WO2018030685A1 - 무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 - Google Patents

무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 Download PDF

Info

Publication number
WO2018030685A1
WO2018030685A1 PCT/KR2017/008127 KR2017008127W WO2018030685A1 WO 2018030685 A1 WO2018030685 A1 WO 2018030685A1 KR 2017008127 W KR2017008127 W KR 2017008127W WO 2018030685 A1 WO2018030685 A1 WO 2018030685A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
grassmannian
terminal
quantized
represented
Prior art date
Application number
PCT/KR2017/008127
Other languages
English (en)
French (fr)
Inventor
이호재
이상림
김기준
김병훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/323,586 priority Critical patent/US10771205B2/en
Publication of WO2018030685A1 publication Critical patent/WO2018030685A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J2013/165Joint allocation of code together with frequency or time

Definitions

  • the present disclosure relates to wireless communication, and more particularly, to a method for performing communication using a non-orthogonal code multiple access scheme and a device using the same.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • the purpose of a wireless communication system is to allow a large number of terminals to perform reliable communication regardless of location and mobility.
  • a wireless communication system is a multiple access system capable of supporting communication with a plurality of terminals by sharing available radio resources.
  • radio resources include time, frequency, code, transmit power, and the like.
  • multiple access systems include time division multiple access (TDMA) systems, code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the present disclosure provides a method and apparatus for performing communication using a non-orthogonal code multiple access scheme in a wireless communication system.
  • the present specification proposes a method and apparatus for performing communication using a non-orthogonal code multiple access scheme in a wireless communication system.
  • the apparatus includes a radio frequency (RF) unit for transmitting and receiving radio signals and a processor coupled to the RF unit.
  • RF radio frequency
  • the quantized non-orthogonal codebook may correspond to the quantized Grassmannian sequence.
  • the codebook used in the conventional NCMA method is a codeword for solving the Grassmannian line packing problem, and thus, a number of bits are required because it is represented by a complex form of coefficient.
  • this embodiment proposes a technique that can express coefficients with only a few bits while maintaining the characteristics of Grassmannian sequence using quantized non-orthogonal codebook.
  • the terminal receives control information from the base station.
  • the control information includes information on a codeword consisting of a grassmannian sequence.
  • the codeword is included in a codebook defined for the non-orthogonal code multiple access scheme. That is, the predefined codebook may correspond to a predefined non-orthogonal codebook between the terminal and the base station.
  • the control information may further include a codebook index corresponding to a UE specific non-orthogonal code cover (NCC), a codeword index in the corresponding codebook, and an MCS level.
  • NCC non-orthogonal code cover
  • the control information may be transmitted through the PDCCH.
  • the control information may be transmitted through a UL scheduling grant.
  • the control information may be known as a higher layer signal in the RRC step.
  • the control information may be promised in advance at the transmitting and receiving end according to a rule promised in advance.
  • a previously promised rule means that when the overlap coefficient K of the entire codebook is fixedly used or known as a broadcast channel, the UE-specific NCC index can be recognized by the C-RNTI information of the terminal and the modulo operation of K. Can be.
  • Each coefficient of the grassmannian sequence is quantized based on Quadrature Amplitude Modulation (M-QAM) constellation.
  • M is the quantization level.
  • the quantization method is described in detail as follows.
  • the quantized grassmannian sequence is generated by quantizing each coefficient of the grassmannian sequence in an in-phase quadrature-phase domain with an M-QAM constellation having a minimum Euclidean distance with each coefficient of the grassmannian sequence. Can be.
  • the grassmannian sequence may be scaled to the mean value of the magnitude of the M-QAM constellation and normalized to the mean value of the magnitude of each coefficient of the codeword before being quantized to the M-QAM constellation. have. That is, the mean value for the magnitude of all coefficients of the Grassmannian sequence and the mean value for the magnitude of the M-QAM constellation are quantized at the same level. Each coefficient of the grassmannian sequence, which has been scaled and normalized, can be quantized independently.
  • the grassmannian sequence may include a sequence set in which the minimum chord distance formed by any two vectors in the same subspace is maximized, a sequence set in which cross-correlation between sequences is kept the same, and It may be included in a non-constant-modulus sequence set. That is, the grassmannian sequence has all the characteristics of the three sequence sets. Even if the grassmannian sequence is quantized, the characteristics of the grassmannian sequence are retained.
  • the quantized grassmannian sequence may correspond to the codebook C configured in the (N ⁇ K) dimension.
  • N may be a spreading factor and K may be a superposition factor.
  • the K may correspond to the number of terminals performing the multiple access scheme.
  • the quantized grassmannian sequence may be represented in a detailed codebook form as follows.
  • the quantized grassmannian sequence may be represented by a first matrix when M is 64, N is 2, and K is 2 as follows.
  • the quantized grassmannian sequence may be represented by a second matrix when M is 64, N is 2, and K is 4 as follows.
  • P no, N, and K may be represented as a normalized matrix for power limitation as follows.
  • P no, K may be represented as follows.
  • C may correspond to a column vector of the first to seventh matrices.
  • the first to seventh matrices may correspond to the codebook C.
  • the terminal modulates or demodulates a UE specific non-orthogonal code cover (NCC) based on the control information.
  • NCC non-orthogonal code cover
  • the terminal may demodulate the UE specific NCC through a codebook index and a codeword index included in the control information.
  • the terminal may modulate the terminal specific NCC through the codebook index and the codeword index included in the control information.
  • the terminal performs the non-orthogonal code multiple access scheme using the terminal specific NCC.
  • the method may include receiving data of the multiple terminals.
  • the terminal when the terminal performs the non-orthogonal code multiple access scheme using the terminal specific NCC, when the wireless communication system is uplink communication, the terminal uses the terminal specific NCC at the same time.
  • the method may include transmitting data of multiple terminals in frequency resources.
  • some of the quantized grassmannian sequences may be used only for a specific cell of the plurality of cells.
  • G (4, 18) three cells can select only six sequences of G (4, 18) to perform non-orthogonal code multiple access.
  • cross-correlation in a single cell may increase than G (4,6), but cross-cell interference may be maintained because cross-correlation between sequences used between cells may be maintained.
  • NMA non-orthogonal code multiple access
  • FIG. 1 illustrates a wireless communication system to which the present specification is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol structure for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol architecture for a control plane.
  • FIG. 4 is a diagram illustrating a NOMA based downlink transmission / reception (Tx / Rx) block diagram of a communication device.
  • FIG. 5 is a diagram illustrating a NOMA based uplink transmission / reception block diagram of a communication device.
  • FIG. 6 is a diagram illustrating an NCMA based downlink transmission / reception block diagram of a communication device as an example.
  • FIG. 7 is a diagram illustrating an NCMA-based uplink transmission / reception block diagram of a communication device as an example.
  • FIG. 8 is a conceptual diagram illustrating a frequency axis of data transmission by a terminal-specific NCC.
  • NCMA 9 is a diagram illustrating a basic transmission and reception structure diagram of the NCMA system.
  • 10 is a flowchart illustrating a signaling procedure of a downlink NCMA system.
  • 11 is a flowchart illustrating a signaling procedure of an uplink NCMA system.
  • FIG. 12 shows an example of quantizing a Grassmannian sequence based on the QAM constellation according to the present embodiment.
  • FIG. 13 is a diagram illustrating BLER performance based on a codebook proposed according to the present embodiment.
  • FIG. 14 is a diagram illustrating BLER performance based on a codebook proposed according to the present embodiment.
  • 15 is a diagram illustrating BLER performance based on a codebook proposed according to the present embodiment.
  • 16 is a diagram comparing CDFs of cross correlation according to non-orthogonal spreading sequences according to the present embodiment.
  • 17 is a diagram comparing CDF of cross correlation according to a non-orthogonal spreading sequence according to the present embodiment.
  • FIG. 18 is a diagram comparing CDF of cross correlation according to a non-orthogonal spreading sequence according to the present embodiment.
  • 19 is a diagram comparing the mean and the variance of the cross correlation of the Grassmannian sequence and the M-QAM quantized Grassmannian sequence according to the present embodiment.
  • 20 is a graph comparing the mean and the variance of the cross correlation of the Grassmannian sequence and the M-QAM quantized Grassmannian sequence according to the present embodiment.
  • 21 is a diagram comparing the mean and the variance of the cross correlation of the Grassmannian sequence and the M-QAM quantized Grassmannian sequence according to the present embodiment.
  • 22 is a flowchart illustrating a signaling procedure of an NCMA system based on a quantized non-orthogonal codebook according to the present embodiment.
  • FIG. 23 is a block diagram illustrating a device in which an embodiment of the present specification is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • E-UMTS Evolved UMTS
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • the radio interface between the terminal and the base station is called a Uu interface.
  • Layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • OSI Open System Interconnection
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network.
  • the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • the SRB is used as a path for transmitting RRC messages in the control plane
  • the DRB is used as a path for transmitting user data in the user plane.
  • the UE If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state. do.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • FIG. 4 is a diagram illustrating a NOMA based downlink transmission / reception (Tx / Rx) block diagram of a communication device.
  • NOMA non-orthogonal multiple access
  • MUST Multiuser Superposition Transmission
  • the NOMA system is considered as an element technology of the next generation 5G system for the purpose of gaining transmission capacity gain or increasing the number of simultaneous connections compared to the LTE system by transmitting information for multiple terminals by overlapping the same time-frequency resources.
  • next generation 5G system's NOMA series technologies include MUST to distinguish terminals based on power level, Sparse Code Multiple Access (SCMA) using Sparse Complex Codebook-based modulation, and interleave using user-specific interleaver.
  • SCMA Sparse Code Multiple Access
  • IDMA Division Multiple Access
  • the power allocation of each symbol is different, or the multi-terminal data is hierarchically modulated and transmitted based on hierarchical modulation.
  • Demodulating data hereinafter referred to as multi-terminal data
  • MOD multi-user detection
  • the transmitting end of FIG. 4 replaces the forward error correction (FEC) encoder and the modulation process with respect to the multi-terminal data by using a previously promised Sparse Complex Codebook modulation scheme, and transmits the multi-terminal data through the MUD at the receiving end.
  • FEC forward error correction
  • the transmitter of FIG. 4 modulates and transmits FEC encoding information on the terminal data through a terminal-specific interleaver and demodulates the terminal data through the MUD.
  • Each system can demodulate multi-terminal data using various MUD methods, for example Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC), and the like.
  • MUD methods for example Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC), and the like.
  • ML Maximum Likelihood
  • MAP Maximum joint A posteriori Probability
  • MPA Message Passing Algorithm
  • MCA Matched Filtering
  • SIC Successive Interference Cancellation
  • PIC Parallel Interference Cancellation
  • CWIC Codeword Interference Cancellation
  • FIG. 5 is a diagram illustrating a NOMA based uplink transmission / reception block diagram of a communication device.
  • FIG. 5 illustrates a structure of a transmitter / receiver for uplink support of a NOMA series system in which multi-terminal information (hereinafter, referred to as multi-terminal information) is allocated to the same resource and transmitted.
  • multi-terminal information hereinafter, referred to as multi-terminal information
  • Each system may transmit and demodulate the multi-terminal data in the same manner as the description of the downlink structure of FIG.
  • NOMA series systems transmit multiple terminal signals over the same time-frequency resources, they have a higher decoding error rate than LTE systems, but can support higher frequency utilization efficiency or more connectivity.
  • NOMA Non-Orthogonal Multiple Access
  • Equation 1 the signal of the k-th receiver is simply expressed by Equation 1 below.
  • h k denotes a channel from a transmitter to a k-th receiver
  • s k denotes a data symbol to a k-th receiver
  • n k denotes signal noise.
  • K is the number of multiple terminals allocated to the same time-frequency resource.
  • Equation 2 The second term of the third equation of Equation 1 ) Denotes a multi-user interference signal (MUI) by data symbols to other receivers. Therefore, simply expressing the transmission capacity by the received signal is represented by the following equation (2).
  • MUI multi-user interference signal
  • Equation 2 As K increases in the transmission capacity in Equation 2, the number of R k added increases to increase C. However, as K increases, each R k may decrease due to an increase in MUI, resulting in a decrease in total transmission capacity C. According to the MUD technique, even if the data of each terminal can be demodulated while effectively reducing the MUI, the existence of the MUI essentially reduces the overall transmission capacity and requires a high complexity MUD. If MUI generation is minimized for data transmission of multiple terminals, higher transmission capacity can be expected. Or, if it is possible to quantitatively control the MUI generation for the data transmission of the multi-terminal, it is possible to plan higher transmission capacity by scheduling for data overlap of the multi-terminal.
  • the present invention proposes a non-orthogonal coded multiple access (NCMA) method for minimizing multi-terminal interference in a next-generation 5G system.
  • NCMA non-orthogonal coded multiple access
  • FIG. 6 is a diagram illustrating an NCMA based downlink transmission / reception block diagram of a communication device
  • FIG. 7 is a diagram illustrating an NCMA based uplink transmission / reception block diagram of a communication device.
  • NCMA non-orthogonal code multiple access scheme
  • 6 and 7 illustrate a downlink of an NCMA system for overlapping transmission using a UE-specific non-orthogonal code cover (NCC) when allocating multi-terminal information to the same time-frequency resource.
  • NCC UE-specific non-orthogonal code cover
  • the structure of an uplink transceiver is a transmitter / receiver (or a transmitter / receiver) allocates a UE-specific NCC to each UE using a predefined non-orthogonal codebook.
  • the codeword referred to in the present invention refers to a complex element vector selected (or assigned) by each terminal in order to perform non-orthogonal multiple access.
  • Codebook means a set of codewords used by each terminal to perform non-orthogonal multiple access.
  • the codebook mentioned above may exist in plural numbers.
  • UE-specific NCC UE specific NCC
  • the NCC or terminal-specific NCC
  • the non-orthogonal codebook is expressed as Equation 3 below.
  • c (j) is a codeword for the j-th terminal, and the codeword set for all K terminals becomes the codebook C.
  • c (j) to transmit data of the j-th terminal is defined as NCC.
  • the codebook may be represented by a vector length N of codewords and a number K of codewords.
  • N means spreading factor
  • K means superposition factor.
  • one codeword is used in one terminal for convenience of description, but a plurality of codewords are used by one terminal or one codeword is not excluded.
  • one or more codewords assigned to one terminal may hop a codeword by using another codeword in the same codebook or using another codeword in another codebook according to time or frequency of use. have.
  • UE-specific NCC (UE Specific NCC) allocation may be allocated in connection with the UE ID (UE ID) in the RRC Connection Process, Downlink Control Information (DCI) included in the downlink control channel (for example, PDCCH) It can also be assigned via format.
  • DCI Downlink Control Information
  • the UE may randomly select a non-orthogonal codeword or select a connection with a UE identifier.
  • the UE-specific NCC is not a method assigned by the base station, but is directly selected by the terminal, and thus there may be a collision of NCCs between multiple terminals.
  • the reception base station reduces the success rate of classification of a plurality of terminal information by MUD.
  • the UE-specific NCC may be defined by Grassmannian line packing, and the chordal distance formed by any two vectors in the same subspace is always the same. In other words, It can be obtained mathematically or algorithmically as a codebook that satisfies.
  • the UE-specific NCC has a property as shown in Equation 4 below.
  • Equation 4 Is the conjugate codeword of c (k) .
  • Equation 4 The properties of Equation 4 are as follows (1), (2), (3).
  • chordal distance between one codeword and another codeword in the same codebook is the same.
  • the transmitting end / receiving party (or the transmitting side / receiving side) promises a codebook having the above characteristics in advance and configures the terminal-specific NCC
  • the chordal distance by any two codewords It has a lower bound of. Therefore, the MUI for the multi-terminal data overlapping transmission is determined to be minimized by the lower bound.
  • the chordal distances for the two arbitrary codewords are always the same, statistical prediction of the MUI is possible according to the number of terminals.
  • the decoding error rate of the receiver is predictable based on the MUI value, so that the MCS level can be controlled based on the amount of interference for multi-terminal overlapping transmission.
  • K codewords are transmitted in the (N ⁇ 1) dimension
  • the receiver decodes its own codeword
  • 1 is decoded from its own codeword
  • ⁇ N from other K-1 codewords.
  • the amount of statistical interference of K (K-1) remains. This number depends on the degree of optimization of the codebook design.
  • the number of overlapping terminals (K) or the number of used resources (N) is determined according to the required SINR or target QoS of the communication system. You can change it to control the MUI value.
  • Non-orthogonal codebook in the form of 3GPP TS 36.211 is shown in the following Table 1 and Table 2, it can be used as a UE-specific NCC (UE specific NCC).
  • FIG. 8 is a conceptual diagram illustrating a frequency axis of data transmission by a terminal-specific NCC.
  • FIG. 8 illustrates a concept of transmitting a k-th terminal data on a frequency axis through a terminal-specific NCC at a transmitting end (or transmitting side).
  • the codeword corresponding to the k-th terminal is multiplied by the data for the k-th terminal and transmitted.
  • one data symbol s k corresponds to a codeword vector c (k) having a (N ⁇ 1) dimension.
  • N elements of the codeword correspond to N subcarriers.
  • NCMA 9 is a diagram illustrating a basic transmission and reception structure diagram of the NCMA system.
  • FIG. 9 is a basic transmission and reception structure diagram of an NCMA system using a UE-specific NCC.
