JP2005237136A - Motor, enclosed compressor and fan motor - Google Patents

Motor, enclosed compressor and fan motor Download PDF

Info

Publication number
JP2005237136A
JP2005237136A JP2004044374A JP2004044374A JP2005237136A JP 2005237136 A JP2005237136 A JP 2005237136A JP 2004044374 A JP2004044374 A JP 2004044374A JP 2004044374 A JP2004044374 A JP 2004044374A JP 2005237136 A JP2005237136 A JP 2005237136A
Authority
JP
Japan
Prior art keywords
rotor
magnetic flux
slit
electric motor
magnet insertion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004044374A
Other languages
Japanese (ja)
Other versions
JP4527998B2 (en
Inventor
Yoshio Takita
芳雄 滝田
Kazuhiko Baba
和彦 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004044374A priority Critical patent/JP4527998B2/en
Publication of JP2005237136A publication Critical patent/JP2005237136A/en
Application granted granted Critical
Publication of JP4527998B2 publication Critical patent/JP4527998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance motor by suppressing the flow of flux causing an increase in loss without the sacrifice of motor performance (torque variation or noise), and to provide an enclosed compressor and a fan motor employing it. <P>SOLUTION: In a motor comprising a rotor having magnets inserted into a plurality of magnet insertion holes, and a stator having teeth applied with a winding, slits for suppressing q-axis flux, i.e. short circuit flux between teeth of the stator, are provided to extend in the radial direction outside the magnet insertion hole and at least on the central side of the rotor substantially in the central part of the magnet insertion hole in the circumferential direction of the rotor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、性能を損なわずに、損失を増大させている磁束の流れを抑制することにより高性能にした電動機及びそれを用いた密閉型圧縮機及びファンモータ等の機器に関するものである。   The present invention relates to a motor having high performance by suppressing the flow of magnetic flux that increases loss without impairing performance, and a device such as a hermetic compressor and a fan motor using the motor.

従来の電動機の回転子は、回転子に挿入された磁石の外周側に同じような形状のスリットを設け、スリットの形状を工夫することにより磁石の磁束に対して横方向の磁束を抑制している(例えば、特許文献1参照)。   A conventional electric motor rotor is provided with a slit having the same shape on the outer peripheral side of the magnet inserted into the rotor, and by devising the shape of the slit, the magnetic flux in the lateral direction is suppressed with respect to the magnetic flux of the magnet. (For example, refer to Patent Document 1).

また、従来の電動機の回転子は、回転子に挿入された磁石の内側に平行したスリットを設け、磁石の磁束の漏れ磁束を抑制している(例えば、特許文献2参照)。   Moreover, the rotor of the conventional electric motor provided the slit parallel to the inner side of the magnet inserted in the rotor, and is suppressing the leakage magnetic flux of the magnetic flux of a magnet (for example, refer patent document 2).

また、従来の電動機の回転子は、回転子に挿入された磁石の外周側に設けたスリットの回転子の外周部を開放して、磁石の磁束に対して横方向の磁束を抑制している(例えば、特許文献3参照)。   Moreover, the rotor of the conventional electric motor is opening the outer peripheral part of the rotor of the slit provided in the outer peripheral side of the magnet inserted in the rotor, and is suppressing the magnetic flux transverse to the magnetic flux of a magnet. (For example, refer to Patent Document 3).

また、従来の電動機の固定子は、固定子のティース先端に溝を設け、形状を工夫することによりマグネットトルクとリラクタンストルクの合成によるトルクを発生させることにより性能を出している(例えば、特許文献4参照)。
特開2001−25194号公報(第5頁、図1) 特開平8−251849号公報(第3頁、図2) 特開平7−336917号公報(第6頁、図1) 特開2000−166135号公報(第5頁、図1)
In addition, a conventional stator of an electric motor has a performance by generating a torque by synthesizing a magnet torque and a reluctance torque by providing a groove at the tip of the stator teeth and devising the shape (for example, patent document) 4).
JP 2001-25194 A (page 5, FIG. 1) JP-A-8-251849 (page 3, FIG. 2) Japanese Patent Laid-Open No. 7-336917 (page 6, FIG. 1) JP 2000-166135 A (page 5, FIG. 1)

従来の電動機では、磁石挿入孔の外周側にスリットを設けて磁石の磁束に対して横方向の磁束を制御したり、マグネットトルクとリラクタンストルクの合成トルクにより特性を向上させる構造が一般的であった。しかし、磁石挿入孔の外周側にスリットを設けただけでは、スリットの外周を磁束が通り抜けるため、磁石の磁束の横方向磁束の制御量が不十分で特性が十分に出せないという問題点があった。   Conventional motors generally have a structure in which a slit is provided on the outer peripheral side of the magnet insertion hole to control the magnetic flux in the transverse direction with respect to the magnetic flux of the magnet, or the characteristics are improved by a combined torque of the magnet torque and the reluctance torque. It was. However, if a slit is provided only on the outer periphery of the magnet insertion hole, the magnetic flux passes through the outer periphery of the slit, so that there is a problem that the amount of control of the lateral magnetic flux of the magnet is insufficient and the characteristics cannot be sufficiently obtained. It was.

また、スリットの回転子の外周部を開放することにより固定子のティース間の漏れ磁束を抑制する構造もあるが、外周部を開放しただけでは、隣接するティース間の漏れ磁束には効果があるが、隣々接のティース間の漏れに対してはスリットの開放していない側から磁束が通り抜けるため抑制効果が上がらないという問題点があった。   There is also a structure that suppresses leakage magnetic flux between the teeth of the stator by opening the outer peripheral portion of the rotor of the slit, but it is effective for leakage magnetic flux between adjacent teeth only by opening the outer peripheral portion. However, there is a problem in that the effect of suppressing the leakage between adjacent teeth does not increase because the magnetic flux passes from the side where the slit is not opened.

また、磁石挿入孔の回転子の内側に平行に配置したスリットを設け、磁石の横方向の漏れ磁束を抑制する構造があるが、磁石の漏れ磁束に対する抑制効果はあるが、隣接する他極の磁石に流れる磁石の磁束も抑制するため、電動機の特性が低下するという問題点があった。   In addition, there is a structure in which a slit arranged in parallel to the inside of the rotor of the magnet insertion hole is provided to suppress the leakage flux in the lateral direction of the magnet. Since the magnetic flux of the magnet flowing through the magnet is also suppressed, there is a problem that the characteristics of the electric motor are deteriorated.

また、マグネットトルクとリラクタンストルクの合成トルクを利用して特性を向上させているが、マグネットトルク以外にリラクタンストルクを使用すると電動機のトルク変動が大きくなり、それによる損失と騒音が増大するという問題点があった。   In addition, the characteristics are improved by using the combined torque of magnet torque and reluctance torque. However, if reluctance torque is used in addition to magnet torque, the torque fluctuation of the motor increases, resulting in increased loss and noise. was there.

この発明は、上記のような問題点を解決するためになされたもので、電動機の性能(トルク変動や騒音など)を損なわずに損失を増大させている磁束の流れを抑制することにより高性能な電動機及びそれを用いた密閉型圧縮機及びファンモータを提供することを目的とする。   The present invention has been made to solve the above-described problems, and has a high performance by suppressing the flow of magnetic flux that increases the loss without impairing the performance (torque fluctuation, noise, etc.) of the electric motor. An object of the present invention is to provide a simple electric motor and a hermetic compressor and fan motor using the same.

この発明に係る電動機は、複数の磁石挿入孔に挿入された磁石を有する回転子と、ティースに巻線が施された固定子とを備えた電動機において、磁石挿入孔の外側と回転子の中心側の少なくとも回転子の中心側に、かつ磁石挿入孔の回転子周方向の少なくとも略中央部に、半径方向に延びて形成され、固定子のティース間の短絡磁束であるq軸磁束を抑制するスリットを設けたことを特徴とする。   An electric motor according to the present invention is an electric motor including a rotor having magnets inserted into a plurality of magnet insertion holes, and a stator having windings on teeth, and the outside of the magnet insertion holes and the center of the rotor. Is formed to extend in the radial direction at least at the center of the rotor and at least approximately in the center of the magnet insertion hole in the circumferential direction of the rotor, and suppresses the q-axis magnetic flux that is a short-circuit magnetic flux between the teeth of the stator. A slit is provided.

この発明に係る電動機は、回転子にスリットを形成するだけで損失を低減することができるため、電磁鋼板の金型を修正するだけで、従来の製造過程を変えることなく電動機の特性を向上することができる。   Since the electric motor according to the present invention can reduce the loss simply by forming a slit in the rotor, the characteristics of the electric motor can be improved without changing the conventional manufacturing process only by correcting the mold of the electromagnetic steel sheet. be able to.

