WO2018185813A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2018185813A1 WO2018185813A1 PCT/JP2017/013955 JP2017013955W WO2018185813A1 WO 2018185813 A1 WO2018185813 A1 WO 2018185813A1 JP 2017013955 W JP2017013955 W JP 2017013955W WO 2018185813 A1 WO2018185813 A1 WO 2018185813A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- voltage
- frequency
- converter
- signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/145—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/155—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a power conversion device, and more particularly to a power conversion device including a forward converter that converts AC power into DC power.
- Patent Document 1 Japanese Patent Laid-Open No. 2008-92734 includes a forward converter that includes a plurality of switching elements and converts AC power of commercial frequency into DC power, a sine wave signal of commercial frequency, and a commercial frequency.
- a power conversion device is disclosed that includes a control device that generates a control signal for controlling a plurality of switching elements based on a comparison result with a triangular wave signal having a sufficiently high frequency.
- Each of the plurality of switching elements is turned on and off at a frequency having a value corresponding to the frequency of the triangular wave signal.
- the conventional power converter has a problem that a switching loss occurs each time the switching element is turned on and off, and the efficiency of the power converter is reduced.
- a main object of the present invention is to provide a highly efficient power converter.
- a power conversion device includes a forward converter that includes a plurality of switching elements and converts AC power of commercial frequency into DC power, a sine wave signal of commercial frequency, and a triangular wave signal of higher frequency than the commercial frequency. And a control unit that compares the heights and generates a control signal for controlling the plurality of switching elements based on the comparison result.
- the control unit includes a first mode in which the frequency of the triangular wave signal is set to a first value, and a second mode in which the frequency of the triangular wave signal is set to a second value smaller than the first value. Executes the selected mode.
- the selected one of the modes is executed. Therefore, when the load of the forward converter can be operated in the second mode, the switching loss generated in the plurality of switching elements can be reduced by selecting the second mode. Can increase the efficiency.
- FIG. 3 is a circuit block diagram showing a configuration of a gate control circuit shown in FIG. 2.
- 4 is a time chart illustrating waveforms of a voltage command value, a triangular wave signal, and a gate signal shown in FIG. 3.
- FIG. 2 is a circuit block diagram showing a configuration of a converter shown in FIG. 1 and its peripheral part. It is a circuit block diagram which shows the structure of the gate control circuit of the uninterruptible power supply by Embodiment 2 of this invention.
- FIG. 8 is a circuit block diagram showing a configuration of a gate control circuit included in the uninterruptible power supply shown in FIG. 7.
- 9 is a time chart illustrating waveforms of a voltage command value, a triangular wave signal, and a gate signal shown in FIG. 8.
- FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply 1 according to Embodiment 1 of the present invention.
- the uninterruptible power supply 1 converts the three-phase AC power from the commercial AC power source 21 into DC power, converts the DC power into three-phase AC power, and supplies it to the load 24.
- FIG. 1 for simplification of the drawing and description, only a portion of a circuit corresponding to one phase (for example, U phase) of three phases (U phase, V phase, W phase) is shown.
- the uninterruptible power supply 1 includes an AC input terminal T1, a bypass input terminal T2, a battery terminal T3, and an AC output terminal T4.
- the AC input terminal T ⁇ b> 1 receives AC power having a commercial frequency from the commercial AC power source 21.
- the bypass input terminal T ⁇ b> 2 receives commercial frequency AC power from the bypass AC power supply 22.
- the bypass AC power source 22 may be a commercial AC power source or a generator.
- the battery terminal T3 is connected to a battery (power storage device) 23.
- the battery 23 stores DC power.
- a capacitor may be connected instead of the battery 23.
- the AC output terminal T4 is connected to the load 24.
- the load 24 is driven by AC power.
- This uninterruptible power supply 1 further includes electromagnetic contactors 2, 8, 14, 16, current detectors 3, 11, capacitors 4, 9, 13, reactors 5, 12, converter 6, bidirectional chopper 7, inverter 10 , A semiconductor switch 15, an operation unit 17, and a control device 18.
- the electromagnetic contactor 2 and the reactor 5 are connected in series between the AC input terminal T1 and the input node 6a of the converter 6.
- Capacitor 4 is connected to node N ⁇ b> 1 between electromagnetic contactor 2 and reactor 5.
- the magnetic contactor 2 is turned on when the uninterruptible power supply 1 is used, and is turned off, for example, during maintenance of the uninterruptible power supply 1.
- the instantaneous value of the AC input voltage Vi appearing at the node N1 is detected by the control device 18. Whether or not a power failure has occurred is determined based on the instantaneous value of the AC input voltage Vi.
- the current detector 3 detects the AC input current Ii flowing through the node N1, and gives a signal Iif indicating the detected value to the control device 18.
- Capacitor 4 and reactor 5 constitute a low-pass filter, allowing commercial frequency AC power to pass from commercial AC power supply 21 to converter 6, and switching frequency signals generated by converter 6 to pass to commercial AC power supply 21. To prevent.
- the converter 6 is controlled by the control device 18 and converts AC power into DC power and outputs it to the DC line L1 during normal times when AC power is supplied from the commercial AC power supply 21. In the event of a power failure when the supply of AC power from the commercial AC power supply 21 is stopped, the operation of the converter 6 is stopped. The output voltage of the converter 6 can be controlled to a desired value. Capacitor 4, reactor 5, and converter 6 constitute a forward converter.
- the capacitor 9 is connected to the DC line L1 and smoothes the voltage of the DC line L1.
- the instantaneous value of the DC voltage VDC appearing on the DC line L1 is detected by the control device 18.
- the DC line L1 is connected to the high voltage side node of the bidirectional chopper 7, and the low voltage side node of the bidirectional chopper 7 is connected to the battery terminal T3 via the electromagnetic contactor 8.
- the electromagnetic contactor 8 is turned on when the uninterruptible power supply 1 is used, and is turned off when the uninterruptible power supply 1 and the battery 23 are maintained, for example.
- the instantaneous value of the inter-terminal voltage VB of the battery 23 appearing at the battery terminal T3 is detected by the control device 18.
- the bidirectional chopper 7 is controlled by the control device 18 and stores the DC power generated by the converter 6 in the battery 23 in the normal time when the AC power is supplied from the commercial AC power supply 21. In the event of a power failure when the supply of power is stopped, the DC power of the battery 23 is supplied to the inverter 10 via the DC line L1.
- the bidirectional chopper 7 steps down the DC voltage VDC of the DC line L ⁇ b> 1 and applies it to the battery 23 when storing DC power in the battery 23. Further, when the direct current power of the battery 23 is supplied to the inverter 10, the bidirectional chopper 7 boosts the voltage VB between the terminals of the battery 23 and outputs it to the direct current line L1.
- the DC line L1 is connected to the input node of the inverter 10.
- the inverter 10 is controlled by the control device 18 and converts DC power supplied from the converter 6 or the bidirectional chopper 7 via the DC line L1 into AC power having a commercial frequency and outputs it. That is, the inverter 10 converts the DC power supplied from the converter 6 through the DC line L1 into AC power during normal times, and converts the DC power supplied from the battery 23 through the bidirectional chopper 7 into AC during a power failure. Convert to electricity.
- the output voltage of the inverter 10 can be controlled to a desired value.
- the output node 10a of the inverter 10 is connected to one terminal of the reactor 12, and the other terminal (node N2) of the reactor 12 is connected to the AC output terminal T4 via the electromagnetic contactor 14.
- Capacitor 13 is connected to node N2.
- the current detector 11 detects an instantaneous value of the output current Io of the inverter 10 and gives a signal Iof indicating the detected value to the control device 18.
- the instantaneous value of the AC output voltage Vo appearing at the node N2 is detected by the control device 18.
- Reactor 12 and capacitor 13 constitute a low-pass filter, which passes AC power of commercial frequency generated by inverter 10 to AC output terminal T4, and a signal of switching frequency generated by inverter 10 is supplied to AC output terminal T4. Prevent it from passing.
- Inverter 10, reactor 12, and capacitor 13 constitute an inverse converter.
- the electromagnetic contactor 14 is controlled by the control device 18 and is turned on in the inverter power supply mode in which the AC power generated by the inverter 10 is supplied to the load 24, and the bypass power supply that supplies the AC power from the bypass AC power supply 22 to the load 24. It is turned off in mode.
- the semiconductor switch 15 includes a thyristor and is connected between the bypass input terminal T2 and the AC output terminal T4.
- the magnetic contactor 16 is connected to the semiconductor switch 15 in parallel.
- the semiconductor switch 15 is controlled by the control device 18 and is normally turned off. When the inverter 10 breaks down, the semiconductor switch 15 is turned on instantaneously, and AC power from the bypass AC power supply 22 is supplied to the load 24. The semiconductor switch 15 is turned off after a predetermined time has elapsed since it was turned on.
- the electromagnetic contactor 16 is turned off in the inverter power supply mode in which the AC power generated by the inverter 10 is supplied to the load 24, and is turned on in the bypass power supply mode in which the AC power from the bypass AC power supply 22 is supplied to the load 24.
- the magnetic contactor 16 is turned on when the inverter 10 fails, and supplies AC power from the bypass AC power supply 22 to the load 24. That is, when the inverter 10 fails, the semiconductor switch 15 is instantaneously turned on for a predetermined time and the electromagnetic contactor 16 is turned on. This is to prevent the semiconductor switch 15 from being overheated and damaged.
- the operation unit 17 includes a plurality of buttons operated by the user of the uninterruptible power supply 1, an image display unit for displaying various information, and the like.
- the power of the uninterruptible power supply 1 can be turned on and off, or one of the bypass power supply mode and the inverter power supply mode can be selected. Yes.
- the control device 18 controls the entire uninterruptible power supply 1 based on a signal from the operation unit 17, an AC input voltage Vi, an AC input current Ii, a DC voltage VDC, a battery voltage VB, an AC output current Io, an AC output voltage Vo, and the like. To control. That is, control device 18 detects whether or not a power failure has occurred based on the detected value of AC input voltage Vi, and controls converter 6 and inverter 10 in synchronization with the phase of AC input voltage Vi.
- control device 18 controls converter 6 so that DC voltage VDC becomes reference DC voltage VDCr during normal times when AC power is supplied from commercial AC power supply 21, and supplies AC power from commercial AC power supply 21. When the power is stopped, the operation of the converter 6 is stopped.
- control device 18 controls the bidirectional chopper 7 so that the battery voltage VB becomes the reference battery voltage VBr during normal times, and the bidirectional chopper 7 so that the DC voltage VDC becomes the reference DC voltage VDCr during a power failure. To control.
- control device 18 determines whether or not the input current Ii is smaller than the predetermined value Ic based on the output signal Iif of the current detector 3 (that is, whether or not the load 24 is a light load).
- the normal operation mode first mode
- the power saving operation mode second mode
- control device 18 compares the level of the commercial frequency sine wave signal with the triangular wave signal of frequency fH sufficiently higher than the commercial frequency, and based on the comparison result, converter 6 A gate signal (control signal) for controlling is generated.
- the gate signal is a pulse signal train having a frequency corresponding to the frequency fH of the triangular wave signal.
- the pulse width of the gate signal is controlled so that the output DC voltage VDC becomes the reference DC voltage VDCr.
- the control device 18 compares the level of the commercial frequency sine wave signal with the triangular wave signal of the frequency fL between the commercial frequency and the frequency fH, and based on the comparison result. Then, a gate signal for controlling the converter 6 is generated.
- the gate signal is a pulse signal string having a frequency corresponding to the frequency fL of the triangular wave signal. The pulse width of the gate signal is controlled so that the output DC voltage VDC becomes the reference DC voltage VDCr.
- FIG. 2 is a block diagram showing a configuration of a part related to the control of the converter 6 in the control device 18 shown in FIG.
- the control device 18 includes a reference voltage generation circuit 31, a voltage detector 32, subtracters 33 and 35, an output voltage control circuit 34, an output current control circuit 36, and a gate control circuit 37.
- the reference voltage generation circuit 31 outputs a reference DC voltage VDCr.
- Reference DC voltage VDCr is set to the rated voltage of DC voltage VDC.
- the voltage detector 32 detects the DC voltage VDC of the DC line L1, and outputs a signal VDCf indicating the detected value.
- the subtractor 33 obtains a deviation ⁇ VDC between the reference DC voltage VDCr and the output signal VDCf of the voltage detector 32.
- the output voltage control circuit 34 adds a value proportional to the deviation ⁇ VDC and an integral value of the deviation ⁇ VDC to generate a current command value Iir.
- the subtractor 35 obtains a deviation ⁇ Ii between the current command value Iir and the signal Iif from the current detector 3 (FIG. 1).
- the output current control circuit 36 adds the value proportional to the deviation ⁇ Ii and the integral value of the deviation ⁇ Ii to generate the voltage command value Vir.
- the voltage command value Vir is a commercial frequency sine wave signal.
- the gate control circuit 37 Based on the voltage command value Vir, the gate control circuit 37 generates gate signals Au and Bu for controlling the converter 6 of the corresponding phase (here, U phase).
- FIG. 3 is a circuit block diagram showing the configuration of the gate control circuit 37.
- the gate control circuit 37 includes a determination device 41, an oscillator 42, a triangular wave generator 43, a comparator 44, a buffer 45, and an inverter 46.
- the determiner 41 determines whether or not the input current Ii is larger than a predetermined value Ic based on the output signal Iif of the current detector 3 (FIG. 1), and outputs a signal ⁇ 41 indicating the determination result.