  • the data symbol for each terminal at the transmitting end is converted into a terminal-specific NCC corresponding to each terminal and overlapped.
  • the overlapped N-length frequency axis signal is converted into a time axis signal through N-IFFT to perform OFDM transmission, and the receiver is reconstructed into a frequency axis signal through N-FFT.
  • the recovered frequency axis signal decodes each terminal data symbol with a conjugate codeword of a terminal-specific NCC corresponding to each terminal.
  • the decoded s k may include an MUI according to the number of overlapping terminals, and accurate s k decoding is possible through a MUD method.
  • the length of the frequency axis signal converted according to the terminal-specific NCC previously defined may be shorter than N.
  • N the length of the frequency axis signal converted according to the terminal-specific NCC previously defined
  • Equation 5 a detection equation for data decoding at the k-th terminal receiving end is expressed as Equation 5 below.
  • H k denotes an (N ⁇ N) channel matrix from a k th transmitter to a receiver and includes frequency axis channel coefficients in a diagonal matrix.
  • c (k) is a (N ⁇ 1) terminal-specific NCC vector from the k th transmitter to the receiver, s k is a data symbol from the k th receiver, and n is a (N ⁇ 1) signal noise vector.
  • K is the number of multiple terminals allocated to the same time-frequency resource.
  • Equation 5 only desired codewords signals and noise remain through channel compensation, and are detected as in Equation 6 through a conjugate codeword of a terminal-specific NCC of a receiver.
  • Equation 6 the second item of the last row represents the MUI, and can be removed or reduced through the MUD method.
  • Equation 7 the detection equation for data decoding at the receiving end of the base station is expressed by Equation 7 below.
  • Equation 8 The second term of the third equation of Equation 7 represents a multi-terminal interference signal MUI by data symbols to other receivers.
  • the detection equation of the receiving end for data decoding of the k-th terminal is expressed by Equation 8 below.
  • Equation 9 the second item of the last row represents the MUI, and can be removed or reduced through the MUD method.
  • the change in the frequency axis channel of the MUI results in a change in the MUD by the UE-specific NCC.
  • the number of transmitting and receiving antennas has been described as a single piece, but it is obvious that the same method may be applied to an environment using multiple antennas.
  • the present specification proposes a signaling procedure for the above-mentioned NCMA. Specifically, a codebook information exchange method and signaling method for performing NCMA are proposed.
  • 10 is a flowchart illustrating a signaling procedure of a downlink NCMA system.
  • 11 is a flowchart illustrating a signaling procedure of an uplink NCMA system.
  • the user UE and the eNB have pre-defined non-orthogonal codebook information (S1010 and S1110).
  • a method of having pre-defined non-orthogonal codebook information may vary.
  • it may have non-orthogonal codebook information as shown in (1) and (2) below.
  • a codebook of (N ⁇ K) dimension defined by Grassmannian line packing is stored for each N and K when G (N, K).
  • Index information on non-orthogonal codebooks or basis vectors defined by the above method is defined as a codebook index.
  • the codebook index corresponding to the UE-specific NCC to be used by each user and the codeword index in the codebook are transmitted to the user as control information through fairness scheduling of the base station. (S1020, S1120). That is, NCC (codebook index, codeword index) for each user is transmitted according to the scheduling method.
  • the user uses UE specific NCC for modulation or demodulation through the received codebook index and codeword index (S1030, S1130). At this time, if the predefined codebook method corresponds to the above (1), the stored codebook is used as it is.
  • the base station and the user When the predefined codebook method corresponds to (2), the base station and the user generate and use G (N, K) based on the stored basis vector.
  • the number of codewords assigned to each user may be one or two or more. That is, for a user requiring a high data rate, it is obvious that at least two symbols can be demodulated at the receiving end by simultaneously transmitting two or more symbols through two or more codewords.
  • N and K which determine the dimension of the codebook, can be changed according to the system environment. When K is equal to or less than N, the codebook of G (N, N) is used, and the codebook G (N, N) is an Orthonormal Codebook.
  • the chord distance between each codeword is defined as described above and may be defined as MUI.
  • the base station is capable of resource management based on the MUI value in fair scheduling (Fairness Scheduling), and determines the MCS Level through the demodulation error rate by the MUI value. Fairness Scheduling may be performed based on the determined MCS level.
  • MTC Machine Type Communication
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the codebook exemplified in the existing NCMA method is a codeword for solving the Grassmannian line packing problem and is represented by a complex coefficient.
  • the complex form here means that the number of digital bits required to express the coefficient corresponding to the codeword is large. Thus, a large amount of bits are required to carry or store the codeword. This also affects computational complexity. Therefore, there is a need for a quantization scheme for expressing coefficients with only a few bits while maintaining the properties of Grassmannian sequences.
  • a non-orthogonal codeword used in NCMA is defined as a Grassmannian sequence.
  • Each coefficient is maintained while maintaining the characteristics of the Grassmannian sequence: a set of sequences that maximizes the minimum chordal distance, a set of sequences that maintain the same cross-correlation between sequences, and a set of non-constant-modulus sequences.
  • To quantize we need to normalize power and phase by coefficient.
  • a method of quantizing each coefficient based on a QAM constellation is proposed. For example, one constellation having a minimum Euclidean distance between M-QAM constellations and each coefficient of the Grassmannian sequence is selected in the in-phase quadrature-phase domain. For example, 16QAM is illustrated in FIG. 12.
  • FIG. 12 shows an example of quantizing a Grassmannian sequence based on the QAM constellation according to the present embodiment.
  • one coefficient of the Grassmannian sequence is ( ⁇ , ⁇ ) in the IQ domain.
  • the coefficients are then quantized to (1 / ⁇ 10 * 3, 1 / ⁇ 10 * 1) with the smallest distance compared to the 16QAM constellation.
  • each coefficient is quantized.
  • the mean value for the magnitude of all coefficients of the Grassmannian sequence and the mean value for the magnitude of the M-QAM constellation are quantized at the same level. For example, when the magnitudes of the coefficients of the Grassmannian sequence have a mean value of A, and the magnitudes of the M-QAM constellations have a mean value of B, a set of Grassmannian sequences is B.
  • each coefficient is quantized to a QAM constellation, to be.
  • the correlation characteristic of the matrix does not change even when normalizing the entire matrix with A in the quantized codebook, normalizing with the size sqrt (10) of 16QAM modulation, or normalizing with Tx Power.
  • each element of the matrix means each coefficient of the M-QAM quantized Grassmannian sequence.
  • the Un-quantized coefficients exemplified in the above scheme may be obtained mathematically or algorithmically in addition to the exemplified values, and may have a difference in values.
  • each coefficient is independently quantized, the M-QAM quantized Grassmannian sequence may not have unit power after quantization. Thus, each M-QAM quantized Grassmannian sequence is normalized to unit power.
  • Quantization through this scheme has a trade-off between the number of representation bits according to the quantization level and the degree to which the Grassmannian feature is supported without error.
  • each constellation may be represented by 2 bit information, but the quantization error of the Unquantized Grassmannian sequence and the 16QAM-quantized Grassmannian sequence is large, and thus, the Grassmannian sequence characteristics may be lost.
  • each constellation can be expressed by 8-bit information, but the quantization error of the Unquantized Grassmannian sequence and the 256QAM-quantized Grassmannian sequence is small, so that the Grassmannian sequence characteristics can be maintained.
  • NCMA service is possible through the quantized sequence in this manner, and the spreading code can be scaled by the transmission power.
  • the Grassmannian sequence proposed by the above scheme has been described as a codeword used for NCMA, but a sequence such as a sequence for minimizing inter-cell interference or a sequence for a reference signal for which a low correlation characteristic can be utilized can be utilized. It can be used in areas where there is.
  • the Grassmannian sequence obtained in the above manner can maintain Grassmannian characteristics even when all the sequence sets are phase rotated in the vector space through vector wise phase rotation. Therefore, quantized Grassmannian sequences can also be used by vector-wise phase rotation, with all sequence sets phase rotated in vector space. In this manner, a plurality of Grassmannian sequence sets can be generated. The generated sequence set can be used to control inter-cell interference.
  • the Grassmannian sequence is generated with G (4, 18)
  • three cells can select No. 6 each of G (4, 18) to perform NoMA service.
  • cross-correlation in a single cell may increase than G (4,6), but cross-cell interference may be maintained because cross-correlation between sequences used between cells may be maintained.
  • G (4,18) For example, through a sequence set of G (4,18) S1,... Suppose there are 18 sequences up to S18. Cell 1 is S1,... , S6, and cell 2 selects S7,... , S12, and cell 3 uses S13,... , S18 can be used. The order can be chosen differently according to the environment. In this case, the inter-cell interference is determined by cross-correlation by G (4,18), so that the inter-cell interference can be controlled while setting the inter-cell interference low.
  • P no, N, K is a normalized matrix (N ⁇ K) for power constraints.
  • P no, N, K is represented by the following equation.
  • FIGS. 13 to 15 are graphs showing link level simulation results of NCMA through 64QAM quantized Grassmannian sequences in comparison with a reference OFDMA scheme in terms of BLER.
  • FIG. 13 is measured in an NCMA system with four UEs. 13 is a link level simulation result obtained through ideal channel estimation, and the right diagram of FIG. 13 is a link level simulation result obtained through real channel estimation.
  • the result of FIG. 14 is measured in an NCMA system with six UEs.
  • the left side of FIG. 14 is a link level simulation result obtained through ideal channel estimation, and the right side of FIG. 14 is a link level simulation result obtained through real channel estimation.
  • the result of FIG. 15 is measured in an NCMA system with eight UEs. 15 is a link level simulation result obtained through ideal channel estimation, and the right view of FIG. 15 is a link level simulation result obtained through real channel estimation.
  • the proposed Q-NCMA (Quantized-NCMA) can expect a BLER performance gain over legacy OFDMA (Legacy OFDMA).
  • CDF Cumulative Distribution Function
  • non-orthogonal spreading sequences are very important because the NOMA method effectively reduces the MUI to determine system performance.
  • a Gaussian random sequence a QPSK random sequence, a 9QAM random sequence, a Grassmannian sequence, and five M-QAM quantized Grassmannian sequences may be discussed.
  • sequence number of a sequence set is defined as 'L' and the sequence set is defined as 'S'.
  • the number of non-orthogonal spreading sequences in the sequence set then depends on how the sequence is generated as follows.
  • the set of sequences S The two sequences in the set are randomly selected to compute the cross correlation.
  • the cross correlation between the two sequences can be defined as in the following equation.
  • 16 to 18 are diagrams comparing CDFs according to cross correlation of non-orthogonal spreading sequences according to the present embodiment.
  • Grassmannian sequences can be considered as non-orthogonal spreading sequences in NR. That is, referring to FIGS. 16-18, Grassmannian sequences provide lower cross correlation compared to other non-orthogonal spreading sequences.
  • 19 to 21 are graphs comparing the mean and the variance of the cross correlation of the Grassmannian sequence and the M-QAM quantized Grassmannian sequence according to the present embodiment.
  • FIGS. 19-21 show that Grassmannian sequences provide lower cross correlation performance compared to other non-orthogonal spreading sequences.
  • Grassmannian sequences provide a stable MUI because the variance of cross correlation is nearly zero.
  • the MUI is a static value by N and K regardless of whether the sequences overlap at the same time, it can provide a stable design for contention-based multiple access.
  • the Grassmannian sequence may define that the worst case of the MUI is equal to the best case of the MUI in a given number of nested sequences in the contention zone.
  • MUI is a static value by N and K, it can be simply implemented in the receiver as compared to other non-orthogonal spreading sequences with various MUIs. For example, in the calculation of LLR values for channel coding, assuming a small N, the interference variance is only affected by the multi-user channel, not the non-orthogonal spreading sequence.
  • the Grassmannian sequence is considered a non-orthogonal spreading sequence in NR.
  • Quantized Grassmannian sequences are considered for the NOMA based spreading technique.
  • 22 is a flowchart illustrating a signaling procedure of an NCMA system based on a quantized non-orthogonal codebook according to the present embodiment.
  • the quantized non-orthogonal codebook may correspond to the quantized Grassmannian sequence.
  • the codebook used in the conventional NCMA method is a codeword for solving the Grassmannian line packing problem, and thus, a number of bits are required because it is represented by a complex form of coefficient.
  • this embodiment proposes a technique that can express coefficients with only a few bits while maintaining the characteristics of Grassmannian sequence using quantized non-orthogonal codebook.
  • step S2210 the terminal receives control information from the base station.
  • the control information includes information on a codeword consisting of a grassmannian sequence.
  • the codeword is included in a codebook defined for the non-orthogonal code multiple access scheme. That is, the predefined codebook may correspond to a predefined non-orthogonal codebook between the terminal and the base station.
  • the control information may further include a codebook index corresponding to a UE specific non-orthogonal code cover (NCC), a codeword index in the corresponding codebook, and an MCS level.
  • NCC non-orthogonal code cover
  • the control information may be transmitted through the PDCCH.
  • the control information may be transmitted through a UL scheduling grant.
  • the control information may be promised in advance at the transmitting and receiving end according to a rule promised in advance.
  • a previously promised rule means that when the overlap coefficient K of the entire codebook is fixedly used or known as a broadcast channel, the UE-specific NCC index can be recognized by the C-RNTI information of the terminal and the modulo operation of K. Can be. For example, it may be NCC Index (k) mod (C-RNTI (k), K) of the k-th terminal.
  • Each coefficient of the grassmannian sequence is quantized based on Quadrature Amplitude Modulation (M-QAM) constellation.
  • M is the quantization level.
  • the quantization method is described in detail as follows.
  • the quantized grassmannian sequence is generated by quantizing each coefficient of the grassmannian sequence in an in-phase quadrature-phase domain with an M-QAM constellation having a minimum Euclidean distance with each coefficient of the grassmannian sequence. Can be.
  • the grassmannian sequence may be scaled to the mean value of the magnitude of the M-QAM constellation and normalized to the mean value of the magnitude of each coefficient of the codeword before being quantized to the M-QAM constellation. have. That is, the mean value for the magnitude of all coefficients of the Grassmannian sequence and the mean value for the magnitude of the M-QAM constellation are quantized at the same level. Each coefficient of the grassmannian sequence, which has been scaled and normalized, can be quantized independently.
  • the grassmannian sequence may include a sequence set in which the minimum chord distance formed by any two vectors in the same subspace is maximized, a sequence set in which cross-correlation between sequences is kept the same, and It may be included in a non-constant-modulus sequence set. That is, the grassmannian sequence has all the characteristics of the three sequence sets. Even if the grassmannian sequence is quantized, the characteristics of the grassmannian sequence are retained.
  • the quantized grassmannian sequence may correspond to the codebook C configured in the (N ⁇ K) dimension.
  • N may be a spreading factor and K may be a superposition factor.
  • the K may correspond to the number of terminals performing the multiple access scheme.
  • the quantized grassmannian sequence may be represented in a detailed codebook form as follows.
  • the quantized grassmannian sequence may be represented by a first matrix when M is 64, N is 2, and K is 2 as follows.
  • the quantized grassmannian sequence may be represented by a second matrix when M is 64, N is 2, and K is 4 as follows.
  • P no, N, and K may be represented as a normalized matrix for power limitation as follows.
  • P no, K may be represented as follows.
  • C may correspond to a column vector of the first to seventh matrices.
  • the first to seventh matrices may correspond to the codebook C.
  • step S2220 the terminal modulates or demodulates a UE specific non-orthogonal code cover (NCC) based on the control information.
  • NCC non-orthogonal code cover
  • the terminal may demodulate the UE specific NCC through a codebook index and a codeword index included in the control information.
  • the terminal may modulate the terminal specific NCC through the codebook index and the codeword index included in the control information.
  • step S2230 the terminal performs the non-orthogonal code multiple access scheme using the terminal specific NCC.
  • the method may include receiving data of the multiple terminals.
  • the terminal when the terminal performs the non-orthogonal code multiple access scheme using the terminal specific NCC, when the wireless communication system is uplink communication, the terminal uses the terminal specific NCC at the same time.
  • the method may include transmitting data of multiple terminals in frequency resources.
  • some of the quantized grassmannian sequences may be used only for a specific cell of the plurality of cells.
  • G (4, 18) three cells can select only six sequences of G (4, 18) to perform non-orthogonal code multiple access.
  • cross-correlation in a single cell may increase than G (4,6), but cross-cell interference may be maintained because cross-correlation between sequences used between cells may be maintained.
  • FIG. 23 is a block diagram illustrating a device in which an embodiment of the present specification is implemented.
  • the wireless device 2300 may include a processor 2310, a memory 2320, and a radio frequency (RF) unit 2330.
  • a processor 2310 may include a processor 2310, a memory 2320, and a radio frequency (RF) unit 2330.
  • RF radio frequency
  • the processor 2310 may be configured to implement the above-described functions, procedures, and methods. Layers of a radio interface protocol may be implemented in a processor. The processor 2310 may perform a procedure for driving the above-described operation.
  • the memory 2320 is operatively connected to the processor 2310, and the RF unit 2350 is operatively connected to the processor 2310.
  • the processor 2310 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device.
  • Memory 2320 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • the RF unit 2330 may include a baseband circuit for processing a radio signal.
  • the above technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 2320 and executed by the processor 2310.
  • the memory 2320 may be inside or outside the processor 2310 and may be connected to the processor 2310 through various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 기기가 제공된다. 구체적으로, 단말은 기지국으로부터 제어정보를 수신한다. 단말은 상기 제어정보를 기반으로 단말 특정 NCC를 변조 또는 복조한다. 단말은 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행한다. 제어정보는 grassmannian 시퀀스로 구성되는 코드워드에 대한 정보를 포함한다. 코드워드는 비직교 부호 다중 접속 기법을 위해 기정의된 코드북에 포함된다. grassmannian 시퀀스의 각 계수(coefficient)는 M-QAM(Quadrature Amplitude Modulation) 성상도를 기반으로 양자화된다.