実施の形態1.
図1〜14は実施の形態1を示す図で、図1は電動機の断面図、図2は回転子の断面図、図3は磁石を挿入する前の回転子の断面図、図4は磁石の斜視図、図5〜13は回転子の部分断面図、図14は回転子の断面図である。
Embodiment 1 FIG.
1 to 14 are diagrams showing Embodiment 1, FIG. 1 is a sectional view of an electric motor, FIG. 2 is a sectional view of a rotor, FIG. 3 is a sectional view of a rotor before inserting a magnet, and FIG. 5-13 are partial cross-sectional views of the rotor, and FIG. 14 is a cross-sectional view of the rotor.

図1において、固定子1は、出力軸方向に電磁鋼板が積層された構成で、9個のティース2が形成され、ティース2には巻線3が施されている。巻線3に電流を流すことによりティース2には磁界が発生する。   In FIG. 1, the stator 1 has a configuration in which electromagnetic steel plates are laminated in the output shaft direction, nine teeth 2 are formed, and the teeth 2 are provided with windings 3. A magnetic field is generated in the teeth 2 by passing a current through the winding 3.

回転子4は、固定子1同様電磁鋼板が積層された構成である。q軸磁束12については、後述する。   The rotor 4 has a configuration in which electromagnetic steel plates are laminated like the stator 1. The q-axis magnetic flux 12 will be described later.

図3に示すように、回転子4は、回転子外周近傍に磁石挿入孔5を有し、磁石挿入孔5の略中央部の回転子4の内側に磁石挿入孔5に接続するようにスリット7が形成されている。   As shown in FIG. 3, the rotor 4 has a magnet insertion hole 5 in the vicinity of the outer periphery of the rotor, and is slit so as to be connected to the magnet insertion hole 5 inside the rotor 4 at a substantially central portion of the magnet insertion hole 5. 7 is formed.

磁石6は、図4に示すような矩形の板状のものであり、図2に示すように回転子4の磁石挿入孔5に挿入される。d軸磁束11a、11bは磁石6の磁束などにより作られる。q軸磁束12は、例えば、図1のティース2aがN極でティース2bがS極に磁界が発生したときにティース2aから回転子4の電磁鋼板を通りティース2bに通る磁束で、d軸磁束11と交差するように流れる。   The magnet 6 has a rectangular plate shape as shown in FIG. 4 and is inserted into the magnet insertion hole 5 of the rotor 4 as shown in FIG. The d-axis magnetic fluxes 11a and 11b are generated by the magnetic flux of the magnet 6 or the like. The q-axis magnetic flux 12 is, for example, a magnetic flux that passes from the teeth 2a through the electromagnetic steel plate of the rotor 4 to the teeth 2b when the teeth 2a in FIG. It flows so as to cross 11.

d軸磁束11は、磁石6の磁束と、固定子1のティース2で発生した磁束との吸引反発により回転子4に回転トルクが発生し回転子4を回転するトルクとなる。q軸磁束12は、ティース2間の短絡磁束で、電動機の特性にあまり関係していない。   The d-axis magnetic flux 11 becomes a torque for rotating the rotor 4 by generating a rotational torque in the rotor 4 due to attraction and repulsion between the magnetic flux of the magnet 6 and the magnetic flux generated in the teeth 2 of the stator 1. The q-axis magnetic flux 12 is a short-circuit magnetic flux between the teeth 2 and has little relation to the characteristics of the electric motor.

図2に示すように、d軸磁束11は磁石6の略中央で左右に分かれるように隣接する磁石6に磁束が流れる。q軸磁束12は、磁石6と一方の隣接する他極の磁石6の間を通り、他方の隣接する他極の磁石6との間を通るように流れる。電磁鋼板など磁性体を通る磁束が変化すると、そこに渦電流が発生し、渦電流による損失が発生する。損失の大きさは、磁束の大きさや変化の仕方に大きく関係している。ここで発生した損失は、電動機の性能を劣化させる原因の一つとなる。このため、電動機の特性に関与しないq軸磁束12のような磁束は、極力流さないようにするのがよい。磁束を流さないようにするためには、磁束の通り道(磁路)をなくすか、磁路の抵抗を大きくして磁束を通りにくくするようにすればよい。   As shown in FIG. 2, the d-axis magnetic flux 11 flows in the adjacent magnets 6 so that the d-axis magnetic flux 11 is divided into left and right at the approximate center of the magnets 6. The q-axis magnetic flux 12 flows between the magnet 6 and the magnet 6 of one adjacent other pole, and passes between the magnet 6 of the other adjacent other pole. When the magnetic flux passing through a magnetic material such as an electromagnetic steel sheet changes, an eddy current is generated there and a loss due to the eddy current occurs. The magnitude of the loss is largely related to the magnitude of the magnetic flux and how it changes. The loss generated here is one of the causes that degrade the performance of the electric motor. For this reason, it is preferable to prevent a magnetic flux such as the q-axis magnetic flux 12 that is not involved in the characteristics of the motor from flowing as much as possible. In order to prevent the magnetic flux from flowing, it is only necessary to eliminate the path (magnetic path) of the magnetic flux or increase the resistance of the magnetic path to make it difficult to pass the magnetic flux.

d軸磁束11は、主に磁石6の磁束のため、磁束の大きさは大きいが、磁束の変化がないため損失は非常に小さい。しかし、q軸磁束12は、例えば、ティース2aから異なる磁界を発生するティース2bへの磁束のため、回転子4の回転位置により各ティース2の巻線3に流す電流の大きさや向きを変えるため、各ティース2の磁束の大きさや向きが大きく変化する。そのため、d軸磁束11に較べq軸磁束12による損失が大きくなる。   Since the d-axis magnetic flux 11 is mainly the magnetic flux of the magnet 6, the magnitude of the magnetic flux is large, but the loss is very small because there is no change in the magnetic flux. However, the q-axis magnetic flux 12 is, for example, a magnetic flux from the tooth 2a to the tooth 2b that generates a different magnetic field, so that the magnitude and direction of the current flowing through the winding 3 of each tooth 2 are changed depending on the rotational position of the rotor 4. The magnitude and direction of the magnetic flux of each tooth 2 change greatly. Therefore, the loss due to the q-axis magnetic flux 12 is larger than the d-axis magnetic flux 11.

図2にq軸磁束12の流れの一例を示す。任意の磁石6とその隣接する磁石6の間から、磁石6の内側を通り、磁石6の反対側の隣接する磁石6との間を通る磁路を形成する。そこで、q軸磁束12の磁路中に電磁鋼板に比べて透磁率が小さい非磁性体などを配置することにより、q軸磁束12の磁路の磁気抵抗を大きくすることができる。   FIG. 2 shows an example of the flow of the q-axis magnetic flux 12. A magnetic path is formed between an arbitrary magnet 6 and an adjacent magnet 6, passing through the inside of the magnet 6, and passing between the adjacent magnet 6 on the opposite side of the magnet 6. Therefore, the magnetic resistance of the magnetic path of the q-axis magnetic flux 12 can be increased by disposing a non-magnetic material or the like having a lower magnetic permeability than the magnetic steel sheet in the magnetic path of the q-axis magnetic flux 12.

透磁率の小さい非磁性体として利用しやすい物質として代表的なものは空気であり、スリット7を形成することにより非磁性体である空気の層を容易に形成することができる。それによりq軸磁束12の磁路の磁気抵抗が大きくなり、q軸磁束12を流れにくくすることができる。q軸磁束12の磁路中であれば、どの部分にスリット7を形成しても、磁気抵抗を大きくするとこができるが、特に、磁石6の略中央に形成すると、磁石6によるd軸磁束11の磁路が磁石6の略中央部で左右に分かれるため、d軸磁束11にはほとんど影響を及ぼさない。このため、電動機の特性にはほとんど影響を及ぼすことなくq軸磁束12による損失だけを低減することができる。   A typical material that can be easily used as a non-magnetic material having a low magnetic permeability is air. By forming the slit 7, an air layer that is a non-magnetic material can be easily formed. Thereby, the magnetic resistance of the magnetic path of the q-axis magnetic flux 12 is increased, and the q-axis magnetic flux 12 can be made difficult to flow. If the slit 7 is formed in any part of the magnetic path of the q-axis magnetic flux 12, the magnetic resistance can be increased. Since the magnetic path 11 is divided into right and left at the substantially central portion of the magnet 6, the d-axis magnetic flux 11 is hardly affected. For this reason, only the loss due to the q-axis magnetic flux 12 can be reduced without substantially affecting the characteristics of the electric motor.

また、本実施の形態では、スリット7を磁石挿入孔5と接続するように形成しているが、図5のスリット18、又は図6のスリット22のように、磁石挿入孔5と接続している部分を他の部分より狭くすることにより、磁石6の磁束への影響をさらに抑制することができる。   Further, in the present embodiment, the slit 7 is formed so as to be connected to the magnet insertion hole 5, but it is connected to the magnet insertion hole 5 like the slit 18 in FIG. 5 or the slit 22 in FIG. 6. By narrowing the portion that is present to be narrower than other portions, the influence on the magnetic flux of the magnet 6 can be further suppressed.

