WO2018128200A1 - Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치 - Google Patents

Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018128200A1
WO2018128200A1 PCT/KR2017/000104 KR2017000104W WO2018128200A1 WO 2018128200 A1 WO2018128200 A1 WO 2018128200A1 KR 2017000104 W KR2017000104 W KR 2017000104W WO 2018128200 A1 WO2018128200 A1 WO 2018128200A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
noma
signature
subframe
indicated
Prior art date
Application number
PCT/KR2017/000104
Other languages
English (en)
French (fr)
Inventor
이호재
노광석
김동규
이상림
김명진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/475,776 priority Critical patent/US10892859B2/en
Priority to PCT/KR2017/000104 priority patent/WO2018128200A1/ko
Publication of WO2018128200A1 publication Critical patent/WO2018128200A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for performing HARQ operation in a NoMA based system.
  • the 3GPP LTE 3rd Generation Partnership Project Long Term Evolution (LTE) system is designed as a frame structure with a 1ms transmission time interval (TTI), and the data request delay time is 10ms for video applications.
  • TTI transmission time interval
  • future 5G technologies will require lower latency data transmissions with the emergence of new applications such as real-time control and tactile internet, and 5G data demand latency will be lowered to 1ms. It is expected.
  • An object of the present invention is to provide a method for a terminal to perform an HARQ operation in a non-orthogonal multiple access (NoMA) based system.
  • NoMA non-orthogonal multiple access
  • Another object of the present invention is to provide a terminal for performing an HARQ operation in a non-orthogonal multiple access (NoMA) based system.
  • NoMA non-orthogonal multiple access
  • a method of performing HARQ operation by a terminal in a non-orthogonal multiple access (NoMA) based system includes a multiple access (MA) signature field for supporting NoMA transmission.
  • Receiving a downlink control information (DCI) format Receiving downlink data based on a value of a MA signature indicated by the MA signature field; And transmitting an ACK / NACK signal for the downlink data based on a subframe offset value, a frequency offset value, or a sequence index value tied to a value of the indicated MA signature according to a predefined rule.
  • DCI downlink control information
  • the subframe offset value includes a subframe offset value between a reception subframe of the downlink data and a downlink HARQ feedback transmission subframe for the downlink data, and the frequency offset value is the ACK / NACK. Indicates the frequency band used for transmitting the signal.
  • the MA signature may include a codeword index, a codebook index, an interleaver index, a demodulation reference signal index, a spatial dimension or a power dimension.
  • the ACK / NACK signal may be further transmitted based on a CCE (Control Channel Element) number in which the MA signature field is transmitted according to the predefined rule.
  • CCE Control Channel Element
  • the ACK / NACK signal may be transmitted in the indicated subframe according to the subframe offset value tied to the indicated MA signature value.
  • the ACK / NACK signal may be transmitted in the indicated frequency band according to the frequency offset value tied to the indicated MA signature value.
  • the ACK / NACK signal may be transmitted by applying a sequence corresponding to a sequence index value tied to the indicated value of the MA signature to the ACK / NACK signal.
  • the MA signature field may be a 2-bit field.
  • a terminal for performing an HARQ operation in a non-orthogonal multiple access (NoMA) based system the receiver; transmitter; And a processor, wherein the receiver receives a Downlink Control Information (DCI) format including a Multiple Access (MA) signature field for the receiver to support NoMA transmission, and receives a Downlink Control Information (DCI) format indicated by the MA signature field.
  • DCI Downlink Control Information
  • the processor is configured to subframe offset value, frequency offset value, or sequence index value tied to the value of the indicated MA signature according to a predefined rule.
  • Control to transmit an ACK / NACK signal for the downlink data wherein the subframe offset value is a subframe offset between a reception subframe of the downlink data and a downlink HARQ feedback transmission subframe for the downlink data Value, wherein the frequency offset value is a frequency used for transmitting the ACK / NACK signal. It may instruct the station.
  • the MA signature may include a codeword index, a codebook index, an interleaver index, a demodulation reference signal index, a spatial dimension or a power dimension.
  • the processor may control the transmitter to transmit the ACK / NACK signal further based on a CCE (Control Channel Element) number on which the MA signature field is transmitted according to the predefined rule.
  • CCE Control Channel Element
  • the processor may control the transmitter to transmit the ACK / NACK signal in the indicated subframe according to the subframe offset value tied to the indicated MA signature value.
  • the processor may control the transmitter to transmit the ACK / NACK signal in the indicated frequency band according to the frequency offset value tied to the indicated MA signature value.
  • the processor may apply a sequence corresponding to a sequence index value tied to the value of the indicated MA signature to the ACK / NACK signal and control the transmitter to transmit the ACK / NACK signal transmitted with the sequence.
  • the MA signature field may be a 2-bit field.
  • the field for the MA signature information needs to be added in DCI, and the problem of increasing DCI overhead due to continuous transmission of control information can be solved through control signaling according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram illustrating a NOMA based downlink transmission / reception (Tx / Rx) block diagram of a communication device.
  • FIG. 3 is a diagram illustrating a NOMA based uplink transmission / reception block diagram of a communication device.
  • FIG. 4 is a diagram exemplarily illustrating a self-contained subframe structure.
  • FIG. 7 is a diagram illustrating a relationship between a subframe receiving a DCI and a subframe capable of transmitting downlink ACK / NACK.
  • FIG. 8 is a diagram illustrating a relationship between a subframe receiving NACK and a subframe receiving retransmission.
  • FIG. 9 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on a NoMA codeword index according to the example of Table 4.
  • FIG. 9 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on a NoMA codeword index according to the example of Table 4.
  • FIG. 10 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 5.
  • FIG. 10 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 5.
  • FIG. 11 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 6.
  • FIG. 11 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 6.
  • FIG. 12 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on a NoMA codeword index according to the example of Table 8.
  • FIG. 12 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on a NoMA codeword index according to the example of Table 8.
  • FIG. 13 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 9.
  • FIG. 13 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 9.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one radio frequency (RF) unit.
  • RF radio frequency
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processing devices
  • DSPDs digital signal processing devices
  • PLDs programmable logic
  • devices, field programmable gate arrays (FPGAs), and the like may be included in the processors 155 and 180.
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
  • Next-generation 5G systems can be categorized into Enhanced Mobile BroadBand (eMBB) / Ultra-reliable Machine-Type Communications (uMTC) / Massive Machine-Type Communications (mMTC).
  • eMBB is a next generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate
  • uMTC is a next generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC are next generation mobile communication scenarios having low cost, low energy, short packet, and mass connectivity (eg IoT).
  • FIG. 2 is a diagram illustrating a NOMA based downlink transmission / reception (Tx / Rx) block diagram of a communication device.
  • NOMA non-orthogonal multiple access
  • MUST Multiuser Superposition Transmission
  • the NOMA system is considered as an element technology of the next generation 5G system for the purpose of gaining transmission capacity gain or increasing the number of simultaneous connections compared to the LTE system by transmitting information for multiple terminals by overlapping the same time-frequency resources.
  • next generation 5G system's NOMA series technologies include MUST to distinguish terminals based on power level, Sparse Code Multiple Access (SCMA) using Sparse Complex Codebook-based modulation, and interleave using user-specific interleaver.
  • SCMA Sparse Code Multiple Access
  • IDMA Division Multiple Access
  • the power allocation of each symbol is changed after the modulation of the multi-terminal data in the transmitter of FIG. 2, or the hierarchical modulation is transmitted based on hierarchical modulation, and the multi-terminal data is transmitted.
  • Demodulating data hereinafter referred to as multi-terminal data
  • MOD multi-user detection
  • the transmitting end of FIG. 2 replaces the forward error correction (FEC) encoder and the modulation process with respect to the multi-terminal data by using a previously promised Sparse Complex Codebook modulation scheme, and transmits the multi-terminal data through the MUD at the receiving end.
  • FEC forward error correction
  • the transmitter of FIG. 2 modulates and transmits FEC encoding information on the terminal data through a terminal-specific interleaver, and demodulates the terminal data through the MUD at the receiver.
  • Each system can demodulate multi-terminal data using various MUD methods, for example Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC), and the like.
  • MUD methods for example Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC), and the like.
  • ML Maximum Likelihood
  • MAP Maximum joint A posteriori Probability
  • MPA Message Passing Algorithm
  • MCA Matched Filtering
  • SIC Successive Interference Cancellation
  • PIC Parallel Interference Cancellation
  • CWIC Codeword Interference Cancellation
  • FIG. 3 is a diagram illustrating a NOMA based uplink transmission / reception block diagram of a communication device.
  • FIG. 3 illustrates a structure of a transceiver for uplink support of a NOMA series system in which information of multiple terminals (hereinafter, referred to as multiple terminal information) is allocated to the same resource and transmitted.
  • Each system may transmit and demodulate the multi-terminal data in the same manner as the description of the downlink structure of FIG.
  • NOMA series systems transmit multiple terminal signals over the same time-frequency resources, they have a higher decoding error rate than LTE systems, but can support higher frequency utilization efficiency or more connectivity.
  • NOMA Non-Orthogonal Multiple Access
  • FIG. 4 is a diagram exemplarily illustrating a self-contained subframe structure.
  • resource sections eg, a downlink control channel and an uplink control channel
  • resource sections for downlink and uplink exist in one subframe, and there is downlink / uplink interference.
  • resource sections for GP and data transmission are resource sections for GP and data transmission to solve the problem.
  • the downlink resource interval indicated by DL may be a resource interval for a downlink control channel
  • the uplink resource interval indicated by UL may be a resource interval for an uplink control channel.
  • the downlink resource interval indicated by DL may be a resource interval for a downlink control channel
  • the uplink resource interval indicated by UL may be a resource interval for an uplink control channel.
  • asynchronous adaptive HARQ is considered.
  • the overall operation of HARQ proceeds through downlink control information (DCI) of the base station. Therefore, DL / UL HARQ supports asynchronous and adaptive retransmission.
  • DCI downlink control information
  • the operation content is defined in Table 1 according to the DL / UL grant information of the PDCCH.
  • Table 1 illustrates the operation of the receiver according to the HARQ mode in the NR.
  • the data channel decoder of the UE operates as follows.
  • the data channel decoder uses grant information received in the same subframe as described above.
  • -ACK / NACK information is configured according to the decoding result and delivered to the upper layer.
  • the UL HARQ uses the ACK / NACK information obtained as a result of the previous data decoding for the packet having the same HARQ process ID.
  • the received soft data is immediately decoded and the soft data is stored in the circular buffer.
  • the received soft data and the circular buffer data are combined to perform decoding, and the combined soft data is stored in the circular buffer.
  • ACK / NACK information is configured and delivered to the upper layer.
  • New RAT NR
  • four parameters can be defined as follows to perform Asynchronous Adaptive HARQ.
  • k DL subframe offset between downlink data and corresponding downlink HARQ feedback (downlink HARQ feedback for the downlink data)
  • k UL subframe offset between uplink data and corresponding uplink HARQ feedback (uplink HARQ feedback for the downlink data)
  • DL subframe offset between DL HARQ feedback and corresponding retransmission for downlink HARQ feedback for downlink data and retransmission of the downlink data
  • uplink sub-frame offset between the retransmission of the uplink data and uplink HARQ feedback for the data link (UL subframe Offset between HARQ feedback and corresponding retransmission)
  • An uplink HARQ feedback (NACK in FIG. 6) for link data is transmitted in subframe # 4.
  • the g DL is performed at the base station, and since the UE continuously monitors retransmission for the downlink (DL) through DCI decoding, an indication may not be necessary.
  • k UL is performed at the base station and the UE continuously monitors ACK / NACK for uplink (UL) through DCI decoding, an indication may not be necessary.
  • the g UL needs to be performed and scheduled and operated by the UE, the UE must receive a retransmission time point for uplink (UL) through DCI.
  • a field for the indication must be added in the DCI.
  • a 2-bit field is defined in DCI of the LTE / LTE-A system, it may be defined as shown in Table 2 below.
  • Table 2 it is assumed that uplink data scheduling or downlink ACK / NACK transmission is possible in a subframe receiving the DCI.
  • FIG. 7 is a diagram illustrating a relationship between a subframe receiving a DCI and a subframe capable of transmitting downlink ACK / NACK.
  • the value of k DL may be 0, 1, 2, or 3.
  • FIG. 7 illustrates the case of 0, 1, and 3 among k DL values shown in Table 2.
  • Table 3 is a table showing values of g UL by defining 2-bit fields of DCI of LTE / LTE-A system.
  • FIG. 8 is a diagram illustrating a relationship between a subframe receiving NACK and a subframe receiving retransmission.
  • the value of g UL may be 0, 1, 2 or 3.
  • FIG. 8 shows the case of 0, 1, and 3 among the values of g UL shown in Table 3.
  • an indication of g DL and k UL may be added to the DCI field.
  • the overhead of DCI can be increased, but the complexity of monitoring DCI of the UE can be reduced.
  • the NoMA series systems allocate multiple user data to the same resource, transmission is performed with only a difference in codeword or power on the same physical resource. That is, since the data resource region is shared, a definition of how to use the PUCCH format for the HARQ process is required.
  • a base station may need to transmit information such as a multiple access (MA) signature in DCI information. Then, a field for MA Signature information may be added in DCI as compared to the existing LTE, and a field for supporting asynchronous adaptive HARQ may be added. In this case, a problem of increasing DCI overhead may occur due to continuous transmission of too much control information. Therefore, the present invention provides a control signaling scheme that solves the above problems.
  • MA multiple access
  • MA resources are composed of MA physical resources and MA signatures.
  • the MA signature includes 1) Codebook / Codeword, Sequence, Interleaver and / or mapping pattern, Demodulation reference signal, Preamble, Spatial-dimension, and Power-dimension.
  • the present invention proposes a control signaling scheme of linking a NoMA codeword index to HARQ information when NoMA based transmission is performed for data transmission and reception as an embodiment.
  • a description will be given of the relationship between the ACK / NACK signal for the downlink and the NoMA codeword index, but it is obvious that the method can be applied to the uplink in a similar manner.
  • it is described as a codeword among MA signatures, but it is equally applicable to other types of MA signatures other than codewords.