- a predetermined value Ic the normal operation mode is selected, and signal ⁇ 41 is set to the “L” level.
- signal ⁇ 41 is set to the “H” level.
- oscillator 42 When signal ⁇ 41 is at “L” level, oscillator 42 outputs clock signal ⁇ 42 having a frequency fH (for example, 20 KHz) sufficiently higher than the commercial frequency (for example, 60 Hz), and signal ⁇ 41 is at “H” level. In this case, a clock signal ⁇ 42 having a frequency (for example, 15 KHz) between the commercial frequency (for example, 60 Hz) and the frequency fH (for example, 20 KHz) is output.
- the triangular wave generator 43 outputs a triangular wave signal Cu having the same frequency as the output clock signal ⁇ 42 of the oscillator 42.
- the comparator 44 compares the voltage command value Vir (commercial frequency sine wave signal) from the output current control circuit 36 (FIG. 2) with the triangular wave signal Cu from the triangular wave generator 43, and shows a comparison result.
- a signal string ⁇ 44 is output.
- the frequency of the pulse signal train ⁇ 44 has the same value as the frequency fH or fL of the triangular wave signal Cu.
- the pulse width of the pulse signal train ⁇ 44 changes according to the level of the voltage command value Vir.
- the pulse signal train ⁇ 44 is a PWM (Pulse Width Modulation) signal.
- the buffer 45 gives the pulse signal string ⁇ 44 to the converter 6 as a gate signal Au.
- Inverter 46 inverts pulse signal string ⁇ 44 to generate gate signal Bu and provide it to converter 6.
- FIG. 4A, 4B, and 4C are time charts showing waveforms of the voltage command value Vir, the triangular wave signal Cu, and the gate signals Au and Bu shown in FIG.
- the voltage command value Vir is a commercial frequency sine wave signal.
- the frequency fH or fL of the triangular wave signal Cu is higher than the frequency (commercial frequency) of the voltage command value Vir.
- the peak value on the positive side of the triangular wave signal Cu is higher than the peak value on the positive side of the voltage command value Vir.
- the negative peak value of the triangular wave signal Cu is lower than the negative peak value of the voltage command value Vir.
- the gate signal Au becomes “L” level, and the level of the triangular wave signal Cu becomes the voltage command value Vir. If lower than that, the gate signal Au becomes “H” level.
- the gate signal Au is a positive pulse signal train.
- the pulse width of the gate signal Au increases as the voltage command value Vir increases.
- the pulse width of the gate signal Au decreases as the voltage command value Vir decreases.
- the gate signal Bu is an inverted signal of the gate signal Au.
- Each of the gate signals Au and Bu is a PWM signal.
- the waveforms of the gate signals Au and Bu in the power saving operation mode are the same as the waveforms of the gate signals Au and Bu in the normal operation mode.
- the frequency fL of the gate signals Au and Bu in the power saving operation mode is lower than the frequency fH of the gate signals Au and Bu in the normal operation mode.
- 4A, 4B, and 4C show the voltage command value Vir corresponding to the U phase and the waveforms of the signals Cu, Au, and Bu, the voltages corresponding to the V phase and the W phase, respectively. The same applies to the command value and the signal waveform. However, the voltage command values and the signal phases corresponding to the U phase, the V phase, and the W phase are shifted by 120 degrees.
- FIG. 5 is a circuit block diagram showing the configuration of converter 6 shown in FIG. 1 and its peripheral part.
- a positive DC line L ⁇ b> 1 and a negative DC line L ⁇ b> 2 are connected between the converter 6 and the inverter 10.
- the capacitor 9 is connected between the DC lines L1 and L2.
- Converter 6 includes IGBTs Q1 to Q4 and diodes D1 to D4.
- the IGBT constitutes a switching element.
- the collectors of IGBTs Q1 and Q2 are both connected to DC line L1, and their emitters are connected to input nodes 6a and 6b, respectively.
- IGBTs Q3 and Q4 are connected to input nodes 6a and 6b, respectively, and their emitters are both connected to DC line L2.
- the gates of IGBTs Q1 and Q4 both receive a gate signal Au, and the gates of IGBTs Q2 and Q3 both receive a gate signal Bu.
- Diodes D1-D4 are connected in antiparallel to IGBTs Q1-Q4, respectively.
- the input node 6a of the converter 6 is connected to the node N1 via the reactor 5 (FIG. 1), and the input node 6b is connected to the neutral point NP.
- Capacitor 4 is connected between node N1 and neutral point NP.
- the IGBTs Q1 and Q4 are turned on and the IGBTs Q2 and Q3 are turned off.
- the input node 6a is connected to the positive terminal (DC line L1) of the capacitor 9 via the IGBT Q1
- the negative terminal (DC line L2) of the capacitor 9 is connected to the input node 6b via the IGBT Q4.
- a positive DC voltage is output between the terminals of the capacitor 9.
- the DC voltage VDC can be maintained at the reference DC voltage VDCr even when the load current IL is large, thereby generating a high-quality AC output voltage Vo with a small voltage fluctuation rate. can do.
- the frequencies of the gate signals Au and Bu are lowered, and the switching frequencies of the IGBTs Q1 to Q4 are lowered.
- the switching frequency of the IGBTs Q1 to Q4 is lowered, the switching loss generated in the IGBTs Q1 to Q4 is reduced, and the efficiency of the uninterruptible power supply 1 is increased.
- the switching frequency of the IGBTs Q1 to Q4 is lowered, it becomes difficult to maintain the DC voltage VDC at the reference DC voltage VDCr when the load current IL is large. As a result, the voltage fluctuation rate of the AC output voltage Vo increases and the AC output is increased. The waveform of the voltage Vo deteriorates.
- the voltage fluctuation rate of the AC voltage is represented, for example, by a fluctuation range of the AC voltage when the rated voltage is used as a reference (100%).
- the voltage fluctuation rate of the AC input voltage Vi supplied from the commercial AC power supply 21 (FIG. 1) is ⁇ 10% based on the rated voltage.
- the frequency of the triangular wave signal Cu is fixed to a frequency fH (for example, 20 KHz) sufficiently higher than the commercial frequency (for example, 60 Hz), and the voltage fluctuation rate is suppressed to a small value ( ⁇ 2%). .
- fH for example, 20 KHz
- the commercial frequency for example, 60 Hz
- ⁇ 2% a small value
- the normal operation mode in which the converter 6 is controlled by the gate signals Au and Bu having a relatively high frequency fH, and the converter 6 is controlled by the gate signals Au and Bu having a relatively low frequency fL to perform switching.
- a power saving operation mode for reducing loss is provided.
- the normal operation mode is selected when the input current Ii is larger than the predetermined value Iic (that is, when the load current IL is larger than the predetermined value ILc).
- the power saving operation mode is selected when the input current Ii is smaller than the predetermined value Iic (that is, when the load current IL is smaller than the predetermined value ILc).
- the frequency fL is set to a frequency within a range in which the DC voltage VDC can be maintained at the reference DC voltage VDCr when the input current Ii is smaller than the predetermined value Iic.
- the operation unit 17 (FIG. 1) is operated by the user of the uninterruptible power supply 1 and the inverter power supply mode is selected.
- the inverter power supply mode is selected in the normal time when AC power is supplied from the commercial AC power supply 21
- the semiconductor switch 15 and the electromagnetic contactor 16 are turned off, and the electromagnetic contactors 2, 8, and 14 are turned on.
- AC power supplied from the commercial AC power supply 21 is converted into DC power by the converter 6.
- the DC power generated by the converter 6 is stored in the battery 23 by the bidirectional chopper 7 and supplied to the inverter 10.
- the reference DC voltage VDCr is generated by the reference voltage generation circuit 31, and the signal VDCf indicating the detected value of the DC voltage VDC is generated by the voltage detector 32.
- Deviation ⁇ VDC between reference AC voltage VDCr and signal VDCf is generated by subtractor 33, and current command value Iir is generated by output voltage control circuit 34 based on the deviation ⁇ VDC.
- the deviation ⁇ Ii between the current command value Iir and the signal Iif from the current detector 3 (FIG. 1) is generated by the subtractor 35, and the voltage command value Vir is generated by the output current control circuit 36 based on the deviation ⁇ Ii.
- the determination unit 41 (FIG. 3) of the gate control circuit 37 determines whether or not the input current Ii is larger than a predetermined value Iic based on the output signal Iif of the current detector 3.
- the output signal ⁇ 41 of the determiner 41 is set to “L” level, and the normal operation mode is executed.
- the oscillator 42 and the triangular wave generator 43 generate a triangular wave signal Cu having a relatively high frequency fH.
- the voltage command value Vir and the triangular wave signal Cu are compared by a comparator 44, a pulse signal train ⁇ 44 is generated, and gate signals Au and Bu are generated by a buffer 45 and an inverter 46.
- each of the IGBTs Q1 to Q4 is turned on and off at a relatively high frequency fH, so that even when the load current IL is large, the DC voltage VDC can be maintained at the reference DC voltage VDCr, and consequently the voltage fluctuations A high-quality AC output voltage Vo having a small rate can be generated.
- the switching loss generated in the IGBTs Q1 to Q4 becomes large, and the efficiency is lowered.
- the output signal ⁇ 41 of the determination device 41 is set to “H” level, and the power saving operation mode is executed. That is, the oscillator 42 and the triangular wave generator 43 generate a triangular wave signal Cu having a relatively low frequency fL.
- the voltage command value Vir and the triangular wave signal Cu are compared by a comparator 44, a pulse signal train ⁇ 44 is generated, and gate signals Au and Bu are generated by a buffer 45 and an inverter 46.
- Converter 6 is driven by gate signals Au and Bu, and AC input voltage Vi is converted to DC voltage VDC.
- the DC power generated by the converter 6 is converted into AC power having a commercial frequency by the inverter 10 (FIG. 1) and supplied to the load 24.
- each of the IGBTs Q1 to Q4 is turned on and off at a relatively low frequency fL, so that the switching loss occurring in the IGBTs Q1 to Q4 can be reduced and the efficiency of the uninterruptible power supply 1 can be increased. Can do. Further, since the input current Ii is small (that is, the load current IL is small), the DC voltage VDC can be maintained at the reference DC voltage VDCr, and as a result, a high-quality AC output voltage Vo with a small voltage fluctuation rate can be generated. it can.
- the semiconductor switch 15 (FIG. 1) is turned on instantaneously, the electromagnetic contactor 14 is turned off, and the electromagnetic contactor 16 is turned on. Thereby, AC power from the bypass AC power supply 22 is supplied to the load 24 via the semiconductor switch 15 and the electromagnetic contactor 16, and the operation of the load 24 is continued.
- the semiconductor switch 15 is turned off after a certain time, and the semiconductor switch 15 is prevented from being overheated and damaged.
- the converter 6 when the input current Ii is larger than the predetermined value Iic, the converter 6 is controlled by the gate signals Au and Bu of the relatively high frequency fH, and the input current Ii is the predetermined value Iic. If smaller, the converter 6 is controlled by the gate signals Au and Bu having a relatively low frequency fL. Therefore, when the input current Ii is smaller than the predetermined value Iic, the switching loss generated in the IGBTs Q1 to Q4 of the converter 6 can be reduced, and the efficiency of the uninterruptible power supply 1 can be increased.
- FIG. 6 is a circuit block diagram showing the configuration of the gate control circuit 50 of the uninterruptible power supply according to Embodiment 2 of the present invention, and is compared with FIG. Referring to FIG. 6, gate control circuit 50 is different from gate control circuit 37 in FIG. 3 in that oscillator 42 is replaced with frequency adjustment unit 51 and oscillator 52.
- the frequency adjusting unit 51 outputs the output clock of the oscillator 52 based on the signal ⁇ 41 from the determiner 41, the signal Iif from the current detector 3 (FIG. 1), and the deviation ⁇ VDC from the subtractor 33 (FIG. 2).
- a control signal CNT for controlling the frequency of the signal ⁇ 52 is generated.
- the oscillator 52 outputs a clock signal ⁇ 52 having a frequency indicated by the control signal CNT.
- the output signal ⁇ 41 of the determiner 41 is set to “L” level, and the normal operation mode is selected.
- frequency adjustment unit 51 outputs control signal CNT for setting the frequency of output clock signal ⁇ 52 of oscillator 52 to a relatively high frequency fH regardless of signal Iif and deviation ⁇ VDC. To do.
- the oscillator 52 outputs a clock signal ⁇ 52 having a frequency fH set by the control signal CNT. Thereby, gate signals Au and Bu having a relatively high frequency fH are generated, and the DC voltage VDC is maintained at the reference DC voltage VDCr by the converter 6.
- the output signal ⁇ 41 of the determination device 41 is set to “H” level, and the power saving operation mode is selected.
- frequency adjustment unit 51 obtains target frequency fLT that decreases in accordance with deviation ⁇ IA between predetermined value Ic and input current Ii.
- the target frequency fLT is, for example, a value obtained by subtracting from the frequency fH a value that increases in proportion to the deviation ⁇ IA.
- the frequency adjustment unit 51 gradually decreases the frequency of the output clock signal ⁇ 52 of the oscillator 52 from fH to fLT.
- the frequency adjusting unit 51 reduces the frequency of the clock signal ⁇ 52 within a range in which the DC voltage VDC can be maintained at the reference DC voltage VDCr. For example, the frequency adjusting unit 51 gradually decreases the frequency of the clock signal ⁇ 52 while monitoring the deviation ⁇ VDC, and sets the frequency of the clock signal ⁇ 52 to the lowest frequency fL at which the deviation ⁇ VDC can be maintained at zero. Since other configurations and operations are the same as those in the first embodiment, description thereof will not be repeated.