Description

무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치
본 명세서는 무선 통신에 관한 것으로, 보다 상세하게는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 이를 사용한 기기에 관한 것이다.
무선 통신 시스템은 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 무선 통신 시스템의 목적은 다수의 단말이 위치와 이동성에 관계없이 신뢰할 수 있는(reliable) 통신을 할 수 있도록 하는 것이다.
일반적으로 무선 통신 시스템은 가용한 무선 자원을 공유하여 다수의 단말과의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 무선 자원의 예로는 시간, 주파수, 코드, 전송 파워 등이 있다. 다중 접속 시스템의 예들로는 TDMA(time division multiple access) 시스템, CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
차세대 무선 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스의 개수의 수용, 매우 낮은 E2E 레이턴시(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치를 제공한다.
본 명세서는 무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치를 제안한다.
상기 장치는 무선신호를 전송 및 수신하는 RF(radio frequency)부 및 상기 RF부에 연결되는 프로세서를 포함한다.
먼저 용어를 정리하면, 양자화된 비직교 코드북은 양자화된 Grassmannian 시퀀스에 대응할 수 있다. 기존 NCMA 방식에서 사용하던 코드북은 Grassmannian line packing 문제를 해결하기 위한 코드워드로써 복잡한 형태의 계수(coefficient)로 표현되기 때문에 요구되는 비트 수가 많았다. 그러나, 본 실시예는 양자화된 비직교 코드북을 사용하여 Grassmannian 시퀀스의 특성을 유지하면서, 적은 비트만으로 계수를 표현할 수 있는 기법을 제안한다.
단말은 기지국으로부터 제어정보를 수신한다. 상기 제어정보는 grassmannian 시퀀스로 구성되는 코드워드에 대한 정보를 포함한다. 상기 코드워드는 상기 비직교 부호 다중 접속 기법을 위해 기정의된 코드북에 포함된다. 즉, 상기 기정의된 코드북은 단말과 기지국 간에 사전에 정의된 비직교 코드북에 대응할 수 있다.
상기 제어정보는 단말 특정 NCC(UE Specific Non-orthogonal Code Cover)에 해당하는 코드북 인덱스와 해당 코드북 내의 코드워드 인덱스, MCS 레벨을 더 포함할 수 있다.
상기 무선통신시스템이 하향링크 통신인 경우, 상기 제어정보는 PDCCH를 통해 전송될 수 있다. 상기 무선통신시스템이 상향링크 통신인 경우, 상기 제어정보는 UL 스케줄링 그랜트를 통해 전송될 수 있다. 또는 상기 제어정보는 RRC 단계에서 상위 계층 신호 등으로 알려질 수 있다. 또는 상기 제어정보는 사전에 약속된 규칙에 따라, 송수신단에서 미리 약속될 수 있다. 예를 들어 사전에 약속된 규칙이란, 전체 코드북의 중첩 계수 K가 고정적으로 사용되거나, 브로드캐스트 채널 등으로 알려 졌을 때, 단말의 C-RNTI 정보와 K의 modulo 연산으로 단말 특정 NCC 인덱스를 인지할 수 있다. 예를 들어, k 번째 단말의 NCC Index(k) = mod(C-RNTI(k), K)일 수 있다.
상기 grassmannian 시퀀스의 각 계수(coefficient)는 M-QAM(Quadrature Amplitude Modulation) 성상도를 기반으로 양자화된다. 상기 M은 양자화 레벨이다.
양자화 방식을 구체적으로 살펴보면 다음과 같다.
상기 양자화된 grassmannian 시퀀스는, IQ 도메인(In-phase Quadrature-phase domain)에서 상기 grassmannian 시퀀스의 각 계수가 상기 grassmannian 시퀀스의 각 계수와 최소 유클리드 거리(Euclidean distance)를 가지는 M-QAM 성상도로 양자화되어 생성될 수 있다.
또한, 상기 grassmannian 시퀀스는, 상기 M-QAM 성상도로 양자화되기 전에, 상기 M-QAM 성상도의 크기의 평균 값(mean value)으로 스케일링되고 상기 코드워드의 각 계수의 크기의 평균 값으로 정규화될 수 있다. 즉, Grassmannian 시퀀스의 모든 계수의 크기에 대한 평균 값(mean value)과 M-QAM 성상도의 크기에 대한 평균 값(mean value)은 동일한 수준에서 양자화된다. 스케일링과 정규화 과정을 거친 grassmannian 시퀀스의 각 계수는 독립적으로 양자화될 수 있다.
또한, 상기 grassmannian 시퀀스의 특징은 다음과 같다.
상기 grassmannian 시퀀스는, 동일 부분공간(Subspace) 내에서 임의의 두 벡터가 형성하는 최소 코들 거리(Chordal Distance)가 최대화되는 시퀀스 집합, 시퀀스 간 상호 상관(cross-correlation)이 동일하게 유지되는 시퀀스 집합 및 non-constant-modulus 시퀀스 집합에 포함될 수 있다. 즉, 상기 grassmannian 시퀀스는 상기 세 가지 시퀀스 집합의 특징을 모두 가진다. 상기 grassmannian 시퀀스가 양자화가 된다고 하더라도 상기 grassmannian 시퀀스의 특징은 그대로 유지된다.
상기 양자화된 grassmannian 시퀀스는 (N×K) 차원으로 구성되는 코드북 C에 대응할 수 있다. 상기 N은 확산 인자(spreading factor)이고, 상기 K는 중첩 인자(superposition factor)일 수 있다. 상기 K는 다중 접속을 기법을 수행하는 단말의 개수에 대응할 수 있다.
상기 M, N, K를 고려하여 상기 양자화된 grassmannian 시퀀스를 다음과 같이 구체적인 코드북 형태로 나타낼 수 있다.
상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 2이고, 상기 K는 2일 때 다음과 같이 제1 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000001
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 2이고, 상기 K는 4일 때 다음과 같이 제2 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000002
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 2이고, 상기 K는 6일 때 다음과 같이 제3 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000003
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 2이고, 상기 K는 8일 때 다음과 같이 제4 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000004
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 4이고, 상기 K는 4일 때 다음과 같이 제5 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000005
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 4이고, 상기 K는 6일 때 다음과 같이 제6 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000006
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 4이고, 상기 K는 8일 때 다음과 같이 제7 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000007
상기 Pno,N,K는 전력 제한을 위한 정규화된 행렬로 다음과 같이 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000008
상기 Pno,K는 다음과 같이 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000009
상기 c 는 상기 제1 내지 제7 행렬의 열 벡터에 대응할 수 있다.
여기서, 상기 제1 내지 제7 행렬은 상기 코드북 C에 대응할 수 있다.
단말은 상기 제어정보를 기반으로 단말 특정 NCC(UE Specific Non-orthogonal Code Cover)를 변조 또는 복조한다.
상기 무선통신시스템이 하향링크 통신인 경우, 단말은 상기 제어정보에 포함된 코드북 인덱스와 코드워드 인덱스를 통해 단말 특정 NCC를 복조할 수 있다. 상기 무선통신시스템이 상향링크 통신인 경우, 단말은 상기 제어정보에 포함된 코드북 인덱스와 코드워드 인덱스를 통해 단말 특정 NCC를 변조할 수 있다.
단말은 상기 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행한다.
상기 단말이, 상기 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행하는 단계는, 상기 무선통신시스템이 하향링크 통신인 경우, 상기 단말이, 상기 단말 특정 NCC를 사용하여 동일한 시간 주파수 자원에서 다중 단말의 데이터를 수신하는 단계를 포함할 수 있다.
또한, 상기 단말이, 상기 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행하는 단계는, 상기 무선통신시스템이 상향링크 통신인 경우, 상기 단말이, 상기 단말 특정 NCC를 사용하여 동일한 시간 주파수 자원에서 다중 단말의 데이터를 전송하는 단계를 포함할 수 있다.
또한, 상기 기지국이 다수의 셀을 지원하는 경우, 상기 양자화된 grassmannian 시퀀스 중 일부 시퀀스는 상기 다수의 셀 중 특정 셀에 대해서만 사용될 수 있다. Grassmannian 시퀀스가 G(4, 18)로 생성된 상태에서, 3개의 셀이 G(4, 18)중 각각 6개의 시퀀스만 선택해서 비직교 부호 다중 접속을 수행할 수 있다. 이를 통해, 단일 셀 내의 상호 상관(Cross-correlation)이 G(4,6)보다 증가할 수 있으나, 셀간 사용되는 시퀀스 사이의 상호 상관을 유지시킬 수 있으므로, 셀간 간섭을 줄일 수 있다.
제안하는 기법을 이용하면 비직교 부호 다중 접속 방식(NCMA)의 비직교 코드워드의 낮은 상호 상관 특성을 유지하면서, 적은 양의 비트로 시퀀스의 계수를 표현할 수 있다.
도 1은 본 명세서가 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 3은 제어 평면에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 통신 장치의 NOMA 기반 하향링크 전송/수신(Tx/Rx) 블록도를 예시한 도면이다.
도 5는 통신 장치의 NOMA 기반 상향링크 전송/수신 블록도를 예시한 도면이다.
도 6은 통신 장치의 NCMA 기반 하향링크 전송/수신 블록도를 예시적으로 도시한 도면이다.
도 7은 통신 장치의 NCMA 기반의 상향링크 전송/수신 블록도를 예시적으로 도시한 도면이다.
도 8은 단말-특정 NCC에 의한 데이터 전송의 주파수 축 개념도를 나타낸 도면이다.
도 9는 NCMA 시스템의 기본 송수신 구조도를 예시한 도면이다.
도 10은 하향링크 NCMA 시스템의 시그널링 절차를 나타낸 절차 흐름도이다.
도 11은 상향링크 NCMA 시스템의 시그널링 절차를 나타낸 절차 흐름도이다.
도 12는 본 실시예에 따른 QAM 성상도를 기반으로 Grassmannian 시퀀스를 양자화하는 일례를 나타낸다.
도 13은 본 실시예에 따라 제안되는 코드북을 기반으로 BLER 성능을 나타낸 도면이다.
도 14는 본 실시예에 따라 제안되는 코드북을 기반으로 BLER 성능을 나타낸 도면이다.
도 15는 본 실시예에 따라 제안되는 코드북을 기반으로 BLER 성능을 나타낸 도면이다.
도 16은 본 실시예에 따른 비직교 확산 시퀀스에 따른 상호 상관의 CDF를 비교한 도면이다.
도 17은 본 실시예에 따른 비직교 확산 시퀀스에 따른 상호 상관의 CDF를 비교한 도면이다.
도 18은 본 실시예에 따른 비직교 확산 시퀀스에 따른 상호 상관의 CDF를 비교한 도면이다.
도 19는 본 실시예에 따른 Grassmannian 시퀀스 및 M-QAM 양자화된 Grassmannian 시퀀스의 상호 상관의 평균과 분산을 비교한 도면이다.
도 20은 본 실시예에 따른 Grassmannian 시퀀스 및 M-QAM 양자화된 Grassmannian 시퀀스의 상호 상관의 평균과 분산을 비교한 도면이다.
도 21은 본 실시예에 따른 Grassmannian 시퀀스 및 M-QAM 양자화된 Grassmannian 시퀀스의 상호 상관의 평균과 분산을 비교한 도면이다.
도 22는 본 실시예에 따른 양자화된 비직교 코드북을 기반으로 NCMA 시스템의 시그널링 절차를 나타낸 절차 흐름도이다.
도 23은 본 명세서의 실시예가 구현되는 기기를 나타낸 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier-frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 기지국간의 무선 인터페이스를 Uu 인터페이스라 한다. 단말과 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 RB들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다.
RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 있을 경우, 단말은 RRC 연결 상태(RRC connected state)에 있게 되고, 그렇지 못할 경우 RRC 아이들 상태(RRC idle state)에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast 트래픽 Channel) 등이 있다.
도 4는 통신 장치의 NOMA 기반 하향링크 전송/수신(Tx/Rx) 블록도를 예시한 도면이다.
다중 단말(혹은 다중 사용자) 정보를 동일 자원에 할당하여 전송하는 비직교 다중 접속 방식 (Non-orthogonal Multiple Aceess, NOMA)에 있어서, 도 4와 같이 하향링크 지원을 위한 송수신단 구조는 일반적이다. NOMA 시스템은 3GPP 표준화 작업에서는 Multiuser Superposition Transmission (MUST)로 불리우기도 한다. NOMA 시스템은 동일 시간-주파수 자원에 다수의 단말을 위한 정보를 중첩하여 전송함으로써, LTE 시스템 대비 전송 용량 이득을 얻거나 동시 접속 수를 증대하는 것을 목적으로 차세대 5G 시스템의 요소 기술로써 고려되고 있다. 차세대 5G 시스템의 NOMA 계열 기술로는 Power Level을 기반으로 단말을 구분하는 MUST와, Sparse Complex Codebook 기반 변조를 활용하는 Sparse Code Multiple Access (SCMA), 단말-특정 인터리버(User-specific Interleaver)를 이용하는 interleave Division Multiple Access (IDMA) 등이 있다.
MUST 시스템의 경우, 도 4의 송신단에서 다중 단말 데이터의 변조 이후에 각 심볼의 파워 할당을 다르게 하거나, 계층적 변조(Hierarchical Modulation)를 기반으로 다중 단말 데이터를 계층적 변조하여 전송하고, 수신단에서 다중 단말(혹은 다중 사용자) 검출(Multiuser Detection, MUD)를 통해 다중 단말의 데이터(이하 다중 단말 데이터라 칭함)를 복조 한다.
