.7[p.u]よりも大きい領域でのコギングトルクの傾きとが異なることが分かる。また第1の溝31の幅W1が0.4[p.u]から0.7[p.u]までのコギングトルクの傾きが変化することが分かる。本実施の形態に係る固定子コアでは、このようなコギングトルクと溝幅との関係が考慮され、溝又は貫通孔の幅が設定されている。 By changing the width W3 of the second groove 32, the permeance distribution of the gap changes, and the amplitude and phase of cogging torque caused by the permeance change. The inclination of the cogging torque in the region where the width W3 of the second groove 32 is smaller than 0.4 [pu], and the cogging torque in the region where the width W3 of the second groove 32 is larger than 0.4 [pu]. It can be seen that the inclination is different. Further, the inclination of the cogging torque in the region where the width W1 of the first groove 31 is smaller than 0.4 [pu], and the region in which the width W1 of the first groove 31 is larger than 0.7 [pu]. It can be seen that the slope of the cogging torque is different. It can also be seen that the slope of the cogging torque changes when the width W1 of the first groove 31 is 0.4 [p.u] to 0.7 [p.u]. In the stator core according to the present embodiment, the relationship between the cogging torque and the groove width is considered, and the width of the groove or the through hole is set.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 固定子、2 回転子、3,3A,3B,3D,3E 溝、3B1,3E1,31a,32a,33a 底面、3C 溝群、4 内周部、5,51,52 角部、6,6C,6D 貫通孔、6A,6B 貫通孔群、6a 第1の領域、6b 第2の領域、6c,6d 端面、7a 第1の鋼板群、7b 第2の鋼板群、8 線、11 固定子コア、11a,11A,11B,11C,11D,11E,11F,11G,11H,11J 固定子コア片、11a1 バックヨーク、11a1a 内周側、11a22a 境界、11a11 外周部、11a111 周方向中心、11a2 ティース、11a21 先端部、11a22 基部、11a23 付け根部、11a3 スロット、11a4 仮想曲線、12 巻線、21 回転子コア、22 シャフト、23 永久磁石、24 磁極、31 第1の溝、32 第2の溝、33 第3の溝、41 突起、61 第1の貫通孔、62 第2の貫通孔、100 回転電機、IP1 第1の交点、IP2 第2の交点、IP3 第3の交点。 1 stator, 2 rotor, 3, 3A, 3B, 3D, 3E groove, 3B1, 3E1, 31a, 32a, 33a bottom surface, 3C groove group, 4, inner periphery, 5, 51, 52 corner, 6, 6C , 6D through-hole, 6A, 6B through-hole group, 6a first region, 6b second region, 6c, 6d end face, 7a first steel plate group, 7b second steel plate group, 8-wire, 11 stator core 11a, 11A, 11B, 11C, 11D, 11E, 11F, 11G, 11H, 11J Stator core piece, 11a1 back yoke, 11a1a inner peripheral side, 11a22a boundary, 11a11 outer peripheral part, 11a111 peripheral direction center, 11a2 teeth, 11a21 Tip, 11a22 base, 11a23 root, 11a3 slot, 11a4 virtual curve, 12 windings, 21 rotor core , 22 shaft, 23 permanent magnet, 24 magnetic pole, 31 first groove, 32 second groove, 33 third groove, 41 protrusion, 61 first through hole, 62 second through hole, 100 rotating electrical machine, IP1 first intersection, IP2 second intersection, IP3 third intersection.

Claims (17)

