WO2020259583A1 - 一种参考信号传输方法及通信装置 - Google Patents

一种参考信号传输方法及通信装置 Download PDF

Info

Publication number
WO2020259583A1
WO2020259583A1 PCT/CN2020/098103 CN2020098103W WO2020259583A1 WO 2020259583 A1 WO2020259583 A1 WO 2020259583A1 CN 2020098103 W CN2020098103 W CN 2020098103W WO 2020259583 A1 WO2020259583 A1 WO 2020259583A1
Authority
WO
WIPO (PCT)
Prior art keywords
data signal
reference signal
signal
modulation
information
Prior art date
Application number
PCT/CN2020/098103
Other languages
English (en)
French (fr)
Inventor
杨洪建
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020259583A1 publication Critical patent/WO2020259583A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • This application relates to the field of communication technology, and in particular to a reference signal transmission method and communication device.
  • the wireless communication system is mainly divided into three data transmission modes: unicast, broadcast and multicast (multicast).
  • a data signal can be received by multiple terminals.
  • Emerging services such as online video conferencing and mobile terminal video-on-demand use broadcast or multicast transmission.
  • Reference signal is a signal provided by the transmitter to the receiver for channel estimation or channel detection.
  • the channel is prone to rapid changes, and the RS with greater time domain density is better Perform channel estimation; for a fixed terminal, the channel changes slowly, and the channel can be estimated without an RS with too large time domain density.
  • the time domain density of the RS used by the mobile terminal and the fixed terminal is the same.
  • the greater the time domain density of the RS the better the channel estimation.
  • the greater the time domain density of the RS the fewer resource elements (RE) used to transmit data, which will result in a lower data transmission rate of the wireless communication system.
  • the embodiments of the present application provide a reference signal transmission method and a communication device, which are beneficial to increase the data transmission rate of a wireless communication system.
  • the embodiments of the present application provide a reference signal transmission method, which can be applied to a broadcast or multicast communication system.
  • the method includes: a network device determines that a multi-user superimposed transmission MUST function is turned on; A reference signal and a second reference signal, where the first reference signal and the second reference signal have different resource densities; the first reference signal is used to demodulate the first data signal, and the second reference signal is used to demodulate the second data signal .
  • the same RS time domain density is used for mobile terminals and fixed terminals, and the resource density of the first reference signal is greater than that of the second reference signal.
  • the number of REs used to carry the second reference signal can be reduced, that is, the overhead of one of the reference signals can be reduced, thereby helping to increase the data transmission rate of the wireless communication system.
  • different resource densities may include one or more of different time domain densities, different frequency domain densities, or different spatial densities.
  • the time domain density of the second reference signal is less than the time domain density of the first reference signal, and the time domain position occupied by the second reference signal may be the first reference signal.
  • the time domain position occupied by the second reference signal is not a proper subset of the time domain position occupied by the first reference signal. This will increase the number of REs carrying the reference signal and the data signal at the same time, which will cause the reference signal to interfere with the demodulation of the data signal, thereby reducing the success rate of the data signal demodulation.
  • the time domain position occupied by the second reference signal is a proper subset of the time domain position occupied by the first reference signal, and the reference signal can be minimized
  • the interference caused by the demodulation of the data signal is beneficial to improve the success rate of the demodulation of the data signal.
  • the frequency domain density of the second reference signal is smaller than the frequency domain density of the first reference signal, and the frequency domain position occupied by the second reference signal may be the first reference signal.
  • the interference caused by the reference signal to the demodulation of the data signal can be reduced as much as possible, thereby helping to improve the success rate of demodulating the data signal.
  • the spatial density of the second reference signal is less than the spatial density of the first reference signal, and the spatial position occupied by the second reference signal may be occupied by the first reference signal.
  • the interference caused by the reference signal to the demodulation of the data signal can be reduced as much as possible, thereby helping to improve the success rate of demodulating the data signal.
  • the method may further include: the network device broadcasting a first message, the first message may include status indication information, and the status indication information may be used to indicate that the MUST function is in an on state.
  • the network device can inform the MUST function status of all terminal devices in the broadcast or multicast communication system.
  • the method may further include: a network device broadcasting a first message, the first message may include first power information, and the first power information may be used to indicate the difference between the first data signal and the second data signal. Power allocation information; the power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the method may further include: a network device broadcasting a first message, the first message may include second power information, and the second power information may be used to determine the difference between the first data signal and the second data signal. Power allocation information; the power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the power allocation information may also be used to determine that the MUST function is in the on state.
  • the first data signal is determined according to the first power information (or the second power information) in the first message The power allocation information between the second data signal and the second data signal. Further, it can be determined that the MUST function is turned on according to the power allocation information. In this way, the amount of data in the first message can be reduced, which is beneficial to improve the transmission of the first message. Efficiency, which helps to improve the data transmission rate of the wireless communication system.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may also include first modulation information, and the first modulation information may be used to indicate the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may be The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the first message may also include second modulation information, and the second modulation information may be used to determine the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second
  • the embodiments of the present application provide another reference signal transmission method, which can be applied to a broadcast or multicast communication system.
  • the method includes: the terminal device determines that the multi-user superimposed transmission MUST function of the network device is in an on state; The terminal device receives the first reference signal and the second reference signal from the network device, where the resource density of the first reference signal and the second reference signal are different; the terminal device demodulates the first data signal according to the first reference signal to obtain The demodulated first data signal and/or demodulate the second data signal according to the second reference signal to obtain the demodulated second data signal.
  • the same RS time domain density is used for mobile terminals and fixed terminals, and the resource density of the first reference signal is greater than that of the second reference signal.
  • the number of REs used to carry the second reference signal can be reduced, that is, the overhead of one of the reference signals can be reduced, thereby helping to increase the data transmission rate of the wireless communication system.
  • a specific implementation manner for the terminal device to determine that the multi-user superimposed transmission MUST function of the network device is turned on may be: the terminal device receives a first message from the network device, and the first message may include status indication information, The indication information can be used to indicate that the MUST function is on.
  • a specific implementation manner for the terminal device to determine that the multi-user superimposed transmission MUST function of the network device is turned on may be: the terminal device receives a first message from the network device, and the first message may include the first power information, The first power information may be used to indicate power allocation information between the first data signal and the second data signal; according to the power allocation information, it is determined that the MUST function of the network device is in an on state.
  • the first power information in the first message determines the relationship between the first data signal and the second data signal. Further, it can be determined according to the power allocation information that the MUST function is turned on. In this way, the amount of data in the first message can be reduced, which is beneficial to improve the efficiency of transmitting the first message, and thus is beneficial to improve wireless The data transmission rate of the communication system.
  • a specific implementation manner for the terminal device to determine that the multi-user superimposed transmission MUST function of the network device is turned on may be: the terminal device receives a first message from the network device, and the first message may include the second power information; The power allocation information between the first data signal and the second data signal is determined according to the second power information; the MUST function of the network device is determined to be in an on state according to the power allocation information.
  • the second power information in the first message determines the relationship between the first data signal and the second data signal. Further, it can be determined according to the power allocation information that the MUST function is turned on. In this way, the amount of data in the first message can be reduced, which is beneficial to improve the efficiency of transmitting the first message, and thus is beneficial to improve wireless The data transmission rate of the communication system.
  • the terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or demodulates the second data signal according to the second reference signal
  • a specific implementation manner for obtaining the demodulated second data signal may be: the terminal device demodulates the first data signal according to the first reference signal and power allocation information to obtain the demodulated first data signal, and/or , Demodulate the second data signal according to the second reference signal and the power allocation information to obtain the demodulated second data signal.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may further include first modulation information, and the first modulation information may be used to indicate the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or demodulates the second data signal according to the second reference signal
  • a specific implementation manner for obtaining the demodulated second data signal may be: the terminal device demodulates the first data signal according to the modulation mode of the first reference signal and the first data signal to obtain the demodulated first data signal , And/or, the second data signal is demodulated by the modulation mode of the second reference signal and the second data signal to obtain the second data signal after demodulation.
  • the terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or demodulates the second data signal according to the second reference signal
  • a specific implementation manner for obtaining the demodulated second data signal may be: the terminal device demodulates the first data signal according to the first reference signal, the modulation mode of the first data signal, and the modulation mode of the second data signal to obtain The demodulated first data signal and/or demodulate the second data signal according to the second reference signal, the modulation mode of the second data signal, and the modulation mode of the first data signal to obtain the demodulated second Data signal.
  • the terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal.
  • the specific implementation manner may be: the terminal device according to the first reference signal and the first data signal.
  • the modulation method of the signal and the modulation method of the second data signal demodulate the first data signal to obtain the demodulated first data signal; the terminal device demodulates the second data signal according to the second reference signal to obtain the demodulation
  • a specific implementation manner of the latter second data signal may be: the terminal device demodulates the second data signal according to the second reference signal and the modulation mode of the second data signal to obtain the demodulated second data signal.
  • the embodiments of the present application provide a communication device, which can be applied to a broadcast or multicast communication system.
  • the device can be a network device or a part of a network device.
  • the device may include a processing module and a communication module.
  • the processing module may be used to determine that the multi-user superimposed transmission MUST function is in an on state;
  • the communication module may be used to broadcast the first reference signal and the second reference signal; wherein the first reference signal and the second reference signal The resource densities of the two reference signals are different; the first reference signal is used to demodulate the first data signal, and the second reference signal is used to demodulate the second data signal.
  • different resource densities may include one or more of different time domain densities, different frequency domain densities, or different spatial densities.
  • the time domain density of the second reference signal is less than the time domain density of the first reference signal, and the time domain position occupied by the second reference signal is the first The subset of time-domain locations occupied by the reference signal.
  • the frequency domain density of the second reference signal is less than the frequency domain density of the first reference signal, and the frequency domain position occupied by the second reference signal is the first reference signal.
  • the subset of frequency domain locations occupied by the reference signal is the first reference signal.
  • the spatial density of the second reference signal is less than the spatial density of the first reference signal, and the spatial position occupied by the second reference signal is occupied by the first reference signal A subset of airspace locations.
  • the communication module may also be used to broadcast a first message, the first message may include status indication information, and the status indication information may be used to indicate that the MUST function is in an on state.
  • the communication module may also be used to broadcast a first message, the first message may include first power information, and the first power information may be used to indicate the power allocation between the first data signal and the second data signal Information; power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the communication module may also be used to broadcast a first message, the first message may include second power information, and the second power information may be used to determine the power allocation between the first data signal and the second data signal Information; the power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the power allocation information may also be used to determine that the MUST function is in the on state.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may also include first modulation information, and the first modulation information may be used to indicate the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may be The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the first message may also include second modulation information, and the second modulation information may be used to determine the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second
  • the embodiments of the present application provide another communication device, which can be applied to a broadcast or multicast communication system.
  • the device can be a terminal device or a part of a terminal device.
  • the device may include a processing module and a communication module.
  • the processing module may be used to determine that the multi-user superimposed transmission MUST function of the network device is in the on state;
  • the communication module may be used to receive the first reference signal and the second reference signal from the network device, wherein , The first reference signal and the second reference signal have different resource densities;
  • the processing module is further configured to demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or, according to the first reference signal
  • the two reference signals demodulate the second data signal to obtain the demodulated second data signal.
  • the processing module is used to determine when the multi-user superimposed transmission MUST function of the network device is in the on state, and is specifically used to receive a first message from the network device.
  • the first message may include status indication information and status indication information. Can be used to indicate that the MUST function is on.
  • the processing module is used to determine that when the multi-user superimposed transmission MUST function of the network device is in the on state, it is specifically used to receive a first message from the network device.
  • the first message may include the first power information.
  • the power information may be used to indicate the power allocation information between the first data signal and the second data signal; according to the power allocation information, it is determined that the MUST function of the network device is in an on state.
  • the processing module is used to determine when the multi-user superimposed transmission MUST function of the network device is in the on state, and is specifically used to receive a first message from the network device.
  • the first message may include the second power information; Second, the power information determines the power allocation information between the first data signal and the second data signal; and determines that the MUST function of the network device is in an on state according to the power allocation information.
  • the processing module is configured to demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or perform the second data signal according to the second reference signal
  • the demodulated second data signal is obtained by demodulation, it is specifically used to demodulate the first data signal according to the first reference signal and power allocation information to obtain the demodulated first data signal, and/or according to The second reference signal and the power allocation information demodulate the second data signal to obtain the demodulated second data signal.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may further include first modulation information, and the first modulation information may be used to indicate the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the first message may further include second modulation information; the processing module may also be used to determine the modulation mode of the first data signal and the modulation mode of the second data signal according to the second modulation information.
  • the processing module is configured to demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or perform the second data signal according to the second reference signal
  • the demodulated second data signal is obtained by demodulation, it is specifically used to demodulate the first data signal according to the modulation mode of the first reference signal and the first data signal to obtain the demodulated first data signal, and /Or, the second data signal is demodulated by the modulation mode of the second reference signal and the second data signal to obtain the second data signal after demodulation.
  • the processing module is configured to demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or perform the second data signal according to the second reference signal
  • the demodulated second data signal is obtained by demodulation, it is specifically used to demodulate the first data signal according to the first reference signal, the modulation method of the first data signal, and the modulation method of the second data signal to obtain demodulation After the first data signal, and/or demodulate the second data signal according to the second reference signal, the modulation method of the second data signal, and the modulation method of the first data signal to obtain a demodulated second data signal .
  • the processing module is used to demodulate the first data signal according to the first reference signal, and when the demodulated first data signal is obtained, it is specifically used to determine the data signal according to the first reference signal and the first data signal.
  • the modulation method and the modulation method of the second data signal demodulate the first data signal to obtain the demodulated first data signal; the processing module is used to demodulate the second data signal according to the second reference signal to obtain the demodulation
  • the latter second data signal is specifically used to demodulate the second data signal according to the second reference signal and the modulation mode of the second data signal to obtain the demodulated second data signal.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer program instructions used by the communication device described in the third aspect, which includes instructions for executing the program involved in the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer program instructions used by the communication device according to the fourth aspect, which includes the program for executing the program involved in the second aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a network device or a part of the network device.
  • the communication device includes a memory and a processor.
  • the memory stores program instructions.
  • the processor calls the program instructions stored in the memory to perform the following operations: determine that the multi-user superimposed transmission MUST function is on; broadcast the first reference signal and the second reference The first reference signal and the second reference signal have different resource densities; the first reference signal is used to demodulate the first data signal, and the second reference signal is used to demodulate the second data signal.
  • different resource densities may include one or more of different time domain densities, different frequency domain densities, or different spatial densities.
  • the time domain density of the second reference signal is less than the time domain density of the first reference signal, and the time domain position occupied by the second reference signal is the first The subset of time-domain locations occupied by the reference signal.
  • the frequency domain density of the second reference signal is less than the frequency domain density of the first reference signal, and the frequency domain position occupied by the second reference signal is the first reference signal.
  • the subset of frequency domain locations occupied by the reference signal is the first reference signal.
  • the spatial density of the second reference signal is less than the spatial density of the first reference signal, and the spatial position occupied by the second reference signal is occupied by the first reference signal A subset of airspace locations.
  • the processor may further perform the following operations: broadcast a first message, the first message may include status indication information, and the status indication information may be used to indicate that the MUST function is in an on state.
  • the processor may specifically perform the following operations: broadcast a first message, the first message may include first power information, and the first power information may be used to indicate the difference between the first data signal and the second data signal. Power allocation information; the power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the processor may specifically perform the following operations: broadcast a first message, the first message may include second power information, and the second power information may be used to determine the difference between the first data signal and the second data signal. Power allocation information; the power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the power allocation information may also be used to determine that the MUST function is in the on state.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may also include first modulation information, and the first modulation information may be used to indicate the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may be The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the first message may also include second modulation information, and the second modulation information may be used to determine the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second
  • an embodiment of the present application provides another communication device.
  • the communication device may be a terminal device or a part of the terminal device.
  • the communication device includes a memory and a processor.
  • the memory stores program instructions.
  • the processor calls the program instructions stored in the memory to perform the following operations: determine that the multi-user superimposed transmission MUST function of the network device is in the on state; A reference signal and a second reference signal, where the resource density of the first reference signal and the second reference signal are different; the first data signal is demodulated according to the first reference signal to obtain the demodulated first data signal, and /Or, demodulate the second data signal according to the second reference signal to obtain a demodulated second data signal.
  • the processor when the processor determines that the multi-user superimposed transmission MUST function of the network device is in the on state, the processor specifically performs the following operations: receiving a first message from the network device, the first message may include status indication information, and status indication The information can be used to indicate that the MUST function is on.
  • the processor when the processor determines that the multi-user superimposed transmission MUST function of the network device is in the on state, it specifically performs the following operations to receive the first message from the network device.
  • the first message may include first power information, and
  • the power information may be used to indicate the power allocation information between the first data signal and the second data signal; according to the power allocation information, it is determined that the MUST function of the network device is in an on state.
  • the processor when the processor determines that the multi-user superimposed transmission MUST function of the network device is in the on state, it specifically performs the following operations to receive the first message from the network device, the first message may include the second power information; Second, the power information determines the power allocation information between the first data signal and the second data signal; and determines that the MUST function of the network device is in an on state according to the power allocation information.
  • the processor executes demodulation of the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or decodes the second data signal according to the second reference signal
  • the following operations are specifically performed: demodulate the first data signal according to the first reference signal and power allocation information to obtain the demodulated first data signal, and/or,
  • the second data signal is demodulated according to the second reference signal and the power allocation information to obtain a demodulated second data signal.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may further include first modulation information, and the first modulation information may be used to indicate the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the first message may further include second modulation information; the processor may further perform the following operations: determine the modulation mode of the first data signal and the modulation mode of the second data signal according to the second modulation information.
  • the processor executes demodulation of the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or decodes the second data signal according to the second reference signal
  • the following operations are specifically performed: demodulate the first data signal according to the modulation mode of the first reference signal and the first data signal to obtain the demodulated first data signal
  • the second data signal is demodulated by the modulation mode of the second reference signal and the second data signal to obtain the second data signal after demodulation.
  • the processor executes demodulation of the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or decodes the second data signal according to the second reference signal
  • the following operations are specifically performed: demodulate the first data signal according to the first reference signal, the modulation method of the first data signal, and the modulation method of the second data signal to obtain the solution
  • the processor when the processor performs demodulation of the first data signal according to the first reference signal, and obtains the demodulated first data signal, it specifically performs the following operations: according to the first reference signal, the first data signal The modulation method of the second data signal and the modulation method of the second data signal demodulate the first data signal to obtain the demodulated first data signal; the processor 802 performs demodulation of the second data signal according to the second reference signal to obtain the solution
  • the following operations are specifically performed: demodulating the second data signal according to the second reference signal and the modulation mode of the second data signal to obtain the demodulated second data signal.
  • embodiments of the present application provide a computer program product, which includes a program, which when executed by a communication device, causes the communication device to implement the method described in the first aspect.
  • an embodiment of the present application provides a computer program product, which includes a program, and when the program is executed by a communication device, the communication device realizes the method described in the second aspect.
  • an embodiment of the present application provides a reference signal transmission method, which can be applied to a broadcast or multicast communication system.
  • the method includes: determining that the multi-user superimposed transmission MUST function is in the on state; broadcasting the first reference signal And the second reference signal, where the first reference signal and the second reference signal have different resource densities; the first reference signal is used to demodulate the first data signal, and the second reference signal is used to demodulate the second data signal.
  • different resource densities may include one or more of different time domain densities, different frequency domain densities, or different spatial densities.
  • the time domain density of the second reference signal is less than the time domain density of the first reference signal, and the time domain position occupied by the second reference signal may be the first reference signal.
  • the frequency domain density of the second reference signal is smaller than the frequency domain density of the first reference signal, and the frequency domain position occupied by the second reference signal may be the first reference signal.
  • the spatial density of the second reference signal is less than the spatial density of the first reference signal, and the spatial position occupied by the second reference signal may be occupied by the first reference signal.
  • the method may further include: broadcasting a first message, the first message may include status indication information, and the status indication information may be used to indicate that the MUST function is in an on state.
  • the method may further include: broadcasting a first message, the first message may include first power information, and the first power information may be used to indicate the power allocation between the first data signal and the second data signal Information; power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the method may further include: broadcasting a first message, the first message may include second power information, and the second power information may be used to determine the power allocation between the first data signal and the second data signal Information; the power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the power allocation information may also be used to determine that the MUST function is in the on state.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may also include first modulation information, and the first modulation information may be used to indicate the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may be The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the first message may also include second modulation information, and the second modulation information may be used to determine the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second
  • the embodiments of the present application provide another reference signal transmission method, which can be applied to a broadcast or multicast communication system.