SCMA 시스템의 경우, 도 4의 송신단에서, 다중 단말 데이터에 대한 Forward Error Correction (FEC) Encoder와 변조 과정을 미리 약속된 Sparse Complex Codebook 변조 방식으로 대체하여 전송하고, 수신단에서 MUD를 통해 다중 단말 데이터를 복조한다.
IDMA 시스템의 경우, 도 4의 송신단에서 다중 단말 데이터에 대해 FEC Encoding 정보를 단말-특정 인터리버를 통해 변조하여 전송하고, 수신단에서 MUD를 통해 다중 단말 데이터를 복조한다.
상기 각 시스템은 다양한 MUD 방식으로 다중 단말 데이터를 복조 할 수 있으며, 예를 들어 Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC) 등이 있다. 각 복조 방식에 따라 또는 반복 복조 시도 수에 따라, 복조 복잡도와 처리시간 지연에 차이가 있을 수 있다.
도 5는 통신 장치의 NOMA 기반 상향링크 전송/수신 블록도를 예시한 도면이다.
도 5는 다중 단말의 정보(이하 다중 단말 정보로 칭함)를 동일 자원에 할당하여 전송하는 NOMA 계열 시스템의 상향링크 지원을 위한 송수신단 구조를 도시하고 있다. 상기 각 시스템은 도 4의 하향링크 구조에 대한 설명과 같은 방식으로 다중 단말 데이터를 전송하고 수신단에서 복조 할 수 있다. NOMA 계열 시스템들은 동일 시간-주파수 자원에 다수 단말 신호를 중첩 전송하기 때문에, LTE 시스템과 비교하여 더 높은 복호 오류율을 가지지만, 더 높은 주파수 이용 효율이나 더 많은 Connectivity 를 지원할 수 있다. 비직교 다중 접속 방식(NOMA)은 시스템 환경에 따라, 부호율 제어를 통해 복호 오류율을 유지하면서, 더 높은 주파수 이용효율이나 더 많은 Connectivity 를 달성하는 것이 가능하다.
상기 NOMA 계열 시스템들은 동일 자원에 다수 단말의 데이터를 할당하기 때문에, 단일 단말 데이터를 할당하는 것과 비교하여 다중 단말의 데이터에 대한 간섭이 필연적으로 발생한다. 도 4의 NOMA 계열 시스템에서 k번째 수신단의 신호를 간단히 표현하면 다음 수학식 1과 같다.
수학식 1
Figure PCTKR2017008127-appb-M000001
여기서, hk는 송신단에서 k번째 수신단으로의 채널을 의미하고 sk는 k번째 수신단으로의 데이터 심볼, nk는 신호 잡음을 의미한다. K는 동일 시간-주파수 자원에 할당된 다중 단말의 수이다.
상기 수학식 1의 3번째 식의 2번째 항(
Figure PCTKR2017008127-appb-I000010
)은 다른 수신단으로의 데이터 심볼에 의한 다중 단말 간섭 신호 (Multiuser Interference, MUI)를 나타낸다. 따라서, 상기 수신 신호에 의한 전송 용량을 간단히 표현하면 다음 수학식 2와 같다.
수학식 2
Figure PCTKR2017008127-appb-M000002
상기 수학식 2에서의 전송 용량에서 K가 증가할수록 더해지는 Rk의 개수가 증가하여 C의 증대를 기대할 수 있다. 하지만, K가 증가할수록 MUI의 증가로 인해, 각 Rk가 감소하여 전체 전송 용량 C의 감소를 초래할 수 있다. MUD 기법에 따라, MUI를 효과적으로 감소시키면서 각 단말의 데이터를 복조 할 수 있다 하더라도, 근본적으로 MUI의 존재는 전체 전송 용량을 경감시키고, 높은 복잡도의 MUD를 요구하게 된다. 만약 다중 단말의 데이터 전송에 대한 MUI 발생을 최소화하면, 더 높은 전송 용량을 기대할 수 있다. 또는, 다중 단말의 데이터 전송에 대한 MUI 발생을 정량적으로 제어할 수 있으면, 다중 단말의 데이터 중첩에 대한 스케줄링으로 더 높은 전송 용량을 계획할 수 있다. 따라서, 다중 단말의 데이터 중첩 전송에 의한 MUI를 제어할 수 있는 다중 단말 접속 기술 개발이 필요하다. 동일 시간-주파수 자원에 대한 다중 단말의 데이터 중첩 전송시 발생하는 MUI를 제어할 수 있는 다중 단말 접속 기술 개발이 필요하다.
따라서, 본 발명에서는 차세대 5G 시스템의 다중 단말 간섭을 최소화하는 비직교 부호 다중 접속 방식(Non-orthogonal Coded Multiple Access, NCMA)을 제시한다.
도 6은 통신 장치의 NCMA 기반 하향링크 전송/수신 블록도를 예시적으로 도시한 도면이고, 도 7은 통신 장치의 NCMA 기반의 상향링크 전송/수신 블록도를 예시적으로 도시한 도면이다.
동일 시간-주파수 자원에 다중 단말의 데이터를 중첩 전송할 때 다중 단말 간섭을 최소화하는 비직교 부호 다중 접속 방식(NCMA)를 제안한다. 도 6과 도 7은 다중 단말 정보를 동일 시간-주파수 자원에 할당할 때, 단말-특정 비직교 코드 커버(UE Specific Non-orthogonal Code Cover(NCC)를 사용하여 중첩 전송하는 NCMA 시스템의 하향링크와 상향링크 송수신단 구조이다. 송신단/수신단(혹은 송신측/수신측)은 사전에 정의된 비직교 코드북을 이용하여 각 단말에게 단말-특정 NCC를 할당한다.
본 발명에서 언급하는 코드워드는 비직교 다중 접속을 수행하기 위해, 각 단말이 선택하는(또는 할당받은) 복소 엘리먼트 벡터(complex element vector)를 의미한다. 코드북은 비직교 다중 접속을 수행하기 위해 각 단말이 사용하는 코드워드들의 세트를 의미한다. 상기에서 언급한 코드북은 복수 개로 존재할 수 있다. 단말-특정 NCC(UE specific NCC)는 각 단말이 선택하는(또는 할당받은) 코드북의 복소 엘리먼트 벡터(complex element vector)를 전송하려는 심볼에 사용하는 것을 의미한다. 따라서, NCC(혹은 단말-특정 NCC)는 코드북 인덱스와 코드워드 인덱스로 표현할 수 있다. 비직교 코드북을 표현하면 다음 수학식 3과 같다.
수학식 3
Figure PCTKR2017008127-appb-M000003
상기 수학식 3에서 c(j)는 j 번째 단말을 위한 코드워드로서, 전체 K명의 단말에 대한 코드워드 세트는 코드북 C가 된다. j 번째 단말의 데이터를 전송하기 위해 c(j)를 사용하는 것을 NCC라고 정의한다. 또한 상기 코드북은 코드워드의 벡터 길이 N과 코드워드의 개수 K로 표현될 수 있다. 여기서, N은 확산 인자(spreading factor)를 의미하고, K는 중첩 인자(superposition factor)를 의미한다. 상기에서 설명의 편의를 위해 하나의 코드워드를 하나의 단말에서 사용하는 것을 예시하나, 다수개의 코드워드를 하나의 단말이 사용하거나, 하나의 코드워드를 다수의 단말에서 사용하는 것을 배제하지 않는다. 또한, 하나의 단말에 할당된 하나 또는 다수개의 코드워드는 시간에 따라 또는 사용 빈도에 따라 같은 코드북 내의 다른 코드워드의 사용 또는 다른 코드북 내의 다른 코드워드의 사용으로 코드워드를 호핑(Hopping) 할 수도 있다.
단말-특정 NCC(UE Specific NCC)의 할당은 RRC Connection Process에서 단말 식별자(UE ID)와 연결하여 할당될 수도 있고, 하향링크 제어 채널(예를 들어, PDCCH)에 포함된 DCI(Downlink Control Information) 포맷을 통해서 할당할 수도 있다.
경쟁 기반 다중 접속(Contention based MA)에 사용되는 상향링크 환경의 경우, 단말은 비직교 코드워드를 랜덤 선택할 수도 있고 또는 단말 식별자와 연결하여 선택할 수도 있다. 이 때, 단말-특정 NCC는 기지국이 할당하는 방식이 아니라, 단말이 직접 선택하며 이로 인해 다수 단말간 NCC의 충돌이 있을 수 있다. 수신단인 기지국에서는 NCC의 충돌이 있을 경우 MUD로 다수 단말 정보의 구분 성공률이 감소한다.
단말-특정 NCC는 Grassmannian line packing에 의해 정의될 수 있으며, 동일 부분공간(Subspace) 내에서 임의의 두 벡터가 형성하는 코들 거리(Chordal Distance)는 항상 같다. 즉,
Figure PCTKR2017008127-appb-I000011
를 만족하는 코드북으로서 수학적 또는 알고리즘적으로 구할 수 있다. 단말-특정 NCC는 다음 수학식 4와 같은 성질을 가진다.
수학식 4
Figure PCTKR2017008127-appb-M000004
여기서,
Figure PCTKR2017008127-appb-I000012
는 c(k)의 conjugate 코드워드이다. 상기 수학식 4의 성질은 아래 (1), (2), (3)과 같다.
(1) 송수신단에서 동일한 코드워드의 곱은 1이다.
(2) 동일 코드북 내에서 자신의 코드워드와 다른 코드워드 사이의 Chordal Distance는 같다.
(3) N≤K 이면, 자신의 코드워드와 다른 코드워드는 직교한다.
상기 특성을 가지는 코드북을 송신단/수신단(혹은 송신측/수신측)이 사전에 약속하여 단말-특정 NCC를 구성하면, 임의의 두 코드워드에 의한 Chordal Distance
Figure PCTKR2017008127-appb-I000013
의 Lower Bound를 가진다. 따라서, 다중 단말 데이터 중첩 전송에 대한 MUI는 상기 Lower Bound에 의해 최소화되어 결정된다. 또한, 상기 임의의 두 코드워드에 대한 Chordal Distance는 항상 같으므로, 단말 수에 의해 MUI의 통계적 예측이 가능하다. 단말 수가 결정되면, MUI 값에 의해 수신단의 복호 오류율이 예측 가능하므로 다중 단말 중첩 전송에 대한 간섭량을 기반으로 MCS 레벨의 제어가 가능하다. 예를 들어, (N×1) 차원에서 K개의 코드워드가 전송될 때, 수신단에서 자신의 코드워드로 복호하면, 자신의 코드워드부터 1이 복호되고, 다른 K-1개의 코드워드로부터 δN,K(K-1) 의 통계적 간섭량이 남게 된다. 이 수치는 코드북 설계의 최적화 정도에 따라 차이가 있다. 또한, N과 K 값에 따라 δN,K의 값에 차이가 존재하므로, 통신 시스템의 요구하는 SINR(Required SINR) 또는 타겟 QoS에 따라, 중첩 단말 수(K) 또는 사용 자원 수(N)를 변화시켜 MUI 값을 제어할 수 있다.
비직교 코드북에 대한 실시 예를 3GPP TS 36.211의 형태로 나타내면 다음 표 1 및 표 2와 같으며, 단말-특정 NCC(UE specific NCC)로 사용될 수 있다.
표 1은 Spreading Factor N = 2 인 경우의 코드북을 예시하고 있다.
표 1
Figure PCTKR2017008127-appb-T000001
표 2는 Spreading Factor(N = 4)인 경우의 코드북을 예시하고 있다.
표 2
Figure PCTKR2017008127-appb-T000002
수학적 또는 알고리즘을 이용하여 상기 표 1 및 표 2 이외에도 다양한 값이 나올 수 있다.
도 8은 단말-특정 NCC에 의한 데이터 전송의 주파수 축 개념도를 나타낸 도면이다.
도 8은 송신단(혹은 송신측)에서 단말-특정 NCC를 통해 주파수 축에서 k번째 단말 데이터를 전송하는 개념을 도시하고 있다. Grassmaniann line packing에 의해 정의된 단말-특정 NCC가 송신단과 수신단 사전에 약속되었을 때, k번째 단말에 해당하는 코드워드에 k번째 단말을 위한 데이터를 곱하여 전송한다. 이 때, 하나의 데이터 심볼 sk가 (N×1) 차원의 코드워드 벡터 c(k)에 대응된다. 그러면 코드워드의 N개 Element는 N개 부반송파에 대응된다.
즉, 도 8에서는 N개의 부반송파로 하나의 데이터 심볼을 전송하므로, 기존 LTE 시스템 대비 동일 시간-주파수 자원 효율이 1/N로 감소한다. 반면, N개 이상의 심볼을 중첩 전송하면, LTE 시스템 대비 시주파수 자원 효율이 증대된다. 예를 들어, N<K 일 때 K개의 심볼을 중첩 전송하면, K/N배 만큼 주파수 자원 효율이 증대된다.
도 9는 NCMA 시스템의 기본 송수신 구조도를 예시한 도면이다.
도 9는 단말-특정 NCC를 사용하는 NCMA 시스템의 기본 송수신 구조도 이다. 송신단에서 각 단말에 대한 데이터 심볼은 각 단말에 해당하는 단말-특정 NCC로 변환되어 중첩된다. 중첩된 N길이의 주파수축 신호는 N-IFFT를 통해 시간축 신호로 변환되어 OFDM 전송을 수행하고, 수신단에서 N-FFT를 통해 주파수축 신호로 복원한다. 복원된 주파수축 신호는 각 단말에 해당하는 단말-특정 NCC의 Conjugate Codeword로 각 단말 데이터 심볼을 복호한다. 복호된 sk는 중첩된 단말 수에 따라 MUI가 포함되어 있을 수 있으며, MUD 방식 등을 통해 정확한 sk 복호가 가능하다. 이 때, 사전에 정의된 단말-특정 NCC에 따라 변환된 주파수축 신호의 길이는 N보다 짧을 수 있다. 예를 들어 N/2 길이의 단말-특정 NCC로 변환된 주파수축 신호 벡터 2개를 직렬 연결하여 N 길이로 형성하면, N-FFT해도 수신단에서 복조가 가능함은 자명하다.
하향링크의 경우, k번째 단말 수신단에서 데이터 복호를 위한 검출 수식을 표현하면 다음 수학식 5와 같다.
수학식 5
Figure PCTKR2017008127-appb-M000005
상기 수학식 5에서, Hk는 k번째 송신단에서 수신단으로의 (N×N) 채널 행렬를 의미하고 대각행렬(diagonal matrix)로 주파수 축 채널 계수들을 포함한다. c(k)는 k번째 송신단에서 수신단에 대한 (N×1) 단말-특정 NCC 벡터이고, sk는 k번째 수신단으로의 데이터 심볼, n는 (N×1) 신호 잡음 벡터를 의미한다. K는 동일 시간-주파수 자원에 할당된 다중 단말의 수 이다. 여기서,
Figure PCTKR2017008127-appb-I000014
는 A 벡터의 j번째 요소(element)와 B 행렬의 j번째 대각 요소(diagonal element)의 나눗셈을 의미한다. A 벡터가 대각 행렬일 경우, 대각 행렬끼리의 요소(element) 나눗셈을 의미한다.
상기 수학식 5에서 채널 보상을 통해 원하는 코드워드들(Desired Codewords) 신호와 잡음만 남게 되며, 수신단의 단말-특정 NCC의 Conjugate Codeword를 통해, 다음 수학식 6과 같이 검출된다.
수학식 6
Figure PCTKR2017008127-appb-M000006
상기 수학식 6에서 마지막 행의 2번째 항목은 MUI를 나타내며, MUD 방식을 통해 제거 또는 감소시킬 수 있다.
상향링크의 경우, 기지국의 수신단에서 데이터 복호를 위한 검출 수식을 표현하면 다음 수학식 7과 같다.
수학식 7
Figure PCTKR2017008127-appb-M000007
상기 수학식 7의 3번째 식의 2번째 항은 다른 수신단으로의 데이터 심볼에 의한 다중 단말 간섭 신호 MUI를 나타낸다. k번째 단말의 데이터 복호를 위한 수신단의 검출 수식을 표현하면 다음 수학식 8과 같다.
수학식 8
Figure PCTKR2017008127-appb-M000008
k번째 단말 데이터를 위한 채널 보상을 통해 원하는 코드워드들 신호와MUI, 잡음만 남게 되며, 수신단의 단말-특정 NCC의 Conjugate Codeword를 통해, 다음 수학식 9와 같이 검출된다.
수학식 9
Figure PCTKR2017008127-appb-M000009
상기 수학식 9에서 마지막 행의 2번째 항목은 MUI를 나타내며, MUD 방식을 통해 제거 또는 감소시킬 수 있다. 이 때, 다중 단말로부터의 채널 환경 차이로 인해,
Figure PCTKR2017008127-appb-I000015
의 주파수 축 채널 변화량이 단말-특정 NCC에 의한 MUD 수행 시 MUI 값의 변화를 가져온다. 상기 설명에서 설명의 편의를 위하여, 송수신 안테나의 개수를 단일 개로 설명하였으나, 다중 안테나를 사용하는 환경에서도 같은 방식으로 적용됨은 자명하다.
앞서 설명한 NCMA 방식에 관련한 내용을 통해 다중 단말 데이터 중첩 전송에 의한 MUI를 제어하면서, 중첩 단말 수에 따라 더 높은 주파수 이용효율이나 더 많은 Connectivity를 달성하는 것이 가능하다.
또한, 본 명세서는 상술한 NCMA를 위한 시그널링 절차를 제안한다. 구체적으로, NCMA를 수행하기 위한 코드북(codebook) 정보 교환 방식과 시그널링 방법을 제안한다.