  1.  環状の固定子コアを構成する複数の固定子コア片であって、
     前記固定子コア片は、バックヨークと、前記バックヨークの内周側に設けられるティースと、で構成され、
     前記ティースは、前記バックヨークの周方向中心から中心軸方向に伸びる基部と、前記基部の内周側に設けられる先端部と、を備え、
     前記先端部の内周部には、周方向における幅が前記固定子コアの径方向の外側に向かって段階的に変化する形状の溝が形成され、
     前記中心軸方向に垂直な断面内において前記先端部の内周面の曲線を前記溝まで伸ばした仮想曲線と前記先端部を周方向に二等分する二等分線との第1の交点から、前記基部及び前記先端部の境界と前記二等分線との第2の交点までの動径方向の幅を、第1の幅とし、
     前記第1の交点から、前記溝の底面と前記二等分線との第3の交点までの動径方向の幅を、第2の幅としたとき、
     前記第2の幅は、前記第1の幅よりも狭いことを特徴とする固定子コア片。
    A plurality of stator core pieces constituting an annular stator core,
    The stator core piece is composed of a back yoke and teeth provided on the inner peripheral side of the back yoke,
    The teeth include a base portion extending in the central axis direction from the circumferential center of the back yoke, and a tip portion provided on the inner peripheral side of the base portion,
    A groove having a shape in which the width in the circumferential direction changes stepwise toward the outer side in the radial direction of the stator core is formed in the inner peripheral portion of the tip portion,
    From a first intersection of a virtual curve obtained by extending the curve of the inner peripheral surface of the tip to the groove and a bisector that bisects the tip in the circumferential direction in a cross section perpendicular to the central axis direction. The radial width to the second intersection of the boundary between the base and the tip and the bisector is the first width,
    When the radial width from the first intersection point to the third intersection point of the bottom surface of the groove and the bisector is the second width,
    The stator core piece, wherein the second width is narrower than the first width.
  2.  前記周方向における幅が前記径方向の外側に向かって段階的に狭くなる形状の前記溝は、第1の溝と、前記第1の溝の前記周方向における中心部に形成されると共に前記第1の溝の前記径方向の外側に形成される第2の溝とにより構成され、
     前記第1の溝の前記周方向における幅は、前記第2の溝の前記周方向における幅よりも広いことを特徴とする請求項1に記載の固定子コア片。
    The groove having a shape in which the width in the circumferential direction gradually decreases toward the outer side in the radial direction is formed in a first groove and a central portion of the first groove in the circumferential direction and the first groove. A second groove formed outside the radial direction of the first groove,
    2. The stator core piece according to claim 1, wherein a width of the first groove in the circumferential direction is wider than a width of the second groove in the circumferential direction.
  3.  前記第1の溝の前記周方向における幅は、前記第2の溝の前記周方向における幅の2倍よりも広いことを特徴とする請求項2に記載の固定子コア片。 The stator core piece according to claim 2, wherein a width of the first groove in the circumferential direction is wider than twice a width of the second groove in the circumferential direction.
  4.  環状の固定子コアを構成する複数の固定子コア片であって、
     前記固定子コア片は、バックヨークと、前記バックヨークの内周側に設けられるティースと、で構成され、
     前記ティースは、前記バックヨークの周方向中心から中心軸方向に伸びる基部と、前記基部の内周側に設けられる先端部と、を備え、
     前記先端部の内周部には、周方向に離間して配列される複数の第1の溝と、複数の前記第1の溝のそれぞれの間に設けられる第2の溝とが形成され、
     前記固定子コアの径方向における前記第2の溝の幅は、前記径方向における前記第1の溝の幅よりも広く、
     前記中心軸方向に垂直な断面内において前記先端部の内周面の曲線を前記第2の溝まで伸ばした仮想曲線と前記先端部を周方向に二等分する二等分線との第1の交点から、前記基部及び前記先端部の境界と前記二等分線との第2の交点までの動径方向の幅を、第1の幅とし、
     前記第1の交点から、前記先端部の内周部から前記径方向の外側に向かう前記第2の溝の底面と前記二等分線との第3の交点までの動径方向の幅を、第2の幅としたとき、
     前記第2の幅は、前記第1の幅よりも狭いことを特徴とする固定子コア片。
    A plurality of stator core pieces constituting an annular stator core,
    The stator core piece is composed of a back yoke and teeth provided on the inner peripheral side of the back yoke,
    The teeth include a base portion extending in the central axis direction from the circumferential center of the back yoke, and a tip portion provided on the inner peripheral side of the base portion,
    A plurality of first grooves arranged in a circumferential direction apart from each other and a second groove provided between each of the plurality of first grooves are formed in the inner peripheral portion of the tip portion,
    The width of the second groove in the radial direction of the stator core is wider than the width of the first groove in the radial direction,
    A virtual curve obtained by extending a curve of the inner peripheral surface of the tip portion to the second groove in a cross section perpendicular to the central axis direction and a bisector that bisects the tip portion in the circumferential direction. The radial width from the intersection of the base to the second intersection of the boundary between the base and the tip and the bisector is defined as the first width,