  • the method includes: determining that the multi-user superimposed transmission MUST function of the network device is in an on state; receiving The first reference signal and the second reference signal from the network device, where the resource density of the first reference signal and the second reference signal are different; the first data signal is demodulated according to the first reference signal to obtain the demodulated second reference signal A data signal, and/or demodulate the second data signal according to the second reference signal to obtain a demodulated second data signal.
  • a specific implementation manner for determining that the multi-user superimposed transmission MUST function of the network device is in the on state may be: receiving a first message from the network device, the first message may include status indication information, and the status indication information may be used It indicates that the MUST function is on.
  • a specific implementation manner for determining that the multi-user superimposed transmission MUST function of the network device is in the on state may be: receiving a first message from the network device, the first message may include first power information, and first power information It can be used to indicate the power allocation information between the first data signal and the second data signal; according to the power allocation information, it is determined that the MUST function of the network device is in the on state.
  • a specific implementation manner for determining that the multi-user superimposed transmission MUST function of the network device is turned on may be: receiving a first message from the network device, the first message may include the second power information; according to the second power The information determines the power allocation information between the first data signal and the second data signal; according to the power allocation information, it is determined that the MUST function of the network device is in an on state.
  • the first data signal is demodulated according to the first reference signal to obtain the demodulated first data signal
  • the second data signal is demodulated according to the second reference signal to obtain
  • the specific implementation of the demodulated second data signal may be: demodulate the first data signal according to the first reference signal and power allocation information to obtain the demodulated first data signal, and/or, according to the second
  • the second data signal is demodulated with the reference signal and the power distribution information to obtain the demodulated second data signal.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may further include first modulation information, and the first modulation information may be used to indicate the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the first data signal is demodulated according to the first reference signal to obtain the demodulated first data signal
  • the second data signal is demodulated according to the second reference signal to obtain
  • the specific implementation of the demodulated second data signal may be: demodulate the first data signal according to the modulation mode of the first reference signal and the first data signal to obtain the demodulated first data signal, and/or The second reference signal and the second data signal modulation method demodulate the second data signal to obtain the second data signal after demodulation.
  • the first data signal is demodulated according to the first reference signal to obtain the demodulated first data signal
  • the second data signal is demodulated according to the second reference signal to obtain
  • the specific implementation manner of the demodulated second data signal may be: demodulate the first data signal according to the first reference signal, the modulation method of the first data signal, and the modulation method of the second data signal to obtain the demodulated The first data signal
  • the second data signal is demodulated according to the second reference signal, the modulation method of the second data signal, and the modulation method of the first data signal to obtain a demodulated second data signal.
  • the first data signal is demodulated according to the first reference signal to obtain the demodulated first data signal.
  • the specific implementation manner may be: according to the first reference signal and the modulation mode of the first data signal Demodulate the first data signal with the modulation method of the second data signal to obtain the demodulated first data signal; demodulate the second data signal according to the second reference signal to obtain the demodulated second data signal
  • a specific implementation manner may be: demodulate the second data signal according to the modulation mode of the second reference signal and the second data signal to obtain the second data signal after demodulation.
  • Figure 1a is a schematic diagram of the architecture of a communication system disclosed in an embodiment of the present application.
  • FIG. 1b is a schematic diagram of a scenario where the time domain density of the first reference signal is greater than the time domain density of the second reference signal disclosed in an embodiment of the present application;
  • FIG. 2a is a schematic flowchart of a reference signal transmission method disclosed in an embodiment of the present application.
  • FIG. 2b is a schematic diagram of a non-uniform arrangement of REs used for carrying the first reference signal in the time domain direction according to an embodiment of the present application;
  • FIG. 3 is a schematic flowchart of another reference signal transmission method disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of yet another reference signal transmission method disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • Broadcasting refers to sending data in a specific range, and all devices in the range can receive the same data.
  • Multicast also called multicast or multicast
  • Multicast only sends data to a specific multicast group, and only devices that join the multicast group can receive the data.
  • the difference between multicast and broadcast is that the device as a participant can decide whether to join the multicast group.
  • the reference signal is a signal provided by the transmitter to the receiver for channel estimation or channel detection.
  • Long term evolution (long term evolution, LTE) reference signals can be divided into uplink reference signals and downlink reference signals.
  • the reference signals in the embodiments of the present application refer to downlink reference signals.
  • the role of the downlink reference signal can include but is not limited to the following aspects: 1 downlink channel estimation, used for coherent detection and demodulation at the UE; 2 downlink channel quality measurement (channel detection); 3 cell search.
  • the downlink reference signal in the embodiments of this application may include, but is not limited to, demodulation reference signal (DMRS), cell reference signal (CRS), and multimedia broadcast multicast single frequency network reference signal (multimedia broadcast multicast) Service single frequency network-reference signal, MBSFN-RS), mobile station-specific reference signal (user equipment-specific reference signal, UE-specific RS), and channel state information reference signal (channel state information-reference signal, CSI-RS) One kind.
  • DMRS demodulation reference signal
  • CRS cell reference signal
  • multimedia broadcast multicast single frequency network reference signal multimedia broadcast multicast Service single frequency network-reference signal
  • MBSFN-RS mobile station-specific reference signal
  • UE-specific RS user equipment-specific reference signal
  • channel state information reference signal channel state information-reference signal
  • DMRS can be used for related demodulation of physical uplink shared channel (PUSCH) and physical uplink control channel (PUCCH) in LTE.
  • CRS also called common reference signal
  • MBSFN-RS can be used for channel estimation and related demodulation of multimedia broadcast multicast single frequency network (multimedia broadcast multicast service single frequency network, MBSFN).
  • UE-specific RS can be used for channel estimation and related demodulation of beamforming technology not based on codebooks.
  • Mobile station specific means that this reference signal corresponds to a specific mobile station.
  • CSI-RS can be used for channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI), rank indicator (rank indicator, RI) and other channel information measurement.
  • RE also called resource element
  • One RE represents one orthogonal frequency division multiplexing (OFDM) symbol in the time domain, and represents one subcarrier in the frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • FIG. 1a is a schematic structural diagram of a communication system disclosed in an embodiment of the present application.
  • the communication system includes: a base station 101, a first terminal device 102, a second terminal device 103, and a third terminal device 104.
  • the base station 101, the first terminal device 102, the second terminal device 103, and the third terminal device 104 may form a broadcast or multicast communication system.
  • the base station 101 may have the MUST function. When the base station 101 turns on the MUST function, the base station 101 may broadcast the first reference signal and the second reference signal, where the resource density of the first reference signal and the resource density of the second reference signal may be different.
  • the resource density of the reference signal (such as the first reference signal or the second reference signal) may refer to the ratio of the number of resources carrying the reference signal in a resource block to the number of resources included in the resource block.
  • the resource density of the first reference signal is different from the resource density of the second reference signal may include: the time domain density of the first reference signal is different from the time domain density of the second reference signal, and the frequency domain density of the first reference signal One or more of the frequency domain density is different from the second reference signal or the spatial density of the first reference signal is different from the spatial density of the second reference signal.
  • the left diagram in FIG. 1b shows a schematic diagram of the arrangement of the first reference signal in a time-frequency resource group
  • the right diagram in FIG. 1b shows a schematic diagram of the arrangement of the second reference signal in a time-frequency resource group.
  • the horizontal represents the time domain
  • the vertical represents the frequency domain
  • one square represents one RE.
  • the gray-filled RE in the left figure indicates that the RE carries the first reference signal
  • the white RE in the left figure indicates that the RE carries the first data signal
  • the gray-filled RE in the right figure indicates that the RE carries the second reference signal.
  • a white RE indicates that the RE carries the second data signal.
  • the broadcast or multicast communication system shown in Figure 1a may include mobile terminals or fixed terminals. Compared with the prior art in the broadcast or multicast communication system, the same method is adopted for mobile terminals and fixed terminals.
  • RS time domain density when the resource density of the first reference signal is greater than the resource density of the second reference signal, the number of REs used to carry the second reference signal can be reduced, that is, the number of REs used to carry the second reference signal can be increased.
  • the number of REs of the second data signal corresponding to the two reference signals. That is to say, the time domain density of the first reference signal and the second reference signal are different, which can reduce the overhead of one of the reference signals, thereby helping to increase the data transmission rate of the wireless communication system.
  • the first reference signal and the second reference signal have different frequency domain densities, which can reduce the overhead of one of the reference signals; the first reference signal and the second reference signal have different spatial densities, which can reduce one of the reference signals. s expenses.
  • the resource densities of the first reference signal and the second reference signal are different, and the overhead of one of the reference signals can be reduced, thereby helping to increase the data transmission rate of the wireless communication system.
  • the terminal devices in the above-mentioned broadcast or multicast communication system can receive The first reference signal and the second reference signal, where the first reference signal can be used to demodulate the first data signal corresponding to the first reference signal, and the second reference signal can be used to demodulate the second data signal corresponding to the second reference signal signal.
  • the first data signal and the second data signal are transmitted through different physical channels, and because the channel quality of different physical channels is different, it may cause some terminal equipment in the above-mentioned broadcast or multicast communication system to receive The signal quality of the first data signal (or the second data signal) is poor, so that the first data signal (or the second data signal) cannot be demodulated correctly. In other words, some of the terminal equipment in the above-mentioned broadcast or multicast communication system can only correctly demodulate one of the first data signal and the second data signal, while another part of the terminal equipment can correctly demodulate the first data signal and the second data signal. Data signal.
  • the MUST technology can be used to transmit the first reference signal and the second reference signal on the overlapping time-frequency resources, and to transmit the first data signal and the second reference signal on the overlapping time-frequency resources.
  • the second data signal Taking Fig. 1b as an example, the first reference signal carried by the RE in the lower left corner of the left figure of Fig. 1b and the second reference signal carried by the RE in the lower left corner of the right figure of Fig. 1b occupy the same time-frequency resources.
  • the first data signal carried by the RE in the lower right corner and the second data signal carried by the RE in the lower right corner of the right figure of Figure 1b occupy the same time-frequency resources, that is to say, the RE carried in the same position in the left and right figures of Figure 1b
  • the signals occupy the same time-frequency resources.
  • the first terminal device 102 (or the second terminal device 103, the third terminal device 104) is an entity on the user side for receiving or transmitting signals.
  • the first terminal device 102 (or the second terminal device 103.
  • the third terminal device 104) may be a user equipment (UE), a remote terminal, a mobile terminal, a wireless communication device, a user device, etc., where the user equipment may be a mobile phone, a desktop computer, a notebook computer, or a wearable device Wait.
  • the broadcast or multicast communication system shown in FIG. 1a is composed of three terminal devices: the first terminal device 102, the second terminal device 103, and the third terminal device 104, which are for example only, and do not constitute a reference to this application.
  • the broadcast or multicast communication system in the embodiment of the present application may also be composed of 2, 4, or other numbers of terminal devices.
  • Figure 2a is a schematic flowchart of a reference signal transmission method provided by an embodiment of the present application.
  • the method can be applied to a broadcast or multicast communication system.
  • the method can include but is not limited to the following steps:
  • Step S201 The network device determines that the multi-user superimposed transmission MUST function is in the on state.
  • the network device can use MUST technology to transmit two reference signals (ie, the first reference signal and the second reference signal); if the MUST function of the network device is turned off Status, the network device can use traditional broadcast or multicast technology to transmit the first reference signal and/or the second reference signal.
  • the network device may be an entity on the network side for transmitting or receiving signals.
  • the network device may be an access network device (such as the base station 101 in FIG. 1a).
  • the network device can determine that the MUST function is turned on based on explicit or implicit information.
  • the MUST function can also be similar to other status indications.
  • this status The indication is used to indicate the status of multiple users that can superimpose transmission.
  • Step S202 The network device broadcasts the first reference signal and the second reference signal, where the resource density of the first reference signal and the second reference signal are different.
  • the network device can broadcast the first reference signal and the second reference signal. It should be noted that the network device broadcasts the first reference signal and the second reference signal to the aforementioned broadcast or multicast communication. All terminal devices in the system broadcast the first reference signal and the second reference signal.
  • the network device shown in FIG. 2a sends the first reference signal and the second reference signal to a terminal device for illustration purposes only, and does not constitute a reference to the embodiments of this application. In other feasible implementation manners, if the broadcast or multicast communication system includes 5 terminal devices, the network device can broadcast the first reference signal and the second reference signal to these 5 terminal devices.
  • the first reference signal can be used to demodulate the first data signal
  • the second reference signal can be used to demodulate the second data signal.
  • the first reference signal and the second reference signal may be transmitted through different physical channels. Accordingly, the first data signal corresponding to the first reference signal and the second data signal corresponding to the second reference signal may pass through different physical channels. Physical channel transmission.
  • the terminal device in the above-mentioned broadcast or multicast communication system can perform channel estimation on the physical channel used to transmit the first data signal according to the first reference signal , And further demodulate the received first data signal according to the channel estimation result; and perform channel estimation on the physical channel used to transmit the second data signal according to the second reference signal, and then perform channel estimation on the received second data signal according to the channel estimation result.
  • the data signal is demodulated.
  • the resource density of the first reference signal is different from the resource density of the second reference signal may include: the time domain density of the first reference signal is different from the time domain density of the second reference signal, and the frequency domain density of the first reference signal One or more of the frequency domain density is different from the second reference signal or the spatial density of the first reference signal is different from the spatial density of the second reference signal.
  • the difference between the time domain density of the first reference signal and the time domain density of the second reference signal may refer to: in the time domain direction, the number of REs used to carry the first reference signal and the number of REs used to carry the second reference signal different.
  • the REs used to carry the first reference signal may be evenly arranged in the time domain direction or non-uniformly arranged.
  • the REs used to carry the first reference signal are arranged uniformly in the time domain direction means: In the domain direction, an RE carrying the first reference signal appears every time the same number of REs that do not carry the first reference signal appear. Take the left picture of Fig.
  • every RE that does not carry the first reference signal (that is, the white RE in the figure) appears a RE carrying the first reference signal (that is, the gray in the figure).
  • Fill RE The non-uniform arrangement of the REs used to carry the first reference signal in the time domain direction refers to: among the two adjacent REs that carry the first reference signal in the time domain direction, the previous RE that carries the first reference signal.
  • the number of REs not carrying the first reference signal separated from the latter RE carrying the first reference signal is not necessarily the same. Taking the schematic diagram of the non-uniform arrangement of the REs for carrying the first reference signal in the time domain shown in FIG. 2b as an example, it can be seen from FIG.
  • the first RE carrying the first reference signal is The number of REs that do not carry the first reference signal (that is, the grey-filled RE in the figure) separated from the second RE carrying the first reference signal (that is, the REs that are filled with gray in the figure) is one, and the second one carries The number of REs not carrying the first reference signal separated between the RE with the first reference signal and the third RE carrying the first reference signal is also 1, but the third one carrying the first reference signal The number of REs not carrying the first reference signal separated from the fourth RE carrying the first reference signal is 5. It can be seen that, in the two adjacent REs that carry the first reference signal in the time domain direction, the first RE that carries the first reference signal is separated from the latter that carries the first reference signal.
  • the number of REs of the first reference signal is not necessarily the same.
  • the time of the first reference signal may refer to: in the time domain direction, an RE carrying the first reference signal appears every n1 REs that do not carry the first reference signal, and every m1 RE that does not carry the first reference signal appears.
  • the RE carrying the second reference signal appears as an RE carrying the second reference signal, where n1 and m1 are different.
  • the difference between the frequency domain density of the first reference signal and the frequency domain density of the second reference signal may mean that in the frequency domain direction, the number of REs used to carry the first reference signal is different from the number of REs used to carry the second reference signal.
  • the REs used to carry the first reference signal may be arranged uniformly or non-uniformly in the frequency domain direction.
  • the uniform arrangement of the REs for carrying the first reference signal in the frequency domain direction means that in the frequency domain direction, an RE carrying the first reference signal appears every time the same number of REs that do not carry the first reference signal appear.
  • the non-uniform arrangement of the REs used to carry the first reference signal in the frequency domain refers to: among the two adjacent REs that carry the first reference signal in the frequency domain, the previous RE that carries the first reference signal.
  • the number of REs not carrying the first reference signal separated from the latter RE carrying the first reference signal is not necessarily the same.
  • the frequency of the first reference signal may refer to: in the frequency domain, an RE carrying the first reference signal appears every n2 REs that do not carry the first reference signal, and every m2 RE that does not carry the first reference signal appears.
  • the RE that carries the second reference signal appears as an RE that carries the second reference signal, where n2 and m2 are different.
  • the difference between the spatial density of the first reference signal and the spatial density of the second reference signal may mean that the beam resource used for transmitting the first reference signal is different from the beam resource used for transmitting the second reference signal.
  • the time domain position occupied by the second reference signal may be a subset of the time domain position occupied by the first reference signal. For example, taking Fig. 1b as an example, the time domain position occupied by the second reference signal in the right picture of Fig. 1b (that is, the gray filled RE) is the time domain position occupied by the first reference signal in the left picture of Fig. 1b ( That is, the true subset of RE) filled with gray in the figure.
  • the time domain position occupied by the second reference signal is not a proper subset of the time domain position occupied by the first reference signal.
  • the demodulation of the signal causes interference (for example, the demodulation of the second data signal by the first reference signal causes interference and the demodulation of the first data signal by the second reference signal causes interference).
  • the demodulation of the second data signal by the first reference signal causes interference
  • the demodulation of the first data signal by the second reference signal causes interference
  • the demodulation of the first data signal by the second reference signal causes interference.
  • Figure 1b in the time domain direction, there is an RE carrying the first reference signal every 1 RE that does not carry the first reference signal in the left picture, and every 5 uncarried REs in the right picture.
  • the RE with the second reference signal appears as an RE carrying the second reference signal.
  • the time domain position occupied by the second reference signal is a proper subset of the time domain position occupied by the first reference signal.
  • There are 4 REs that carry reference signals and data signals that is, REs that carry both the first reference signal and the second data signal; if in the time domain, there are 1 REs that do not carry the first reference signal every time.
  • An RE carrying the first reference signal appears, and an RE carrying the second reference signal appears every 6 REs that do not carry the second reference signal (that is, the second reference signal in the time domain direction in the right picture of Figure 1b).
  • the gray-filled REs move one RE in the time domain direction, that is, the time domain position occupied by the second reference signal is not a proper subset of the time domain position occupied by the first reference signal.
  • the RE that carries both the reference signal and the data signal (That is, there are 5 REs that simultaneously carry the first reference signal and the second data signal, and there are 1 REs that simultaneously carry the second reference signal and the first data signal)
  • the time domain position occupied by the second reference signal is a proper subset of the time domain position occupied by the first reference signal, and the reference signal can be minimized
  • the interference caused by the demodulation of the data signal is beneficial to improve the success rate of the demodulation of the data signal.
  • the time domain position occupied by the first reference signal may be a true subset of the time domain position occupied by the second reference signal.
  • the frequency domain position occupied by the second reference signal may be a subset (or a proper subset) of the frequency domain position occupied by the first reference signal.
  • the frequency domain position occupied by the first reference signal may be a subset (or a proper subset) of the frequency domain position occupied by the second reference signal.
  • the spatial position occupied by the second reference signal may be a subset (or a proper subset) of the spatial position occupied by the first reference signal.
  • the spatial position occupied by the first reference signal may be a subset (or a proper subset) of the spatial position occupied by the second reference signal.
  • the terminal device can distinguish the first reference signal and the second reference signal through the coding sequence; in the same way, when the MUST technology is used to transmit the first data signal and the second data signal on overlapping time-frequency resources, it can be used for the first data signal.
  • the coding sequence is different from the second data signal.
  • the terminal device can distinguish the first data signal from the second data signal through the coding sequence.
  • the network device after the network device determines that the MUST function is in the on state, it can broadcast the first reference signal and the second reference signal, and broadcast the first data signal and the second data signal, so that the aforementioned broadcast or multicast communication system
  • the terminal device in may demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or demodulate the second data signal according to the second reference signal to obtain the demodulation After the second data signal.
  • Step S203 The terminal device determines that the MUST function of the network device is in the on state.
  • the network device after the network device turns on the MUST function, it can broadcast a first message to the terminal device in the aforementioned broadcast or multicast communication system.
  • the first message may include status indication information, which may be used to indicate The MUST function of the network device is on or off.
  • the network device may broadcast the first message according to a fixed period, or the network device may broadcast the first message only when the state of the MUST function changes.
  • the terminal device may determine that the MUST function is in the on state according to the first message from the network device.
  • the terminal device receives the first message, and the status indication information in the first message is used to indicate that the MUST function of the network device is on, in the period corresponding to the moment when the first message is received, the terminal The device can determine that the MUST function of the network device is turned on. For example, if the period is 24 hours, the terminal device receives the first message at 8 AM on June 5, and the status indication information in the first message is used to indicate that the MUST function of the network device is in the on state, then the terminal device During the period from 8 am on the 5th to 8 am on the 6th, it can be determined that the MUST function of the network device is turned on.