도 10은 하향링크 NCMA 시스템의 시그널링 절차를 나타낸 절차 흐름도이다. 도 11은 상향링크 NCMA 시스템의 시그널링 절차를 나타낸 절차 흐름도이다.
도 10 및 도 11을 참조하면, 사용자(UE)와 기지국(eNB)은 사전에 정의된 비직교 코드북(Non-orthogonal Codebook) 정보를 가지고 있다(S1010, S1110). 이때, 사전에 정의된 비직교 코드북 정보를 가지는 방법은 다양할 수 있다.
예를 들어, 다음의 (1)과 (2)와 같이 비직교 코드북 정보를 가질 수 있다.
(1) Grassmannian line packing에 의해 정의된 (N×K) 차원의 코드북을 G(N, K)라고 할 때, 각 N, K에 대해서 저장하고 있다.
(2) G(N, K)를 구성하는 (N×1) 차원 코드워드의 기저 벡터(Basis Vector)를 보유하고 있다.
상기 방법으로 정의된 비직교 코드북들 또는 기저 벡터들에 대한 인덱스 정보를 코드북 인덱스(Codebook Index)로 정의한다. DL 또는 UL 정보 전송 요구가 발생하면, 기지국의 공정한 스케줄링(Fairness Scheduling)을 통해 각 사용자가 사용할 UE Specific NCC에 해당하는 코드북 인덱스와 해당 코드북 내의 코드워드 인덱스(Codeword Index)를 사용자에게 제어 정보로써 전송한다(S1020, S1120). 즉, 스케줄링 방식에 따라 각 사용자를 위한 NCC(codebook index, codeword index)를 전송한다. 사용자는 수신된 코드북 인덱스와 코드워드 인덱스를 통해 UE Specific NCC를 변조 또는 복조에 사용한다(S1030, S1130). 이 때, 사전에 정의된 코드북의 방식이 상기 (1)에 해당하는 경우, 저장된 코드북을 그대로 사용한다. 사전에 정의된 코드북의 방식이 상기 (2)에 해당하는 경우, 기지국과 사용자는 저장된 기저 벡터를 기준으로 G(N, K)를 생성하여 사용한다. 이때, 각 사용자에게 할당되는 코드워드의 수는 1개일 수도 있고, 2개 이상일 수도 있다. 즉, 높은 데이터 레이트(Data Rate)가 요구되는 사용자의 경우, 2개 이상의 코드워드를 통해 2개 이상의 심벌을 동시에 전송하여, 수신 단에서 2개 이상의 심벌을 복조 할 수 있음은 자명하다. 또한, 코드북의 차원을 결정하는 N과 K는 시스템 환경에 따라 변경이 가능하다. K가 N보다 같거나 작을 경우, G(N, N)의 코드북을 사용하며, 코드북 G(N, N)은 정규직교 코드북(Orthonormal Codebook)이다.
상기 결정된 G(N, K)에 의해, 각 코드워드간 코들 거리(Chordal Distance)는 앞서 기술한 것처럼 정의되고, MUI로 정의될 수 있다. 기지국은 공정한 스케줄링(Fairness Scheduling)에 상기 MUI 값을 기반으로 자원 관리(Resource Management)가 가능하며, MUI 값에 의한 복조 오류율을 통해 MCS Level을 결정한다. 결정된 MCS Level을 기반으로 공정한 스케줄링(Fairness Scheduling)을 수행할 수 있다.
본 명세서에서는 셀룰러 시스템의 하향링크와 상향링크를 기반으로 설명하였으나, Machine Type Communication (MTC), Device-to-Device (D2D), Vehicle-to-Everything (V2X) 등 다중 사용자 접속 방식을 사용하는 모든 시스템에 적용이 가능함은 자명하다.
다만, 기존 NCMA 방식에서 예시하는 코드북은 Grassmannian line packing 문제를 해결하기 위한 코드워드로써 복잡한 형태의 계수(coefficient)로 표현된다. 여기서 복잡한 형태란 코드워드에 해당하는 계수를 표현하기 위해서 필요한 디지털 비트(bit)의 수가 큰 것을 의미한다. 따라서, 코드워드를 전달 또는 저장하기 위해서 많은 양의 비트를 요구하게 된다. 또한, 이는 계산 복잡도에 영향을 미친다. 따라서, Grassmannian 시퀀스의 특성을 유지하면서, 적은 비트만으로 계수를 표현하기 위한 양자화(quantization) 방식이 필요하다.
본 명세서에서는 NCMA에서 사용되는 비직교 코드워드(Non-orthogonal codeword)를 Grassmannian 시퀀스라 정의한다. Grassmannian 시퀀스의 특성(최소 chordal distance를 최대화하는 시퀀스 집합(sequence set), 시퀀스 간 상호 상관(cross-correlation)이 동일하게 유지되는 시퀀스 집합, non-constant-modulus 시퀀스 집합)을 유지하면서, 각 계수를 양자화하기 위해, 계수 별로 전력(power)과 위상(phase)을 정규화 해야 한다. 본 명세서에서는 QAM 성상도(QAM constellation)를 기반으로 각 계수를 양자화하는 방식을 제안한다. 예를 들어, IQ 도메인(In-phase Quadrature-phase domain)에서 M-QAM 성상도들과 Grassmannian 시퀀스의 각 계수 사이의 최소 유클리드 거리(minimum Euclidean distance)를 가지는 성상도 하나를 선택한다. 16QAM을 예로 들면 도 12와 같다.
도 12는 본 실시예에 따른 QAM 성상도를 기반으로 Grassmannian 시퀀스를 양자화하는 일례를 나타낸다.
도 12를 참조하면, 상기 그림에서 Grassmannian 시퀀스의 하나의 계수가 IQ 도메인에서 (α, β)라고 가정한다. 그러면 16QAM 성상도와 비교하여, 가장 작은 거리를 가지는 (1/√10*3, 1/√10*1)로 계수가 양자화된다. 상기 방식을 통해 각 계수를 양자화한다. 여기서, Grassmannian 시퀀스의 모든 계수의 크기에 대한 평균 값(mean value)과 M-QAM 성상도의 크기에 대한 평균 값(mean value)은 동일한 수준에서 양자화된다. 예를 들어, Grassmannian 시퀀스의 계수들의 크기가 A라는 평균 값(Mean value)을 가지고 있고, M-QAM 성상도들의 크기가 B라는 평균 값(Mean value)을 가지고 있을 때, Grassmannian 시퀀스들의 집합을 B로 스케일링(scaling)한다. 그리고 A라는 값을 저장해 놓은 상태에서 양자화를 수행하고 다시 A의 크기가 되도록 정규화(Normalization)한다. 이 과정은 M-QAM 성상도의 크기를 스케일링해서 Grassmannian 시퀀스의 계수에 대한 평균 크기 A로 스케일링한 후 양자화하는 방식과 동일하다.
즉, 코드북 C 내의 모든 계수에 대해서 mean(abs(c_ij)) = A for i = 1, …, N and j = K 일 때, M-QAM의 평균 값(mean value)은 B이므로, C*B/A = C' 이고, C'의 각 계수를 QAM 성상도로 양자화한다. 이때, 코드북 C와 A, B, C'은 다음 수학식과 같이 나타낼 수 있다.
수학식 10
Figure PCTKR2017008127-appb-M000010
상기 각 계수를 QAM 성상도로 양자화하면,
Figure PCTKR2017008127-appb-I000016
이다.
상기 양자화된 코드북에 A로 전체 행렬(matrix)을 정규화(normalize)하거나, 16QAM 변조의 크기 sqrt(10)으로 정규화하거나, Tx Power로 정규화해도 행렬의 상관(correlation) 특성은 변하지 않는다.
상기 방식으로 모든 계수를 양자화 했을 때의 실시예는 다음과 같다.
실시예. M-QAM quantized Grassmannian Sequence의 예시
- Codebook for Spreading Factor: N = 2, K = 4 (표 3)
표 3
Quantization Level Examples of spreading codebook [C (1) ... C (K)]
Un-quantized
Figure PCTKR2017008127-appb-I000017
16QAM-quantized
Figure PCTKR2017008127-appb-I000018
64QAM-quantized
Figure PCTKR2017008127-appb-I000019
- Codebook for Spreading Factor: N = 4, K = 8 (표 4)
표 4
Quantization Level Examples of spreading codebook [C (1) ... C (K)]
Un-quantized
Figure PCTKR2017008127-appb-I000020
16QAM-quantized
Figure PCTKR2017008127-appb-I000021
64QAM-quantized
Figure PCTKR2017008127-appb-I000022
상기 실시 예에서 행렬의 각 요소는 M-QAM quantized Grassmannian 시퀀스의 각 계수를 의미한다. 상기 방식에서 예시한 Un-quantized 계수는 예시된 값 이외에도 수학적 또는 알고리즘적으로 구할 수 있으며, 값에 차이가 있을 수 있다.
또한, 각 계수는 독립적으로 양자화되었으므로, 양자화 이후 M-QAM quantized Grassmannian 시퀀스는 단위 전력(Unit power)을 가지지 않을 수 있다. 따라서, 각 M-QAM quantized Grassmannian 시퀀스는 단위 전력으로 정규화된다.
상기 방식에서는 M-QAM을 기반으로 양자화하는 방식으로 설명하였으나, 위상에 대한 양자화를 M-PSK로 수행하고, 전력에 대한 양자화를 선형(Linear) 또는 비선형(Non-linear) 스케일링을 기반으로 각각 수행할 수도 있다.
상기 방식을 통한 양자화는 양자화 레벨에 따른 표현 비트 수와 Grassmannian 특성을 얼마나 오차 없이 지원하는지에 대한 정도 사이의 트레이드 오프(trade-off)가 있다. 예를 들어, 16QAM으로 양자화하는 경우, 각 성상도는 2bit 정보로 표현할 수 있으나, Unquantized Grassmannian 시퀀스와 16QAM-quantized Grassmannian 시퀀스의 양자화 에러(Quantization error)가 커서 Grassmannian 시퀀스 특성을 잃을 수 있다. 반면에, 256QAM으로 양자화하는 경우, 각 성상도는 8bit 정보로 표현할 수 있으나, Unquantized Grassmannian 시퀀스와 256QAM-quantized Grassmannian 시퀀스의 양자화 에러가 작아서 Grassmannian 시퀀스 특성을 그대로 유지할 수 있다.
상기 방식으로 양자화를 거친 시퀀스를 통해 NCMA 서비스가 가능하며, 전송 전력에 의해 확산 코드가 스케일링될 수 있다.
상기 방식에서 제안하는 Grassmannian 시퀀스는 NCMA에 사용되는 코드워드로써 설명되었으나, 낮은 상관(low correlation) 특성이 활용될 수 있는 참조 신호를 위한 시퀀스 또는 셀간 간섭을 최소화 하기 위한 시퀀스 등, 시퀀스가 활용될 수 있는 영역에서 사용될 수 있다.
상기 방식에서 얻어지는 Grassmannian 시퀀스는 벡터 와이즈 위상 회전(vector wise phase rotation)을 통해, 모든 시퀀스 집합이 벡터 공간에서 위상 회전 되어도 Grassmannian 특성을 유지할 수 있다. 따라서, 양자화된 Grassmannian 시퀀스도 vector wise phase rotation을 통해, 모든 시퀀스 집합이 벡터 공간에서 위상 회전하여 사용할 수 있다. 상기 방식을 통해, Grassmannian 시퀀스 집합을 다수 개 생성할 수 있다. 이렇게 생성된 시퀀스 집합을 이용하여 셀 간 간섭을 제어하는데 사용할 수 있다.
또한 Grassmannian 시퀀스가 G(4, 18)로 생성된 상태에서, 3개의 셀이 G(4, 18)중 각각 6개의 시퀀스만 선택해서 NoMA 서비스를 수행할 수 있다. 이를 통해, 단일 셀 내의 상호 상관(Cross-correlation)이 G(4,6)보다 증가할 수 있으나, 셀간 사용되는 시퀀스 사이의 상호 상관을 유지시킬 수 있으므로, 셀간 간섭을 줄일 수 있다. 예를 들어, G(4,18)의 시퀀스 집합을 통해 S1,…,S18까지의 18개의 시퀀스가 있다고 하자. 셀 1은 S1,…, S6을 사용하고, 셀 2은 S7,…, S12을 사용하고, 셀 3은 S13,…, S18을 사용할 수 있다. 여기서 순서는 환경에 따라 다르게 선택할 수 있다. 이 경우, 셀간 간섭은 G(4,18)에 의한 상호 상관에 의해 결정되므로 셀간 시퀀스의 간섭을 낮게 설정하면서, 안정적인 셀간 간섭을 제어할 수 있다.
또한, MUI를 최소화하기 위한 확산 코드북 기반의 64QAM quantized Grassmannian 시퀀스의 예시는 다음과 같다.
확산 인자 N=2일 때 코드북 기반의 64QAM quantized Grassmannian 시퀀스의 일례는 아래 표와 같다.
표 5
Figure PCTKR2017008127-appb-T000003
확산 인자 N=4일 때 코드북 기반의 64QAM quantized Grassmannian 시퀀스의 일례는 아래 표와 같다.
표 6
Figure PCTKR2017008127-appb-T000004
상기 표 5 및 표 6에서, Pno,N,K는 전력 제한(power constraints)을 위한 정규화된 행렬(normalized matrix) (N×K)이다. Pno,N,K는 다음 수학식과 같다.
수학식 11
Figure PCTKR2017008127-appb-M000011
여기서,
Figure PCTKR2017008127-appb-I000023
이다.
상기 제안하는 코드북을 기반으로 BLER(Block Error Rate) 성능을 보면 도 13 내지 도 15와 같다. 도 13 내지 도 15는 본 실시예에 따라 제안되는 코드북을 기반으로 BLER 성능을 나타낸 도면이다(BLER comparisons for SE per UE = 0.2 [bps/Hz]). 구체적으로, 도 13 내지 도 15는 64QAM quantized Grassmannian 시퀀스를 통한 NCMA의 링크 레벨 시뮬레이션 결과(Link level simulation results)를 BLER 측면에서 기준 OFDMA 방식과 비교하여 나타낸 그래프이다.
도 13의 결과는 4개의 UE가 존재하는 NCMA 시스템에서 측정된다. 도 13의 좌측도는 이상적인 채널 추정(Ideal Channel Estimation)을 통해 얻은 링크 레벨 시뮬레이션 결과이고, 도 13의 우측도는 실제 채널 추정(Realistic Channel Estimation)을 통해 얻은 링크 레벨 시뮬레이션 결과이다.
도 14의 결과는 6개의 UE가 존재하는 NCMA 시스템에서 측정된다. 도 14의 좌측도는 이상적인 채널 추정(Ideal Channel Estimation)을 통해 얻은 링크 레벨 시뮬레이션 결과이고, 도 14의 우측도는 실제 채널 추정(Realistic Channel Estimation)을 통해 얻은 링크 레벨 시뮬레이션 결과이다.
도 15의 결과는 8개의 UE가 존재하는 NCMA 시스템에서 측정된다. 도 15의 좌측도는 이상적인 채널 추정(Ideal Channel Estimation)을 통해 얻은 링크 레벨 시뮬레이션 결과이고, 도 15의 우측도는 실제 채널 추정(Realistic Channel Estimation)을 통해 얻은 링크 레벨 시뮬레이션 결과이다.
상기 도 13 내지 15에 따른 결과를 통해, 제안하는 Q-NCMA(Quantized-NCMA)는 레가시 OFDMA(Legacy OFDMA)보다 BLER 성능의 이득을 기대할 수 있다.
이하에서는, 비직교 확산 시퀀스의 상호 상관에 따른 CDF(Cumulative Distribution Function)를 비교하여 양자화 방식을 적용한 성능 결과를 비교한다.
먼저, 비직교 확산 시퀀스의 종류를 설명한다. NOMA 방식은 MUI를 효과적으로 감소시켜 시스템 성능을 결정하기 때문에 확산 시퀀스의 설계가 매우 중요하다. 비직교 확산 시퀀스는 가우시안 랜덤 시퀀스(Gaussian Random Sequence), QPSK 랜덤 시퀀스, 9QAM 랜덤 시퀀스, Grassmannian 시퀀스, M-QAM quantized Grassmannian 시퀀스 5개가 논의될 수 있다.