また、本実施の形態では、スリット7の幅を一定にしているが図7のスリット19のように回転子の中心部の方を広くすることにより、磁石6の磁束への影響をほとんど及ぼすことなく、q軸磁束12による損失をさらに低減することができる。   Further, in this embodiment, the width of the slit 7 is made constant, but the influence on the magnetic flux of the magnet 6 is almost exerted by widening the central portion of the rotor like the slit 19 in FIG. In addition, the loss due to the q-axis magnetic flux 12 can be further reduced.

また、本実施の形態では、スリット7を磁石挿入孔5と接続するように形成しているが、図8のスリット8のように磁石挿入孔5と接続していなくても、磁石挿入孔5とスリット8の間を極力小さくし磁束飽和により磁気抵抗を大きくすることで同様の効果を奏する。   Further, in the present embodiment, the slit 7 is formed so as to be connected to the magnet insertion hole 5, but the magnet insertion hole 5 is not connected to the magnet insertion hole 5 like the slit 8 in FIG. 8. The same effect can be obtained by making the space between the slit 8 and the slit 8 as small as possible and increasing the magnetic resistance by magnetic flux saturation.

また、本実施の形態では、スリット7を磁石挿入孔5の略中央部にのみに形成したが、スリット7を複数設ければ効果が大きくなる。しかし、d軸磁束11にも影響するため、図9のスリット7a、7bのようにd軸磁束11に略平行に成るように回転子の中心部のスリット間隔を広げることによりd軸磁束11への影響を抑え、q軸磁束12を抑制することができる。   Moreover, in this Embodiment, although the slit 7 was formed only in the approximate center part of the magnet insertion hole 5, if a plurality of the slits 7 are provided, the effect is increased. However, since the d-axis magnetic flux 11 is also affected, the slit distance at the center of the rotor is increased so as to be substantially parallel to the d-axis magnetic flux 11 like the slits 7a and 7b in FIG. The q-axis magnetic flux 12 can be suppressed.

また、本実施の形態では、スリット7を磁石挿入孔5の内側に形成したが、図10のように、q軸磁束は磁石6の内側のq軸磁束12aだけでなく、図1のティース2aとティース2eとの磁束やティース2bとティース2eとの磁束のように、磁石6の外側のq軸磁束12bも存在するため、磁石6の外側にも同様のスリット9を形成すれば更なる効果を奏する。   Further, in the present embodiment, the slit 7 is formed inside the magnet insertion hole 5, but the q-axis magnetic flux is not limited to the q-axis magnetic flux 12a inside the magnet 6 as shown in FIG. Since there is a q-axis magnetic flux 12b on the outside of the magnet 6 as in the case of the magnetic flux between the teeth 2e and 2e and the magnetic flux between the teeth 2b and 2e, further effects can be obtained if a similar slit 9 is formed outside the magnet 6. Play.

磁石挿入孔5と接続し、回転子の外周部を開放するように形成する構造が最も効果的であるが、電動機の構成上、q軸磁束12bの影響がさほど大きくならないようであれば、スリット9は、必ずしも磁石挿入孔5と接続されている必要が無く(例えば、図11)、また、回転子4の外周部分を開放にしておく必要はない(例えば、図12)。また、磁石挿入孔5と接続せず、かつ回転子4の外周部分が開放しないものでもよい(例えば、図13)。電動機の仕様に合わせ形状を変えてもq軸磁束12による損失を低減することができる。また、スリット9の数はいくつでもよい。ただし、スリット9の数を増やす場合、d軸磁束11に影響を及ぼさない数と形状にしなければならない。   The structure that is connected to the magnet insertion hole 5 and is formed so as to open the outer peripheral portion of the rotor is the most effective. However, if the influence of the q-axis magnetic flux 12b does not increase so much, 9 is not necessarily connected to the magnet insertion hole 5 (for example, FIG. 11), and the outer peripheral portion of the rotor 4 is not necessarily open (for example, FIG. 12). Further, it may not be connected to the magnet insertion hole 5 and the outer peripheral portion of the rotor 4 may not be opened (for example, FIG. 13). Even if the shape is changed in accordance with the specifications of the electric motor, loss due to the q-axis magnetic flux 12 can be reduced. Further, the number of slits 9 may be any number. However, when the number of slits 9 is increased, the number and shape must not be affected by the d-axis magnetic flux 11.

また、本実施の形態では、スリットを小判型で説明してあるが、四角や楕円など回転子4に配置される磁石6などにより形状や方向を変えても同様の効果を奏する。   Further, in the present embodiment, the slit is described as an oval type, but the same effect can be obtained even if the shape or direction is changed by a magnet 6 or the like arranged on the rotor 4 such as a square or an ellipse.

また、スリット7を設けることにより、風きり音などの騒音が問題になる場合や強度的に問題がある場合には、図14に示すように、スリット7に空気以外の固体非磁性体23を挿入しても同様の効果を奏すると共に、騒音を低減できる。   In addition, by providing the slit 7, when noise such as wind noise is a problem or when there is a problem in strength, as shown in FIG. 14, a solid nonmagnetic material 23 other than air is provided in the slit 7. Even if it is inserted, the same effect can be obtained and noise can be reduced.

また、圧縮機などに使用した場合、回転子にガス抜き用の孔を必要とする場合があるが、スリット7をガス抜き用の孔と兼用することも可能であり、ガス抜き孔による磁石6の磁束への影響を抑えることができる。   When used in a compressor or the like, the rotor may require a venting hole, but the slit 7 can also be used as a venting hole. The influence on the magnetic flux can be suppressed.

なお、このような回転子を用いた電動機は、q軸磁束による損失が小さいため高効率運転が可能となるので送風機、圧縮機、空気調和機、冷蔵庫等に用いるのに適している。   Note that an electric motor using such a rotor is suitable for use in a blower, a compressor, an air conditioner, a refrigerator, and the like because loss due to q-axis magnetic flux is small and high-efficiency operation is possible.

実施の形態2.
図15〜21は実施の形態2を示す図で、図15は回転子の断面図、図16〜21は回転子の拡大部分断面図である。図に示す符号が、実施の形態1で説明したものと同一又は相当部分については説明を省略する。
Embodiment 2. FIG.
15 to 21 are diagrams showing the second embodiment. FIG. 15 is a sectional view of the rotor, and FIGS. 16 to 21 are enlarged partial sectional views of the rotor. The reference numerals shown in the figure are the same as or equivalent to those described in the first embodiment, and description thereof is omitted.

図15において、回転子4は軸方向に積層されている。実施の形態1でも説明したように、磁石6の外周部にもq軸磁束12bが通る。このq軸磁束12bによる損失を低減させるためには、磁束が流れにくくすればよい。しかし、q軸磁束12bが通る磁石6の外周部の部分は、d軸磁束11も磁石6と略垂直方向に通るため、スリットを多数形成して磁束を通りにくくするとd軸磁束11も通りにくくなり、電動機の特性に影響を及ぼす。   In FIG. 15, the rotor 4 is laminated in the axial direction. As described in the first embodiment, the q-axis magnetic flux 12 b also passes through the outer periphery of the magnet 6. In order to reduce the loss due to the q-axis magnetic flux 12b, it is only necessary to make the magnetic flux difficult to flow. However, the portion of the outer periphery of the magnet 6 through which the q-axis magnetic flux 12b passes, the d-axis magnetic flux 11 also passes in a direction substantially perpendicular to the magnet 6. Therefore, if a large number of slits are formed to make it difficult for the magnetic flux to pass, It affects the characteristics of the motor.

そこで、d軸磁束11には極力影響がなく、q軸磁束12bを極力通りにくくする必要がある。しかし、磁石6の外周部に単にスリットを形成したのでは、形成したスリットの周辺を通ることになる。磁束の大きさを抑制するために磁束の通る幅を小さくして磁束を飽和させても、損失は磁束の大きさだけでなく、磁束の変化にも大きく関係するために、飽和しない小さな磁束でも大きな損失になる。   Therefore, the d-axis magnetic flux 11 is not affected as much as possible, and it is necessary to make the q-axis magnetic flux 12b as difficult as possible. However, if a slit is simply formed on the outer periphery of the magnet 6, it passes through the periphery of the formed slit. Even if the magnetic flux is saturated by reducing the width through which the magnetic flux passes in order to suppress the magnitude of the magnetic flux, the loss is related not only to the magnitude of the magnetic flux but also to the change in the magnetic flux. It will be a big loss.