  • the terminal device may store the first message, and determine the state of the MUST function according to the stored first message.
  • the first message stored by the terminal device may be the latest received by the terminal device. The first message that arrived. That is, before receiving the new first message, the terminal device can determine the state of the MUST function according to the state indication information in the first message received last time.
  • the terminal device may be any device in a broadcast or multicast communication system (such as the first terminal device 102, the second terminal device 103, or the third terminal device 104 in Fig. 1a).
  • Step S204 The terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or demodulates the second data signal according to the second reference signal to obtain the demodulation After the second data signal.
  • the terminal device can receive the first reference signal and the second reference signal, and the first data signal and the second data signal from the network device.
  • the signal quality of the second reference signal, the first data signal, and the second data signal is good, and the first data signal can be demodulated according to the first reference signal to obtain the demodulated first data signal, and according to the second reference signal
  • the signal demodulates the second data signal to obtain a demodulated second data signal. If the terminal device receives the first reference signal, the second reference signal, the first data signal, and the second data signal from the network device, and the signal quality of the first data signal is good, the signal quality of the second data signal is poor.
  • the first data signal can be demodulated according to the first reference signal to obtain the demodulated first data signal. If the terminal device receives the first reference signal, the second reference signal, the first data signal, and the second data signal from the network device, and the signal quality of the second data signal is good, the signal quality of the first data signal is poor. If the first data signal cannot be demodulated correctly, the second data signal can be demodulated according to the second reference signal to obtain the second data signal after demodulation.
  • step S203 may occur before step S202, which is not limited in this application.
  • the same RS time domain density is used for the mobile terminal and the fixed terminal.
  • the resource density of the first reference signal is greater than the resource density of the second reference signal The density can reduce the number of REs used to carry the second reference signal, that is, the overhead of one of the reference signals can be reduced, thereby helping to increase the data transmission rate of the wireless communication system.
  • FIG. 3 is a schematic flowchart of another reference signal transmission method provided by an embodiment of the present application.
  • the method describes in detail that the MUST function is determined to be in the on state according to the first message broadcast by the network device.
  • the method may include but Not limited to the following steps:
  • Step S301 The network device determines that the multi-user superimposed transmission MUST function is in the on state.
  • step S301 can refer to the specific description of step S201 in FIG. 2a, which is not repeated here.
  • Step S302 The network device broadcasts a first message, the first message includes status indication information, and the status indication information is used to indicate that the MUST function is in an on state.
  • the network device can broadcast a first message to all terminal devices in the aforementioned broadcast or multicast communication system.
  • the first message may include status indication information, which may be used to indicate the MUST function. It is on or off.
  • the network device can inform the MUST function status of all terminal devices in the aforementioned broadcast or multicast communication system.
  • the first message may further include first modulation information, and the first modulation information may be used to indicate the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the network device modulates the coded bits corresponding to the first data signal to obtain the first data signal; and modulates the coded bits corresponding to the second data signal to obtain the second data signal.
  • the specific implementation may be It is: modulate the coded bit corresponding to the first data signal according to the modulation mode of the first data signal to obtain the first data signal; and modulate the coded bit corresponding to the second data signal according to the modulation mode of the second data signal to obtain The second data signal. Therefore, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used to demodulate the second data signal.
  • the network device modulates the coded bits corresponding to the first data signal to obtain the first data signal; and modulates the coded bits corresponding to the second data signal to obtain the second data signal.
  • the specific implementation may be It is: according to the modulation mode of the first data signal and the modulation mode of the second data signal, the coded bits corresponding to the first data signal and the coded bits corresponding to the second data signal are mixed and modulated to obtain a mixed modulation signal.
  • the mixed modulation signal includes the first data signal.
  • the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal
  • the modulation method of the second data signal can be used to demodulate the second data signal and the first data signal.
  • the network device modulates the coded bits corresponding to the first data signal to obtain the first data signal; and modulates the coded bits corresponding to the second data signal to obtain the second data signal.
  • the specific implementation may be It is: modulate the coded bits corresponding to the first data signal according to the modulation mode of the first data signal and the modulation mode of the second data signal to obtain the first data signal; and modulate the second data signal according to the modulation mode of the second data signal The corresponding coded bit is modulated to obtain the second data signal.
  • the modulation method of the first data signal can be used to demodulate the first data signal
  • the modulation method of the second data signal can be used to demodulate the first data signal and the second data signal.
  • the network device modulates the coded bits corresponding to the first data signal to obtain the first data signal; and modulates the coded bits corresponding to the second data signal to obtain the second data signal.
  • the specific implementation may be It is: modulate the coded bit corresponding to the first data signal according to the modulation mode of the first data signal to obtain the first data signal; and modulate the second data signal according to the modulation mode of the first data signal and the modulation mode of the second data signal The corresponding coded bit is modulated to obtain the second data signal.
  • the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal
  • the modulation method of the second data signal can be used to demodulate the second data signal.
  • the first message may separately include status indication information and first modulation information, that is, after receiving the first message, the terminal device can directly extract the status indication information and the first modulation information from the first message .
  • the status indication information in the first message and the first modulation information may be included together, that is, after receiving the first message, the terminal device may extract the combined information from the first message, and the combined information
  • the state indication information and the first modulation information are included, and the state indication information and the first modulation information are further extracted from the combined information.
  • the combined information is two binary digits
  • two binary digits can be used to represent the state of the MUST function and the first modulation information.
  • the first message may directly include the modulation mode of the first data signal and the modulation mode of the second data signal, that is, the terminal device may directly extract the first modulation information from the first message, and may obtain the first modulation information from the first message.
  • a modulation information directly extracts the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the first message directly includes the modulation method of the first data signal and the modulation method of the second data signal.
  • the modulation method of the first data signal is QPSK
  • the modulation method of the second data signal is QPSK.
  • the modulation method is 16QAM
  • the second type the first message directly includes the modulation and coding scheme (MCS) information of the first data signal and the MCS information of the second data signal.
  • MCS modulation and coding scheme
  • the modulation mode of the first data signal and the modulation mode of the second data signal can be calculated according to the MCS table. For example, if the MCS table is shown in Table 2, the MCS information is the MCS index, and the MCS index of the first data signal is 1.
  • the terminal device can determine according to Table 2 that the modulation mode of the first data signal is QPSK, and the modulation mode of the second data signal is 16QAM. It should be noted that the local storage of the terminal device may store the MCS table, or the terminal device may obtain the MCS table from the cloud or from a network device.
  • the first message may indirectly include the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the first message may also include the second modulation information.
  • the modulation information can be used to determine the modulation mode of the first data signal and the modulation mode of the second data signal, that is, after the terminal device extracts the second modulation information from the first message, the second modulation information needs to be processed before it can be processed according to As a result, the modulation method of the first data signal and the modulation method of the second data signal are obtained.
  • the first message may only include the modulation mode or MCS information of one of the first data signal or the second data signal, and the differential information.
  • the other signal ie, the first data signal
  • the modulation mode or MCS information of the second data signal can be determined in a differential mode.
  • the modulation method of the first data signal is QPSK
  • the difference between the number corresponding to the modulation method of the second data signal and the number corresponding to the modulation method of the first data signal is 1. If the modulation method combination is agreed between the network device and the terminal device If it is ⁇ QPSK, 16QAM, 64QAM ⁇ , then the number corresponding to QPSK by one is the number corresponding to 16QAM. Based on this, the modulation mode of the second data signal can be calculated to be 16QAM.
  • the modulation mode of the first data signal is QPSK (modulation order is 2)
  • the modulation mode of the second data signal can be calculated to be 16QAM (the modulation order is 4).
  • the first message may be any one of radio resource control (radio resource control, RRC) signaling, system information (SI), or downlink control information (DCI),
  • RRC radio resource control
  • SI system information
  • DCI downlink control information
  • Step S303 The terminal device determines according to the first message that the MUST function of the network device is in the on state.
  • the terminal device can extract the status indication information from the first message, and determine whether the MUST function is on or off according to the status indication information. If the MUST function is on, The terminal device can receive the first reference signal and the second reference signal from the network device.
  • the terminal device may obtain information from the first message Extract the first modulation information to obtain the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the terminal device may extract the second modulation information from the first message, and determine the modulation mode of the first data signal and the modulation of the second data signal according to the second modulation information the way.
  • Step S304 The network device broadcasts the first reference signal and the second reference signal, where the resource density of the first reference signal and the second reference signal are different.
  • step S304 refers to the specific description of step S202 in FIG. 2a, which will not be repeated here. It should also be noted that at least some of the above steps may have no sequence between them. For example, step S304 may occur before step S303, which is not limited in this application.
  • Step S305 The terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or demodulates the second data signal according to the second reference signal to obtain the demodulation After the second data signal.
  • the terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal, and /Or, a specific implementation manner of demodulating the second data signal according to the second reference signal to obtain the second data signal after demodulation may be: the terminal device performs the first reference signal and the first data signal modulation method A data signal is demodulated to obtain a demodulated first data signal, and/or the second data signal is demodulated according to the modulation mode of the second reference signal and the second data signal to obtain a demodulated second data signal Data signal.
  • the terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal.
  • the specific implementation manner may be: the terminal equipment according to the first reference signal, the first data signal The modulation method and the modulation method of the second data signal demodulate the first data signal to obtain the demodulated first data signal, and/or, according to the second reference signal, the modulation method of the second data signal and the first data The signal modulation method demodulates the second data signal to obtain the demodulated second data signal.
  • the terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal.
  • the specific implementation of the data signal may be: demodulate the first data signal according to the first reference signal, the modulation method of the first data signal, and the modulation method of the second data signal to obtain the demodulated first data signal; terminal The device demodulates the second data signal according to the second reference signal to obtain the demodulated second data signal.
  • the specific implementation manner may be: perform the second data signal according to the modulation mode of the second reference signal and the second data signal Demodulate to obtain a second data signal after demodulation.
  • the terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal.
  • the specific implementation manner of the data signal may be: demodulate the first data signal according to the first reference signal and the modulation mode of the first data signal to obtain the demodulated first data signal;
  • the second data signal is demodulated to obtain the second data signal after demodulation.
  • the specific implementation manner may be: performing the second data signal on the second reference signal, the modulation mode of the first data signal, and the modulation mode of the second data signal. Demodulate to obtain a second data signal after demodulation.
  • the terminal device can use the following two methods for the first data signal Data signal demodulation:
  • the first type is to demodulate the first data signal according to the modulation method of the first reference signal and the first data signal;
  • the second type is to demodulate the first data signal according to the modulation method of the first reference signal and the first data signal and The modulation method of the second data signal demodulates the first data signal.
  • the terminal device can use the following two methods to perform the second data Signal demodulation:
  • the first type is to demodulate the second data signal according to the modulation method of the second reference signal and the second data signal;
  • the second type is to demodulate the second data signal according to the second reference signal, the modulation method of the first data signal and the second
  • the modulation method of the second data signal demodulates the second data signal.
  • the terminal device can use the following four methods to demodulate the first data signal and the second data signal: A reference signal and a modulation method of the first data signal demodulate the first data signal, and a second data signal is demodulated according to the modulation method of the second reference signal and the second data signal; the second method is based on the first reference Signal, the modulation method of the first data signal, and the modulation method of the second data signal to demodulate the first data signal, and the second reference signal, the modulation method of the first data signal, and the modulation method of the second data signal.
  • the data signal is demodulated; the third type is to demodulate the first data signal according to the modulation mode of the first reference signal and the first data signal, and according to the second reference signal, the modulation mode of the first data signal and the second data signal
  • the second data signal is demodulated by the modulation method; the fourth method is to demodulate the first data signal according to the first reference signal, the
  • the network device may use different antenna ports to broadcast the first reference signal and the second reference signal, for example, antenna port 4 is used to broadcast the first reference signal, and antenna port 1 is used to broadcast the second reference signal.
  • the network device may use the default first modulation mode to modulate the coded bits corresponding to the first data signal, and use the default second modulation mode to modulate the coded bits corresponding to the second data signal.
  • the network device uses different antenna ports to broadcast the first reference signal and the second reference signal, it can indicate that both the first data signal and the second data signal are modulated by the corresponding default modulation method.
  • the terminal device may use the first reference signal and the default first modulation method to demodulate the first data signal, and use the second reference signal and the default second modulation method to demodulate the second data signal.
  • the network device uses different antenna ports to broadcast the first reference signal and the second reference signal, it can indicate that one of the first data signal and the second data signal is modulated by the default modulation method.
  • the first message may include the modulation method of another data signal. If the first message includes the modulation method of the first data signal, the terminal device may use the first reference signal and the modulation method in the first message to perform The signal is demodulated, and the second data signal is demodulated using the second reference signal and the default second modulation mode.
  • the terminal device may use the first reference signal and the default first modulation method to decode the first data signal. And demodulate the second data signal by using the second reference signal and the default second modulation mode.
  • the default first modulation method and the default second modulation method may be the same or different.
  • the default first modulation method and the default second modulation method may be network equipment and terminal equipment in the above-mentioned broadcast or multicast communication system. Agreed.
  • MBSFN multimedia broadcast multicast service single frequency network
  • MBSFN transmits multimedia broadcast multicast services (multimedia broadcast multicast service, MBMS) through multiple cells synchronized with each other
  • MBMS multimedia broadcast multicast service
  • the signals sent by multiple cell base stations can be regarded as useful signals.
  • other network devices that belong to the same MBSFN system as the foregoing network device can also broadcast the first reference signal and the second reference signal.
  • the terminal device can receive the first reference signal and the second reference signal sent by multiple network devices, where the first reference signal and the second reference signal broadcast by each network device in the MBSFN system can be the same, because The physical distance between the terminal device and each network device in the MBSFN system is different.
  • the terminal device can increase the received first reference signal and second reference signal by receiving the first reference signal and the second reference signal from multiple network devices. The strength of the signal will help improve the success rate of demodulating the data signal.
  • the resource density of the first reference signal is greater than the resource density of the second reference signal, the number of REs used to carry the second reference signal can be reduced, that is, the overhead of one of the reference signals can be reduced, thereby It is beneficial to increase the data transmission rate of the wireless communication system.
  • FIG. 4 is a schematic flowchart of another reference signal transmission method according to an embodiment of the present application.
  • the method explains in detail that the first message may include first power information, and the first power information may be used to indicate the first power information.
  • the power allocation information between the data signal and the second data signal.
  • the power allocation information can be used not only to demodulate the first data signal and/or the second data signal, but also to determine that the MUST function is turned on.
  • the method may include But not limited to the following steps:
  • Step S401 The network device determines that the multi-user superimposed transmission MUST function is in the on state.
  • step S401 refers to the specific description of step S201 in FIG. 2a, which is not repeated here.
  • Step S402 The network device broadcasts a first message, the first message includes first power information, the first power information is used to indicate the power allocation information between the first data signal and the second data signal; the power allocation information is used to demodulate the first data signal A data signal and/or a second data signal.
  • the network device can broadcast a first message to all terminal devices in the aforementioned broadcast or multicast communication system.
  • the first message can include first power information, and the first power information can be used to indicate Power distribution information between the first data signal and the second data signal.
  • the first message may include the second power information, and the second power information may be used to determine the power allocation between the first data signal and the second data signal information.
  • the power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the power allocation information can be used to demodulate the first data signal. If the signal quality of the second data signal received by the terminal device is good, and the signal quality of the first data signal is poor and the first data signal cannot be correctly demodulated, the power allocation information can be used to demodulate the second data signal. If the signal quality of the first data signal and the second data signal received by the terminal device are both good, the power allocation information can be used to demodulate the first data signal and the second data signal.
  • the energy allocated to the first data signal can refer to the energy allocated to each resource element (energyper resource element, EPRE) that carries the first data signal, or it can refer to the energy allocated to all resource particles that carry the first data signal. energy of.
  • the energy allocated to the second data signal can refer to the EPRE that carries the first data signal (or the first reference signal, the second reference signal), or it can Refers to the energy allocated to all resource particles carrying the first data signal (or the first reference signal, the second reference signal).
  • the first message may also include status indication information, and the status indication information may be used to indicate that the MUST function is in an on or off state.
  • the terminal device may extract the first power information (or second power information) from the first message, and determine according to the first power information (or second power information) The power distribution information between the first data signal and the second data signal and whether the MUST function is on or off. If the MUST function is on, the terminal device can receive the first reference signal and the second reference signal from the network device, Further, demodulate the first data signal and/or the second data signal according to the power allocation information.
  • the terminal device that receives the first message when the first message includes the first power information, can directly extract the power allocation information between the first data signal and the second data signal from the first power information ;
  • the terminal device that receives the first message needs to process the second power information to determine the power allocation information between the first data signal and the second data signal according to the processing result.
  • the terminal device may determine the power allocation information between the first data signal and the second data signal according to the modulation mode of the first data signal, the modulation mode of the second data signal, and the second power information, for example,
  • the second power information includes the power number, the power number is 01, and the modulation method of the first data signal is QPSK by default, and the modulation method of the second data signal is 16QAM
  • the terminal device can determine the allocation to the
  • the ratio of the energy of a data signal to the total energy of the resource particles carrying the first data signal is 32/42
  • the power allocation information between the first data signal and the second data signal may not only be a ratio, but also a numerical value, or two numerical values.
  • the energy allocated to the first data signal is 3dBm (or 2mW)
  • the energy allocated to the second data signal is 7dBm (or 5mW)
  • the first resource particles carrying the first data signal and the second data signal at the same time When the total energy of is 8.45dBm (or 7mW), if the power allocation information between the first data signal and the second data signal is the ratio of the energy allocated to the first data signal to the energy allocated to the second data signal, this When the power allocation information is 2/5; if the power allocation information between the first data signal and the second data signal is the ratio of the energy allocated to the first data signal to the total energy of the first resource particle, at this time, the power The allocation information is 2/7; if the power allocation information between the first data signal and the second data signal is the energy allocated to the first data signal and the energy allocated to the second data signal, the power allocation information is
  • Step S403 The terminal device determines that the MUST function of the network device is in the on state according to the above-mentioned power allocation information.
  • the terminal device can determine the state of the MUST function according to the first message. Specifically, the power allocation in the first message can also be used to determine whether the MUST function is in the on or off state, that is, the terminal device can The allocation information determines whether the MUST function is on or off.
  • the ratio of the energy allocated to the first data signal to the energy allocated to the second data signal is 0, it means that the energy allocated to the first data signal is 0, that is, the network device does not broadcast the first data signal. It can be determined that the MUST function of the network device is turned off. For another example, if the ratio of the energy allocated to the second data signal to the total energy of the first resource particle is 1, it means that the total energy of the first resource particle is all allocated to the second data signal, that is, the network device is not When the first data signal is broadcast, it can be determined that the MUST function of the network device is off.
  • the network device broadcasts the first data signal and the second data signal, and the MUST function is in the on state at this time.
  • Step S404 The network device broadcasts the first reference signal and the second reference signal, where the resource density of the first reference signal and the second reference signal are different.
  • step S404 refers to the specific description of step S202 in FIG. 2a, which will not be repeated here. It should also be noted that at least some of the above steps may have no sequence between them. For example, step S404 may occur before step S403, which is not limited in this application.
  • Step S405 The terminal device demodulates the first data signal according to the first reference signal and the power allocation information to obtain the demodulated first data signal; and/or, according to the second reference signal and the power allocation information, the second data The signal is demodulated to obtain a second data signal after demodulation.
  • the terminal device demodulates the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or, according to the second reference signal to the second data signal
  • the specific implementation manner of demodulating the signal to obtain the demodulated second data signal may be: the terminal device demodulates the first data signal according to the first reference signal and the power allocation information to obtain the demodulated first data signal And/or demodulate the second data signal according to the second reference signal and the power allocation information to obtain a demodulated second data signal.
  • the first message may also include first modulation information or second modulation information.
  • the terminal device determines the power allocation information, the modulation method of the first data signal, and the modulation method of the second data signal, if the terminal device The signal quality of the received first data signal is good, and the signal quality of the second data signal is poor and the second data signal cannot be correctly demodulated.
  • the terminal device can demodulate the first data signal in the following two ways: One type is to demodulate the first data signal according to the first reference signal, power allocation information and the modulation method of the first data signal; the second type is to demodulate the first data signal according to the first reference signal, power allocation information, and the modulation method of the first data signal And the modulation mode of the second data signal to demodulate the first data signal.
  • the terminal device can use the following two methods to perform the second data Signal demodulation:
  • the first type is to demodulate the second data signal according to the second reference signal, power allocation information, and the modulation mode of the second data signal;
  • the second type is to demodulate the second data signal according to the second reference signal, power allocation information, and the second data signal.