여기서, 비직교 시퀀스의 특성을 논의하기 위해 시퀀스 집합에서 무작위로 선택된 두 시퀀스 간의 상호 상관을 분석한다. 시퀀스 집합의 시퀀스 개수는 'L'로 정의하고 시퀀스 집합은 'S'로 정의한다. 그러면, 시퀀스 집합 내 비직교 확산 시퀀스의 수는 다음과 같이 시퀀스를 생성하는 방식에 따라 다르다.
시퀀스 집합 내 시퀀스 개수(주어진 N에 대한)
- 가우시안 랜덤 시퀀스: 무한(infinite)
- QPSK 랜덤 시퀀스: 4^N
- 9QAM 랜덤 시퀀스: 9^N-1
- Grassmannian 시퀀스: K
- M-QAM quantized Grassmannian 시퀀스: K
따라서, 시퀀스 S의 집합은
Figure PCTKR2017008127-appb-I000024
로 구성되고, 집합 내의 두 시퀀스는 상호 상관을 계산하기 위해 무작위로 선택된다. 그러면, 두 시퀀스 간의 상호 상관은 다음 수학식과 같이 정의될 수 있다.
수학식 12
Figure PCTKR2017008127-appb-M000012
여기서, 상호 상관의 평균과 분산은 E[I]와 V[I]로 정의된다.
도 16 내지 도 18은 본 실시예에 따른 비직교 확산 시퀀스의 상호 상관에 따른 CDF를 비교한 도면이다.
도 16 내지 도 18은 확산 인자(spreading factor) N=2, 4, 8 각각에 대한 비직교 확산 시퀀스의 상호 상관의 비교를 나타낸다. 이러한 결과는 Grassmannian 시퀀스가 다른 비직교 확산 시퀀스보다 낮은 E[I]와 V[I]를 제공할 수 있음을 나타낸다. 일반적으로, K≤≤N ^ 2의 경우 Grassmannian 시퀀스에 대한 상호 상관의 하한은
Figure PCTKR2017008127-appb-I000025
이고, 상호 상관의 분산은 0이다. N=K인 경우, Grassmannian 시퀀스는 직교 확산 시퀀스와 같기 때문에 E[I]와 V[I]는 모두 0이다. 비직교 확산 시퀀스들 간의 상호 상관이 MUI를 유도하기 때문에, E[I]와 V[I]는 NOMA 설계 기반 확산을 위한 중요한 인자이다. 이를 고려해볼 때, Grassmannian 시퀀스는 NR에서 비직교 확산 시퀀스로 간주될 수 있다. 즉, 도 16 내지 도 18을 참조하면, Grassmannian 시퀀스는 다른 비직교 확산 시퀀스에 비해 낮은 상호 상관을 제공한다.
도 19 내지 21은 본 실시예에 따른 Grassmannian 시퀀스 및 M-QAM 양자화된 Grassmannian 시퀀스의 상호 상관의 평균과 분산을 비교한 도면이다.
도 19 내지 도 21은 확산 인자(spreading factor) N=2, 4, 8 각각에 대한 Grassmannian 시퀀스 및 M-QAM 양자화된 Grassmannian 시퀀스에 대한 상호 상관의 평균과 분산을 나타낸다. M-QAM 양자화된 Grassmannian 시퀀스의 계수 각각은 M-QAM 성상도 중 하나이므로, M-레벨의 양자화된 Grassmannian 시퀀스는 M-QAM 양자화된 Grassmannian 시퀀스로 표시된다. 각 경우에서, 중첩 인자 'K'가 증가함에 따라 Grassmannian과 Complex 랜덤 시퀀스의 차이가 감소한다 하더라도, Grassmannian 시퀀스의 E[I]와 V[I]는 Complex 랜덤 시퀀스의 E[I]와 V[I]보다 작다. 또한, 이러한 결과에는 양자화 레벨에 따른 M-QAM 양자화된 Grassmannian 시퀀스의 E[I]와 V[I]가 포함된다.
도 19 내지 도 21의 결과는 Grassmannian 시퀀스가 다른 비직교 확산 시퀀스에 비해 낮은 상호 상관 성능을 제공함을 나타낸다. 또한, Grassmannian 시퀀스는 상호 상관의 분산이 거의 0이기 때문에 안정적인 MUI를 제공한다. 특히, MUI는 시퀀스가 동시에 중첩되는지 여부에 상관없이 N과 K에 의한 정적 값(static value)이기 때문에, 경쟁 기반의 다중 접속에 대한 안정적인 설계를 제공할 수 있다. 예를 들어, Grassmannian 시퀀스는 컨텐션 존(contention zone)에서 주어진 수의 중첩된 시퀀스에서 MUI의 가장 나쁜 경우(worst case)가 MUI의 가장 좋은 경우(best case)와 같다고 규정할 수 있다.
또한, MUI는 N과 K에 의한 정적 값이기 때문에, 다양한 MUI를 갖는 다른 비직교 확산 시퀀스와 비교하여 수신기에 간단히 구현될 수 있다. 예를 들어, 채널 코딩에 대한 LLR 값의 계산에서, 작은 N을 가정하면, 간섭 분산은 비직교 확산 시퀀스가 아닌 다중 사용자 채널에 의해서만 영향을 받는다.
따라서, Grassmannian 시퀀스는 NR에서 비직교 확산 시퀀스로 고려된다. 양자화된 Grassmannian 시퀀스는 NOMA 기반 확산 기법을 위해 고려된다.
도 22는 본 실시예에 따른 양자화된 비직교 코드북을 기반으로 NCMA 시스템의 시그널링 절차를 나타낸 절차 흐름도이다.
먼저 용어를 정리하면, 양자화된 비직교 코드북은 양자화된 Grassmannian 시퀀스에 대응할 수 있다. 기존 NCMA 방식에서 사용하던 코드북은 Grassmannian line packing 문제를 해결하기 위한 코드워드로써 복잡한 형태의 계수(coefficient)로 표현되기 때문에 요구되는 비트 수가 많았다. 그러나, 본 실시예는 양자화된 비직교 코드북을 사용하여 Grassmannian 시퀀스의 특성을 유지하면서, 적은 비트만으로 계수를 표현할 수 있는 기법을 제안한다.
단계 S2210에서, 단말은 기지국으로부터 제어정보를 수신한다. 상기 제어정보는 grassmannian 시퀀스로 구성되는 코드워드에 대한 정보를 포함한다. 상기 코드워드는 상기 비직교 부호 다중 접속 기법을 위해 기정의된 코드북에 포함된다. 즉, 상기 기정의된 코드북은 단말과 기지국 간에 사전에 정의된 비직교 코드북에 대응할 수 있다.
상기 제어정보는 단말 특정 NCC(UE Specific Non-orthogonal Code Cover)에 해당하는 코드북 인덱스와 해당 코드북 내의 코드워드 인덱스, MCS 레벨을 더 포함할 수 있다.
상기 무선통신시스템이 하향링크 통신인 경우, 상기 제어정보는 PDCCH를 통해 전송될 수 있다. 상기 무선통신시스템이 상향링크 통신인 경우, 상기 제어정보는 UL 스케줄링 그랜트를 통해 전송될 수 있다. 또는 상기 제어정보는 사전에 약속된 규칙에 따라, 송수신단에서 미리 약속될 수 있다. 예를 들어 사전에 약속된 규칙이란, 전체 코드북의 중첩 계수 K가 고정적으로 사용되거나, 브로드캐스트 채널 등으로 알려 졌을 때, 단말의 C-RNTI 정보와 K의 modulo 연산으로 단말 특정 NCC 인덱스를 인지할 수 있다. 예를 들어, k 번째 단말의 NCC Index(k) mod(C-RNTI(k), K)일 수 있다.
상기 grassmannian 시퀀스의 각 계수(coefficient)는 M-QAM(Quadrature Amplitude Modulation) 성상도를 기반으로 양자화된다. 상기 M은 양자화 레벨이다.
양자화 방식을 구체적으로 살펴보면 다음과 같다.
상기 양자화된 grassmannian 시퀀스는, IQ 도메인(In-phase Quadrature-phase domain)에서 상기 grassmannian 시퀀스의 각 계수가 상기 grassmannian 시퀀스의 각 계수와 최소 유클리드 거리(Euclidean distance)를 가지는 M-QAM 성상도로 양자화되어 생성될 수 있다.
또한, 상기 grassmannian 시퀀스는, 상기 M-QAM 성상도로 양자화되기 전에, 상기 M-QAM 성상도의 크기의 평균 값(mean value)으로 스케일링되고 상기 코드워드의 각 계수의 크기의 평균 값으로 정규화될 수 있다. 즉, Grassmannian 시퀀스의 모든 계수의 크기에 대한 평균 값(mean value)과 M-QAM 성상도의 크기에 대한 평균 값(mean value)은 동일한 수준에서 양자화된다. 스케일링과 정규화 과정을 거친 grassmannian 시퀀스의 각 계수는 독립적으로 양자화될 수 있다.
또한, 상기 grassmannian 시퀀스의 특징은 다음과 같다.
상기 grassmannian 시퀀스는, 동일 부분공간(Subspace) 내에서 임의의 두 벡터가 형성하는 최소 코들 거리(Chordal Distance)가 최대화되는 시퀀스 집합, 시퀀스 간 상호 상관(cross-correlation)이 동일하게 유지되는 시퀀스 집합 및 non-constant-modulus 시퀀스 집합에 포함될 수 있다. 즉, 상기 grassmannian 시퀀스는 상기 세 가지 시퀀스 집합의 특징을 모두 가진다. 상기 grassmannian 시퀀스가 양자화가 된다고 하더라도 상기 grassmannian 시퀀스의 특징은 그대로 유지된다.
상기 양자화된 grassmannian 시퀀스는 (N×K) 차원으로 구성되는 코드북 C에 대응할 수 있다. 상기 N은 확산 인자(spreading factor)이고, 상기 K는 중첩 인자(superposition factor)일 수 있다. 상기 K는 다중 접속을 기법을 수행하는 단말의 개수에 대응할 수 있다.
상기 M, N, K를 고려하여 상기 양자화된 grassmannian 시퀀스를 다음과 같이 구체적인 코드북 형태로 나타낼 수 있다.
상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 2이고, 상기 K는 2일 때 다음과 같이 제1 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000026
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 2이고, 상기 K는 4일 때 다음과 같이 제2 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000027
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 2이고, 상기 K는 6일 때 다음과 같이 제3 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000028
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 2이고, 상기 K는 8일 때 다음과 같이 제4 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000029
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 4이고, 상기 K는 4일 때 다음과 같이 제5 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000030
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 4이고, 상기 K는 6일 때 다음과 같이 제6 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000031
또한, 상기 양자화된 grassmannian 시퀀스는, 상기 M은 64이고, 상기 N은 4이고, 상기 K는 8일 때 다음과 같이 제7 행렬로 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000032
상기 Pno,N,K는 전력 제한을 위한 정규화된 행렬로 다음과 같이 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000033
상기 Pno,K는 다음과 같이 나타낼 수 있다.
Figure PCTKR2017008127-appb-I000034
상기 c 는 상기 제1 내지 제7 행렬의 열 벡터에 대응할 수 있다.
여기서, 상기 제1 내지 제7 행렬은 상기 코드북 C에 대응할 수 있다.
단계 S2220에서, 단말은 상기 제어정보를 기반으로 단말 특정 NCC(UE Specific Non-orthogonal Code Cover)를 변조 또는 복조한다.
상기 무선통신시스템이 하향링크 통신인 경우, 단말은 상기 제어정보에 포함된 코드북 인덱스와 코드워드 인덱스를 통해 단말 특정 NCC를 복조할 수 있다. 상기 무선통신시스템이 상향링크 통신인 경우, 단말은 상기 제어정보에 포함된 코드북 인덱스와 코드워드 인덱스를 통해 단말 특정 NCC를 변조할 수 있다.
단계 S2230에서, 단말은 상기 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행한다.
상기 단말이, 상기 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행하는 단계는, 상기 무선통신시스템이 하향링크 통신인 경우, 상기 단말이, 상기 단말 특정 NCC를 사용하여 동일한 시간 주파수 자원에서 다중 단말의 데이터를 수신하는 단계를 포함할 수 있다.
또한, 상기 단말이, 상기 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행하는 단계는, 상기 무선통신시스템이 상향링크 통신인 경우, 상기 단말이, 상기 단말 특정 NCC를 사용하여 동일한 시간 주파수 자원에서 다중 단말의 데이터를 전송하는 단계를 포함할 수 있다.
또한, 상기 기지국이 다수의 셀을 지원하는 경우, 상기 양자화된 grassmannian 시퀀스 중 일부 시퀀스는 상기 다수의 셀 중 특정 셀에 대해서만 사용될 수 있다. Grassmannian 시퀀스가 G(4, 18)로 생성된 상태에서, 3개의 셀이 G(4, 18)중 각각 6개의 시퀀스만 선택해서 비직교 부호 다중 접속을 수행할 수 있다. 이를 통해, 단일 셀 내의 상호 상관(Cross-correlation)이 G(4,6)보다 증가할 수 있으나, 셀간 사용되는 시퀀스 사이의 상호 상관을 유지시킬 수 있으므로, 셀간 간섭을 줄일 수 있다.
도 23은 본 명세서의 실시예가 구현되는 기기를 나타낸 블록도이다.
무선장치(2300)는 프로세서(2310), 메모리(2320), RF(radio frequency) 유닛(2330)을 포함할 수 있다.
프로세서(2310)는 상술한 기능, 절차, 방법들을 구현하도록 설정될 수 있다. 라디오 인터페이스 프로토콜(radio interface protocol)의 계층(layer)들은 프로세서에 구현될 수 있다. 프로세서(2310)는 상술한 동작을 구동하기 위한 절차를 수행할 수 있다. 메모리(2320)는 동작적으로 프로세서(2310)에 연결되고, RF 유닛(2350)은 프로세서(2310)에 동작적으로 연결된다.
프로세서(2310)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(2320)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(2330)는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(2320)에 저장되고, 프로세서(2310)에 의해 실행될 수 있다. 메모리(2320)는 프로세서(2310) 내부 또는 외부에 있을 수 있고, 널리 알려진 다양한 수단으로 프로세서(2310)와 연결될 수 있다.
상술한 일례들에 기초하여 본 명세서에 따른 다양한 기법들이 도면과 도면 부호를 통해 설명되었다. 설명의 편의를 위해, 각 기법들은 특정한 순서에 따라 다수의 단계나 블록들을 설명하였으나, 이러한 단계나 블록의 구체적 순서는 청구항에 기재된 발명을 제한하는 것이 아니며, 각 단계나 블록은 다른 순서로 구현되거나, 또 다른 단계나 블록들과 동시에 수행되는 것이 가능하다. 또한, 통상의 기술자라면 간 단계나 블록이 한정적으로 기술된 것이나 아니며, 발명의 보호 범위에 영향을 주지 않는 범위 내에서 적어도 하나의 다른 단계들이 추가되거나 삭제되는 것이 가능하다는 것을 알 수 있을 것이다.
상술한 실시예는 다양한 일례를 포함한다. 통상의 기술자라면 발명의 모든 가능한 일례의 조합이 설명될 수 없다는 점을 알 것이고, 또한 본 명세서의 기술로부터 다양한 조합이 파생될 수 있다는 점을 알 것이다. 따라서 발명의 보호범위는, 이하 청구항에 기재된 범위을 벗어나지 않는 범위 내에서, 상세한 설명에 기재된 다양한 일례를 조합하여 판단해야 할 것이다.