    The radial width from the first intersection point to the third intersection point of the bottom surface of the second groove and the bisector from the inner peripheral portion of the tip portion toward the outer side in the radial direction, With the second width,
    The stator core piece, wherein the second width is narrower than the first width.
  5.  環状の固定子コアを構成する複数の固定子コア片であって、
     前記固定子コア片は、バックヨークと、前記バックヨークの内周側に設けられるティースと、で構成され、
     前記ティースは、前記バックヨークの周方向中心から中心軸方向に伸びる基部と、前記基部の内周側に設けられる先端部と、を備え、
     前記先端部の内周部には、周方向における幅が前記固定子コアの径方向の外側に向かって段階的に変化する形状の貫通孔が形成され、
     前記中心軸方向に垂直な断面内において前記先端部の内周面と前記先端部を周方向に二等分する二等分線との第1の交点から、前記基部及び前記先端部の境界と前記二等分線との第2の交点までの動径方向の幅を、第1の幅とし、
     前記第1の交点から、前記貫通孔の径方向外側の端面と前記二等分線との第3の交点までの動径方向の幅を、第2の幅としたとき、
     前記第2の幅は、前記第1の幅よりも狭いことを特徴とする固定子コア片。
    A plurality of stator core pieces constituting an annular stator core,
    The stator core piece is composed of a back yoke and teeth provided on the inner peripheral side of the back yoke,
    The teeth include a base portion extending in the central axis direction from the circumferential center of the back yoke, and a tip portion provided on the inner peripheral side of the base portion,
    A through-hole having a shape in which the width in the circumferential direction changes stepwise toward the outer side in the radial direction of the stator core is formed in the inner peripheral portion of the tip portion,
    From the first intersection of the inner peripheral surface of the tip and a bisector that bisects the tip in the circumferential direction in a cross section perpendicular to the central axis direction, the boundary between the base and the tip The radial width to the second intersection with the bisector is the first width,
    When the radial width from the first intersection to the third intersection between the radially outer end face of the through-hole and the bisector is the second width,
    The stator core piece, wherein the second width is narrower than the first width.
  6.  環状の固定子コアを構成する複数の固定子コア片であって、
     前記固定子コア片は、バックヨークと、前記バックヨークの内周側に設けられるティースと、で構成され、
     前記ティースは、前記バックヨークの周方向中心から中心軸方向に伸びる基部と、前記基部の内周側に設けられる先端部と、を備え、
     前記先端部の内周部には、周方向に離間して配列される複数の第1の貫通孔と、複数の前記第1の貫通孔のそれぞれの間に設けられる第2の貫通孔とが形成され、
     前記固定子コアの径方向における前記第2の貫通孔の幅は、前記第1の貫通孔の前記径方向における幅よりも広く、
     前記中心軸方向に垂直な断面内において前記先端部の内周面と前記先端部を周方向に二等分する二等分線との第1の交点から、前記基部及び前記先端部の境界と前記二等分線との第2の交点までの動径方向の幅を、第1の幅とし、
     前記第1の交点から、前記第2の貫通孔の径方向外側の端面と前記二等分線との第3の交点までの動径方向の幅を、第2の幅としたとき、
     前記第2の幅は、前記第1の幅よりも狭いことを特徴とする固定子コア片。
    A plurality of stator core pieces constituting an annular stator core,
    The stator core piece is composed of a back yoke and teeth provided on the inner peripheral side of the back yoke,
    The teeth include a base portion extending in the central axis direction from the circumferential center of the back yoke, and a tip portion provided on the inner peripheral side of the base portion,
    A plurality of first through holes arranged in a circumferential direction and a second through hole provided between each of the plurality of first through holes are formed in the inner peripheral portion of the tip portion. Formed,
    The width of the second through hole in the radial direction of the stator core is wider than the width of the first through hole in the radial direction,
    From the first intersection of the inner peripheral surface of the tip and a bisector that bisects the tip in the circumferential direction in a cross section perpendicular to the central axis direction, the boundary between the base and the tip The radial width to the second intersection with the bisector is the first width,
    When the width in the radial direction from the first intersection to the third intersection between the radially outer end face of the second through hole and the bisector is the second width,
    The stator core piece, wherein the second width is narrower than the first width.
  7.  環状の固定子コアを構成する複数の固定子コア片であって、
     前記固定子コア片は、バックヨークと、前記バックヨークの内周側に設けられるティースと、で構成され、
     前記ティースは、前記バックヨークの周方向中心から中心軸方向に伸びる基部と、前記基部の内周側に設けられる先端部と、を備え、
     前記先端部の内周部には、第1の貫通孔と、前記第1の貫通孔と前記バックヨークとの間に設けられる第2の貫通孔とが形成され、