  • the modulation method of a data signal and the modulation method of the second data signal demodulate the second data signal.
  • the terminal device can use the following four methods to demodulate the first data signal and the second data signal: Demodulate the first data signal with a reference signal, power allocation information, and a modulation method of the first data signal, and demodulate the second data signal according to the second reference signal, power allocation information, and a modulation method of the second data signal;
  • the second type is to demodulate the first data signal according to the first reference signal, the power distribution information, the modulation mode of the first data signal, and the modulation mode of the second data signal, and according to the second reference signal, the power distribution information, the first
  • the modulation method of the data signal and the modulation method of the second data signal demodulate the second data signal; in the third method, the first data signal is decoded according to the first reference signal, the power distribution information and the modulation method of the first data signal.
  • Modulation demodulate the second data signal according to the second reference signal, power allocation information, the modulation method of the first data signal, and the modulation method of the second data signal; the fourth type, according to the first reference signal, power allocation information, The modulation method of the first data signal and the second data signal demodulate the first data signal, and the second data signal is demodulated according to the second reference signal, the power distribution information and the modulation method of the second data signal.
  • the network device may use the same antenna port to broadcast the first reference signal and the second reference signal, for example, the antenna port 4 is used to broadcast the first reference signal and the second reference signal.
  • the power allocation information between the first data signal and the second data signal may be the same, that is, the first data signal and the second data signal are allocated the same energy.
  • the network device uses the same antenna port to broadcast the first reference signal and the second reference signal, it may indicate that the power allocation information between the first data signal and the second data signal is the same.
  • the terminal device may determine that the power allocation information between the first data signal and the second data signal is the default Power allocation information.
  • the default power allocation information may be agreed upon by the network equipment and the terminal equipment in the above-mentioned broadcast or multicast communication system.
  • the default power allocation information may indicate the energy allocated to the first data signal and the energy allocated to the second data signal.
  • the ratio of energy is the default ratio.
  • the embodiment of the present application can determine the relationship between the first data signal and the second data signal according to the first power information in the first message. Further, it can be determined according to the power allocation information that the MUST function is turned on. In this way, the amount of data in the first message can be reduced, which is beneficial to improve the efficiency of transmitting the first message, and thus is beneficial to improve wireless The data transmission rate of the communication system.
  • the operations performed by the network device in the method embodiment corresponding to Figures 2a-4 can also be performed by other entities.
  • the operations performed by the terminal device in the method embodiments corresponding to Figures 2a-4 can also be performed by other entities (such as Chip, etc.) execute.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device can be applied to a broadcast or multicast communication system.
  • the communication device 50 is used to perform the method embodiments corresponding to FIGS. 2a-4 In the steps performed by the network equipment, the communication device 50 may include:
  • the processing module 501 is configured to determine that the MUST function of multi-user superimposed transmission is in an on state
  • the communication module 502 is used to broadcast a first reference signal and a second reference signal, where the resource density of the first reference signal and the second reference signal are different; the first reference signal is used to demodulate the first data signal, and the second reference signal Used to demodulate the second data signal.
  • the different resource densities may include one or more of different time domain densities, different frequency domain densities, or different spatial densities.
  • the time domain density of the second reference signal is smaller than the time domain density of the first reference signal, and the time domain position occupied by the second reference signal is A subset of the time domain positions occupied by the first reference signal.
  • the frequency domain density of the second reference signal is less than the frequency domain density of the first reference signal, and the frequency domain position occupied by the second reference signal is A subset of the frequency domain positions occupied by the first reference signal.
  • the spatial density of the second reference signal is less than the spatial density of the first reference signal, and the spatial position occupied by the second reference signal is the first reference signal The subset of occupied airspace locations.
  • the communication module 502 may also be used to broadcast a first message, the first message may include status indication information, and the status indication information may be used to indicate that the MUST function is in an on state.
  • the communication module 502 may also be used to broadcast a first message, the first message may include first power information, and the first power information may be used to indicate the power between the first data signal and the second data signal.
  • Allocation information; power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the communication module 502 may also be used to broadcast a first message, the first message may include second power information, and the second power information may be used to determine the power between the first data signal and the second data signal. Allocation information; the power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the power allocation information may also be used to determine that the MUST function is in the on state.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may also include first modulation information, and the first modulation information may be used to indicate the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may be The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the first message may also include second modulation information, and the second modulation information may be used to determine the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second
  • FIG. 6 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device 60 may include a communication interface 601, a processor 602, and a memory 603.
  • the communication interface 601, the processor 602, and the memory 603 may They are connected to each other through one or more communication buses, and may also be connected in other ways.
  • the related functions implemented by the processing module 501 and the communication module 502 shown in FIG. 5 may be implemented by the same processor 602, or may be implemented by multiple different processors 602.
  • the communication interface 601 may be used to send data and/or signaling, and receive data and/or signaling. In the embodiment of the present application, the communication interface 601 may be used to broadcast the first reference signal and the second reference signal.
  • the communication interface can be a transceiver.
  • the processor 602 is configured to perform corresponding functions of the network device in the methods described in FIGS. 2a-4.
  • the processor 602 may include one or more processors.
  • the processor 602 may be one or more central processing units (CPU), network processors (NP), hardware chips, or any of them. combination.
  • the processor 602 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 603 is used to store program codes and the like.
  • the memory 603 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM); the memory 603 may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory).
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • read-only memory read-only memory
  • ROM read-only memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • memory 603 may also include a combination of the foregoing types of memories.
  • the processor 602 may call the program code stored in the memory 603 to perform the following operations:
  • the first reference signal and the second reference signal Broadcast the first reference signal and the second reference signal, where the first reference signal and the second reference signal have different resource densities; the first reference signal is used to demodulate the first data signal, and the second reference signal is used to demodulate the second Data signal.
  • the different resource densities may include one or more of different time domain densities, different frequency domain densities, or different spatial densities.
  • the time domain density of the second reference signal is smaller than the time domain density of the first reference signal, and the time domain position occupied by the second reference signal is A subset of the time domain positions occupied by the first reference signal.
  • the frequency domain density of the second reference signal is less than the frequency domain density of the first reference signal, and the frequency domain position occupied by the second reference signal is A subset of the frequency domain positions occupied by the first reference signal.
  • the spatial density of the second reference signal is less than the spatial density of the first reference signal, and the spatial position occupied by the second reference signal is the first reference signal The subset of occupied airspace locations.
  • the processor 602 may also perform the following operations: broadcast a first message, the first message may include status indication information, and the status indication information may be used to indicate that the MUST function is in an on state.
  • the processor 602 may specifically perform the following operations: broadcast a first message, the first message may include first power information, and the first power information may be used to indicate the relationship between the first data signal and the second data signal. Power allocation information; power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the processor 602 may specifically perform the following operations: broadcast a first message, the first message may include second power information, and the second power information may be used to determine the relationship between the first data signal and the second data signal.
  • the power allocation information; the power allocation information can be used to demodulate the first data signal and/or the second data signal.
  • the power allocation information may also be used to determine that the MUST function is in the on state.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may also include first modulation information, and the first modulation information may be used to indicate the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may be The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the first message may also include second modulation information, and the second modulation information may be used to determine the modulation method of the first data signal and the modulation method of the second data signal; the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second data signal, The modulation method of the second data signal can be used to demodulate the second data signal and the first data signal; alternatively, the modulation method of the first data signal can be used to demodulate the first data signal, and the modulation method of the second data signal can be used To demodulate the first data signal and the second data signal.
  • the modulation method of the first data signal may The modulation method used to demodulate the first data signal and the second data signal can be used to demodulate the second data signal; or, the modulation method of the first data signal can be used to demodulate the first data signal and the second
  • processor 602 may also perform operations corresponding to the network device in the embodiment shown in FIG. 2a to FIG. 4. For details, please refer to the description in the method embodiment, which will not be repeated here.
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the device can be applied to a broadcast or multicast communication system.
  • the communication device 70 is used to perform the method implementation corresponding to FIGS. 2a-4
  • the communication device 70 may include:
  • the processing module 701 is used to determine that the multi-user superimposed transmission MUST function of the network device is in an on state
  • the communication module 702 is configured to receive a first reference signal and a second reference signal from a network device, where the resource density of the first reference signal and the second reference signal are different;
  • the processing module 701 is further configured to demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or demodulate the second data signal according to the second reference signal to obtain The demodulated second data signal.
  • the processing module 701 is used to determine when the multi-user superimposed transmission MUST function of the network device is turned on, and is specifically used to receive a first message from the network device.
  • the first message may include status indication information. The information can be used to indicate that the MUST function is on.
  • the processing module 701 is configured to determine that when the multi-user superimposed transmission MUST function of the network device is turned on, it is specifically configured to receive a first message from the network device.
  • the first message may include first power information, and A power information can be used to indicate power allocation information between the first data signal and the second data signal; according to the power allocation information, it is determined that the MUST function of the network device is in an on state.
  • the processing module 701 is configured to determine that when the multi-user superimposed transmission MUST function of the network device is turned on, it is specifically configured to receive a first message from the network device, and the first message may include the second power information;
  • the second power information determines the power allocation information between the first data signal and the second data signal; according to the power allocation information, it is determined that the MUST function of the network device is in an on state.
  • the processing module 701 is configured to demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or, according to the second reference signal, the second data signal
  • the processing module 701 is configured to demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or, according to the second reference signal, the second data signal
  • it is specifically used to demodulate the first data signal according to the first reference signal and power allocation information to obtain the demodulated first data signal
  • the second data signal is demodulated according to the second reference signal and the power allocation information to obtain a demodulated second data signal.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value can be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may further include first modulation information, and the first modulation information may be used to indicate the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the first message may further include second modulation information; the processing module 701 may also be configured to determine the modulation mode of the first data signal and the modulation mode of the second data signal according to the second modulation information.
  • the processing module 701 is configured to demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or, according to the second reference signal, the second data signal When performing demodulation to obtain the demodulated second data signal, it is specifically used to demodulate the first data signal according to the modulation mode of the first reference signal and the first data signal to obtain the demodulated first data signal, And/or, the second data signal is demodulated by the modulation mode of the second reference signal and the second data signal to obtain the second data signal after demodulation.
  • the processing module 701 is configured to demodulate the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or, according to the second reference signal, the second data signal
  • the demodulated second data signal is obtained by demodulation, it is specifically used to demodulate the first data signal according to the first reference signal, the modulation mode of the first data signal, and the modulation mode of the second data signal to obtain the solution.
  • the modulated first data signal and/or demodulate the second data signal according to the second reference signal, the modulation mode of the second data signal, and the modulation mode of the first data signal to obtain the demodulated second data signal.
  • the processing module 701 is configured to demodulate the first data signal according to the first reference signal, and when the demodulated first data signal is obtained, it is specifically configured to perform according to the first reference signal and the first data signal.
  • the modulation method of the second data signal and the modulation method of the second data signal demodulate the first data signal to obtain the demodulated first data signal; the processing module 701 is used to demodulate the second data signal according to the second reference signal to obtain
  • the demodulated second data signal is specifically used to demodulate the second data signal according to the second reference signal and the modulation mode of the second data signal to obtain the demodulated second data signal.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device 80 may include a communication interface 801, a processor 802, and a memory 803.
  • the communication interface 801, the processor 802 and the memory 803 may They are connected to each other through one or more communication buses, and may also be connected in other ways.
  • the related functions implemented by the processing module 701 and the communication module 702 shown in FIG. 7 may be implemented by the same processor 802, or may be implemented by multiple different processors 802.
  • the communication interface 801 may be used to send data and/or signaling, and receive data and/or signaling.
  • the communication interface 801 may be used to receive the first reference signal and the second reference signal from the network device.
  • the communication interface can be a transceiver.
  • the processor 802 is configured to perform corresponding functions of the terminal device in the methods described in FIGS. 2a to 4.
  • the processor 802 may include one or more processors.
  • the processor 802 may be one or more central processing units (CPU), network processors (NP), hardware chips, or any of them. combination.
  • the processor 802 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 803 is used to store program codes and the like.
  • the memory 803 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM); the memory 803 may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory).
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • read-only memory read-only memory
  • ROM read-only memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • memory 803 may also include a combination of the foregoing types of memories.
  • the processor 802 may call the program code stored in the memory 803 to perform the following operations:
  • the processor 802 when the processor 802 determines that the multi-user superimposed transmission MUST function of the network device is in the on state, it specifically performs the following operations to receive the first message from the network device.
  • the first message may include status indication information. The information can be used to indicate that the MUST function is on.
  • the processor 802 when the processor 802 executes to determine that the multi-user superimposed transmission MUST function of the network device is in the on state, it specifically executes the following operations to receive the first message from the network device.
  • the first message may include first power information, and A power information can be used to indicate power allocation information between the first data signal and the second data signal; according to the power allocation information, it is determined that the MUST function of the network device is in an on state.
  • the processor 802 when the processor 802 determines that the multi-user superimposed transmission MUST function of the network device is in the on state, the processor 802 specifically performs the following operations to receive the first message from the network device, and the first message may include the second power information;
  • the second power information determines the power allocation information between the first data signal and the second data signal; according to the power allocation information, it is determined that the MUST function of the network device is in an on state.
  • the processor 802 performs demodulation on the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or performs the demodulation on the second data signal according to the second reference signal
  • the following operations are specifically performed: demodulate the first data signal according to the first reference signal and power allocation information to obtain the demodulated first data signal, and/or , Demodulate the second data signal according to the second reference signal and the power allocation information to obtain the demodulated second data signal.
  • the power allocation information may include any one of the following information: among the first resource particles that simultaneously carry the first data signal and the second data signal, the energy allocated to the first data signal and the allocation The ratio of energy to the second data signal; in the first resource particle, the ratio of the energy allocated to the second data signal to the energy allocated to the first data signal; in the first resource particle, the ratio of the energy allocated to the first data signal Or the ratio of the energy allocated to the second data signal to the total energy of the first resource particle; the ratio of the first value to the second value, the first value may be the resource particles that carry the first data signal and is allocated to the first The ratio of the energy of a data signal to the energy allocated to the first reference signal in the resource particles carrying the first reference signal.
  • the second value may be the energy allocated to the second data signal in the resource particles carrying the second data signal
  • the ratio of the energy allocated to the second reference signal among resource particles carrying the second reference signal; among the second resource particles carrying both the first data signal and the second reference signal, the energy allocated to the first data signal The ratio of the energy allocated to the second reference signal; among the third resource particles that carry both the second data signal and the first reference signal, the energy allocated to the second data signal is compared with the energy allocated to the first reference signal. proportion.
  • the first message may further include first modulation information, and the first modulation information may be used to indicate the modulation mode of the first data signal and the modulation mode of the second data signal.
  • the first message may further include second modulation information; the processor 802 may further perform the following operations: determine the modulation mode of the first data signal and the modulation mode of the second data signal according to the second modulation information.
  • the processor 802 performs demodulation on the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or performs the demodulation on the second data signal according to the second reference signal
  • the following operations are specifically performed: demodulate the first data signal according to the modulation mode of the first reference signal and the first data signal to obtain the demodulated first data signal
  • the second data signal is demodulated by the modulation mode of the second reference signal and the second data signal to obtain the second data signal after demodulation.
  • the processor 802 performs demodulation on the first data signal according to the first reference signal to obtain the demodulated first data signal, and/or performs the demodulation on the second data signal according to the second reference signal
  • the following operations are specifically performed: demodulate the first data signal according to the first reference signal, the modulation method of the first data signal, and the modulation method of the second data signal to obtain The demodulated first data signal and/or demodulate the second data signal according to the second reference signal, the modulation mode of the second data signal, and the modulation mode of the first data signal to obtain the demodulated second Data signal.
  • the processor 802 when the processor 802 performs demodulation of the first data signal according to the first reference signal to obtain the demodulated first data signal, it specifically performs the following operations: according to the first reference signal and the first data signal.
  • the modulation method of the signal and the modulation method of the second data signal demodulate the first data signal to obtain the demodulated first data signal; the processor 802 performs demodulation of the second data signal according to the second reference signal to obtain
  • the following operations are specifically performed: demodulate the second data signal according to the second reference signal and the modulation mode of the second data signal to obtain the demodulated second data signal.
  • the processor 802 may also perform operations corresponding to the terminal device in the embodiment shown in FIG. 2a to FIG. 4. For details, please refer to the description in the method embodiment, which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, which can be used to store computer software instructions used by the communication device in the embodiment shown in FIG. 5, which includes a program for executing the program designed for the network device in the above embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium, which can be used to store computer software instructions used by the communication device in the embodiment shown in FIG. 7, which includes a program for executing the terminal device in the above embodiment.
  • the aforementioned computer-readable storage medium includes, but is not limited to, flash memory, hard disk, and solid state hard disk.
  • the embodiments of the present application also provide a computer program product.
  • the computer product When the computer product is run by a computing device, it can execute the method designed for the network device in the embodiment of FIG. 2a to FIG. 4 above.
  • the embodiments of the present application also provide a computer program product.
  • the computer product When the computer product is run by a computing device, it can execute the method designed for the terminal device in the embodiments of FIGS. 2a to 4 above.
  • An embodiment of the present application also provides a chip, including a processor and a memory, the memory includes a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory.