本実施の形態では、回転子の外周部側が開口したスリット13と、磁石挿入孔5と接続しているスリット14を形成することによりq軸磁束12bの磁束の量を抑制する。図16にq軸磁束12bの流れの一例を示す。任意のティース2で発生した磁束が別の極を形成しているティース2へ回転子の磁石6の外周部の電磁鋼板を経由して通るq軸磁束12bのような磁路を形成する。   In the present embodiment, the amount of magnetic flux of the q-axis magnetic flux 12b is suppressed by forming the slit 13 opened on the outer peripheral side of the rotor and the slit 14 connected to the magnet insertion hole 5. FIG. 16 shows an example of the flow of the q-axis magnetic flux 12b. A magnetic path such as a q-axis magnetic flux 12b is formed by the magnetic flux generated in an arbitrary tooth 2 passing through the electromagnetic steel sheet on the outer periphery of the rotor magnet 6 to the tooth 2 forming another pole.

そこで、q軸磁束12bの磁路中に電磁鋼板に較べて透磁率が小さい比磁性体を配置することにより、q軸磁束12bの磁路の磁気抵抗を大きくすることができる。透磁率の小さい非磁性体として利用しやすい物質として代表的なものは空気であり、スリットを形成することにより非磁性体である空気の層を容易に形成することができる。   Therefore, the magnetic resistance of the magnetic path of the q-axis magnetic flux 12b can be increased by disposing a specific magnetic material having a smaller permeability than that of the electromagnetic steel plate in the magnetic path of the q-axis magnetic flux 12b. A typical material that can be easily used as a non-magnetic material having a low magnetic permeability is air. By forming a slit, an air layer that is a non-magnetic material can be easily formed.

単純にスリットを形成した構造の場合、スリットの周りの電磁鋼板を通り磁束が流れるようになる。磁束を通る部分の幅を狭くして磁束を通りにくくすることができるが、製造上、板厚程度までの幅しか狭くすることができない。そこで、スリットの一部を開放したスリット13や磁石挿入孔5と接続したスリット14を形成することにより磁束を通る部分をさらに狭くすることができ、単純にスリットを形成した構造に比べ、約半分の幅にすることができ、q軸磁束12bに対する磁気抵抗を大きくすることができる。このため、スリット13、14のスリットの数や幅を大きくする必要がなくなるため磁石6の磁束に対する影響を抑えることができる。   In the case of a structure in which a slit is simply formed, the magnetic flux flows through the electromagnetic steel sheet around the slit. Although the width of the portion that passes through the magnetic flux can be narrowed to make it difficult for the magnetic flux to pass through, only the width up to the plate thickness can be narrowed for manufacturing. Therefore, by forming the slit 13 having a part of the slit opened and the slit 14 connected to the magnet insertion hole 5, the portion through which the magnetic flux passes can be further narrowed, which is about half that of the structure in which the slit is simply formed. The magnetic resistance to the q-axis magnetic flux 12b can be increased. For this reason, since it is not necessary to increase the number and width of the slits 13 and 14, the influence of the magnet 6 on the magnetic flux can be suppressed.

さらに、交互に配置することにより、図17に示すq軸磁束12cの磁路のように、磁路長を長くすることができるため、q軸磁束12cの磁路の磁気抵抗が大きくなりq軸磁束12cが流れにくくなり、q軸磁束12cによる損失を低減することができる。   Further, by alternately arranging, the magnetic path length can be increased like the magnetic path of the q-axis magnetic flux 12c shown in FIG. 17, so the magnetic resistance of the magnetic path of the q-axis magnetic flux 12c is increased and the q-axis is increased. It becomes difficult for the magnetic flux 12c to flow, and the loss due to the q-axis magnetic flux 12c can be reduced.

また、スリット13と磁石挿入孔5の間と、スリット14と回転子4の外周の間を小さくすることによる磁束飽和によりさらに磁束を抑制することができ、q軸磁束12cによる損失を小さくすることができる。   Further, the magnetic flux can be further suppressed by the magnetic flux saturation by reducing the space between the slit 13 and the magnet insertion hole 5 and between the slit 14 and the outer periphery of the rotor 4, and the loss due to the q-axis magnetic flux 12c can be reduced. Can do.

また、スリット13やスリット14の回転方向の幅をd軸磁束11により磁石6の外周部の電磁鋼板が飽和しない程度に大きくすることによりさらにq軸磁束12を抑制することができる。   Further, the q-axis magnetic flux 12 can be further suppressed by increasing the width in the rotation direction of the slit 13 and the slit 14 to such an extent that the magnetic steel sheet on the outer periphery of the magnet 6 is not saturated by the d-axis magnetic flux 11.

また、図18のスリット17のように磁石挿入孔5との接続部の幅を、スリット17の略中央部の幅より狭くすることにより磁石6による磁束が通りやすくなるため磁石6による磁束への影響を抑えることができる。   Further, by making the width of the connecting portion with the magnet insertion hole 5 narrower than the width of the substantially central portion of the slit 17 as in the slit 17 of FIG. The influence can be suppressed.

また、スリット13、14のいずれか一つを、図19のスリット19のように回転子の外周部を開放し、さらに磁石挿入孔5と接続することにより、さらにq軸磁束12bに対する磁気抵抗を大きくすることができるため、さらにq軸磁束12bを抑制することができる。   Further, one of the slits 13 and 14 is connected to the magnet insertion hole 5 by opening the outer periphery of the rotor like the slit 19 in FIG. Since it can be increased, the q-axis magnetic flux 12b can be further suppressed.

また、本実施の形態では、スリットの数を3個の構成で説明してあるが、スリットの数は、磁石6の外周部を通るd軸磁束11やq軸磁束12の大きさ、電磁鋼板の特性に合わせて変えても問題ない。ただし、スリットの数が多すぎると、d軸磁束11が流れにくくなってしまうため、d軸磁束11に影響を及ぼさない程度に抑える必要がある。また、d軸磁束11に影響を及ぼさないように、スリットの幅を小さくする場合には、スリット内を磁束が通りq軸磁束12cのような磁路を通らず、q軸磁束12bのような磁路を通る場合があるので、磁束の大きさからスリットの最小幅を決定する必要がある。   In the present embodiment, the number of slits is described as three. However, the number of slits depends on the size of the d-axis magnetic flux 11 and the q-axis magnetic flux 12 that pass through the outer periphery of the magnet 6, and the electrical steel sheet. There is no problem even if it is changed according to the characteristics. However, if the number of slits is too large, it is difficult for the d-axis magnetic flux 11 to flow. Therefore, it is necessary to suppress the d-axis magnetic flux 11 so as not to be affected. Further, when the slit width is reduced so as not to affect the d-axis magnetic flux 11, the magnetic flux passes through the slit and does not pass through the magnetic path such as the q-axis magnetic flux 12c. Since the magnetic path may be passed, it is necessary to determine the minimum width of the slit from the magnitude of the magnetic flux.

また、本実施の形態では、スリット13が磁石6の外周部の両側に形成された構成で説明してあるが、スリット14が両側(図21)、またはスリット13、スリット14の夫々が端に形成された構成でも同様の効果を奏する。   In the present embodiment, the slit 13 is described as being formed on both sides of the outer periphery of the magnet 6. However, the slit 14 is on both sides (FIG. 21), or each of the slit 13 and the slit 14 is at the end. The formed structure also has the same effect.

また、本実施の形態では、スリットを小判型で説明してあるが、四角や楕円など回転子4に配置される磁石6などにより形状や方向を変えても同様の効果を奏する。   Further, in the present embodiment, the slit is described as an oval type, but the same effect can be obtained even if the shape or direction is changed by a magnet 6 or the like arranged on the rotor 4 such as a square or an ellipse.

なお、本実施の形態では、スリット13やスリット14を同じような形状にしているが、スリット13やスリット14を形成する場所に合わせてそれぞれ形状を変えても同様の効果を奏する。   In the present embodiment, the slit 13 and the slit 14 have the same shape, but the same effect can be obtained even if the shape is changed according to the place where the slit 13 and the slit 14 are formed.

また、スリットを設けることにより、風きり音が発生し、騒音が問題になる場合や強度的に問題がある場合には、スリット7に空気以外の固体非磁性体23を挿入しても同様の効果を奏する。   Further, when a wind noise is generated by providing a slit and noise becomes a problem or there is a problem in strength, the same thing can be said even if a solid nonmagnetic material 23 other than air is inserted into the slit 7. There is an effect.

なお、このような回転子を用いた電動機は、q軸磁束による損失が小さいため高効率運転が可能となるので送風機、圧縮機、空気調和機、冷蔵庫等に用いるのに適している。   Note that an electric motor using such a rotor is suitable for use in a blower, a compressor, an air conditioner, a refrigerator, and the like because loss due to q-axis magnetic flux is small and high-efficiency operation is possible.