- the frequency fL of the gate signals Au and Bu is reduced in accordance with the deviation ⁇ IA between the predetermined value Ic and the input current Ii within a range in which the DC voltage VDC can be maintained at the reference DC voltage VDCr. be able to. Therefore, switching loss generated in IGBTs Q1 to Q4 of converter 6 can be further reduced as compared with the first embodiment in which frequency fL is set to a constant value.
- FIG. 7 is a circuit block diagram showing a configuration of gate control circuit 55 of the uninterruptible power supply according to Embodiment 3 of the present invention, and is a diagram compared with FIG. In FIG. 7, the gate control circuit 55 is obtained by removing the determiner 41 (FIG. 3) from the gate control circuit 37.
- the oscillator 42 outputs a clock signal ⁇ 42 having a relatively high frequency fH when the signal SE from the operation unit 17 (FIG. 1) is at “L” level, and when the signal SE is at “H” level, A clock signal ⁇ 42 having a relatively low frequency fL is output.
- the user of the uninterruptible power supply knows in advance that the load 24 is not a light load (that is, the input current Iif is larger than the predetermined value Ic) and wants to select the normal operation mode, the user operates the operation unit 17. Operate to set signal SE to "L" level. In this case, gate signals Au and Bu having a relatively high frequency fH are generated by the gate control circuit 55, and the DC voltage VDC is maintained at the reference DC voltage VDCr even when the load current IL is large.
- the operation unit 17 is operated to set the signal SE to the “H” level.
- gate signals Au and Bu having a relatively low frequency fL are generated by the gate control circuit 55, and the switching loss generated in the IGBTs Q1 to Q4 of the converter 6 is reduced.
- FIG. 8 is a circuit block diagram showing the configuration of the gate control circuit 56 of the uninterruptible power supply device according to the modification of the third embodiment, and is a diagram compared with FIG. In FIG. 8, the gate control circuit 56 is obtained by adding a determination device 41 (FIG. 3) and an OR gate 57 to the gate control circuit 55.
- the OR gate 57 outputs a logical sum signal ⁇ 57 of the output signal ⁇ 41 of the determiner 41 and the signal SE from the operation unit 17 (FIG. 1).
- the operation unit 17 When the user of the uninterruptible power supply knows in advance that the load 24 is a light load (that is, the input current Iif is smaller than the predetermined value Ic) and wants to select the power saving operation mode, the operation unit 17 is operated to set the signal SE to the “H” level. If the user of the uninterruptible power supply does not know in advance whether or not the load 24 is a light load, the user operates the operation unit 17 to set the signal SE to the “L” level.
- the signal ⁇ 57 is set to the “H” level regardless of the output signal ⁇ 41 of the determiner 41, and the power saving operation mode is executed.
- the signal SE is set to the “L” level, the output signal ⁇ 41 of the determiner 41 becomes the signal ⁇ 57.
- the gate signals Au and Bu having a relatively high frequency fH are generated.
- the gate signals Au and Bu having a relatively low frequency fL are generated. Is generated. Since other configurations and operations are the same as those in the first embodiment, description thereof will not be repeated.
- the same effect as in the third embodiment can be obtained, and if it is not known in advance whether or not the load 24 is a light load, the signal SE is set to the “L” level to thereby determine the discriminator 41.
- the power saving operation mode or the normal operation mode can be executed based on the determination result.
- FIG. 9 is a circuit block diagram showing a main part of the uninterruptible power supply according to Embodiment 4 of the present invention, and is a diagram compared with FIG. In FIG. 9, this uninterruptible power supply is different from uninterruptible power supply 1 of the first embodiment in that converter 6, bidirectional chopper 7, and inverter 10 are different from converter 60, bidirectional chopper 61, and inverter 62, respectively. It is a point that has been replaced.
- DC lines L1 to L3 are connected between the converter 60 and the inverter 62.
- DC line L3 is connected to neutral point NP and is set to a neutral point voltage (for example, 0 V).
- Capacitor 9 (FIG. 1) includes two capacitors 9a and 9b. The capacitor 9a is connected between the DC lines L1 and L3. The capacitor 9b is connected between the DC lines L3 and L2.
- Converter 60 converts AC power from commercial AC power supply 21 to DC power and supplies it to DC lines L1 to L3 during normal times when AC power is supplied from commercial AC power supply 21. At this time, converter 60 has capacitors 9a and 9b so that DC voltage VDCa between DC lines L1 and L3 becomes reference DC voltage VDCr and DC voltage VDCb between DC lines L3 and L2 becomes reference DC voltage VDCr. Charge each one.
- the voltages of the DC lines L1, L2, and L3 are set to a positive DC voltage, a negative DC voltage, and a neutral point voltage, respectively. In the event of a power failure when the supply of AC power from the commercial AC power supply 21 is stopped, the operation of the converter 60 is stopped.
- the bidirectional chopper 61 normally stores the DC power generated by the converter 60 in the battery 23 (FIG. 1). At this time, the bidirectional chopper 61 charges the battery 23 so that the voltage VB between the terminals of the battery 23 becomes the reference battery voltage VBr.
- the bidirectional chopper 61 supplies the DC power of the battery 23 to the inverter 62 during a power failure. At this time, the bi-directional chopper 61 charges each of the capacitors 9a and 9b so that the inter-terminal voltages VDCa and VDCb of the capacitors 9a and 9b become the reference DC voltage VDCr.
- the inverter 62 normally converts the DC power generated by the converter 60 into AC power having a commercial frequency and supplies it to the load 24 (FIG. 1). At this time, the inverter 62 generates a commercial frequency AC output voltage Vo based on the positive DC voltage, the negative DC voltage, and the neutral point voltage supplied from the DC lines L1 to L3.
- Converter 60 includes IGBTs Q11 to Q14 and diodes D11 to D14.
- IGBT Q11 has a collector connected to DC line L1, and an emitter connected to input node 60a.
- IGBT Q12 has a collector connected to input node 60a and an emitter connected to DC line L2.
- the collectors of IGBTs Q13 and Q14 are connected to each other, and their emitters are connected to input node 60a and DC line L3, respectively.
- Diodes D11 to D14 are connected in antiparallel to IGBTs Q11 to Q14, respectively.
- Input node 60a is connected to node N1 through reactor 5 (FIG. 1).
- FIG. 10 is a circuit block diagram showing the configuration of the gate control circuit 70 that controls the converter 60, and is a diagram to be compared with FIG.
- the gate control circuit 70 includes a determination device 41, an oscillator 71, triangular wave generators 72 and 73, comparators 74 and 75, buffers 76 and 77, and inverters 78 and 79.
- the determiner 41 operates based on the output signal Iif of the current detector 3, and when the input current Ii is larger than the predetermined value Ic, the signal ⁇ 41 is set to “L” level to perform normal operation. When the mode is selected and the input current Ii is smaller than the predetermined value Ic, the signal ⁇ 41 is set to the “H” level to select the power saving operation mode.
- the oscillator 71 is an oscillator capable of controlling the frequency of the output clock signal (for example, a voltage controlled oscillator).
- the oscillator 71 outputs a clock signal having a frequency fH sufficiently higher than the commercial frequency when the signal ⁇ 41 is at the “L” level, and a frequency fL lower than the frequency fH when the signal ⁇ 41 is at the “H” level.
- the clock signal is output.
- Triangular wave generators 72 and 73 output triangular wave signals Cua and Cub having the same frequency as the output clock signal ⁇ 71 of the oscillator 71, respectively.
- the comparator 74 compares the voltage command value Vir from the output current control circuit 36 (FIG. 2) with the triangular wave signal Cua from the triangular wave generator 72, and outputs a gate signal ⁇ 1 indicating the comparison result.
- Buffer 76 provides gate signal ⁇ 1 to the gate of IGBT Q11.
- Inverter 78 inverts gate signal ⁇ 1, generates gate signal ⁇ 4, and supplies it to the gate of IGBT Q14.
- the comparator 75 compares the voltage command value Vir from the output current control circuit 36 with the triangular wave signal Cub from the triangular wave generator 73, and outputs a gate signal ⁇ 3 indicating the comparison result.
- Buffer 77 provides gate signal ⁇ 3 to the gate of IGBT Q13.
- Inverter 79 inverts gate signal ⁇ 3, generates gate signal ⁇ 2, and provides it to the gate of IGBT Q12.
- FIGS. 11A to 11E are time charts showing the waveforms of the voltage command value Vir, the triangular wave signals Cua and Cub, and the gate signals ⁇ 1 to ⁇ 4 shown in FIG.
- the voltage command value Vir is a sine wave signal having a commercial frequency.
- the minimum value of the triangular wave signal Cua is 0 V, and the maximum value is higher than the positive peak value of the voltage command value Vir.
- the maximum value of the triangular wave signal Cub is 0 V, and the minimum value is lower than the negative peak value of the voltage command value Vir.
- the triangular wave signals Cua and Cub are in-phase signals, and the phases of the triangular wave signals Cua and Cub are synchronized with the phase of the voltage command value Vir.
- the frequencies of the triangular wave signals Cua and Cub are higher than the frequency (commercial frequency) of the voltage command value Vir.
- the gate signal ⁇ 1 becomes “L” level, and the level of the triangular wave signal Cua becomes the voltage command value Vir. If lower than that, the gate signal ⁇ 1 is at the “H” level.
- the gate signal ⁇ 1 is a positive pulse signal train.
- gate signal ⁇ 1 is fixed at “L” level.
- the gate signal ⁇ 4 is an inverted signal of the gate signal ⁇ 1.
- the gate signal ⁇ 2 when the level of the triangular wave signal Cub is lower than the voltage command value Vir, the gate signal ⁇ 2 becomes the “L” level, and the level of the triangular wave signal Cub becomes the voltage command value Vir. If higher than that, gate signal ⁇ 2 attains an “H” level.
- the gate signal ⁇ 2 is a positive pulse signal train.
- the gate signal ⁇ 2 In the period in which the voltage command value Vir is positive, the gate signal ⁇ 2 is fixed at the “L” level. In the period in which the voltage command value Vir is negative, the pulse width of the gate signal ⁇ 2 increases as the voltage command value Vir decreases. As shown in FIGS. 11C and 11D, the gate signal ⁇ 3 is an inverted signal of the gate signal ⁇ 2. Each of the gate signals ⁇ 1 to ⁇ 4 is a PWM signal.
- 11A to 11E show the voltage command value Vir corresponding to the U phase and the waveforms of the signals Cua, Cub, ⁇ 1 to ⁇ 4, but the voltage command values corresponding to the V phase and the W phase, respectively. The same applies to the waveform of the signal. However, the voltage command values and the signal phases corresponding to the U phase, the V phase, and the W phase are shifted by 120 degrees.
- the waveforms of the gate signals ⁇ 1 to ⁇ 4 in the power saving operation mode are the same as the waveforms of the gate signals ⁇ 1 to ⁇ 4 in the normal operation mode.
- the frequency fL of the gate signals ⁇ 1 to ⁇ 4 in the power saving operation mode is lower than the frequency fH of the gate signals ⁇ 1 to ⁇ 4 in the normal operation mode.
- each of the DC voltages VDCa and VDCb can be maintained at the reference DC voltage VDCr even when the load current IL is large, and thus the high-quality AC output with a small voltage fluctuation rate.
- the voltage Vo can be generated.
- the normal operation mode in which the converter 6 is controlled by the gate signals ⁇ 1 to ⁇ 4 having the relatively high frequency fH and the gate signals ⁇ 1 to ⁇ 4 having the relatively low frequency fL are used.
- a power saving operation mode for controlling the converter 6 and reducing switching loss is provided.
- the normal operation mode is selected when the input current Ii is larger than the predetermined value Iic (that is, when the load current IL is larger than the predetermined value ILc).
- the power saving operation mode is selected when the input current Ii is smaller than the predetermined value Iic (that is, when the load current IL is smaller than the predetermined value ILc).
- Frequency fL is set to a frequency within a range in which each of DC voltages VDCa and VDCb can be maintained at reference DC voltage VDCr when input current Ii is smaller than predetermined value Iic.
- the output signal ⁇ 41 of the determiner 41 becomes “L” level and is relatively high by the oscillator 71 and the triangular wave generators 72 and 73. Triangular wave signals Cua and Cub having a frequency fH are generated.
- the voltage command value Vir and the triangular wave signal Cua are compared by the comparator 74, and gate signals ⁇ 1 and ⁇ 4 are generated by the buffer 76 and the inverter 78.
- Voltage command value Vir and triangular wave signal Cub are compared by comparator 75, and gate signals ⁇ 3 and ⁇ 2 are generated by buffer 77 and inverter 79.
- IGBTs Q12 and Q13 of converter 60 In the period in which voltage command value Vir is positive, IGBTs Q12 and Q13 of converter 60 (FIG. 9) are fixed to the off state and the on state, respectively, and IGBT Q11 and IGBT Q14 are alternately turned on.
- IGBTs Q11 and Q14 are fixed to the off state and the on state, respectively, and IGBTQ12 and IGBTQ13 are alternately turned on by gate signals ⁇ 2 and ⁇ 3, and DC lines L1 to L3 are respectively positive. Voltage, negative voltage, neutral point voltage.