Claims (15)

  1. 무선통신시스템에서 비직교 부호 다중 접속(Non-orthogonal Coded Multiple Access) 기법을 사용하여 통신을 수행하는 방법에 있어서,
    단말이, 기지국으로부터 제어정보를 수신하는 단계;
    상기 단말이, 상기 제어정보를 기반으로 단말 특정 NCC(UE Specific Non-orthogonal Code Cover)를 변조 또는 복조하는 단계; 및
    상기 단말이, 상기 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행하는 단계를 포함하되,
    상기 제어정보는 grassmannian 시퀀스로 구성되는 코드워드에 대한 정보를 포함하고,
    상기 코드워드는 상기 비직교 부호 다중 접속 기법을 위해 기정의된 코드북에 포함되고,
    상기 grassmannian 시퀀스의 각 계수(coefficient)는 M-QAM(Quadrature Amplitude Modulation) 성상도를 기반으로 양자화되고, 및
    상기 M은 양자화 레벨인
    방법.
  2. 제1항에 있어서,
    상기 양자화된 grassmannian 시퀀스는, IQ 도메인(In-phase Quadrature-phase domain)에서 상기 grassmannian 시퀀스의 각 계수가 상기 grassmannian 시퀀스의 각 계수와 최소 유클리드 거리(Euclidean distance)를 가지는 M-QAM 성상도로 양자화되어 생성되는
    방법.
  3. 제2항에 있어서,
    상기 grassmannian 시퀀스는, 상기 M-QAM 성상도로 양자화되기 전에, 상기 M-QAM 성상도의 크기의 평균 값(mean value)으로 스케일링되고 상기 코드워드의 각 계수의 크기의 평균 값으로 정규화되는
    방법.
  4. 제3항에 있어서,
    상기 양자화된 grassmannian 시퀀스는 (N×K) 차원으로 구성되는 코드북 C에 대응하고,
    상기 N은 확산 인자(spreading factor)이고, 상기 K는 중첩 인자(superposition factor)인
    방법.
  5. 제4항에 있어서,
    상기 양자화된 grassmannian 시퀀스는,
    상기 M은 64이고, 상기 N은 2이고, 상기 K는 2일 때 다음과 같이 제1 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000035
    상기 M은 64이고, 상기 N은 2이고, 상기 K는 4일 때 다음과 같이 제2 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000036
    상기 M은 64이고, 상기 N은 2이고, 상기 K는 6일 때 다음과 같이 제3 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000037
    상기 M은 64이고, 상기 N은 2이고, 상기 K는 8일 때 다음과 같이 제4 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000038
    상기 Pno,N,K는 전력 제한을 위한 정규화된 행렬로 다음과 같이 나타내고,
    Figure PCTKR2017008127-appb-I000039
    상기 Pno,K는 다음과 같이 나타내고,
    Figure PCTKR2017008127-appb-I000040
    상기 c는 상기 제1 내지 제4 행렬의 열 벡터에 대응하는
    방법.
  6. 제4항에 있어서,
    상기 양자화된 grassmannian 시퀀스는,
    상기 M은 64이고, 상기 N은 4이고, 상기 K는 4일 때 다음과 같이 제1 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000041
    상기 M은 64이고, 상기 N은 4이고, 상기 K는 6일 때 다음과 같이 제2 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000042
    상기 M은 64이고, 상기 N은 4이고, 상기 K는 8일 때 다음과 같이 제3 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000043
    상기 Pno,N,K는 전력 제한을 위한 정규화된 행렬로 다음과 같이 나타내고,
    Figure PCTKR2017008127-appb-I000044
    상기 Pno,K는 다음과 같이 나타내고,
    Figure PCTKR2017008127-appb-I000045
    상기 c는 상기 제1 내지 제3 행렬의 열 벡터에 대응하는
    방법.
  7. 제4항에 있어서,
    상기 기지국이 다수의 셀을 지원하는 경우, 상기 양자화된 grassmannian 시퀀스 중 일부 시퀀스는 상기 다수의 셀 중 특정 셀에 대해서만 사용되는
    방법.
  8. 제1항에 있어서,
    상기 grassmannian 시퀀스는, 동일 부분공간(Subspace) 내에서 임의의 두 벡터가 형성하는 최소 코들 거리(Chordal Distance)가 최대화되는 시퀀스 집합, 시퀀스 간 상호 상관(cross-correlation)이 동일하게 유지되는 시퀀스 집합 및 non-constant-modulus 시퀀스 집합에 포함되는
    방법.
  9. 제1항에 있어서,
    상기 단말이, 상기 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행하는 단계는
    상기 무선통신시스템이 하향링크 통신인 경우, 상기 단말이, 상기 단말 특정 NCC를 사용하여 동일한 시간 주파수 자원에서 다중 단말의 데이터를 수신하는 단계; 및
    상기 무선통신시스템이 상향링크 통신인 경우, 상기 단말이, 상기 단말 특정 NCC를 사용하여 동일한 시간 주파수 자원에서 다중 단말의 데이터를 전송하는 단계를 포함하는
    방법.
  10. 무선통신시스템에서 비직교 부호 다중 접속(Non-orthogonal Coded Multiple Access) 기법을 사용하여 통신을 수행하는 단말에 있어서,
    무선신호를 전송 및 수신하는 RF(radio frequency)부; 및
    상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는
    기지국으로부터 제어정보를 수신하고,
    상기 제어정보를 기반으로 단말 특정 NCC(UE Specific Non-orthogonal Code Cover)를 변조 또는 복조하고, 및
    상기 단말 특정 NCC를 사용하여 상기 비직교 부호 다중 접속 기법을 수행하되,
    상기 제어정보는 grassmannian 시퀀스로 구성되는 코드워드에 대한 정보를 포함하고,
    상기 코드워드는 상기 비직교 부호 다중 접속 기법을 위해 기정의된 코드북에 포함되고,
    상기 grassmannian 시퀀스의 각 계수(coefficient)는 M-QAM(Quadrature Amplitude Modulation) 성상도를 기반으로 양자화되고, 및
    상기 M은 양자화 레벨인
    단말.
  11. 제10항에 있어서,
    상기 양자화된 grassmannian 시퀀스는, IQ 도메인(In-phase Quadrature-phase domain)에서 상기 grassmannian 시퀀스의 각 계수가 상기 grassmannian 시퀀스의 각 계수와 최소 유클리드 거리(Euclidean distance)를 가지는 M-QAM 성상도로 양자화되어 생성되는
    단말.
  12. 제11항에 있어서,
    상기 grassmannian 시퀀스는, 상기 M-QAM 성상도로 양자화되기 전에, 상기 M-QAM 성상도의 크기의 평균 값(mean value)으로 스케일링되고 상기 코드워드의 각 계수의 크기의 평균 값으로 정규화되는
    단말.
  13. 제12항에 있어서,
    상기 기정의된 코드북은 (N×K) 차원으로 구성되는 코드북 C에 대응하고,
    상기 N은 확산 인자(spreading factor)이고, 상기 K는 중첩 인자(superposition factor)인
    단말.
  14. 제13항에 있어서,
    상기 양자화된 grassmannian 시퀀스는,
    상기 M은 64이고, 상기 N은 2이고, 상기 K는 2일 때 다음과 같이 제1 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000046
    상기 M은 64이고, 상기 N은 2이고, 상기 K는 4일 때 다음과 같이 제2 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000047
    상기 M은 64이고, 상기 N은 2이고, 상기 K는 6일 때 다음과 같이 제3 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000048
    상기 M은 64이고, 상기 N은 2이고, 상기 K는 8일 때 다음과 같이 제4 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000049
    상기 Pno,N,K는 전력 제한을 위한 정규화된 행렬로 다음과 같이 나타내고,
    Figure PCTKR2017008127-appb-I000050
    상기 Pno,K는 다음과 같이 나타내고,
    Figure PCTKR2017008127-appb-I000051
    상기 c는 상기 제1 내지 제4 행렬의 열 벡터에 대응하는
    단말.
  15. 제13항에 있어서,
    상기 양자화된 grassmannian 시퀀스는,
    상기 M은 64이고, 상기 N은 4이고, 상기 K는 4일 때 다음과 같이 제1 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000052
    상기 M은 64이고, 상기 N은 4이고, 상기 K는 6일 때 다음과 같이 제2 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000053
    상기 M은 64이고, 상기 N은 4이고, 상기 K는 8일 때 다음과 같이 제3 행렬로 나타내고,
    Figure PCTKR2017008127-appb-I000054
    상기 Pno,N,K는 전력 제한을 위한 정규화된 행렬로 다음과 같이 나타내고,
    Figure PCTKR2017008127-appb-I000055
    상기 Pno,K는 다음과 같이 나타내고,
    Figure PCTKR2017008127-appb-I000056
    상기 c는 상기 제1 내지 제3 행렬의 열 벡터에 대응하는
    단말.
PCT/KR2017/008127 2016-08-12 2017-07-27 무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 WO2018030685A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/323,586 US10771205B2 (en) 2016-08-12 2017-07-27 Method and device for performing communication by using non-orthogonal code multiple access scheme in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662374021P 2016-08-12 2016-08-12
US62/374,021 2016-08-12