実施の形態3.
図22〜27は実施の形態3を示す図で、図22は電動機の断面図、図23〜27は電動機の拡大部分断面図である。図に示す符号が、実施の形態1で説明したものと同一又は相当部分については説明を省略する。
Embodiment 3 FIG.
22 to 27 show the third embodiment, FIG. 22 is a sectional view of the electric motor, and FIGS. 23 to 27 are enlarged partial sectional views of the electric motor. The reference numerals shown in the figure are the same as or equivalent to those described in the first embodiment, and description thereof is omitted.

図において、固定子1にはティースの外側にバックヨーク21が設けられる。ティース2の略中央部にスリット15が形成され、バックヨーク21近傍までの長さで半径方向に延びる。短絡磁束が、磁石6aから他極の隣の磁石6bに通る。   In the figure, the stator 1 is provided with a back yoke 21 outside the teeth. A slit 15 is formed in a substantially central portion of the tooth 2 and extends in the radial direction with a length up to the vicinity of the back yoke 21. A short-circuit magnetic flux passes from the magnet 6a to the magnet 6b adjacent to the other pole.

図23に示すように、磁石6aから磁石6bへの短絡磁束16aは、磁石6aの磁束が磁石6aや磁石6bの外周部の回転子4の電磁鋼板を通って磁石6bに至るが、回転子4と固定子1のティース2の位置関係が略図23のような状態になると、短絡磁束16aの磁路以外に、ティース2を経由して他方の磁石6に通る短絡磁束16の磁路が形成されるため、短絡磁束が大きくなる。   As shown in FIG. 23, the short-circuit magnetic flux 16a from the magnet 6a to the magnet 6b is such that the magnetic flux of the magnet 6a passes through the electromagnetic steel plate of the rotor 4 on the outer periphery of the magnet 6a or the magnet 6b and reaches the magnet 6b. When the positional relationship between the teeth 4 of the stator 4 and the teeth 2 of the stator 1 is as shown in FIG. 23, a magnetic path of the short-circuit magnetic flux 16 passing through the teeth 2 to the other magnet 6 is formed in addition to the magnetic path of the short-circuit magnetic flux 16a. Therefore, the short-circuit magnetic flux increases.

また、回転子4の回転により磁石6bの磁石が磁石6aの位置まで回転すると、磁石6bの位置には磁石6aと同じ極の磁石が回転してくることにより、短絡磁束16の磁束の向きが反転することになる。回転子4が回転することにより、ティース2を通る短絡磁束16の磁束が変化するため短絡磁束16が通った部分の損失が大きくなる。   Further, when the magnet 6b is rotated to the position of the magnet 6a by the rotation of the rotor 4, the magnet having the same pole as the magnet 6a is rotated at the position of the magnet 6b, so that the direction of the magnetic flux of the short-circuit magnetic flux 16 is changed. It will be reversed. As the rotor 4 rotates, the magnetic flux of the short-circuit magnetic flux 16 passing through the teeth 2 changes, so that the loss of the portion through which the short-circuit magnetic flux 16 passes increases.

本実施の形態では、図23のような位置関係でもティース2を通る短絡磁束16が大きくならないようにしたものである。図23のような位置関係でも磁気抵抗が小さくならないように、ティース2の略中央部にスリット15を形成し、ティース2の先端のスリット15の薄肉連結部の幅を電磁鋼板の略厚みまで薄くする。このような構造にすると、ティース2の先端では磁気飽和が起こり、磁気抵抗が大きくなることになる。このため、短絡磁束16の磁束を抑制することができる。   In the present embodiment, the short-circuit magnetic flux 16 passing through the tooth 2 is not increased even in the positional relationship as shown in FIG. In order to prevent the magnetic resistance from being reduced even in the positional relationship as shown in FIG. 23, a slit 15 is formed in the substantially central portion of the tooth 2, and the width of the thin connecting portion of the slit 15 at the tip of the tooth 2 is reduced to the approximate thickness of the electrical steel sheet. To do. With such a structure, magnetic saturation occurs at the tip of the tooth 2 and the magnetic resistance increases. For this reason, the magnetic flux of the short circuit magnetic flux 16 can be suppressed.

また、巻線3によって作られる磁束は、ティース2と平行し、ティース2c、2dに分割して、回転子の磁石6a、または、6bに流れることになる。このため、スリット15を形成することによるティース2先端の磁気抵抗の変化による影響を受けにくくなるため、電動機の特性には影響されない。   Further, the magnetic flux generated by the winding 3 is parallel to the teeth 2, divided into the teeth 2 c and 2 d, and flows into the magnet 6 a or 6 b of the rotor. For this reason, since it becomes difficult to receive the influence by the change of the magnetic resistance of the teeth 2 tip by forming the slit 15, it is not influenced by the characteristic of an electric motor.

また、スリット15をバックヨーク21近傍まで形成することにより、短絡磁束16がティース2cを通りバックヨーク21を経由してティース2dを通る磁路を形成しても巻線3による磁束に打ち消されるため短絡磁束16を極力小さくすることができる。また、スリット15の長さをバックヨーク21近傍までとしたことによりバックヨーク21を通る磁束には影響を及ぼすことがないため、電動機の性能は影響されない。   Further, by forming the slit 15 up to the vicinity of the back yoke 21, even if the short-circuit magnetic flux 16 forms a magnetic path passing through the teeth 2c and passing through the teeth 2d via the teeth 2c, the magnetic flux generated by the winding 3 cancels out. The short-circuit magnetic flux 16 can be made as small as possible. Further, since the length of the slit 15 is extended to the vicinity of the back yoke 21, the magnetic flux passing through the back yoke 21 is not affected, so the performance of the motor is not affected.

また、スリット15の幅を大きくするとティース2を通る磁束が減少して電動機の特性に影響を及ぼすため、ティース2が飽和しない程度の幅にする必要がある。   Further, if the width of the slit 15 is increased, the magnetic flux passing through the teeth 2 is reduced and affects the characteristics of the motor. Therefore, it is necessary to make the width so that the teeth 2 are not saturated.

また、ティース2の略中央部にスリット15を形成することにより、巻線3に流れた電流により発生した磁界がティース2cとティース2dに適当に分散され、ティース2の磁束と回転子4の磁石6の磁束との間の反発から吸引への急激な変化を緩和することができる。   Further, by forming the slit 15 at the substantially central portion of the tooth 2, the magnetic field generated by the current flowing through the winding 3 is appropriately distributed to the teeth 2c and 2d, so that the magnetic flux of the teeth 2 and the magnet of the rotor 4 are obtained. A sudden change from repulsion to attraction to the magnetic flux of 6 can be mitigated.

また、本実施の形態では、ティース2にスリット15を形成したが、図24のスリット15bのようにティース2の先端部分を開放した構成にすることにより、さらに短絡磁束16に対する磁気抵抗を大きくすることができ、短絡磁束16を抑制することができる。ティース2の先端部分を開放することにより、ティース2の剛性が低下し、騒音などが出る場合には、積層された電磁鋼板の一部を図23のスリット15の様な構成にし、それ以外の電磁鋼板を図24のスリット15bのような構成にしても同様の効果を奏する。   Further, in the present embodiment, the slit 15 is formed in the tooth 2, but the magnetic resistance to the short-circuit magnetic flux 16 is further increased by adopting a configuration in which the tip portion of the tooth 2 is opened like the slit 15b in FIG. The short-circuit magnetic flux 16 can be suppressed. If the tip 2 of the teeth 2 is opened to reduce the rigidity of the teeth 2 and noise or the like is generated, a part of the laminated electromagnetic steel sheet is configured as a slit 15 in FIG. The same effect can be obtained even if the electromagnetic steel sheet is configured as the slit 15b in FIG.

また、本実施の形態では、スリット15の幅を一定にしているが、図25に示すスリット15aのように先端部を広く、バックヨーク21に行くほど幅を狭くすることによりティース2の強度の低下を抑えることができ、損失も低減することができる。また、スリット15cの先端部だけを広くし、それ以外を細くするといった変形状(例えば、図26)にしても同様の効果を奏する。   Further, in the present embodiment, the width of the slit 15 is made constant, but the strength of the teeth 2 is increased by making the tip end wider as the slit 15a shown in FIG. The decrease can be suppressed and the loss can also be reduced. Further, the same effect can be obtained even in a modified form (for example, FIG. 26) in which only the tip of the slit 15c is widened and the others are narrowed.

また、スリットを設けることにより、風の流れが変わるという問題がある場合や強度的に問題がある場合には、図27に示すようにスリット15に空気以外の固体非磁性体23を挿入しても同様の効果を奏する。   Further, when there is a problem that the flow of wind changes by providing the slit or there is a problem in strength, a solid nonmagnetic material 23 other than air is inserted into the slit 15 as shown in FIG. Produces the same effect.