     前記第2の貫通孔の周方向における幅は、前記第1の貫通孔の周方向における幅よりも狭く、
     前記中心軸方向に垂直な断面内において前記先端部の内周面と前記先端部を周方向に二等分する二等分線との第1の交点から、前記基部及び前記先端部の境界と前記二等分線との第2の交点までの動径方向の幅を、第1の幅とし、
     前記第1の交点から、前記第2の貫通孔の径方向外側の端面と前記二等分線との第3の交点までの動径方向の幅を、第2の幅としたとき、
     前記第2の幅は、前記第1の幅よりも狭いことを特徴とする固定子コア片。
    A plurality of stator core pieces constituting an annular stator core,
    The stator core piece is composed of a back yoke and teeth provided on the inner peripheral side of the back yoke,
    The teeth include a base portion extending in the central axis direction from the circumferential center of the back yoke, and a tip portion provided on the inner peripheral side of the base portion,
    A first through hole and a second through hole provided between the first through hole and the back yoke are formed in the inner peripheral part of the tip part,
    The circumferential width of the second through hole is narrower than the circumferential width of the first through hole,
    From the first intersection of the inner peripheral surface of the tip and a bisector that bisects the tip in the circumferential direction in a cross section perpendicular to the central axis direction, the boundary between the base and the tip The radial width to the second intersection with the bisector is the first width,
    When the width in the radial direction from the first intersection to the third intersection between the radially outer end face of the second through hole and the bisector is the second width,
    The stator core piece, wherein the second width is narrower than the first width.
  8.  環状の固定子コアを構成する複数の固定子コア片であって、
     前記固定子コア片は、バックヨークと、前記バックヨークの内周側に設けられるティースと、で構成され、
     前記ティースは、前記バックヨークの周方向中心から中心軸方向に伸びる基部と、前記基部の内周側に設けられる先端部と、を備え、
     前記先端部の内周部には、溝が形成されると共に、前記溝と離間して前記溝と前記バックヨークとの間に設けられる貫通孔が形成され、
     前記溝の周方向における幅は、前記貫通孔の前記周方向における幅よりも広く、又は前記貫通孔の前記周方向における幅よりも狭く、
     前記中心軸方向に垂直な断面内において前記先端部の内周面の曲線を前記溝まで伸ばした仮想曲線と前記先端部を周方向に二等分する二等分線との第1の交点から、前記基部及び前記先端部の境界と前記二等分線との第2の交点までの動径方向の幅を、第1の幅とし、
     前記第1の交点から、前記貫通孔の径方向外側の端面と前記二等分線との第3の交点までの動径方向の幅を、第2の幅としたとき、
     前記第2の幅は、前記第1の幅よりも狭いことを特徴とする固定子コア片。
    A plurality of stator core pieces constituting an annular stator core,
    The stator core piece is composed of a back yoke and teeth provided on the inner peripheral side of the back yoke,
    The teeth include a base portion extending in the central axis direction from the circumferential center of the back yoke, and a tip portion provided on the inner peripheral side of the base portion,
    A groove is formed in the inner peripheral portion of the tip portion, and a through hole provided between the groove and the back yoke is formed apart from the groove,
    The width in the circumferential direction of the groove is wider than the width in the circumferential direction of the through hole, or narrower than the width in the circumferential direction of the through hole,
    From a first intersection of a virtual curve obtained by extending the curve of the inner peripheral surface of the tip to the groove and a bisector that bisects the tip in the circumferential direction in a cross section perpendicular to the central axis direction. The radial width to the second intersection of the boundary between the base and the tip and the bisector is the first width,
    When the radial width from the first intersection to the third intersection between the radially outer end face of the through-hole and the bisector is the second width,
    The stator core piece, wherein the second width is narrower than the first width.
  9.  環状の固定子コアを構成する複数の固定子コア片であって、
     前記固定子コア片は、バックヨークと、前記バックヨークの内周側に設けられるティースと、で構成され、
     前記ティースは、前記バックヨークの周方向中心から中心軸方向に伸びる基部と、前記基部の内周側に設けられる先端部と、を備え、
     前記先端部の内周部には、周方向に離間して配列される複数の溝が形成されると共に、複数の前記溝のそれぞれの間に設けられる貫通孔が形成され、
     前記中心軸方向に垂直な断面内において前記先端部の内周面と前記先端部を周方向に二等分する二等分線との第1の交点から、前記基部及び前記先端部の境界と前記二等分線との第2の交点までの動径方向の幅を、第1の幅とし、
     前記第1の交点から、前記貫通孔の径方向外側の端面と前記二等分線との第3の交点までの動径方向の幅を、第2の幅としたとき、
     前記第2の幅は、前記第1の幅よりも狭いことを特徴とする固定子コア片。
    A plurality of stator core pieces constituting an annular stator core,
    The stator core piece is composed of a back yoke and teeth provided on the inner peripheral side of the back yoke,