  • the NoMA codeword referred to in the present invention means a complex element vector selected (or assigned) by each terminal in order to perform non-orthogonal multiple access.
  • Codebook means a set of codewords used by each terminal to perform non-orthogonal multiple access.
  • the codebook mentioned above may exist in plural numbers.
  • UE-specific NCC UE specific NCC
  • the NCC or terminal-specific NCC
  • the non-orthogonal codebook is expressed as Equation 1 below.
  • c (j) is a codeword for the j-th terminal, and the codeword set for all K terminals becomes the codebook C.
  • c (j) to transmit data of the j-th terminal is defined as NCC.
  • the codebook may be represented by a vector length N of codewords and a number K of codewords.
  • N means spreading factor
  • K means superposition factor.
  • one codeword is used in one terminal for convenience of description, but a plurality of codewords are used by one terminal or one codeword is not excluded.
  • one or more codewords assigned to one terminal may hopping codewords by using another codeword in the same codebook or using another codeword in another codebook according to time or frequency of use.
  • ACK / NACK signals for multiple users do not overlap in one uplink control channel zone (eg, xPUCCH zone), for example, ACK / NACK transmission in PUCCH Format 2 of an LTE system. have.
  • one uplink control channel zone eg, xPUCCH zone
  • the number of users in the data zone is large, but only one ACK / NACK signal can be transmitted.
  • the codeword index field in the DCI is Tie with a subframe offset k DL for asynchronous adaptive HARQ (Asynchronous Adaptive HARQ) support. That is, the NOMA codeword index field may replace k DL . Alternatively, on the contrary, the k DL field may replace the codeword index field.
  • a 2-bit field is defined in DCI of an LTE system, it may be defined as follows. Here, it is assumed that ACK / NACK transmission for downlink is possible in a subframe receiving the DCI.
  • the codeword index field in the DCI indicates a NoMA codeword index, and at the same time, indicates a subframe offset k DL tied to the NoMA codeword index.
  • FIG. 9 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on a NoMA codeword index according to the example of Table 4.
  • FIG. 9 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on a NoMA codeword index according to the example of Table 4.
  • the UE and the base station may know in advance that the NoMA codeword index and the subframe offset k DL are tie. As shown in Table 4, when the subframe offset (k DL ) 0 is tied to the NoMA codeword index 0, the UE decodes when the NoMA codeword index field is indicated in the NoMA codeword index field in the DCI transmitted by the base station. NoMA codeword index to be used at the time is NoMA codeword index 0, it can be seen that the subframe offset (k DL ) is 0.
  • the UE when the UE receives the DCI and the downlink data according to the DCI in the corresponding subframe, since the subframe offset (k DL ) is 0, the UE transmits the ACK / NACK signal for the received downlink data to the corresponding subframe. (In particular, through an uplink control channel of a corresponding subframe).
  • the UE when the NoMA codeword index field is indicated in the NoMA codeword index field in the DCI transmitted by the base station, the UE knows that the NoMA codeword index to be used is NoMA codeword index 1 and the subframe offset (k DL ) is 1 at this time. have. In this case, the terminal may transmit an ACK / NACK signal for the downlink data in the next subframe after receiving the downlink data.
  • the UE may transmit an ACK / NACK signal in the corresponding subframe according to the corresponding subframe offset (k DL ) value.
  • asynchronous adaptive HARQ operation can be performed in up to four subframes while signaling up to four NoMA codewords.
  • the codeword index field in the DCI is tied with a frequency offset (f ACK / NACK ) for asynchronous adaptive HARQ support. That is, the NoMA codeword index field specifies NoMA codeword index information and a frequency band (one of the pre-defined sub-bands) for transmitting the ACK / NACK signal.
  • a 2-bit field is defined in DCI of an LTE system, it may be defined as follows. Here, it is assumed that ACK / NACK transmission for downlink is possible in a subframe receiving the DCI, and as an example, k DL is assumed to be signaled to zero.
  • the codeword index field in the DCI indicates a NoMA codeword index, and at the same time, indicates a frequency offset (f ACK / NACK ) tied to the NoMA codeword index.
  • FIG. 10 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 5.
  • FIG. 10 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 5.
  • the UE and the base station may know in advance that the NoMA codeword index and the frequency offset f ACK / NACK are tie. As shown in Table 5, the subframe index and the frequency offset (f ACK / NACK ) 0 are tied to the NoMA codeword index 0, indicating the NoMA codeword index 0 in the NoMA codeword index field in the DCI transmitted by the base station. Then, the UE may know that the NoMA codeword index to be used for decoding is NoMA codeword index 0.
  • the terminal is the frequency domain position for HARQ ACK / NACK transmission is the frequency band of the uplink control channel zone (for example, xPUCCH zone) of the corresponding subframe as the indicated frequency offset (f ACK / NACK ) is 0
  • ACK / NACK should be transmitted at a position corresponding to the lowest frequency band.
  • the UE since k DL is assumed to be signaled to be 0, the UE transmits HARQ ACK / NACK in a corresponding subframe in which downlink data according to DCI / DCI is received, but the uplink control channel zone (for example, xPUCCH).
  • ACK / NACK may be transmitted at a position corresponding to, for example, the lowest frequency band of the zone).
  • ACK / NACK may be transmitted in a corresponding frequency band of the xPUCCH zone according to the frequency offset value tied to the indicated NoMA codeword index.
  • asynchronous adaptive HARQ operation can be performed by designating a frequency offset for up to four ACK / NACK signals while signaling up to four NoMA codewords.
  • the ACK / NACK signal can be designated as SDM (Space Division Multiplexing)
  • the SDM layer and the NoMA codeword index can be tie in the same manner as described above.
  • a layer of ACK / NACK is designated through the NoMA codeword index in the DCI, and the terminal may transmit the ACK / NACK signal to the base station through the layer of the corresponding ACK / NACK indicated from the NoMA codeword index value.
  • ACK / NACK signals for multiple users overlap in one uplink control channel zone (eg, xPUCCH zone), for example, in case of ACK / NACK transmission in PUCCH Format 1 or 3 of LTE Means.
  • uplink control channel zone eg, xPUCCH zone
  • the number of users in the data zone is also large, and the ACK / NACK signal can also be transmitted to a large number of users.
  • an orthogonal sequence-based ACK / NACK signal tied to a NoMA codeword index can be transmitted.
  • the codeword index field in the DCI is tie with an orthogonal sequence in the xPUCCH zone for asynchronous adaptive HARQ support. That is, the NoMA codeword index field specifies an orthogonal sequence (any one of the predefined orthogonal sequences) for transmitting the NoMA codeword index information and the ACK / NACK signal.
  • a 2-bit field is defined in DCI of the LTE system, it may be defined as shown in Table 6 below.
  • ACK / NACK transmission for downlink is possible in a subframe in which DCI is received, and that k DL value is signaled to 0 (via DCI).
  • the codeword index field in the DCI indicates a NoMA codeword index, and at the same time indicates an orthogonal sequence index for ACK / NACK transmission that is tied to the NoMA codeword index.
  • FIG. 11 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 6.
  • FIG. 11 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 6.
  • the UE and the base station may know in advance that the NoMA codeword index is orthogonal to the orthogonal sequence index. As shown in Table 6, when the subframe index and the orthogonal sequence index 0 are tied to the NoMA codeword index 0, the UE decodes when the NoMA codeword index field is indicated in the NoMA codeword index field in the DCI transmitted by the base station. It can be seen that the NoMA codeword index to be used is NoMA codeword index 0. In this case, it can be seen that the UE should transmit by applying orthogonal sequence index 0 in the xPUCCH zone for HARQ ACK / NACK transmission.
  • the UE may transmit an ACK / NACK on the xPUCCH by applying an orthogonal sequence index value tied to the indicated NoMA codeword index.
  • asynchronous adaptive HARQ operation can be performed by designating orthogonal sequences for up to four ACK / NACK signals while signaling up to four NoMA codewords.
  • a non-orthogonal sequence-based ACK / NACK signal tied to a NoMA codeword index is transmitted.
  • the NoMA codeword index field in the DCI is tied to a non-orthogonal sequence in the xPUCCH zone for asynchronous adaptive HARQ support. That is, the NoMA codeword index specifies the non-orthogonal sequence (any one of the predefined non-orthogonal sequences) for transmitting the NoMA codeword index information and the ACK / NACK signal.
  • a 2-bit field is defined in DCI of an LTE system, it may be defined as follows. Here, it is assumed that ACK / NACK transmission for downlink is possible in a subframe receiving the DCI, and k DL Assume that the value of is signaled as 0.
  • the codeword index field in the DCI indicates a NoMA codeword index, and at the same time, indicates a non-orthogonal sequence index for ACK / NACK transmission tied to the NoMA codeword index.
  • the UE and the base station may know in advance that the NoMA codeword index and the non-orthogonal sequence index are tie. As shown in Table 7, when the subframe index and the non-orthogonal sequence index 0 are tied to the NoMA codeword index 0, the UE indicates if the NoMA codeword index 0 is indicated in the NoMA codeword index field in the DCI transmitted by the base station. It can be seen that the NoMA codeword index used for decoding is NoMA codeword index 0. In this case, it can be seen that the UE should apply and transmit a non-orthogonal sequence corresponding to non-orthogonal sequence index 0 in the xPUCCH zone for HARQ ACK / NACK transmission.
  • the UE applies a non-orthogonal sequence corresponding to the indicated NoMA codeword index and the non-orthogonal sequence index that is tied to the ACK / NACK may be transmitted.
  • asynchronous adaptive HARQ operation can be performed by designating non-orthogonal sequences for up to four ACK / NACK signals while signaling up to four NoMA codewords.
  • the previously proposed scheme may also operate in combination with a Control Channel Element (CCE) number of the DCI in which the NoMA codeword index field is transmitted.
  • CCE Control Channel Element
  • the xPUCCH zone may be configured with one or two symbols.
  • one xPUCCH zone may be set based on a large number of subcarriers to ensure reliability of the ACK / NACK signal.
  • an ACK / NACK signal based on an orthogonal or non-orthogonal sequence tied to the NoMA codeword index may be transmitted.
  • the CCE number to which the DCI is transmitted and the NoMA codeword index field in the DCI are tied with orthogonal or non-orthogonal sequences in the xPUCCH zone for asynchronous adaptive HARQ support.
  • the NoMA codeword index field and the CCE number to which the NoMA codeword index field is transmitted are orthogonal or non-orthogonal sequences for transmitting the NoMA codeword index information and the ACK / NACK signal (one of the predefined orthogonal or non-orthogonal sequences).
  • a 2-bit field is defined in the DCI of LTE, it may be defined as follows.
  • ACK / NACK transmission for downlink transmission is possible in a subframe in which DCI is received, and a value of k DL is signaled as 0.
  • the codeword index field in the DCI indicates a NoMA codeword index, and at the same time indicates an orthogonal sequence index for ACK / NACK transmission that is tied to the NoMA codeword index.
  • the CCE number in which the NoMA codeword index field is transmitted may designate an orthogonal / non-orthogonal sequence for transmitting up to 16 ACK / NACK signals.
  • FIG. 12 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on a NoMA codeword index according to the example of Table 8.
  • FIG. 12 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on a NoMA codeword index according to the example of Table 8.
  • asynchronous adaptive HARQ operation may be performed by designating a non-orthogonal sequence. That is, by combining the NoMA codeword index field and the CCE number to which this NoMA codeword index field is transmitted, an orthogonal / non-orthogonal sequence or ACK / NACK signal transmission position (time / frequency) for more ACK / NACK transmission is specified. Can give
  • the CCEs are indicated in a single unit, but a plurality of CCEs may be used for one data according to the amount of information of the downlink control channel.
  • a Look Up table similar to Table 8 may be defined in advance based on a lowest CCE number (or index) or a highest CCE number (or index).
  • Look up table examples described above are merely examples for the simplification of the description and may be presented in the form of other combinations in terms of system parameters and optimization.
  • ACK / NACK transmission of a user equipment or a terminal for downlink has been described.
  • it may operate by mapping with a NoMA codeword index for g UL indicating transmission or retransmission for uplink.
  • mapping to the ACK / NACK signaling resource may be performed even by a combination of two or more of the above-described TDM / FDM / CDM scheme.
  • mapping with an ACK / NACK signal for a TDM / FDM combination may be defined as shown in Table 9 below.
  • Table 9 it is assumed that ACK / NACK transmission for downlink transmission is possible in a subframe receiving the DCI.
  • the codeword index field in the DCI indicates a NoMA codeword index, and at the same time, a subframe offset k DL tied to the NoMA codeword index and a frequency offset for ACK / NACK transmission for downlink transmission (f). ACK / NACK ).
  • FIG. 13 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 9.
  • FIG. 13 is a diagram for describing asynchronous adaptive HARQ operation of a UE and a base station based on the NoMA codeword index according to the example of Table 9.
  • the UE and the base station may know in advance that the NoMA codeword index, the subframe offset k DL, and the frequency offset f ACK / NACK for ACK / NACK transmission for downlink transmission are tied.
  • the NoMA codeword index 0 has a subframe offset (k DL ) 0 and a frequency offset (f ACK / NACK ) for ACK / NACK transmission, so that the base station transmits a NoMA codeword in DCI.
  • the NoMA codeword index 0 is indicated in the index field, the UE uses the decoding when the NoMA codeword index is NoMA codeword index 0.
  • the subframe offset (k DL ) is 0 and a frequency offset value for ACK / NACK transmission.
  • the UE when the UE receives the DCI and the downlink data according to the DCI in the corresponding subframe, since the subframe offset (k DL ) is 0, the UE transmits the ACK / NACK signal for the received downlink data to the corresponding subframe.
  • the xPUCCH zone of the transmission may be transmitted on the frequency band corresponding to the corresponding frequency offset value (in particular, to the corresponding base station.
  • the UE uses the decoding of the NoMA codeword index and the corresponding subframe offset based on Table 9 above. (k DL ) value, the corresponding frequency offset value, etc. can be known.
  • subframe offset for up to two ACK / NACK signals and frequency offset for up to two ACK / NACK signals while signaling up to four NoMA codeword indices By specifying this, asynchronous adaptive HARQ operation can be performed.
  • the MA signature is mainly described as a NoMA codeword, but according to the NoMA technology, a separator for distinguishing a plurality of users such as a power level, an interleaver index, a NoMA codebook index, and the like when overlapping transmissions This can be all.
  • a separator for distinguishing a plurality of users such as a power level, an interleaver index, a NoMA codebook index, and the like when overlapping transmissions This can be all.
  • all operations described by the NoMA codeword may be equally applied. This may be equally applicable to all MA signatures (Codebook / Codeword, Sequence, Interleaver and / or mapping pattern, Demodulation reference signal, Preamble, Spatial-dimension, Power-dimension).
  • a power level is controlled and transmitted for multi-user overlapping transmission of a cell outer user or a cell center user.
  • the ACK / NACK signal and the mapping operation may be performed in the same manner as the four codeword indexes described in the above examples.
  • MTC uplink and machine type communication
  • D2D device-to-device
  • V2X vehicle-to-everything
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • the method of performing HARQ operation in a NoMA-based system and an apparatus therefor can be applied industrially in various wireless communication systems such as 3GPP LTE / LTE-A and 5G systems.