  • the computer program is used to implement the method in the above method embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another website site via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) , Computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种参考信号传输方法及通信装置,该方法可以应用于广播或多播通信系统,该方法包括:网络设备确定多用户叠加传输MUST功能处于开启状态;网络设备广播第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;第一参考信号用于解调第一数据信号,第二参考信号用于解调第二数据信号。通过实施本申请实施例,有利于提高无线通信系统的数据传输速率。

Description

一种参考信号传输方法及通信装置
本申请要求于2019年6月28日提交中国专利局、申请号为201910584071.3、申请名称为“一种参考信号传输方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号传输方法及通信装置。
背景技术
无线通信系统主要分为单播、广播和多播(组播)3种数据传输方式,在广播或多播通信系统中,一个数据信号可以被多个终端接收。网上视频会议、移动终端视频点播等新兴业务均采用了广播或多播传输方式。
参考信号(reference signal,RS)是由发射端提供给接收端用于信道估计或信道探测的一种信号,对于移动终端,其信道容易发生快速变化,时域密度更大的RS能更好的进行信道估计;而对于固定终端,其信道变化较慢,不需要时域密度太大的RS就可以估计信道。
但是目前在广播或多播通信系统中,针对移动终端和固定终端所采用的RS的时域密度是相同的,对于移动终端,RS的时域密度越大能更好的进行信道估计,而对于固定终端,RS的时域密度越大会使得用于传输数据的资源粒子(resource element,RE)越少,这样会导致无线通信系统的数据传输速率较低。
发明内容
本申请实施例提供了一种参考信号传输方法及通信装置,有利于提高无线通信系统的数据传输速率。
第一方面,本申请实施例提供了一种参考信号传输方法,该方法可以应用于广播或多播通信系统,该方法包括:网络设备确定多用户叠加传输MUST功能处于开启状态;网络设备广播第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;第一参考信号用于解调第一数据信号,第二参考信号用于解调第二数据信号。
在该技术方案中,相较于现有技术在广播或多播通信系统中,针对移动终端和固定终端采用相同的RS时域密度,第一参考信号的资源密度大于第二参考信号的资源密度时,可以减少用于承载第二参考信号的RE的数量,即可以降低其中一种参考信号的开销,从而有利于提高无线通信系统的数据传输速率。
在一种实现方式中,资源密度不同可以包括时域密度不同、频域密度不同或空域密度不同中的一种或多种。
在一种实现方式中,在资源密度不同包括时域密度不同的情况下,第二参考信号的时域密度小于第一参考信号的时域密度,第二参考信号占用的时域位置可以是第一参考信号占用的时域位置的子集。
在该技术方案中,若第二参考信号的时域密度小于第一参考信号的时域密度时,第二 参考信号占用的时域位置不是第一参考信号占用的时域位置的真子集,将会使得同时承载有参考信号和数据信号的RE数量增加,这样会使得参考信号对数据信号的解调造成干扰,从而导致数据信号解调的成功率降低。换言之,若第二参考信号的时域密度小于第一参考信号的时域密度时,第二参考信号占用的时域位置是第一参考信号占用的时域位置的真子集,可以尽量降低参考信号对数据信号的解调造成的干扰,从而有利于提高解调数据信号的成功率。
在一种实现方式中,在资源密度不同包括频域密度不同的情况下,第二参考信号的频域密度小于第一参考信号的频域密度,第二参考信号占用的频域位置可以是第一参考信号占用的频域位置的子集。
在该技术方案中,可以尽量降低参考信号对数据信号的解调造成的干扰,从而有利于提高解调数据信号的成功率。
在一种实现方式中,在资源密度不同包括空域密度不同的情况下,第二参考信号的空域密度小于第一参考信号的空域密度,第二参考信号占用的空域位置可以是第一参考信号占用的空域位置的子集。
在该技术方案中,可以尽量降低参考信号对数据信号的解调造成的干扰,从而有利于提高解调数据信号的成功率。
在一种实现方式中,该方法还可以包括:网络设备广播第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在该技术方案中,通过广播第一消息,网络设备可以告知广播或多播通信系统中的所有终端设备MUST功能的状态。
在一种实现方式中,该方法还可以包括:网络设备广播第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,该方法还可以包括:网络设备广播第一消息,第一消息可以包括第二功率信息,第二功率信息可以用于确定第一数据信号与第二数据信号之间的功率分配信息;该功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,功率分配信息还可以用于确定MUST功能处于开启状态。
在该技术方案中,相较于在第一消息中单独包括状态指示信息以确定MUST功能的状态的方式,根据第一消息中的第一功率信息(或者第二功率信息)确定第一数据信号与第二数据信号之间的功率分配信息,进一步的,可以根据功率分配信息确定MUST功能处于开启状态,通过这种方式,可以减少第一消息中的数据量,有利于提高传输第一消息的效率,从而有利于提高无线通信系统的数据传输速率。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号 的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
在一种实现方式中,第一消息还可以包括第二调制信息,第二调制信息可以用于确定第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
第二方面,本申请实施例提供了另一种参考信号传输方法,该方法可以应用于广播或多播通信系统,该方法包括:终端设备确定网络设备的多用户叠加传输MUST功能处于开启状态;终端设备接收来自网络设备的第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
在该技术方案中,相较于现有技术在广播或多播通信系统中,针对移动终端和固定终端采用相同的RS时域密度,第一参考信号的资源密度大于第二参考信号的资源密度时,可以减少用于承载第二参考信号的RE的数量,即可以降低其中一种参考信号的开销,从而有利于提高无线通信系统的数据传输速率。
在一种实现方式中,终端设备确定网络设备的多用户叠加传输MUST功能处于开启状态的具体实施方式可以为:终端设备接收来自网络设备的第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,终端设备确定网络设备的多用户叠加传输MUST功能处于开启状态的具体实施方式可以为:终端设备接收来自网络设备的第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在该技术方案中,相较于在第一消息中单独包括状态指示信息以确定MUST功能的状态的方式,根据第一消息中的第一功率信息确定第一数据信号与第二数据信号之间的功率分配信息,进一步的,可以根据功率分配信息确定MUST功能处于开启状态,通过这种方 式,可以减少第一消息中的数据量,有利于提高传输第一消息的效率,从而有利于提高无线通信系统的数据传输速率。
在一种实现方式中,终端设备确定网络设备的多用户叠加传输MUST功能处于开启状态的具体实施方式可以为:终端设备接收来自网络设备的第一消息,第一消息可以包括第二功率信息;根据第二功率信息确定第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在该技术方案中,相较于在第一消息中单独包括状态指示信息以确定MUST功能的状态的方式,根据第一消息中的第二功率信息确定第一数据信号与第二数据信号之间的功率分配信息,进一步的,可以根据功率分配信息确定MUST功能处于开启状态,通过这种方式,可以减少第一消息中的数据量,有利于提高传输第一消息的效率,从而有利于提高无线通信系统的数据传输速率。
在一种实现方式中,终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:终端设备根据第一参考信号和功率分配信息对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号和功率分配信息对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,第一消息还可以包括第二调制信息;该方法还可以包括:终端设备根据第二调制信息确定第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:终端设备根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,所述第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,终端设备根据第一参考信号对第一数据信号进行解调,得到解调 后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:终端设备根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号、第二数据信号的调制方式和第一数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号的具体实施方式可以为:终端设备根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号;终端设备根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:终端设备根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
第三方面,本申请实施例提供了一种通信装置,该装置可以应用于广播或多播通信系统,该装置可以是网络设备,也可以是网络设备的一部分。该装置可以包括处理模块和通信模块,处理模块可以用于确定多用户叠加传输MUST功能处于开启状态;通信模块可以用于广播第一参考信号和第二参考信号;其中,第一参考信号与第二参考信号的资源密度不同;第一参考信号用于解调第一数据信号,第二参考信号用于解调第二数据信号。
在一种实现方式中,资源密度不同可以包括时域密度不同、频域密度不同或空域密度不同中的一种或多种。
在一种实现方式中,在资源密度不同包括时域密度不同的情况下,第二参考信号的时域密度小于第一参考信号的时域密度,第二参考信号占用的时域位置是第一参考信号占用的时域位置的子集。
在一种实现方式中,在资源密度不同包括频域密度不同的情况下,第二参考信号的频域密度小于第一参考信号的频域密度,第二参考信号占用的频域位置是第一参考信号占用的频域位置的子集。
在一种实现方式中,在资源密度不同包括空域密度不同的情况下,第二参考信号的空域密度小于第一参考信号的空域密度,第二参考信号占用的空域位置是第一参考信号占用的空域位置的子集。
在一种实现方式中,通信模块还可以用于广播第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,通信模块还可以用于广播第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,通信模块还可以用于广播第一消息,第一消息可以包括第二功率信息,第二功率信息可以用于确定第一数据信号与第二数据信号之间的功率分配信息;该功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,功率分配信息还可以用于确定MUST功能处于开启状态。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二 数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
在一种实现方式中,第一消息还可以包括第二调制信息,第二调制信息可以用于确定第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
第四方面,本申请实施例提供了另一种通信装置,该装置可以应用于广播或多播通信系统,该装置可以是终端设备,也可以是终端设备的一部分。该装置可以包括处理模块和通信模块,处理模块可以用于确定网络设备的多用户叠加传输MUST功能处于开启状态;通信模块可以用于接收来自网络设备的第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;处理模块还用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理模块用于确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体用于接收来自网络设备的第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,处理模块用于确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体用于接收来自网络设备的第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,处理模块用于确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体用于接收来自网络设备的第一消息,第一消息可以包括第二功率信息;根 据第二功率信息确定第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,处理模块用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体用于根据第一参考信号和功率分配信息对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号和功率分配信息对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,第一消息还可以包括第二调制信息;处理模块还可以用于根据第二调制信息确定第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,处理模块用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体用于根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,所述第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理模块用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体用于根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号、第二数据信号的调制方式和第一数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理模块用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号时,具体用于根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号;处理模块用于根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体用于 根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
第五方面,本申请实施例提供一种计算机可读存储介质,用于储存为第三方面所述的通信装置所用的计算机程序指令,其包含用于执行上述第一方面所涉及的程序。
第六方面,本申请实施例提供一种计算机可读存储介质,用于储存为第四方面所述的通信装置所用的计算机程序指令,其包含用于执行上述第二方面所涉及的程序。
第七方面,本申请实施例提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备的一部分。该通信装置包括存储器和处理器,存储器中存储有程序指令,处理器调用存储器中存储的程序指令以执行以下操作:确定多用户叠加传输MUST功能处于开启状态;广播第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;第一参考信号用于解调第一数据信号,第二参考信号用于解调第二数据信号。
在一种实现方式中,资源密度不同可以包括时域密度不同、频域密度不同或空域密度不同中的一种或多种。
在一种实现方式中,在资源密度不同包括时域密度不同的情况下,第二参考信号的时域密度小于第一参考信号的时域密度,第二参考信号占用的时域位置是第一参考信号占用的时域位置的子集。
在一种实现方式中,在资源密度不同包括频域密度不同的情况下,第二参考信号的频域密度小于第一参考信号的频域密度,第二参考信号占用的频域位置是第一参考信号占用的频域位置的子集。
在一种实现方式中,在资源密度不同包括空域密度不同的情况下,第二参考信号的空域密度小于第一参考信号的空域密度,第二参考信号占用的空域位置是第一参考信号占用的空域位置的子集。
在一种实现方式中,处理器还可以执行以下操作:广播第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,处理器具体可以执行以下操作:广播第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,处理器具体可以执行以下操作:广播第一消息,第一消息可以包括第二功率信息,第二功率信息可以用于确定第一数据信号与第二数据信号之间的功率分配信息;该功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,功率分配信息还可以用于确定MUST功能处于开启状态。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的 资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
在一种实现方式中,第一消息还可以包括第二调制信息,第二调制信息可以用于确定第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
第八方面,本申请实施例提供另一种通信装置,该通信装置可以是终端设备,也可以是终端设备的一部分。该通信装置包括存储器和处理器,存储器中存储有程序指令,处理器调用存储器中存储的程序指令以执行以下操作:确定网络设备的多用户叠加传输MUST功能处于开启状态;接收来自网络设备的第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理器执行确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体执行以下操作:接收来自网络设备的第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,处理器执行确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体执行以下操作接收来自网络设备的第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,处理器执行确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体执行以下操作接收来自网络设备的第一消息,第一消息可以包括第二功率信息;根据第二功率信息确定第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,处理器执行根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体执行以下操作:根据第一参考信号和功率分配信息对第一数据信号 进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号和功率分配信息对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,第一消息还可以包括第二调制信息;处理器还可以执行以下操作:根据第二调制信息确定第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,处理器执行根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体执行以下操作:根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,所述第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理器执行根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体执行以下操作:根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号、第二数据信号的调制方式和第一数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理器执行根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号时,具体执行以下操作:根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号;处理器802执行根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体执行以下操作:根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
第九方面,本申请实施例提供一种计算机程序产品,该程序产品包括程序,所述程序被通信装置执行时,使得所述通信装置实现上述第一方面所述的方法。
第十方面,本申请实施例提供一种计算机程序产品,该程序产品包括程序,所述程序 被通信装置执行时,使得所述通信装置实现上述第二方面所述的方法。
第十一方面,本申请实施例提供了一种参考信号传输方法,该方法可以应用于广播或多播通信系统,该方法包括:确定多用户叠加传输MUST功能处于开启状态;广播第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;第一参考信号用于解调第一数据信号,第二参考信号用于解调第二数据信号。
在一种实现方式中,资源密度不同可以包括时域密度不同、频域密度不同或空域密度不同中的一种或多种。
在一种实现方式中,在资源密度不同包括时域密度不同的情况下,第二参考信号的时域密度小于第一参考信号的时域密度,第二参考信号占用的时域位置可以是第一参考信号占用的时域位置的子集。
在一种实现方式中,在资源密度不同包括频域密度不同的情况下,第二参考信号的频域密度小于第一参考信号的频域密度,第二参考信号占用的频域位置可以是第一参考信号占用的频域位置的子集。
在一种实现方式中,在资源密度不同包括空域密度不同的情况下,第二参考信号的空域密度小于第一参考信号的空域密度,第二参考信号占用的空域位置可以是第一参考信号占用的空域位置的子集。
在一种实现方式中,该方法还可以包括:广播第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,该方法还可以包括:广播第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,该方法还可以包括:广播第一消息,第一消息可以包括第二功率信息,第二功率信息可以用于确定第一数据信号与第二数据信号之间的功率分配信息;该功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,功率分配信息还可以用于确定MUST功能处于开启状态。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示 第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
在一种实现方式中,第一消息还可以包括第二调制信息,第二调制信息可以用于确定第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
第十二方面,本申请实施例提供了另一种参考信号传输方法,该方法可以应用于广播或多播通信系统,该方法包括:确定网络设备的多用户叠加传输MUST功能处于开启状态;接收来自网络设备的第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,确定网络设备的多用户叠加传输MUST功能处于开启状态的具体实施方式可以为:接收来自网络设备的第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,确定网络设备的多用户叠加传输MUST功能处于开启状态的具体实施方式可以为:接收来自网络设备的第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,确定网络设备的多用户叠加传输MUST功能处于开启状态的具体实施方式可以为:接收来自网络设备的第一消息,第一消息可以包括第二功率信息;根据第二功率信息确定第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:根据第一参考信号和功率分配信息对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号和功率分配信息对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号 的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,第一消息还可以包括第二调制信息;该方法还可以包括:根据第二调制信息确定第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,所述第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号、第二数据信号的调制方式和第一数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号的具体实施方式可以为:根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号;根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
附图说明
图1a是本申请实施例公开的一种通信系统的架构示意图;
图1b是本申请实施例公开的一种第一参考信号的时域密度大于第二参考信号的时域密度的场景示意图;
图2a是本申请实施例公开的一种参考信号传输方法的流程示意图;
图2b是本申请实施例公开的一种用于承载第一参考信号的RE在时域方向上非均匀排列的示意图;
图3是本申请实施例公开的另一种参考信号传输方法的流程示意图;
图4是本申请实施例公开的又一种参考信号传输方法的流程示意图;
图5是本申请实施例公开的一种通信装置的结构示意图;
图6是本申请实施例公开的另一种通信装置的结构示意图;
图7是本申请实施例公开的又一种通信装置的结构示意图;
图8是本申请实施例公开的又一种通信装置的结构示意图。
具体实施方式
为了便于理解,介绍本申请涉及的基本概念。
1、广播/多播
广播是指向特定的范围内发送数据,该范围内的所有设备均可以接收到相同的数据。
多播(也称多址广播或组播)只把数据发送给特定的多播组,且只有加入该多播组的设备才能接收到该数据。多播与广播的区别是作为参与者的设备可以自己决定是否加入多播组。
2、多用户叠加传输(multiuser superposition transmission,MUST)
MUST在发送端通过功率分配算法给用户分配发射功率,主动引入干扰信息,多个用户通过功率域复用实现非正交发送,在接收端通过串行干扰消除算法进行干扰消除以实现正确解调。换言之,通过MUST传输技术可以在重叠的时频资源上传输两个物理信道,以实现单流数据传输两个用户信息的功能。
3、参考信号
参考信号是由发送端提供给接收端用于信道估计或信道探测的一种信号。长期演进(long term evolution,LTE)的参考信号可以分为上行参考信号和下行参考信号,本申请实施例中的参考信号指下行参考信号。
下行参考信号的作用可以包括但不限于如下几个方面:①下行信道估计,用于UE端的相干检测和解调;②下行信道质量测量(信道探测);③小区搜索。