- the input current Ii is smaller than the predetermined value Iic (that is, the load current IL is smaller than the predetermined value ILc)
- the output signal ⁇ 41 of the determiner 41 becomes “H” level and is relatively low by the oscillator 71 and the triangular wave generators 72 and 73.
- Triangular wave signals Cua and Cub having a frequency fL are generated, and gate signals ⁇ 1 to ⁇ 4 are generated using the triangular wave signals Cua and Cub.
- IGBTs Q11 to Q14 are driven by these gate signals ⁇ 1 to ⁇ 4, and DC lines L1 to L3 are set to a positive voltage, a negative voltage, and a neutral point voltage, respectively.
- the IGBTs Q11 to Q14 of the converter 60 are controlled at a relatively low frequency fL, so that the switching loss generated in the IGBTs Q11 to Q14 is reduced and the efficiency of the uninterruptible power supply is increased. Further, since the load current IL is small, the load 24 can be driven without any problem even if the response speed of the converter 60 decreases. Since other configurations and operations are the same as those in the first embodiment, description thereof will not be repeated.
- the converter 60 when the input current Ii is larger than the predetermined value Iic, the converter 60 is controlled by the gate signals ⁇ 1 to ⁇ 4 having a relatively high frequency fH, and the input current Ii is the predetermined value Iic. If smaller, the converter 60 is controlled by the gate signals ⁇ 1 to ⁇ 4 having a relatively low frequency fL. Therefore, when input current Ii is smaller than predetermined value Iic, switching loss generated in IGBTs Q11 to Q14 of converter 60 can be reduced, and the efficiency of the uninterruptible power supply can be increased.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
無停電電源装置(1)の制御装置(18)は、負荷電流(IL)が所定値(Ic)よりも大きい場合は、比較的高い周波数(fH)のゲート信号(Au,Bu)によってコンバータ(6)を制御し、負荷電流(IL)が所定値(Ic)よりも小さい場合は、比較的低い周波数(fL)のゲート信号(Au,Bu)によってコンバータ(6)を制御する。したがって、負荷(24)が軽負荷である場合には、コンバータ(6)のIGBT(Q1~Q4)で発生するスイッチング損失を低減することができる。
Description
この発明は電力変換装置に関し、特に、交流電力を直流電力に変換する順変換器を備えた電力変換装置に関する。
たとえば特開2008-92734号公報(特許文献1)には、複数のスイッチング素子を含み、商用周波数の交流電力を直流電力に変換する順変換器と、商用周波数の正弦波信号と商用周波数よりも十分に高い周波数の三角波信号との比較結果に基づいて、複数のスイッチング素子を制御するための制御信号を生成する制御装置とを備えた電力変換装置が開示されている。複数のスイッチング素子の各々は、三角波信号の周波数に応じた値の周波数でオンおよびオフされる。
しかし、従来の電力変換装置では、スイッチング素子がオンおよびオフされる度にスイッチング損失が発生し、電力変換装置の効率が低下するという問題があった。
それゆえに、この発明の主たる目的は、高効率の電力変換装置を提供することである。
この発明に係る電力変換装置は、複数のスイッチング素子を含み、商用周波数の交流電力を直流電力に変換する順変換器と、商用周波数の正弦波信号と商用周波数よりも高い周波数の三角波信号との高低を比較し、その比較結果に基づいて、複数のスイッチング素子を制御するための制御信号を生成する制御部とを備えたものである。この制御部は、三角波信号の周波数が第1の値に設定される第1のモードと、三角波信号の周波数が第1の値よりも小さな第2の値に設定される第2のモードとのうちの選択された方のモードを実行する。
この発明に係る電力変換装置では、三角波信号の周波数が第1の値に設定される第1のモードと、三角波信号の周波数が第1の値よりも小さな第2の値に設定される第2のモードとのうちの選択された方のモードが実行される。したがって、順変換器の負荷が第2のモードで運転可能である場合には、第2のモードを選択することにより、複数のスイッチング素子で発生するスイッチング損失を小さくすることができ、電力変換装置の効率を高めることができる。
[実施の形態1]
図1は、この発明の実施の形態1による無停電電源装置1の構成を示す回路ブロック図である。この無停電電源装置1は、商用交流電源21からの三相交流電力を直流電力に一旦変換し、その直流電力を三相交流電力に変換して負荷24に供給するものである。図1では、図面および説明の簡単化のため、三相(U相、V相、W相)のうちの一相(たとえばU相)に対応する部分の回路のみが示されている。
図1は、この発明の実施の形態1による無停電電源装置1の構成を示す回路ブロック図である。この無停電電源装置1は、商用交流電源21からの三相交流電力を直流電力に一旦変換し、その直流電力を三相交流電力に変換して負荷24に供給するものである。図1では、図面および説明の簡単化のため、三相(U相、V相、W相)のうちの一相(たとえばU相)に対応する部分の回路のみが示されている。
図1において、この無停電電源装置1は、交流入力端子T1、バイパス入力端子T2、バッテリ端子T3、および交流出力端子T4を備える。交流入力端子T1は、商用交流電源21から商用周波数の交流電力を受ける。バイパス入力端子T2は、バイパス交流電源22から商用周波数の交流電力を受ける。バイパス交流電源22は、商用交流電源であってもよいし、発電機であってもよい。
バッテリ端子T3は、バッテリ(電力貯蔵装置)23に接続される。バッテリ23は、直流電力を蓄える。バッテリ23の代わりにコンデンサが接続されていても構わない。交流出力端子T4は、負荷24に接続される。負荷24は、交流電力によって駆動される。
この無停電電源装置1は、さらに、電磁接触器2,8,14,16、電流検出器3,11、コンデンサ4,9,13、リアクトル5,12、コンバータ6、双方向チョッパ7、インバータ10、半導体スイッチ15、操作部17、および制御装置18を備える。
電磁接触器2およびリアクトル5は、交流入力端子T1とコンバータ6の入力ノード6aとの間に直列接続される。コンデンサ4は、電磁接触器2とリアクトル5の間のノードN1に接続される。電磁接触器2は、無停電電源装置1の使用時にオンされ、たとえば無停電電源装置1のメンテナンス時にオフされる。
ノードN1に現れる交流入力電圧Viの瞬時値は、制御装置18によって検出される。交流入力電圧Viの瞬時値に基づいて、停電の発生の有無などが判別される。電流検出器3は、ノードN1に流れる交流入力電流Iiを検出し、その検出値を示す信号Iifを制御装置18に与える。
コンデンサ4およびリアクトル5は、低域通過フィルタを構成し、商用交流電源21からコンバータ6に商用周波数の交流電力を通過させ、コンバータ6で発生するスイッチング周波数の信号が商用交流電源21に通過することを防止する。
コンバータ6は、制御装置18によって制御され、商用交流電源21から交流電力が供給されている通常時は、交流電力を直流電力に変換して直流ラインL1に出力する。商用交流電源21からの交流電力の供給が停止された停電時は、コンバータ6の運転は停止される。コンバータ6の出力電圧は、所望の値に制御可能になっている。コンデンサ4、リアクトル5、およびコンバータ6は順変換器を構成する。
コンデンサ9は、直流ラインL1に接続され、直流ラインL1の電圧を平滑化させる。直流ラインL1に現れる直流電圧VDCの瞬時値は、制御装置18によって検出される。直流ラインL1は双方向チョッパ7の高電圧側ノードに接続され、双方向チョッパ7の低電圧側ノードは電磁接触器8を介してバッテリ端子T3に接続される。
電磁接触器8は、無停電電源装置1の使用時はオンされ、たとえば無停電電源装置1およびバッテリ23のメンテナンス時にオフされる。バッテリ端子T3に現れるバッテリ23の端子間電圧VBの瞬時値は、制御装置18によって検出される。
双方向チョッパ7は、制御装置18によって制御され、商用交流電源21から交流電力が供給されている通常時は、コンバータ6によって生成された直流電力をバッテリ23に蓄え、商用交流電源21からの交流電力の供給が停止された停電時は、バッテリ23の直流電力を直流ラインL1を介してインバータ10に供給する。
双方向チョッパ7は、直流電力をバッテリ23に蓄える場合は、直流ラインL1の直流電圧VDCを降圧してバッテリ23に与える。また、双方向チョッパ7は、バッテリ23の直流電力をインバータ10に供給する場合は、バッテリ23の端子間電圧VBを昇圧して直流ラインL1に出力する。直流ラインL1は、インバータ10の入力ノードに接続されている。
インバータ10は、制御装置18によって制御され、コンバータ6または双方向チョッパ7から直流ラインL1を介して供給される直流電力を商用周波数の交流電力に変換して出力する。すなわち、インバータ10は、通常時はコンバータ6から直流ラインL1を介して供給される直流電力を交流電力に変換し、停電時はバッテリ23から双方向チョッパ7を介して供給される直流電力を交流電力に変換する。インバータ10の出力電圧は、所望の値に制御可能になっている。
インバータ10の出力ノード10aはリアクトル12の一方端子に接続され、リアクトル12の他方端子(ノードN2)は電磁接触器14を介して交流出力端子T4に接続される。コンデンサ13は、ノードN2に接続される。
電流検出器11は、インバータ10の出力電流Ioの瞬時値を検出し、その検出値を示す信号Iofを制御装置18に与える。ノードN2に現れる交流出力電圧Voの瞬時値は、制御装置18によって検出される。
リアクトル12およびコンデンサ13は、低域通過フィルタを構成し、インバータ10で生成された商用周波数の交流電力を交流出力端子T4に通過させ、インバータ10で発生するスイッチング周波数の信号が交流出力端子T4に通過することを防止する。インバータ10、リアクトル12、およびコンデンサ13は逆変換器を構成する。
電磁接触器14は、制御装置18によって制御され、インバータ10によって生成された交流電力を負荷24に供給するインバータ給電モード時にはオンされ、バイパス交流電源22からの交流電力を負荷24に供給するバイパス給電モード時にはオフされる。
半導体スイッチ15は、サイリスタを含み、バイパス入力端子T2と交流出力端子T4との間に接続される。電磁接触器16は、半導体スイッチ15に並列接続される。半導体スイッチ15は、制御装置18によって制御され、通常はオフされ、インバータ10が故障した場合は瞬時にオンし、バイパス交流電源22からの交流電力を負荷24に供給する。半導体スイッチ15は、オンしてから所定時間経過後にオフする。
電磁接触器16は、インバータ10によって生成された交流電力を負荷24に供給するインバータ給電モード時にはオフされ、バイパス交流電源22からの交流電力を負荷24に供給するバイパス給電モード時にはオンされる。
また、電磁接触器16は、インバータ10が故障した場合にオンし、バイパス交流電源22からの交流電力を負荷24に供給する。つまり、インバータ10が故障した場合は、半導体スイッチ15が瞬時に所定時間だけオンするとともに電磁接触器16がオンする。これは、半導体スイッチ15が過熱されて破損するのを防止するためである。
操作部17は、無停電電源装置1の使用者によって操作される複数のボタン、種々の情報を表示する画像表示部などを含む。使用者が操作部17を操作することにより、無停電電源装置1の電源をオンおよびオフしたり、バイパス給電モードおよびインバータ給電モードのうちのいずれか一方のモードを選択することが可能となっている。
制御装置18は、操作部17からの信号、交流入力電圧Vi、交流入力電流Ii、直流電圧VDC、バッテリ電圧VB、交流出力電流Io、および交流出力電圧Voなどに基づいて無停電電源装置1全体を制御する。すなわち、制御装置18は、交流入力電圧Viの検出値に基づいて停電が発生したか否かを検出し、交流入力電圧Viの位相に同期してコンバータ6およびインバータ10を制御する。
さらに制御装置18は、商用交流電源21から交流電力が供給されている通常時は、直流電圧VDCが参照直流電圧VDCrになるようにコンバータ6を制御し、商用交流電源21からの交流電力の供給が停止された停電時は、コンバータ6の運転を停止させる。
さらに制御装置18は、通常時は、バッテリ電圧VBが参照バッテリ電圧VBrになるように双方向チョッパ7を制御し、停電時は、直流電圧VDCが参照直流電圧VDCrになるように双方向チョッパ7を制御する。