Abstract

NoMA 기반 시스템에서 단말이 HARQ 동작을 수행하는 방법은, NoMA 전송을 지원하기 위한 MA(Multiple Access) 시그너처 필드를 포함하는 DCI(Downlink Control Information) 포맷을 수신하는 단계; 상기 MA 시그니처 필드가 지시하는 MA 시그너처의 값에 기초하여 하향링크 데이터를 수신하는 단계; 및 사전에 정의된 규칙에 따라 상기 지시된 MA 시그너처의 값과 묶인(tied) 서브프레임 옵셋 값, 주파수 옵셋 값, 또는 시퀀스 인덱스 값에 기초하여 상기 하향링크 데이터에 대한 ACK/NACK 신호를 전송하는 단계를 포함하되, 상기 서브프레임 옵셋 값은 상기 하향링크 데이터의 수신 서브프레임과 상기 하향링크 데이터에 대한 하향링크 HARQ 피드백 전송 서브프레임 간의 서브프레임 옵셋 값을 포함하며, 상기 주파수 옵셋 값은 상기 ACK/NACK 신호를 전송에 사용되는 주파수 대역을 지시한다.

Description

NOMA 기반 시스템에서 HARQ 동작을 수행하는 방법 및 이를 위한 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는, NoMA 기반 시스템에서 HARQ 동작을 수행하는 방법 및 이를 위한 장치에 관한 것이다.
3GPP LTE (3rd Generation Partnership Project Long Term Evolution) 시스템은 1ms TTI (transmission time interval)를 가지는 프레임 구조로 디자인 되었으며, 비디오(video) 어플리케이션을 위해 데이터 요구 지연 시간은 10ms이었다. 그러나, 미래의 5G 기술은 실시간 제어(real-time control) 및 촉감 인터넷(tactile internet)과 같은 새로운 어플리케이션의 등장으로 더욱 낮은 지연의 데이터 전송을 요구하고 있으며, 5G 데이터 요구 지연은 1ms까지 낮춰질 것으로 예상된다.
본 발명에서 이루고자 하는 기술적 과제는 비직교 다중 접속(Non-orthogonal Multiple Access, NoMA) 기반 시스템에서 단말이 HARQ 동작을 수행하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 비직교 다중 접속(Non-orthogonal Multiple Access, NoMA) 기반 시스템에서 HARQ 동작을 수행하기 위한 단말을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 비직교 다중 접속(Non-orthogonal Multiple Access, NoMA) 기반 시스템에서 단말이 HARQ 동작을 수행하는 방법은, NoMA 전송을 지원하기 위한 MA(Multiple Access) 시그너처 필드를 포함하는 DCI(Downlink Control Information) 포맷을 수신하는 단계; 상기 MA 시그니처 필드가 지시하는 MA 시그너처의 값에 기초하여 하향링크 데이터를 수신하는 단계; 및 사전에 정의된 규칙에 따라 상기 지시된 MA 시그너처의 값과 묶인(tied) 서브프레임 옵셋 값, 주파수 옵셋 값, 또는 시퀀스 인덱스 값에 기초하여 상기 하향링크 데이터에 대한 ACK/NACK 신호를 전송하는 단계를 포함하되, 상기 서브프레임 옵셋 값은 상기 하향링크 데이터의 수신 서브프레임과 상기 하향링크 데이터에 대한 하향링크 HARQ 피드백 전송 서브프레임 간의 서브프레임 옵셋 값을 포함하며, 상기 주파수 옵셋 값은 상기 ACK/NACK 신호를 전송에 사용되는 주파수 대역을 지시한다.
상기 MA 시그너처는 코드워드 인덱스, 코드북 인덱스, 인터리버 인덱스, 복조 참조 신호 인덱스, 공간 차원(Spatial-dimension) 또는 전력 차원(Power-dimension)를 포함할 수있다.
상기 방법에서, 상기 사전에 정의된 규칙에 따라 상기 MA 시그너처 필드가 전송된 CCE(Control Channel Element) 번호에 더 기초하여 상기 ACK/NACK 신호를 전송할 수 있다.
상기 방법에서, 상기 지시된 MA 시그너처의 값과 묶인(tied) 서브프레임 옵셋 값에 따라 지시된 해당 서브프레임에서 상기 ACK/NACK 신호를 전송할 수 있다.
상기 방법에서, 상기 지시된 MA 시그너처의 값과 묶인(tied) 주파수 옵셋 값에 따라 지시된 주파수 대역에서 상기 ACK/NACK 신호를 전송할 수 있다.
상기 방법에서, 상기 지시된 MA 시그너처의 값과 묶인(tied) 시퀀스 인덱스 값에 대응하는 시퀀스를 상기 ACK/NACK 신호에 적용하여 상기 ACK/NACK 신호를 전송할 수 있다. 상기 MA 시그니처 필드는 2 비트 필드일 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 비직교 다중 접속(Non-orthogonal Multiple Access, NoMA) 기반 시스템에서 HARQ 동작을 수행하기 위한 단말은, 수신기; 송신기; 및 프로세서를 포함하되, 상기 프로세서는, 상기 수신기가 NoMA 전송을 지원하기 위한 MA(Multiple Access) 시그너처 필드를 포함하는 DCI(Downlink Control Information) 포맷을 수신하고, 상기 MA 시그니처 필드가 지시하는 MA 시그너처의 값에 기초하여 하향링크 데이터를 수신하도록 제어하며, 상기 프로세서는, 사전에 정의된 규칙에 따라 상기 지시된 MA 시그너처의 값과 묶인(tied) 서브프레임 옵셋 값, 주파수 옵셋 값, 또는 시퀀스 인덱스 값에 기초하여 상기 하향링크 데이터에 대한 ACK/NACK 신호를 전송하도록 제어하되, 상기 서브프레임 옵셋 값은 상기 하향링크 데이터의 수신 서브프레임과 상기 하향링크 데이터에 대한 하향링크 HARQ 피드백 전송 서브프레임 간의 서브프레임 옵셋 값을 포함하며, 상기 주파수 옵셋 값은 상기 ACK/NACK 신호를 전송에 사용되는 주파수 대역을 지시할 수 있다.
상기 MA 시그너처는 코드워드 인덱스, 코드북 인덱스, 인터리버 인덱스, 복조 참조 신호 인덱스, 공간 차원(Spatial-dimension) 또는 전력 차원(Power-dimension)를 포함할 수 있다.
상기 프로세서는 상기 송신기가 상기 사전에 정의된 규칙에 따라 상기 MA 시그너처 필드가 전송된 CCE(Control Channel Element) 번호에 더 기초하여 상기 ACK/NACK 신호를 전송하도록 제어할 수 있다.
상기 프로세서는 상기 송신기가 상기 지시된 MA 시그너처의 값과 묶인(tied) 서브프레임 옵셋 값에 따라 지시된 해당 서브프레임에서 상기 ACK/NACK 신호를 전송하도록 제어할 수 있다.
상기 프로세서는 상기 송신기가 상기 지시된 MA 시그너처의 값과 묶인(tied) 주파수 옵셋 값에 따라 지시된 주파수 대역에서 상기 ACK/NACK 신호를 전송하도록제어할 수 있다.
상기 프로세서는 상기 지시된 MA 시그너처의 값과 묶인(tied) 시퀀스 인덱스 값에 대응하는 시퀀스를 상기 ACK/NACK 신호에 적용하고, 상기 시퀀스가 전송된 ACK/NACK 신호를 상기 송신기가 전송하도록 제어할 수 있다. 상기 MA 시그니처 필드는 2 비트 필드일 수 있다.
DCI 내에 MA 시그너처 정보에 대한 필드가 추가될 필요가 있으며 제어 정보의 지속적 전송으로 인한 DCI 오버헤드를 증가하는 문제점을 본 발명의 일 실시예에 따른 제어 시그널링을 통해 해결할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 2는 통신 장치의 NOMA 기반 하향링크 전송/수신(Tx/Rx) 블록도를 예시한 도면이다.
도 3은 통신 장치의 NOMA 기반 상향링크 전송/수신 블록도를 예시한 도면이다.
도 4는 Self-contained 서브프레임 구조를 예시적으로 나타낸 도면이다.
도 5는 하향링크에 대하여 kDL=3이고, gDL=2인 경우의 HARQ 피드백 및 재전송의 타이밍을 도시한 도면이다.
도 6은 상향링크에 대하여 kUL=3이고, gUL=1인 경우의 HARQ 피드백 및 재전송의 타이밍을 도시한 도면이다.
도 7은 DCI를 받은 서브프레임과 해당 하향링크 ACK/NACK 전송이 가능한 서브프레임 간의 관계를 나타낸 도면이다.
도 8은 NACK를 받은 서브프레임과 재전송을 받는 서브프레임간의 관계를 나타낸 도면이다.
도 9는 표 4의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
도 10은 표 5의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
도 11은 표 6의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
도 12는 표 8의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
도 13은 표 9의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다.
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(micro프로세스or), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal 프로세스ors), DSPDs(digital signal 프로세스ing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/Ultra-reliable Machine-Type Communications (uMTC)/Massive Machine-Type Communications (mMTC) 등으로 시나리오를 구분할 수 있다. eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, uMTC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (예를 들어, V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다(예를 들어, IoT).
도 2는 통신 장치의 NOMA 기반 하향링크 전송/수신(Tx/Rx) 블록도를 예시한 도면이다.
다중 단말(혹은 다중 사용자) 정보를 동일 자원에 할당하여 전송하는 비직교 다중 접속 방식 (Non-orthogonal Multiple Aceess, NOMA)에 있어서, 도 2와 같이 하향링크 지원을 위한 송수신단 구조는 일반적이다. NOMA 시스템은 3GPP 표준화 작업에서는 Multiuser Superposition Transmission (MUST)로 불리우기도 한다. NOMA 시스템은 동일 시간-주파수 자원에 다수의 단말을 위한 정보를 중첩하여 전송함으로써, LTE 시스템 대비 전송 용량 이득을 얻거나 동시 접속 수를 증대하는 것을 목적으로 차세대 5G 시스템의 요소 기술로써 고려되고 있다. 차세대 5G 시스템의 NOMA 계열 기술로는 Power Level을 기반으로 단말을 구분하는 MUST와, Sparse Complex Codebook 기반 변조를 활용하는 Sparse Code Multiple Access (SCMA), 단말-특정 인터리버(User-specific Interleaver)를 이용하는 interleave Division Multiple Access (IDMA) 등이 있다.
MUST 시스템의 경우, 도 2의 송신단에서 다중 단말 데이터의 변조 이후에 각 심볼의 파워 할당을 다르게 하거나, 계층적 변조(Hierarchical Modulation)를 기반으로 다중 단말 데이터를 계층적 변조하여 전송하고, 수신단에서 다중 단말(혹은 다중 사용자) 검출(Multiuser Detection, MUD)를 통해 다중 단말의 데이터(이하 다중 단말 데이터라 칭함)를 복조한다.
SCMA 시스템의 경우, 도 2의 송신단에서, 다중 단말 데이터에 대한 Forward Error Correction (FEC) Encoder와 변조 과정을 미리 약속된 Sparse Complex Codebook 변조 방식으로 대체하여 전송하고, 수신단에서 MUD를 통해 다중 단말 데이터를 복조한다.
IDMA 시스템의 경우, 도 2의 송신단에서 다중 단말 데이터에 대해 FEC Encoding 정보를 단말-특정 인터리버를 통해 변조하여 전송하고, 수신단에서 MUD를 통해 다중 단말 데이터를 복조한다.
상기 각 시스템은 다양한 MUD 방식으로 다중 단말 데이터를 복조 할 수 있으며, 예를 들어 Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC) 등이 있다. 각 복조 방식에 따라 또는 반복 복조 시도 수에 따라, 복조 복잡도와 처리시간 지연에 차이가 있을 수 있다.