本申请实施例中的下行参考信号可以包括但不限于解调参考信号(demodulation reference signal,DMRS)、小区参考信号(cell reference signal,CRS)、多媒体广播多播单频网参考信号(multimedia broadcast multicast service single frequency network-reference signal,MBSFN-RS)、移动台特定的参考信号(user equipmentspecific reference signal,UE-specificRS)和信道状态信息参考信号(channel state information-reference signal,CSI-RS)中的任意一种。
其中,DMRS在LTE中可以用于物理上行共享信道(physical uplink shared channel,PUSCH)和物理上行控制信道(physical uplink control channel,PUCCH)的相关解调。CRS(也称公共参考信号)可以用于下行信道估计以及非波束成形(beamforming)模式下的解调。MBSFN-RS可以用于多媒体广播多播单频网(multimedia broadcast multicast service single frequency network,MBSFN)的信道估计和相关解调。UE-specificRS可以用于不基于码本的波束赋形技术的信道估计和相关解调,移动台特定指的是这个参考信号与一个特定的移动台对应。CSI-RS可以用于信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)和秩指示(rank indication,RI)等信道信息的测量。
4、资源粒子RE
RE(也称资源元素)是LTE物理资源中最小的资源单位。1个RE在时域表示1个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,在频域表示1个子载波。
为了更好的理解本申请实施例公开的一种参考信号传输方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1a,图1a是本申请实施例公开的一种通信系统的架构示意图。如图1a所示,该通信系统包括:基站101、第一终端设备102、第二终端设备103和第三终端设备104。基站101、第一终端设备102、第二终端设备103和第三终端设备104可以组成一个广播或多播通信系统。
其中,基站101可以具有MUST功能,当基站101开启MUST功能时,基站101可以广播第一参考信号和第二参考信号,其中,第一参考信号的资源密度与第二参考信号的资源密度可以不同,参考信号(如第一参考信号或第二参考信号)的资源密度可以指在一个资源块中承载该参考信号的资源的数量与该资源块包括的资源数量的比值。
可选的,第一参考信号的资源密度与第二参考信号的资源密度不同可以包括:第一参考信号的时域密度与第二参考信号的时域密度不同,第一参考信号的频域密度与第二参考信号的频域密度不同或第一参考信号的空域密度与第二参考信号的空域密度不同中的一种或多种。
以图1b所示的第一参考信号的时域密度大于第二参考信号的时域密度为例进行说明,当图1b中左图(和右图)的坐标系内的所有方格构成一个时频资源组时,图1b中左图表示第一参考信号在一个时频资源组中的排列示意图,图1b中右图表示第二参考信号在一个时频资源组中的排列示意图。其中,横向表示时域,纵向表示频域,一个方格表示一个RE。左图中灰色填充RE表示该RE承载有第一参考信号,左图中白色RE表示该RE承载有第一数据信号,右图中灰色填充RE表示该RE承载有第二参考信号,右图中白色RE表示该RE承载有第二数据信号。
由图1b可知,在时域方向上,用于承载第一参考信号的RE数量为6个,用于承载第二参考信号的RE数量为2个,在频域方向上,用于承载第一参考信号的RE数量与用于承载第二参考信号的RE数量均为2个,因此,第一参考信号的时域密度大于第二参考信号的时域密度,第一参考信号的频域密度与第二参考信号的频域密度相同。
需要说明的是,图1a所示广播或多播通信系统既可以包括移动终端也可以包括固定终端,相较于现有技术在广播或多播通信系统中,针对移动终端和固定终端采用相同的RS时域密度,在本申请实施例中,第一参考信号的资源密度大于第二参考信号的资源密度时,可以减少用于承载第二参考信号的RE的数量,即可以增加用于承载第二参考信号对应的第二数据信号的RE的数量。也就是说,第一参考信号和第二参考信号的时域密度不同,可以降低其中一种参考信号的开销,从而有利于提高无线通信系统的数据传输速率。同理可知,第一参考信号和第二参考信号的频域密度不同,可以降低其中一种参考信号的开销;第一参考信号和第二参考信号的空域密度不同,可以降低其中一种参考信号的开销。综上,第一参考信号和第二参考信号的资源密度不同,可以降低其中一种参考信号的开销,从而 有利于提高无线通信系统的数据传输速率。
基站101广播第一参考信号和第二参考信号之后,相应的,上述广播或多播通信系统中的终端设备(即第一终端设备102、第二终端设备103和第三终端设备104)可以接收第一参考信号和第二参考信号,其中,第一参考信号可以用于解调第一参考信号对应的第一数据信号,第二参考信号可以用于解调第二参考信号对应的第二数据信号。
需要说明的是,第一数据信号和第二数据信号是通过不同的物理信道传输的,由于不同物理信道的信道质量不同,因此可能会使得上述广播或多播通信系统中的部分终端设备接收到的第一数据信号(或者第二数据信号)的信号质量较差,从而导致无法正确解调第一数据信号(或者第二数据信号)。也就是说,上述广播或多播通信系统中的部分终端设备仅能正确解调第一数据信号和第二数据信号中的一个,而另一部分终端设备可以正确解调第一数据信号和第二数据信号。
还需要说明的是,当基站101开启MUST功能时,可以使用MUST技术在重叠的时频资源上传输第一参考信号和第二参考信号,并在重叠的时频资源上传输第一数据信号和第二数据信号。以图1b为例,图1b的左图中左下角RE承载的第一参考信号和图1b的右图中左下角RE承载的第二参考信号占用的时频资源相同,图1b的左图中右下角RE承载的第一数据信号和图1b的右图中右下角RE承载的第二数据信号占用的时频资源相同,也就是说,图1b的左图和右图中相同位置的RE承载的信号占用的时频资源相同。
其中,第一终端设备102(或第二终端设备103、第三终端设备104)是用户侧的一种用于接收或发射信号的实体,具体的,第一终端设备102(或第二终端设备103、第三终端设备104)可以是用户设备(user equipment,UE)、远程终端、移动终端、无线通信设备、用户装置等,其中,用户设备可以是手机、台式电脑、笔记本电脑或可穿戴设备等。
需要说明的是,图1a中所示广播或多播通信系统由第一终端设备102、第二终端设备103和第三终端设备104这3个终端设备组成仅用于举例,并不构成对本申请实施例的限定,在其他可行的实现方式中,本申请实施例中的广播或多播通信系统还可以由2个、4个或其他数量的终端设备组成。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的参考信号传输方法及通信装置进行详细地介绍。
请参见图2a,图2a是本申请实施例提供的一种参考信号传输方法的流程示意图,该方法可以应用于广播或多播通信系统,该方法可以包括但不限于如下步骤:
步骤S201:网络设备确定多用户叠加传输MUST功能处于开启状态。
在本申请实施例中,若网络设备的MUST功能处于开启状态,则网络设备可以使用MUST技术传输两种参考信号(即第一参考信号和第二参考信号);若网络设备的MUST功能处于关闭状态,则网络设备可以使用传统的广播或多播技术传输第一参考信号和/或第二参考信号。
其中,网络设备可以是网络侧的一种用于发射或接收信号的实体,例如,网络设备可以是接入网设备(如图1a中的基站101)。
在一种实现方式中,网络设备可以根据显式或者隐式的信息确定MUST功能处于开启状态,在另一种实现方式中,MUST功能也可以是类似的其它状态指示,可选的,该状态指示用于指示多个用户可以叠加传输的状态。
步骤S202:网络设备广播第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同。
具体的,网络设备确定MUST功能处于开启状态之后,可以广播第一参考信号和第二参考信号,需要说明的是,网络设备广播第一参考信号和第二参考信号是指向前述广播或多播通信系统中的所有终端设备广播第一参考信号和第二参考信号,图2a所示网络设备向一个终端设备发送第一参考信号和第二参考信号仅用于举例说明,并不构成对本申请实施例的限定,在其他可行的实现方式中,若广播或多播通信系统包括5个终端设备,则网络设备可以向这5个终端设备广播第一参考信号和第二参考信号。其中,第一参考信号可以用于解调第一数据信号,第二参考信号可以用于解调第二数据信号。需要说明的是,第一参考信号和第二参考信号可以通过不同的物理信道传输,相应的,第一参考信号对应的第一数据信号和第二参考信号对应的第二数据信号可以通过不同的物理信道传输,因此,上述广播或多播通信系统中的终端设备接收到第一参考信号和第二参考信号之后,可以根据第一参考信号对用于传输第一数据信号的物理信道进行信道估计,进而根据信道估计结果对接收到的第一数据信号进行解调;并根据第二参考信号对用于传输第二数据信号的物理信道进行信道估计,进而根据信道估计结果对接收到的第二数据信号进行解调。
可选的,第一参考信号的资源密度与第二参考信号的资源密度不同可以包括:第一参考信号的时域密度与第二参考信号的时域密度不同,第一参考信号的频域密度与第二参考信号的频域密度不同或第一参考信号的空域密度与第二参考信号的空域密度不同中的一种或多种。
其中,第一参考信号的时域密度与第二参考信号的时域密度不同可以指:在时域方向上,用于承载第一参考信号的RE数量与用于承载第二参考信号的RE数量不同。需要说明的是,用于承载第一参考信号的RE在时域方向上可以均匀排列,也可以非均匀排列,用于承载第一参考信号的RE在时域方向上均匀排列是指:在时域方向上,每相隔相同数量的未承载有第一参考信号的RE出现一个承载有第一参考信号的RE。以图1b的左图为例,在时域方向上,每相隔1个未承载有第一参考信号的RE(即图中白色RE)出现一个承载有第一参考信号的RE(即图中灰色填充RE)。用于承载第一参考信号的RE在时域方向上非均匀排列是指:在时域方向上承载有第一参考信号的两个相邻的RE中,前一个承载有第一参考信号的RE与后一个承载有第一参考信号的RE之间相隔的未承载有第一参考信号的RE的数量不一定相同。以图2b所示的用于承载第一参考信号的RE在时域方向上非均匀排列的示意图为例,由图2b可知,在时域方向上,第一个承载有第一参考信号的RE(即图中白色RE)与第二个承载有第一参考信号的RE之间相隔的未承载有第一参考信号的RE(即图中灰色填充RE)的数量为1个,第二个承载有第一参考信号的RE与第三个承载有第一参考信号的RE之间相隔的未承载有第一参考信号的RE的数量也为1个,但第 三个承载有第一参考信号的RE与第四个承载有第一参考信号的RE之间相隔的未承载有第一参考信号的RE的数量为5个。可见,在时域方向上承载有第一参考信号的两个相邻的RE中,前一个承载有第一参考信号的RE与后一个承载有第一参考信号的RE之间相隔的未承载有第一参考信号的RE的数量不一定相同。在一种实现方式中,当用于承载第一参考信号的RE在时域方向上均匀排列,且用于承载第二参考信号的RE在时域方向上均匀排列时,第一参考信号的时域密度与第二参考信号的时域密度不同可以指:在时域方向上,每相隔n1个未承载有第一参考信号的RE出现一个承载有第一参考信号的RE,每相隔m1个未承载有第二参考信号的RE出现一个承载有第二参考信号的RE,其中,n1和m1不同。
第一参考信号的频域密度与第二参考信号的频域密度不同可以指:在频域方向上,用于承载第一参考信号的RE数量与用于承载第二参考信号的RE数量不同。需要说明的是,用于承载第一参考信号的RE在频域方向上可以均匀排列,也可以非均匀排列。用于承载第一参考信号的RE在频域方向上均匀排列是指:在频域方向上,每相隔相同数量的未承载有第一参考信号的RE出现一个承载有第一参考信号的RE。用于承载第一参考信号的RE在频域方向上非均匀排列是指:在频域方向上承载有第一参考信号的两个相邻的RE中,前一个承载有第一参考信号的RE与后一个承载有第一参考信号的RE之间相隔的未承载有第一参考信号的RE的数量不一定相同。在一种实现方式中,当用于承载第一参考信号的RE在频域方向上均匀排列,且用于承载第二参考信号的RE在频域方向上均匀排列时,第一参考信号的频域密度与第二参考信号的频域密度不同可以指:在频域方向上,每相隔n2个未承载有第一参考信号的RE出现一个承载有第一参考信号的RE,每相隔m2个未承载有第二参考信号的RE出现一个承载有第二参考信号的RE,其中,n2和m2不同。
第一参考信号的空域密度与第二参考信号的空域密度不同可以指:用于发送第一参考信号的波束资源与用于发送第二参考信号的波束资源不同。
在一种实现方式中,在第一参考信号与第二参考信号的资源密度不同包括第一参考信号与第二参考信号的时域密度不同的情况下,若第二参考信号的时域密度小于第一参考信号的时域密度,则第二参考信号占用的时域位置可以是第一参考信号占用的时域位置的子集。例如,以图1b为例,在图1b的右图中第二参考信号占用的时域位置(即图中灰色填充RE)是在图1b的左图中第一参考信号占用的时域位置(即图中灰色填充RE)的真子集。
若第二参考信号的时域密度小于第一参考信号的时域密度时,第二参考信号占用的时域位置不是第一参考信号占用的时域位置的真子集,将会使得参考信号对数据信号的解调造成干扰(如第一参考信号对第二数据信号的解调造成干扰和第二参考信号对第一数据信号的解调造成干扰)。例如,以图1b为例,在时域方向上,左图中每相隔1个未承载有第一参考信号的RE出现一个承载有第一参考信号的RE,右图中每相隔5个未承载有第二参考信号的RE出现一个承载有第二参考信号的RE,由图1b可知,第二参考信号占用的时域位置是第一参考信号占用的时域位置的真子集,此时,同时承载有参考信号和数据信号的RE(即同时承载有第一参考信号和第二数据信号的RE)有4个;若在时域方向上,每相隔1个未承载有第一参考信号的RE出现一个承载有第一参考信号的RE,每相隔6个未承载有第二参考信号的RE出现一个承载有第二参考信号的RE(即图1b的右图中在时域方向上的第二个灰色填充RE向时域方向移动一个RE),即第二参考信号占用的时域位置 不是第一参考信号占用的时域位置的真子集,此时,同时承载有参考信号和数据信号的RE(即同时承载有第一参考信号和第二数据信号的RE有5个,同时承载有第二参考信号和第一数据信号的RE有1个)有6个。可见,若第二参考信号的时域密度小于第一参考信号的时域密度时,第二参考信号占用的时域位置不是第一参考信号占用的时域位置的真子集,将会使得同时承载有参考信号和数据信号的RE数量增加,这样会使得参考信号对数据信号的解调造成干扰,从而导致数据信号解调的成功率降低。换言之,若第二参考信号的时域密度小于第一参考信号的时域密度时,第二参考信号占用的时域位置是第一参考信号占用的时域位置的真子集,可以尽量降低参考信号对数据信号的解调造成的干扰,从而有利于提高解调数据信号的成功率。
同理,在第一参考信号与第二参考信号的资源密度不同包括第一参考信号与第二参考信号的时域密度不同的情况下,若第一参考信号的时域密度小于第二参考信号的时域密度,则第一参考信号占用的时域位置可以是第二参考信号占用的时域位置的真子集。
在一种实现方式中,在第一参考信号与第二参考信号的资源密度不同包括第一参考信号与第二参考信号的频域密度不同的情况下,若第二参考信号的频域密度小于第一参考信号的频域密度,则第二参考信号占用的频域位置可以是第一参考信号占用的频域位置的子集(或真子集)。同理,若第一参考信号的频域密度小于第二参考信号的频域密度,则第一参考信号占用的频域位置可以是第二参考信号占用的频域位置的子集(或真子集)。通过这种方式,可以尽量降低参考信号对数据信号的解调造成的干扰,从而有利于提高解调数据信号的成功率。
在一种实现方式中,在第一参考信号与第二参考信号的资源密度不同包括第一参考信号与第二参考信号的空域密度不同的情况下,若第二参考信号的空域密度小于第一参考信号的空域密度,则第二参考信号占用的空域位置可以是第一参考信号占用的空域位置的子集(或真子集)。同理,若第一参考信号的空域密度小于第二参考信号的空域密度,则第一参考信号占用的空域位置可以是第二参考信号占用的空域位置的子集(或真子集)。通过这种方式,可以尽量降低参考信号对数据信号的解调造成的干扰,从而有利于提高解调数据信号的成功率。
在一种实现方式中,当使用MUST技术在重叠的时频资源上传输第一参考信号和第二参考信号时,可以针对第一参考信号和第二参考信号采用不同的编码序列,相应的,终端设备可以通过编码序列来区分第一参考信号和第二参考信号;同理,当使用MUST技术在重叠的时频资源上传输第一数据信号和第二数据信号时,可以针对第一数据信号和第二数据信号采用不同的编码序列,相应的,终端设备可以通过编码序列来区分第一数据信号和第二数据信号。
在本申请实施例中,网络设备确定MUST功能处于开启状态之后,可以广播第一参考信号和第二参考信号,并广播第一数据信号和第二数据信号,以使上述广播或多播通信系统中的终端设备可以根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
步骤S203:终端设备确定网络设备的MUST功能处于开启状态。
在本申请实施例中,网络设备在开启MUST功能后,可以向前述广播或多播通信系统 中的终端设备广播第一消息,该第一消息可以包括状态指示信息,状态指示信息可以用于指示网络设备的MUST功能处于开启状态或者关闭状态。在一种实现方式中,网络设备可以根据固定周期广播第一消息,或者,网络设备可以仅在MUST功能的状态发生变化时,才广播第一消息。
具体的,终端设备可以根据来自网络设备的第一消息确定MUST功能处于开启状态。可选的,若终端设备接收到第一消息,且第一消息中的状态指示信息用于指示网络设备的MUST功能处于开启状态时,在从接收到第一消息的时刻对应的周期内,终端设备可以确定网络设备的MUST功能处于开启状态。例如,若周期为24小时,终端设备在6月5日早上8点接收到第一消息,且第一消息中的状态指示信息用于指示网络设备的MUST功能处于开启状态,则终端设备在6月5日早上8点到6月6日早上8点期间,可以确定网络设备的MUST功能处于开启状态。可选的,终端设备接收到第一消息之后,可以存储第一消息,并根据存储的第一消息确定MUST功能的状态,需要说明的是,终端设备存储的第一消息可以是终端设备最新接收到的第一消息。也就是说,在未接收到新的第一消息之前,终端设备可以根据上一次接收到的第一消息中的状态指示信息确定MUST功能的状态。
其中,终端设备可以是广播或多播通信系统中的任意一个设备(如图1a中的第一终端设备102、第二终端设备103或第三终端设备104)。
步骤S204:终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
具体的,终端设备确定网络设备的MUST功能处于开启状态之后,可以接收来自网络设备的第一参考信号和第二参考信号,以及第一数据信号和第二数据信号,若第一参考信号、第二参考信号、第一数据信号和第二数据信号的信号质量较好,则可以根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,并根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。若终端设备接收到来自网络设备的第一参考信号、第二参考信号、第一数据信号和第二数据信号,且第一数据信号的信号质量较好,第二数据信号的信号质量较差而无法正确解调第二数据信号,则可以根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号。若终端设备接收到来自网络设备的第一参考信号、第二参考信号、第一数据信号和第二数据信号,且第二数据信号的信号质量较好,第一数据信号的信号质量较差而无法正确解调第一数据信号,则可以根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
需要说明的是,上述步骤中至少有部分步骤之间是可以没有先后顺序的,例如,步骤S203可以先于步骤S202发生,本申请不做限定。
相较于现有技术在广播或多播通信系统中,针对移动终端和固定终端采用相同的RS时域密度,在本申请实施例中,第一参考信号的资源密度大于第二参考信号的资源密度,可以减少用于承载第二参考信号的RE的数量,即可以降低其中一种参考信号的开销,从而有利于提高无线通信系统的数据传输速率。
请参见图3,图3是本申请实施例提供的另一种参考信号传输方法的流程示意图,该 方法详细描述了根据网络设备广播的第一消息确定MUST功能处于开启状态,该方法可以包括但不限于如下步骤:
步骤S301:网络设备确定多用户叠加传输MUST功能处于开启状态。
需要说明的是,步骤S301的执行过程可参见图2a中步骤S201的具体描述,在此不赘述。
步骤S302:网络设备广播第一消息,第一消息包括状态指示信息,状态指示信息用于指示MUST功能处于开启状态。
具体的,网络设备确定MUST功能处于开启状态之后,可以向前述广播或多播通信系统中的所有终端设备广播第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态或者关闭状态。通过广播第一消息,网络设备可以告知前述广播或多播通信系统中的所有终端设备MUST功能的状态。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式。在一种实现方式中,网络设备对第一数据信号对应的编码比特进行调制,得到第一数据信号;并对第二数据信号对应的编码比特进行调制,得到第二数据信号的具体实施方式可以为:根据第一数据信号的调制方式对第一数据信号对应的编码比特进行调制,得到第一数据信号;并根据第二数据信号的调制方式对第二数据信号对应的编码比特进行调制,得到第二数据信号。因此,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号。
在一种实现方式中,网络设备对第一数据信号对应的编码比特进行调制,得到第一数据信号;并对第二数据信号对应的编码比特进行调制,得到第二数据信号的具体实施方式可以为:根据第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号对应的编码比特以及第二数据信号对应的编码比特进行混合调制,得到混合调制信号,混合调制信号包括第一数据信号和第二数据信号。此时,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号。
在一种实现方式中,网络设备对第一数据信号对应的编码比特进行调制,得到第一数据信号;并对第二数据信号对应的编码比特进行调制,得到第二数据信号的具体实施方式可以为:根据第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号对应的编码比特进行调制,得到第一数据信号;并根据第二数据信号的调制方式对第二数据信号对应的编码比特进行调制,得到第二数据信号。此时,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
在一种实现方式中,网络设备对第一数据信号对应的编码比特进行调制,得到第一数据信号;并对第二数据信号对应的编码比特进行调制,得到第二数据信号的具体实施方式可以为:根据第一数据信号的调制方式对第一数据信号对应的编码比特进行调制,得到第一数据信号;并根据第一数据信号的调制方式和第二数据信号的调制方式对第二数据信号对应的编码比特进行调制,得到第二数据信号。此时,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号。
在一种实现方式中,第一消息可以单独包括状态指示信息和第一调制信息,即终端设备在接收到第一消息之后,可以从第一消息中直接提取出状态指示信息和第一调制信息。在一种实现方式中,第一消息中的状态指示信息和第一调制信息可以包括在一起,即终端设备在接收到第一消息之后,可以从第一消息中提取出合并信息,该合并信息包括状态指示信息和第一调制信息,进一步从合并信息中分别提取出状态指示信息和第一调制信息。例如,当合并信息为两位二进制数时,可以采用两位二进制数来表示MUST功能的状态和第一调制信息,以表1所示的第一消息为例,“00”可以表示MUST功能处于关闭状态,此时不需要给出第一调制信息;“01”-“11”可以表示MUST功能处于开启状态以及对应的第一调制信息。需要说明的是,上述合并信息为两位二进制数仅用于举例,以及第一数据信号和第二数据信号的调制方式仅用于举例,并不构成对本申请实施例的限定。
表1第一消息
Figure PCTCN2020098103-appb-000001
在一种实现方式中,第一消息可以直接包括第一数据信号的调制方式和第二数据信号的调制方式,即终端设备可以从第一消息中直接提取出第一调制信息,且可以从第一调制信息中直接提取出第一数据信号的调制方式和第二数据信号的调制方式。
直接包括可以有如下两种方式:第一种,第一消息直接包括第一数据信号的调制方式和第二数据信号的调制方式,比如第一数据信号的调制方式为QPSK,第二数据信号的调制方式为16QAM;第二种,第一消息直接包括第一数据信号的调制和编码方案(modulation and coding scheme,MCS)信息和和第二数据信号的MCS信息,终端设备接收到第一消息之后,可以根据MCS表格推算出第一数据信号的调制方式和第二数据信号的调制方式,例如,若MCS表格如表2所示,MCS信息为MCS索引,且第一数据信号的MCS索引为1,第二数据信号的MCS索引为3时,终端设备根据表2可以确定第一数据信号的调制方式为QPSK,第二数据信号的调制方式为16QAM。需要说明的是,终端设备本地存储器中可以存储有MCS表格,或者终端设备可以从云端或者从网络设备中获取MCS表格。
表2 MCS表格
Figure PCTCN2020098103-appb-000002
Figure PCTCN2020098103-appb-000003
在一种实现方式中,第一消息可以间接包括第一数据信号的调制方式和第二数据信号的调制方式,具体的,第一消息除了状态指示信息以外还可以包括第二调制信息,第二调制信息可以用于确定第一数据信号的调制方式和第二数据信号的调制方式,即终端设备从第一消息中提取出第二调制信息之后,需要对第二调制信息进行处理,才能根据处理结果得到第一数据信号的调制方式和第二数据信号的调制方式。与直接包括不同的是,间接包括时,第一消息可以只包括第一数据信号或者第二数据信号中的一个信号的调制方式或者MCS信息,以及差分信息,另外一个信号(即第一数据信号或者第二数据信号)的调制方式或者MCS信息可以通过差分方式确定。例如,第一数据信号的调制方式为QPSK,第二数据信号的调制方式对应的编号与第一数据信号的调制方式对应编号的差值为1,如果网络设备与终端设备之间约定调制方式组合为{QPSK,16QAM,64QAM},那么比QPSK对应的编号大1的是16QAM对应的编号,据此可以推算出第二数据信号的调制方式为16QAM。又如,第一数据信号的调制方式为QPSK(调制阶数为2),第二数据信号的调制阶数与第一数据信号的调制阶数的差值为2,那么第二数据信号的调制阶数为2+2=4,据此可以推算出第二数据信号的调制方式为16QAM(调制阶数为4)。
在一种实现方式中,第一消息可以是无线资源控制(radio resource control,RRC)信令、系统信息(system information,SI)或下行控制信息(downlink control information,DCI)中的任意一种,本申请实施例对此不作限定。
步骤S303:终端设备根据第一消息确定网络设备的MUST功能处于开启状态。
具体的,终端设备接收到来自网络设备的第一消息之后,可以从第一消息中提取出状态指示信息,并根据状态指示信息确定MUST功能处于开启状态还是关闭状态,若MUST功能处于开启状态,终端设备可以接收来自网络设备的第一参考信号和第二参考信号。
在一种实现方式中,若第一消息还包括第一调制信息,且第一调制信息用于指示第一数据信号的调制方式和第二数据信号的调制方式,则终端设备可以从第一消息中提取出第一调制信息,以得到第一数据信号的调制方式和第二数据信号的调制方式。或者,若第一消息还包括第二调制信息,则终端设备可以从第一消息中提取出第二调制信息,并根据第二调制信息确定第一数据信号的调制方式和第二数据信号的调制方式。
步骤S304:网络设备广播第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同。
需要说明的是,步骤S304的执行过程可参见图2a中步骤S202的具体描述,在此不赘述。还需要说明的是,上述步骤中至少有部分步骤之间是可以没有先后顺序的,例如,步骤S304可以先于步骤S303发生,本申请不做限定。
步骤S305:终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