    The teeth include a base portion extending in the central axis direction from the circumferential center of the back yoke, and a tip portion provided on the inner peripheral side of the base portion,
    In the inner peripheral portion of the tip portion, a plurality of grooves arranged in a circumferential direction are formed, and through holes provided between each of the plurality of grooves are formed,
    From the first intersection of the inner peripheral surface of the tip and a bisector that bisects the tip in the circumferential direction in a cross section perpendicular to the central axis direction, the boundary between the base and the tip The radial width to the second intersection with the bisector is the first width,
    When the radial width from the first intersection to the third intersection between the radially outer end face of the through-hole and the bisector is the second width,
    The stator core piece, wherein the second width is narrower than the first width.
  10.  前記先端部には、前記固定子コアの軸線方向における前記先端部の一端から他端までに、前記溝が2以上形成されていることを特徴とする請求項1に記載の固定子コア片。 2. The stator core piece according to claim 1, wherein two or more grooves are formed in the tip portion from one end to the other end of the tip portion in the axial direction of the stator core.
  11.  前記先端部には、前記固定子コアの軸線方向における前記先端部の一端から他端までに、複数の前記第1の溝と前記第2の溝との組が2以上形成されていることを特徴とする請求項4に記載の固定子コア片。 Two or more sets of the first groove and the second groove are formed in the tip portion from one end to the other end of the tip portion in the axial direction of the stator core. The stator core piece according to claim 4, wherein
  12.  前記先端部には、前記固定子コアの軸線方向における前記先端部の一端から他端までに、前記貫通孔が2以上形成されていることを特徴とする請求項5に記載の固定子コア片。 6. The stator core piece according to claim 5, wherein two or more through holes are formed in the tip portion from one end to the other end of the tip portion in the axial direction of the stator core. .
  13.  前記先端部には、前記固定子コアの軸線方向における前記先端部の一端から他端までに、複数の前記第1の貫通孔と前記第2の貫通孔との組が2以上形成されていることを特徴とする請求項6に記載の固定子コア片。 Two or more sets of the first through hole and the second through hole are formed in the tip portion from one end to the other end of the tip portion in the axial direction of the stator core. The stator core piece according to claim 6.
  14.  前記先端部には、前記固定子コアの軸線方向における前記先端部の一端から他端までに、前記第1の貫通孔と前記第2の貫通孔との組が2以上形成されていることを特徴とする請求項7に記載の固定子コア片。 Two or more pairs of the first through hole and the second through hole are formed in the tip portion from one end to the other end of the tip portion in the axial direction of the stator core. The stator core piece according to claim 7, characterized in that
  15.  前記先端部には、前記固定子コアの軸線方向における前記先端部の一端から他端までに、前記溝と前記貫通孔との組が2以上形成されていることを特徴とする請求項8に記載の固定子コア片。 The two or more sets of the said groove | channel and the said through-hole are formed in the said front-end | tip part from the one end of the said front-end | tip part in the axial direction of the said stator core to the other end. The described stator core piece.
  16.  前記先端部には、前記固定子コアの軸線方向における前記先端部の一端から他端までに、複数の前記溝と前記貫通孔との組が2以上形成されていることを特徴とする請求項9に記載の固定子コア片。 The two or more sets of the said groove | channel and the said through-hole are formed in the said front-end | tip part from the one end of the said front-end | tip part in the axial direction of the said stator core to the other end. The stator core piece according to 9.
  17.  請求項1から16の何れか一項に記載の複数の固定子コア片を環状に連ねて構成される固定子コアを備えたことを特徴とする回転電機。 A rotating electrical machine comprising a stator core configured by connecting a plurality of stator core pieces according to any one of claims 1 to 16 in a ring shape.
PCT/JP2017/014241 2017-04-05 2017-04-05 Stator core piece and rotary electric machine WO2018185879A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197015172A KR102077593B1 (en) 2017-04-05 2017-04-05 Stator core piece and rotary electric machine
CN201780074495.4A CN110036552B (en) 2017-04-05 2017-04-05 Stator core component piece and rotating electrical machine
PCT/JP2017/014241 WO2018185879A1 (en) 2017-04-05 2017-04-05 Stator core piece and rotary electric machine
JP2017555730A JP6309178B1 (en) 2017-04-05 2017-04-05 Stator core piece and rotating electric machine
TW107105772A TWI672891B (en) 2017-04-05 2018-02-21 Stator core sheet and rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014241 WO2018185879A1 (en) 2017-04-05 2017-04-05 Stator core piece and rotary electric machine

Publications (1)

Publication Number Publication Date
WO2018185879A1 true WO2018185879A1 (en) 2018-10-11

Family

ID=61901969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014241 WO2018185879A1 (en) 2017-04-05 2017-04-05 Stator core piece and rotary electric machine

Country Status (5)

Country Link
JP (1) JP6309178B1 (en)
KR (1) KR102077593B1 (en)
CN (1) CN110036552B (en)
TW (1) TWI672891B (en)
WO (1) WO2018185879A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085030A1 (en) * 2018-10-26 2020-04-30 日本電産株式会社 Surface magnet motor and motor module
WO2021052688A1 (en) * 2019-09-16 2021-03-25 Magna powertrain gmbh & co kg Electrical machine for a motor vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112564320A (en) * 2020-11-30 2021-03-26 安徽美芝精密制造有限公司 Stator core, stator, permanent magnet synchronous motor, compressor and refrigeration equipment
CN113364157B (en) * 2021-06-11 2024-08-23 珠海格力节能环保制冷技术研究中心有限公司 Stator core assembly, stator assembly and motor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56171575U (en) * 1980-05-21 1981-12-18
JP2005237136A (en) * 2004-02-20 2005-09-02 Mitsubishi Electric Corp Motor, enclosed compressor and fan motor
JP2007014192A (en) * 2005-06-28 2007-01-18 Valeo Equip Electric Moteur Rotary electric device having loss reduction means
WO2012032591A1 (en) * 2010-09-06 2012-03-15 三菱電機株式会社 Permanent magnet type rotating electrical machine and electrical power steering device using same
JP2014068495A (en) * 2012-09-27 2014-04-17 Hitachi Automotive Systems Ltd Rotary electric machine and electrically driven power steering device using the same
JP2015192592A (en) * 2014-03-31 2015-11-02 日立オートモティブシステムズエンジニアリング株式会社 Brushless motor and electrically-driven power steering device employing the same
JP2016063728A (en) * 2014-09-22 2016-04-25 株式会社ミツバ Brushless motor
JP2017063599A (en) * 2015-09-01 2017-03-30 ジョンソン エレクトリック ソシエテ アノニム Single phase brushless motor and power tool using the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165391A (en) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd Synchronous motor
JP4114372B2 (en) 2002-03-08 2008-07-09 松下電器産業株式会社 Electric motor
US7414347B2 (en) * 2004-03-23 2008-08-19 Emerson Electric Co. End cap for segmented stator
CN2927464Y (en) * 2006-07-31 2007-07-25 日荣盛电机(深圳)有限公司 Capacitor motor stator chip and rotor chip for fan
CN101626188B (en) * 2008-07-09 2012-11-07 德昌电机(深圳)有限公司 Motor, motor stator and chip of motor stator
CN102064619B (en) * 2009-11-17 2014-08-13 德昌电机(深圳)有限公司 Series motor, series motor stator structure and series motor stator chip structure
WO2012026158A1 (en) * 2010-08-26 2012-03-01 三菱電機株式会社 Rotary electric machine and stator core manufacturing device for manufacturing stator core thereof
TWI454021B (en) * 2011-12-21 2014-09-21 Fang Fu Chang Span is a capacitor running motor
JP2014236576A (en) * 2013-05-31 2014-12-15 日本電産サーボ株式会社 Inner rotor motor
JP2015070663A (en) * 2013-09-27 2015-04-13 アスモ株式会社 Motor
CN103595153B (en) * 2013-11-08 2016-09-28 上海赢双电机有限公司 Optimize seven groove rotary transformers of design oversized slots area
JP2015096024A (en) * 2013-11-14 2015-05-18 アスモ株式会社 Core and motor
CN103746473A (en) * 2014-01-13 2014-04-23 广东美芝精密制造有限公司 Motor for compressor and compressor with motor
CN107112820B (en) * 2014-12-09 2019-07-30 三菱电机株式会社 The manufacturing method of stator, the manufacturing method of rotating electric machine and iron core block
CN204578225U (en) * 2015-05-10 2015-08-19 余姚市爱优特电机有限公司 The assembly structure of a kind of brush motor stator chip and magnet ring
CN205882876U (en) * 2016-06-27 2017-01-11 中山市优威五金制品有限公司 Stator chip that series excitation universal motor used