なお、このような固定子を用いた電動機は、q軸磁束による損失が小さいため高効率運転が可能となるので送風機、圧縮機、空気調和機、冷蔵庫等に用いるのに適している。   Note that an electric motor using such a stator is suitable for use in a blower, a compressor, an air conditioner, a refrigerator, and the like because loss due to q-axis magnetic flux is small and high-efficiency operation is possible.

実施の形態4.
図28、29は実施の形態4を示す図で、図28はロータリ圧縮機の縦断面図、図29はロータリ圧縮機の電動要素における横断面図である。
図28に示すように、ロータリ圧縮機40(密閉型圧縮機の一例)は、密閉容器43の内部に、主に電動要素41と、この電動要素41により駆動されて、冷媒を高温、高圧のガス冷媒に圧縮する圧縮要素42とが収容されている。
Embodiment 4 FIG.
FIGS. 28 and 29 are diagrams showing Embodiment 4, FIG. 28 is a longitudinal sectional view of a rotary compressor, and FIG. 29 is a transverse sectional view of an electric element of the rotary compressor.
As shown in FIG. 28, the rotary compressor 40 (an example of a hermetic compressor) is mainly driven by the electric element 41 and the electric element 41 inside the hermetic container 43, so that the refrigerant is heated to a high temperature and a high pressure. A compression element 42 that compresses the gas refrigerant is accommodated.

上記実施の形態1〜3で説明した電動機は、圧縮機に用いれば、q軸磁束による損失が小さいため高効率運転が可能になるので、圧縮機に用いるのに適することは、既に述べたが、上記実施の形態1の電動機を、図28に示すロータリ圧縮機40に適用した例を図29に示す。   Although the electric motor described in the first to third embodiments is used for a compressor, since loss due to q-axis magnetic flux is small and high-efficiency operation is possible, it has already been described that it is suitable for use in a compressor. FIG. 29 shows an example in which the electric motor of the first embodiment is applied to the rotary compressor 40 shown in FIG.

図29に示すように、密閉容器43に電動機の固定子1が固定され、圧縮要素42の軸45に回転子4が固定される。回転子4のスリット7をガス抜き用の孔と兼用する。これにより、専用のガス抜き孔が不要となり、ガス抜き孔による磁石の磁束への影響を抑えることができる。   As shown in FIG. 29, the stator 1 of the electric motor is fixed to the sealed container 43, and the rotor 4 is fixed to the shaft 45 of the compression element 42. The slit 7 of the rotor 4 is also used as a vent hole. This eliminates the need for a dedicated vent hole and suppresses the influence of the vent hole on the magnetic flux of the magnet.

圧縮機は、ロータリ圧縮機だけでなく、他の形式(例えば、スクロール、レシプロ等)でもよいことは言うまでもない。   It goes without saying that the compressor is not limited to the rotary compressor, but may be of other types (for example, scroll, reciprocating, etc.).

実施の形態5.
図30は実施の形態5を示す図で、ファンモータの一例を示す図である。図において、ファンモータ50は、固定子1を樹脂を用いてモールドしたモールド固定子53に、回転子4と2個の軸受52を軸に嵌合した回転子組立51を組み付け、ブラケット54を端部に固定したものである。
Embodiment 5 FIG.
FIG. 30 is a diagram illustrating the fifth embodiment, and is a diagram illustrating an example of a fan motor. In the figure, a fan motor 50 is constructed by assembling a rotor assembly 51 in which a rotor 4 and two bearings 52 are fitted to a shaft to a mold stator 53 in which the stator 1 is molded using resin, and a bracket 54 is attached to an end. It is fixed to the part.

図30に示すファンモータ50に、実施の形態1〜3の電動機(固定子1、回転子4)を用いることにより、d軸磁束に影響を与えることなく、損失を増大させているq軸磁束を抑制できるので、高性能なファンモータ50が得られる。   The q-axis magnetic flux that increases the loss without affecting the d-axis magnetic flux by using the motors (stator 1, rotor 4) of the first to third embodiments for the fan motor 50 shown in FIG. Therefore, a high performance fan motor 50 can be obtained.

実施の形態1を示す図で、電動機の断面図である。It is a figure which shows Embodiment 1 and is sectional drawing of an electric motor. 実施の形態1を示す図で、回転子の断面図である。FIG. 5 is a diagram illustrating the first embodiment and is a cross-sectional view of a rotor. 実施の形態1を示す図で、磁石を挿入する前の回転子の断面図である。It is a figure which shows Embodiment 1, and is sectional drawing of the rotor before inserting a magnet. 実施の形態1を示す図で、磁石の斜視図である。It is a figure which shows Embodiment 1 and is a perspective view of a magnet. 実施の形態1を示す図で、回転子の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of a rotor. 実施の形態1を示す図で、回転子の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of a rotor. 実施の形態1を示す図で、回転子の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of a rotor. 実施の形態1を示す図で、回転子の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of a rotor. 実施の形態1を示す図で、回転子の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of a rotor. 実施の形態1を示す図で、回転子の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of a rotor. 実施の形態1を示す図で、回転子の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of a rotor. 実施の形態1を示す図で、回転子の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of a rotor. 実施の形態1を示す図で、回転子の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of a rotor. 実施の形態1を示す図で、回転子の断面図である。FIG. 5 is a diagram illustrating the first embodiment and is a cross-sectional view of a rotor. 実施の形態2を示す図で、回転子の断面図である。It is a figure which shows Embodiment 2, and is sectional drawing of a rotor. 実施の形態2を示す図で、回転子の拡大部分断面図である。It is a figure which shows Embodiment 2, and is an expanded partial sectional view of a rotor. 実施の形態2を示す図で、回転子の拡大部分断面図である。It is a figure which shows Embodiment 2, and is an expanded partial sectional view of a rotor. 実施の形態2を示す図で、回転子の拡大部分断面図である。It is a figure which shows Embodiment 2, and is an expanded partial sectional view of a rotor. 実施の形態2を示す図で、回転子の拡大部分断面図である。It is a figure which shows Embodiment 2, and is an expanded partial sectional view of a rotor. 実施の形態2を示す図で、回転子の拡大部分断面図である。It is a figure which shows Embodiment 2, and is an expanded partial sectional view of a rotor. 実施の形態2を示す図で、回転子の拡大部分断面図である。It is a figure which shows Embodiment 2, and is an expanded partial sectional view of a rotor. 実施の形態3を示す図で、電動機の断面図である。It is a figure which shows Embodiment 3, and is sectional drawing of an electric motor. 実施の形態3を示す図で、電動機の拡大部分断面図である。It is a figure which shows Embodiment 3, and is an expanded partial sectional view of an electric motor. 実施の形態3を示す図で、電動機の拡大部分断面図である。It is a figure which shows Embodiment 3, and is an expanded partial sectional view of an electric motor. 実施の形態3を示す図で、電動機の拡大部分断面図である。It is a figure which shows Embodiment 3, and is an expanded partial sectional view of an electric motor. 実施の形態3を示す図で、電動機の拡大部分断面図である。It is a figure which shows Embodiment 3, and is an expanded partial sectional view of an electric motor. 実施の形態3を示す図で、電動機の拡大部分断面図である。It is a figure which shows Embodiment 3, and is an expanded partial sectional view of an electric motor. 実施の形態4を示す図で、ロータリ圧縮機の縦断面図である。It is a figure which shows Embodiment 4, and is a longitudinal cross-sectional view of a rotary compressor. 実施の形態4を示す図で、ロータリ圧縮機の電動要素における横断面図である。It is a figure which shows Embodiment 4, and is a cross-sectional view in the electric element of a rotary compressor. 実施の形態5を示す図で、ファンモータの一例を示す図である。It is a figure which shows Embodiment 5, and is a figure which shows an example of a fan motor.