도 3은 통신 장치의 NOMA 기반 상향링크 전송/수신 블록도를 예시한 도면이다.
도 3은 다중 단말의 정보(이하 다중 단말 정보로 칭함)를 동일 자원에 할당하여 전송하는 NOMA 계열 시스템의 상향링크 지원을 위한 송수신단 구조를 도시하고 있다. 상기 각 시스템은 도 2의 하향링크 구조에 대한 설명과 같은 방식으로 다중 단말 데이터를 전송하고 수신단에서 복조 할 수 있다.
NOMA 계열 시스템들은 동일 시간-주파수 자원에 다수 단말 신호를 중첩 전송하기 때문에, LTE 시스템과 비교하여 더 높은 복호 오류율을 가지지만, 더 높은 주파수 이용 효율이나 더 많은 Connectivity 를 지원할 수 있다. 비직교 다중 접속 방식(NOMA)은 시스템 환경에 따라, 부호율 제어를 통해 복호 오류율을 유지하면서, 더 높은 주파수 이용효율이나 더 많은 Connectivity 를 달성하는 것이 가능하다.
도 4는 Self-contained 서브프레임 구조를 예시적으로 나타낸 도면이다.
도 4는 5G 성능요구 사항 중, 저지연 요구조건을 만족시키기 위한 Self-contained 서브프레임 구조를 나타낸다. TDD 기반의 Self-contained 서브프레임 구조는 하나의 서브프레임 내에 하향링크와 상향링크를 위한 자원구간(예를 들어, 하향링크 제어 채널 및 상향링크 제어 채널)이 존재하며, 하향링크/상향링크 간 간섭 문제를 해결하기 위한 GP와 데이터 전송을 위한 자원구간이 존재한다.
도 4의 (a)는 Self-contained 서브프레임 구조의 일 예로서, 하향링크-상향링크-데이터를 위한 자원 구간의 순서로 서브프레임이 구성되며, 자원 구간 사이에 GP가 존재한다. 도 4의 (a)에서 DL로 표시된 하향링크 자원 구간은 하향링크 제어 채널을 위한 자원 구간일 수 있으며, UL로 표시된 상향링크 자원 구간은 상향링크 제어 채널을 위한 자원 구간일 수 있다.
도 4의 (b)는 Self-contained 서브프레임 구조의 다른 일 예로서, 하향링크-데이터-상향링크를 위한 자원구간 순서로 서브프레임이 구성되며, 상향링크 자원 구간 앞에만 GP가 존재한다. 도 4의 (b)에서도 마찬가지로 DL로 표시된 하향링크 자원 구간은 하향링크 제어 채널을 위한 자원 구간일 수 있으며, UL로 표시된 상향링크 자원 구간은 상향링크 제어 채널을 위한 자원 구간일 수 있다.
5G NR(New RAT)에서는 비동기식 적응적 HARQ가 고려되고 있다. 서로 다른 HARQ 프로세스는 HARQ 프로세스 ID = {0,1,2,3,…,7}를 이용하여 각 HARQ 프로세스를 구분한다. HARQ의 전체 동작은 기지국의 DCI(Downlink Control Information)를 통해 진행된다. 따라서 DL/UL HARQ는 asynchronous, adaptive 재전송을 지원한다. PDCCH의 DL/UL grant 정보에 따라 동작 내용은 다음 표 1로 정의된다.
표 1
DCI infomation on PDCCH 동작
NDI (1bit) [0] packet 재전송, [1] new packet 전송
HARQ process ID (3 bit) [0~7] 해당 packet의 process ID
redundancy version (2 bit) [0~3] 해당 packet의 redundancy version
표 1은 NR에서의 HARQ 모드에 따른 수신부 동작 내용을 예시하고 있다.
리던던시 버전(Redundancy version)은 chase combining의 경우 사용되지 않는다. 하향링크 HARQ 프로세스 과정에서 단말의 데이터 채널 디코더는 다음과 같이 동작을 한다. 데이터 채널 디코더는 앞에서 설명한 바에 의해 동일 서브프레임에 수신된 grant 정보를 이용한다.
- 상기 표 1에서 언급된 NDI=1인 경우 새로운 전송(new transmission)이라 판단하고 수신된 소프트 데이트의 디코딩을 수행하고 소프트 데이터를 circular buffer에 저장한다.
- 이와 달리, NDI=0인 경우 재전송이라고 판단하고, 해당 HARQ 프로세스 ID의 decoder circular buffer에 저장된 과거의 소프트 데이터와 현재 수신된 소프트 데이터를 컴바이닝(combining)하여 디코딩을 수행하고 컴바이닝된 소프트 데이터를 circular buffer에 저장한다.
- 디코딩 결과에 따라 ACK/NACK 정보를 구성하여 상위 레이어로 전달한다.
UL HARQ는 동일 HARQ 프로세스 ID를 갖는 패킷에 대하여, 기지국의 데이터 채널 디코더는 이전 데이터 디코딩 결과로 얻은 ACK/NACK 정보를 이용한다.
- 이전 결과가 ACK인 경우 수신된 소프트 데이터는 바로 디코딩 수행 후 소프트 데이터를 circular buffer에 저장한다.
- 이전 결과가 NACK인 경우 수신된 소프트 데이터와 circular buffer data를 컴바이닝하여 디코딩을 수행하고 컴바이닝된 소프트 데이터를 circular buffer에 저장한다.
-디코딩 결과에 따라 ACK/NACK 정보를 구성하여 상위 레이어로 전달한다.
New RAT (NR)에서는 Asynchronous Adaptive HARQ 수행을 위해 다음과 같이 4가지 파라미터를 정의할 수 있다.
- kDL: 하향링크 데이터와 해당 하향링크 HARQ 피드백(상기 하향링크 데이터에 대한 하향링크 HARQ 피드백) 간의 서브프레임 옵셋(gap)
- kUL: 상향링크 데이터와 해당 상향링크 HARQ 피드백(상기 하향링크 데이터에 대한 상향링크 HARQ 피드백) 간의 서브프레임 옵셋(gap)
-gDL: 하향링크 데이터에 대한 하향링크 HARQ 피드백과 상기 하향링크 데이터의 재전송 간의 서브프레임 옵셋(subframe Offset between DL HARQ feedback and corresponding retransmission)
-gUL: 상향링크 데이터에 대한 상향링크 HARQ 피드백과 상기 상향링크 데이터에 대한 재전송 간의 서브프레임 옵셋(subframe Offset between UL HARQ feedback and corresponding retransmission)
인코딩 레이턴시(Encoding latency)와 스케줄링 등에 의하여, 상기 4가지 parameter (kDL, kUL,, gDL, gUL)의 값은 동적으로 변화할 수 있다. 예를 들어, 하향링크에 대하여, kDL=3이고, gDL=2인 경우, 다음 도 5와 같이 도식화 할 수 있다.
도 5는 하향링크에 대하여 kDL=3이고, gDL=2인 경우의 HARQ 피드백 및 재전송의 타이밍을 도시한 도면이다.
도 5를 참조하면, 단말이 subframe #0(인덱스 0인 서브프레임)에서 DCI와 하향링크 데이터를 수신하면, kDL=3이므로, 상기 하향링크 데이터에 대한 하향링크 HARQ 피드백(도 5에서는 NACK)을 subframe #3에서 전송한다. gDL=2로 설정되어 있으므로 기지국은 subframe #5에서 하향링크 데이터를 재전송한다.
도 6은 상향링크에 대하여 kUL=3이고, gUL=1인 경우의 HARQ 피드백 및 재전송의 타이밍을 도시한 도면이다.
도 6을 참조하면, 단말이 subframe #0(인덱스 0인 서브프레임)에서 DCI를 수신하고, 수신한 DCI에 따라 subframe #1에서 상향링크 데이터를 전송하면, kuL=3이므로, 기지국은 상기 상향링크 데이터에 대한 상향링크 HARQ 피드백(도 6에서는 NACK)을 subframe #4에서 전송한다. gUL=1로 설정되어 있으므로 단말은 subframe #5에서 상향링크 데이터를 재전송한다.
도 5의 경우에서 gDL은 기지국에서 수행되고, 단말은 하향링크(DL)에 대한 재전송을 DCI 디코딩을 통해 계속해서 모니터링하기 때문에 지시(indication)이 필요하지 않을 수 있다. 그리고, kUL은 기지국에서 수행되고, 단말은 상향링크(UL)에 대한 ACK/NACK을 계속해서 DCI 디코딩을 통해 계속해서 모니터링하기 때문에 지시(indication)가 필요하지 않을 수 있다. 반면에, 도 6의 경우에서, gUL은 단말이 수행하고 스케줄링 받아 동작해야 하므로, 단말은 상향링크(UL)에 대한 재전송 시점을 DCI를 통해 지시(indication) 받아야 한다. 또한, kDL은 단말이 수행하고 스케줄링(scheduling) 받아 동작해야 하므로, 단말은 하향링크(DL)에 대한 ACK/NACK 시점을 DCI 를 통해 지시(indication) 받아야 한다. 따라서, DCI 내에 상기 지시를 위한 필드가 추가되어야 한다. 예를 들어, LTE/LTE-A 시스템의 DCI에 2 비트 필드를 정의하면, 다음 표 2와 같이 정의할 수 있다. 여기서 DCI를 받은 서브프레임에서 상향링크 데이터 스케줄링이나 하향링크 ACK/NACK 전송이 가능하다고 가정되었다.
표 2
Field of kDL in DCI format 1 or 2 00 01 10 11
Subframe Offset kDL 0 1 2 3
상기 표 2의 예시를 도식화 하면 다음 도 7과 같다.
도 7은 DCI를 받은 서브프레임과 해당 하향링크 ACK/NACK 전송이 가능한 서브프레임 간의 관계를 나타낸 도면이다.
표 2에 도시한 바와 같이, kDL의 값이 0, 1, 2 또는 3일 수 있다. 도 7은 표 2에서 나타낸 kDL 값 중 0, 1, 3인 경우에 대해 도시하고 있다.
표 3은 gUL의 값을 LTE/LTE-A 시스템의 DCI의 2 비트 필드를 정의하여 나타낸 표이다.
표 3
Field of gUL in DCI format 0 or 4 00 01 10 11
Subframe Offset gUL 0 1 2 3
도 8은 NACK를 받은 서브프레임과 재전송을 받는 서브프레임간의 관계를 나타낸 도면이다.
표 3에 도시한 바와 같이, gUL의 값은 0, 1, 2 또는 3일 수 있다. 도 8은 표 3에서 나타낸 gUL의 값 중 0, 1, 3인 경우에 대해 도시하고 있다.
단말의 DCI의 블라인드 검출(blind detection)과 모니터링에 대한 복잡도(complexity)를 줄여주기 위하여, gDL과 kUL의 지시가 DCI 필드에 추가될 수 있다. DCI의 오버헤드를 증가시킬 수 있으나, 단말의 DCI의 모니터링 복잡도를 줄여줄 수 있다.
상기 NoMA 계열 시스템들은 동일 자원에 다수 사용자 Data를 할당하기 때문에, 동일 물리 자원 상에서 코드워드 또는 파워 등의 차이만을 지닌 상태로 전송이 이루어진다. 즉, 데이터 자원 영역을 공유하기 때문에, HARQ 프로세스를 위한 PUCCH Format의 사용 방법에 대한 정의가 필요하다. 또한, NoMA 계열 시스템들에서는 기지국은 DCI 정보 내에 MA(Multiple Access) Signature 등의 정보를 전송해야 할 수 있다. 그러면, 기존 LTE 대비 DCI 내에 MA Signature 정보에 대한 field가 추가되고, 비동기 적응적 HARQ(Asynchronous Adaptive HARQ) 지원을 위한 field가 추가될 수 있다. 이 경우, 너무 많은 제어 정보의 지속적인 전송으로 인해 DCI overhead가 증가하는 문제가 발생할 수 있다. 따라서 본 발명에서는 상기와 같은 문제를 해결하는 제어 시그널링 방식을 제시한다.
MA Signature는 하기와 같이 정의된다.
MA 자원은 MA 물리 자원 및 MA 시그너처로 구성된다. 여기서, MA 시그너처는 1)Codebook/Codeword, Sequence, Interleaver and/or mapping pattern, Demodulation reference signal, Preamble, Spatial-dimension, 및 Power-dimension 들 중에서 적어도 하나를 포함한다.
본 발명에서는 일 실시예로서 데이터 전송 및 수신을 위해 NoMA 기반 전송이 이루어졌을 때, NoMA 코드워드 인덱스를 HARQ 정보에 연결 짓는 제어 시그널링 방식을 제안한다. 이하에서 하향링크에 대한 ACK/NACK 신호와 NoMA 코드워드 인덱스의 관계로 설명하나, 상향링크에도 유사한 방식으로 적용가능 함은 자명하다. 또한, 설명의 편의를 위해 MA 시그너처 중 코드워드로 설명하나, 코드워드가 아닌 다른 형태의 MA 시그너처에도 동일하게 적용 가능하다.