さらに制御装置18は、電流検出器3の出力信号Iifに基づいて、入力電流Iiが所定値Icよりも小さいか否か(すなわち負荷24が軽負荷であるか否か)を判別し、入力電流Iiが所定値Icよりも大きい場合は通常運転モード(第1のモード)を選択し、入力電流Iiが所定値Icよりも小さい場合は省電力運転モード(第2のモード)を選択し、選択した方のモードを実行する。
制御装置18は、通常運転モードを選択した場合は、商用周波数の正弦波信号と商用周波数よりも十分に高い周波数fHの三角波信号との高低を比較し、その比較結果に基づいて、コンバータ6を制御するためのゲート信号(制御信号)を生成する。通常運転モードでは、ゲート信号は、三角波信号の周波数fHに応じた値の周波数を有するパルス信号列となる。ゲート信号のパルス幅は、出力直流電圧VDCが参照直流電圧VDCrになるように制御される。
制御装置18は、省電力運転モードを選択した場合は、商用周波数の正弦波信号と、商用周波数と上記周波数fHの間の周波数fLの三角波信号との高低を比較し、その比較結果に基づいて、コンバータ6を制御するためのゲート信号を生成する。省電力運転モードでは、ゲート信号は、三角波信号の周波数fLに応じた値の周波数を有するパルス信号列となる。ゲート信号のパルス幅は、出力直流電圧VDCが参照直流電圧VDCrになるように制御される。
図2は、図1に示した制御装置18のうちのコンバータ6の制御に関連する部分の構成を示すブロック図である。図2において、制御装置18は、参照電圧発生回路31、電圧検出器32、減算器33,35、出力電圧制御回路34、出力電流制御回路36、およびゲート制御回路37を含む。
参照電圧発生回路31は、参照直流電圧VDCrを出力する。参照直流電圧VDCrは、直流電圧VDCの定格電圧に設定される。電圧検出器32は、直流ラインL1の直流電圧VDCを検出し、検出値を示す信号VDCfを出力する。減算器33は、参照直流電圧VDCrと電圧検出器32の出力信号VDCfとの偏差ΔVDCを求める。
出力電圧制御回路34は、偏差ΔVDCに比例した値と偏差ΔVDCの積分値とを加算して電流指令値Iirを生成する。減算器35は、電流指令値Iirと電流検出器3(図1)からの信号Iifとの偏差ΔIiを求める。
出力電流制御回路36は、偏差ΔIiに比例した値と偏差ΔIiの積分値とを加算して電圧指令値Virを生成する。電圧指令値Virは、商用周波数の正弦波信号となる。ゲート制御回路37は、電圧指令値Virに基づいて、対応する相(ここではU相)のコンバータ6を制御するためのゲート信号Au,Buを生成する。
図3は、ゲート制御回路37の構成を示す回路ブロック図である。図3において、ゲート制御回路37は、判定器41、発振器42、三角波発生器43、比較器44、バッファ45、およびインバータ46を含む。
判定器41は、電流検出器3(図1)の出力信号Iifに基づいて、入力電流Iiが所定値Icよりも大きいか否かを判別し、判別結果を示す信号φ41を出力する。入力電流Iiが所定値Icよりも大きい場合は、通常運転モードが選択され、信号φ41は「L」レベルにされる。入力電流Iiが所定値Icよりも小さい場合は、省電力運転モードが選択され、信号φ41は「H」レベルにされる。
発振器42は、信号φ41が「L」レベルである場合は、商用周波数(たとえば60Hz)よりも十分に高い周波数fH(たとえば20KHz)のクロック信号φ42を出力し、信号φ41が「H」レベルである場合は、商用周波数(たとえば60Hz)と上記周波数fH(たとえば20KHz)の間の周波数(たとえば15KHz)のクロック信号φ42を出力する。三角波発生器43は、発振器42の出力クロック信号φ42と同じ周波数の三角波信号Cuを出力する。
比較器44は、出力電流制御回路36(図2)からの電圧指令値Vir(商用周波数の正弦波信号)と三角波発生器43からの三角波信号Cuとの高低を比較し、比較結果を示すパルス信号列φ44を出力する。パルス信号列φ44の周波数は、三角波信号Cuの周波数fHまたはfLと同じ値になる。パルス信号列φ44のパルス幅は、電圧指令値Virのレベルに応じて変化する。パルス信号列φ44は、PWM(Pulse Width Modulation)信号である。
バッファ45は、パルス信号列φ44をゲート信号Auとしてコンバータ6に与える。インバータ46は、パルス信号列φ44を反転させ、ゲート信号Buを生成してコンバータ6に与える。
図4(A),(B),(C)は、図3に示した電圧指令値Vir、三角波信号Cu、およびゲート信号Au,Buの波形を示すタイムチャートである。図4(A)に示すように、電圧指令値Virは商用周波数の正弦波信号である。三角波信号Cuの周波数fHまたはfLは、電圧指令値Virの周波数(商用周波数)よりも高い。三角波信号Cuの正側のピーク値は電圧指令値Virの正側のピーク値よりも高い。三角波信号Cuの負側のピーク値は電圧指令値Virの負側のピーク値よりも低い。
図4(A),(B)に示すように、三角波信号Cuのレベルが電圧指令値Virよりも高い場合はゲート信号Auは「L」レベルになり、三角波信号Cuのレベルが電圧指令値Virよりも低い場合はゲート信号Auは「H」レベルになる。ゲート信号Auは、正パルス信号列となる。
電圧指令値Virが正極性である期間では、電圧指令値Virが上昇するとゲート信号Auのパルス幅は増大する。電圧指令値Virが負極性である期間では、電圧指令値Virが下降するとゲート信号Auのパルス幅は減少する。図4(B),(C)に示すように、ゲート信号Buはゲート信号Auの反転信号となる。ゲート信号Au,Buの各々は、PWM信号である。
省電力運転モード時におけるゲート信号Au,Buの波形は、通常運転モード時におけるゲート信号Au,Buの波形と同様である。省電力運転モード時におけるゲート信号Au,Buの周波数fLは、通常運転モード時におけるゲート信号Au,Buの周波数fHよりも低い。
なお、図4(A),(B),(C)ではU相に対応する電圧指令値Virおよび信号Cu,Au,Buの波形を示したが、V相およびW相の各々に対応する電圧指令値および信号の波形も同様である。ただし、U相、V相、およびW相に対応する電圧指令値および信号の位相は120度ずつずれている。
図5は、図1に示したコンバータ6およびその周辺部の構成を示す回路ブロック図である。図5において、コンバータ6とインバータ10の間には、正側の直流ラインL1と負側の直流ラインL2とが接続されている。コンデンサ9は、直流ラインL1,L2間に接続されている。
[規則91に基づく訂正 06.07.2018]
商用交流電源21から交流電力が供給されている通常時は、コンバータ6は、商用交流電源21からの交流入力電圧Viを直流電圧VDCに変換して直流ラインL1,L2間に出力する。商用交流電源21からの交流電力の供給が停止された停電時は、コンバータ6の運転は停止され、双方向チョッパ7が、バッテリ電圧VBを昇圧して直流ラインL1,L2間に直流電圧VDCを出力する。インバータ10は、直流ラインL1,L2間の直流電圧VDCを交流出力電圧Voに変換する。
商用交流電源21から交流電力が供給されている通常時は、コンバータ6は、商用交流電源21からの交流入力電圧Viを直流電圧VDCに変換して直流ラインL1,L2間に出力する。商用交流電源21からの交流電力の供給が停止された停電時は、コンバータ6の運転は停止され、双方向チョッパ7が、バッテリ電圧VBを昇圧して直流ラインL1,L2間に直流電圧VDCを出力する。インバータ10は、直流ラインL1,L2間の直流電圧VDCを交流出力電圧Voに変換する。
コンバータ6は、IGBTQ1~Q4およびダイオードD1~D4を含む。IGBTは、スイッチング素子を構成する。IGBTQ1,Q2のコレクタはともに直流ラインL1に接続され、それらのエミッタはそれぞれ入力ノード6a,6bに接続される。
IGBTQ3,Q4のコレクタはそれぞれ入力ノード6a,6bに接続され、それらのエミッタはともに直流ラインL2に接続される。IGBTQ1,Q4のゲートはともにゲート信号Auを受け、IGBTQ2,Q3のゲートはともにゲート信号Buを受ける。ダイオードD1~D4は、それぞれIGBTQ1~Q4に逆並列に接続される。
コンバータ6の入力ノード6aはリアクトル5(図1)を介してノードN1に接続され、入力ノード6bは中性点NPに接続される。コンデンサ4は、ノードN1と中性点NPの間に接続される。
ゲート信号Au,Buがそれぞれ「H」レベルおよび「L」レベルである場合は、IGBTQ1,Q4がオンするとともにIGBTQ2,Q3がオフする。これにより、入力ノード6aがIGBTQ1を介してコンデンサ9の正側端子(直流ラインL1)に接続されるとともに、コンデンサ9の負側端子(直流ラインL2)がIGBTQ4を介して入力ノード6bに接続され、コンデンサ9の端子間に正の直流電圧が出力される。
[規則91に基づく訂正 06.07.2018]
ゲート信号Au,Buがそれぞれ「L」レベルおよび「H」レベルである場合は、IGBTQ2,Q3がオンするとともにIGBTQ1,Q4がオフする。これにより、入力ノード6bがIGBTQ2を介してコンデンサ9の正側端子(直流ラインL1)に接続されるとともに、コンデンサ9の負側端子(直流ラインL2)がIGBTQ3を介して入力ノード6aに接続され、コンデンサ9の端子間に負の直流電圧が出力される。
ゲート信号Au,Buがそれぞれ「L」レベルおよび「H」レベルである場合は、IGBTQ2,Q3がオンするとともにIGBTQ1,Q4がオフする。これにより、入力ノード6bがIGBTQ2を介してコンデンサ9の正側端子(直流ラインL1)に接続されるとともに、コンデンサ9の負側端子(直流ラインL2)がIGBTQ3を介して入力ノード6aに接続され、コンデンサ9の端子間に負の直流電圧が出力される。
[規則91に基づく訂正 06.07.2018]
換言すると、図4(B),(C)に示すようにゲート信号Au,Buの波形が変化すると、図4(A)に示した電圧指令値Virと同じ波形の交流電圧VicがノードN1および中性点NP間に出力される。商用交流電源21からの交流入力電圧Viとコンバータ6からの交流電圧Vicとの偏差に応じた値の電流が商用交流電源21とコンバータ6の間に流れ、コンデンサ9の端子間電圧VDCが制御される。
換言すると、図4(B),(C)に示すようにゲート信号Au,Buの波形が変化すると、図4(A)に示した電圧指令値Virと同じ波形の交流電圧VicがノードN1および中性点NP間に出力される。商用交流電源21からの交流入力電圧Viとコンバータ6からの交流電圧Vicとの偏差に応じた値の電流が商用交流電源21とコンバータ6の間に流れ、コンデンサ9の端子間電圧VDCが制御される。
図4(A),(B),(C)から分かるように、三角波信号Cuの周波数を高くすると、ゲート信号Au,Buの周波数が高くなり、IGBTQ1~Q4のスイッチング周波数(オンおよびオフの回数/秒)が高くなる。IGBTQ1~Q4のスイッチング周波数が高くなると、IGBTQ1~Q4で発生するスイッチング損失が増大し、無停電電源装置1の効率が低くなる。
しかし、IGBTQ1~Q4のスイッチング周波数を高くすると、負荷電流ILが大きい場合でも、直流電圧VDCを参照直流電圧VDCrに維持することができ、ひいては電圧変動率が小さな高品質の交流出力電圧Voを生成することができる。
逆に、三角波信号Cuの周波数を低くすると、ゲート信号Au,Buの周波数が低くなり、IGBTQ1~Q4のスイッチング周波数が低くなる。IGBTQ1~Q4のスイッチング周波数が低くなると、IGBTQ1~Q4で発生するスイッチング損失が減少し、無停電電源装置1の効率が高くなる。しかし、IGBTQ1~Q4のスイッチング周波数を低くすると、負荷電流ILが大きい場合には、直流電圧VDCを参照直流電圧VDCrに維持し難くなり、ひいては交流出力電圧Voの電圧変動率が増大し、交流出力電圧Voの波形が劣化する。
[規則91に基づく訂正 06.07.2018]
なお、交流電圧の電圧変動率は、たとえば、定格電圧を基準(100%)とした場合における交流電圧の変動範囲で表される。商用交流電源21(図1)から供給される交流入力電圧Viの電圧変動率は、定格電圧を基準として±10%である。
なお、交流電圧の電圧変動率は、たとえば、定格電圧を基準(100%)とした場合における交流電圧の変動範囲で表される。商用交流電源21(図1)から供給される交流入力電圧Viの電圧変動率は、定格電圧を基準として±10%である。
従来の無停電電源装置では、三角波信号Cuの周波数を商用周波数(たとえば60Hz)よりも十分に高い周波数fH(たとえば20KHz)に固定し、電圧変動率を小さな値(±2%)に抑えている。このため、電圧変動率に対する許容範囲が小さな負荷24(たとえばコンピュータ)を駆動させることが可能となっている反面、IGBTQ1~Q4で比較的大きなスイッチング損失が発生し、無停電電源装置の効率が低下している。
しかし、負荷電流ILが小さい場合には、IGBTQ1~Q4のスイッチング周波数を低下させても、交流出力電圧Voの電圧変動率の変化は小さく、交流出力電圧Voの波形の劣化の程度は小さい。また、IGBTQ1~Q4のスイッチング周波数を低下させれば、IGBTQ1~Q4で発生するスイッチング損失を小さくすることができ、無停電電源装置1の効率を高めることができる。
そこで、本実施の形態1では、比較的高い周波数fHのゲート信号Au,Buによってコンバータ6を制御する通常運転モードと、比較的低い周波数fLのゲート信号Au,Buによってコンバータ6を制御し、スイッチング損失を低下させる省電力運転モードとが設けられている。
コンバータ6の入力電流Iiは負荷電流ILに応じて増大するので、入力電流Iiが所定値Iicよりも大きい場合(すなわち負荷電流ILが所定値ILcよりも大きい場合)には通常運転モードが選択される。また、入力電流Iiが所定値Iicよりも小さい場合(すなわち負荷電流ILが所定値ILcよりも小さい場合)には省電力運転モードが選択される。周波数fLは、入力電流Iiが所定値Iicよりも小さい場合において、直流電圧VDCを参照直流電圧VDCrに維持することが可能な範囲内の周波数に設定される。
なお、周波数fLを低下させていくと、コンバータ6から低域通過フィルタ(コンデンサ4およびリアクトル5)を介して商用交流電源21に流れる高調波電流が増大する。その高調波電流が上限値を超えない範囲内で周波数fLを設定する必要がある。
次に、この無停電電源装置1の使用方法および動作について説明する。無停電電源装置1の使用者によって操作部17(図1)が操作され、インバータ給電モードが選択されたものとする。商用交流電源21から交流電力が供給されている通常時において、インバータ給電モードが選択されると、半導体スイッチ15および電磁接触器16がオフするとともに、電磁接触器2,8,14がオンする。