符号の説明Explanation of symbols

1 固定子、2,2a,2b,2c,2d,2e ティース、3 巻線、4 回転子、5 磁石挿入孔、6,6a,6b 磁石、7,7a,7b,8,9,9a,9b,9c,13,14,15,15a,15b,15c,17,18,19 スリット、11,11a,11b d軸磁束、12,12a,12b,12c q軸磁束、16,16a 短絡磁束、21 バックヨーク、23 空気以外の固体非磁性体、40 ロータリ圧縮機、41 電動要素、42 圧縮要素、43 密閉容器、50 ファンモータ、51 回転子組立、52 軸受、53 モールド固定子、54 ブラケット。   1 Stator, 2, 2a, 2b, 2c, 2d, 2e Teeth, 3 Winding, 4 Rotor, 5 Magnet insertion hole, 6, 6a, 6b Magnet, 7, 7a, 7b, 8, 9, 9a, 9b , 9c, 13, 14, 15, 15a, 15b, 15c, 17, 18, 19 slit, 11, 11a, 11b d-axis magnetic flux, 12, 12a, 12b, 12c q-axis magnetic flux, 16, 16a short-circuit magnetic flux, 21 back Yoke, 23 Solid non-magnetic material other than air, 40 Rotary compressor, 41 Electric element, 42 Compression element, 43 Airtight container, 50 Fan motor, 51 Rotor assembly, 52 Bearing, 53 Mold stator, 54 Bracket

Claims (13)

複数の磁石挿入孔に挿入された磁石を有する回転子と、ティースに巻線が施された固定子とを備えた電動機において、
前記磁石挿入孔の外側と回転子の中心側の少なくとも回転子の中心側に、かつ前記磁石挿入孔の回転子周方向の少なくとも略中央部に、半径方向に延びて形成され、前記固定子のティース間の短絡磁束であるq軸磁束を抑制するスリットを設けたことを特徴とする電動機。
In an electric motor comprising a rotor having magnets inserted into a plurality of magnet insertion holes, and a stator with windings on teeth,
The outer side of the magnet insertion hole and at least the center side of the rotor on the center side of the rotor, and at least approximately the center in the circumferential direction of the rotor of the magnet insertion hole are formed to extend in the radial direction, An electric motor comprising a slit for suppressing a q-axis magnetic flux that is a short-circuit magnetic flux between teeth.
前記スリットの少なくとも一つは前記磁石挿入孔に接続し、前記接続部分を他の部分より幅を狭くしたことを特徴とする請求項1記載の電動機。   2. The electric motor according to claim 1, wherein at least one of the slits is connected to the magnet insertion hole, and the width of the connecting portion is narrower than that of the other portion. 前記磁石挿入孔の回転子の中心側に設けられた前記スリットは、回転子中心側の幅を前記磁石挿入孔側の幅よりも広くしたことを特徴とする請求項1記載の電動機。   2. The electric motor according to claim 1, wherein the slit provided on the rotor center side of the magnet insertion hole has a width on the rotor center side wider than that on the magnet insertion hole side. 複数の磁石挿入孔に挿入された磁石を有する回転子と、ティースに巻線が施された固定子とを備えた電動機において、
前記磁石挿入孔の外側の前記回転子の円周部に複数個のスリットを設け、少なくとも一つのスリットは前記回転子の円周部側が開口しており、少なくとも一つのスリットは前記磁石挿入孔と接続されていることを特徴とする電動機。
In an electric motor comprising a rotor having magnets inserted into a plurality of magnet insertion holes, and a stator with windings on teeth,
A plurality of slits are provided in a circumferential portion of the rotor outside the magnet insertion hole, at least one slit is opened on a circumferential portion side of the rotor, and at least one slit is formed with the magnet insertion hole. An electric motor characterized by being connected.
前記磁石挿入孔と接続しているスリットの前記接続部の幅を略中心部の幅より狭くしたことを特徴とする請求項4記載の電動機。   The electric motor according to claim 4, wherein a width of the connecting portion of the slit connected to the magnet insertion hole is made narrower than a width of a substantially central portion. 回転子の外周部側が開口し、かつ前記磁石挿入孔と接続しているスリットを少なくとも一つ形成していることを特徴とする請求項4記載の電動機。   The electric motor according to claim 4, wherein at least one slit that is open on an outer peripheral side of the rotor and is connected to the magnet insertion hole is formed. 前記回転子の円周部側が開口したスリットと、前記磁石挿入孔と接続したスリットとを交互に設けたことを特徴とする請求項4記載の電動機。   5. The electric motor according to claim 4, wherein slits opened on a circumferential side of the rotor and slits connected to the magnet insertion holes are alternately provided. 複数の磁石挿入孔に挿入された磁石を有する回転子と、ティースに巻線が施された固定子とを備えた電動機において、
隣接する前記磁石間の短絡磁束を抑制するスリットを、前記ティースの略中央部に半径方向に設けたことを特徴とする電動機。
In an electric motor comprising a rotor having magnets inserted into a plurality of magnet insertion holes, and a stator with windings on teeth,
An electric motor, wherein a slit for suppressing a short-circuit magnetic flux between adjacent magnets is provided in a radial direction at a substantially central portion of the tooth.
前記固定子は前記ティースの外側にバックヨークが形成され、前記スリットが前記バックヨークまで延びて形成されたことを特徴とする請求項8記載の電動機。   9. The electric motor according to claim 8, wherein the stator has a back yoke formed outside the teeth, and the slit extends to the back yoke. 前記スリットの内側先端が開口した形状としたことを特徴とする請求項8記載の電動機。   The electric motor according to claim 8, wherein the slit has an inner tip opened. 圧縮要素と、電動要素とを密閉容器内に収容した密閉型圧縮機において、
請求項1乃至10記載のいずれかの電動機を、前記電動要素に用いることを特徴とする密閉型圧縮機。
In a hermetic compressor in which a compression element and an electric element are housed in a hermetic container,
11. A hermetic compressor using the electric motor according to claim 1 as the electric element.
圧縮要素と、電動要素とを密閉容器内に収容した密閉型圧縮機において、
請求項1乃至7記載のいずれかの電動機を、前記電動要素に用い、前記スリットを回転子のガス抜き用の孔と兼用することを特徴とする密閉型圧縮機。
In a hermetic compressor in which a compression element and an electric element are housed in a hermetic container,
A hermetic compressor using the electric motor according to any one of claims 1 to 7 as the electric element, wherein the slit is also used as a hole for venting a rotor.
請求項1乃至10記載のいずれかの電動機を用いたことを特徴とするファンモータ。   11. A fan motor using the electric motor according to claim 1.
JP2004044374A 2004-02-20 2004-02-20 Electric motor, hermetic compressor and fan motor Expired - Fee Related JP4527998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044374A JP4527998B2 (en) 2004-02-20 2004-02-20 Electric motor, hermetic compressor and fan motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044374A JP4527998B2 (en) 2004-02-20 2004-02-20 Electric motor, hermetic compressor and fan motor

Publications (2)

Publication Number Publication Date
JP2005237136A true JP2005237136A (en) 2005-09-02
JP4527998B2 JP4527998B2 (en) 2010-08-18

Family

ID=35019531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044374A Expired - Fee Related JP4527998B2 (en) 2004-02-20 2004-02-20 Electric motor, hermetic compressor and fan motor

Country Status (1)

Country Link
JP (1) JP4527998B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300786A (en) * 2006-04-27 2007-11-15 Sun Tech Generator Co Ltd Rotary unit for generator/motor
JP2008187778A (en) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Rotator for permanent magnet embedded motor, blower, and compressor
JP2009153332A (en) * 2007-12-21 2009-07-09 Yaskawa Electric Corp Rotor for embedded magneto rotating electric machine, embedded magneto rotating electric machine, and vehicle, elevator, fluid machinery and finishing machine using rotating electric machine
JP2010022168A (en) * 2008-07-14 2010-01-28 Katsuyuki Totsu Fan motor
CN101895161A (en) * 2009-05-20 2010-11-24 阿斯莫有限公司 Rotor and motor
EP2296253A2 (en) * 2009-09-15 2011-03-16 Robert Bosch GmbH Electric motor with permanent magnet excitation with reduced load torque
US7911108B2 (en) * 2008-08-29 2011-03-22 Denso Corporation Stator of electric rotating machine
JP2011066999A (en) * 2009-09-16 2011-03-31 Mitsubishi Electric Corp Rotor of permanent magnet motor
JP2011074843A (en) * 2009-09-30 2011-04-14 Asmo Co Ltd Electric pump
JP2011083164A (en) * 2009-10-09 2011-04-21 Mitsubishi Electric Corp Rotor of permanent magnet type motor
JP2011103759A (en) * 2009-05-29 2011-05-26 Asmo Co Ltd Rotor and motor
JP2011244689A (en) * 2011-09-06 2011-12-01 Mitsubishi Electric Corp Manufacturing method of electric motor and split stator iron core
JP2011244687A (en) * 2011-09-06 2011-12-01 Mitsubishi Electric Corp Manufacturing method of electric motor and split stator iron core
JP2012080715A (en) * 2010-10-05 2012-04-19 Sinfonia Technology Co Ltd Motor
JP2012205435A (en) * 2011-03-28 2012-10-22 Toyota Industries Corp Electric motor
JP2015037379A (en) * 2013-08-09 2015-02-23 ジョンソン エレクトリック ソシエテ アノニム Single-phase brushless motor
JP2015073343A (en) * 2013-10-02 2015-04-16 三菱電機株式会社 Rotary electric machine and hoist for elevator
JP2015186315A (en) * 2014-03-24 2015-10-22 株式会社豊田中央研究所 Stator of rotary electric machine and rotary electric machine including the same
WO2017163523A1 (en) * 2016-03-24 2017-09-28 三菱電機株式会社 Rotary electric machine, electric power steering device, and manufacturing method for rotary electric machine
JP6309178B1 (en) * 2017-04-05 2018-04-11 三菱電機株式会社 Stator core piece and rotating electric machine
EP3393010A1 (en) * 2017-04-19 2018-10-24 Siemens Aktiengesellschaft Optimisation of the rotor of a permanently excited synchronous machine for reducing the cog torque and torque ripple
CN111033948A (en) * 2017-09-05 2020-04-17 三菱电机株式会社 Alternating pole rotor, motor, compressor, blower, and air conditioner
WO2023228550A1 (en) * 2022-05-24 2023-11-30 株式会社デンソー Reuse determination device, reuse determination method, and reuse determination program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219669A (en) * 1992-02-03 1993-08-27 Toshiba Corp Permanent magnet type rotor
JPH09131009A (en) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp Permanent magnet rotor
JPH09163647A (en) * 1995-11-30 1997-06-20 Toshiba Corp Permanent magnet rotor
JPH09275652A (en) * 1996-04-04 1997-10-21 Shibaura Eng Works Co Ltd Rotor of dc brushless motor
JPH10271727A (en) * 1997-03-27 1998-10-09 Toshiba Corp Permanent magnet type rotating machine
JPH10285845A (en) * 1997-03-31 1998-10-23 Mitsubishi Electric Corp Permanent magnet type motor and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219669A (en) * 1992-02-03 1993-08-27 Toshiba Corp Permanent magnet type rotor
JPH09131009A (en) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp Permanent magnet rotor
JPH09163647A (en) * 1995-11-30 1997-06-20 Toshiba Corp Permanent magnet rotor
JPH09275652A (en) * 1996-04-04 1997-10-21 Shibaura Eng Works Co Ltd Rotor of dc brushless motor
JPH10271727A (en) * 1997-03-27 1998-10-09 Toshiba Corp Permanent magnet type rotating machine
JPH10285845A (en) * 1997-03-31 1998-10-23 Mitsubishi Electric Corp Permanent magnet type motor and its manufacture

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300786A (en) * 2006-04-27 2007-11-15 Sun Tech Generator Co Ltd Rotary unit for generator/motor
JP2008187778A (en) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Rotator for permanent magnet embedded motor, blower, and compressor
JP2009153332A (en) * 2007-12-21 2009-07-09 Yaskawa Electric Corp Rotor for embedded magneto rotating electric machine, embedded magneto rotating electric machine, and vehicle, elevator, fluid machinery and finishing machine using rotating electric machine
JP2010022168A (en) * 2008-07-14 2010-01-28 Katsuyuki Totsu Fan motor
US7911108B2 (en) * 2008-08-29 2011-03-22 Denso Corporation Stator of electric rotating machine
CN101895161A (en) * 2009-05-20 2010-11-24 阿斯莫有限公司 Rotor and motor
JP2011103759A (en) * 2009-05-29 2011-05-26 Asmo Co Ltd Rotor and motor
EP2296253A2 (en) * 2009-09-15 2011-03-16 Robert Bosch GmbH Electric motor with permanent magnet excitation with reduced load torque
JP2011066999A (en) * 2009-09-16 2011-03-31 Mitsubishi Electric Corp Rotor of permanent magnet motor
JP2011074843A (en) * 2009-09-30 2011-04-14 Asmo Co Ltd Electric pump
JP2011083164A (en) * 2009-10-09 2011-04-21 Mitsubishi Electric Corp Rotor of permanent magnet type motor
JP2012080715A (en) * 2010-10-05 2012-04-19 Sinfonia Technology Co Ltd Motor
JP2012205435A (en) * 2011-03-28 2012-10-22 Toyota Industries Corp Electric motor
JP2011244689A (en) * 2011-09-06 2011-12-01 Mitsubishi Electric Corp Manufacturing method of electric motor and split stator iron core
JP2011244687A (en) * 2011-09-06 2011-12-01 Mitsubishi Electric Corp Manufacturing method of electric motor and split stator iron core
JP2015037379A (en) * 2013-08-09 2015-02-23 ジョンソン エレクトリック ソシエテ アノニム Single-phase brushless motor
JP2015073343A (en) * 2013-10-02 2015-04-16 三菱電機株式会社 Rotary electric machine and hoist for elevator
JP2015186315A (en) * 2014-03-24 2015-10-22 株式会社豊田中央研究所 Stator of rotary electric machine and rotary electric machine including the same
CN108781004B (en) * 2016-03-24 2020-10-30 三菱电机株式会社 Rotating electrical machine, electric power steering apparatus, and method for manufacturing rotating electrical machine
WO2017163523A1 (en) * 2016-03-24 2017-09-28 三菱電機株式会社 Rotary electric machine, electric power steering device, and manufacturing method for rotary electric machine
EP3435521A4 (en) * 2016-03-24 2019-09-18 Mitsubishi Electric Corporation Rotary electric machine, electric power steering device, and manufacturing method for rotary electric machine
CN108781004A (en) * 2016-03-24 2018-11-09 三菱电机株式会社 The manufacturing method of electric rotating machine, electric power-assisted steering apparatus and electric rotating machine
JP6218997B1 (en) * 2016-03-24 2017-10-25 三菱電機株式会社 Rotating electric machine, electric power steering device, and method of manufacturing rotating electric machine
US10855121B2 (en) 2016-03-24 2020-12-01 Mitsubishi Electric Corporation Rotary electric machine, electric power steering device, and method of manufacturing a rotary electric machine
JP6309178B1 (en) * 2017-04-05 2018-04-11 三菱電機株式会社 Stator core piece and rotating electric machine
WO2018185879A1 (en) * 2017-04-05 2018-10-11 三菱電機株式会社 Stator core piece and rotary electric machine
KR102077593B1 (en) 2017-04-05 2020-02-17 미쓰비시덴키 가부시키가이샤 Stator core piece and rotary electric machine
KR20190064662A (en) * 2017-04-05 2019-06-10 미쓰비시덴키 가부시키가이샤 Stator core pieces and rotary electric
EP3393010A1 (en) * 2017-04-19 2018-10-24 Siemens Aktiengesellschaft Optimisation of the rotor of a permanently excited synchronous machine for reducing the cog torque and torque ripple
EP3681014A4 (en) * 2017-09-05 2020-08-26 Mitsubishi Electric Corporation Consequent pole-type motor, electric motor, compressor, air blower, and air conditioner
CN111033948A (en) * 2017-09-05 2020-04-17 三菱电机株式会社 Alternating pole rotor, motor, compressor, blower, and air conditioner
CN111033948B (en) * 2017-09-05 2022-08-05 三菱电机株式会社 Alternating pole rotor, motor, compressor, blower, and air conditioner
WO2023228550A1 (en) * 2022-05-24 2023-11-30 株式会社デンソー Reuse determination device, reuse determination method, and reuse determination program

Also Published As

Publication number Publication date
JP4527998B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4527998B2 (en) Electric motor, hermetic compressor and fan motor
KR100877465B1 (en) Single-phase electric motor and closed compressor
JP6964672B2 (en) Rotors, motors, blowers and air conditioners
JP4913241B2 (en) Permanent magnet embedded rotor, electric motor and electric device using the same
JPWO2019049203A1 (en) Consequent pole type rotor, electric motor, compressor, blower, and air conditioner
JP2015122936A (en) Magnet embedded-type motor and method for using magnet embedded-type motor
JP2008029095A (en) Permanent magnet type dynamo-electric machine and compressor using the same
JP5511921B2 (en) Electric motor, blower and compressor
JP2006166688A (en) Permanent magnet motor
JP6908759B2 (en) Rotors, motors using the rotors, and electronic devices
JP4602958B2 (en) Permanent magnet motor, hermetic compressor and fan motor
JP6789390B2 (en) Reluctance motors, compressors and air conditioners
JP2010183800A (en) Rotor of electric motor, electric motor, air blower and compressor
JP3616338B2 (en) Electric motor rotor
JP6615375B2 (en) Electric motor and air conditioner
JP2009033886A (en) Dynamo-electric machine
WO2017212575A1 (en) Permanent magnet motor
JP2019017230A (en) Rotor, rotary electric machine, and compressor
JP2015171272A (en) Permanent magnet embedded motor and hermetic electric compressor using the same
JP6964796B2 (en) Rotor, Consequent Pole Rotor, Motor, Blower, Refrigeration and Air Conditioner, Rotor Manufacturing Method, and Consequential Pole Rotor Manufacturing Method
JP5264551B2 (en) Electric motor, blower and compressor
JP2014050219A (en) Motor having cooling structure with passage extending in radial and axial direction
JP4848670B2 (en) Rotor, electric motor, compressor, blower, and air conditioner
JP4532964B2 (en) Double rotor motor
JP2007306685A (en) Electric rotary machine, blower and cooling medium compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4527998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees