WO2018182233A1 - 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 - Google Patents
무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 Download PDFInfo
- Publication number
- WO2018182233A1 WO2018182233A1 PCT/KR2018/003359 KR2018003359W WO2018182233A1 WO 2018182233 A1 WO2018182233 A1 WO 2018182233A1 KR 2018003359 W KR2018003359 W KR 2018003359W WO 2018182233 A1 WO2018182233 A1 WO 2018182233A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- noma
- index
- codebook
- terminal
- multiple layers
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
- H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
- H04L1/0011—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to payload information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
- H04L1/0016—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0028—Formatting
- H04L1/0031—Multiple signaling transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0042—Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- the present disclosure relates to wireless communication, and more particularly, to a method for performing communication using an orthogonal or non-orthogonal code multiple access scheme and a device using the same.
- Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
- the purpose of a wireless communication system is to allow a large number of terminals to perform reliable communication regardless of location and mobility.
- a wireless communication system is a multiple access system capable of supporting communication with a plurality of terminals by sharing available radio resources.
- radio resources include time, frequency, code, transmit power, and the like.
- multiple access systems include time division multiple access (TDMA) systems, code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
- TDMA time division multiple access
- CDMA code division multiple access
- FDMA frequency division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- the present disclosure provides a method and apparatus for performing communication using an orthogonal or non-orthogonal code multiple access scheme in a wireless communication system.
- the present specification proposes a method and apparatus for performing communication using a non-orthogonal code multiple access scheme in a wireless communication system.
- the apparatus includes a transceiver for transmitting and receiving radio signals and a processor coupled to the transceiver.
- this embodiment assumes a wireless communication system environment in which a terminal supporting a multi-layer performs communication using a non-orthogonal multiple access (NoMA). That is, a NoMA-based multi-layer transmission scheme is proposed as a method of overlapping and transmitting a signal for multiple users in the same time frequency resource.
- NoMA non-orthogonal multiple access
- the layer may correspond to a path capable of transmitting a signal independently in time and frequency resources. Therefore, the layer may be used as a stream. If a single UE supports multiple layers, each layer may be multiplied by a predetermined precoding matrix according to channel conditions by the precoding module and assigned to each transmit antenna. Thus, the layer may also have the meaning of an antenna layer. In this embodiment, it is assumed that a single UE transmits and receives a signal through multiple layers.
- the terminal receives a NoMA MCS (Modulation and Coding Scheme) index and codebook index from the base station.
- the NoMA MCS index and the codebook index may be signaled to the terminal through an UL grant.
- the non-orthogonal codebook or non-orthogonal codebook set including the codebook index may be defined in advance between the terminal and the base station.
- the NoMA MCS index is selected from the NoMA MCS table based on the quality of the uplink channel.
- the terminal may transmit the scheduling request signal to the base station.
- the quality of the uplink channel may be estimated based on the scheduling request signal.
- the NoMA MCS table is previously defined as a table including the NoMA MCS index, the number of multiple layers, and a modulation order. That is, a NoMA MCS that supports multiple layers may be defined as a table by the number of the multiple layers. The number of the multiple layers is determined according to the NoMA MCS index. The codebook index is selected from a set of codebooks corresponding to the modulation order, according to the number of the multiple layers.
- the NoMA MCS table may be defined differently for each modulation order.
- the NoMA MCS for various modulation orders may be defined as one NoMA MCS table.
- the NoMA MCS table that can achieve the spectral efficiency (Spectral Efficiency) corresponding to the modulation order 2 is considered.
- the NoMA MCS table may further include a code rate and a transport block size (TBS) index corresponding to the NoMA MCS index. That is, the NoMA MCS index may be defined together with the number of the multiple layers, the modulation order, the code rate, and the TBS index.
- the TBS index may indicate a TBS for the multiple layers.
- the TBS for the multiple layers may be a value obtained by multiplying the number of the multiple layers by the TBS for a single layer. Accordingly, the spectral efficiency of the TBS for the multi-layer may also be a value obtained by multiplying the spectral efficiency of the TBS for the single layer by the number of the multi-layers.
- the terminal transmits the uplink data configured based on the NoMA MCS index and / or the codebook index through the multiple layers.
- the uplink data may be spread for each of the multiple layers based on a codebook corresponding to the codebook index, and may be transmitted overlapping with another terminal in the same time frequency resource.
- the uplink data may be transmitted to the base station through the xPUSCH.
- the NoMA MCS index may be tied to an index of the codebook set corresponding to the modulation order.
- the codebook set may be detected from the NoMA MCS index by the terminal. Therefore, the base station does not need to separately signal the index of the codebook set to the terminal.
- the following proposes a method of allocating a Nobook MCS-based codebook index.
- the codebook index may be previously defined as an allocation pattern for each of a plurality of terminals including the terminal.
- the allocation pattern may be a pattern for allocating the codebook indices as many as the number of the multiple layers to each terminal in consideration of the maximum number of the multiple layers and the maximum number of the codebook indices.
- each UE may be defined as a pattern in which codebook indexes are allocated as least as possible by using 4 multiple layers. . That is, a pattern may be defined by allocating codebook indices with less overlap for each terminal as much as possible.
- the codebook index may be defined through a modulo operation using ID of the terminal in consideration of the maximum number of the multiple layers and the maximum number of codebook indexes.
- the UE knows that the number of the multi-layers is 3 through the NoMA MCS index, the UE knows that a total of three codebook indices are the codebook indices of the multi-layer to be used by using the ID of the UE. have.
- the three codebook indices are, for example, a modulo operation of 2 for a UE-ID, a modulo operation of 2 for a UE-ID, and a 2 for a UE-ID. Can be obtained by modulo operation plus 4.
- the MUD performance of the receiver can be increased by preventing the change of multi-user interference due to the multi-user channel change of the non-orthogonal code multiple access scheme (NCMA) and maintaining the uniform amount of interference.
- NMA non-orthogonal code multiple access scheme
- the size of the codebook increases, which causes a large amount of memory to be used in a hardware implementation.
- the layer it is possible to implement a simple implementation by supporting the capacity (capacity) of all users through a low modulation order.
- FIG. 1 illustrates a wireless communication system to which the present specification is applied.
- FIG. 2 is a block diagram illustrating a radio protocol structure for a user plane.
- FIG. 3 is a block diagram illustrating a radio protocol architecture for a control plane.
- FIG. 4 is a diagram illustrating a NOMA based downlink transmission / reception (Tx / Rx) block diagram of a communication device.
- FIG. 5 is a diagram illustrating a NOMA based uplink transmission / reception block diagram of a communication device.
- FIG. 6 is a diagram illustrating an NCMA based downlink transmission / reception block diagram of a communication device as an example.
- FIG. 7 is a diagram illustrating an NCMA-based uplink transmission / reception block diagram of a communication device as an example.
- FIG. 8 is a conceptual diagram illustrating a frequency axis of data transmission by a terminal-specific NCC.
- NCMA 9 is a diagram illustrating a basic transmission and reception structure diagram of the NCMA system.
- FIG. 10 is a view showing an example of the NOMA operation of the transmitter to which the multi-dimensional modulation (MM) according to the present embodiment.
- 11 illustrates a method in which the same time frequency resource is divided into NoMA layers in a NoMA based access method.
- FIG. 13 shows a procedure of transmitting and receiving signals of an uplink NoMA system according to NoMA MCS.
- FIG. 14 is a flowchart illustrating a procedure for transmitting uplink data by applying a non-orthogonal multiple access scheme according to the present embodiment.
- 15 is a block diagram illustrating a device in which an embodiment of the present specification is implemented.
- 16 is a block diagram illustrating an example of an apparatus included in a processor.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier-frequency division multiple access
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- 3GPP 3rd Generation Partnership Project
- LTE long term evolution
- E-UMTS Evolved UMTS
- E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
- LTE Long Term Evolution
- the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
- the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
- the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
- eNB evolved-NodeB
- BTS base transceiver system
- access point and the like.
- the base stations 20 may be connected to each other through an X2 interface.
- the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
- S-GW Serving Gateway
- MME Mobility Management Entity
- EPC Evolved Packet Core
- EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
- the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
- S-GW is a gateway having an E-UTRAN as an endpoint
- P-GW is a gateway having a PDN as an endpoint.
- the radio interface between the terminal and the base station is called a Uu interface.
- Layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
- OSI Open System Interconnection
- L2 second layer
- L3 third layer
- the RRC Radio Resource Control
- the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network.
- the RRC layer exchanges an RRC message between the terminal and the base station.
- FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
- 3 is a block diagram illustrating a radio protocol structure for a control plane.
- the user plane is a protocol stack for user data transmission
- the control plane is a protocol stack for control signal transmission.
- a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
- the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
- MAC medium access control
- the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
- OFDM orthogonal frequency division multiplexing
- the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
- the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
- RLC Radio Link Control
- RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
- QoS Quality of Service
- the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
- TM transparent mode
- UM unacknowledged mode
- Acknowledged Mode acknowledged mode
- AM Three modes of operation (AM).
- AM RLC provides error correction through an automatic repeat request (ARQ).
- PDCP Packet Data Convergence Protocol
- Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
- the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
- the RRC (Radio Resource Control) layer is defined only in the control plane.
- the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs.
- RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
- the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
- RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
- the SRB is used as a path for transmitting RRC messages in the control plane
- the DRB is used as a path for transmitting user data in the user plane.
- the UE If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state. do.
- the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
- Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
- the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
- RACH random access channel
- SCH uplink shared channel
- BCCH broadcast control channel
- PCCH paging control channel
- CCCH common control channel
- MCCH multicast control channel
- MTCH multicast traffic
- FIG. 4 is a diagram illustrating a NOMA based downlink transmission / reception (Tx / Rx) block diagram of a communication device.
- NOMA non-orthogonal multiple access
- MUST Multiuser Superposition Transmission
- the NOMA system is considered as an element technology of the next generation 5G system for the purpose of gaining transmission capacity gain or increasing the number of simultaneous connections compared to the LTE system by transmitting information for multiple terminals by overlapping the same time-frequency resources.
- next generation 5G system's NOMA series technologies include MUST to distinguish terminals based on power level, Sparse Code Multiple Access (SCMA) using Sparse Complex Codebook-based modulation, and interleave using user-specific interleaver.
- SCMA Sparse Code Multiple Access
- IDMA Division Multiple Access
- the power allocation of each symbol is different, or the multi-terminal data is hierarchically modulated and transmitted based on hierarchical modulation.
- Demodulating data hereinafter referred to as multi-terminal data
- MOD multi-user detection
- the transmitting end of FIG. 4 replaces the forward error correction (FEC) encoder and the modulation process with respect to the multi-terminal data by using a previously promised Sparse Complex Codebook modulation scheme, and transmits the multi-terminal data through the MUD at the receiving end.
- FEC forward error correction
- the transmitter of FIG. 4 modulates and transmits FEC encoding information on the terminal data through a terminal-specific interleaver and demodulates the terminal data through the MUD.
- Each system can demodulate multi-terminal data using various MUD methods, for example Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC), and the like.
- MUD methods for example Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC), and the like.
- ML Maximum Likelihood
- MAP Maximum joint A posteriori Probability
- MPA Message Passing Algorithm
- MCA Matched Filtering
- SIC Successive Interference Cancellation
- PIC Parallel Interference Cancellation
- CWIC Codeword Interference Cancellation
- FIG. 5 is a diagram illustrating a NOMA based uplink transmission / reception block diagram of a communication device.
- FIG. 5 illustrates a structure of a transmitter / receiver for uplink support of a NOMA series system in which multi-terminal information (hereinafter, referred to as multi-terminal information) is allocated to the same resource and transmitted.
- multi-terminal information hereinafter, referred to as multi-terminal information
- Each system may transmit and demodulate the multi-terminal data in the same manner as the description of the downlink structure of FIG.
- NOMA series systems transmit multiple terminal signals over the same time-frequency resources, they have a higher decoding error rate than LTE systems, but can support higher frequency utilization efficiency or more connectivity.
- NOMA Non-Orthogonal Multiple Access
- Equation 1 the signal of the k-th receiver is simply expressed by Equation 1 below.
- h k denotes a channel from a transmitter to a k-th receiver
- s k denotes a data symbol to a k-th receiver
- n k denotes signal noise.
- K is the number of multiple terminals allocated to the same time-frequency resource.
- Equation 2 The second term of the third equation of Equation 1 ) Denotes a multi-user interference signal (MUI) by data symbols to other receivers. Therefore, simply expressing the transmission capacity by the received signal is represented by the following equation (2).
- MUI multi-user interference signal
- Equation 2 As K increases in the transmission capacity in Equation 2, the number of R k added increases to increase C. However, as K increases, each R k may decrease due to an increase in MUI, resulting in a decrease in total transmission capacity C. According to the MUD technique, even if the data of each terminal can be demodulated while effectively reducing the MUI, the existence of the MUI essentially reduces the overall transmission capacity and requires a high complexity MUD. If MUI generation is minimized for data transmission of multiple terminals, higher transmission capacity can be expected. Or, if it is possible to quantitatively control the MUI generation for the data transmission of the multi-terminal, it is possible to plan higher transmission capacity by scheduling for data overlap of the multi-terminal.
- the present invention proposes a non-orthogonal coded multiple access (NCMA) method for minimizing multi-terminal interference in a next-generation 5G system.
- NCMA non-orthogonal coded multiple access
- FIG. 6 is a diagram illustrating an NCMA based downlink transmission / reception block diagram of a communication device
- FIG. 7 is a diagram illustrating an NCMA based uplink transmission / reception block diagram of a communication device.
- NCMA non-orthogonal code multiple access scheme
- 6 and 7 illustrate a downlink of an NCMA system for overlapping transmission using a UE-specific non-orthogonal code cover (NCC) when allocating multi-terminal information to the same time-frequency resource.
- NCC UE-specific non-orthogonal code cover
- the structure of an uplink transceiver is a transmitter / receiver (or a transmitter / receiver) allocates a UE-specific NCC to each UE using a predefined non-orthogonal codebook.
- the codeword referred to in the present invention refers to a complex element vector selected (or assigned) by each terminal in order to perform non-orthogonal multiple access.
- Codebook means a set of codewords used by each terminal to perform non-orthogonal multiple access.
- the codebook mentioned above may exist in plural numbers.
- UE-specific NCC UE specific NCC
- the NCC or terminal-specific NCC
- the non-orthogonal codebook is expressed as Equation 3 below.
- c (j) is a codeword for the j-th terminal, and the codeword set for all K terminals becomes the codebook C.
- c (j) to transmit data of the j-th terminal is defined as NCC.
- the codebook may be represented by a vector length N of codewords and a number K of codewords.
- N means spreading factor
- K means superposition factor.
- one codeword is used in one terminal for convenience of description, but a plurality of codewords are used by one terminal or one codeword is not excluded.
- one or more codewords assigned to one terminal may hop a codeword by using another codeword in the same codebook or using another codeword in another codebook according to time or frequency of use. have.
- UE-specific NCC (UE Specific NCC) allocation may be allocated in connection with the UE ID (UE ID) in the RRC Connection Process, Downlink Control Information (DCI) included in the downlink control channel (for example, PDCCH) It can also be assigned via format.
- DCI Downlink Control Information
- the UE may randomly select a non-orthogonal codeword or select a connection with a UE identifier.
- the UE-specific NCC is not a method assigned by the base station, but is directly selected by the terminal, and thus there may be a collision of NCCs between multiple terminals.
- the reception base station reduces the success rate of classification of a plurality of terminal information by MUD.
- the UE-specific NCC may be defined by Grassmannian line packing, and the chordal distance formed by any two vectors in the same subspace is always the same. In other words, It can be obtained mathematically or algorithmically as a codebook that satisfies.
- the UE-specific NCC has a property as shown in Equation 4 below.
- Equation 4 Is the conjugate codeword of c (k) .
- Equation 4 The properties of Equation 4 are as follows (1), (2), (3).
- chordal distance between one codeword and another codeword in the same codebook is the same.
- the transmitting end / receiving party (or the transmitting side / receiving side) promises a codebook having the above characteristics in advance and configures the terminal-specific NCC
- the chordal distance by any two codewords It has a lower bound of. Therefore, the MUI for the multi-terminal data overlapping transmission is determined to be minimized by the lower bound.
- the chordal distances for the two arbitrary codewords are always the same, statistical prediction of the MUI is possible according to the number of terminals.
- the decoding error rate of the receiver is predictable based on the MUI value, so that the MCS level can be controlled based on the amount of interference for multi-terminal overlapping transmission.
- K codewords are transmitted in the (N ⁇ 1) dimension
- the receiver decodes its own codeword
- 1 is decoded from its own codeword
- ⁇ N from other K-1 codewords.
- the amount of statistical interference of K (K-1) remains. This number depends on the degree of optimization of the codebook design.
- the number of overlapping terminals (K) or the number of used resources (N) is determined according to the required SINR or target QoS of the communication system. You can change it to control the MUI value.
- Non-orthogonal codebook in the form of 3GPP TS 36.211 is shown in the following Table 1 and Table 2, it can be used as a UE-specific NCC (UE specific NCC).
- FIG. 8 is a conceptual diagram illustrating a frequency axis of data transmission by a terminal-specific NCC.
- FIG. 8 illustrates a concept of transmitting a k-th terminal data on a frequency axis through a terminal-specific NCC at a transmitting end (or transmitting side).
- the codeword corresponding to the k-th terminal is multiplied by the data for the k-th terminal and transmitted.
- one data symbol s k corresponds to a codeword vector c (k) having a (N ⁇ 1) dimension.
- N elements of the codeword correspond to N subcarriers.
- NCMA 9 is a diagram illustrating a basic transmission and reception structure diagram of the NCMA system.
- FIG. 9 is a basic transmission and reception structure diagram of an NCMA system using a UE-specific NCC.
- the data symbol for each terminal at the transmitting end is converted into a terminal-specific NCC corresponding to each terminal and overlapped.
- the overlapped N-length frequency axis signal is converted into a time axis signal through N-IFFT to perform OFDM transmission, and the receiver is reconstructed into a frequency axis signal through N-FFT.
- the recovered frequency axis signal decodes each terminal data symbol with a conjugate codeword of a terminal-specific NCC corresponding to each terminal.
- the decoded s k may include an MUI according to the number of overlapping terminals, and accurate s k decoding is possible through a MUD method.
- the length of the frequency axis signal converted according to the terminal-specific NCC previously defined may be shorter than N.
- N the length of the frequency axis signal converted according to the terminal-specific NCC previously defined
- Equation 5 a detection equation for data decoding at the k-th terminal receiving end is expressed as Equation 5 below.
- H k denotes an (N ⁇ N) channel matrix from a k th transmitter to a receiver and includes frequency axis channel coefficients in a diagonal matrix.
- c (k) is a (N ⁇ 1) terminal-specific NCC vector from the k th transmitter to the receiver, s k is a data symbol from the k th receiver, and n is a (N ⁇ 1) signal noise vector.
- K is the number of multiple terminals allocated to the same time-frequency resource.
- Equation 5 only desired codewords signals and noise remain through channel compensation, and are detected as in Equation 6 through a conjugate codeword of a terminal-specific NCC of a receiver.
- Equation 6 the second item of the last row represents the MUI, and can be removed or reduced through the MUD method.
- Equation 7 the detection equation for data decoding at the receiving end of the base station is expressed by Equation 7 below.
- Equation 8 The second term of the third equation of Equation 7 represents a multi-terminal interference signal MUI by data symbols to other receivers.
- the detection equation of the receiving end for data decoding of the k-th terminal is expressed by Equation 8 below.
- Equation 9 the second item of the last row represents the MUI, and can be removed or reduced through the MUD method.
- the change in the frequency axis channel of the MUI results in a change in the MUD by the UE-specific NCC.
- the number of transmitting and receiving antennas has been described as a single piece, but it is obvious that the same method may be applied to an environment using multiple antennas.
- NoMA NoMA scheme that spreads encoded bit streams based on modulation and non-orthogonal codebooks into a complex symbol vector may also be considered.
- the above scheme is a multi-dimensional modulation (MM) based NoMA scheme based on NoMA. Sparsity may or may not exist.
- An example of the operation is as follows.
- FIG. 10 is a view showing an example of the NOMA operation of the transmitter to which the multi-dimensional modulation (MM) according to the present embodiment.
- the NoMA technology based on multi-dimensional modulation also performs encoding based on a UE-specific codeword (or codebook), and spreading is applied.
- the operation of the multi-dimensional modulation based NoMA may be illustrated as shown in FIG. 10.
- the k-th UE performing uplink transmission generates an information bit stream 1010 generated by the generated traffic, and converts the bit stream 1020 encoded by channel coding. Then, the bit encoded by the multi-dimensional modulation-based encoder is converted into a complex vector 1030 based on the terminal specific codebook (or codeword) k.
- the bit encoded by the multi-dimensional modulation-based encoder is converted into a complex vector 1030 based on the terminal specific codebook (or codeword) k.
- two bits of encoded bits are converted into a complex vector composed of four complex symbols. For example, if the encoded bit is [0 0], it is converted to a complex vector [c 1, 1 , c 2 , 1 , c 3 , 1 , c 4 , 1 ] T.
- the encoded bit is [0 1], it is converted to a complex vector [c 1, 2 , c 2 , 2 , c 3 , 2 , c 4 , 2 ] T. If the encoded bit is [1 1], it is converted to a complex vector [c 1, 3 , c 2 , 3 , c 3 , 3 , c 4 , 3 ] T. If the encoded bit is [1 0], it is converted to a complex vector [c 1, 4 , c 2 , 4 , c 3 , 4 , c 4 , 4 ] T.
- the transformed complex vector is IFFT and transmitted through resource mapping.
- the above operation is similarly applied to a downlink transmission operation, and the receiving end is decoded into bits encoded through a MUD such as a message passing algorithm (MPA).
- MPA message passing algorithm
- Table 3 or Table 4 may be set by a higher layer parameter.
- Q m and Q m ' are used to change the interpretation method depending on which slot of the subframe the PDSCH is allocated in the case of DL.
- Q m In case of general PDSCH, Q m ': When PDSCH is assigned to second slot only
- the modulation order is given by Q m 'in Table 5 above.
- TBS is given by I TBS and N PRB .
- N PRB means the number of PRBs. Therefore, in the TBS table, TBS values corresponding to 110 N PRBs are defined in each of the 34 types of TBSs (dimension 34 ⁇ 110).
- TBS is multiplied by the number of layers according to N PRB , or TBS is defined according to a predefined mapping rule.
- the number of TBSs and positive PRBs may be defined differently according to a system environment.
- the MCS may be determined by the CQI index of the UE.
- the modulation order and the TBS are determined by the MCS Index, and the entire resource space is defined by the number of available RBs, N_RB.
- the modulation order (QPSK is defined as 2
- 16QAM is defined as the number of bits that can be transmitted by a symbol, such as 4).
- Code Rate (TBS + CRC 24bits) / (M-order * (REs / PRB) * N_RB).
- Spectral Efficiency M-order * Code Rate. Examples are as follows.
- SINR Signal to Interference plus Noise Ratio
- the CQI table or the MCS table for the existing MCS control no multi-layer transmission of NoMA is considered.
- BLER Battery Error Rate
- a multi-layer may be received at a receiver based on a MA signature, and the multi-layer may be distinguished by a receiver procedure.
- 11 illustrates a method in which the same time frequency resource is divided into NoMA layers in a NoMA based access method.
- the layer may correspond to a path capable of transmitting signals independently in time and frequency resources. Therefore, a layer can be used as a stream. If the Signe UE supports multiple layers, each layer may be multiplied by a predetermined precoding matrix according to the channel state by the precoding module and assigned to each transmit antenna. Therefore, a layer may also mean an antenna layer. In this embodiment, it is assumed that a single UE transmits and receives a signal through multiple layers.
- the MM based Encoder based NoMA method may use the following Codebook Set.
- P no is a normalized matrix (M ⁇ M) for (M ⁇ M) power limitation. If P no is expressed as an expression, it is as follows.
- the Spectral Efficiency as shown in Table 11 below can be configured.
- RS Reference Signal
- encoding and decoding are performed through rate matching. Only the contents corresponding to the modulation order Q m are described in the entire contents of the present patent. It is obvious that the contents corresponding to Q m 'can be calculated and defined by the same calculation method.
- the configuration of the spectral efficiency that can be achieved based on the MCS table and the multi-layer of NoMA may be set only to the SE (Spectral Efficiency) value shaded in the background in Table 11.
- SE Specific Efficiency
- MM based Encoder based NoMA Scheme should have different Codebook Set according to M-order. Therefore, if the codebook set corresponding to M-order 2 is used in the above example, only the spectral efficiency using at least one layer corresponding to M-order 2 among the spectral efficiency shaded in the background in Table 11 can be achieved. .
- the NoMA MCS Index corresponding to M-order 2 is from 0 to 9, and when the NoMA MCS Index is 10 or more, a new codebook set according to a new M-order should be set.
- the configuration of the spectral efficiency that can be achieved based on the MCS table and NoMA's Multi-Layer may be set to only the SE value shaded in the background in Table 12.
- MM based Encoder based NoMA Scheme should have different Codebook Set according to M-order. Therefore, if the codebook set corresponding to M-order 2 is used in the above example, only spectral efficiency using at least one layer corresponding to M-order 2 among the spectral efficiency shaded in the background in Table 12 can be achieved. .
- the present specification proposes a method in which a single user configures an MCS table using a plurality of NoMA layers. That is, for the examples of Tables 11 and 12, in Table 11 and Table 12, the relationship between the MCS Table and the NoMA Layer that can achieve the Spectral Efficiency corresponding to M-order 2 among the Spectral Efficiency with shaded background NoMA MCS Table can be newly defined based on this. For example, as shown in Table 13 below, NoMA MCS can be defined. In Table 13, as represented in the first embodiment, when it is assumed that there are 138 REs capable of transmitting data in one PRB based on Table 3, a codebook set corresponding to M-order 2 is used. The case is shown.
- the NoMA MCS Index increased from 32 to 49.
- one to six NoMA layers may be supported for a specific TBS Index.
- the maximum capacity is assumed to be 5.3333 in view of a single UE, the number of NoMA layers whose SE exceeds 5.3333 is not described. For example, if the TBS Index is 7 and the number of NoMA Layers is 6, the SE exceeds the UE Capacity, and thus the embodiment is excluded from Table 13.
- the NoMA MCS for the Codebook Set corresponding to Modulation Order 2 can be defined, thereby providing various spectral efficiency from a single user perspective. That is, the NoMA MCS may be composed of a Modulation Order, coderate, TBS, and the number of NoMA Layers (# of NoMA Layers).
- the MM based Encoder-based NoMA technology may have a different codebook set according to a modulation order, and thus may have a different NoMA MCS table for each modulation order.
- the TBS for the multi-layer for the NoMA MCS is expressed as (TBS of a single NoMA layer) * (the number of layers), but in reality, when only one CRC exists in multiple layers, The TBS for a layer can be different. In this case, there may be a difference in the value of spectral efficiency due to a change in code rate and a change in TBS.
- Table 13 is illustrated for NoMA MCS, based on Table 3, but can be applied to Table 4 in a similar manner. Or, it may be obvious that the data may be newly defined irrespective of the legacy legacy modulation index and the TBS index.
- the newly defined modulation index and TBS index may also be composed of a modulation order, a number of TBS, and a NoMA layer.
- NoMA MCS for various Modulation Orders can be defined as one NoMA MCS table.
- a NoMA MCS table may be configured for each Modulation Order in a structure as shown in Table 14 below.
- NoMA MCS index 0 to 49 the contents of Table 13 as it is.
- a Codebook Set Index according to M-order may be tied to a NoMA MCS Index.
- NoMA MCS Index 0 to 49 may be bound to NoMA Codebook Set Index 1 according to Modulation Order 2
- NoMA MCS Index 50 to 69 may be bound to NoMA Codebook Set Index 2 according to Modulation Order 4
- the NoMA MCS Index 70 or higher may be bound to the NoMA Codebook Set Index 3 according to Modulation Order 6.
- the base station and the terminal may promise each other NoMA Codebook Sets according to the NoMA MCS Index by Predefined or RRC Signaling. Therefore, when the UE receives the NoMA MCS Index signaled from the base station, it can recognize the NoMA Codebook Set to be used. At this time, the UE must recognize the UE Specific NoMA Codebook that should be used as many NoMA Layers as the NoMA MCS Index in the NoMA Codebook Set to be used.
- the UE Specific Codebook may be signaled by the base station or may be recognized in the following manner.
- DL / UL procedures as shown in FIGS. 12 and 13 may be defined.
- the UE performs CQI reporting to perform its DL channel feedback (S1220). (At this time, in an environment where channel reciprocity is guaranteed, channel quality may be estimated based on UL signals such as SRS of the UE.)
- the eNB performs fair scheduling based on CQI reporting.
- operation S1230 when the scheduling is performed, a selection for the NoMA MCS proposed in the scheme 1 is performed for the DL of each user (S1240).
- the NoMA Layer is determined according to the NoMA MCS, and a NoMA Codebook corresponding to the determined number of layers is selected from the NoMA Codebook Set (S1250).
- NoMA Spreading is performed on each NoMA Layer based on the selected NoMA Codebook (S1260), and DL data is transmitted through the xPDSCH (S1280).
- DCI information is transmitted through a DL control channel (eg, PDCCH), and the DCI information transmits control information for DL data decoding such as NoMA Codebook Index and NoMA MCS Index for DL data (S1270).
- the terminal decodes data through NoMA despreading and MUD based on the received DCI information (S1290).
- the Codebook Index may not be signaled according to a look up table for the configuration of the Codebook according to a predefined pattern / UE specific pattern. This is explained in detail in the method 3 mentioned later.
- FIG. 13 shows a procedure of transmitting and receiving signals of an uplink NoMA system according to NoMA MCS.
- the base station recognizes the UL channel quality based on the UL signal S1320 such as the SRS of the user (S1330). (At this time, in an environment where channel reciprocity is guaranteed, the channel quality may be estimated based on DL signal states such as CQI reporting for the DL channel.)
- the eNB performs fairness scheduling based on the quality of the UL channel (S1340). ), When performing the scheduling, the selection of the NoMA MCS proposed in the scheme 1 for the UL of each user (S1350).
- the NoMA Layer is determined according to the NoMA MCS, and a NoMA Codebook corresponding to the determined number of layers is selected from the NoMA Codebook Set (S1360).
- the selected NoMA Codebook Index and the NoMA MCS Index are signaled to the user with a UL Grant (S1370).
- the terminal selects the NoMA Codebook from the NoMA Codebook Set based on the received UL Grant, configures UL data based on the NoMA MCS, performs NoMA Spreading for each NoMA Layer, and transmits UL data through the xPUSCH ( S1380).
- the base station decodes data through NoMA despreading and MUD based on the transmitted UL Grant information (S1390).
- the Codebook Index may not be signaled according to a look up table for the configuration of the Codebook according to a predefined pattern / UE specific pattern. This is explained in detail in the method 3 mentioned later.
- the method of exchanging Codebook Index may be defined in advance by UE-ID or a predefined pattern.
- a NoMA codebook that a user should use may be allocated UE specific.
- the UE Specific NoMA Codebook by NoMA MCS may be a predefined pattern. For example, according to each NoMA MCS Index, a Codebook Index to be used based on the number of NoMA Layers in a UE-specific form may be defined as a pattern. The following example illustrates the case where the maximum number of NoMA Layers and the maximum number of Codebook Indexes are six. Where Codebook Index is 0,... , Up to five.
- the NoMA MCS Index when the NoMA MCS Index is 0, the number of NoMA Layers that each UE can support is 1, and each UE may be defined as a pattern in which NoMA Layers are divided one by one.
- the NoMA MCS Index when the NoMA MCS Index is 3, the number of NoMA Layers that can be supported by each UE is 4, and each UE may be defined as a pattern in which codebook indexes are allocated as little as possible by using 4 NoMA Layers. That is, Table 15 may define a pattern by allocating codebook indexes less overlapping with each layer for each UE.
- UE Specific NoMA Codebook by NoMA MCS may be defined in advance by UE-ID.
- a Codebook Index to be used in UE Specific form may be defined by a formula according to the number of NoMA Layers. The following example illustrates the case where the maximum number of NoMA Layers and the maximum number of Codebook Indexes are six. Where Codebook Index is 0,... , Up to five.
- Codebook Indices Codebook Index Set- ⁇ mod (UE-ID, 6) ⁇
- the UE has a total of three Codebook Indexes (ie, modulo calculated 2 for the UE-ID and 2 for the UE-ID). It can be seen that the modulo value plus 2 and the UE-ID plus 2 modulo values equal to 4 are the codebook indexes of the multi-layer to be used.
- the NoMA Codebook Set is described based on the NoMA system consisting of six Codebooks, but it is obvious that the NoMA Codebook Set may be applied when the number of NoMA Codebooks is different, the number of Spreadings is different, or the Modulation Order supported is different. .
- MTC Machine Type Communication
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- FIG. 14 is a flowchart illustrating a procedure for transmitting uplink data by applying a non-orthogonal multiple access scheme according to the present embodiment.
- this embodiment assumes a wireless communication system environment in which a terminal supporting a multi-layer performs communication using a non-orthogonal multiple access technique (NoMA). That is, a NoMA-based multi-layer transmission scheme is proposed as a method of overlapping and transmitting a signal for multiple users in the same time frequency resource.
- NoMA non-orthogonal multiple access technique
- the layer may correspond to a path capable of transmitting a signal independently in time and frequency resources. Therefore, the layer may be used as a stream. If a single UE supports multiple layers, each layer may be multiplied by a predetermined precoding matrix according to channel conditions by the precoding module and assigned to each transmit antenna. Thus, the layer may also have the meaning of an antenna layer. In this embodiment, it is assumed that a single UE transmits and receives a signal through multiple layers.
- the terminal receives a NoMA Modulation and Coding Scheme (MCS) index and codebook index from the base station.
- MCS Modulation and Coding Scheme
- the NoMA MCS index and the codebook index may be signaled to the terminal through an UL grant.
- the non-orthogonal codebook or non-orthogonal codebook set including the codebook index may be defined in advance between the terminal and the base station.
- the NoMA MCS index is selected from the NoMA MCS table based on the quality of the uplink channel.
- the terminal may transmit the scheduling request signal to the base station.
- the quality of the uplink channel may be estimated based on the scheduling request signal.
- the NoMA MCS table is previously defined as a table including the NoMA MCS index, the number of multiple layers, and a modulation order. That is, a NoMA MCS that supports multiple layers may be defined as a table by the number of the multiple layers. The number of the multiple layers is determined according to the NoMA MCS index. The codebook index is selected from a set of codebooks corresponding to the modulation order, according to the number of the multiple layers.
- the NoMA MCS table may be defined differently for each modulation order.
- the NoMA MCS for various modulation orders may be defined as one NoMA MCS table.
- the NoMA MCS table can be defined as shown in Table 13 above.
- the NoMA MCS table may further include a code rate and a transport block size (TBS) index corresponding to the NoMA MCS index. That is, the NoMA MCS index may be defined together with the number of the multiple layers, the modulation order, the code rate, and the TBS index.
- the TBS index may indicate a TBS for the multiple layers.
- the TBS for the multiple layers may be a value obtained by multiplying the number of the multiple layers by the TBS for a single layer. Accordingly, the spectral efficiency of the TBS for the multi-layer may also be a value obtained by multiplying the spectral efficiency of the TBS for the single layer by the number of the multi-layers.
- the terminal transmits the uplink data configured based on the NoMA MCS index and / or the codebook index through the multiple layers.
- the uplink data may be spread for each of the multiple layers based on a codebook corresponding to the codebook index, and may be transmitted overlapping with another terminal in the same time frequency resource.
- the uplink data may be transmitted to the base station through the xPUSCH.
- the NoMA MCS index may be tied to an index of the codebook set corresponding to the modulation order.
- the codebook set may be detected from the NoMA MCS index by the terminal. Therefore, the base station does not need to separately signal the index of the codebook set to the terminal.
- the following proposes a method of allocating a Nobook MCS-based codebook index.
- the codebook index may be previously defined as an allocation pattern for each of a plurality of terminals including the terminal.
- the allocation pattern may be a pattern for allocating the codebook indices as many as the number of the multiple layers to each terminal in consideration of the maximum number of the multiple layers and the maximum number of the codebook indices.
- each UE may be defined as a pattern in which codebook indexes are allocated as least as possible by using 4 multiple layers. . That is, a pattern may be defined by allocating codebook indices with less overlap for each terminal as much as possible.
- the codebook index may be defined through a modulo operation using ID of the terminal in consideration of the maximum number of the multiple layers and the maximum number of codebook indexes.
- the UE knows that the number of the multi-layers is 3 through the NoMA MCS index, the UE knows that a total of three codebook indices are the codebook indices of the multi-layer to be used by using the ID of the UE. have.
- the three codebook indices are, for example, a modulo operation of 2 for a UE-ID, a modulo operation of 2 for a UE-ID, and a 2 for a UE-ID. Can be obtained by modulo operation plus 4.
- 15 is a block diagram illustrating a wireless device to which the present embodiment can be applied.
- a wireless device may be implemented as an AP or a non-AP STA as an STA capable of implementing the above-described embodiment.
- the wireless device may correspond to the above-described user or may correspond to a transmission device for transmitting a signal to the user.
- the wireless device of FIG. 15 includes a processor 1510, a memory 1520, and a transceiver 1530 as shown.
- the illustrated processor 1510, memory 1520, and transceiver 1530 may be implemented as separate chips, or at least two blocks / functions may be implemented through one chip.
- the transceiver 1530 is a device including a transmitter and a receiver. When a specific operation is performed, only one of the transmitter and the receiver may be performed, or both the transmitter and the receiver may be performed. Can be.
- the transceiver 1530 may include one or more antennas for transmitting and / or receiving wireless signals.
- the transceiver 1530 may include an amplifier for amplifying a reception signal and / or a transmission signal and a bandpass filter for transmission on a specific frequency band.
- the processor 1510 may implement the functions, processes, and / or methods proposed herein.
- the processor 1510 may perform an operation according to the above-described embodiment. That is, the processor 1510 may perform the operations disclosed in the embodiments of FIGS. 1 to 14.
- the processor 1510 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, a data processing device, and / or a converter for translating baseband signals and wireless signals.
- Memory 1520 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
- FIG. 16 is a block diagram illustrating an example of an apparatus included in a processor. For convenience of description, an example of FIG. 16 is described with reference to a block for a transmission signal, but it is obvious that the reception signal can be processed using the block.
- the illustrated data processor 1610 generates transmission data (control data and / or user data) corresponding to the transmission signal.
- the output of the data processor 1610 may be input to the encoder 1620.
- the encoder 1620 may perform coding through a binary convolutional code (BCC) or a low-density parity-check (LDPC) technique. At least one encoder 1620 may be included, and the number of encoders 1620 may be determined according to various information (eg, the number of data streams).
- BCC binary convolutional code
- LDPC low-density parity-check
- the output of the encoder 1620 may be input to the interleaver 1630.
- the interleaver 1630 performs an operation of distributing consecutive bit signals over radio resources (eg, time and / or frequency) to prevent burst errors due to fading or the like.
- Radio resources eg, time and / or frequency
- At least one interleaver 1630 may be included, and the number of the interleaver 1630 may be determined according to various information (for example, the number of spatial streams).
- the output of the interleaver 1630 may be input to a constellation mapper 1640.
- the constellation mapper 1640 performs constellation mapping such as biphase shift keying (BPSK), quadrature phase shift keying (QPSK), and quadrature amplitude modulation (n-QAM).
- BPSK biphase shift keying
- QPSK quadrature phase shift keying
- n-QAM quadrature amplitude modulation
- the output of the constellation mapper 1640 may be input to the spatial stream encoder 1650.
- the spatial stream encoder 1650 performs data processing to transmit the transmission signal through at least one spatial stream.
- the spatial stream encoder 1650 may perform at least one of space-time block coding (STBC), cyclic shift diversity (CSD) insertion, and spatial mapping on a transmission signal.
- STBC space-time block coding
- CSS cyclic shift diversity
- the output of the spatial stream encoder 1650 may be input to an IDFT 1660 block.
- the IDFT 1660 block performs inverse discrete Fourier transform (IDFT) or inverse Fast Fourier transform (IFFT).
- IDFT inverse discrete Fourier transform
- IFFT inverse Fast Fourier transform
- the output of the IDFT 1660 block is input to the Guard Interval (GI) inserter 1670, and the output of the GI inserter 1670 is input to the transceiver 1530 of FIG. 15.
- GI Guard Interval
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 상향링크 데이터를 전송하는 방법 및 기기가 제공된다. 구체적으로, 다중 레이어를 지원하는 단말은 기지국으로부터 NoMA MCS 인덱스를 수신한다. NoMA MCS 인덱스는 상향링크 채널의 품질을 기반으로 NoMA MCS 테이블에서 선택된다. NoMA MCS 테이블은 NoMA MCS 인덱스, 다중 레이어의 개수 및 변조 차수를 포함하는 테이블로 사전에 정의된다. 다중 레이어의 개수는 NoMA MCS 인덱스에 따라 결정된다. 단말은 NoMA MCS 인덱스를 기반으로 구성된 상향링크 데이터를 다중 레이어를 통해 전송한다.
Description
본 명세서는 무선 통신에 관한 것으로, 보다 상세하게는 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 이를 사용한 기기에 관한 것이다.
무선 통신 시스템은 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 무선 통신 시스템의 목적은 다수의 단말이 위치와 이동성에 관계없이 신뢰할 수 있는(reliable) 통신을 할 수 있도록 하는 것이다.
일반적으로 무선 통신 시스템은 가용한 무선 자원을 공유하여 다수의 단말과의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 무선 자원의 예로는 시간, 주파수, 코드, 전송 파워 등이 있다. 다중 접속 시스템의 예들로는 TDMA(time division multiple access) 시스템, CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
차세대 무선 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스의 개수의 수용, 매우 낮은 E2E 레이턴시(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치를 제공한다.
본 명세서는 무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치를 제안한다.
상기 장치는 무선신호를 전송 및 수신하는 트랜시버(transceiver) 및 상기 트랜시버에 연결되는 프로세서를 포함한다.
즉, 본 실시예는 다중 레이어(multi-layer)를 지원하는 단말이 비직교 다중 접속 기법(Non-orthogonal Multiple Access; NoMA)을 사용하여 통신을 수행하는 무선 통신 시스템 환경을 가정한다. 즉, 동일 시간 주파수 자원에 다중 사용자를 위한 신호를 중첩 전송하는 방식으로 NoMA 기반의 다중 레이어 전송 방식을 제안한다.
먼저 용어를 정리하면, 레이어는 시간 및 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로에 대응할 수 있다. 따라서, 레이어를 스트림(stream)과 같은 의미로도 사용될 수 있다. 단일 UE가 다수의 레이어를 지원한다면, 각 레이어는 프리코딩 모듈에 의해 채널 상태에 따라 소정의 프리코딩 행렬과 곱해져 각 전송 안테나에 할당될 수 있다. 따라서, 레이어는 안테나 레이어의 의미도 가질 수 있다. 본 실시예에서는, 단일 UE가 다중 레이어를 통해 신호를 송수신하는 경우를 가정한다.
먼저, 단말은 기지국으로부터 NoMA MCS(Modulation and Coding Scheme) 인덱스 및 코드북 인덱스를 수신한다. 상기 NoMA MCS 인덱스 및 상기 코드북 인덱스는 상향링크 그랜트(UL grant)를 통해 단말에게 시그널링될 수 있다. 이때, 코드북 인덱스를 포함하는 비직교 코드북 또는 비직교 코드북 집합은 단말과 기지국 간에 사전에 정의될 수 있다.
상기 NoMA MCS 인덱스는 상향링크 채널의 품질을 기반으로 NoMA MCS 테이블에서 선택된다. 단말은 스케줄링 요청 신호를 기지국으로 전송할 수 있다. 이때, 상기 상향링크 채널의 품질은 상기 스케줄링 요청 신호를 기반으로 추정될 수 있다.
상기 NoMA MCS 테이블은 상기 NoMA MCS 인덱스, 상기 다중 레이어의 개수 및 변조 차수를 포함하는 테이블로 사전에 정의된다. 즉, 다중 레이어가 지원되는 NoMA MCS가 상기 다중 레이어의 개수에 의해 테이블로 정의될 수 있다. 상기 다중 레이어의 개수는 상기 NoMA MCS 인덱스에 따라 결정된다. 상기 코드북 인덱스는 상기 다중 레이어의 개수에 따라, 상기 변조 차수에 대응하는 코드북 집합에서 선택된다.
다차원 변조(Multi-dimensional Modulation (MM) based NoMA) 방식의 NoMA 기술은 변조 차수에 따라 상이한 코드북 집합을 가질 수 있으므로, 변조 차수마다 NoMA MCS 테이블이 다르게 정의될 수 있다. 또한, 다양한 변조 차수에 대한 NoMA MCS를 하나의 NoMA MCS 테이블로 정의할 수도 있다. 다만, 본 실시예에서는, 상기 변조 차수가 2에 해당하는 스펙트럼 효율(Spectral Efficiency)을 달성할 수 있는 NoMA MCS 테이블을 고려한다.
또한, 상기 NoMA MCS 테이블은 상기 NoMA MCS 인덱스에 대응하는 코드 레이트와 TBS(Transport Block Size) 인덱스를 더 포함할 수 있다. 즉, 상기 NoMA MCS 인덱스는 상기 다중 레이어의 개수, 상기 변조 차수, 상기 코드 레이트 및 상기 TBS 인덱스와 함께 정의될 수 있다. 상기 TBS 인덱스는 상기 다중 레이어에 대한 TBS를 지시할 수 있다. 상기 다중 레이어에 대한 TBS는 단일 레이어에 대한 TBS에 상기 다중 레이어의 개수를 곱한 값일 수 있다. 이에 따라, 상기 다중 레이어에 대한 TBS의 스펙트럼 효율도 상기 단일 레이어에 대한 TBS의 스펙트럼 효율에 상기 다중 레이어의 개수를 곱한 값일 수 있다.
단말은 상기 NoMA MCS 인덱스 및/또는 상기 코드북 인덱스를 기반으로 구성된 상기 상향링크 데이터를 상기 다중 레이어를 통해 전송한다. 상기 상향링크 데이터는, 상기 코드북 인덱스에 대응하는 코드북을 기반으로 상기 다중 레이어 각각에 대해 확산되고, 동일 시간 주파수 자원에서 다른 단말과 중첩 전송될 수 있다. 상기 상향링크 데이터는 xPUSCH를 통해 기지국으로 전송될 수 있다.
또한, 상기 NoMA MCS 인덱스는 상기 변조 차수에 대응하는 상기 코드북 집합의 인덱스와 결속(tie)될 수 있다. 상기 코드북 집합은 상기 단말에 의해 상기 NoMA MCS 인덱스로부터 검출될 수 있다. 따라서, 기지국은 상기 코드북 집합의 인덱스를 별도로 단말에게 시그널링할 필요가 없다.
다음은 NoMA MCS 기반의 코드북 인덱스를 할당하는 방법을 제안한다.
일례로, 상기 코드북 인덱스는 상기 단말을 포함한 복수의 단말 각각에 대해 할당 패턴으로 사전에 정의될 수 있다. 상기 할당 패턴은 상기 다중 레이어의 최대 개수와 상기 코드북 인덱스의 최대 개수를 고려하여, 각 단말에 상기 다중 레이어의 개수만큼 상기 코드북 인덱스를 할당하는 패턴일 수 있다.
예를 들어, NoMA MCS 인덱스가 3인 경우, 각 단말이 지원할 수 있는 다중 레이어의 개수는 4개이고, 각 단말이 다중 레이어 4개를 사용하여 코드북 인덱스가 최대한 덜 겹치게 할당하는 패턴으로 정의될 수 있다. 즉, 각 단말에 대해 레이어 별로 최대한 코드북 인덱스가 덜 겹치게 할당하여 패턴을 정의할 수 있다.
다른 실시예로, 상기 코드북 인덱스는 상기 다중 레이어의 최대 개수와 상기 코드북 인덱스의 최대 개수를 고려하여, 상기 단말의 ID(Identification)를 이용한 모듈로(modulo) 연산을 통해 정의될 수 있다.
예를 들어, 단말이 상기 NoMA MCS 인덱스를 통해 상기 다중 레이어의 개수가 3이라는 걸 알게 된다면, 단말은 단말의 ID를 이용하여 총 3개의 코드북 인덱스가 자신이 사용할 다중 레이어의 코드북 인덱스라는 것을 알 수 있다. 3개의 코드북 인덱스는, 예를 들어, UE-ID에 2를 모듈로(modulo) 연산한 값, UE-ID에 2를 모듈로(modulo) 연산한 값에 2를 더한 값, UE-ID에 2를 모듈로(modulo) 연산한 값에 4를 더한 값으로 구할 수 있다.
제안하는 기법을 이용하면, 비직교 부호 다중 접속 방식(NCMA)의 다중 사용자 채널 변화에 따른 다중 사용자 간섭의 변화를 방지하고, 균일한 간섭량을 유지 함으로써 수신단의 MUD 성능을 증대 시킬 수 있다. 특히, 변조 차수와 코드워드가 연결되어 있는 코드북의 경우, 변조 차수의 크기가 커지면 코드북의 크기가 커지며, 이는 하드웨어 구현에서 많은 메모리를 사용하게 한다. 이때, Layer를 이용함으로써 낮은 변조 차수를 통해 모든 사용자의 용량(capacity)을 지원함으로써 간단한 구현을 가능하게 한다.
도 1은 본 명세서가 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 3은 제어 평면에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 통신 장치의 NOMA 기반 하향링크 전송/수신(Tx/Rx) 블록도를 예시한 도면이다.
도 5는 통신 장치의 NOMA 기반 상향링크 전송/수신 블록도를 예시한 도면이다.
도 6은 통신 장치의 NCMA 기반 하향링크 전송/수신 블록도를 예시적으로 도시한 도면이다.
도 7은 통신 장치의 NCMA 기반의 상향링크 전송/수신 블록도를 예시적으로 도시한 도면이다.
도 8은 단말-특정 NCC에 의한 데이터 전송의 주파수 축 개념도를 나타낸 도면이다.
도 9는 NCMA 시스템의 기본 송수신 구조도를 예시한 도면이다.
도 10은 본 실시예에 따른 다차원 변조(MM)를 적용하는 송신단의 NOMA 동작의 일례를 나타낸 도면이다.
도 11은 NoMA 기반의 접속 방식에서 동일한 시간 주파수 자원이 NoMA Layer에 구분되는 방식을 나타낸다.
도 12는 NoMA MCS에 따른 하향링크 NoMA 시스템의 신호가 송수신되는 절차를 나타낸다.
도 13은 NoMA MCS에 따른 상향링크 NoMA 시스템의 신호가 송수신되는 절차를 나타낸다.
도 14는 본 실시예에 따른 비직교 다중 접속 기법을 적용하여 상향링크 데이터를 전송하는 절차를 나타낸 절차 흐름도이다.
도 15는 본 명세서의 실시예가 구현되는 기기를 나타낸 블록도이다.
도 16은 프로세서에 포함되는 장치의 일례를 나타내는 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier-frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 기지국간의 무선 인터페이스를 Uu 인터페이스라 한다. 단말과 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 RB들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다.
RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 있을 경우, 단말은 RRC 연결 상태(RRC connected state)에 있게 되고, 그렇지 못할 경우 RRC 아이들 상태(RRC idle state)에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast 트래픽 Channel) 등이 있다.
도 4는 통신 장치의 NOMA 기반 하향링크 전송/수신(Tx/Rx) 블록도를 예시한 도면이다.
다중 단말(혹은 다중 사용자) 정보를 동일 자원에 할당하여 전송하는 비직교 다중 접속 방식 (Non-orthogonal Multiple Aceess, NOMA)에 있어서, 도 4와 같이 하향링크 지원을 위한 송수신단 구조는 일반적이다. NOMA 시스템은 3GPP 표준화 작업에서는 Multiuser Superposition Transmission (MUST)로 불리우기도 한다. NOMA 시스템은 동일 시간-주파수 자원에 다수의 단말을 위한 정보를 중첩하여 전송함으로써, LTE 시스템 대비 전송 용량 이득을 얻거나 동시 접속 수를 증대하는 것을 목적으로 차세대 5G 시스템의 요소 기술로써 고려되고 있다. 차세대 5G 시스템의 NOMA 계열 기술로는 Power Level을 기반으로 단말을 구분하는 MUST와, Sparse Complex Codebook 기반 변조를 활용하는 Sparse Code Multiple Access (SCMA), 단말-특정 인터리버(User-specific Interleaver)를 이용하는 interleave Division Multiple Access (IDMA) 등이 있다.
MUST 시스템의 경우, 도 4의 송신단에서 다중 단말 데이터의 변조 이후에 각 심볼의 파워 할당을 다르게 하거나, 계층적 변조(Hierarchical Modulation)를 기반으로 다중 단말 데이터를 계층적 변조하여 전송하고, 수신단에서 다중 단말(혹은 다중 사용자) 검출(Multiuser Detection, MUD)를 통해 다중 단말의 데이터(이하 다중 단말 데이터라 칭함)를 복조 한다.
SCMA 시스템의 경우, 도 4의 송신단에서, 다중 단말 데이터에 대한 Forward Error Correction (FEC) Encoder와 변조 과정을 미리 약속된 Sparse Complex Codebook 변조 방식으로 대체하여 전송하고, 수신단에서 MUD를 통해 다중 단말 데이터를 복조한다.
IDMA 시스템의 경우, 도 4의 송신단에서 다중 단말 데이터에 대해 FEC Encoding 정보를 단말-특정 인터리버를 통해 변조하여 전송하고, 수신단에서 MUD를 통해 다중 단말 데이터를 복조한다.
상기 각 시스템은 다양한 MUD 방식으로 다중 단말 데이터를 복조 할 수 있으며, 예를 들어 Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC) 등이 있다. 각 복조 방식에 따라 또는 반복 복조 시도 수에 따라, 복조 복잡도와 처리시간 지연에 차이가 있을 수 있다.
도 5는 통신 장치의 NOMA 기반 상향링크 전송/수신 블록도를 예시한 도면이다.
도 5는 다중 단말의 정보(이하 다중 단말 정보로 칭함)를 동일 자원에 할당하여 전송하는 NOMA 계열 시스템의 상향링크 지원을 위한 송수신단 구조를 도시하고 있다. 상기 각 시스템은 도 4의 하향링크 구조에 대한 설명과 같은 방식으로 다중 단말 데이터를 전송하고 수신단에서 복조 할 수 있다. NOMA 계열 시스템들은 동일 시간-주파수 자원에 다수 단말 신호를 중첩 전송하기 때문에, LTE 시스템과 비교하여 더 높은 복호 오류율을 가지지만, 더 높은 주파수 이용 효율이나 더 많은 Connectivity 를 지원할 수 있다. 비직교 다중 접속 방식(NOMA)은 시스템 환경에 따라, 부호율 제어를 통해 복호 오류율을 유지하면서, 더 높은 주파수 이용효율이나 더 많은 Connectivity 를 달성하는 것이 가능하다.
상기 NOMA 계열 시스템들은 동일 자원에 다수 단말의 데이터를 할당하기 때문에, 단일 단말 데이터를 할당하는 것과 비교하여 다중 단말의 데이터에 대한 간섭이 필연적으로 발생한다. 도 4의 NOMA 계열 시스템에서 k번째 수신단의 신호를 간단히 표현하면 다음 수학식 1과 같다.
여기서, hk는 송신단에서 k번째 수신단으로의 채널을 의미하고 sk는 k번째 수신단으로의 데이터 심볼, nk는 신호 잡음을 의미한다. K는 동일 시간-주파수 자원에 할당된 다중 단말의 수이다.
상기 수학식 1의 3번째 식의 2번째 항()은 다른 수신단으로의 데이터 심볼에 의한 다중 단말 간섭 신호 (Multiuser Interference, MUI)를 나타낸다. 따라서, 상기 수신 신호에 의한 전송 용량을 간단히 표현하면 다음 수학식 2와 같다.
상기 수학식 2에서의 전송 용량에서 K가 증가할수록 더해지는 Rk의 개수가 증가하여 C의 증대를 기대할 수 있다. 하지만, K가 증가할수록 MUI의 증가로 인해, 각 Rk가 감소하여 전체 전송 용량 C의 감소를 초래할 수 있다. MUD 기법에 따라, MUI를 효과적으로 감소시키면서 각 단말의 데이터를 복조 할 수 있다 하더라도, 근본적으로 MUI의 존재는 전체 전송 용량을 경감시키고, 높은 복잡도의 MUD를 요구하게 된다. 만약 다중 단말의 데이터 전송에 대한 MUI 발생을 최소화하면, 더 높은 전송 용량을 기대할 수 있다. 또는, 다중 단말의 데이터 전송에 대한 MUI 발생을 정량적으로 제어할 수 있으면, 다중 단말의 데이터 중첩에 대한 스케줄링으로 더 높은 전송 용량을 계획할 수 있다. 따라서, 다중 단말의 데이터 중첩 전송에 의한 MUI를 제어할 수 있는 다중 단말 접속 기술 개발이 필요하다. 동일 시간-주파수 자원에 대한 다중 단말의 데이터 중첩 전송시 발생하는 MUI를 제어할 수 있는 다중 단말 접속 기술 개발이 필요하다.
따라서, 본 발명에서는 차세대 5G 시스템의 다중 단말 간섭을 최소화하는 비직교 부호 다중 접속 방식(Non-orthogonal Coded Multiple Access, NCMA)을 제시한다.
도 6은 통신 장치의 NCMA 기반 하향링크 전송/수신 블록도를 예시적으로 도시한 도면이고, 도 7은 통신 장치의 NCMA 기반의 상향링크 전송/수신 블록도를 예시적으로 도시한 도면이다.
동일 시간-주파수 자원에 다중 단말의 데이터를 중첩 전송할 때 다중 단말 간섭을 최소화하는 비직교 부호 다중 접속 방식(NCMA)를 제안한다. 도 6과 도 7은 다중 단말 정보를 동일 시간-주파수 자원에 할당할 때, 단말-특정 비직교 코드 커버(UE Specific Non-orthogonal Code Cover(NCC)를 사용하여 중첩 전송하는 NCMA 시스템의 하향링크와 상향링크 송수신단 구조이다. 송신단/수신단(혹은 송신측/수신측)은 사전에 정의된 비직교 코드북을 이용하여 각 단말에게 단말-특정 NCC를 할당한다.
본 발명에서 언급하는 코드워드는 비직교 다중 접속을 수행하기 위해, 각 단말이 선택하는(또는 할당받은) 복소 엘리먼트 벡터(complex element vector)를 의미한다. 코드북은 비직교 다중 접속을 수행하기 위해 각 단말이 사용하는 코드워드들의 세트를 의미한다. 상기에서 언급한 코드북은 복수 개로 존재할 수 있다. 단말-특정 NCC(UE specific NCC)는 각 단말이 선택하는(또는 할당받은) 코드북의 복소 엘리먼트 벡터(complex element vector)를 전송하려는 심볼에 사용하는 것을 의미한다. 따라서, NCC(혹은 단말-특정 NCC)는 코드북 인덱스와 코드워드 인덱스로 표현할 수 있다. 비직교 코드북을 표현하면 다음 수학식 3과 같다.
상기 수학식 3에서 c(j)는 j 번째 단말을 위한 코드워드로서, 전체 K명의 단말에 대한 코드워드 세트는 코드북 C가 된다. j 번째 단말의 데이터를 전송하기 위해 c(j)를 사용하는 것을 NCC라고 정의한다. 또한 상기 코드북은 코드워드의 벡터 길이 N과 코드워드의 개수 K로 표현될 수 있다. 여기서, N은 확산 인자(spreading factor)를 의미하고, K는 중첩 인자(superposition factor)를 의미한다. 상기에서 설명의 편의를 위해 하나의 코드워드를 하나의 단말에서 사용하는 것을 예시하나, 다수개의 코드워드를 하나의 단말이 사용하거나, 하나의 코드워드를 다수의 단말에서 사용하는 것을 배제하지 않는다. 또한, 하나의 단말에 할당된 하나 또는 다수개의 코드워드는 시간에 따라 또는 사용 빈도에 따라 같은 코드북 내의 다른 코드워드의 사용 또는 다른 코드북 내의 다른 코드워드의 사용으로 코드워드를 호핑(Hopping) 할 수도 있다.
단말-특정 NCC(UE Specific NCC)의 할당은 RRC Connection Process에서 단말 식별자(UE ID)와 연결하여 할당될 수도 있고, 하향링크 제어 채널(예를 들어, PDCCH)에 포함된 DCI(Downlink Control Information) 포맷을 통해서 할당할 수도 있다.
경쟁 기반 다중 접속(Contention based MA)에 사용되는 상향링크 환경의 경우, 단말은 비직교 코드워드를 랜덤 선택할 수도 있고 또는 단말 식별자와 연결하여 선택할 수도 있다. 이 때, 단말-특정 NCC는 기지국이 할당하는 방식이 아니라, 단말이 직접 선택하며 이로 인해 다수 단말간 NCC의 충돌이 있을 수 있다. 수신단인 기지국에서는 NCC의 충돌이 있을 경우 MUD로 다수 단말 정보의 구분 성공률이 감소한다.
단말-특정 NCC는 Grassmannian line packing에 의해 정의될 수 있으며, 동일 부분공간(Subspace) 내에서 임의의 두 벡터가 형성하는 코들 거리(Chordal Distance)는 항상 같다. 즉, 를 만족하는 코드북으로서 수학적 또는 알고리즘적으로 구할 수 있다. 단말-특정 NCC는 다음 수학식 4와 같은 성질을 가진다.
(1) 송수신단에서 동일한 코드워드의 곱은 1이다.
(2) 동일 코드북 내에서 자신의 코드워드와 다른 코드워드 사이의 Chordal Distance는 같다.
(3) N≤K 이면, 자신의 코드워드와 다른 코드워드는 직교한다.
상기 특성을 가지는 코드북을 송신단/수신단(혹은 송신측/수신측)이 사전에 약속하여 단말-특정 NCC를 구성하면, 임의의 두 코드워드에 의한 Chordal Distance 의 Lower Bound를 가진다. 따라서, 다중 단말 데이터 중첩 전송에 대한 MUI는 상기 Lower Bound에 의해 최소화되어 결정된다. 또한, 상기 임의의 두 코드워드에 대한 Chordal Distance는 항상 같으므로, 단말 수에 의해 MUI의 통계적 예측이 가능하다. 단말 수가 결정되면, MUI 값에 의해 수신단의 복호 오류율이 예측 가능하므로 다중 단말 중첩 전송에 대한 간섭량을 기반으로 MCS 레벨의 제어가 가능하다. 예를 들어, (N×1) 차원에서 K개의 코드워드가 전송될 때, 수신단에서 자신의 코드워드로 복호하면, 자신의 코드워드부터 1이 복호되고, 다른 K-1개의 코드워드로부터 δN,K(K-1) 의 통계적 간섭량이 남게 된다. 이 수치는 코드북 설계의 최적화 정도에 따라 차이가 있다. 또한, N과 K 값에 따라 δN,K의 값에 차이가 존재하므로, 통신 시스템의 요구하는 SINR(Required SINR) 또는 타겟 QoS에 따라, 중첩 단말 수(K) 또는 사용 자원 수(N)를 변화시켜 MUI 값을 제어할 수 있다.
비직교 코드북에 대한 실시 예를 3GPP TS 36.211의 형태로 나타내면 다음 표 1 및 표 2와 같으며, 단말-특정 NCC(UE specific NCC)로 사용될 수 있다.
표 1은 Spreading Factor N = 2 인 경우의 코드북을 예시하고 있다.
표 2는 Spreading Factor(N = 4)인 경우의 코드북을 예시하고 있다.
수학적 또는 알고리즘을 이용하여 상기 표 1 및 표 2 이외에도 다양한 값이 나올 수 있다.
도 8은 단말-특정 NCC에 의한 데이터 전송의 주파수 축 개념도를 나타낸 도면이다.
도 8은 송신단(혹은 송신측)에서 단말-특정 NCC를 통해 주파수 축에서 k번째 단말 데이터를 전송하는 개념을 도시하고 있다. Grassmaniann line packing에 의해 정의된 단말-특정 NCC가 송신단과 수신단 사전에 약속되었을 때, k번째 단말에 해당하는 코드워드에 k번째 단말을 위한 데이터를 곱하여 전송한다. 이 때, 하나의 데이터 심볼 sk가 (N×1) 차원의 코드워드 벡터 c(k)에 대응된다. 그러면 코드워드의 N개 Element는 N개 부반송파에 대응된다.
즉, 도 8에서는 N개의 부반송파로 하나의 데이터 심볼을 전송하므로, 기존 LTE 시스템 대비 동일 시간-주파수 자원 효율이 1/N로 감소한다. 반면, N개 이상의 심볼을 중첩 전송하면, LTE 시스템 대비 시주파수 자원 효율이 증대된다. 예를 들어, N<K 일 때 K개의 심볼을 중첩 전송하면, K/N배 만큼 주파수 자원 효율이 증대된다.
도 9는 NCMA 시스템의 기본 송수신 구조도를 예시한 도면이다.
도 9는 단말-특정 NCC를 사용하는 NCMA 시스템의 기본 송수신 구조도 이다. 송신단에서 각 단말에 대한 데이터 심볼은 각 단말에 해당하는 단말-특정 NCC로 변환되어 중첩된다. 중첩된 N길이의 주파수축 신호는 N-IFFT를 통해 시간축 신호로 변환되어 OFDM 전송을 수행하고, 수신단에서 N-FFT를 통해 주파수축 신호로 복원한다. 복원된 주파수축 신호는 각 단말에 해당하는 단말-특정 NCC의 Conjugate Codeword로 각 단말 데이터 심볼을 복호한다. 복호된 sk는 중첩된 단말 수에 따라 MUI가 포함되어 있을 수 있으며, MUD 방식 등을 통해 정확한 sk 복호가 가능하다. 이 때, 사전에 정의된 단말-특정 NCC에 따라 변환된 주파수축 신호의 길이는 N보다 짧을 수 있다. 예를 들어 N/2 길이의 단말-특정 NCC로 변환된 주파수축 신호 벡터 2개를 직렬 연결하여 N 길이로 형성하면, N-FFT해도 수신단에서 복조가 가능함은 자명하다.
하향링크의 경우, k번째 단말 수신단에서 데이터 복호를 위한 검출 수식을 표현하면 다음 수학식 5와 같다.
상기 수학식 5에서, Hk는 k번째 송신단에서 수신단으로의 (N×N) 채널 행렬를 의미하고 대각행렬(diagonal matrix)로 주파수 축 채널 계수들을 포함한다. c(k)는 k번째 송신단에서 수신단에 대한 (N×1) 단말-특정 NCC 벡터이고, sk는 k번째 수신단으로의 데이터 심볼, n는 (N×1) 신호 잡음 벡터를 의미한다. K는 동일 시간-주파수 자원에 할당된 다중 단말의 수 이다. 여기서, 는 A 벡터의 j번째 요소(element)와 B 행렬의 j번째 대각 요소(diagonal element)의 나눗셈을 의미한다. A 벡터가 대각 행렬일 경우, 대각 행렬끼리의 요소(element) 나눗셈을 의미한다.
상기 수학식 5에서 채널 보상을 통해 원하는 코드워드들(Desired Codewords) 신호와 잡음만 남게 되며, 수신단의 단말-특정 NCC의 Conjugate Codeword를 통해, 다음 수학식 6과 같이 검출된다.
상기 수학식 6에서 마지막 행의 2번째 항목은 MUI를 나타내며, MUD 방식을 통해 제거 또는 감소시킬 수 있다.
상향링크의 경우, 기지국의 수신단에서 데이터 복호를 위한 검출 수식을 표현하면 다음 수학식 7과 같다.
상기 수학식 7의 3번째 식의 2번째 항은 다른 수신단으로의 데이터 심볼에 의한 다중 단말 간섭 신호 MUI를 나타낸다. k번째 단말의 데이터 복호를 위한 수신단의 검출 수식을 표현하면 다음 수학식 8과 같다.
k번째 단말 데이터를 위한 채널 보상을 통해 원하는 코드워드들 신호와MUI, 잡음만 남게 되며, 수신단의 단말-특정 NCC의 Conjugate Codeword를 통해, 다음 수학식 9와 같이 검출된다.
상기 수학식 9에서 마지막 행의 2번째 항목은 MUI를 나타내며, MUD 방식을 통해 제거 또는 감소시킬 수 있다. 이 때, 다중 단말로부터의 채널 환경 차이로 인해, 의 주파수 축 채널 변화량이 단말-특정 NCC에 의한 MUD 수행 시 MUI 값의 변화를 가져온다. 상기 설명에서 설명의 편의를 위하여, 송수신 안테나의 개수를 단일 개로 설명하였으나, 다중 안테나를 사용하는 환경에서도 같은 방식으로 적용됨은 자명하다.
앞서 설명한 NCMA 방식에 관련한 내용을 통해 다중 단말 데이터 중첩 전송에 의한 MUI를 제어하면서, 중첩 단말 수에 따라 더 높은 주파수 이용효율이나 더 많은 Connectivity를 달성하는 것이 가능하다.
또 다른 NoMA 방식 중에서, 변조와 비직교 코드북을 기반으로 인코딩된 비트 스트림(Encoded Bits Stream)을 복소 심벌 벡터(Complex Symbol Vector)로 확산하는 NoMA 방식 또한 고려해 볼 수 있다. 상기 방식은 NoMA를 기반으로 한 다차원 변조(Multi-dimensionalModulation (MM) based NoMA) 방식으로써, Sparsity는 존재할 수도 존재하지 않을 수도 있다. 상기 동작에 대한 예시는 다음과 같다.
도 10은 본 실시예에 따른 다차원 변조(MM)를 적용하는 송신단의 NOMA 동작의 일례를 나타낸 도면이다.
확산 기반 다중 접속 기술 중, 다차원 변조(Multi-dimensionalModulation; MM)를 기반으로 하는 NoMA 기술도 단말 특정 코드워드(또는 코드북)을 기반으로 인코딩을 수행하고, 확산이 적용된다. 다차원 변조 기반 NoMA의 동작은 도 10와 같이 예시될 수 있다.
도 10을 참조하면, 상향링크 전송을 수행하는 k번째 UE는 발생된 트래픽에 의한 정보 비트 스트림(1010)이 생성되고, 채널 코딩에 의해 인코딩된 비트 스트림(1020)으로 변환된다. 그리고 나서, 다차원 변조 기반 인코더에 의해 인코딩된 비트를 단말 특정 코드북(또는 코드워드) k을 기준으로 복소 벡터(complex vector, 1030)로 변환한다. 도 10의 예시에서는 2 비트의 인코딩된 비트가 4개의 복소 심벌(complex symbol)로 구성된 복소 벡터로 변환된다고 할 수 있다. 예를 들어, 인코딩된 비트가 [0 0]이면, 복소 벡터 [c1,
1,c2
,
1,c3
,
1,c4
,
1]T으로 변환된다. 인코딩된 비트가 [0 1]이면, 복소 벡터 [c1,
2,c2
,
2,c3
,
2,c4
,
2]T으로 변환된다. 인코딩된 비트가 [1 1]이면, 복소 벡터 [c1,
3,c2
,
3,c3
,
3,c4
,
3]T으로 변환된다. 인코딩된 비트가 [1 0]이면, 복소 벡터 [c1,
4,c2
,
4,c3
,
4,c4
,
4]T으로 변환된다.
변환된 복소 벡터는 자원 매핑을 거쳐 IFFT되어 송신된다. 상기 동작은 하향링크 전송 동작에서도 유사하게 적용되며, 수신단에서는 Message Passing Algorithm (MPA)등의 MUD를 통해 인코딩된 비트로 복호된다.
이하에서는, MCS와 TBS(Transport Block Size)의 관계를 정의한 테이블을 설명한다. 3GPP TS에 의하면, MCS 테이블은 하기와 같이 2가지 표로 결정되어 있다. NPRB=1인 경우이다.
MCS IndexIMCS | Modulation OrderQm | Modulation OrderQm' | TBS IndexITBS | TBS for NPRB=1 |
0 | 2 | 2 | 0 | 16 |
1 | 2 | 2 | 2 | 32 |
2 | 2 | 2 | 4 | 56 |
3 | 2 | 4 | 6 | 328 |
4 | 2 | 4 | 8 | 120 |
5 | 4 | 6 | 10 | 144 |
6 | 4 | 6 | 11 | 176 |
7 | 4 | 6 | 12 | 208 |
8 | 4 | 6 | 13 | 224 |
9 | 4 | 6 | 14 | 256 |
10 | 4 | 8 | 15 | 280 |
11 | 6 | 8 | 16 | 328 |
12 | 6 | 8 | 17 | 336 |
13 | 6 | 8 | 18 | 376 |
14 | 6 | 8 | 19 | 408 |
15 | 6 | 8 | 20 | 440 |
16 | 6 | 8 | 21 | 488 |
17 | 6 | 8 | 22 | 520 |
18 | 6 | 8 | 23 | 552 |
19 | 6 | 8 | 24 | 584 |
20 | 8 | 8 | 25 | 616 |
21 | 8 | 8 | 27 | 648 |
22 | 8 | 8 | 28 | 680 |
23 | 8 | 8 | 29 | 712 |
24 | 8 | 8 | 30 | 776 |
25 | 8 | 8 | 31 | 808 |
26 | 8 | 8 | 32 | 840 |
27 | 8 | 8 | 33/33A | 968/840 |
28 | 2 | 2 | reserved | |
29 | 4 | 4 | ||
30 | 6 | 6 | ||
31 | 8 | 8 |
상기 표 3이 사용되는지 상기 표 4가 사용되는지의 여부는 상위 계층 파라미터(Higher Layer Parameter)에 의해 설정될 수 있다. 상기 표3 및 표 4에서 Qm과 Qm'은 DL의 경우 PDSCH가 subframe의 어느 slot에 할당되었는가에 따라 해석방법을 달리하기 위해 사용된다. (Qm: 일반적인 PDSCH의 경우, Qm': PDSCH가 second slot에만 할당되는 경우)
MCS IndexIMCS | Modulation OrderQm' | TBS IndexITBS | Redundancy Versionrvidx |
0 | 2 | 0 | 0 |
1 | 2 | 1 | 0 |
2 | 2 | 2 | 0 |
3 | 2 | 3 | 0 |
4 | 2 | 4 | 0 |
5 | 2 | 5 | 0 |
6 | 2 | 6 | 0 |
7 | 2 | 7 | 0 |
8 | 2 | 8 | 0 |
9 | 2 | 9 | 0 |
10 | 2 | 10 | 0 |
11 | 4 | 10 | 0 |
12 | 4 | 11 | 0 |
13 | 4 | 12 | 0 |
14 | 4 | 13 | 0 |
15 | 4 | 14 | 0 |
16 | 4 | 15 | 0 |
17 | 4 | 16 | 0 |
18 | 4 | 17 | 0 |
19 | 4 | 18 | 0 |
20 | 4 | 19 | 0 |
21 | 6 | 19 | 0 |
22 | 6 | 20 | 0 |
23 | 6 | 21 | 0 |
24 | 6 | 22 | 0 |
25 | 6 | 23 | 0 |
26 | 6 | 24 | 0 |
27 | 6 | 25 | 0 |
28 | 6 | 26 | 0 |
29 | reserved | 1 | |
30 | 2 | ||
31 | 3 |
UE가 PUSCH에서 64QAM을 지원할 수 있고 QPSK와 16QAM만을 전송하기 위해 상위 계층에 의해 설정되어 있다면, 변조 차수는 상기 표 5에 의해 Qm'로 주어진다.
UE가 PUSCH에서 64QAM을 지원할 수 없고 QPSK와 16QAM만을 전송하기 위해 상위 계층에 의해 설정되어 있다면, Qm'은 상기 표 5로부터 읽힌다. 이때, 변조 차수는 Qm = min(4, Qm')으로 설정된다.
상기의 표 5에서 UL의 경우, UE capability에 따라 PUSCH에서 64 QAM을 지원할 수 있는가 아닌가에 따라 해석방법을 달리하기 위해서 사용된다. (Qm : UE가 64QAM을 지원하지 못하는 경우, Qm' : UE가 64QAM을 지원할 수 있는 경우)
상기 MCS 테이블에 의해서 설정되는 TBS Index에 대해, 3GPP TS에 의하면, TBS는 ITBS와 NPRB에 의해 주어진다. 여기서, NPRB 는 PRB 개수를 의미한다. 따라서, TBS 테이블은 34종류의 TBS 각각에 110개의 NPRB 에 대응되는 TBS 값이 정의된다 (차원(dimension) 34 × 110).
또한, 공간 다중화(Spatial Multiplexing)이 적용된 경우, NPRB 에 따라서, Layer 수만큼 TBS가 배수되거나, 미리 정의된 매핑 룰(mapping rule)에 따라 TBS가 정의된다.
상기 TBS와 정의 PRB 개수는 시스템 환경에 따라 다르게 정의될 수 있다
이하에서는, CQI 테이블과 스펙트럼 효율(Spectral Efficiency)의 관계를 설명한다.
LTE에는 1에서 15 (4 비트)까지의 15 가지 CQI 값과 CQI와 변조 방식 간의 매핑이 있으며, 전송 블록 크기는 아래의 2가지 표와 같이 정의된다.
상기 표 6 및 표 7을 기반으로 하면 하기와 같은 동작이 가능하다. 예를 들어, 하나의 PRB에서 실제로 data 송신에 사용할 수 있는 RE가 138개 라고 하면, UE의 CQI index에 의해 MCS가 결정될 수 있다. MCS Index에 의하여, 변조 차수와 TBS가 결정되며, 사용할 수 있는 RB개수 N_RB에 의해 전체 Resource 공간이 정의된다. 여기서 변조 차수는 (QPSK는 2, 16QAM은 4와 같이 하나의 심볼이 전달할 수 있는 bit 수로 정의한다.) 그러면, Code Rate = (TBS + CRC 24bits)/(M-order * (REs/PRB) * N_RB)로 구해질 수 있다. 또한, Spectral Efficiency = M-order*Code Rate로 구해질 수 있다. 예시들은 하기와 같다.
CQI | Modulation | Bits/Symbol | REs/PRB | N_RB | MCS | TBS | Code Rate | SE |
1 | QPSK | 2 | 138 | 20 | 0 | 536 | 0.101449 | 0.202898 |
2 | QPSK | 2 | 138 | 20 | 0 | 536 | 0.101449 | 0.202898 |
3 | QPSK | 2 | 138 | 20 | 2 | 872 | 0.162319 | 0.324638 |
4 | QPSK | 2 | 138 | 20 | 5 | 1736 | 0.318841 | 0.637682 |
5 | QPSK | 2 | 138 | 20 | 7 | 2417 | 0.442210 | 0.88442 |
6 | QPSK | 2 | 138 | 20 | 9 | 3112 | 0.568116 | 1.136232 |
7 | 16QAM | 4 | 138 | 20 | 12 | 4008 | 0.365217 | 1.460868 |
8 | 16QAM | 4 | 138 | 20 | 14 | 5160 | 0.469565 | 1.87826 |
9 | 16QAM | 4 | 138 | 20 | 16 | 6200 | 0.563768 | 2.255072 |
10 | 64QAM | 6 | 138 | 20 | 20 | 7992 | 0.484058 | 2.904348 |
11 | 64QAM | 6 | 138 | 20 | 23 | 9912 | 0.600000 | 3.6 |
12 | 64QAM | 6 | 138 | 20 | 25 | 11448 | 0.692754 | 4.156524 |
13 | 64QAM | 6 | 138 | 20 | 27 | 12576 | 0.760870 | 4.56522 |
14 | 64QAM | 6 | 138 | 20 | 28 | 14688 | 0.888406 | 5.330436 |
15 | 64QAM | 6 | 138 | 20 | 28 | 14688 | 0.888406 | 5.330436 |
또한, 각 CQI index에 따른 요구되는 SINR(Signal to Interference plus Noise Ratio)은 아래 표와 같이 정의될 수 있다.
기존 MCS 제어를 위한 CQI 테이블 또는 MCS 테이블은 NoMA의 Multi-layer 전송이 고려되지 않았다. 또한, NoMA 전송에 대한 BLER(BLock Error Rate) 특성 변화로 인해, CQI 테이블 또는 MCS 테이블이 달라질 수 있다.
본 명세서에서는 NoMA 기반 Multi-layer 전송을 고려한 MCS 테이블 및 CQI 테이블을 제안한다.
NoMA 기반의 접속 방식에 있어서, MA Signature를 기반으로 수신단에서 다중 Layer를 수신하고, 수신단 절차에 의해 다중 Layer를 구분할 수 있다.
도 11은 NoMA 기반의 접속 방식에서 동일한 시간 주파수 자원이 NoMA Layer에 구분되는 방식을 나타낸다.
Layer는 시간 및 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로에 대응할 수 있다. 따라서, Layer를 스트림(stream)과 같은 의미로도 사용될 수 있다. Signle UE가 다수의 Layer를 지원한다면, 각 Layer는 프리코딩 모듈에 의해 채널 상태에 따라 소정의 프리코딩 행렬과 곱해져 각 전송 안테나에 할당될 수 있다. 따라서, Layer는 안테나 레이어의 의미도 가질 수 있다. 본 실시예에서는, Single UE가 다중 Layer를 통해 신호를 송수신하는 경우를 가정한다.
예를 들어, MM based Encoder 기반의 NoMA 방식은 하기와 같은 Codebook Set을 사용할 수 있다.
여기서, Pno은 (M×M) 전력 제한을 위한 정규화된 행렬 (M×M)이다. Pno을 수식으로 표현하면 다음과 같다.
상기 예시는 Spreading Factor K=4이고, Modulation은 QPSK과 동일한 4개의 Constellation (M=4)인 경우를 예시한다. 이 때, M-order는 log2(M)=2라고 정의한다. 또한, 총 Codebook의 개수가 J=6개로, Overloading Factor = J/K = 150%라고 정의한다. 즉, 동일한 물리 자원을 공유하는 6개의 Layer가 존재하며, 수신단에서는 6개의 Layer를 구분하여, data detection/decoding을 수행할 수 있다.
제1 실시예로, 상기 예시와 상기 표 3을 기반으로 산술적으로 MCS Table과 Spectral Efficiency의 관계를 작성하면, 아래 표 11과 같은 Spectral Efficiency를 구성할 수 있다. (하기 예시에서는 하나의 PRB에서 data를 송신할 수 있는 RE가 138개라고 가정되었다. 데이터를 전송할 수 있는 RE의 개수는 RS(Reference Signal) density등에 의해 달라질 수 있고 이때는 rate matching을 통해서 encoding과 decoding이 가능하다. 본 특허의 전체 내용에서 변조 차수 Qm에 해당하는 내용에 대해서만 설명한다. Qm'에 해당하는 내용은 동일한 계산 방법으로 계산하고 정의될 수 있음은 자명하다.)
상기 표 11에서, MCS Index = 6 (TBS Index = 6)이고, NPRB=1인 경우는, VoIP를 위해 TTI Bundling(Subframe 2개)이 적용되는 경우에 대한 경우로, 본 예시에서는 제외하여 설명한다. 또한, Single UE관점에서 Capacity의 최대가 5.3333이라고 가정되었다. (이는, 의미 있는 Required SINR Region에서 MCS를 구성하기 위해 가정되었다. 예를 들어, 256QAM 혹은 1024QAM등 high modulation 방법이 고려된다면 상기 single UE의 MCS 구성은 달라질 수 있고 그때의 최대 SE 값은 5.3보다 커질 수 있다.) 상기 표 8에 따라, CQI index에 따른 요구되는 SINR이 좋다고 했을 때, 기대되는 최대 SE가 약 5.3이다. 최대 SE가 5.3 이상은 보장되지 않기 때문에, 상기 표 11에서 배경에 음영이 안 들어간 SE 값은 의미 없는 값이다.
상기 예시된 바와 같이, MCS 테이블과 NoMA의 Multi-Layer를 기반으로 달성할 수 있는 Spectral Efficiency의 구성은, 상기 표 11에서 배경에 음영이 들어간 SE(Spectral Efficiency) 값으로만 설정될 수 있다. 하지만, MM based Encoder 기반의 NoMA Scheme은 M-order에 따라 서로 다른 Codebook Set을 가져야 한다. 따라서, 상기 예시에서 M-order 2에 해당하는 Codebook Set이 사용된다면, 상기 표 11에서 배경에 음영이 들어간 Spectral Efficiency 중 M-order 2에 해당하는 적어도 하나의 Layer를 사용하는 Spectral Efficiency만 달성 가능하다.
상기 표 11에서 M-order 2에 해당하는 NoMA MCS Index는 0부터 9까지고, NoMA MCS Index가 10 이상인 경우부터는 새로운 M-order에 따른 새로운 Codebook Set이 설정되어야 한다.
제2 실시예로, 같은 방식으로 상기 표 4를 기반으로 산술적으로 MCS 테이블과 Spectral Efficiency의 관계를 작성하면, 아래 표 12와 같은 Spectral Efficiency를 구성할 수 있다. (하기 예시에서는 하나의 PRB에서 data를 송신할 수 있는 RE가 138개라고 가정되었다.)
상기 표 12에서, MCS Index = 3 (TBS Index = 6)이고, N_PRB=1인 경우는, VoIP를 위해 TTI Bundling(Subframe 2개)이 적용되는 경우에 대한 경우로, 본 예시에서는 제외하여 설명한다. 또한, Single UE관점에서 Capacity의 최대가 7.2이라고 가정되었다. (이는, 의미 있는 Required SINR Region에서 MCS를 구성하기 위해 가정되었다.)
상기 예시된 바와 같이, MCS 테이블과 NoMA의 Multi-Layer를 기반으로 달성할 수 있는 Spectral Efficiency의 구성은, 상기 표 12에서 배경에 음영이 들어간 SE 값으로만 설정될 수 있다. 하지만, MM based Encoder 기반의 NoMA Scheme은 M-order에 따라 서로 다른 Codebook Set을 가져야 한다. 따라서, 상기 예시에서 M-order 2에 해당하는 Codebook Set이 사용된다면, 상기 표 12에서 배경에 음영이 들어간 Spectral Efficiency 중 M-order 2에 해당하는 적어도 하나의 Layer를 사용하는 Spectral Efficiency만 달성 가능하다.
방식 1. NoMA MCS
상기 특성을 기반으로 본 명세서에서는 단일 사용자가 다수의 NoMA Layer를 이용하여, MCS Table을 구성하는 방식을 제안한다. 즉, 상기 표 11과 표 12의 예시에 대해서, 상기 표 11및 표 12에서 배경에 음영이 들어간 Spectral Efficiency 중 M-order 2에 해당하는 Spectral Efficiency를 달성할 수 있는 MCS Table과 NoMA Layer의 관계를 기반으로 NoMA MCS Table을 새롭게 정의할 수 있다. 예를 들어 아래 표 13과 같이 NoMA MCS를 정의할 수 있다. 표 13에서는 제1 실시예에서 표현된 바와 같이, 상기 표 3을 기반으로 하나의 PRB에서 data를 송신할 수 있는 RE가 138개라고 가정되었을 때, M-order 2에 해당하는 Codebook Set이 사용된 경우를 나타낸다.
상기 표 13에 따르면, 상기 표 11 및 표 12에 비해, NoMA MCS Index가 32개에서 49개로 늘어남을 알 수 있다. 또한, 특정 TBS Index에 대해 1개부터 6개의 NoMA Layer가 지원될 수 있다. 다만, Single UE관점에서 Capacity의 최대가 5.3333이라고 가정되었으므로, SE가 5.3333을 초과하는 NoMA Layer의 개수는 기술하지 않았다. 예를 들어, TBS Index가 7이고 NoMA Layer의 개수가 6개라면 SE가 UE Capacity를 초과하므로, 해당 실시예를 상기 표 13에서 제외시켰다.
상기 방식을 통해 Modulation Order 2에 해당하는 Codebook Set에 대한 NoMA MCS를 정의할 수 있고, 이를 통해 단일 사용자 관점에서 다양한 Spectral Efficiency를 제공할 수 있다. 즉, NoMA MCS는 Modulation Order와 coderate, TBS, NoMA Layer의 개수(# of NoMA Layer)로 구성될 수 있다. 이 때, MM based Encoder 기반의 NoMA 기술은 Modulation Order에 따라 상이한 Codebook Set을 가질 수 있으므로, Modulation Order마다 NoMA MCS Table을 다르게 가질 수 있다.
상기 예시에서 설명의 편의를 위하여, NoMA MCS에 대해서 Multi-layer에 대한 TBS는 (단일 NoMA Layer의 TBS)*(Layers의 개수)로 표현되었으나, 실제로는 CRC가 다수 Layer에 하나만 존재하는 경우 Multi-Layer에 대한 TBS가 다를 수 있다. 이 경우, Code rate의 변화와 TBS의 변화로 인한 Spectral Efficiency의 값에 차이가 있을 수 있다.
상기 표 13은 NoMA MCS에 대해서, 상기 표 3을 기준으로 예시하였으나, 상기 표 4에도 유사한 방법으로 적용될 수 있음은 자명하다. 또는, 기존 레가시 변조 인덱스 및 TBS 인덱스(Legacy Modulation and TBS index)와 무관하게 새롭게 정의될 수 있음은 자명하다. 새롭게 정의된 Modulation index 및 TBS index 또한 Modulation order와 TBS, NoMA Layer의 개수로 구성될 수 있다.
상기 표 13에서는 Modulation Order 2에 대해서만 예시하였으나, 다른 각 Modulation Order에도 유사한 방법으로 적용될 수 있음은 자명하다. 또한, 다양한 Modulation Order에 대한 NoMA MCS가 하나의 NoMA MCS 테이블로 정의 될 수 있다. 예를 들어, 아래 표 14와 같은 구조로 Modulation Order 각각에 대해 NoMA MCS 테이블이 구성될 수 있다.
상기 표 14에서 NoMA MCS index 0부터 49까지의 내용은 상기 표 13의 내용을 그대로 포함한다. 상기 표 14의 경우, NoMA MCS Index에 M-order에 따른 Codebook Set Index가 결속(Tie)될 수 있다. 상기 표 14에 따르면, NoMA MCS Index 0부터 49는 Modulation Order 2에 따른 NoMA Codebook Set Index 1에 결속될 수 있고, NoMA MCS Index 50부터 69는 Modulation Order 4에 따른 NoMA Codebook Set Index 2에 결속될 수 있고, NoMA MCS Index 70 이상은 Modulation Order 6에 따른 NoMA Codebook Set Index 3에 결속될 수 있다.
기지국과 단말은 NoMA MCS Index에 따른 NoMA Codebook Set들을 Predefined 또는 RRC Signaling 등의 방법으로 서로 약속하고 있을 수 있다. 따라서, 단말은 NoMA MCS Index를 기지국으로부터 Signaling 받으면, 사용해야 하는 NoMA Codebook Set을 인지할 수 있다. 이때, 단말은 사용해야 하는 NoMA Codebook Set안에서 NoMA MCS Index에 따라, NoMA Layer 수만큼 사용해야 하는 UE Specific NoMA Codebook을 인지해야 한다. UE Specific Codebook은 기지국에 의해 Signaling 될 수도 있고, 후술하는 방식 3으로 인지될 수도 있다.
방식 2. NoMA MCS 및 NoMA CQI 기반의 DL/UL 절차
상기의 NoMA MCS를 기반으로 도 12 및 도 13과 같은 DL/UL 절차를 정의할 수 있다.
도 12는 NoMA MCS에 따른 하향링크 NoMA 시스템의 신호가 송수신되는 절차를 나타낸다.
도 12를 참조하면, UE는 CQI Reporting을 수행하여, 자신의 DL 채널 피드백을 수행한다(S1220). (이 때, 채널 호혜성(Channel Reciprocity)이 보장되는 환경에서는 단말의 SRS등의 UL 신호를 기반으로 채널 품질을 추정할 수도 있다.) eNB에서는 CQI Reporting을 기반으로 공정한 스케줄링(Fairness Scheduling)을 수행하고(S1230), Scheduling 수행시, 각 사용자의 DL에 대해 방식 1에서 제안하는 NoMA MCS에 대한 선택을 수행한다(S1240). NoMA MCS에 따라 NoMA Layer가 결정되며, 결정된 Layer 수에 해당하는 NoMA Codebook을 NoMA Codebook Set에서 선택한다(S1250). 선택된 NoMA Codebook을 기반으로 각 NoMA Layer에 NoMA Spreading을 수행하여(S1260), xPDSCH로 DL data를 전송한다(S1280). 이 때, DL 제어 채널(예를 들어, PDCCH)로 DCI 정보가 전송되며, DCI 정보는 DL data에 대한 NoMA Codebook Index, NoMA MCS Index 등, DL data 복호를 위한 제어 정보를 전달한다(S1270). 단말은 수신된 DCI 정보를 기반으로 NoMA Despreading과 MUD를 통해 data를 복호한다(S1290).
상기 신호가 전달되는 절차에서 Codebook Index는 기정의된 패턴/UE 특정 패턴 등에 따른 Codebook 구성에 대한 Look up table에 따라, Signaling 되지 않을 수 있다. 이는, 후술하는 방식 3에서 상세 설명한다.
도 13은 NoMA MCS에 따른 상향링크 NoMA 시스템의 신호가 송수신되는 절차를 나타낸다.
도 13을 참조하면, 기지국은 사용자의 SRS 등의 UL신호(S1320)를 기반으로 UL 채널 품질을 인지한다(S1330). (이 때, Channel Reciprocity가 보장되는 환경에서는 DL Channel에 대한 CQI Reporting등의 DL 신호 상태를 기반으로 채널 품질을 추정할 수도 있다.) eNB에서는 UL Channel의 품질을 기반으로 Fairness Scheduling을 수행하고(S1340), Scheduling 수행시, 각 사용자의 UL에 대해 방식 1에서 제안하는 NoMA MCS에 대한 선택을 수행한다(S1350). NoMA MCS에 따라 NoMA Layer가 결정되며, 결정된 Layer 수에 해당하는 NoMA Codebook을 NoMA Codebook Set에서 선택한다(S1360). 선택된 NoMA Codebook Index와 NoMA MCS Index를 UL Grant로 사용자에게 Signaling한다(S1370). 단말은 수신된 UL Grant를 기반으로, NoMA Codebook을 NoMA Codebook Set에서 선택하고, NoMA MCS를 기반으로 UL data를 구성하여, 각 NoMA Layer에 대해 NoMA Spreading을 수행하여, xPUSCH로 UL data를 송신한다(S1380). 기지국은 송신한 UL Grant 정보를 기반으로 NoMA Despreading과 MUD를 통해 data를 복호 한다(S1390).
상기 신호가 전달되는 절차에서 Codebook Index는 기정의된 패턴/UE 특정 패턴 등에 따른 Codebook 구성에 대한 Look up table에 따라, Signaling 되지 않을 수 있다. 이는, 후술하는 방식 3에서 상세 설명한다.
방식 3. NoMA MCS 기반의 코드북 인덱스 할당 방법
Codebook Index 교환하는 방법은 UE-ID 또는 기정의된 패턴으로 사전에 정의될 수 있다.
NoMA MCS를 기반으로 할당된 Layer 수에 따라, 사용자가 사용해야 하는 NoMA Codebook이 UE specific하게 할당될 수 있다.
NoMA MCS에 의한 UE Specific NoMA Codebook은 기정의된 패턴일 수 있다. 예를 들어, 하기와 같이 각 NoMA MCS Index에 따라, UE Specific 형태로 NoMA Layer 수를 기반으로 사용할 Codebook Index가 패턴으로 정의되어 있을 수 있다. 하기 예시에서는 NoMA Layer의 최대 개수와 Codebook Index의 최대 개수가 6인 경우를 예시한다. 여기서 Codebook Index는 0, …, 5까지로 표현된다.
상기 표 15를 참조하면, 예를 들어, NoMA MCS Index가 0인 경우, 각 단말이 지원할 수 있는 NoMA Layer의 개수는 1개이고, 각 UE가 NoMA Layer를 하나씩 나눠쓰는 패턴으로 정의될 수 있다. 다른 예로, NoMA MCS Index가 3인 경우, 각 단말이 지원할 수 있는 NoMA Layer의 개수는 4개이고, 각 UE가 NoMA Layer 4개를 사용하여 코드북 인덱스가 최대한 덜 겹치게 할당하는 패턴으로 정의될 수 있다. 즉, 상기 표 15는 각 UE에 대해 Layer 별로 최대한 Codebook Index가 덜 겹치게 할당하여 패턴을 정의할 수 있다.
또한, NoMA MCS에 의한 UE Specific NoMA Codebook은 UE-ID에 의해 사전에 정의될 수 있다. 예를 들어, 하기와 같이 각 NoMA Layer 수에 따라, UE Specific 형태로 사용할 Codebook Index가 수식으로 정의되어 있을 수 있다. 하기 예시에서는 NoMA Layer의 최대 개수와 Codebook Index의 최대 개수가 6인 경우를 예시한다. 여기서 Codebook Index는 0, …, 5까지로 표현된다.
- If # of NoMA Layer = 1 by MCS Indices, Codebook Index = mod(UE-ID, 6)
- If # of NoMA Layer = 2 by MCS Indices, Codebook Indices = mod(UE-ID, 3), mod(UE-ID, 3)+3
- If # of NoMA Layer = 3 by MCS Indices, Codebook Indices = mod(UE-ID, 2), mod(UE-ID, 2)+2, , mod(UE-ID, 2)+4
- If # of NoMA Layer = 4 by MCS Indices,
: If mod(UE-ID, 3) = 1, Codebook Indices = 0,1,2,3
: If mod(UE-ID, 3) = 2, Codebook Indices = 2,3,4,5
: If mod(UE-ID, 3) = 3, Codebook Indices = 0,1,4,5
- If # of NoMA Layer = 5 by MCS Indices, Codebook Indices = Codebook Index Set - {mod(UE-ID, 6)}
- If # of NoMA Layer = 6 by MCS Indices, Codebook Indices = Codebook Index Set
예를 들어, MCS Index를 통해 NoMA Layer의 개수가 3이라는 걸 알게 된다면, 단말은 총 3개의 Codebook Index(즉, UE-ID에 2를 모듈로(modulo) 연산한 값, UE-ID에 2를 모듈로(modulo) 연산한 값에 2를 더한 값, UE-ID에 2를 모듈로(modulo) 연산한 값에 4를 더한 값)가 자신이 사용할 다중 레이어의 코드북 인덱스라는 것을 알 수 있다.
상기 모든 발명에서, Modulation order Qm에 해당하는 내용에 대해서 설명하였으나, Qm'에 해당하는 내용 또한 동일한 계산 방법으로 계산하고 정의될 수 있음은 자명하다. 상기 모든 실시예에서, 상기 표 3을 기준으로 설명하였으나, 상기 표 4, 표 5 등 MCS 테이블을 정의하는 모든 방식에 동일하게 적용 가능함은 자명하다. 상기 모든 발명에서, Modulation order 2에 해당하는 내용을 기준으로 설명하였으나, Modulation order 2보다 큰 경우에도 동일하게 적용 가능함은 자명하다.
상기 모든 발명에서, NoMA Codebook Set이 6개의 Codebook으로 이루어진 NoMA 시스템을 기반으로 설명하였으나, NoMA Codebook의 개수가 다르거나, Spreading의 수가 다르거나, 지원하는 Modulation order가 다른 경우에 적용될 수 있음은 자명하다.
본 발명에서는 셀룰러 시스템의 하향링크/상향링크를 기반으로 설명하였으나, Machine Type Communication (MTC), Device-to-Device (D2D), Vehicle-to-Everything (V2X) 등 다중 사용자 접속 방식을 사용하는 모든 시스템에 적용이 가능함은 자명하다.
도 14는 본 실시예에 따른 비직교 다중 접속 기법을 적용하여 상향링크 데이터를 전송하는 절차를 나타낸 절차 흐름도이다.
즉, 본 실시예는 다중 레이어(multi-layer)를 지원하는 단말이 비직교 다중 접속 기법(Non-orthogonal MultipleAccess; NoMA)을 사용하여 통신을 수행하는 무선 통신 시스템 환경을 가정한다. 즉, 동일 시간 주파수 자원에 다중 사용자를 위한 신호를 중첩 전송하는 방식으로 NoMA 기반의 다중 레이어 전송 방식을 제안한다.
먼저 용어를 정리하면, 레이어는 시간 및 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로에 대응할 수 있다. 따라서, 레이어를 스트림(stream)과 같은 의미로도 사용될 수 있다. 단일 UE가 다수의 레이어를 지원한다면, 각 레이어는 프리코딩 모듈에 의해 채널 상태에 따라 소정의 프리코딩 행렬과 곱해져 각 전송 안테나에 할당될 수 있다. 따라서, 레이어는 안테나 레이어의 의미도 가질 수 있다. 본 실시예에서는, 단일 UE가 다중 레이어를 통해 신호를 송수신하는 경우를 가정한다.
단계 S1410에서, 단말은 기지국으로부터 NoMA MCS(Modulation and Coding Scheme) 인덱스 및 코드북 인덱스를 수신한다. 상기 NoMA MCS 인덱스 및 상기 코드북 인덱스는 상향링크 그랜트(UL grant)를 통해 단말에게 시그널링될 수 있다. 이때, 코드북 인덱스를 포함하는 비직교 코드북 또는 비직교 코드북 집합은 단말과 기지국 간에 사전에 정의될 수 있다.
상기 NoMA MCS 인덱스는 상향링크 채널의 품질을 기반으로 NoMA MCS 테이블에서 선택된다. 단말은 스케줄링 요청 신호를 기지국으로 전송할 수 있다. 이때, 상기 상향링크 채널의 품질은 상기 스케줄링 요청 신호를 기반으로 추정될 수 있다.
상기 NoMA MCS 테이블은 상기 NoMA MCS 인덱스, 상기 다중 레이어의 개수 및 변조 차수를 포함하는 테이블로 사전에 정의된다. 즉, 다중 레이어가 지원되는 NoMA MCS가 상기 다중 레이어의 개수에 의해 테이블로 정의될 수 있다. 상기 다중 레이어의 개수는 상기 NoMA MCS 인덱스에 따라 결정된다. 상기 코드북 인덱스는 상기 다중 레이어의 개수에 따라, 상기 변조 차수에 대응하는 코드북 집합에서 선택된다.
다차원 변조(Multi-dimensional Modulation (MM) based NoMA) 방식의 NoMA 기술은 변조 차수에 따라 상이한 코드북 집합을 가질 수 있으므로, 변조 차수마다 NoMA MCS 테이블이 다르게 정의될 수 있다. 또한, 다양한 변조 차수에 대한 NoMA MCS를 하나의 NoMA MCS 테이블로 정의할 수도 있다. 다만, 본 실시예에서는, 상기 변조 차수가 2에 해당하는 스펙트럼 효율(Spectral Efficiency)을 달성할 수 있는 NoMA MCS 테이블을 고려해야 하므로, 상기 표 13과 같이 NoMA MCS 테이블을 정의할 수 있다.
또한, 상기 NoMA MCS 테이블은 상기 NoMA MCS 인덱스에 대응하는 코드 레이트와 TBS(Transport Block Size) 인덱스를 더 포함할 수 있다. 즉, 상기 NoMA MCS 인덱스는 상기 다중 레이어의 개수, 상기 변조 차수, 상기 코드 레이트 및 상기 TBS 인덱스와 함께 정의될 수 있다. 상기 TBS 인덱스는 상기 다중 레이어에 대한 TBS를 지시할 수 있다. 상기 다중 레이어에 대한 TBS는 단일 레이어에 대한 TBS에 상기 다중 레이어의 개수를 곱한 값일 수 있다. 이에 따라, 상기 다중 레이어에 대한 TBS의 스펙트럼 효율도 상기 단일 레이어에 대한 TBS의 스펙트럼 효율에 상기 다중 레이어의 개수를 곱한 값일 수 있다.
단계 S1420에서, 단말은 상기 NoMA MCS 인덱스 및/또는 상기 코드북 인덱스를 기반으로 구성된 상기 상향링크 데이터를 상기 다중 레이어를 통해 전송한다. 상기 상향링크 데이터는, 상기 코드북 인덱스에 대응하는 코드북을 기반으로 상기 다중 레이어 각각에 대해 확산되고, 동일 시간 주파수 자원에서 다른 단말과 중첩 전송될 수 있다. 상기 상향링크 데이터는 xPUSCH를 통해 기지국으로 전송될 수 있다.
또한, 상기 NoMA MCS 인덱스는 상기 변조 차수에 대응하는 상기 코드북 집합의 인덱스와 결속(tie)될 수 있다. 상기 코드북 집합은 상기 단말에 의해 상기 NoMA MCS 인덱스로부터 검출될 수 있다. 따라서, 기지국은 상기 코드북 집합의 인덱스를 별도로 단말에게 시그널링할 필요가 없다.
다음은 NoMA MCS 기반의 코드북 인덱스를 할당하는 방법을 제안한다.
일례로, 상기 코드북 인덱스는 상기 단말을 포함한 복수의 단말 각각에 대해 할당 패턴으로 사전에 정의될 수 있다. 상기 할당 패턴은 상기 다중 레이어의 최대 개수와 상기 코드북 인덱스의 최대 개수를 고려하여, 각 단말에 상기 다중 레이어의 개수만큼 상기 코드북 인덱스를 할당하는 패턴일 수 있다.
예를 들어, NoMA MCS 인덱스가 3인 경우, 각 단말이 지원할 수 있는 다중 레이어의 개수는 4개이고, 각 단말이 다중 레이어 4개를 사용하여 코드북 인덱스가 최대한 덜 겹치게 할당하는 패턴으로 정의될 수 있다. 즉, 각 단말에 대해 레이어 별로 최대한 코드북 인덱스가 덜 겹치게 할당하여 패턴을 정의할 수 있다.
다른 실시예로, 상기 코드북 인덱스는 상기 다중 레이어의 최대 개수와 상기 코드북 인덱스의 최대 개수를 고려하여, 상기 단말의 ID(Identification)를 이용한 모듈로(modulo) 연산을 통해 정의될 수 있다.
예를 들어, 단말이 상기 NoMA MCS 인덱스를 통해 상기 다중 레이어의 개수가 3이라는 걸 알게 된다면, 단말은 단말의 ID를 이용하여 총 3개의 코드북 인덱스가 자신이 사용할 다중 레이어의 코드북 인덱스라는 것을 알 수 있다. 3개의 코드북 인덱스는, 예를 들어, UE-ID에 2를 모듈로(modulo) 연산한 값, UE-ID에 2를 모듈로(modulo) 연산한 값에 2를 더한 값, UE-ID에 2를 모듈로(modulo) 연산한 값에 4를 더한 값으로 구할 수 있다.
도 15는 본 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 15를 참조하면, 무선 장치는 상술한 실시예를 구현할 수 있는 STA로서, AP 또는 non-AP STA로 동작할 수 있다. 또한, 상기 무선 장치는 상술한 사용자(user)에 대응되거나, 상기 사용자에 신호를 송신하는 송신 장치에 대응될 수 있다.
도 15의 무선장치는, 도시된 바와 같이 프로세서(1510), 메모리(1520) 및 트랜시버(1530)를 포함한다. 도시된 프로세서(1510), 메모리(1520) 및 트랜시버(1530)는 각각 별도의 칩으로 구현되거나, 적어도 둘 이상의 블록/기능이 하나의 칩을 통해 구현될 수 있다.
상기 트랜시버(transceiver, 1530)는 송신기(transmitter) 및 수신기(receiver)를 포함하는 장치이며, 특정한 동작이 수행되는 경우 송신기 및 수신기 중 어느 하나의 동작만이 수행되거나, 송신기 및 수신기 동작이 모두 수행될 수 있다. 상기 트랜시버(1530)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 또한, 상기 트랜시버(1530)는 수신 신호 및/또는 송신 신호의 증폭을 위한 증폭기와 특정한 주파수 대역 상으로의 송신을 위한 밴드패스필터를 포함할 수 있다.
상기 프로세서(1510)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(1510)는 전술한 본 실시예에 따른 동작을 수행할 수 있다. 즉, 프로세서(1510)는 도 1 내지 14의 실시예에서 개시된 동작을 수행할 수 있다.
프로세서(1510)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(1520)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다.
도 16은 프로세서에 포함되는 장치의 일례를 나타내는 블록도이다. 설명의 편의를 위해, 도 16의 일례는 송신 신호를 위한 블록을 기준으로 설명되어 있으나, 해당 블록을 이용하여 수신 신호를 처리할 수 있다는 점은 자명하다.
도시된 데이터 처리부(1610)는 송신 신호에 대응되는 송신 데이터(제어 데이터 및/또는 사용자 데이터)를 생성한다. 데이터 처리부(1610)의 출력은 인코더(1620)로 입력될 수 있다. 상기 인코더(1620)는 BCC(binary convolutional code)나 LDPC(low-density parity-check) 기법 등을 통해 코딩을 수행할 수 있다. 상기 인코더(1620)는 적어도 1개 포함될 수 있고, 인코더(1620)의 개수는 다양한 정보(예를 들어, 데이터 스트림의 개수)에 따라 정해질 수 있다.
상기 인코더(1620)의 출력은 인터리버(1630)로 입력될 수 있다. 인터리버(1630)는 페이딩 등에 의한 연집 에러(burst error)를 방지하기 위해 연속된 비트 신호를 무선 자원(예를 들어, 시간 및/또는 주파수) 상에서 분산시키는 동작을 수행한다. 상기 인터리버(1630)는 적어도 1개 포함될 수 있고, 인터리버(1630)의 개수는 다양한 정보(예를 들어, 공간 스트림의 개수)에 따라 정해질 수 있다.
상기 인터리버(1630)의 출력은 성상 맵퍼(constellation mapper, 1640)로 입력될 수 있다. 상기 성상 맵퍼(1640)는 BPSK(biphase shift keying), QPSK(QuadraturePhase Shift Keying), n-QAM(quadratureamplitude modulation) 등의 성상 맵핑을 수행한다.
상기 성상 맵퍼(1640)의 출력은 공간 스트림 인코더(1650)로 입력될 수 있다. 상기 공간 스트림 인코더(1650)는 송신 신호를 적어도 하나의 공간 스티림을 통해 송신하기 위해 데이터 처리를 수행한다. 예를 들어, 상기 공간 스트림 인코더(1650)는 송신 신호에 대한 STBC(space-time block coding), CSD(Cyclic shift diversity) 삽입, 공간 매핑(spatial mapping) 중 적어도 하나를 수행할 수 있다.
상기 공간 스트림 인코더(1650)의 출력은 IDFT(1660) 블록에 입력될 수 있다. 상기 IDFT(1660) 블록은 IDFT(inverse discrete Fourier transform) 또는 IFFT(inverse Fast Fourier transform)을 수행한다.
상기 IDFT(1660) 블록의 출력은 GI(Guard Interval) 삽입기(1670)에 입력되고, 상기 GI 삽입기(1670)의 출력은 도 15의 트랜시버(1530)에 입력된다.
Claims (14)
- 비직교 다중 접속(Non-orthogonal MultipleAccess; NoMA) 기법이 적용되는 무선통신시스템에서 상향링크 데이터를 전송하는 방법에 있어서,다중 레이어(multi-layer)를 지원하는 단말이, 기지국으로부터 NoMA MCS(Modulation and Coding Scheme) 인덱스를 수신하되,상기 NoMA MCS 인덱스는 상향링크 채널의 품질을 기반으로 NoMA MCS 테이블에서 선택되고,상기 NoMA MCS 테이블은 상기 NoMA MCS 인덱스, 상기 다중 레이어의 개수 및 변조 차수를 포함하는 테이블로 사전에 정의되고,상기 다중 레이어의 개수는 상기 NoMA MCS 인덱스에 따라 결정되는, 단계; 및상기 단말이, 상기 NoMA MCS 인덱스를 기반으로 구성된 상기 상향링크 데이터를 상기 다중 레이어를 통해 전송하는 단계를 포함하는방법.
- 제1항에 있어서,상기 단말이, 상기 기지국으로부터 코드북 인덱스를 수신하는 단계를 더 포함하되,상기 코드북 인덱스는 상기 다중 레이어의 개수에 따라, 상기 변조 차수에 대응하는 코드북 집합에서 선택되고,상기 NoMA MCS 인덱스 및 상기 코드북 인덱스는 상향링크 그랜트(UL grant)를 통해 시그널링되는방법.
- 제2항에 있어서,상기 상향링크 데이터는, 상기 코드북 인덱스에 대응하는 코드북을 기반으로 상기 다중 레이어 각각에 대해 확산되고, 동일 시간 주파수 자원에서 다른 단말과 중첩 전송되는방법.
- 제1항에 있어서,상기 단말이, 스케줄링 요청 신호를 상기 기지국으로 전송하는 단계를 더 포함하되,상기 상향링크 채널의 품질은 상기 스케줄링 요청 신호를 기반으로 추정되는방법.
- 제1항에 있어서,상기 NoMA MCS 테이블은 상기 NoMA MCS 인덱스에 대응하는 코드 레이트와 TBS(Transport Block Size) 인덱스를 더 포함하고,상기 TBS 인덱스는 상기 다중 레이어에 대한 TBS를 지시하고,상기 다중 레이어에 대한 TBS는 단일 레이어에 대한 TBS에 상기 다중 레이어의 개수를 곱한 값인방법.
- 제2항에 있어서,상기 NoMA MCS 인덱스는 상기 변조 차수에 대응하는 상기 코드북 집합의 인덱스와 결속(tie)되고,상기 코드북 집합은 상기 단말에 의해 상기 NoMA MCS 인덱스로부터 검출되는방법.
- 제2항에 있어서,상기 코드북 인덱스는 상기 단말을 포함한 복수의 단말 각각에 대해 할당 패턴으로 사전에 정의되고,상기 할당 패턴은 상기 다중 레이어의 최대 개수와 상기 코드북 인덱스의 최대 개수를 고려하여, 각 단말에 상기 다중 레이어의 개수만큼 상기 코드북 인덱스를 할당하는 패턴인방법.
- 제2항에 있어서,상기 코드북 인덱스는 상기 다중 레이어의 최대 개수와 상기 코드북 인덱스의 최대 개수를 고려하여, 상기 단말의 ID(Identification)를 이용한 모듈로(modulo) 연산을 통해 정의되는방법.
- 비직교 다중 접속(Non-orthogonal MultipleAccess; NoMA) 기법이 적용되는 무선통신시스템에서 상향링크 데이터를 전송하고 다중 레이어(multi-layer)를 지원하는 단말에 있어서,무선신호를 전송 및 수신하는 트랜시버(transceiver); 및상기 트랜시버에 연결되는 프로세서를 포함하되, 상기 프로세서는기지국으로부터 NoMA MCS(Modulation and Coding Scheme) 인덱스를 수신하되,상기 NoMA MCS 인덱스는 상향링크 채널의 품질을 기반으로 NoMA MCS 테이블에서 선택되고,상기 NoMA MCS 테이블은 상기 NoMA MCS 인덱스, 상기 다중 레이어의 개수 및 변조 차수를 포함하는 테이블로 사전에 정의되고,상기 다중 레이어의 개수는 상기 NoMA MCS 인덱스에 따라 결정되고; 및상기 NoMA MCS 인덱스를 기반으로 구성된 상기 상향링크 데이터를 상기 다중 레이어를 통해 전송하는단말.
- 제9항에 있어서,상기 프로세서가, 상기 기지국으로부터 코드북 인덱스를 수신하되,상기 코드북 인덱스는 상기 다중 레이어의 개수에 따라, 상기 변조 차수에 대응하는 코드북 집합에서 선택되고,상기 NoMA MCS 인덱스 및 상기 코드북 인덱스는 상향링크 그랜트(UL grant)를 통해 시그널링되는단말.
- 제10항에 있어서,상기 상향링크 데이터는, 상기 코드북 인덱스에 대응하는 코드북을 기반으로 상기 다중 레이어 각각에 대해 확산되고, 동일 시간 주파수 자원에서 다른 단말과 중첩 전송되는단말.
- 제9항에 있어서,상기 프로세서가, 스케줄링 요청 신호를 상기 기지국으로 전송하되,상기 상향링크 채널의 품질은 상기 스케줄링 요청 신호를 기반으로 추정되는단말.
- 제9항에 있어서,상기 NoMA MCS 테이블은 상기 NoMA MCS 인덱스에 대응하는 코드 레이트와 TBS(Transport Block Size) 인덱스를 더 포함하고,상기 TBS 인덱스는 상기 다중 레이어에 대한 TBS를 지시하고,상기 다중 레이어에 대한 TBS는 단일 레이어에 대한 TBS에 상기 다중 레이어의 개수를 곱한 값인단말.
- 제10항에 있어서,상기 NoMA MCS 인덱스는 상기 변조 차수에 대응하는 상기 코드북 집합의 인덱스와 결속(tie)되고,상기 코드북 집합은 상기 단말에 의해 상기 NoMA MCS 인덱스로부터 검출되는단말.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/499,716 US10951351B2 (en) | 2017-03-30 | 2018-03-22 | Method and device for performing communication using orthogonal or non-orthogonal code multiple access scheme in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762478615P | 2017-03-30 | 2017-03-30 | |
US62/478,615 | 2017-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018182233A1 true WO2018182233A1 (ko) | 2018-10-04 |
Family
ID=63676380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/003359 WO2018182233A1 (ko) | 2017-03-30 | 2018-03-22 | 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10951351B2 (ko) |
WO (1) | WO2018182233A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111082894A (zh) * | 2019-10-24 | 2020-04-28 | 新疆大学 | 用于mimo-scma系统的低复杂度高译码性能的方法 |
WO2020259583A1 (zh) * | 2019-06-28 | 2020-12-30 | 华为技术有限公司 | 一种参考信号传输方法及通信装置 |
KR20210111824A (ko) * | 2019-01-18 | 2021-09-13 | 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 | 비직교 다중 접속(noma) 다중 레이어 전송 방법 및 그 장치 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018038410A1 (ko) * | 2016-08-22 | 2018-03-01 | 엘지전자 주식회사 | 비직교 다중 접속 방식에 기초하여 데이터를 전송/검출하는 방법 및 이를 위한 장치 |
US11101910B2 (en) * | 2018-01-12 | 2021-08-24 | Qualcomm Incorporated | Sequence based short code design for resource spread multiple access (RSMA) |
US11722241B2 (en) * | 2018-04-12 | 2023-08-08 | Qualcomm Incorporated | Transport block size determination for a transmission time interval |
CN112005516B (zh) * | 2018-06-29 | 2023-07-18 | 谷歌有限责任公司 | 作为多址接入无线通信的部分的传输块通信 |
US11212044B2 (en) * | 2018-10-23 | 2021-12-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Delay and complexify constrained transmission in uplink non-orthogonal multiple access (NOMA) hybrid automatic repeat request (HARQ) |
KR102443456B1 (ko) * | 2020-02-06 | 2022-09-16 | 삼성전자 주식회사 | 비 직교 다중 접속 시스템에서의 합 주파수 효율 최대화를 위한 유저 스케줄링 및 코드북 할당 방법 |
US11888674B2 (en) * | 2020-02-14 | 2024-01-30 | Qualcomm Incorporated | 16-quadrature amplitude modulation (16-QAM) downlink configuration |
CN111405527B (zh) * | 2020-03-17 | 2021-08-10 | 中南大学 | 一种基于志愿者协同处理的车载边缘计算方法、装置及系统 |
WO2022188153A1 (en) * | 2021-03-12 | 2022-09-15 | Mediatek Singapore Pte. Ltd. | Methods and apparatus of concurrent transmission of multicast broadcast service |
WO2022204857A1 (en) * | 2021-03-29 | 2022-10-06 | Mediatek Singapore Pte. Ltd. | Methods and apparatus of multicast broadcast service simultaneous transmission using dl noma |
TWI809772B (zh) * | 2021-03-29 | 2023-07-21 | 新加坡商聯發科技(新加坡)私人有限公司 | 多播廣播服務同時傳輸方法和使用者設備 |
CN115549852A (zh) * | 2021-06-30 | 2022-12-30 | 中兴通讯股份有限公司 | 码字传输方法、基站、终端和存储介质 |
CN115865262A (zh) * | 2021-09-24 | 2023-03-28 | 华为技术有限公司 | 一种通信方法及装置 |
US20230291630A1 (en) * | 2022-03-08 | 2023-09-14 | Qualcomm Incorporated | Low peak-to-average power ratio waveform generation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160150544A1 (en) * | 2014-11-21 | 2016-05-26 | Futurewei Technologies, Inc. | System and Method for Link Adaptation |
US20160262167A1 (en) * | 2015-03-04 | 2016-09-08 | NTI DoCoMo, Inc. | Method, User Equipment and Base Station For Adjusting Modulation and Coding Scheme |
WO2016153555A1 (en) * | 2015-03-26 | 2016-09-29 | Intel IP Corporation | Device, system and method of quasi-orthogonal multiple access |
WO2016165095A1 (zh) * | 2015-04-16 | 2016-10-20 | 富士通株式会社 | 信息传输方法、装置以及通信系统 |
WO2017026700A1 (ko) * | 2015-08-07 | 2017-02-16 | 엘지전자 주식회사 | 비직교 다중 접속 방식에 기초하여 신호를 송수신하기 위한 방법 및 이를 위한 장치 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10700824B2 (en) * | 2016-08-12 | 2020-06-30 | Lenovo Innovations Limited (Hong Kong) | Non-orthogonal communication |
US10749584B2 (en) * | 2016-12-22 | 2020-08-18 | Samsung Electronics Co., Ltd. | Uplink MIMO codebook for advanced wireless communication systems |
-
2018
- 2018-03-22 US US16/499,716 patent/US10951351B2/en active Active
- 2018-03-22 WO PCT/KR2018/003359 patent/WO2018182233A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160150544A1 (en) * | 2014-11-21 | 2016-05-26 | Futurewei Technologies, Inc. | System and Method for Link Adaptation |
US20160262167A1 (en) * | 2015-03-04 | 2016-09-08 | NTI DoCoMo, Inc. | Method, User Equipment and Base Station For Adjusting Modulation and Coding Scheme |
WO2016153555A1 (en) * | 2015-03-26 | 2016-09-29 | Intel IP Corporation | Device, system and method of quasi-orthogonal multiple access |
WO2016165095A1 (zh) * | 2015-04-16 | 2016-10-20 | 富士通株式会社 | 信息传输方法、装置以及通信系统 |
WO2017026700A1 (ko) * | 2015-08-07 | 2017-02-16 | 엘지전자 주식회사 | 비직교 다중 접속 방식에 기초하여 신호를 송수신하기 위한 방법 및 이를 위한 장치 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210111824A (ko) * | 2019-01-18 | 2021-09-13 | 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 | 비직교 다중 접속(noma) 다중 레이어 전송 방법 및 그 장치 |
KR102564339B1 (ko) | 2019-01-18 | 2023-08-04 | 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 | 비직교 다중 접속(noma) 다중 레이어 전송 방법 및 그 장치 |
WO2020259583A1 (zh) * | 2019-06-28 | 2020-12-30 | 华为技术有限公司 | 一种参考信号传输方法及通信装置 |
CN111082894A (zh) * | 2019-10-24 | 2020-04-28 | 新疆大学 | 用于mimo-scma系统的低复杂度高译码性能的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200028611A1 (en) | 2020-01-23 |
US10951351B2 (en) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018182233A1 (ko) | 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 | |
WO2017204470A1 (ko) | 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치 | |
AU2017349476B2 (en) | Transmission of UL control channels with dynamic structures | |
WO2018038410A1 (ko) | 비직교 다중 접속 방식에 기초하여 데이터를 전송/검출하는 방법 및 이를 위한 장치 | |
WO2018212543A1 (ko) | 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치 | |
WO2020013559A1 (en) | Overhead reduction and reliability enhancements for dl control signaling | |
WO2017204471A1 (ko) | 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치 | |
WO2018128501A1 (ko) | 무선 통신 시스템에서 단말의 상향링크 제어 채널 전송 방법 및 상기 방법을 이용하는 통신 장치 | |
WO2019098700A1 (ko) | 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말 | |
WO2017217805A1 (en) | Transmission of reference signals in a communication system | |
WO2018030685A1 (ko) | 무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 | |
WO2018062942A1 (en) | Method for receiving control information for reference signal related to phase noise estimation and user equipment therefor | |
WO2018164452A1 (ko) | 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치 | |
WO2016108658A1 (ko) | 무선 통신 시스템에서 ack/nack 전송 방법 및 이를 이용한 장치 | |
WO2018097545A1 (ko) | 셀룰라 통신 시스템에서 상향링크 전송 방법 및 장치 | |
WO2018174473A1 (ko) | 무선 통신 시스템에서 상향링크 전송 블록을 전송하는 방법 및 장치 | |
WO2013172674A1 (ko) | 채널 상태 정보 보고 방법 및 장치 | |
WO2017217630A1 (en) | Method and apparatus for allocating resources to fdr-mode ue in a wireless communication system | |
WO2015167182A1 (en) | Method and apparatus for reporting channel state information | |
WO2014069945A1 (ko) | 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 장치 | |
WO2018128200A1 (ko) | Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치 | |
WO2021034058A1 (en) | Apparatus and method for managing soft buffer in wireless communication system | |
EP3861823A1 (en) | Method and apparatus for subband based channel access in wireless communication system | |
WO2018074688A1 (ko) | 경쟁 기반 비직교 다중 접속 방식에 기초하여 신호를 전송하는 방법 및 장치 | |
WO2017183845A1 (ko) | Ncma에 기반한 상향링크 통신 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18777213 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18777213 Country of ref document: EP Kind code of ref document: A1 |