본 발명에서 언급하는 NoMA 코드워드는 비직교 다중 접속을 수행하기 위해, 각 단말이 선택하는(또는 할당받은) 복소 엘리먼트 벡터(complex element vector)를 의미한다. 코드북은 비직교 다중 접속을 수행하기 위해 각 단말이 사용하는 코드워드들의 세트를 의미한다. 상기에서 언급한 코드북은 복수 개로 존재할 수 있다. 단말-특정 NCC(UE specific NCC)는 각 단말이 선택하는(또는 할당받은) 코드북의 복소 엘리먼트 벡터(complex element vector)를 전송하려는 심볼에 사용하는 것을 의미한다. 따라서, NCC(혹은 단말-특정 NCC)는 코드북 인덱스와 코드워드 인덱스로 표현할 수 있다. 비직교 코드북을 표현하면 다음 수학식 1과 같다.
수학식 1
Figure PCTKR2017000104-appb-M000001
상기 수학식 1에서 c(j)는 j 번째 단말을 위한 코드워드로서, 전체 K명의 단말에 대한 코드워드 세트는 코드북 C가 된다. j 번째 단말의 데이터를 전송하기 위해 c(j)를 사용하는 것을 NCC라고 정의한다. 또한 상기 코드북은 코드워드의 벡터 길이 N과 코드워드의 개수 K로 표현될 수 있다. 여기서, N은 확산 계수(spreading factor)를 의미하고, K는 중첩 계수(superposition factor)를 의미한다. 상기에서 설명의 편의를 위해 하나의 코드워드를 하나의 단말에서 사용하는 것을 예시하나, 다수개의 코드워드를 하나의 단말이 사용하거나, 하나의 코드워드를 다수의 단말에서 사용하는 것을 배제하지 않는다. 또한, 하나의 단말에 할당된 하나 또는 다수개의 코드워드는 시간에 따라 또는 사용 빈도에 따라 같은 코드북 내의 다른 코드워드의 사용 또는 다른 코드북 내의 다른 코드워드의 사용으로 코드워드를 Hopping 할 수도 있다.
다수 사용자에 대한 ACK / NACK 신호의 중첩(Superposition)이 불가능한 경우 (예를 들어, PUCCH Format 2)
다수 사용자에 대한 ACK/NACK 신호가 한 상향링크 제어 채널 존(예를 들어, xPUCCH 존) 내에서 중첩되지 않는 경우로서 예를 들어, LTE 시스템의 PUCCH Format 2에서의 ACK/NACK 전송과 같은 경우가 있다. 이 경우, NoMA 계열 방식으로 하향링크 데이터에 대한 물리 자원이 공유되었을 때, 데이터 존의 사용자 수는 다수 명인데 반해, ACK/NACK 신호는 한 명에 대해서만 전송이 가능하다.
NoMA 코드워드 인덱스와 묶인(tied) TDM 기반 ACK / NACK 신호
DCI 내의 코드워드 인덱스 필드는 비동기식 적응적 HARQ(Asynchronous Adaptive HARQ) 지원을 위한 서브프레임 옵셋 kDL과 Tie 된다. 즉, NOMA 코드워드 인덱스 필드가 kDL를 대체할 수 있다. 또는, 반대로, kDL 필드가 코드워드 인덱스 필드를 대체할 수 있다. 예를 들어, LTE 시스템의 DCI에 2 비트 필드를 정의하면, 다음과 같이 정의할 수 있다. 여기서 DCI를 받은 서브프레임에서 하향링크에 대한 ACK/NACK 전송이 가능하다고 가정되었다.
표 4
Field of NoMA-Codeword Index or Field of kDL in DCI format 1 or 2 00 01 10 11
NoMA-Codeword Index 0 1 2 3
Subframe Offset kDL 0 1 2 3
표 4를 참조하면, DCI 내의 코드워드 인덱스 필드는 NoMA 코드워드 인덱스를 지시하고, 동시에 NoMA 코드워드 인덱스와 tie된 서브프레임 옵셋 kDL을 지시하게 된다.
상기 표 4의 예시는 다음 도 9와 같다. 도 9는 표 4의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
NoMA 코드워드 인덱스와 서브프레임 옵셋 kDL 이 tie되어 있음은 단말과 기지국이 미리 알고 있을 수 있다. 표 4에서 나타낸 바와 같이, NoMA 코드워드 인덱스 0에 서브프레임 옵셋 (kDL) 0이 tie 되어 있어서, 기지국이 전송한 DCI 내의 NoMA 코드워드 인덱스 필드에서 NoMA 코드워드 인덱스 0을 지시하면, 단말은 디코딩시에 사용할 NoMA 코드워드 인덱스는 NoMA 코드워드 인덱스 0이고, 이때 서브프레임 옵셋 (kDL)이 0임을 알 수 있다. 이 경우, 단말은 DCI 및 이 DCI에 따른 하향링크 데이터를 해당 서브프레임에서 수신하면, 서브프레임 옵셋 (kDL)이 0이기 때문에 상기 수신한 하향링크 데이터에 대한 ACK/NACK 신호를 이 해당 서브프레임(특히, 해당 서브프레임의 상향링크 제어 채널을 통해)에서 기지국으로 전송한다.
또한, 기지국이 전송한 DCI 내의 NoMA 코드워드 인덱스 필드에서 NoMA 코드워드 인덱스 1을 지시하면, 단말은 사용할 NoMA 코드워드 인덱스는 NoMA 코드워드 인덱스 1이고 이때 서브프레임 옵셋 (kDL)이 1임을 알 수 있다. 이 경우, 단말은 하향링크 데이터를 수신한 서브프레임의 다음 서브프레임에서 하향링크 데이터에 대한 ACK/NACK 신호를 전송할 수 있다.
마찬가지로, NoMA 코드워드 인덱스 필드에서 NoMA 코드워드 인덱스 2 혹은 3을 지시하는 경우에도 tie된 해당 서브프레임 옵셋 (kDL) 값에 따라 단말이 해당 서브프레임에서 ACK/NACK 신호를 전송할 수 있다.
상기와 같은 방식으로 DCI 내에 하나의 2 비트 필드를 정의하면, 최대 4개의 NoMA 코드워드를 시그널링하면서 최대 4개의 서브프레임에서 비동기 적응적 HARQ 동작 수행이 가능하다.
NoMA 코드워드 인덱스와 tie된 FDM 기반 ACK / NACK 신호
DCI 내의 코드워드 인덱스 필드는 비동기 적응적 HARQ 지원을 위한 주파수 옵셋(fACK/NACK)과 Tie된다. 즉, NoMA 코드워드 인덱스 필드는 NoMA 코드워드 인덱스 정보와 ACK/NACK 신호 전송을 위한 주파수 대역 (사전에 정의된 Sub-band 중 하나)를 지정해 준다. 예를 들어, LTE 시스템의 DCI에 2 비트 필드를 정의하면, 다음과 같이 정의할 수 있다. 여기서 DCI를 받은 서브프레임에서 하향링크에 대한 ACK/NACK 전송이 가능하다고 가정되었고, 일 예로서 kDL 은 0로 시그널링되었다고 가정한다.
표 5
Field of NoMA-Codeword Index in DCI format 1 or 2 00 01 10 11
NoMA-Codeword Index 0 1 2 3
Frequency Offset fACK / NACK for xPUCCH Zone 0 1 2 3
표 5를 참조하면, DCI 내의 코드워드 인덱스 필드는 NoMA 코드워드 인덱스를 지시하고, 동시에 NoMA 코드워드 인덱스와 tie된 주파수 옵셋 (fACK / NACK)을 지시하게 된다.
상기 표 5의 예시는 다음 도 10과 같다. 도 10은 표 5의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
NoMA 코드워드 인덱스와 주파수 옵셋 fACK / NACK 이 tie되어 있음은 단말과 기지국이 미리 알고 있을 수 있다. 표 5에서 나타낸 바와 같이, NoMA 코드워드 인덱스 0에 서브프레임 인덱스와 주파수 옵셋 (fACK / NACK) 0이 tie 되어 있어서, 기지국이 전송한 DCI 내의 NoMA 코드워드 인덱스 필드에서 NoMA 코드워드 인덱스 0을 지시하면, 단말은 디코딩 시 사용할 NoMA 코드워드 인덱스는 NoMA 코드워드 인덱스 0임을 알 수 있다. 이때, 단말은 HARQ ACK/NACK 전송을 위한 주파수 영역 위치는 지시된 주파수 옵셋(fACK/NACK)이 0임에 따라 해당 서브프레임의 상향링크 제어 채널 존(예를 들어, xPUCCH 존)의 주파수 대역 중 예를 들어, 가장 낮은 주파수 대역에 해당하는 위치에서 ACK/NACK을 전송해야 함을 알 수 있다. 이 경우, kDL 은 0로 시그널링되었다고 가정하였으므로, 단말은 DCI/DCI에 따른 하향링크 데이터를 수신한 해당 서브프레임에서 HARQ ACK/NACK을 전송하되, 상기 상향링크 제어 채널 존(예를 들어, xPUCCH 존)의 주파수 대역 중 예를 들어 가장 낮은 주파수 대역에 해당하는 위치에서 ACK/NACK을 전송할 수 있다.
DCI 내의 NoMA 코드워드 필드에서 상기 NoMA 코드워드 인덱스 0 이외에 다른 값을 지시하는 경우에도, 지시된 NoMA 코드워드 인덱스와 tie된 주파수 옵셋 값에 따른 xPUCCH 존의 해당 주파수 대역에서 ACK/NACK을 전송할 수 있다.
상기와 같은 방식으로 DCI 내에 하나의 2 비트 필드를 정의하면, 최대 4개의 NoMA 코드워드를 시그널링하면서 최대 4개의 ACK/NACK 신호을 위한 주파수 옵셋을 지정하여 비동기 적응적 HARQ 동작 수행이 가능하다.
상기 방식과 유사한 방법으로, ACK/NACK 신호가 SDM(Space Division Multiplexing)으로 지정될 수 있다면, 상기 설명된 예시와 동일한 방법으로 SDM 레이어(Layer)와 NoMA 코드워드 인덱스를 tie할 수 있다. 이를 통해, DCI 내의 NoMA 코드워드 인덱스를 통해 ACK/NACK의 레이어가 지정되어, 단말은 NoMA 코드워드 인덱스 값으로부터 지시된 해당 ACK/NACK의 레이어를 통해 ACK/NACK 신호를 기지국으로 전송할 수 있다.
다수 사용자에 대한 ACK / NACK 신호의 중첩(Superposition)이 가능한 경우 (예를 들어, PUCCH Format 1 or 3)
다수 사용자에 대한 ACK/NACK 신호가 한 상향링크 제어 채널 존(예를 들어, xPUCCH 존) 내에서 중첩되는 경우로, 예를 들면, LTE의 PUCCH Format 1 or 3에서의 ACK/NACK 전송과 같은 경우를 의미한다. 이 경우, NoMA 계열 방식으로 하향링크 데이터에 물리 자원이 공유되었을 때, 데이터 존의 사용자 수도 다수 명이고, ACK/NACK 신호도 다수 명에 대해서 전송이 가능하다.
직교 시퀀스를 기반으로 xPUCCH 존을 공유하는 경우에는 NoMA 코드워드 인덱스와 tie된 직교 시퀀스 기반 ACK/NACK 신호의 전송이 가능하다. 예를 들어, DCI 내의 코드워드 인덱스 필드는 비동기 적응적 HARQ 지원을 위한 xPUCCH 존 내의 직교 시퀀스와 tie된다. 즉, NoMA 코드워드 인덱스 필드는 NoMA 코드워드 인덱스 정보와 ACK/NACK 신호 전송을 위한 직교 시퀀스(사전에 정의된 직교 시퀀스 중 어느 하나)를 지정해 준다. 예를 들어, LTE 시스템의 DCI에 2 비트 필드를 정의하면, 다음 표 6과 같이 정의할 수 있다. 여기서 DCI를 수신한 서브프레임에서 하향링크에 대한 ACK/NACK 전송이 가능하다고 가정되었고, kDL 값은 0으로 (DCI를 통해) 시그널링되었다고 가정한다.
표 6
Field of NoMA-Codeword Index in DCI format 1 or 2 00 01 10 11
NoMA-Codeword Index 0 1 2 3
Orthogonal Sequence Index for xPUCCH Zone 0 1 2 3
표 6을 참조하면, DCI 내의 코드워드 인덱스 필드는 NoMA 코드워드 인덱스를 지시하고, 동시에 NoMA 코드워드 인덱스와 tie된 ACK/NACK 전송을 위한 직교 시퀀스 인덱스를 지시하게 된다.
상기 표 6의 예시는 다음 도 11과 같다. 도 11은 표 6의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
NoMA 코드워드 인덱스와 직교 시퀀스 인덱스가 tie되어 있음은 단말과 기지국이 미리 알고 있을 수 있다. 표 6에서 나타낸 바와 같이, NoMA 코드워드 인덱스 0에 서브프레임 인덱스와 직교 시퀀스 인덱스 0이 tie 되어 있어서, 기지국이 전송한 DCI 내의 NoMA 코드워드 인덱스 필드에서 NoMA 코드워드 인덱스 0을 지시하면, 단말은 디코딩 시 사용할 NoMA 코드워드 인덱스는 NoMA 코드워드 인덱스 0임을 알 수 있다. 이때, 단말은 HARQ ACK/NACK 전송을 위해 xPUCCH 존에서 직교 시퀀스 인덱스 0을 적용하여 전송해야 함을 알 수 있다.
DCI 내의 NoMA 코드워드 필드에서 상기 NoMA 코드워드 인덱스 0 이외에 다른 값을 지시하는 경우에도, 단말은 지시된 NoMA 코드워드 인덱스와 tie된 직교 시퀀스 인덱스 값을 적용하여 xPUCCH에서 ACK/NACK을 전송할 수 있다.
상기와 같은 방식으로 DCI 내에 하나의 2 비트 필드를 정의하면, 최대 4개의 NoMA 코드워드를 시그널링하면서 최대 4개의 ACK/NACK 신호을 위한 직교 시퀀스를 지정하여 비동기 적응적 HARQ 동작 수행이 가능하다.
비직교 시퀀스를 기반으로 상향링크 제어 채널 존(예를 들어, xPUCCH 존)을 공유 하는 경우, NoMA 코드워드 인덱스와 tie된 비직교 시퀀스 기반 ACK/NACK 신호를 전송한다. DCI 내의 NoMA 코드워드 인덱스 필드는 비동기 적응적 HARQ 지원을 위한 xPUCCH 존 내의 비직교 시퀀스와 tie된다. 즉, NoMA 코드워드 인덱스는 NoMA 코드워드 인덱스 정보와 ACK/NACK 신호 전송을 위한 비직교 시퀀스(사전에 정의된 비직교 시퀀스 중 어느 하나)를 지정해 준다. 예를 들어, LTE 시스템의 DCI에 2 비트 필드를 정의하면, 다음과 같이 정의할 수 있다. 여기서 DCI를 수신한 서브프레임에서 하향링크에 대한 ACK/NACK 전송이 가능하다고 가정되었고, kDL 의 값은 0으로 시그널링되었다고 가정한다.
표 7
Field of NoMA-Codeword Index in DCI format 1 or 2 00 01 10 11
NoMA-Codeword Index 0 1 2 3
Non-orthogonal Sequence Index for xPUCCH Zone 0 1 2 3
표 7을 참조하면, DCI 내의 코드워드 인덱스 필드는 NoMA 코드워드 인덱스를 지시하고, 동시에 NoMA 코드워드 인덱스와 tie된 ACK/NACK 전송을 위한 비직교 시퀀스 인덱스를 지시하게 된다.
NoMA 코드워드 인덱스와 비직교 시퀀스 인덱스가 tie되어 있음은 단말과 기지국이 미리 알고 있을 수 있다. 표 7에서 나타낸 바와 같이, NoMA 코드워드 인덱스 0에 서브프레임 인덱스와 비직교 시퀀스 인덱스 0이 tie 되어 있어서, 기지국이 전송한 DCI 내의 NoMA 코드워드 인덱스 필드에서 NoMA 코드워드 인덱스 0을 지시하면, 단말은 디코딩 시 사용할 NoMA 코드워드 인덱스는 NoMA 코드워드 인덱스 0임을 알 수 있다. 이때, 단말은 HARQ ACK/NACK 전송을 위해 xPUCCH 존에서 비직교 시퀀스 인덱스 0에 해당하는 비직교 시퀀스를 적용하여 전송해야 함을 알 수 있다.
DCI 내의 NoMA 코드워드 필드에서 상기 NoMA 코드워드 인덱스 0 이외에 다른 값을 지시하는 경우에도, 단말은 지시된 NoMA 코드워드 인덱스와 tie된 비직교 시퀀스 인덱스에 대응하는 비직교 시퀀스를 적용하여 xPUCCH에서 ACK/NACK을 전송할 수 있다.
상기와 같은 방식으로 DCI 내에 하나의 2 비트 필드를 정의하면, 최대 4개의 NoMA 코드워드를 시그널링하면서 최대 4개의 ACK/NACK 신호을 위한 비직교 시퀀스를 지정하여 비동기 적응적 HARQ 동작 수행이 가능하다.
앞서 제안된 방식은 NoMA 코드워드 인덱스 필드가 전송되는 DCI의 CCE(Control Channel Element) 번호와의 조합으로도 동작할 수 있다. 예를 들어, 5G NR에서 고려되는 Self-contained 서브프레임 구조를 고려하면, 기존 LTE와 달리 xPUCCH 존이 하나 또는 두 개의 심볼로 구성될 수 있다. 이 경우, ACK/NACK 신호의 신뢰성 확보를 위해 많은 개수의 부반송파들을 기반으로 하나의 xPUCCH 존이 설정될 수 있다.
xPUCCH 존의 크기가 NoMA 데이터 존보다 주파수 축에서 더 크고, 직교 또는 비직교 시퀀스를 기반으로 xPUCCH Zone을 공유하는 경우, NoMA 코드워드 인덱스와 tie된 직교 또는 비직교 시퀀스 기반 ACK/NACK 신호를 전송할 수 있다. DCI가 전송된 CCE 번호와 DCI 내의 NoMA 코드워드 인덱스 필드는 비동기 적응적 HARQ 지원을 위한 xPUCCH 존 내의 직교 또는 비직교 시퀀스와 Tie된다. 즉, NoMA 코드워드 인덱스 필드와 이 NoMA 코드워드 인덱스 필드가 전송된 CCE 번호는 NoMA 코드워드 인덱스 정보와 ACK/NACK 신호 전송을 위한 직교 또는 비직교 시퀀스(사전에 정의된 직교 또는 비직교 시퀀스 중 하나)를 지정해 준다. 예를 들어, LTE의 DCI에 2 비트 필드를 정의하면, 다음과 같이 정의할 수 있다. 여기서 DCI를 수신한 서브프레임에서 하향링크 전송에 대한 ACK/NACK 전송이 가능하다고 가정되었고, kDL 의 값은 0으로 시그널링되었다고 가정한다.
표 8
CCE Index of DCI Field of NoMA-Codeword Index in DCI format 1 or 2 NoMA-Codeword Index Orthogonal Sequence Index for xPUCCH Zone
0 00 0 0
01 1 1
10 2 2
11 3 3
1 00 0 4
01 1 5
10 2 6
11 3 7
2 00 0 8
01 1 9
10 2 10
11 3 11
3 00 0 12
01 1 13
10 2 14
11 3 15
표 8을 참조하면, DCI 내의 코드워드 인덱스 필드는 NoMA 코드워드 인덱스를 지시하고, 동시에 NoMA 코드워드 인덱스와 tie된 ACK/NACK 전송을 위한 직교 시퀀스 인덱스를 지시하게 된다. 이때, NoMA 코드워드 인덱스 필드가 전송된 CCE 번호는에 따라 최대 16개의 ACK/NACK 신호 전송을 위한 직교/비직교 시퀀스를 지정해 줄 수 있다.
상기 표 8의 예시는 다음 도 12와 같다. 도 12는 표 8의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
상기 표 8과 같은 방식으로 DCI 내에 하나의 2 비트 필드를 정의하면, 최대 4개의 NoMA 코드워드 인덱스를 시그널링하면서, NoMA 코드워드 인덱스가 시그널링된 CCE 번호와 조합하여 최대 16개의 ACK/NACK 신호을 위한 직교 또는 비직교 시퀀스를 지정하여 비동기 적응적 HARQ 동작 수행이 가능하다. 즉, NoMA 코드워드 인덱스 필드와 이 NoMA 코드워드 인덱스 필드가 전송되는 CCE 번호를 조합하여, 더 많은 ACK/NACK 전송을 위한 직교/비직교 시퀀스 또는 ACK/NACK 신호 전송 위치(시간/주파수)를 지정해 줄 수 있다.
상기 설명에서는 CCE가 단일 단위로 표시되었으나, 하향링크 제어 채널의 정보량에 따라 다수 개의 CCE가 하나의 데이터를 위해 사용될 수도 있다. 이 경우, 가장 낮은 CCE(Lowest CCE) 번호(혹은 인덱스) 또는 가장 높은 CCE(Highest CCE) 번호(혹은 인덱스)를 기준으로 상기 표 8과 유사한 Look Up table을 사전에 정의하여 사용할 수 있다.
상기 설명된 Look up table 예시들은 설명의 단순화를 위한 예시일 뿐, 시스템 파라미터, 최적화 관점에서 다른 조합의 형태로 제시될 수 있다.
지금까지 하향링크에 대한 사용자 기기 혹은 단말의 ACK/NACK 전송에 대해 설명하였다. 동일한 방법으로 상향링크에 대한 전송 또는 재전송을 지정해 주는 gUL에 대해서도 NoMA 코드워드 인덱스와 맵핑하여 동작할 수 있다.
또한, 상술한 TDM/FDM/CDM 방식의 두 가지 이상의 조합으로도 ACK/NACK 시그널링 자원에 대한 맵핑이 가능하다. 예를 들어, LTE의 DCI에 2 비트 필드를 정의하면, TDM/FDM 조합에 대한 ACK/NACK 신호와의 맵핑을 다음 표 9와 같이 정의할 수 있다. 여기서 DCI를 수신한 서브프레임에서 하향링크 전송에 대한 ACK/NACK 전송이 가능하다고 가정되었다.
표 9
Field of NoMA-Codeword Index in DCI format 1 or 2 00 01 10 11
NoMA-Codeword Index 0 1 2 3
Subframe Offset kDL 0 1 0 1
Frequency Offset fACK / NACK for xPUCCH Zone 0 0 1 1
표 9를 참조하면, DCI 내의 코드워드 인덱스 필드는 NoMA 코드워드 인덱스를 지시하고, 동시에 NoMA 코드워드 인덱스와 tie된 서브프레임 옵셋 kDL과 하향링크 전송에 대한 ACK/NACK 전송을 위한 주파수 옵셋(fACK/NACK)을 지시하게 된다.
상기 표 9의 예시는 다음 도 13과 같다. 도 13은 표 9의 예시에 따른 NoMA 코드워드 인덱스 기반의 단말 및 기지국의 비동기 적응적 HARQ 동작을 설명하기 위한 도면이다.
NoMA 코드워드 인덱스와 서브프레임 옵셋 kDL와 하향링크 전송에 대한 ACK/NACK 전송을 위한 주파수 옵셋(fACK/NACK)이 tie되어 있음은 단말과 기지국이 미리 알고 있을 수 있다. 표 9에서 나타낸 바와 같이, NoMA 코드워드 인덱스 0에 서브프레임 옵셋 (kDL) 0과 ACK/NACK 전송을 위한 주파수 옵셋(fACK/NACK)이 tie 되어 있어서, 기지국이 전송한 DCI 내의 NoMA 코드워드 인덱스 필드에서 NoMA 코드워드 인덱스 0을 지시하면, 단말은 디코딩시에 사용할 NoMA 코드워드 인덱스는 NoMA 코드워드 인덱스 0이고, 이때 서브프레임 옵셋 (kDL)이 0이며 ACK/NACK 전송을 위한 주파수 옵셋 값도 0임을 알 수 있다. 이 경우, 단말은 DCI 및 이 DCI에 따른 하향링크 데이터를 해당 서브프레임에서 수신하면, 서브프레임 옵셋 (kDL)이 0이기 때문에 상기 수신한 하향링크 데이터에 대한 ACK/NACK 신호를 이 해당 서브프레임의 xPUCCH 존에서 해당 주파수 옵셋 값에 대응하는 주파수 대역 상에서(특히, 해당 서기지국으로 전송할 수 있다.
또한, 기지국이 전송한 DCI 내의 NoMA 코드워드 인덱스 필드에서 NoMA 코드워드 인덱스 0이외에 다른 NoMA 코드워드 인덱스 값을 지시하면, 단말은 상기 표 9에 기초하여 디코딩 시 사용할 NoMA 코드워드 인덱스, 해당 서브프레임 옵셋 (kDL) 값, 해당 주파수 옵셋 값 등을 알 수 있다.
상기와 같은 방식으로 DCI 내에 하나의 2 비트 필드를 정의하면, 최대 4개의 NoMA 코드워드 인덱스를 시그널링하면서 최대 2개의 ACK/NACK 신호를 위한 서브프레임 옵셋과 최대 2개의 ACK/NACK 신호를 위한 주파수 옵셋을 지정하여 비동기 적응적 HARQ 동작 수행이 가능하다.
상술한 바와 같이, MA 시그너처 중에서 NoMA 코드워드로 주로 설명하였으나, NoMA 기술에 따라, 파워 레벨(Power Level), 인터리버 인덱스(Interleaver Index), NoMA 코드북 인덱스 등, 다수 사용자를 중첩 전송할 때 이를 구분하는 구분자 모두에 해당될 수 있다. 예를 들어, NoMA 방식에 따라서, 인터리버 인덱스 또는 NoMA 코드북 인덱스가 DCI에 포함되는 경우 상기 NoMA 코드워드로 설명한 모든 동작이 동일하게 적용될 수 있다. 이는 MA 시그너처(Codebook/Codeword, Sequence, Interleaver and/or mapping pattern, Demodulation reference signal, Preamble, Spatial-dimension, Power-dimension) 모든 경우에 동일하게 적용될 수 있다.
예를 들어, Power Dimension에 해당하는 MUST 방식의 파워 레벨 관점에서는 셀 외곽 사용자 또는 셀 중심 사용자의 다중 사용자 중첩 전송을 위해, 파워 레벨을 제어하여 전송한다. 이 경우, 수신단의 복호를 위해 Equalization을 수행하기 위해서는 송신 파워 레벨을 인지해야 할 수 있다. 이 경우, 파워 레벨이 4 단계로 Quantized 되어 있다고 가정할 경우, 상기 예시들에서 설명한 코드워드 인덱스 4가지와 동일한 방식으로 ACK/NACK 신호과 맵핑 동작을 수행할 수 있다.
상기 언급된 방식은 NoMA 뿐만 아니라 OMA(orthogonal MA)에서도 적용될 수 있다. 예를 들어, 다중 사용자 중첩 접속 방식은 사용하되, 사용하는 Codeword가 Orthogonal sequence(예를 들어, Hadamard matrix 또는 Identity matrix의 열 vector)로 사용되는 경우 OMA로 구분될 수도 있다. 이 경우에도 본 발명에서 제안하는 개념과 실시 예들이 동일하게 적용될 수 있다.
본 발명에서는 셀룰러 시스템의 하향링크를 기반으로 설명하였으나, 셀룰러 시스템의 상향링크와 Machine Type Communication (MTC), Device-to-Device (D2D), Vehicle-to-Everything (V2X) 등 다중 사용자 접속 방식을 사용하는 모든 시스템에 적용이 가능하다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
NoMA 기반 시스템에서 HARQ 동작을 수행하는 방법 및 이를 위한 장치는 3GPP LTE/LTE-A, 5G 시스템 등 다양한 무선통신 시스템에서 산업상으로 적용이 가능하다.

Claims (14)

  1. 비직교 다중 접속(Non-orthogonal Multiple Access, NoMA) 기반 시스템에서 단말이 HARQ 동작을 수행하는 방법에 있어서,
    NoMA 전송을 지원하기 위한 MA(Multiple Access) 시그너처 필드를 포함하는 DCI(Downlink Control Information) 포맷을 수신하는 단계;
    상기 MA 시그니처 필드가 지시하는 MA 시그너처의 값에 기초하여 하향링크 데이터를 수신하는 단계; 및
    사전에 정의된 규칙에 따라 상기 지시된 MA 시그너처의 값과 묶인(tied) 서브프레임 옵셋 값, 주파수 옵셋 값, 또는 시퀀스 인덱스 값에 기초하여 상기 하향링크 데이터에 대한 ACK/NACK 신호를 전송하는 단계를 포함하되,
    상기 서브프레임 옵셋 값은 상기 하향링크 데이터의 수신 서브프레임과 상기 하향링크 데이터에 대한 하향링크 HARQ 피드백 전송 서브프레임 간의 서브프레임 옵셋 값을 포함하며,
    상기 주파수 옵셋 값은 상기 ACK/NACK 신호를 전송에 사용되는 주파수 대역을 지시하는, HARQ 동작 수행 방법.
  2. 제 1항에 있어서,
    상기 MA 시그너처는 코드워드 인덱스, 코드북 인덱스, 인터리버 인덱스, 복조 참조 신호 인덱스, 공간 차원(Spatial-dimension) 또는 전력 차원(Power-dimension)를 포함하는, HARQ 동작 수행 방법.
  3. 제 1항에 있어서,
    상기 사전에 정의된 규칙에 따라 상기 MA 시그너처 필드가 전송된 CCE(Control Channel Element) 번호에 더 기초하여 상기 ACK/NACK 신호를 전송하는, HARQ 동작 수행 방법.
  4. 제 1항에 있어서,
    상기 지시된 MA 시그너처의 값과 묶인(tied) 서브프레임 옵셋 값에 따라 지시된 해당 서브프레임에서 상기 ACK/NACK 신호를 전송하는, HARQ 동작 수행 방법.
  5. 제 1항에 있어서,
    상기 지시된 MA 시그너처의 값과 묶인(tied) 주파수 옵셋 값에 따라 지시된 주파수 대역에서 상기 ACK/NACK 신호를 전송하는, HARQ 동작 수행 방법.
  6. 제 1항에 있어서,
    상기 지시된 MA 시그너처의 값과 묶인(tied) 시퀀스 인덱스 값에 대응하는 시퀀스를 상기 ACK/NACK 신호에 적용하여 상기 ACK/NACK 신호를 전송하는, HARQ 동작 수행 방법.
  7. 제 1항에 있어서,
    상기 MA 시그니처 필드는 2 비트 필드인, HARQ 동작 수행 방법.
  8. 비직교 다중 접속(Non-orthogonal Multiple Access, NoMA) 기반 시스템에서 HARQ 동작을 수행하기 위한 단말에 있어서,
    수신기;
    송신기; 및
    프로세서를 포함하되,
    상기 프로세서는, 상기 수신기가 NoMA 전송을 지원하기 위한 MA(Multiple Access) 시그너처 필드를 포함하는 DCI(Downlink Control Information) 포맷을 수신하고,
    상기 MA 시그니처 필드가 지시하는 MA 시그너처의 값에 기초하여 하향링크 데이터를 수신하도록 제어하고,
    상기 프로세서는, 사전에 정의된 규칙에 따라 상기 지시된 MA 시그너처의 값과 묶인(tied) 서브프레임 옵셋 값, 주파수 옵셋 값, 또는 시퀀스 인덱스 값에 기초하여 상기 하향링크 데이터에 대한 ACK/NACK 신호를 전송하도록 제어하되,
    상기 서브프레임 옵셋 값은 상기 하향링크 데이터의 수신 서브프레임과 상기 하향링크 데이터에 대한 하향링크 HARQ 피드백 전송 서브프레임 간의 서브프레임 옵셋 값을 포함하며,
    상기 주파수 옵셋 값은 상기 ACK/NACK 신호를 전송에 사용되는 주파수 대역을 지시하는, 단말.
  9. 제 8항에 있어서,
    상기 MA 시그너처는 코드워드 인덱스, 코드북 인덱스, 인터리버 인덱스, 복조 참조 신호 인덱스, 공간 차원(Spatial-dimension) 또는 전력 차원(Power-dimension)를 포함하는, 단말.
  10. 제 8항에 있어서,
    상기 프로세서는 상기 송신기가 상기 사전에 정의된 규칙에 따라 상기 MA 시그너처 필드가 전송된 CCE(Control Channel Element) 번호에 더 기초하여 상기 ACK/NACK 신호를 전송하도록 제어하는, 단말.
  11. 제 8항에 있어서,
    상기 프로세서는 상기 송신기가 상기 지시된 MA 시그너처의 값과 묶인(tied) 서브프레임 옵셋 값에 따라 지시된 해당 서브프레임에서 상기 ACK/NACK 신호를 전송하도록 제어하는, 단말.
  12. 제 8항에 있어서,
    상기 프로세서는 상기 송신기가 상기 지시된 MA 시그너처의 값과 묶인(tied) 주파수 옵셋 값에 따라 지시된 주파수 대역에서 상기 ACK/NACK 신호를 전송하도록제어하는, 단말.
  13. 제 8항에 있어서,
    상기 프로세서는 상기 지시된 MA 시그너처의 값과 묶인(tied) 시퀀스 인덱스 값에 대응하는 시퀀스를 상기 ACK/NACK 신호에 적용하고, 상기 시퀀스가 전송된 ACK/NACK 신호를 상기 송신기가 전송하도록 제어하는, 단말.
  14. 제 8항에 있어서,
    상기 MA 시그니처 필드는 2 비트 필드인, 단말.
PCT/KR2017/000104 2017-01-04 2017-01-04 Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치 WO2018128200A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/475,776 US10892859B2 (en) 2017-01-04 2017-01-04 Method for performing HARQ operation in NoMA based system and apparatus therefor
PCT/KR2017/000104 WO2018128200A1 (ko) 2017-01-04 2017-01-04 Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/000104 WO2018128200A1 (ko) 2017-01-04 2017-01-04 Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치

Publications (1)

Publication Number Publication Date
WO2018128200A1 true WO2018128200A1 (ko) 2018-07-12

Family

ID=62790948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000104 WO2018128200A1 (ko) 2017-01-04 2017-01-04 Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10892859B2 (ko)
WO (1) WO2018128200A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080768A1 (ko) * 2018-10-19 2020-04-23 삼성전자주식회사 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020146601A1 (en) * 2019-01-10 2020-07-16 Qualcomm Incorporated Feedback transmission using multiple access signatures
CN112868258A (zh) * 2018-09-28 2021-05-28 瑞典爱立信有限公司 用于优化的harq操作的方法和装置
US11063705B2 (en) 2018-06-18 2021-07-13 Google Llc Methods and apparatus for HARQ in NOMA transmission for 5G NR
US11382120B2 (en) * 2017-07-18 2022-07-05 Huawei Technologies Co., Ltd. Information transmission method and device
US11425699B2 (en) 2018-06-15 2022-08-23 Google Llc CBG-based NOMA transmission for a wireless network
US11424799B2 (en) 2018-06-12 2022-08-23 Google Llc Beamforming-based grant-free non-orthogonal multiple access transmission
US11438042B2 (en) * 2017-09-28 2022-09-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Transmission of data by multiple users over shared resources
US11469866B2 (en) 2018-09-26 2022-10-11 Google Llc Non-orthogonal multiple access configuration in split base station architectures
US11711194B2 (en) 2018-06-22 2023-07-25 Google Llc Multi-branch NOMA wireless communication
US11910391B2 (en) 2018-08-10 2024-02-20 Google Llc Methods and apparatus for an uplink control channel in NOMA asynchronous transmissions

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6982622B2 (ja) * 2017-02-13 2021-12-17 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Pucchのためのリソースシグナリング
KR20220018358A (ko) * 2020-08-06 2022-02-15 삼성전자주식회사 주파수 오프셋을 사용하는 비직교 다중 접속 시스템에서 채널 추정 방법 및 장치
US20220345255A1 (en) * 2021-04-27 2022-10-27 Qualcomm Incorporated Soft multiplexing of feedback

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171494A1 (ko) * 2015-04-22 2016-10-27 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
US20160353424A1 (en) * 2015-05-28 2016-12-01 Futurewei Technologies, Inc. System and Method for Multi-Level Beamformed Non-Orthogonal Multiple Access Communications
US20160374060A1 (en) * 2015-06-22 2016-12-22 Samsung Electronics Co., Ltd Method and apparatus for multiuser superposition transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650392B (zh) * 2011-09-23 2016-11-16 Lg电子株式会社 发送控制信息的方法及用于该方法的设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171494A1 (ko) * 2015-04-22 2016-10-27 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
US20160353424A1 (en) * 2015-05-28 2016-12-01 Futurewei Technologies, Inc. System and Method for Multi-Level Beamformed Non-Orthogonal Multiple Access Communications
US20160374060A1 (en) * 2015-06-22 2016-12-22 Samsung Electronics Co., Ltd Method and apparatus for multiuser superposition transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on HARQ Timing and Resource for NR", R1-1611845, 3GPP TSG RAN WG1 MEETING #87, 5 November 2016 (2016-11-05), Reno, USA, XP051190192 *
LG ELECTRONICS: "On MA Resource and MA Signature Configurations", R1-1609227, 3GPP TSG RAN WG1 MEETING #86BIS, 1 October 2016 (2016-10-01), Lisbon, Portugal, XP051159339 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11382120B2 (en) * 2017-07-18 2022-07-05 Huawei Technologies Co., Ltd. Information transmission method and device
US11438042B2 (en) * 2017-09-28 2022-09-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Transmission of data by multiple users over shared resources
US11424799B2 (en) 2018-06-12 2022-08-23 Google Llc Beamforming-based grant-free non-orthogonal multiple access transmission
US11700612B2 (en) 2018-06-15 2023-07-11 Google Llc CBG-based NOMA transmission for a wireless network
US11425699B2 (en) 2018-06-15 2022-08-23 Google Llc CBG-based NOMA transmission for a wireless network
US11063705B2 (en) 2018-06-18 2021-07-13 Google Llc Methods and apparatus for HARQ in NOMA transmission for 5G NR
US11711194B2 (en) 2018-06-22 2023-07-25 Google Llc Multi-branch NOMA wireless communication
US11910391B2 (en) 2018-08-10 2024-02-20 Google Llc Methods and apparatus for an uplink control channel in NOMA asynchronous transmissions
US11469866B2 (en) 2018-09-26 2022-10-11 Google Llc Non-orthogonal multiple access configuration in split base station architectures
CN112868258A (zh) * 2018-09-28 2021-05-28 瑞典爱立信有限公司 用于优化的harq操作的方法和装置
WO2020080768A1 (ko) * 2018-10-19 2020-04-23 삼성전자주식회사 무선 통신 시스템에서 신호 송수신 방법 및 장치
CN113261228A (zh) * 2019-01-10 2021-08-13 高通股份有限公司 使用多址签名的反馈传输
US11265134B2 (en) 2019-01-10 2022-03-01 Qualcomm Incorporated Feedback transmission using multiple access signatures
WO2020146601A1 (en) * 2019-01-10 2020-07-16 Qualcomm Incorporated Feedback transmission using multiple access signatures
CN113261228B (zh) * 2019-01-10 2023-12-26 高通股份有限公司 使用多址签名的反馈传输

Also Published As

Publication number Publication date
US20190356423A1 (en) 2019-11-21
US10892859B2 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2018128200A1 (ko) Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치
WO2017183896A1 (ko) 무선통신 시스템에서 harq ack/nack 신호를 전송/수신하는 방법 및 이를 위한 장치
WO2017171528A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 통신 방법 및 상기 방법을 이용하는 단말
WO2015115818A1 (ko) Harq ack/nack 전송방법 및 장치
WO2011034384A2 (ko) 무선 통신 시스템에서 기지국으로부터 신호를 수신하기 위한 중계기 및 그 방법
WO2014123378A1 (ko) 신호의 송수신 방법 및 이를 위한 장치
WO2010123331A2 (ko) 반송파 병합 전송을 위한 제어신호 송수신 방법 및 장치
WO2012157987A2 (ko) 무선통신 시스템에서 제어 정보를 전송 및 수신하는 방법과 이를 위한 장치
WO2011053009A2 (ko) 기지국으로부터 제어정보를 수신하는 중계기 장치 및 그 방법
WO2017026700A1 (ko) 비직교 다중 접속 방식에 기초하여 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2013066083A2 (ko) 제어채널 모니터링 방법 및 무선기기
WO2010011104A2 (en) Method and apparatus of receiving data in wireless communication system
WO2018074688A1 (ko) 경쟁 기반 비직교 다중 접속 방식에 기초하여 신호를 전송하는 방법 및 장치
WO2018074719A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2011162543A2 (ko) 다중 반송파 지원 무선 통신 시스템에서 상향링크 제어 정보 송수신 방법 및 장치
WO2017057834A1 (ko) 비직교 다중 접속 방식에 기초하여 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2013141594A1 (ko) Ack/nack 신호 전송 또는 수신 방법
WO2017034125A1 (ko) 무선통신 시스템에서 flexible fdd 프레임을 이용하여 통신을 수행하는 방법 및 이를 위한 장치
WO2018021592A1 (ko) 다중 사용자 중첩 전송 방식에 따라 전송된 데이터를 검출하기 위한 방법 및 이를 위한 장치
WO2018203618A1 (ko) 무선 셀룰러 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2016159738A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2017183845A1 (ko) Ncma에 기반한 상향링크 통신 방법 및 이를 위한 장치
WO2018021591A1 (ko) Otfs 전송 방식을 이용하는 무선통신 시스템에서 otfs 기저 할당 방법
WO2018043997A1 (ko) 다중화된 상향링크 제어 채널 및 국부적인 사운딩 참조 심볼의 전송 및 수신 방법과 이를 위한 장치
WO2012144839A2 (ko) 무선통신시스템에서 장치 대 장치의 신호 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890654

Country of ref document: EP

Kind code of ref document: A1