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56171575U (en) * 1980-05-21 1981-12-18
JP2005237136A (en) * 2004-02-20 2005-09-02 Mitsubishi Electric Corp Motor, enclosed compressor and fan motor
JP2007014192A (en) * 2005-06-28 2007-01-18 Valeo Equip Electric Moteur Rotary electric device having loss reduction means
WO2012032591A1 (en) * 2010-09-06 2012-03-15 三菱電機株式会社 Permanent magnet type rotating electrical machine and electrical power steering device using same
JP2014068495A (en) * 2012-09-27 2014-04-17 Hitachi Automotive Systems Ltd Rotary electric machine and electrically driven power steering device using the same
JP2015192592A (en) * 2014-03-31 2015-11-02 日立オートモティブシステムズエンジニアリング株式会社 Brushless motor and electrically-driven power steering device employing the same
JP2016063728A (en) * 2014-09-22 2016-04-25 株式会社ミツバ Brushless motor
JP2017063599A (en) * 2015-09-01 2017-03-30 ジョンソン エレクトリック ソシエテ アノニム Single phase brushless motor and power tool using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085030A1 (en) * 2018-10-26 2020-04-30 日本電産株式会社 Surface magnet motor and motor module
CN112913114A (en) * 2018-10-26 2021-06-04 日本电产株式会社 Surface magnet type motor and motor module
JPWO2020085030A1 (en) * 2018-10-26 2021-09-09 日本電産株式会社 Surface magnet type motor and motor module
JP7415938B2 (en) 2018-10-26 2024-01-17 ニデック株式会社 Surface magnet motors and motor modules
CN112913114B (en) * 2018-10-26 2024-05-17 日本电产株式会社 Surface magnet type motor and motor module
WO2021052688A1 (en) * 2019-09-16 2021-03-25 Magna powertrain gmbh & co kg Electrical machine for a motor vehicle

Also Published As

Publication number Publication date
KR102077593B1 (en) 2020-02-17
TW201838290A (en) 2018-10-16
CN110036552B (en) 2020-09-22
TWI672891B (en) 2019-09-21
KR20190064662A (en) 2019-06-10
CN110036552A (en) 2019-07-19
JPWO2018185879A1 (en) 2019-04-11
JP6309178B1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP5813254B2 (en) Permanent magnet rotating electric machine
JP6309178B1 (en) Stator core piece and rotating electric machine
JP2014050211A (en) Permanent magnet rotary electric machine
JP3207654U (en) Single phase permanent magnet motor
WO2017195498A1 (en) Rotor and rotary electric machine
JP2010263786A (en) Method of manufacturing rotary electric machine
JP6627082B2 (en) Electric motor
CN109546832B (en) Brushless direct current motor and double-clutch transmission thereof
JP2021029067A (en) Axial gap motor
CN114303302B (en) Permanent magnet embedded motor
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP2009106002A (en) Electromagnetic rotating machine
JP5857837B2 (en) Permanent magnet rotating electric machine
JP6355859B1 (en) Rotor and rotating electric machine
JP5352442B2 (en) Permanent magnet motor
KR101207608B1 (en) Flat type rotating apparatus
JP2009253996A (en) Stator core and stator
CN216564692U (en) Motor rotor and motor
JP6337549B2 (en) Embedded magnet rotor
WO2024057837A1 (en) Rotary electric machine core and rotary electric machine
JP2010088166A (en) Axial air gap electric motor
EP4329152A1 (en) Rotor
JP2018107876A (en) Dual-stator motor
WO2022239851A1 (en) Rotor and rotary electric machine
WO2018230436A1 (en) Rotating electric machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017555730

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015172

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904776

Country of ref document: EP

Kind code of ref document: A1