商用交流電源21から供給される交流電力は、コンバータ6によって直流電力に変換される。コンバータ6によって生成された直流電力は、双方向チョッパ7によってバッテリ23に蓄えられるとともに、インバータ10に供給される。
制御装置18(図2)では、参照電圧発生回路31によって参照直流電圧VDCrが生成され、電圧検出器32によって直流電圧VDCの検出値を示す信号VDCfが生成される。参照交流電圧VDCrと信号VDCfの偏差ΔVDCが減算器33で生成され、その偏差ΔVDCに基づいて出力電圧制御回路34によって電流指令値Iirが生成される。
電流指令値Iirと電流検出器3(図1)からの信号Iifとの偏差ΔIiが減算器35によって生成され、その偏差ΔIiに基づいて出力電流制御回路36によって電圧指令値Virが生成される。
ゲート制御回路37の判定器41(図3)では、電流検出器3の出力信号Iifに基づいて、入力電流Iiが所定値Iicよりも大きいか否かが判定される。入力電流Iiが所定値Iicよりも大きい場合は、判定器41の出力信号φ41が「L」レベルにされ、通常運転モードが実行される。
すなわち、発振器42および三角波発生器43によって比較的高い周波数fHの三角波信号Cuが生成される。電圧指令値Virと三角波信号Cuとが比較器44によって比較され、パルス信号列φ44が生成され、バッファ45およびインバータ46によってゲート信号Au,Buが生成される。
[規則91に基づく訂正 06.07.2018]
コンバータ6(図5)では、ゲート信号Au,BuによってIGBTQ1,Q4とIGBTQ2,Q3とが交互にオンされ、商用周波数の交流入力電圧Viが直流電圧VDCに変換される。コンバータ6で生成された直流電力は、インバータ10(図1)によって商用周波数の交流電力に変換されて負荷24に供給される。
コンバータ6(図5)では、ゲート信号Au,BuによってIGBTQ1,Q4とIGBTQ2,Q3とが交互にオンされ、商用周波数の交流入力電圧Viが直流電圧VDCに変換される。コンバータ6で生成された直流電力は、インバータ10(図1)によって商用周波数の交流電力に変換されて負荷24に供給される。
この通常運転モードでは、IGBTQ1~Q4の各々が比較的高い周波数fHでオンおよびオフするので、負荷電流ILが大きい場合でも、直流電圧VDCを参照直流電圧VDCrに維持することができ、ひいては電圧変動率が小さな高品質の交流出力電圧Voを生成することができる。ただし、IGBTQ1~Q4で発生するスイッチング損失が大きくなり、効率が低下する。
また、負荷電流ILが所定値Icよりも小さい場合は、判定器41の出力信号φ41が「H」レベルにされ、省電力運転モードが実行される。すなわち、発振器42および三角波発生器43によって比較的低い周波数fLの三角波信号Cuが生成される。電圧指令値Virと三角波信号Cuとが比較器44によって比較され、パルス信号列φ44が生成され、バッファ45およびインバータ46によってゲート信号Au,Buが生成される。
[規則91に基づく訂正 06.07.2018]
ゲート信号Au,Buによってコンバータ6が駆動され、交流入力電圧Viが直流電圧VDCに変換される。コンバータ6で生成された直流電力は、インバータ10(図1)によって商用周波数の交流電力に変換されて負荷24に供給される。
ゲート信号Au,Buによってコンバータ6が駆動され、交流入力電圧Viが直流電圧VDCに変換される。コンバータ6で生成された直流電力は、インバータ10(図1)によって商用周波数の交流電力に変換されて負荷24に供給される。
この省電力運転モードでは、IGBTQ1~Q4の各々が比較的低い周波数fLでオンおよびオフするので、IGBTQ1~Q4で発生するスイッチング損失を小さくすることができ、無停電電源装置1の効率を高めることができる。また、入力電流Iiが小さい(すなわち負荷電流ILが小さい)ので、直流電圧VDCを参照直流電圧VDCrに維持することができ、ひいては電圧変動率が小さな高品質の交流出力電圧Voを生成することができる。
なお、商用交流電源21からの交流電力の供給が停止されると、すなわち停電が発生すると、コンバータ6の運転が停止され、バッテリ23(図1)の直流電力が双方向チョッパ7によってインバータ10に供給される。インバータ10は、双方向チョッパ7からの直流電力を交流電力に変換して負荷24に供給する。したがって、バッテリ23に直流電力が蓄えられている期間は、負荷24の運転を継続することができる。
また、インバータ給電モード時においてインバータ10が故障した場合には、半導体スイッチ15(図1)が瞬時にオンし、電磁接触器14がオフするとともに、電磁接触器16がオンする。これにより、バイパス交流電源22からの交流電力が半導体スイッチ15および電磁接触器16を介して負荷24に供給され、負荷24の運転が継続される。一定時間後に半導体スイッチ15がオフされ、半導体スイッチ15が過熱されて破損することが防止される。
以上のように、この実施の形態1では、入力電流Iiが所定値Iicよりも大きい場合は、比較的高い周波数fHのゲート信号Au,Buによってコンバータ6を制御し、入力電流Iiが所定値Iicよりも小さい場合は、比較的低い周波数fLのゲート信号Au,Buによってコンバータ6を制御する。したがって、入力電流Iiが所定値Iicよりも小さい場合には、コンバータ6のIGBTQ1~Q4で発生するスイッチング損失を低減することができ、無停電電源装置1の効率を高めることができる。
[実施の形態2]
図6は、この発明の実施の形態2による無停電電源装置のゲート制御回路50の構成を示す回路ブロック図であって、図3と対比される図である。図6を参照して、ゲート制御回路50が図3のゲート制御回路37と異なる点は、発振器42が周波数調整部51および発振器52で置換されている点である。
図6は、この発明の実施の形態2による無停電電源装置のゲート制御回路50の構成を示す回路ブロック図であって、図3と対比される図である。図6を参照して、ゲート制御回路50が図3のゲート制御回路37と異なる点は、発振器42が周波数調整部51および発振器52で置換されている点である。
周波数調整部51は、判定器41からの信号φ41と、電流検出器3(図1)からの信号Iifと、減算器33(図2)からの偏差ΔVDCとに基づいて、発振器52の出力クロック信号φ52の周波数を制御するための制御信号CNTを生成する。発振器52は、制御信号CNTによって指示される周波数のクロック信号φ52を出力する。
入力電流Iiが所定値Icよりも大きい場合は、判定器41の出力信号φ41が「L」レベルにされ、通常運転モードが選択される。信号φ41が「L」レベルにされると、周波数調整部51は、信号Iifおよび偏差ΔVDCに関係なく、発振器52の出力クロック信号φ52の周波数を比較的高い周波数fHに設定する制御信号CNTを出力する。
発振器52は、制御信号CNTによって設定された周波数fHのクロック信号φ52を出力する。これにより、比較的高い周波数fHのゲート信号Au,Buが生成され、コンバータ6によって直流電圧VDCが参照直流電圧VDCrに維持される。
また、入力電流Iiが所定値Icよりも小さい場合は、判定器41の出力信号φ41が「H」レベルにされ、省電力運転モードが選択される。信号φ41が「H」レベルにされると、周波数調整部51は、所定値Icと入力電流Iiの偏差ΔIAに応じて減少する目標周波数fLTを求める。目標周波数fLTは、たとえば、偏差ΔIAに比例して増大する値を周波数fHから減算した値である。周波数調整部51は、発振器52の出力クロック信号φ52の周波数をfHからfLTに向かって徐々に低下させる。
クロック信号φ52の周波数を低下させると、ゲート信号Au,Buの周波数が低下し、偏差ΔVDCに対するコンバータ6の応答速度が低下する。したがって、クロック信号φ52の周波数を下げ過ぎると、直流電圧VDCを参照直流電圧VDCrに維持することができなくなる。
そこで、周波数調整部51は、直流電圧VDCを参照直流電圧VDCrに維持することが可能な範囲内で、クロック信号φ52の周波数を低下させる。周波数調整部51は、たとえば、偏差ΔVDCをモニタしながらクロック信号φ52の周波数を徐々に低下させ、偏差ΔVDCを0に維持することが可能な最低の周波数fLにクロック信号φ52の周波数を設定する。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。
この実施の形態2では、直流電圧VDCを参照直流電圧VDCrに維持することが可能な範囲内で、所定値Icと入力電流Iiの偏差ΔIAに応じてゲート信号Au,Buの周波数fLを低下させることができる。したがって、周波数fLが一定値に設定された実施の形態1と比べ、コンバータ6のIGBTQ1~Q4で発生するスイッチング損失をさらに小さくすることができる。
[実施の形態3]
図7は、この発明の実施の形態3による無停電電源装置のゲート制御回路55の構成を示す回路ブロック図であって、図3と対比される図である。図7において、ゲート制御回路55は、ゲート制御回路37から判定器41(図3)を除去したものである。発振器42は、操作部17(図1)からの信号SEが「L」レベルである場合は、比較的高い周波数fHのクロック信号φ42を出力し、信号SEが「H」レベルである場合は、比較的低い周波数fLのクロック信号φ42を出力する。
図7は、この発明の実施の形態3による無停電電源装置のゲート制御回路55の構成を示す回路ブロック図であって、図3と対比される図である。図7において、ゲート制御回路55は、ゲート制御回路37から判定器41(図3)を除去したものである。発振器42は、操作部17(図1)からの信号SEが「L」レベルである場合は、比較的高い周波数fHのクロック信号φ42を出力し、信号SEが「H」レベルである場合は、比較的低い周波数fLのクロック信号φ42を出力する。
無停電電源装置の使用者は、負荷24が軽負荷でないこと(すなわち入力電流Iifが所定値Icよりも大きいこと)が予め分かっており、通常運転モードを選択したい場合には、操作部17を操作して信号SEを「L」レベルにする。この場合は、ゲート制御回路55によって比較的高い周波数fHのゲート信号Au,Buが生成され、負荷電流ILが大きい場合でも、直流電圧VDCが参照直流電圧VDCrに維持される。
また、無停電電源装置の使用者は、負荷24が軽負荷であること(すなわち入力電流Iifが所定値Icよりも小さいこと)が予め分かっており、省電力運転モードを選択したい場合には、操作部17を操作して信号SEを「H」レベルにする。この場合は、ゲート制御回路55によって比較的低い周波数fLのゲート信号Au,Buが生成され、コンバータ6のIGBTQ1~Q4で発生するスイッチング損失が低減される。
[規則91に基づく訂正 06.07.2018]
この実施の形態3では、操作部17を操作することにより、通常運転モードおよび省電力運転モードのうちの所望のモードを選択することが可能となっている。したがって、負荷24が軽負荷であることが予め分かっている場合には、省電力運転モードを選択することにより、コンバータ6のIGBTQ1~Q4で発生するスイッチング損失を低減することができ、無停電電源装置1の効率を高めることができる。
この実施の形態3では、操作部17を操作することにより、通常運転モードおよび省電力運転モードのうちの所望のモードを選択することが可能となっている。したがって、負荷24が軽負荷であることが予め分かっている場合には、省電力運転モードを選択することにより、コンバータ6のIGBTQ1~Q4で発生するスイッチング損失を低減することができ、無停電電源装置1の効率を高めることができる。
図8は、実施の形態3の変更例による無停電電源装置のゲート制御回路56の構成を示す回路ブロック図であって、図7と対比される図である。図8において、ゲート制御回路56は、ゲート制御回路55に判定器41(図3)およびORゲート57を追加したものである。ORゲート57は、判定器41の出力信号φ41と操作部17(図1)からの信号SEとの論理和信号φ57を出力する。
無停電電源装置の使用者は、負荷24が軽負荷であること(すなわち入力電流Iifが所定値Icよりも小さいこと)が予め分かっており、省電力運転モードを選択したい場合には、操作部17を操作して信号SEを「H」レベルにする。また無停電電源装置の使用者は、負荷24が軽負荷であるか否かが予めが分からない場合には、操作部17を操作して信号SEを「L」レベルにする。
信号SEが「H」レベルにされた場合は、判定器41の出力信号φ41に関係なく、信号φ57は「H」レベルにされ、省電力運転モードが実行される。信号SEが「L」レベルにされた場合は、判定器41の出力信号φ41が信号φ57となる。
信号φ57が「L」レベルである場合は、比較的高い周波数fHのゲート信号Au,Buが生成され、信号φ57が「H」レベルである場合は、比較的低い周波数fLのゲート信号Au,Buが生成される。他の構成および動作は実施の形態1と同じであるので、その説明は繰り返さない。
この変更例では、実施の形態3と同じ効果が得られる他、負荷24が軽負荷であるか否かが予め分からない場合には、信号SEを「L」レベルにすることにより、判定器41の判定結果に基づいて省電力運転モードまたは通常運転モードを実行することができる。
[実施の形態4]
図9は、この発明の実施の形態4による無停電電源装置の要部を示す回路ブロック図であって、図5と対比される図である。図9において、この無停電電源装置が実施の形態1の無停電電源装置1と異なる点は、コンバータ6、双方向チョッパ7、およびインバータ10がそれぞれコンバータ60、双方向チョッパ61、およびインバータ62と置換されている点である。
図9は、この発明の実施の形態4による無停電電源装置の要部を示す回路ブロック図であって、図5と対比される図である。図9において、この無停電電源装置が実施の形態1の無停電電源装置1と異なる点は、コンバータ6、双方向チョッパ7、およびインバータ10がそれぞれコンバータ60、双方向チョッパ61、およびインバータ62と置換されている点である。
[規則91に基づく訂正 06.07.2018]
コンバータ60とインバータ62の間には、3本の直流ラインL1~L3が接続されている。直流ラインL3は、中性点NPに接続され、中性点電圧(たとえば0V)にされる。コンデンサ9(図1)は2つのコンデンサ9a,9bを含む。コンデンサ9aは、直流ラインL1,L3間に接続されている。コンデンサ9bは、直流ラインL3,L2間に接続されている。
コンバータ60とインバータ62の間には、3本の直流ラインL1~L3が接続されている。直流ラインL3は、中性点NPに接続され、中性点電圧(たとえば0V)にされる。コンデンサ9(図1)は2つのコンデンサ9a,9bを含む。コンデンサ9aは、直流ラインL1,L3間に接続されている。コンデンサ9bは、直流ラインL3,L2間に接続されている。