具体的,终端设备确定第一数据信号的调制方式和第二数据信号的调制方式之后,终 端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:终端设备根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,终端设备确定第一数据信号的调制方式和第二数据信号的调制方式之后,终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:终端设备根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号、第二数据信号的调制方式和第一数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,终端设备确定第一数据信号的调制方式和第二数据信号的调制方式之后,终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号的具体实施方式可以为:根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号;终端设备根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,终端设备确定第一数据信号的调制方式和第二数据信号的调制方式之后,终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号的具体实施方式可以为:根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号;终端设备根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:根据第二参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
简单来说,若终端设备接收到的第一数据信号的信号质量较好,第二数据信号的信号质量较差而无法正确解调第二数据信号,终端设备可以采用如下两种方式对第一数据信号进行解调:第一种,根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调;第二种,根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调。同理,若终端设备接收到的第二数据信号的信号质量较好,第一数据信号的信号质量较差而无法正确解调第一数据信号,终端设备可以采用如下两种方式对第二数据信号进行解调:第一种,根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调;第二种,根据第二参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第二数据信号进行解调。若终端设备接收到的第一数据信号和第二数据信号的信号质量均较好,终端设备可以采用如下四种方式对第一数据信号和第二数据信号进行解调:第一种,根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调;第二种,根据第 一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,根据第二参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第二数据信号进行解调;第三种,根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,根据第二参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第二数据信号进行解调;第四种,根据第一参考信号、第一数据信号的调制方式和第二数据信号对第一数据信号进行解调,根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调。
在一种实现方式中,网络设备可以使用不同的天线端口广播第一参考信号和第二参考信号,例如,采用天线端口4广播第一参考信号,并采用天线端口1广播第二参考信号。在一种实现方式中,网络设备可以采用默认的第一调制方式对第一数据信号对应的编码比特进行调制,并采用默认的第二调制方式对第二数据信号对应的编码比特进行调制。在一种实现方式中,若网络设备使用不同的天线端口广播第一参考信号和第二参考信号,则可以表明第一数据信号和第二数据信号均是采用对应的默认的调制方式调制的,终端设备可以采用第一参考信号和默认的第一调制方式对第一数据信号进行解调,并采用第二参考信号和默认的第二调制方式对第二数据信号进行解调。在一种实现方式中,若网络设备使用不同的天线端口广播第一参考信号和第二参考信号,则可以表明第一数据信号和第二数据信号中的一个数据信号是采用默认的调制方式调制的,第一消息可以包括另一个数据信号的调制方式,若第一消息包括了第一数据信号的调制方式,则终端设备可以采用第一参考信号和第一消息中的调制方式对第一数据信号进行解调,并采用第二参考信号和默认的第二调制方式对第二数据信号进行解调。在一种实现方式中,若网络设备广播的第一消息不包括第一调制信息或者第二调制信息,则终端设备可以采用第一参考信号和默认的第一调制方式对第一数据信号进行解调,并采用第二参考信号和默认的第二调制方式对第二数据信号进行解调。其中,默认的第一调制方式和默认的第二调制方式可以相同也可以不同,默认的第一调制方式和默认的第二调制方式可以是网络设备和上述广播或多播通信系统中的终端设备约定的。
本申请实施例还可以应用于多媒体广播多播单频网(multimedia broadcast multicast service single frequency network,MBSFN),MBSFN通过相互同步的多个小区共同发送多媒体广播多播业务(multimedia broadcast multicast service,MBMS)信号,然后在空中自然形成多小区信号的合并,在MBSFN系统中,多个小区基站发出的信号均可以被看作有用信号。在一种实现方式中,除了前述网络设备可以广播第一参考信号和第二参考信号以外,与前述网络设备属于同一MBSFN系统中的其他网络设备也可以广播第一参考信号和第二参考信号,相应的,终端设备可以接收多个网络设备发送的第一参考信号和第二参考信号,其中,MBSFN系统中的每个网络设备广播的第一参考信号和第二参考信号可以是相同的,由于终端设备与MBSFN系统中的各个网络设备之间的物理距离不同,终端设备通过接收来自多个网络设备的第一参考信号和第二参考信号,可以提高接收到的第一参考信号和第二参考信号的强度,从而有利于提高解调数据信号的成功率。
通过实施本申请实施例中,第一参考信号的资源密度大于第二参考信号的资源密度,可以减少用于承载第二参考信号的RE的数量,即可以降低其中一种参考信号的开销,从 而有利于提高无线通信系统的数据传输速率。
请参见图4,图4是本申请实施例提供的又一种参考信号传输方法的流程示意图,该方法详细阐述了第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息,功率分配信息不仅可以用于解调第一数据信号和/或第二数据信号,还可以用于确定MUST功能处于开启状态,该方法可以包括但不限于如下步骤:
步骤S401:网络设备确定多用户叠加传输MUST功能处于开启状态。
需要说明的是,步骤S401的执行过程可参见图2a中步骤S201的具体描述,在此不赘述。
步骤S402:网络设备广播第一消息,第一消息包括第一功率信息,第一功率信息用于指示第一数据信号与第二数据信号之间的功率分配信息;功率分配信息用于解调第一数据信号和/或第二数据信号。
具体的,网络设备确定MUST功能处于开启状态之后,可以向前述广播或多播通信系统中的所有终端设备广播第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息。在一种实现方式中,第一消息不包括第一功率信息时,第一消息可以包括第二功率信息,第二功率信息可以用于确定第一数据信号与第二数据信号之间的功率分配信息。其中,功率分配信息可以用于解调第一数据信号和/或第二数据信号。具体的,若终端设备接收到的第一数据信号的信号质量较好,第二数据信号的信号质量较差而无法正确解调第二数据信号,则功率分配信息可以用于解调第一数据信号。若终端设备接收到的第二数据信号的信号质量较好,第一数据信号的信号质量较差而无法正确解调第一数据信号,则功率分配信息可以用于解调第二数据信号。若终端设备接收到的第一数据信号和第二数据信号的信号质量均较好,则功率分配信息可以用于解调第一数据信号和第二数据信号。
在一种实现方式中,第一数据信号与第二数据信号之间的功率分配信息可以包括以下信息中的任意一种:1)在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;2)在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;3)在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例,例如,功率分配信息为分配给第一数据信号的能量与第一资源粒子的总能量的比例,且功率分配信息为0.5,则终端设备可以确定分配给第二数据信号的能量与第一资源粒子的总能量的比例为1-0.5=0.5,所以分配给第一数据信号的能量与分配给第二数据信号的能量的比例为1;4)第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;5)在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;6)在同时承载有第二数据信号和第一参考信号的第三资源粒子中, 分配给第二数据信号的能量与分配给第一参考信号的能量的比例;7)在第二资源粒子中,分配给第二参考信号的能量与分配给第一数据信号的能量的比例;8)在第三资源粒子中,分配给第一参考信号的能量与分配给第二数据信号的能量的比例;9)在同时承载有第一参考信号和第二参考信号的第四资源粒子中,分配给第一参考信号的能量与分配给第二参考信号的能量的比例;10)在第四资源粒子中,分配给第二参考信号的能量与分配给第一参考信号的能量的比例;11)在第四资源粒子中,分配给第一参考信号的能量或者分配给第二参考信号的能量与第四资源粒子的总能量的比例。
其中,分配给第一数据信号的能量可以指分配给承载有第一数据信号的每个资源粒子的能量(energyper resource element,EPRE),也可以指分配给承载有第一数据信号的所有资源粒子的能量。同理,分配给第二数据信号(或者第一参考信号、第二参考信号)的能量可以指分配给承载有第一数据信号(或者第一参考信号、第二参考信号)的EPRE,也可以指分配给承载有第一数据信号(或者第一参考信号、第二参考信号)的所有资源粒子的能量。
在一种实现方式中,第一消息除了包括第一功率信息或者第二功率信息以外,还可以包括状态指示信息,该状态指示信息可以用于指示MUST功能处于开启状态或者关闭状态。
具体的,终端设备接收到来自网络设备的第一消息之后,可以从第一消息中提取出第一功率信息(或者第二功率信息),并根据第一功率信息(或者第二功率信息)确定第一数据信号与第二数据信号之间的功率分配信息以及MUST功能处于开启状态还是关闭状态,若MUST功能处于开启状态,终端设备可以接收来自网络设备的第一参考信号和第二参考信号,进而根据功率分配信息解调第一数据信号和/或第二数据信号。
在本申请实施例中,第一消息包括第一功率信息时,接收到第一消息的终端设备可以从第一功率信息中直接提取出第一数据信号与第二数据信号之间的功率分配信息;第一消息包括第二功率信息时,接收到第一消息的终端设备需要对第二功率信息进行处理,才能根据处理结果确定第一数据信号与第二数据信号之间的功率分配信息。
在一种实现方式中,第二功率信息可以包括分配给第一数据信号的能量以及差分能量信息,分配给第二数据信号的能量可以根据差分方式确定。例如,分配给第一数据信号的能量为46dBm,差分能量信息为4dB,则分配给第二数据信号的能量为46dBm+4dB=50dBm。在一种实现方式中,终端设备可以根据第一数据信号的调制方式、第二数据信号的调制方式和第二功率信息确定第一数据信号与第二数据信号之间的功率分配信息,例如,第二功率信息包括功率编号,功率编号为01,且第一数据信号的调制方式默认为QPSK,第二数据信号的调制方式为16QAM时,终端设备根据表3记载的信息,可以确定分配给第一数据信号的能量与承载有第一数据信号的资源粒子的总能量的比例为32/42,分配给第二数据信号的能量与承载有第二数据信号的资源粒子的总能量的比例为1-32/42=10/42。
表3第一数据信号的调制方式默认为QPSK且第二数据信号的调制方式不同时,分配给第一数据信号的能量与承载有第一数据信号的资源粒子的总能量的比例信息表
Figure PCTCN2020098103-appb-000004
Figure PCTCN2020098103-appb-000005
需要说明的是,第一数据信号与第二数据信号之间的功率分配信息不仅可以是一个比值,还可以是一个数值,或者两个数值。例如,分配给第一数据信号的能量为3dBm(或2mW),分配给第二数据信号的能量为7dBm(或5mW),且同时承载有第一数据信号和第二数据信号的第一资源粒子的总能量为8.45dBm(或7mW)时,若第一数据信号与第二数据信号之间的功率分配信息为分配给第一数据信号的能量与分配给第二数据信号的能量的比例,此时,功率分配信息为2/5;若第一数据信号与第二数据信号之间的功率分配信息为分配给第一数据信号的能量与第一资源粒子的总能量的比例,此时,功率分配信息为2/7;若第一数据信号与第二数据信号之间的功率分配信息为分配给第一数据信号的能量与分配给第二数据信号的能量,此时,功率分配信息为2和5。
步骤S403:终端设备根据上述功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,终端设备可以根据第一消息确定MUST功能的状态,具体的,第一消息中的功率分配还可以用于确定MUST功能处于开启状态还是关闭状态,即终端设备可以根据功率分配信息确定MUST功能处于开启状态还是关闭状态。
例如,若分配给第一数据信号的能量与分配给第二数据信号的能量的比例为0,则表明分配给第一数据信号的能量为0,即网络设备并未广播第一数据信号,此时可以确定网络设备的MUST功能处于关闭状态。又如,若分配给第二数据信号的能量与第一资源粒子的总能量的比例为1,则表明第一资源粒子的总能量全部分配给第二数据信号,也就是说,网络设备并未广播第一数据信号,此时可以确定网络设备的MUST功能处于关闭状态。反之,若分配给第一数据信号的能量与分配给第二数据信号的能量的比例不为0,或者,分配给第二数据信号的能量与第一资源粒子的总能量的比例不为0或者1,则表明网络设备广播第一数据信号和第二数据信号,此时MUST功能处于开启状态。
步骤S404:网络设备广播第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同。
需要说明的是,步骤S404的执行过程可参见图2a中步骤S202的具体描述,在此不赘述。还需要说明的是,上述步骤中至少有部分步骤之间是可以没有先后顺序的,例如,步骤S404可以先于步骤S403发生,本申请不做限定。
步骤S405:终端设备根据第一参考信号和功率分配信息对第一数据信号进行解调,得到解调后的第一数据信号;和/或,根据第二参考信号和功率分配信息对第二数据信号进行解调,得到解调后的第二数据信号。
具体的,终端设备确定功率分配信息之后,终端设备根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号的具体实施方式可以为:终端设备根据第一参考信号和功率分配信息对第一数据信号进行解调,得到解调后的第一数据信号;和/或,根据第二参考信号和功率分配信息对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,第一消息还可以包括第一调制信息或者第二调制信息,终端设备确定功率分配信息、第一数据信号的调制方式和第二数据信号的调制方式之后,若终端设 备接收到的第一数据信号的信号质量较好,第二数据信号的信号质量较差而无法正确解调第二数据信号,终端设备可以采用如下两种方式对第一数据信号进行解调:第一种,根据第一参考信号、功率分配信息和第一数据信号的调制方式对第一数据信号进行解调;第二种,根据第一参考信号、功率分配信息、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调。同理,若终端设备接收到的第二数据信号的信号质量较好,第一数据信号的信号质量较差而无法正确解调第一数据信号,终端设备可以采用如下两种方式对第二数据信号进行解调:第一种,根据第二参考信号、功率分配信息和第二数据信号的调制方式对第二数据信号进行解调;第二种,根据第二参考信号、功率分配信息、第一数据信号的调制方式和第二数据信号的调制方式对第二数据信号进行解调。若终端设备接收到的第一数据信号和第二数据信号的信号质量均较好,终端设备可以采用如下四种方式对第一数据信号和第二数据信号进行解调:第一种,根据第一参考信号、功率分配信息和第一数据信号的调制方式对第一数据信号进行解调,根据第二参考信号、功率分配信息和第二数据信号的调制方式对第二数据信号进行解调;第二种,根据第一参考信号、功率分配信息、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,根据第二参考信号、功率分配信息、第一数据信号的调制方式和第二数据信号的调制方式对第二数据信号进行解调;第三种,根据第一参考信号、功率分配信息和第一数据信号的调制方式对第一数据信号进行解调,根据第二参考信号、功率分配信息、第一数据信号的调制方式和第二数据信号的调制方式对第二数据信号进行解调;第四种,根据第一参考信号、功率分配信息、第一数据信号的调制方式和第二数据信号对第一数据信号进行解调,根据第二参考信号、功率分配信息和第二数据信号的调制方式对第二数据信号进行解调。
在一种实现方式中,网络设备可以使用相同的天线端口广播第一参考信号和第二参考信号,例如,采用天线端口4广播第一参考信号和第二参考信号。在一种实现方式中,第一数据信号和第二数据信号之间的功率分配信息可以相同,即可以为第一数据信号和第二数据信号分配相同的能量。在一种实现方式中,若网络设备使用相同的天线端口广播第一参考信号和第二参考信号,则可以表明第一数据信号和第二数据信号之间的功率分配信息相同。在一种实现方式中,若网络设备广播的第一消息不包括第一功率信息或者第二功率信息,则终端设备可以确定第一数据信号和第二数据信号之间的功率分配信息是默认的功率分配信息,默认的功率分配信息可以是网络设备和上述广播或多播通信系统中的终端设备约定的,默认的功率分配信息可以指示分配给第一数据信号的能量与分配给第二数据信号的能量的比例为默认比例。
相较于在第一消息中单独包括状态指示信息以确定MUST功能的状态的方式,采用本申请实施例可以根据第一消息中的第一功率信息确定第一数据信号与第二数据信号之间的功率分配信息,进一步的,可以根据功率分配信息确定MUST功能处于开启状态,通过这种方式,可以减少第一消息中的数据量,有利于提高传输第一消息的效率,从而有利于提高无线通信系统的数据传输速率。
需要说明的是,在图2a-图4对应的方法实施例中由网络设备所执行的操作(例如步骤S201和S202,步骤S301、S302和S304,步骤S401、S402和S404)也可以由其他实体(例如芯片等)执行,在图2a-图4对应的方法实施例中由终端设备所执行的操作(例如步骤 S203和S204,步骤S303和S305,步骤S403和S405)也可以由其他实体(例如芯片等)执行。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图5,图5是本申请实施例提供的一种通信装置的结构示意图,该装置可以应用于广播或多播通信系统,通信装置50用于执行图2a-图4对应的方法实施例中网络设备所执行的步骤,通信装置50可以包括:
处理模块501,用于确定多用户叠加传输MUST功能处于开启状态;
通信模块502,用于广播第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;第一参考信号用于解调第一数据信号,第二参考信号用于解调第二数据信号。
在一种实现方式中,所述资源密度不同可以包括时域密度不同、频域密度不同或空域密度不同中的一种或多种。
在一种实现方式中,在所述资源密度不同包括时域密度不同的情况下,第二参考信号的时域密度小于第一参考信号的时域密度,第二参考信号占用的时域位置是第一参考信号占用的时域位置的子集。
在一种实现方式中,在所述资源密度不同包括频域密度不同的情况下,第二参考信号的频域密度小于第一参考信号的频域密度,第二参考信号占用的频域位置是第一参考信号占用的频域位置的子集。
在一种实现方式中,在所述资源密度不同包括空域密度不同的情况下,第二参考信号的空域密度小于第一参考信号的空域密度,第二参考信号占用的空域位置是第一参考信号占用的空域位置的子集。
在一种实现方式中,通信模块502还可以用于广播第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,通信模块502还可以用于广播第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,通信模块502还可以用于广播第一消息,第一消息可以包括第二功率信息,第二功率信息可以用于确定第一数据信号与第二数据信号之间的功率分配信息;该功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,功率分配信息还可以用于确定MUST功能处于开启状态。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的 资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
在一种实现方式中,第一消息还可以包括第二调制信息,第二调制信息可以用于确定第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
需要说明的是,图5对应的实施例中未提及的内容以及各个模块执行步骤的具体实现方式可参见图2a-图4所示实施例以及前述内容,这里不再赘述。
在一种实现方式中,图5中的各个模块所实现的相关功能可以结合处理器与通信接口来实现。参见图6,图6是本申请实施例提供的另一种通信装置的结构示意图,该通信装置60可以包括通信接口601、处理器602和存储器603,通信接口601、处理器602和存储器603可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。图5所示的处理模块501和通信模块502所实现的相关功能可以通过同一个处理器602来实现,也可以通过多个不同的处理器602来实现。
通信接口601可以用于发送数据和/或信令,以及接收数据和/或信令。应用在本申请实施例中,通信接口601可以用于广播第一参考信号和第二参考信号。通信接口可以为收发器。
处理器602被配置为执行图2a-图4所述方法中网络设备相应的功能。该处理器602可以包括一个或多个处理器,例如该处理器602可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器602是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
存储器603用于存储程序代码等。存储器603可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器603也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器603还可以包括上述种类的存储器的组合。
处理器602可以调用存储器603中存储的程序代码以执行以下操作:
确定多用户叠加传输MUST功能处于开启状态;
广播第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;第一参考信号用于解调第一数据信号,第二参考信号用于解调第二数据信号。
在一种实现方式中,所述资源密度不同可以包括时域密度不同、频域密度不同或空域密度不同中的一种或多种。
在一种实现方式中,在所述资源密度不同包括时域密度不同的情况下,第二参考信号的时域密度小于第一参考信号的时域密度,第二参考信号占用的时域位置是第一参考信号占用的时域位置的子集。
在一种实现方式中,在所述资源密度不同包括频域密度不同的情况下,第二参考信号的频域密度小于第一参考信号的频域密度,第二参考信号占用的频域位置是第一参考信号占用的频域位置的子集。
在一种实现方式中,在所述资源密度不同包括空域密度不同的情况下,第二参考信号的空域密度小于第一参考信号的空域密度,第二参考信号占用的空域位置是第一参考信号占用的空域位置的子集。
在一种实现方式中,处理器602还可以执行以下操作:广播第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,处理器602具体可以执行以下操作:广播第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,处理器602具体可以执行以下操作:广播第一消息,第一消息可以包括第二功率信息,第二功率信息可以用于确定第一数据信号与第二数据信号之间的功率分配信息;该功率分配信息可以用于解调第一数据信号和/或第二数据信号。
在一种实现方式中,功率分配信息还可以用于确定MUST功能处于开启状态。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数 据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
在一种实现方式中,第一消息还可以包括第二调制信息,第二调制信息可以用于确定第一数据信号的调制方式和第二数据信号的调制方式;第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第二数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号和第二数据信号,第二数据信号的调制方式可以用于解调第二数据信号和第一数据信号;或者,第一数据信号的调制方式可以用于解调第一数据信号,第二数据信号的调制方式可以用于解调第一数据信号和第二数据信号。
进一步地,处理器602还可以执行图2a-图4所示实施例中网络设备对应的操作,具体可参见方法实施例中的描述,在此不再赘述。
请参见图7,图7是本申请实施例提供的又一种通信装置的结构示意图,该装置可以应用于广播或多播通信系统,通信装置70用于执行图2a-图4对应的方法实施例中终端设备所执行的步骤,通信装置70可以包括:
处理模块701,用于确定网络设备的多用户叠加传输MUST功能处于开启状态;
通信模块702,用于接收来自网络设备的第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;
处理模块701,还用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理模块701用于确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体用于接收来自网络设备的第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,处理模块701用于确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体用于接收来自网络设备的第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,处理模块701用于确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体用于接收来自网络设备的第一消息,第一消息可以包括第二功率信息;根据第二功率信息确定第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,处理模块701用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体用于根据第一参考信号和功率分配信息对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号和功率分配信息对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第 一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,第一消息还可以包括第二调制信息;处理模块701还可以用于根据第二调制信息确定第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,处理模块701用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体用于根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,所述第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理模块701用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体用于根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号、第二数据信号的调制方式和第一数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理模块701用于根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号时,具体用于根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号;处理模块701用于根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体用于根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
需要说明的是,图7对应的实施例中未提及的内容以及各个模块执行步骤的具体实现方式可参见图2a-图4所示实施例以及前述内容,这里不再赘述。
在一种实现方式中,图7中的各个模块所实现的相关功能可以结合处理器与通信接口来实现。参见图8,图8是本申请实施例提供的又一种通信装置的结构示意图,该通信装置80可以包括通信接口801、处理器802和存储器803,通信接口801、处理器802和存储器803可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。图7所示 的处理模块701和通信模块702所实现的相关功能可以通过同一个处理器802来实现,也可以通过多个不同的处理器802来实现。
通信接口801可以用于发送数据和/或信令,以及接收数据和/或信令。应用在本申请实施例中,通信接口801可以用于接收来自网络设备的第一参考信号和第二参考信号。通信接口可以为收发器。
处理器802被配置为执行图2a-图4所述方法中终端设备相应的功能。该处理器802可以包括一个或多个处理器,例如该处理器802可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器802是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
存储器803用于存储程序代码等。存储器803可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器803也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器803还可以包括上述种类的存储器的组合。
处理器802可以调用存储器803中存储的程序代码以执行以下操作:
确定网络设备的多用户叠加传输MUST功能处于开启状态;
接收来自网络设备的第一参考信号和第二参考信号,其中,第一参考信号与第二参考信号的资源密度不同;
根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理器802执行确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体执行以下操作接收来自网络设备的第一消息,第一消息可以包括状态指示信息,状态指示信息可以用于指示MUST功能处于开启状态。
在一种实现方式中,处理器802执行确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体执行以下操作接收来自网络设备的第一消息,第一消息可以包括第一功率信息,第一功率信息可以用于指示第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,处理器802执行确定网络设备的多用户叠加传输MUST功能处于开启状态时,具体执行以下操作接收来自网络设备的第一消息,第一消息可以包括第二功率信息;根据第二功率信息确定第一数据信号与第二数据信号之间的功率分配信息;根据功率分配信息确定网络设备的MUST功能处于开启状态。
在一种实现方式中,处理器802执行根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体执行以下操作:根据第一参考信号和功率分配信息对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号和功率分配信息对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,功率分配信息可以包括以下信息中的任意一种:在同时承载有第一数据信号和第二数据信号的第一资源粒子中,分配给第一数据信号的能量与分配给第二 数据信号的能量的比例;在第一资源粒子中,分配给第二数据信号的能量与分配给第一数据信号的能量的比例;在第一资源粒子中,分配给第一数据信号的能量或者分配给第二数据信号的能量与第一资源粒子的总能量的比例;第一数值与第二数值的比例,第一数值可以为承载有第一数据信号的资源粒子中分配给第一数据信号的能量与承载有第一参考信号的资源粒子中分配给第一参考信号的能量的比例,第二数值可以为承载有第二数据信号的资源粒子中分配给第二数据信号的能量与承载有第二参考信号的资源粒子中分配给第二参考信号的能量的比例;在同时承载有第一数据信号和第二参考信号的第二资源粒子中,分配给第一数据信号的能量与分配给第二参考信号的能量的比例;在同时承载有第二数据信号和第一参考信号的第三资源粒子中,分配给第二数据信号的能量与分配给第一参考信号的能量的比例。
在一种实现方式中,第一消息还可以包括第一调制信息,第一调制信息可以用于指示第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,第一消息还可以包括第二调制信息;处理器802还可以执行以下操作:根据第二调制信息确定第一数据信号的调制方式和第二数据信号的调制方式。
在一种实现方式中,处理器802执行根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体执行以下操作:根据第一参考信号和第一数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,所述第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理器802执行根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体执行以下操作:根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据第二参考信号、第二数据信号的调制方式和第一数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
在一种实现方式中,处理器802执行根据第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号时,具体执行以下操作:根据第一参考信号、第一数据信号的调制方式和第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号;处理器802执行根据第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号时,具体执行以下操作:根据第二参考信号和第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
进一步地,处理器802还可以执行图2a-图4所示实施例中终端设备对应的操作,具体可参见方法实施例中的描述,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,可以用于存储图5所示实施例中通信装置所用的计算机软件指令,其包含用于执行上述实施例中为网络设备所设计的程序。
本申请实施例还提供一种计算机可读存储介质,可以用于存储图7所示实施例中通信装置所用的计算机软件指令,其包含用于执行上述实施例中为终端设备所设计的程序。
上述计算机可读存储介质包括但不限于快闪存储器、硬盘、固态硬盘。
本申请实施例还提供一种计算机程序产品,该计算机产品被计算设备运行时,可以执行上述图2a-图4实施例中为网络设备所设计的方法。
本申请实施例还提供一种计算机程序产品,该计算机产品被计算设备运行时,可以执行上述图2a-图4实施例中为终端设备所设计的方法。
在本申请实施例中还提供一种芯片,包括处理器和存储器,该存储器用包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,该计算机程序用于实现上述方法实施例中的方法。
本领域普通技术人员可以意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种参考信号传输方法,其特征在于,所述方法应用于广播或多播通信系统,所述方法包括:
    网络设备确定多用户叠加传输MUST功能处于开启状态;
    所述网络设备广播所述第一参考信号和所述第二参考信号;
    其中,所述第一参考信号与所述第二参考信号的资源密度不同;所述第一参考信号用于解调第一数据信号,所述第二参考信号用于解调第二数据信号。
  2. 根据权利要求1所述的方法,其特征在于,所述资源密度不同包括时域密度不同、频域密度不同或空域密度不同中的一种或多种。
  3. 根据权利要求2所述的方法,其特征在于,
    在所述资源密度不同包括时域密度不同的情况下,所述第二参考信号的时域密度小于所述第一参考信号的时域密度,所述第二参考信号占用的时域位置是所述第一参考信号占用的时域位置的子集。
  4. 根据权利要求2所述的方法,其特征在于,
    在所述资源密度不同包括频域密度不同的情况下,所述第二参考信号的频域密度小于所述第一参考信号的频域密度,所述第二参考信号占用的频域位置是所述第一参考信号占用的频域位置的子集。
  5. 根据权利要求2所述的方法,其特征在于,
    在所述资源密度不同包括空域密度不同的情况下,所述第二参考信号的空域密度小于所述第一参考信号的空域密度,所述第二参考信号占用的空域位置是所述第一参考信号占用的空域位置的子集。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述网络设备广播所述第一参考信号和所述第二参考信号之前,所述方法还包括:
    所述网络设备广播第一消息,所述第一消息包括状态指示信息,所述状态指示信息用于指示所述多用户叠加传输MUST功能处于开启状态。
  7. 根据权利要求1~5任一项所述的方法,其特征在于,所述网络设备广播所述第一参考信号和所述第二参考信号之前,所述方法还包括:
    所述网络设备广播第一消息,所述第一消息包括第一功率信息,所述第一功率信息用于指示所述第一数据信号与所述第二数据信号之间的功率分配信息;所述功率分配信息用于解调所述第一数据信号和/或所述第二数据信号。
  8. 根据权利要求1~5任一项所述的方法,其特征在于,所述网络设备广播所述第一参考信号和所述第二参考信号之前,所述方法还包括:
    所述网络设备广播第一消息,所述第一消息包括第二功率信息,所述第二功率信息用于确定所述第一数据信号与所述第二数据信号之间的功率分配信息;所述功率分配信息用于解调所述第一数据信号和/或所述第二数据信号。
  9. 根据权利要求7或8所述的方法,其特征在于,所述功率分配信息还用于确定所述多用户叠加传输MUST功能处于开启状态。
  10. 根据权利要求7~9任一项所述的方法,其特征在于,所述功率分配信息包括以下信息中的任意一种:
    在同时承载有所述第一数据信号和所述第二数据信号的第一资源粒子中,分配给所述第一数据信号的能量与分配给所述第二数据信号的能量的比例;
    在所述第一资源粒子中,分配给所述第二数据信号的能量与分配给所述第一数据信号的能量的比例;
    在所述第一资源粒子中,分配给所述第一数据信号的能量或者分配给所述第二数据信号的能量与所述第一资源粒子的总能量的比例;
    第一数值与第二数值的比例,所述第一数值为承载有所述第一数据信号的资源粒子中分配给所述第一数据信号的能量与承载有所述第一参考信号的资源粒子中分配给所述第一参考信号的能量的比例,所述第二数值为承载有所述第二数据信号的资源粒子中分配给所述第二数据信号的能量与承载有所述第二参考信号的资源粒子中分配给所述第二参考信号的能量的比例;
    在同时承载有所述第一数据信号和所述第二参考信号的第二资源粒子中,分配给所述第一数据信号的能量与分配给所述第二参考信号的能量的比例;
    在同时承载有所述第二数据信号和所述第一参考信号的第三资源粒子中,分配给所述第二数据信号的能量与分配给所述第一参考信号的能量的比例。
  11. 根据权利要求6~10任一项所述的方法,其特征在于,所述第一消息还包括第一调制信息,所述第一调制信息用于指示所述第一数据信号的调制方式和所述第二数据信号的调制方式;所述第一数据信号的调制方式用于解调所述第一数据信号,所述第二数据信号的调制方式用于解调所述第二数据信号;或者,所述第一数据信号的调制方式用于解调所述第一数据信号和所述第二数据信号,所述第二数据信号的调制方式用于解调所述第二数据信号和所述第一数据信号;或者,所述第一数据信号的调制方式用于解调所述第一数据信号,所述第二数据信号的调制方式用于解调所述第一数据信号和所述第二数据信号。
  12. 根据权利要求6~10任一项所述的方法,其特征在于,所述第一消息还包括第二调制信息,所述第二调制信息用于确定所述第一数据信号的调制方式和所述第二数据信号的调制方式;所述第一数据信号的调制方式用于解调所述第一数据信号,所述第二数据信号的调制方式用于解调所述第二数据信号;或者,所述第一数据信号的调制方式用于解调所述第一数据信号和所述第二数据信号,所述第二数据信号的调制方式用于解调所述第二数据信号和所述第一数据信号;或者,所述第一数据信号的调制方式用于解调所述第一数据信号,所述第二数据信号的调制方式用于解调所述第一数据信号和所述第二数据信号。
  13. 一种参考信号传输方法,其特征在于,所述方法应用于广播或多播通信系统,所述方法包括:
    终端设备确定网络设备的多用户叠加传输MUST功能处于开启状态;
    接收来自所述网络设备的第一参考信号和第二参考信号,其中,所述第一参考信号与所述第二参考信号的资源密度不同;
    所述终端设备根据所述第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据所述第二参考信号对第二数据信号进行解调,得到解调后的第二数据 信号。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备确定网络设备的多用户叠加传输MUST功能处于开启状态,包括:
    所述终端设备接收来自所述网络设备的第一消息,所述第一消息包括状态指示信息,所述状态指示信息用于指示所述多用户叠加传输MUST功能处于开启状态。
  15. 根据权利要求13所述的方法,其特征在于,所述终端设备确定网络设备的多用户叠加传输MUST功能处于开启状态,包括:
    所述终端设备接收来自所述网络设备的第一消息,所述第一消息包括第一功率信息,所述第一功率信息用于指示所述第一数据信号与所述第二数据信号之间的功率分配信息;
    所述终端设备根据所述功率分配信息确定所述网络设备的多用户叠加传输MUST功能处于开启状态。
  16. 根据权利要求13所述的方法,其特征在于,所述终端设备确定网络设备的多用户叠加传输MUST功能处于开启状态,包括:
    所述终端设备接收来自所述网络设备的第一消息,所述第一消息包括第二功率信息;
    所述终端设备根据所述第二功率信息确定所述第一数据信号与所述第二数据信号之间的功率分配信息;
    所述终端设备根据所述功率分配信息确定所述网络设备的多用户叠加传输MUST功能处于开启状态。
  17. 根据权利要求15或16所述的方法,其特征在于,所述终端设备根据所述第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据所述第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号,包括:
    所述终端设备根据所述第一参考信号和所述功率分配信息对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据所述第二参考信号和所述功率分配信息对第二数据信号进行解调,得到解调后的第二数据信号。
  18. 根据权利要求15~17任一项所述的方法,其特征在于,所述功率分配信息包括以下信息中的任意一种:
    在同时承载有所述第一数据信号和所述第二数据信号的第一资源粒子中,分配给所述第一数据信号的能量与分配给所述第二数据信号的能量的比例;
    在所述第一资源粒子中,分配给所述第二数据信号的能量与分配给所述第一数据信号的能量的比例;
    在所述第一资源粒子中,分配给所述第一数据信号的能量或者分配给所述第二数据信号的能量与所述第一资源粒子的总能量的比例;
    第一数值与第二数值的比例,所述第一数值为承载有所述第一数据信号的资源粒子中分配给所述第一数据信号的能量与承载有所述第一参考信号的资源粒子中分配给所述第一参考信号的能量的比例,所述第二数值为承载有所述第二数据信号的资源粒子中分配给所述第二数据信号的能量与承载有所述第二参考信号的资源粒子中分配给所述第二参考信号的能量的比例;
    在同时承载有所述第一数据信号和所述第二参考信号的第二资源粒子中,分配给所述 第一数据信号的能量与分配给所述第二参考信号的能量的比例;
    在同时承载有所述第二数据信号和所述第一参考信号的第三资源粒子中,分配给所述第二数据信号的能量与分配给所述第一参考信号的能量的比例。
  19. 根据权利要求14~18任一项所述的方法,其特征在于,所述第一消息还包括第一调制信息,所述第一调制信息用于指示所述第一数据信号的调制方式和所述第二数据信号的调制方式。
  20. 根据权利要求14~18任一项所述的方法,其特征在于,所述第一消息还包括第二调制信息,所述方法还包括:
    所述终端设备根据所述第二调制信息确定所述第一数据信号的调制方式和所述第二数据信号的调制方式。
  21. 根据权利要求19或20所述的方法,其特征在于,所述终端设备根据所述第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据所述第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号,包括:
    所述终端设备根据所述第一参考信号和所述第一数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据所述第二参考信号和所述第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
  22. 根据权利要求19或20所述的方法,其特征在于,所述终端设备根据所述第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据所述第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号,包括:
    所述终端设备根据所述第一参考信号、所述第一数据信号的调制方式和所述第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号,和/或,根据所述第二参考信号、所述第二数据信号的调制方式和所述第一数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
  23. 根据权利要求19或20所述的方法,其特征在于,所述终端设备根据所述第一参考信号对第一数据信号进行解调,得到解调后的第一数据信号,包括:
    所述终端设备根据所述第一参考信号、所述第一数据信号的调制方式和所述第二数据信号的调制方式对第一数据信号进行解调,得到解调后的第一数据信号;
    所述终端设备根据所述第二参考信号对第二数据信号进行解调,得到解调后的第二数据信号,包括:
    所述终端设备根据所述第二参考信号和所述第二数据信号的调制方式对第二数据信号进行解调,得到解调后的第二数据信号。
  24. 一种通信装置,其特征在于,所述通信装置应用于广播或多播通信系统,所述通信装置包括处理器和存储器,所述存储器中存储有程序指令,所述处理器调用所述存储器中存储的程序指令以使得所述通信装置执行如权利要求1-12任一项所述的方法。
  25. 一种通信装置,其特征在于,所述通信装置应用于广播或多播通信系统,所述通信装置包括处理器和存储器,所述存储器中存储有程序指令,所述处理器调用所述存储器中存储的程序指令以使得所述通信装置执行如权利要求13~23任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机 程序,所述计算机程序包括程序指令,所述程序指令当被通信装置执行时使所述通信装置执行如权利要求1~12任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被通信装置执行时使所述通信装置执行如权利要求13~23任一项所述的方法。
PCT/CN2020/098103 2019-06-28 2020-06-24 一种参考信号传输方法及通信装置 WO2020259583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910584071.3A CN112152765B (zh) 2019-06-28 2019-06-28 一种参考信号传输方法及通信装置
CN201910584071.3 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020259583A1 true WO2020259583A1 (zh) 2020-12-30

Family

ID=73891382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098103 WO2020259583A1 (zh) 2019-06-28 2020-06-24 一种参考信号传输方法及通信装置

Country Status (2)

Country Link
CN (1) CN112152765B (zh)
WO (1) WO2020259583A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208959A1 (en) * 2015-06-22 2016-12-29 Samsung Electronics Co., Ltd. Method and apparatus for multiuser superposition transmission
CN106304302A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 在must系统中用于指示及获得功率分配信息的方法和装置
WO2018062648A1 (ko) * 2016-09-29 2018-04-05 엘지전자 주식회사 무선통신 시스템에서 경쟁 기반 비직교 다중 접속을 수행하는 방법 및 이를 위한 장치
WO2018182233A1 (ko) * 2017-03-30 2018-10-04 엘지전자 주식회사 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치
WO2018211800A1 (ja) * 2017-05-18 2018-11-22 ソニー株式会社 送信装置、受信装置、方法及び記録媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845206B (zh) * 2016-08-11 2022-02-25 弗劳恩霍夫应用研究促进协会 使用多用户叠加编码的传输概念
EP3609280B1 (en) * 2017-05-18 2021-06-23 LG Electronics Inc. Method and apparatus for transmitting uplink data on basis of contention in wireless communication system
WO2019028885A1 (zh) * 2017-08-11 2019-02-14 南通朗恒通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304302A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 在must系统中用于指示及获得功率分配信息的方法和装置
WO2016208959A1 (en) * 2015-06-22 2016-12-29 Samsung Electronics Co., Ltd. Method and apparatus for multiuser superposition transmission
WO2018062648A1 (ko) * 2016-09-29 2018-04-05 엘지전자 주식회사 무선통신 시스템에서 경쟁 기반 비직교 다중 접속을 수행하는 방법 및 이를 위한 장치
WO2018182233A1 (ko) * 2017-03-30 2018-10-04 엘지전자 주식회사 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치
WO2018211800A1 (ja) * 2017-05-18 2018-11-22 ソニー株式会社 送信装置、受信装置、方法及び記録媒体

Also Published As

Publication number Publication date
CN112152765A (zh) 2020-12-29
CN112152765B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US11122645B2 (en) Systems and methods for constellation superposition
JP7423880B2 (ja) ネットワークアシスト干渉相殺及び抑制のためのネットワークシグナリング
CN107707342B (zh) 支持演进型节点b间的协作多点的方法
US10469239B2 (en) System and method for semi-orthogonal multiple access
US8755807B2 (en) Semi-static resource allocation to support coordinated multipoint (CoMP) transmission in a wireless communication network
US20180019794A1 (en) Systems and methods for downlink control information for multiple-user superposition transmission
EP3512112A1 (en) Method and apparatus for use in data transmission
TWI446741B (zh) 用於支援單用戶多輸入多輸出(su-mimo)和多用戶mimo(mu-mimo)的方法和裝置
US10659927B2 (en) Signal transmission method and apparatus
US9392615B2 (en) Methods and devices for allocating resources in device-to-device communication
CN105191194B (zh) 信道质量指示的配置方法和装置
US9986543B2 (en) Allocation of communication resources
WO2015021229A1 (en) Method and system of advanced interference cancellation on pdsch at the ue
US20190081760A1 (en) Channel state information feedback method and apparatus
WO2019011307A1 (zh) 通信方法和设备
WO2018028467A1 (zh) 传输块的发送方法和装置、接收方法和装置
WO2014043902A1 (zh) 下行控制信息传输的方法、网络侧设备及用户设备
WO2018210095A1 (zh) 一种功率控制方法及设备
US11115882B2 (en) Data transmission method, apparatus, and system
WO2020259583A1 (zh) 一种参考信号传输方法及通信装置
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2020098662A1 (zh) 发送和接收物理下行控制信道的方法以及通信装置
WO2016161616A1 (zh) 一种分配网络资源的方法、装置和基站
EP4013101A1 (en) Method and device for determining transport block size
CN117321940A (zh) 混合自动重传请求反馈的增强

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831943

Country of ref document: EP

Kind code of ref document: A1