Publications (1)

Publication Number Publication Date
WO2018030685A1 true WO2018030685A1 (ko) 2018-02-15

Family

ID=61163277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008127 WO2018030685A1 (ko) 2016-08-12 2017-07-27 무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치

Country Status (2)

Country Link
US (1) US10771205B2 (ko)
WO (1) WO2018030685A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019158690A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Signature sequence handling for noma
WO2019165069A1 (en) * 2018-02-22 2019-08-29 Qualcomm Incorporated Configuration of noma communication using multiple sets of spreading sequences
CN112673599A (zh) * 2018-06-22 2021-04-16 上海诺基亚贝尔股份有限公司 调制符号扩频
CN114050853A (zh) * 2021-11-11 2022-02-15 哈尔滨工业大学 基于联合非正交码本与预编码设计的多用户mimo传输方法
WO2024031502A1 (en) * 2022-08-11 2024-02-15 Qualcomm Incorporated Determining quantization information

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038410A1 (ko) * 2016-08-22 2018-03-01 엘지전자 주식회사 비직교 다중 접속 방식에 기초하여 데이터를 전송/검출하는 방법 및 이를 위한 장치
CN109526057A (zh) * 2017-09-18 2019-03-26 株式会社Ntt都科摩 一种用于生成扩展符号的方法及装置
US20190166624A1 (en) * 2017-11-28 2019-05-30 Huawei Technologies Canada Co., Ltd. Systems and methods for communication resource usage control
CN111543011B (zh) * 2018-01-29 2022-01-14 中兴通讯股份有限公司 用于生成扩展序列码本的方法和装置
US10797748B2 (en) * 2018-02-21 2020-10-06 Qualcomm Incorporated Pairwise cross correlation sequences for non-orthogonal multiple access wireless communications
CN112073156B (zh) * 2020-11-11 2021-03-26 电子科技大学 一种高维非正交传输方法
US11463288B2 (en) 2021-06-14 2022-10-04 Ultralogic 6G, Llc Amplitude-variation encoding for high-density 5G/6G modulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8059747B1 (en) * 2010-06-30 2011-11-15 Mitsubishi Electric Research Laboratories, Inc. Method for decoding codewords transmitted over non-coherent channels in MIMO-OFDM networks using Grassmann codes and superblocks
US20150016395A1 (en) * 2010-02-22 2015-01-15 Samsung Electronics Co., Ltd. Application of sequence hopping and orthogonal covering codes to uplink reference signals
WO2015084070A1 (ko) * 2013-12-04 2015-06-11 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 하이브리드 자동재전송 수행방법 및 장치
US20150318970A1 (en) * 2014-05-02 2015-11-05 Huawei Technologies Canada Co., Ltd. System and Method for Grassmannian Signaling in a Broadband Network
US20160006515A1 (en) * 2014-07-01 2016-01-07 Mitsubishi Electric Research Laboratories, Inc. Method for Generating Constant Modulus Multi-Dimensional Modulations for Coherent Optical Communications

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050885A1 (ja) * 2003-11-21 2005-06-02 Matsushita Electric Industrial Co., Ltd. マルチアンテナ受信装置、マルチアンテナ受信方法、マルチアンテナ送信装置及びマルチアンテナ通信システム
EP1766789B1 (en) * 2004-06-22 2019-02-27 Apple Inc. Methods and systems for enabling feedback in wireless communication networks
US20080212461A1 (en) * 2007-03-01 2008-09-04 Texas Instruments Incorporated Transform-based systems and methods for reconstructing steering matrices in a mimo-ofdm system
KR101707680B1 (ko) * 2008-12-21 2017-02-17 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 장치 및 방법
KR20120113698A (ko) * 2009-12-03 2012-10-15 엘지전자 주식회사 무선 통신 시스템에서 효율적인 경합 기반 전송 방법 및 장치
KR101799272B1 (ko) * 2010-02-03 2017-11-20 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
EP3021505A1 (en) * 2011-01-10 2016-05-18 LG Electronics, Inc. Method and device for transmitting/receiving downlink reference signal in wireless communication system
US9504014B2 (en) * 2012-04-09 2016-11-22 Qualcomm Incorporated Methods and apparatuses for P-CCPCH-aided channel estimation in wireless systems
US9432168B2 (en) * 2012-12-19 2016-08-30 Lg Electronics Inc. Method and apparatus for transmitting and receiving channel status information (CSI) for supporting 256QAM in wireless access system
KR102097713B1 (ko) * 2014-02-10 2020-05-26 삼성전자주식회사 주파수 직각 진폭 변조를 사용하는 무선 통신 시스템에서 채널 품질 정보 피드백을 위한 방법 및 장치
US10158408B2 (en) * 2014-03-27 2018-12-18 Samsung Electronics Co., Ltd. Apparatus and method for channel information feedback in wireless communication system
US10149318B2 (en) * 2014-09-02 2018-12-04 Qualcomm Incorporated Techniques for transmitting and receiving downlink control information for a set of NOMA downlink transmissions
US10123315B2 (en) * 2014-10-15 2018-11-06 Asustek Computer Inc. Method and apparatus for enhancing channel capacity and spectral efficiency in a wireless communication system
US20160309542A1 (en) * 2015-04-16 2016-10-20 Sharp Laboratories Of America, Inc. Systems and methods for constellation superposition
US10257013B2 (en) * 2015-08-14 2019-04-09 Hfi Innovation, Inc. Signal modulation and demodulation for multiuser superposition transmission scheme

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150016395A1 (en) * 2010-02-22 2015-01-15 Samsung Electronics Co., Ltd. Application of sequence hopping and orthogonal covering codes to uplink reference signals
US8059747B1 (en) * 2010-06-30 2011-11-15 Mitsubishi Electric Research Laboratories, Inc. Method for decoding codewords transmitted over non-coherent channels in MIMO-OFDM networks using Grassmann codes and superblocks
WO2015084070A1 (ko) * 2013-12-04 2015-06-11 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 하이브리드 자동재전송 수행방법 및 장치
US20150318970A1 (en) * 2014-05-02 2015-11-05 Huawei Technologies Canada Co., Ltd. System and Method for Grassmannian Signaling in a Broadband Network
US20160006515A1 (en) * 2014-07-01 2016-01-07 Mitsubishi Electric Research Laboratories, Inc. Method for Generating Constant Modulus Multi-Dimensional Modulations for Coherent Optical Communications

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019158690A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Signature sequence handling for noma
WO2019165069A1 (en) * 2018-02-22 2019-08-29 Qualcomm Incorporated Configuration of noma communication using multiple sets of spreading sequences
US10771105B2 (en) 2018-02-22 2020-09-08 Qualcomm Incorporated Configuration of NOMA communication using multiple sets of spreading sequences
CN112673599A (zh) * 2018-06-22 2021-04-16 上海诺基亚贝尔股份有限公司 调制符号扩频
CN112673599B (zh) * 2018-06-22 2022-07-01 上海诺基亚贝尔股份有限公司 调制符号扩频
CN114050853A (zh) * 2021-11-11 2022-02-15 哈尔滨工业大学 基于联合非正交码本与预编码设计的多用户mimo传输方法
WO2024031502A1 (en) * 2022-08-11 2024-02-15 Qualcomm Incorporated Determining quantization information

Also Published As

Publication number Publication date
US10771205B2 (en) 2020-09-08
US20190181993A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2018030685A1 (ko) 무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치
WO2018182233A1 (ko) 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치
WO2019098700A1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
WO2017217805A1 (en) Transmission of reference signals in a communication system
WO2021015595A1 (en) Enhancements on synchronization, random access, and harq operation for non-terrestrial networks
WO2017018839A1 (en) Method and apparatus for csi reporting
WO2017204470A1 (ko) 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치
WO2022025601A1 (en) Multiplexing information with different priority values
WO2018034533A1 (en) Method and apparatus for grid mapping in a wireless communication system
WO2016163847A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018038410A1 (ko) 비직교 다중 접속 방식에 기초하여 데이터를 전송/검출하는 방법 및 이를 위한 장치
WO2018212543A1 (ko) 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치
WO2017204471A1 (ko) 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치
WO2011046355A2 (en) Method and system of multi-layer beamforming
WO2016144100A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2012128505A2 (ko) 장치-대-장치 통신 방법 및 장치
WO2010090415A2 (en) Apparatus and method for transmitting signal in wireless communication system
WO2022025599A1 (en) Method and apparatus for determination of uplink/downlink transport block size and modulation and coding scheme
WO2022060089A1 (ko) 무선 통신 시스템에서 단말이 코드북에 기반하여 업링크 신호를 전송하는 방법 및 이를 위한 장치
WO2018139782A1 (ko) 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치
WO2022245117A1 (en) Method and apparatus for uci multiplexing
WO2023191454A1 (en) Method and apparatus for time domain resource allocation in wireless communication system
WO2023146269A1 (en) Method and apparatus for reporting of time-domain channel properties
WO2022203442A1 (en) Method and apparatus for configuring csi reporting granularity
WO2023003054A1 (ko) 양자 통신 시스템에서 양자 보안 직접 통신을 수행하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839703

Country of ref document: EP

Kind code of ref document: A1