コンバータ60は、商用交流電源21から交流電力が供給されている通常時は、商用交流電源21からの交流電力を直流電力に変換して直流ラインL1~L3に供給する。このときコンバータ60は、直流ラインL1,L3間の直流電圧VDCaが参照直流電圧VDCrになり、かつ直流ラインL3,L2間の直流電圧VDCbが参照直流電圧VDCrになるように、コンデンサ9a,9bの各々を充電する。
直流ラインL1,L2,L3の電圧は、それぞれ正の直流電圧、負の直流電圧、および中性点電圧にされる。商用交流電源21からの交流電力の供給が停止された停電時は、コンバータ60の運転は停止される。
双方向チョッパ61は、通常時は、コンバータ60によって生成された直流電力をバッテリ23(図1)に蓄える。このとき双方向チョッパ61は、バッテリ23の端子間電圧VBが参照バッテリ電圧VBrになるように、バッテリ23を充電する。
双方向チョッパ61は、停電時は、バッテリ23の直流電力をインバータ62に供給する。このとき双方向チョッパ61は、コンデンサ9a,9bの端子間電圧VDCa,VDCbの各々が参照直流電圧VDCrになるようにコンデンサ9a,9bの各々を充電する。
[規則91に基づく訂正 06.07.2018]
インバータ62は、通常時は、コンバータ60によって生成された直流電力を商用周波数の交流電力に変換して負荷24(図1)に供給する。このときインバータ62は、直流ラインL1~L3から供給される正の直流電圧、負の直流電圧、および中性点電圧に基づいて商用周波数の交流出力電圧Voを生成する。
インバータ62は、通常時は、コンバータ60によって生成された直流電力を商用周波数の交流電力に変換して負荷24(図1)に供給する。このときインバータ62は、直流ラインL1~L3から供給される正の直流電圧、負の直流電圧、および中性点電圧に基づいて商用周波数の交流出力電圧Voを生成する。
コンバータ60は、IGBTQ11~Q14およびダイオードD11~D14を含む。IGBTQ11のコレクタは直流ラインL1に接続され、そのエミッタは入力ノード60aに接続される。IGBTQ12のコレクタは入力ノード60aに接続され、そのエミッタは直流ラインL2に接続される。IGBTQ13,Q14のコレクタは互いに接続され、それらのエミッタはそれぞれ入力ノード60aおよび直流ラインL3に接続される。ダイオードD11~D14は、それぞれIGBTQ11~Q14に逆並列に接続される。入力ノード60aは、リアクトル5(図1)を介してノードN1に接続される。
入力ノード60aが正電圧である場合にIGBTQ11がオンすると、入力ノード60aからIGBTQ11を介して直流ラインL1に正電圧が出力される。入力ノード60aが中性点電圧である場合にIGBTQ13,Q14がオンすると、入力ノード60aからIGBTQ13,Q14を介して直流ラインL3に中性点電圧が出力される。入力ノード60aが負電圧である場合にIGBTQ12がオンすると、入力ノード60aからIGBTQ12を介して直流ラインL3に負電圧が出力される。IGBTQ11~Q14の制御方法については、後述する。
図10は、コンバータ60を制御するゲート制御回路70の構成を示す回路ブロック図であって、図3と対比される図である。図10において、ゲート制御回路70は、判定器41、発振器71、三角波発生器72,73、比較器74,75、バッファ76,77、およびインバータ78,79を含む。
判定器41は、図3で説明したとおり、電流検出器3の出力信号Iifに基づいて動作し、入力電流Iiが所定値Icよりも大きい場合は、信号φ41を「L」レベルにして通常運転モードを選択し、入力電流Iiが所定値Icよりも小さい場合は、信号φ41を「H」レベルにして省電力運転モードを選択する。
発振器71は、出力クロック信号の周波数の制御が可能な発振器(たとえば電圧制御型発振器)である。発振器71は、信号φ41が「L」レベルである場合は商用周波数よりも十分に高い周波数fHのクロック信号を出力し、信号φ41が「H」レベルである場合は上記周波数fHよりも低い周波数fLのクロック信号を出力する。三角波発生器72,73は、発振器71の出力クロック信号φ71と同じ周波数の三角波信号Cua,Cubをそれぞれ出力する。
比較器74は、出力電流制御回路36(図2)からの電圧指令値Virと三角波発生器72からの三角波信号Cuaとの高低を比較し、比較結果を示すゲート信号φ1を出力する。バッファ76は、ゲート信号φ1をIGBTQ11のゲートに与える。インバータ78は、ゲート信号φ1を反転させ、ゲート信号φ4を生成してIGBTQ14のゲートに与える。
比較器75は、出力電流制御回路36からの電圧指令値Virと三角波発生器73からの三角波信号Cubとの高低を比較し、比較結果を示すゲート信号φ3を出力する。バッファ77は、ゲート信号φ3をIGBTQ13のゲートに与える。インバータ79は、ゲート信号φ3を反転させ、ゲート信号φ2を生成してIGBTQ12のゲートに与える。
図11(A)~(E)は、図10に示した電圧指令値Vir、三角波信号Cua,Cub、およびゲート信号φ1~φ4の波形を示すタイムチャートである。図11(A)に示すように、電圧指令値Virは商用周波数の正弦波信号である。
三角波信号Cuaの最低値は0Vであり、その最高値は電圧指令値Virの正のピーク値よりも高い。三角波信号Cubの最高値は0Vであり、その最低値は電圧指令値Virの負のピーク値よりも低い。三角波信号Cua,Cubは同位相の信号であり、三角波信号Cua,Cubの位相は電圧指令値Virの位相に同期している。三角波信号Cua,Cubの周波数は、電圧指令値Virの周波数(商用周波数)よりも高い。
図11(A),(B)に示すように、三角波信号Cuaのレベルが電圧指令値Virよりも高い場合はゲート信号φ1は「L」レベルになり、三角波信号Cuaのレベルが電圧指令値Virよりも低い場合はゲート信号φ1は「H」レベルになる。ゲート信号φ1は、正パルス信号列となる。
電圧指令値Virが正極性である期間では、電圧指令値Virが上昇するとゲート信号φ1のパルス幅は増大する。電圧指令値Virが負極性である期間では、ゲート信号φ1は「L」レベルに固定される。図11(B),(E)に示すように、ゲート信号φ4はゲート信号φ1の反転信号である。
図11(A),(C)に示すように、三角波信号Cubのレベルが電圧指令値Virよりも低い場合はゲート信号φ2は「L」レベルになり、三角波信号Cubのレベルが電圧指令値Virよりも高い場合はゲート信号φ2は「H」レベルになる。ゲート信号φ2は、正パルス信号列となる。
電圧指令値Virが正極性である期間では、ゲート信号φ2は「L」レベルに固定される。電圧指令値Virが負極性である期間では、電圧指令値Virが下降するとゲート信号φ2のパルス幅は増大する。図11(C),(D)に示すように、ゲート信号φ3はゲート信号φ2の反転信号である。ゲート信号φ1~φ4の各々はPWM信号である。
[規則91に基づく訂正 06.07.2018]
ゲート信号φ1,φ2がともに「L」レベルであり、ゲート信号φ3,φ4がともに「H」レベルである期間(t1,t3,t5,t7,t9,…)では、IGBTQ11,Q12がともにオフするとともに、IGBTQ13,Q14がオンする。これにより、入力ノード60aの中性点電圧がIGBTQ13,Q14を介して直流ラインL3に出力される。
ゲート信号φ1,φ2がともに「L」レベルであり、ゲート信号φ3,φ4がともに「H」レベルである期間(t1,t3,t5,t7,t9,…)では、IGBTQ11,Q12がともにオフするとともに、IGBTQ13,Q14がオンする。これにより、入力ノード60aの中性点電圧がIGBTQ13,Q14を介して直流ラインL3に出力される。
[規則91に基づく訂正 06.07.2018]
ゲート信号φ1,φ3がともに「H」レベルであり、ゲート信号φ2,φ4がともに「L」レベルである期間(t2,t4,…)では、IGBTQ11,Q13がともにオンするとともに、IGBTQ12,Q14がオフする。これにより、入力ノード60aの正の直流電圧がIGBTQ11を介して直流ラインL1に出力される。
ゲート信号φ1,φ3がともに「H」レベルであり、ゲート信号φ2,φ4がともに「L」レベルである期間(t2,t4,…)では、IGBTQ11,Q13がともにオンするとともに、IGBTQ12,Q14がオフする。これにより、入力ノード60aの正の直流電圧がIGBTQ11を介して直流ラインL1に出力される。
[規則91に基づく訂正 06.07.2018]
ゲート信号φ1,φ3がともに「L」レベルであり、ゲート信号φ2,φ4がともに「H」レベルである期間(t6,t8,…)では、IGBTQ11,Q13がともにオフするとともに、IGBTQ12,Q14がオンする。これにより、入力ノード60aの負の直流電圧がIGBTQ12を介して直流ラインL2に出力される。
ゲート信号φ1,φ3がともに「L」レベルであり、ゲート信号φ2,φ4がともに「H」レベルである期間(t6,t8,…)では、IGBTQ11,Q13がともにオフするとともに、IGBTQ12,Q14がオンする。これにより、入力ノード60aの負の直流電圧がIGBTQ12を介して直流ラインL2に出力される。
[規則91に基づく訂正 06.07.2018]
換言すると、図11(B)~(E)に示すようにゲート信号φ1~φ4の波形が変化すると、図11(A)に示した電圧指令値Virと同じ波形の交流電圧VicがノードN1および中性点NP間に出力される。商用交流電源21からの交流入力電圧Viとコンバータ60からの交流電圧Vicとの差に応じた値の電流が商用交流電源21とコンバータ60との間に流れ、コンデンサ9a,9bの直流電圧VDCa,VDCbが制御される。
換言すると、図11(B)~(E)に示すようにゲート信号φ1~φ4の波形が変化すると、図11(A)に示した電圧指令値Virと同じ波形の交流電圧VicがノードN1および中性点NP間に出力される。商用交流電源21からの交流入力電圧Viとコンバータ60からの交流電圧Vicとの差に応じた値の電流が商用交流電源21とコンバータ60との間に流れ、コンデンサ9a,9bの直流電圧VDCa,VDCbが制御される。
[規則91に基づく訂正 06.07.2018]
なお、図11(A)~(E)ではU相に対応する電圧指令値Virおよび信号Cua,Cub,φ1~φ4の波形を示したが、V相およびW相の各々に対応する電圧指令値および信号の波形も同様である。ただし、U相、V相、およびW相に対応する電圧指令値および信号の位相は120度ずつずれている。
なお、図11(A)~(E)ではU相に対応する電圧指令値Virおよび信号Cua,Cub,φ1~φ4の波形を示したが、V相およびW相の各々に対応する電圧指令値および信号の波形も同様である。ただし、U相、V相、およびW相に対応する電圧指令値および信号の位相は120度ずつずれている。
また、省電力運転モード時におけるゲート信号φ1~φ4の波形は、通常運転モード時におけるゲート信号φ1~φ4の波形と同様になる。ただし、省電力運転モード時におけるゲート信号φ1~φ4の周波数fLは、通常運転モード時におけるゲート信号φ1~φ4の周波数fHよりも低い。
図11(A)~(E)から分かるように、三角波信号Cua,Cubの周波数を高くすると、ゲート信号φ1~φ4の周波数が高くなり、IGBTQ11~Q14のスイッチング周波数(オンおよびオフの回数/秒)が高くなる。IGBTQ11~Q14のスイッチング周波数が高くなると、IGBTQ11~Q14で発生するスイッチング損失が増大し、無停電電源装置の効率が低くなる。
しかし、IGBTQ11~Q14のスイッチング周波数を高くすると、負荷電流ILが大きい場合でも、直流電圧VDCa,VDCbの各々を参照直流電圧VDCrに維持することができ、ひいては電圧変動率が小さな高品質の交流出力電圧Voを生成することができる。
逆に、三角波信号Cua,Cubの周波数を低くすると、ゲート信号φ1~φ4の周波数が低くなり、IGBTQ11~Q14のスイッチング周波数が低くなる。IGBTQ11~Q14のスイッチング周波数が低くなると、IGBTQ11~Q14で発生するスイッチング損失が減少し、無停電電源装置の効率が高くなる。
しかし、IGBTQ11~Q14のスイッチング周波数を低くすると、負荷電流ILが大きい場合には、直流電圧VDCa,VDCbの各々を参照直流電圧VDCrに維持し難くなり、ひいては交流出力電圧Voの電圧変動率が増大し、交流出力電圧Voの波形が劣化する。
そこで、本実施の形態4では実施の形態1と同様に、比較的高い周波数fHのゲート信号φ1~φ4によってコンバータ6を制御する通常運転モードと、比較的低い周波数fLのゲート信号φ1~φ4によってコンバータ6を制御し、スイッチング損失を低下させる省電力運転モードとが設けられている。
コンバータ60の入力電流Iiは負荷電流ILに応じて増大するので、入力電流Iiが所定値Iicよりも大きい場合(すなわち負荷電流ILが所定値ILcよりも大きい場合)には通常運転モードが選択される。また、入力電流Iiが所定値Iicよりも小さい場合(すなわち負荷電流ILが所定値ILcよりも小さい場合)には省電力運転モードが選択される。周波数fLは、入力電流Iiが所定値Iicよりも小さい場合において、直流電圧VDCa,VDCbの各々を参照直流電圧VDCrに維持することが可能な範囲内の周波数に設定される。
なお、周波数fLを低下させていくと、コンバータ60から低域通過フィルタ(コンデンサ4およびリアクトル5)を介して商用交流電源21に流れる高調波電流が増大する。その高調波電流が上限値を超えない範囲内で周波数fLを設定する必要がある。
次に、この無停電電源装置の使用方法および動作について説明する。まず入力電流Iiが所定値Iicよりも大きい場合(すなわち負荷電流ILが所定値ILcよりも大きい場合)について説明する。
入力電流Iiが所定値Iicよりも大きいので、ゲート制御回路70(図10)では、判定器41の出力信号φ41が「L」レベルになり、発振器71および三角波発生器72,73によって比較的高い周波数fHの三角波信号Cua,Cubが生成される。
電圧指令値Virと三角波信号Cuaとが比較器74によって比較され、バッファ76およびインバータ78によってゲート信号φ1,φ4が生成される。電圧指令値Virと三角波信号Cubとが比較器75によって比較され、バッファ77およびインバータ79によってゲート信号φ3,φ2が生成される。
電圧指令値Virが正極性の期間では、コンバータ60(図9)のIGBTQ12,Q13がそれぞれオフ状態およびオン状態に固定されるとともに、IGBTQ11とIGBTQ14が交互にオンされる。電圧指令値Virが負極性の期間では、IGBTQ11,Q14がそれぞれオフ状態およびオン状態に固定されるとともに、ゲート信号φ2,φ3によってIGBTQ12とIGBTQ13が交互にオンされ、直流ラインL1~L3がそれぞれ正電圧、負電圧、中性点電圧にされる。
[規則91に基づく訂正 06.07.2018]
この通常運転モードでは、コンバータ60のIGBTQ11~Q14が比較的高い周波数fHで制御されるので、負荷電流ILが大きい場合でも、直流ラインL1~L3の電圧を安定に維持することができ、ひいては電圧変動率が比較的小さな高品質の交流出力電圧Voを生成することができる。ただし、IGBTQ11~Q14で比較的大きなスイッチング損失が発生し、無停電電源装置の効率が低くなる。
この通常運転モードでは、コンバータ60のIGBTQ11~Q14が比較的高い周波数fHで制御されるので、負荷電流ILが大きい場合でも、直流ラインL1~L3の電圧を安定に維持することができ、ひいては電圧変動率が比較的小さな高品質の交流出力電圧Voを生成することができる。ただし、IGBTQ11~Q14で比較的大きなスイッチング損失が発生し、無停電電源装置の効率が低くなる。
次に、入力電流Iiが所定値Iicよりも小さい場合(すなわち負荷電流ILが所定値ILcよりも小さい場合)について説明する。入力電流Iiが所定値Iicよりも小さいので、ゲート制御回路70(図10)では、判定器41の出力信号φ41が「H」レベルになり、発振器71および三角波発生器72,73によって比較的低い周波数fLの三角波信号Cua,Cubが生成され、それらの三角波信号Cua,Cubを用いてゲート信号φ1~φ4が生成される。コンバータ60では、それらのゲート信号φ1~φ4によってIGBTQ11~Q14が駆動され、直流ラインL1~L3がそれぞれ正電圧、負電圧、中性点電圧にされる。
この省電力運転モードでは、コンバータ60のIGBTQ11~Q14が比較的低い周波数fLで制御されるので、IGBTQ11~Q14で発生するスイッチング損失が小さくなり、無停電電源装置の効率が高くなる。また、負荷電流ILが小さいので、コンバータ60の応答速度が低下しても問題なく負荷24を駆動することができる。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。
以上のように、この実施の形態4では、入力電流Iiが所定値Iicよりも大きい場合は、比較的高い周波数fHのゲート信号φ1~φ4によってコンバータ60を制御し、入力電流Iiが所定値Iicよりも小さい場合は、比較的低い周波数fLのゲート信号φ1~φ4によってコンバータ60を制御する。したがって、入力電流Iiが所定値Iicよりも小さい場合には、コンバータ60のIGBTQ11~Q14で発生するスイッチング損失を低減することができ、無停電電源装置の効率を高めることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 無停電電源装置、T1 交流入力端子、T2 バイパス入力端子、T3 バッテリ端子、T4 交流出力端子、2,8,14,16 電磁接触器、3,11 電流検出器、4,9,9a,9b,13 コンデンサ、5,12 リアクトル、6,60 コンバータ、7,61 双方向チョッパ、10,46,62,78,79 インバータ、15 半導体スイッチ、17 操作部、18 制御装置、21 商用交流電源、22 バイパス交流電源、23 バッテリ、24 負荷、31 参照電圧発生回路、32 電圧検出器、33,35 減算器、34 出力電圧制御回路、36 出力電流制御回路、37,50,55,56,70 ゲート制御回路、41 判定器、42,52,71 発振器、43,72,73 三角波発生器、44,74,75 比較器、45,76,77 バッファ、51 周波数調整部、57 ORゲート。
Claims (7)
- 複数のスイッチング素子を含み、商用周波数の交流電力を直流電力に変換する順変換器と、
前記商用周波数の正弦波信号と前記商用周波数よりも高い周波数の三角波信号との高低を比較し、その比較結果に基づいて、前記複数のスイッチング素子を制御するための制御信号を生成する制御部とを備え、
前記制御部は、前記三角波信号の周波数が第1の値に設定される第1のモードと、前記三角波信号の周波数が前記第1の値よりも小さな第2の値に設定される第2のモードとのうちの選択された方のモードを実行する、電力変換装置。 - 前記第1のモードは、前記電力変換装置の通常運転を行なう場合に選択され、
前記第2のモードは、前記三角波信号の周波数を前記第2の値に設定しても前記順変換器の出力直流電圧を参照直流電圧に維持することが可能な場合において、前記複数のスイッチング素子で発生するスイッチング損失を低減させるために選択される、請求項1に記載の電力変換装置。 - さらに、前記順変換器の入力電流を検出する電流検出器と、
前記電流検出器の検出結果に基づいて動作し、前記入力電流が予め定められた電流値よりも大きい場合は前記第1のモードを選択し、前記入力電流が予め定められた電流値よりも小さい場合は前記第2のモードを選択する選択部とを備える、請求項1に記載の電力変換装置。 - 前記制御部は、前記選択部によって前記第2のモードが選択されたことに応じて、前記順変換器の出力直流電圧を参照直流電圧に維持することが可能な範囲内で前記三角波信号の周波数を前記第1の値から徐々に減少させ、前記三角波信号の周波数を前記第2の値に設定する、請求項3に記載の電力変換装置。
- さらに、前記第1および第2のモードのうちの所望のモードを選択する選択部を備える、請求項1に記載の電力変換装置。
- 前記制御部は、
前記順変換器の出力直流電圧と参照直流電圧との偏差がなくなるように前記正弦波信号を生成する電圧指令部と、
設定された前記第1または第2の値の周波数の前記三角波信号を生成する三角波発生器と、
前記正弦波信号と前記三角波信号との高低を比較し、その比較結果に基づいて前記制御信号を生成する比較器とを含む、請求項1に記載の電力変換装置。 - さらに、直流電力を商用周波数の交流電力に変換して負荷に供給する逆変換器を備え、
前記順変換器は商用交流電源からの交流電力を直流電力に変換し、
前記商用交流電源から交流電力が供給されている通常時は、前記順変換器によって生成された直流電力が前記逆変換器に供給されるとともに電力貯蔵装置に蓄えられ、
前記商用交流電源からの交流電力の供給が停止された停電時は、前記電力貯蔵装置の直流電力が前記逆変換器に供給される、請求項1に記載の電力変換装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/013955 WO2018185813A1 (ja) | 2017-04-03 | 2017-04-03 | 電力変換装置 |
TW106120705A TWI625036B (zh) | 2017-04-03 | 2017-06-21 | 電力變換裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/013955 WO2018185813A1 (ja) | 2017-04-03 | 2017-04-03 | 電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018185813A1 true WO2018185813A1 (ja) | 2018-10-11 |
Family
ID=62951592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013955 WO2018185813A1 (ja) | 2017-04-03 | 2017-04-03 | 電力変換装置 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI625036B (ja) |
WO (1) | WO2018185813A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI678060B (zh) * | 2018-06-13 | 2019-11-21 | 朋程科技股份有限公司 | 電壓轉換器及包括該電壓轉換器的交流發電裝置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08116674A (ja) * | 1994-08-24 | 1996-05-07 | Toshiba Corp | 単相pwmコンバータ制御装置 |
JP2008061322A (ja) * | 2006-08-30 | 2008-03-13 | Hitachi Appliances Inc | 三相コンバータ・インバータ装置及びモジュール |
JP2012143156A (ja) * | 2012-04-27 | 2012-07-26 | Toshiba Corp | 電力変換装置 |
WO2015104886A1 (ja) * | 2014-01-09 | 2015-07-16 | 東芝キヤリア株式会社 | 電力変換装置 |
JP2016027774A (ja) * | 2014-06-23 | 2016-02-18 | 東芝キヤリア株式会社 | 電力変換装置及び電力変換システム |
WO2016092613A1 (ja) * | 2014-12-08 | 2016-06-16 | 東芝三菱電機産業システム株式会社 | 無停電電源装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816982A (en) * | 1987-11-23 | 1989-03-28 | Viteq Corporation | AC to DC power converter with integrated line current control for improving power factor |
US5233509A (en) * | 1992-04-03 | 1993-08-03 | International Business Machines Corporation | Switch-mode AC-to-DC converter |
WO1995001670A1 (en) * | 1993-06-29 | 1995-01-12 | Square D Company | Ac to dc power conversion system |
US7064531B1 (en) * | 2005-03-31 | 2006-06-20 | Micrel, Inc. | PWM buck regulator with LDO standby mode |
US8698414B2 (en) * | 2009-04-13 | 2014-04-15 | Microchip Technology Incorporated | High resolution pulse width modulation (PWM) frequency control using a tunable oscillator |
CN102594118B (zh) * | 2012-02-29 | 2014-06-25 | 矽力杰半导体技术(杭州)有限公司 | 一种升压型pfc控制器 |
-
2017
- 2017-04-03 WO PCT/JP2017/013955 patent/WO2018185813A1/ja active Application Filing
- 2017-06-21 TW TW106120705A patent/TWI625036B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08116674A (ja) * | 1994-08-24 | 1996-05-07 | Toshiba Corp | 単相pwmコンバータ制御装置 |
JP2008061322A (ja) * | 2006-08-30 | 2008-03-13 | Hitachi Appliances Inc | 三相コンバータ・インバータ装置及びモジュール |
JP2012143156A (ja) * | 2012-04-27 | 2012-07-26 | Toshiba Corp | 電力変換装置 |
WO2015104886A1 (ja) * | 2014-01-09 | 2015-07-16 | 東芝キヤリア株式会社 | 電力変換装置 |
JP2016027774A (ja) * | 2014-06-23 | 2016-02-18 | 東芝キヤリア株式会社 | 電力変換装置及び電力変換システム |
WO2016092613A1 (ja) * | 2014-12-08 | 2016-06-16 | 東芝三菱電機産業システム株式会社 | 無停電電源装置 |
Also Published As
Publication number | Publication date |
---|---|
TW201838313A (zh) | 2018-10-16 |
TWI625036B (zh) | 2018-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6706390B2 (ja) | 電力変換装置 | |
TWI538351B (zh) | 不斷電電源裝置 | |
WO2016084179A1 (ja) | 無停電電源装置 | |
US11394295B2 (en) | Power supply apparatus | |
JP6714157B2 (ja) | 電源装置およびそれを用いた電源システム | |
JP6668556B2 (ja) | 電源装置およびそれを用いた電源システム | |
WO2021255788A1 (ja) | 電力変換装置 | |
US11336114B2 (en) | Uninterruptible power supply apparatus | |
WO2018185813A1 (ja) | 電力変換装置 | |
US10734903B2 (en) | Power supply apparatus | |
JP4365171B2 (ja) | 電力変換装置及びそれを用いたパワーコンディショナ | |
JP6706389B2 (ja) | 電力変換装置 | |
US11336200B2 (en) | Power conversion apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904725 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17904725 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |