WO2018181979A1 - 光検出器及び測距装置 - Google Patents

光検出器及び測距装置 Download PDF

Info

Publication number
WO2018181979A1
WO2018181979A1 PCT/JP2018/013820 JP2018013820W WO2018181979A1 WO 2018181979 A1 WO2018181979 A1 WO 2018181979A1 JP 2018013820 W JP2018013820 W JP 2018013820W WO 2018181979 A1 WO2018181979 A1 WO 2018181979A1
Authority
WO
WIPO (PCT)
Prior art keywords
spad
photodetector
detection
unit
light
Prior art date
Application number
PCT/JP2018/013820
Other languages
English (en)
French (fr)
Inventor
謙太 東
尾崎 憲幸
柏田 真司
木村 禎祐
勇 高井
松原 弘幸
太田 充彦
誠良 平塚
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880021577.7A priority Critical patent/CN110462426B/zh
Publication of WO2018181979A1 publication Critical patent/WO2018181979A1/ja
Priority to US16/584,093 priority patent/US11422241B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • H04N25/773Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]

Definitions

  • the present disclosure relates to a photodetector using the avalanche effect and a distance measuring device using the photodetector.
  • APD avalanche photodiode
  • SPAD Single Photon Avalanche Diode
  • the SPAD breaks down when a photon is incident and a response is generated, so the SPAD is provided with a recharge control unit for recharging after the response.
  • the recharge control unit is a so-called quench resistor, and is constituted by a resistor or a semiconductor element such as a MOSFET.
  • the recharge control unit outputs a detection signal based on the current that flows due to the breakdown of the SPAD, and stops the SPAD response due to a voltage drop caused by the current, and causes the SPAD to recharge charges.
  • SPAD is recharged immediately after response, and when light detection is possible, carriers trapped in crystal defects or the like may cause a pseudo response that does not depend on the incidence of light. (Hereinafter referred to as dead time) must be set.
  • a pixel for light detection is configured by a plurality of SPADs, and the number of SPADs that responded is counted for each predetermined measurement time, When the number is equal to or greater than a predetermined threshold, it is determined that light has entered the pixel.
  • the photodetector described in Patent Document 1 is affected by noise because the number of SPADs that respond within a measurement time is small during normal times when a plurality of SPADs responds randomly due to noise such as pseudo responses.
  • the incident light can be detected without any problem.
  • the pixel when light irradiated toward the measurement object enters the photodetector as clutter, or when strong reflected light from a highly reflective object enters the photodetector, the pixel is configured. Multiple SPADs may respond simultaneously.
  • One aspect of the present disclosure is that a photodetector having a plurality of SPADs that respond to photon incidence improves the detection accuracy by reducing the number of SPADs that perform a pseudo response next to a plurality of SPADs responding simultaneously. It is desirable to be able to do so.
  • the photodetector includes a plurality of detection units having a SPAD configured to respond to the incidence of photons. Then, at least one of the plurality of detection units has a return time until the next response becomes possible after the SPAD responds to the incidence of photons. It is configured to be different from the SPAD return time of the detection unit.
  • FIG. 10A is a diagram illustrating a change in the number of SPADs that can respond after the start of driving of the photodetector.
  • FIG. 10A illustrates a change in the number of SPADs when the return timing of SPADs is varied, and FIG. This represents a change in the number of SPADs when SPADs are returned all at once.
  • the photodetector 1 of the present embodiment includes a light receiving array that constitutes one pixel by arranging a plurality of detectors 2 that detect the incidence of photons in a grid pattern in the vertical and horizontal directions. It is configured as.
  • Each detector 2 as shown in FIG. 2, comprises a SPAD4, the photons incident on SPAD4, as a detection signal, from the pulse output unit 8 outputs a digital pulse V P is a pulse signal having a predetermined pulse width It is configured as follows.
  • the photodetector 1 counts the number of pulse signals output from each detector 2 at substantially the same time, and is configured by the photodetector 1 when the count value is equal to or greater than a predetermined threshold value.
  • An output determination unit 10 that determines that light has been detected at a pixel and outputs a trigger signal is connected.
  • the plurality of detection units 2 constituting the photodetector 1 are divided into two groups A and B having different return times from the time when they respond to the incidence of photons until the next response becomes possible.
  • the number of detection units 2A and 2B of each group A and B is substantially the same, so that the detection units 2A and 2B are not biased for each of the groups A and B on the light receiving surface that receives light in the photodetector 1. It is distributed.
  • the detection units 2A and 2B are alternately arranged in the vertical direction and the horizontal direction so as not to be continuous in the vertical direction and the horizontal direction on the light receiving surface, and have a so-called checkered pattern. .
  • the configuration of the detection units 2A and 2B will be described with reference to FIG.
  • the basic configuration of the two types of detection units 2 ⁇ / b> A and 2 ⁇ / b> B is the same, and includes a SPAD 4, a quench resistor 6, and a pulse output unit 8.
  • the SPAD 4 is an APD that can operate in the Geiger mode as described above, and the quench resistor 6 is connected in series to the energization path to the SPAD 4.
  • the quench resistor 6 is for stopping a Geiger discharge of the SPAD 4 by generating a voltage drop due to a current flowing through the SPAD 4 when a photon is incident on the SPAD 4 and the SPAD 4 is broken down. It is composed of a MOSFET.
  • the MOSFET is turned on by applying a predetermined gate voltage V G to the MOSFET constituting the quench resistor 6, and the MOSFET is operated as the quench resistor 6 by the on-resistance to reverse bias the SPAD 4.
  • V G a predetermined gate voltage
  • the energization path to the SPAD 4 can be cut off and the operation of the SPAD 4 can be stopped.
  • Pulse output unit 8 SPAD4 detects the current flowing in response to the incidence of photons from the voltage across the quench resistor 6, when the voltage is a threshold voltage or more, the digital pulse V P as a detection signal It is configured to output.
  • the SPAD 4 has an anode connected to the ground line via the quench resistor 6 and a cathode connected to the power supply line. Therefore, as shown in FIG. 3, the voltage V SPAD between both ends of the SPAD 4 is an initial voltage corresponding to the power supply voltage V DD supplied from the power supply line in the initial state before the photons are incident on the SPAD 4 .
  • the SPAD 4 becomes insensitive without responding to the incidence of photons until the charge is recharged through the quench resistor 6 after responding to the incidence of photons. If the recharge time required for this recharge is the same in all the detectors 2A and 2B constituting the photodetector 1, each detector 2 responds to the incidence of photons and then can respond. The return time until is the same.
  • the output determination unit 10 causes erroneous detection due to a pseudo response.
  • the plurality of detection units 2 constituting the photodetector 1 are divided into two groups A and B as described above, and detection is performed between the groups A and B as shown in FIG.
  • the recharge times T CA and T CB of the SPAD 4 constituting the units 2A and 2B are different.
  • the recharge current that flows through the MOSFET is detected by the detection unit 2A and the detection unit 2B. To be different.
  • the recharge current is controlled by changing the saturation current of the MOSFET constituting the quench resistor 6 so that the recharge times T CA and T CB of the SPAD 4 constituting the detection units 2A and 2B are different. Yes.
  • each group A, B The timing of the pseudo response generated in the detection units 2A and 2B can be shifted. For this reason, it can suppress that the incident determination of light is erroneously detected by the output determination part 10 because the plurality of SPAD4 which comprise the photodetector 1 carries out a pseudo-response substantially simultaneously.
  • the MOSFETs constituting the quench resistor 6 do not necessarily have different sizes. It may be as follows. (1) When the quench resistor 6 is configured by a MOSFET, the on-resistance can be adjusted by the gate voltage V G of the MOSFET. Therefore, even by changing the gate voltage V G of the MOSFET between the detection unit 2A and the detection unit 2B, The recharge times T CA and T CB can be set to different times. (2)
  • the quench resistor 6 can be composed of a resistance component 7 such as a resistor or a wiring resistance as shown by a dotted line in FIG.
  • the recharge times T CA and T CB can be set to different times by setting the resistance value of the resistance component 7 to different values between the detection unit 2A and the detection unit 2B.
  • the quench resistor 6 composed of a MOSFET or a resistor functions as the recharge control unit of the present disclosure.
  • the amount of current required to recharge the SPAD 4 via this recharge control unit is indicated by a dotted line in FIG. It also changes depending on the SPAD4 or the parasitic capacitance C of the recharge control unit.
  • the amount of current required to recharge SPAD 4 via quench resistor 6 can be adjusted by adjusting its parasitic capacitance C or providing a separate capacitor.
  • the recharge times T CA and T CB are set to different times by changing the amount of current required to recharge the SPAD 4 between the detection unit 2A and the detection unit 2B using the parasitic capacitance or the capacitance of the capacitor. Can be set.
  • the structure which makes MOSFET different size, and the structure of said (1)-(3) can also be implemented combining suitably. With these configurations, if the recharge time is changed, the SPAD 4 can be prevented from responding simultaneously, and the detection accuracy by the output determination unit 10 can be improved.
  • the detection part 2 which comprises the photodetector 1 is divided into two groups A and B, and the recharge time of SPAD4 which comprises the detection part 2 is set for every group A and B.
  • the recharge time of SPAD4 which comprises the detection part 2 is set for every group A and B.
  • the detection unit 2 may be divided into more groups and the recharge time may be set for each group, or all the detections constituting the photodetector 1 may be set.
  • the recharge time of SPAD 4 may be different.
  • the detection units 2 may be arranged in a distributed manner so that the recharge times of the SPAD 4 are different between the adjacent detection units 2.
  • each detection unit 2 responds to the incidence of photons and then returns until the next response becomes possible. It was explained as something that would disperse time.
  • the plurality of detection units 2 are divided into two groups A and B, and when the SPAD 4 responds only to the detection unit 2B of group B as shown in FIG. Thereafter, the start of recharging is delayed by a predetermined time T1.
  • a digital pulse VP when a digital pulse VP is output from the pulse output unit 8 to the detection unit 2B of the group B, a pulse that generates a delay pulse V1 after a certain time T1.
  • a generator 9 is provided.
  • the delay pulse V1 from the pulse generator 9 is applied to the gate of the MOSFET that constitutes the quench resistor 6, whereby the SPAD 4 starts to be recharged. In this way, only the detection unit 2B of group B delays the recharge start timing after the response of SPAD4.
  • the photodetector is configured as described above, the time required for recharging after the response of SPAD 4 differs between the detection units 2A and 2B, and the SPAD 4 of the detection units 2A and 2B can respond simultaneously. Can be suppressed.
  • the pulse generation unit 9 that delays the recharge start timing of the SPAD 4 is described as being provided in the detection unit 2B of the group B, but may be provided in all the detection units 2.
  • each detection unit 2 The return time of SPAD4 can be more finely dispersed.
  • the recovery time of the SPAD 4 itself can be varied by varying the recharge time or the recharge start time of the SPAD 4 constituting the plurality of detection units 2.
  • the group A, the detection unit 2A of B, in 2B, SPAD4 responds at time t1, the output digital pulse V P, then allows the output of the digital pulse V P
  • the time until the time points ta and tb may be set to different times.
  • the threshold voltages V THA and V THB of the pulse output unit 8 provided in the detection units 2A and 2B of the groups A and B are set to different voltage values, respectively.
  • the detection unit 2A, SPAD4 responds simultaneously in 2B, after the output of digital pulses V P is a detection signal, the detection unit 2A by simulated response of SPAD4, digital pulse V P simultaneously from 2B Output can be suppressed.
  • the threshold voltage of the pulse output unit 8 may be set to a different voltage value by performing a plurality of detection units 2 for each group divided into three or more groups, The threshold voltage of the output unit 8 may be set to a different voltage value.
  • the output determination unit 10 erroneously determines that light has entered the photodetector 1 due to the pseudo-responses of the SPADs 4 constituting the plurality of detection units 2. It is possible to suppress the output of a signal indicating that light has entered the photodetector 1.
  • the drive start timing of each SPAD 4 is controlled so that the SPAD 4 can respond to the incidence of photons at different timings in each detector 2. Good.
  • the driving start timings of the SPADs 4 provided in the plurality of detection units 2 are controlled, so that a large number of SPADs 4 are immediately after the driving of the photodetector 1 is started.
  • the distance measuring device 20 that can suppress the response will be described.
  • the distance measuring device 20 of the present embodiment includes a photodetector 1, a light irradiation unit 22 that projects signal light for distance measurement toward a distance measurement target, and a distance calculation unit 24. Is provided.
  • the distance calculation unit 24 measures the time from when the light irradiation unit 22 projects the signal light to when the signal light is reflected by the object to be measured and the reflected light is received by the photodetector 1. The distance to the object is calculated from the measurement time.
  • the photodetector 1 is the photodetector 1 described in the first to third embodiments, and is configured to output a detection signal to the distance calculation unit 24 via the output determination unit 10 described above. Yes. Then, as shown in FIG. 8, the distance calculation unit 24 first outputs the drive signal V LD to the light irradiation unit 22 at time t11 to project the signal light, and then the time t12A and t12B. Thus, the drive signals V QCH_A and V QCH_B are output to the detection units 2A and 2B of the groups A and B, respectively.
  • the drive signals V QCH_A and V QCH_B are used to turn on the MOSFETs constituting the quench resistor 6, apply a reverse bias voltage to the SPAD 4 of each of the detection units 2A and 2B, and charge the SPAD 4 with charges. is there.
  • the distance calculation unit 24 causes the light irradiation unit 22 to project the signal light, and then sequentially raises the drive signals V QCH_A and V QCH_B . For this reason, even if the signal light from the light irradiation unit 22 is reflected inside the apparatus and enters the photodetector 1 as clutter, a plurality of SPADs 4 respond simultaneously by the clutter, and the distance calculation unit from the photodetector 1 The output of the detection signal to 24 can be suppressed.
  • the detection unit 2A of the group A and the detection unit 2B of the group B are charged with the SPAD 4 after the start of distance measurement due to the difference in the input timing of the drive signals V QCH_A and V QCH_B. The time until the response becomes possible will be different.
  • the present embodiment it is possible to suppress a plurality of SPADs 4 from responding simultaneously after the start of driving of the photodetector 1. Therefore, immediately after the start of driving of the photodetector 1, many digital pulses VP are output from the plurality of detection units 2 constituting the photodetector 1, and detection signals are output from the output determination unit 10 to the distance calculation unit 24. Can be suppressed.
  • the distance calculation unit 24 causes the light irradiation unit 22 to project the signal light, and then raises the drive signals V QCH_A and V QCH_B at the time points t12A and t12B, and from the time points t12A and t12B.
  • the voltage value may be lowered after a certain time T2.
  • the SPAD 4 of the detectors 2A and 2B can be charged in a shorter time so that it can respond to the incidence of photons, and thereafter, the charging time of the SPAD 4 is increased.
  • the gate voltage of the MOSFET can be set so as to vary.
  • the timing control is divided into three or more groups. You may make it carry out for every group. Further, all the detection units 2 may be controlled so that the timing at which the SPAD 4 can respond is different. [Modification 1] In particular, in order to bring the number of SPADs 4 that can respond after the start of driving of the photodetector 1 close to the normal number after the start of driving, as shown in FIG. The detection unit 2 may be operated.
  • the plurality of detection units 2 constituting the photodetector 1 are divided into two groups, and the drive signals are simultaneously input to the detection units 2 of one group, so that the SPAD 4 is simultaneously returned to a responsive state.
  • the timing at which the SPAD 4 can respond is varied.
  • the output determination unit 10 can accurately determine the incidence of light.
  • the number of SPADs that can respond is as follows. And then periodically increase or decrease due to a pseudo response or the like.
  • the distance calculation unit 24 performs the measurement operation for measuring the time from when the signal light is projected from the light irradiation unit 22 to when the reflected light is received by the photodetector 1 a plurality of times. The measurement results may be integrated to calculate the distance to the object.
  • a timing control unit 25 is provided in the distance calculation unit 24, and the timing control unit 25 sets the drive start timing of the photodetector 1 for each measurement operation. It may be changed. That is, for each measurement operation, the time from when the light irradiation unit 22 projects the signal light to when the light detector 1 starts to be driven is changed.
  • the responsive SPAD for each elapsed time after the signal light is projected from the light irradiation unit 22.
  • the variation in the number of each will be different for each measurement operation.
  • this indication is not limited to the above-mentioned embodiment, and can carry out various modifications.
  • the distance measuring device 20 that measures the distance to the object to be measured using the photodetector 1 of the present disclosure has been described as an example, but the application of the photodetector 1 of the present disclosure is as follows.
  • the present invention is not limited to the distance measuring device 20 and can be used for various devices that require light detection.
  • a plurality of functions of one constituent element in the embodiment may be realized by a plurality of constituent elements, or one function of one constituent element may be realized by a plurality of constituent elements.
  • a plurality of functions possessed by a plurality of constituent elements may be realized by one constituent element, or one function realized by a plurality of constituent elements may be realized by one constituent element.
  • at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment.
  • all the aspects included in the technical idea specified only by the wording described in the claim are embodiment of this indication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

光検出器は、フォトンの入射に応答するSPAD(4)を有する複数の検出部(2)を備える。複数の検出部のうちの少なくとも一つの検出部は、SPADがフォトンの入射に応答した後、次に応答可能になるまでの復帰時間が、複数の検出部のうちの別の少なくとも一つの検出部のSPADの復帰時間と異なるように構成される。

Description

光検出器及び測距装置 関連出願の相互参照
 本国際出願は、2017年3月31日に日本国特許庁に出願された日本国特許出願第2017-72504号に基づく優先権を主張するものであり、日本国特許出願第2017-72504号の全内容を参照により本国際出願に援用する。
 本開示は、アバランシェ効果を利用した光検出器及びこれを利用した測距装置に関する。
 従来、アバランシェ効果を利用した光検出器として、アバランシェフォトダイオード(以下、APD)をガイガーモードで動作させて光検出を行う光検出器が知られている。
 ガイガーモードで動作するAPDは、SPADと呼ばれ、逆バイアス電圧としてブレイクダウン電圧よりも高い電圧を印加することにより動作する。なお、SPADは、Single Photon Avalanche Diode の略である。
 SPADはフォトンが入射し、応答が発生すると、ブレイクダウンするため、SPADには、応答後にリチャージするためのリチャージ制御部が設けられる。リチャージ制御部は、所謂クエンチ抵抗であり、抵抗若しくはMOSFET等の半導体素子にて構成される。
 そして、リチャージ制御部は、SPADのブレイクダウンにより流れる電流により検出信号を出力すると共に、その電流により生じる電圧降下によって、SPADの応答を停止させて、SPADに電荷をリチャージさせる。
 また、SPADは、応答直後にリチャージし、光検出が可能になると、結晶欠陥等にトラップされたキャリアにより、光の入射に依らない疑似応答を生じることがあるため、応答後、一定の不感時間(以下、デッドタイム)、を設定する必要がある。
 しかし、この種の光検出器を車載レーダ等の測距装置に利用する場合、デッドタイムは、距離測定の応答性の低下の原因となり、車載システムに影響を与えることがある。
 そこで、この種の光検出器においては、特許文献1に記載のように、光検出用の画素を複数のSPADで構成し、所定の測定時間毎に、応答したSPADの数を計数して、その数が所定の閾値以上であるときに、画素へ光が入射したと判断するようにしている。
特許第5644294号公報
 ところで、特許文献1に記載の光検出器においては、疑似応答等のノイズによって複数のSPADがランダムに応答する通常時には、測定時間内に応答するSPADの数が少ないことから、ノイズの影響を受けることなく光の入射を検出できる。
 しかし、発明者の詳細な検討の結果、複数のSPADが同時に応答すると、その後、疑似応答するSPADの数が増加するため、光の入射を誤検出してしまい、検出精度が低下するという課題が見出された。
 つまり、例えば、測距装置において、測定対象に向けて照射した光がクラッタとして光検出器に入射した場合や、高反射物体から強い反射光が光検出器に入射した場合には、画素を構成する複数のSPADが同時に応答することがある。
 この場合、複数のSPADは、強い光で同時に応答した後、多数のSPADが略同時に疑似応答することになるため、その疑似応答により光入力を誤検出してしまい、検出精度が低下するのである。
 本開示の一局面は、フォトンの入射に応答する複数のSPADを備えた光検出器において、複数のSPADが同時に応答しても、次に疑似応答するSPADの数を減らして、検出精度を向上できるようにすることが望ましい。
 本開示の一局面の光検出器においては、フォトンの入射に応答するよう構成されたSPADを有する複数の検出部を備える。そして、複数の検出部のうちの少なくとも一つの検出部は、SPADがフォトンの入射に応答した後、次に応答可能になるまでの復帰時間が、複数の検出部のうちの別の少なくとも一つの検出部のSPADの復帰時間と異なるように構成されている。
 このため、光検出器に強い光が入射して、各検出部のSPADが同時に応答したとしても、その後、同時に疑似応答するSPADの数を減らすことができるようになる。従って、本開示の光検出器を用いて、応答したSPADの数から光の入射を検出するようにすれば、SPADの疑似応答によって検出精度が低下するのを抑制できる。
 なお、請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
第1実施形態の光検出器の概略構成を表す説明図である。 第1実施形態の光検出器に設けられた検出部の構成を表す回路図である。 第1実施形態の検出部を構成するSPADのリチャージ状態を表すタイムチャートである。 第2実施形態のグループBの検出部の構成を表す回路図である。 第2実施形態の検出部を構成するSPADのリチャージ状態を表すタイムチャートである。 第3実施形態の検出部を構成するパルス出力部の閾値と復帰時間とを表すタイムチャートである。 第4実施形態の測距装置の構成を表すブロック図である。 測距装置における照射タイミングと光検出器の駆動開始タイミングを表すタイムチャートである。 光検出器の駆動電圧によりSPADのリチャージ時間を駆動開始直後と応答後とで変化させた状態を表すタイムチャートである。 光検出器の駆動開始後に応答可能となるSPADの数の変化を表す説明図であり、図10Aは、SPADの復帰タイミングをばらつかせたときのSPADの数の変化を表し、図10Bは、SPADを一斉復帰させたときのSPADの数の変化を表す。
 以下に本開示の実施形態を図面と共に説明する。
[第1実施形態]
 図1に示すように、本実施形態の光検出器1は、フォトンの入射を検出する複数の検出部2を縦及び横方向に格子状に配置することにより、一つの画素を構成する受光アレイとして構成されている。
 各検出部2は、図2に示すように、SPAD4を備え、SPAD4にフォトンが入射すると、その検出信号として、パルス出力部8から、所定パルス幅のパルス信号であるデジタルパルスVP を出力するように構成されている。
 そして、光検出器1には、各検出部2から略同時刻に出力されたパルス信号の数をカウントし、そのカウント値が所定の閾値以上であるときに、光検出器1にて構成される画素にて光が検出されたと判定して、トリガ信号を出力する出力判定部10が接続されている。
 次に、光検出器1を構成する複数の検出部2は、フォトンの入射に応答してから、次に応答可能となるまでの復帰時間が異なる2つのグループA,Bに分けられている。
 各グループA,Bの検出部2A,2Bの数は略同じであり、光検出器1において光を受光する受光面上でグループA,B毎に検出部2A,2Bが偏ることがないよう、分散して配置されている。具体的には、各検出部2A,2Bは、受光面上で縦方向及び横方向に連続することのないよう、縦方向及び横方向に交互に配置されており、所謂市松模様を呈している。
 次に、検出部2A,2Bの構成を、図2を用いて説明する。
 図2に示すように、2種類の検出部2A,2Bの基本構成は同じであり、SPAD4と、クエンチ抵抗6と、パルス出力部8とを備える。
 SPAD4は、上述したようにガイガーモードで動作可能なAPDであり、クエンチ抵抗6は、SPAD4への通電経路に直列接続されている。
 クエンチ抵抗6は、SPAD4にフォトンが入射して、SPAD4がブレイクダウンしたときに、SPAD4に流れる電流により、電圧降下を発生して、SPAD4のガイガー放電を停止させるものであり、本実施形態では、MOSFETにて構成されている。
 このため、本実施形態では、クエンチ抵抗6を構成するMOSFETに所定のゲート電圧VG を印加することでMOSFETをオンさせ、そのオン抵抗により、MOSFETをクエンチ抵抗6として動作させ、SPAD4に逆バイアス電圧を印加することができる。また、ゲート電圧VG の印加を停止することで、SPAD4への通電経路を遮断し、SPAD4の動作を停止させることができる。
 次に、クエンチ抵抗6の両端間電圧は、パルス出力部8に入力される。パルス出力部8は、SPAD4がフォトンの入射に応答した際に流れる電流をクエンチ抵抗6の両端間電圧から検出して、その電圧が閾値電圧以上であるときに、検出信号としてデジタルパルスVP を出力するよう構成されている。
 一方、SPAD4は、アノードがクエンチ抵抗6を介してグラウンドラインに接地され、カソードが電源ラインに接続されている。このため、SPAD4の両端間電圧VSPADは、図3に示すように、SPAD4にフォトンが入射する前の初期状態では、電源ラインから供給される電源電圧VDDに対応した初期電圧となる。
 このようにSPAD4に電圧が印加されている状態で、図3に示す時点t1にてSPAD4にフォトンが入射すると、SPAD4がブレイクダウンしてクエンチ抵抗6に電流が流れ、クエンチ抵抗6で電圧降下が生じるため、両端間電圧VSPADは一旦低下する。そして、その後、両端間電圧VSPADは、クエンチ抵抗6を介してSPAD4がリチャージされることにより上昇し、SPAD4がフォトンの入射に応答可能な初期電圧に復帰する。
 従って、SPAD4は、フォトンの入射に応答した後、クエンチ抵抗6を介して電荷がリチャージされるまでは、フォトンの入射に応答しない不感状態となる。そして、このリチャージに要するリチャージ時間が、光検出器1を構成する全ての検出部2A,2Bにおいて同一であると、各検出部2がフォトンの入射に応答してから、次に応答可能になるまでの復帰時間も同じになる。
 この結果、複数の検出部2A,2Bの殆どが応答するような強い光が光検出器1に入射した際には、各検出部2A,2Bにおいて、強い光に応答した後、ほぼ同時に疑似応答が発生することがあり、この場合、出力判定部10では疑似応答による誤検出が発生する。
 そこで、本実施形態では、上記のように光検出器1を構成する複数の検出部2を、2つのグループA,Bに分けて、図3に示すように、グループA,B間で、検出部2A、2Bを構成するSPAD4のリチャージ時間TCA,TCBが異なるように構成している。
 具体的には、本実施形態では、本開示のリチャージ制御部として機能するクエンチ抵抗6を構成しているMOSFETのサイズを変えることで、MOSFETに流れるリチャージ電流が、検出部2Aと検出部2Bとで異なるようにしている。
 つまり、本実施形態では、クエンチ抵抗6を構成するMOSFETの飽和電流を変えることで、リチャージ電流を制御し、検出部2A、2Bを構成するSPAD4のリチャージ時間TCA,TCBが異なるようにしている。
 この結果、本実施形態の光検出器1によれば、光検出器1に強い光が入射し、光検出器1内の複数のSPAD4が略同時に応答したとしても、その後、各グループA,Bの検出部2A,2Bで発生する疑似応答のタイミングをずらすことができる。このため、光検出器1を構成する複数のSPAD4がほぼ同時に疑似応答することによって、出力判定部10で光の入射が誤検出されるのを抑制できる。
 なお、本実施形態のように、検出部2Aと検出部2BとでSPAD4のリチャージ時間を異なる時間に設定するには、必ずしも、クエンチ抵抗6を構成するMOSFETを異なるサイズにする必要はなく、下記のようにしてもよい。
(1)クエンチ抵抗6をMOSFETにて構成した場合、そのオン抵抗は、MOSFETのゲート電圧VG で調整できることから、検出部2Aと検出部2BとでMOSFETのゲート電圧VG を変えるだけでも、リチャージ時間TCA,TCBを異なる時間に設定できる。
(2)クエンチ抵抗6は、図2に点線で示すように、抵抗器や配線抵抗等の抵抗成分7にて構成することができる。従って、この場合には、その抵抗成分7の抵抗値を、検出部2Aと検出部2Bとで異なる値に設定するようにすれば、リチャージ時間TCA,TCBを異なる時間に設定できる。
(3)MOSFETや抵抗器にて構成されるクエンチ抵抗6は、本開示のリチャージ制御部として機能するが、このリチャージ制御部を介してSPAD4をリチャージするのに要する電流量は、図2に点線で示す、SPAD4、もしくはリチャージ制御部の寄生容量Cによっても変化する。
 従って、クエンチ抵抗6を介してSPAD4をリチャージするのに要する電流量は、その寄生容量Cを調整したり、別途コンデンサを設けたりすることで、調整できる。
 このため、寄生容量やコンデンサの容量を利用して、検出部2Aと検出部2Bとで、SPAD4をリチャージするのに必要な電流量を変えることによっても、リチャージ時間TCA,TCBを異なる時間に設定できる。
 なお、MOSFETを異なるサイズにする構成、及び、上記(1)~(3)の構成は、適宜組み合わせて実施することもできる。そして、これらの構成により、リチャージ時間を変更すれば、SPAD4が同時に応答可能となるのを抑制して、出力判定部10による検出精度を向上できる。
 また、本実施形態では、光検出器1を構成する検出部2は、2つのグループA、Bに分けられ、グループA、B毎に、検出部2を構成するSPAD4のリチャージ時間が設定されるものとして説明した。
 しかし、このグループ分けは一例であり、例えば、検出部2を更に多くのグループに分けて、グループ毎にリチャージ時間を設定するようにしてもよく、或いは、光検出器1を構成する全ての検出部2で、SPAD4のリチャージ時間が異なるようにしてもよい。
 なお、いずれの場合も、隣接する検出部2間でSPAD4のリチャージ時間が異なるように、各検出部2を分散配置するとよい。
[第2実施形態]
 上述した第1実施形態では、複数の検出部2を構成するSPAD4のリチャージ時間をばらつかせることで、各検出部2がフォトンの入射に応答してから、次に応答可能になるまでの復帰時間をばらつかせるものとして説明した。
 しかし、復帰時間をばらつかせるには、必ずしもSPAD4のリチャージ時間をばらつかせる必要はなく、SPAD4の応答後にリチャージを開始するまでの時間がばらつくようにしてもよい。
 そこで、第2実施形態では、第1実施形態と同様に複数の検出部2を2つのグループA、Bに分けて、図5に示すように、グループBの検出部2Bだけ、SPAD4が応答すると、その後一定時間T1だけリチャージの開始を遅延させるようにする。
 具体的には、例えば、図4に示すように、グループBの検出部2Bに、パルス出力部8からデジタルパルスVP が出力されると、その一定時間T1後、遅延パルスV1を発生するパルス発生部9を設ける。
 そして、このパルス発生部9からの遅延パルスV1が、クエンチ抵抗6を構成するMOSFETのゲートに印加されることで、SPAD4のリチャージを開始する。
 このようにすれば、グループBの検出部2Bだけ、SPAD4の応答後のリチャージ開始タイミングが遅れることになる。
 従って、光検出器を上記のように構成しても、検出部2A,2B間で、SPAD4の応答後のリチャージに要する時間が異なり、検出部2A,2BのSPAD4が同時に応答可能となるのを抑制できる。
 このため、本実施形態においても、光検出器1を構成する複数のSPAD4がほぼ同時に疑似応答することによって、出力判定部10で光の入射が誤検出されるのを抑制できる。
 なお、本実施形態では、SPAD4のリチャージ開始タイミングを遅延させるパルス発生部9を、グループBの検出部2Bに設けるものとして説明したが、全ての検出部2に設けるようにしてもよい。
 そして、この場合、複数の検出部2を3グループ以上に分けたグループ毎、或いは、全ての検出部2で、遅延時間T1が異なるように、パルス発生部9を構成すれば、各検出部2でのSPAD4の復帰時間をより細かくばらつかせることができる。
[第3実施形態]
 上述した第1、第2実施形態では、複数の検出部2を構成するSPAD4のリチャージ時間若しくはリチャージ開始時間をばらつかせることで、SPAD4自体の復帰時間をばらつかせるものとして説明した。
 しかし、出力判定部10が光検出器1への光の入射を誤判定するのを抑制するには、各検出部2からSPAD4の疑似応答による検出信号が同時に出力されるのを抑制できればよいので、必ずしもSPAD4自体の復帰時間をばらつかせる必要はない。
 つまり、図6に示すように、グループA,Bの検出部2A,2Bにおいて、時点t1でSPAD4が応答して、デジタルパルスVP を出力してから、次にデジタルパルスVP の出力が可能となる時点ta,tbまでの時間を、異なる時間に設定してもよい。
 具体的には、グループA,Bの検出部2A,2Bに設けられるパルス出力部8の閾値電圧VTHA ,VTHB を、それぞれ、異なる電圧値に設定する。
 このように構成すれば、検出部2A,2BにおいてSPAD4が同時に応答して、検出信号であるデジタルパルスVP を出力した後、SPAD4の疑似応答により検出部2A,2Bから同時にデジタルパルスVP が出力されるのを抑制できる。
 このため、本実施形態においても、光検出器1を構成する複数のSPAD4がほぼ同時に疑似応答することによって、出力判定部10で光の入射が誤検出されるのを抑制できる。
 なお、パルス出力部8の閾値電圧を異なる電圧値に設定するのは、複数の検出部2を3グループ以上に分けたグループ毎に行うようにしてもよく、或いは、全ての検出部2でパルス出力部8の閾値電圧を異なる電圧値に設定するようにしてもよい。
[第4実施形態]
 上述した第1~第3実施形態では、複数の検出部2を構成するSPAD4のリチャージ時間やリチャージ開始時間、或いは、検出信号出力後次に出力可能となるまでの時間、をばらつかせることで、SPAD4若しくは検出部2の復帰時間をばらつかせるものとした。
 従って、上記実施形態の光検出器1を利用すれば、出力判定部10において、複数の検出部2を構成するSPAD4の疑似応答により、光検出器1に光が入射したことが誤判定されて、光検出器1に光が入射したことを表す信号が出力されるのを抑制できる。
 しかし、光検出器1の駆動開始時に、複数の検出部2のSPAD4へ電源電圧VDDが同時に印加された場合、SPAD4への電荷のチャージが略同時に完了して、通常時よりも多くのSPAD4が、フォトンの入射に応答することも考えられる。そして、このように多くのSPAD4が略同時に応答すると、出力判定部10にて、光検出器1に光が入射したことが誤判定されることになる。
 このため、上記各実施形態の光検出器1の駆動を開始する際には、各検出部2において、異なるタイミングでSPAD4がフォトンの入射に応答可能となるよう、各SPAD4の駆動開始タイミングを制御するとよい。
 そこで、第4実施形態では、光検出器1の駆動開始時に、複数の検出部2に設けられたSPAD4の駆動開始タイミングを制御することで、光検出器1の駆動開始直後に多数のSPAD4が応答するのを抑制できるようにした測距装置20について説明する。
 図7に示すように、本実施形態の測距装置20は、光検出器1と、測距対象に向けて距離測定用の信号光を投光する光照射部22と、距離算出部24とを備える。
 距離算出部24は、光照射部22が信号光を投光してから、信号光が測定対象である物体で反射し、その反射光が光検出器1にて受光されるまでの時間を計測し、その計測時間から物体までの距離を算出するよう構成されている。
 また、光検出器1は、第1~第3実施形態にて説明した光検出器1であり、上述した出力判定部10を介して、検出信号を距離算出部24に出力するよう構成されている。
 そして、距離算出部24は、図8に示すように、まず、時点t11にて、光照射部22に駆動信号VLDを出力することで、信号光を投光させ、その後、時点t12A ,t12B で、各グループA,Bの検出部2A,2Bに対し、駆動信号VQCH_A, VQCH_Bを出力する。
 この駆動信号VQCH_A, VQCH_Bは、クエンチ抵抗6を構成しているMOSFETをオンさせて、各検出部2A,2BのSPAD4に逆バイアス電圧を印加し、SPAD4に電荷をチャージするためのものである。
 このように、本実施形態では、距離算出部24が、光照射部22に信号光を投光させた後、駆動信号VQCH_A, VQCH_Bを順に立ち上げる。このため、光照射部22からの信号光が装置内部で反射し、クラッタとして光検出器1に入射しても、そのクラッタにより複数のSPAD4が同時に応答して、光検出器1から距離算出部24に検出信号が出力されるのを抑制できる。
 また、光検出器1において、グループAの検出部2AとグループBの検出部2Bとでは、駆動信号VQCH_A, VQCH_Bの入力タイミングのずれによって、測距開始後、SPAD4がチャージされて、フォトンに応答可能となるまでの時間が異なることになる。
 このため、本実施形態によれば、光検出器1の駆動開始後に複数のSPAD4が同時に応答可能になるのを抑制することができる。よって、光検出器1の駆動開始直後に、光検出器1を構成する複数の検出部2から多くのデジタルパルスVP が出力されて、出力判定部10から距離算出部24に検出信号が出力されるのを抑制できる。
 なお、距離算出部24は、図9に示すように、光照射部22に信号光を投光させた後、時点t12A ,t12B で駆動信号VQCH_A, VQCH_Bを立ち上げ、時点t12A ,t12B から一定時間T2経過後に、その電圧値を低下させるようにしてもよい。
 このようにすれば、光検出器1の駆動開始直後には、検出部2A,2BのSPAD4をより短時間でチャージして、フォトンの入射に応答できるようにし、その後は、SPAD4のチャージ時間がばらつくように、MOSFETのゲート電圧を設定できるようになる。
 また、本実施形態のように、光検出器1の駆動開始後、複数のSPAD4が応答可能になるタイミングを制御する場合も、そのタイミング制御を、複数の検出部2を3グループ以上に分けたグループ毎に行うようにしてもよい。また、全ての検出部2で、SPAD4が応答可能になるタイミングが異なるように制御してもよい。
[変形例1]
 そして、特に、光検出器1の駆動開始後に応答可能となるSPAD4の数を、駆動開始後の通常時の数に近づけるには、図10Aに示すように、光検出器1を構成する複数の検出部2を動作させるようにするとよい。
 つまり、光検出器1を構成する複数の検出部2を2つグループに分け、一方のグループの検出部2には同時に駆動信号を入力することでSPAD4を同時に応答可能状態に復帰させる。
 また、他方のグループの検出部2には、一方のグループの検出部2に駆動信号を入力した後、任意の時間間隔で順に駆動信号を入力することで、各検出部2を構成する複数のSPAD4が応答可能になるタイミングをばらつかせる。
 このようにすれば、光検出器1の駆動開始後に応答可能となるSPAD4の数を低減できると共に、その後、応答可能なSPAD4の数が変動するのを抑制できる。このため、光検出器1に実際に光が入射して、実際に応答するSPAD4の数が増加した際に、出力判定部10にて光の入射を精度よく判定することが可能となる。
 つまり、図10Bに示すように、光検出器1を構成する複数の検出部2に同時に駆動信号を入力して全てのSPAD4を同時に復帰させた場合、応答可能なSPADの数は、駆動開始直後に増大してから、疑似応答等によって周期的に増減するようになる。
 これに対し、本変形例1のように複数のSPAD4を復帰させるようにすれば、光検出器1の駆動開始後、フォトンに応答可能なSPAD4の数を平均化して、出力判定部10による光入射の判定制度を高めることができるようになる。
[変形例2]
 一方、距離算出部24は、光照射部22から信号光を投光させてから光検出器1にて反射光が受光されるまでの時間を測定する測定動作を複数回実施し、その複数回の測定結果を積算して物体までの距離を算出するように構成されていてもよい。
 そして、この場合には、図7に点線で示すように、距離算出部24にタイミング制御部25を設け、タイミング制御部25にて、各回の測定動作毎に光検出器1の駆動開始タイミングを変化させるようにしてもよい。つまり、各回の測定動作毎に、光照射部22が信号光を投光してから、光検出器1の駆動を開始するまでの時間を変更するのである。
 このようにすれば、光検出器1の駆動開始後、応答可能なSPADの数が変動したとしても、光照射部22から信号光を投光させてからの、経過時間毎の応答可能なSPADの数の変動は、測定動作1回毎に異なることになる。
 従って、複数回の測定結果を積算することにより、駆動開始後の応答可能なSPADの数の変動の影響を抑制でき、光検出器1を構成する複数の検出部2の駆動開始タイミングをばらつかせなくても、上記と同様の効果を得ることができるようになる。
 以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
 例えば、第4実施形態では、本開示の光検出器1を用いて測定対象となる物体までの距離を測定する測距装置20を例にとり説明したが、本開示の光検出器1の用途は、測距装置20に限定されるものではなく、光検出が必要な種々の装置に利用することができる。
 そして、この場合、光検出器1を駆動する際には、第4実施形態の距離算出部24のように、各検出部2に対し駆動信号を異なるタイミングで入力するようにすれば、出力判定部10での光入射の判定精度を高めることができる。
 また、実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。

Claims (16)

  1.  フォトンの入射に応答するように構成されたSPAD(4)を有する複数の検出部(2,2A,2B)を備え、
     前記複数の検出部のうちの少なくとも一つの検出部は、前記SPADがフォトンの入射に応答した後、次に応答可能になるまでの復帰時間が、前記複数の検出部のうちの別の少なくとも一つの検出部の前記SPADの復帰時間と異なるように構成されている、光検出器。
  2.  前記複数の検出部は、それぞれ、前記SPADが前記フォトンの入射に応答した後、当該SPADに電荷をリチャージして前記フォトンの入射に応答可能となるよう復帰させるように構成されたリチャージ制御部(6,7)を備え、
     前記少なくとも一つの検出部は、前記リチャージ制御部により、前記SPADの復帰時間が、前記別の少なくとも一つの検出部の前記SPADの復帰時間と異なるように設定されている、請求項1に記載の光検出器。
  3.  前記複数の検出部は、それぞれ、前記リチャージ制御部として、前記SPADに流れる電流を制御可能な半導体素子(6)を備え、
     前記少なくとも一つの検出部は、前記半導体素子に流れる電流によって、前記SPADの復帰時間が、前記別の少なくとも一つの検出部の前記SPADの復帰時間と異なるように構成されている、請求項2に記載の光検出器。
  4.  前記複数の検出部は、それぞれ、前記リチャージ制御部として、前記SPADの通電経路に設けられた抵抗(7)を備え、
     前記少なくとも一つの検出部は、前記抵抗の抵抗値により、前記SPADの復帰時間が、前記別の少なくとも一つの検出部の前記SPADの復帰時間と異なるように構成されている、請求項2又は請求項3に記載の光検出器。
  5.  前記少なくとも一つの検出部は、前記リチャージ制御部による前記SPADのリチャージに必要な電流量が、前記別の少なくとも一つの検出部と異なるように構成されている、請求項2~請求項4の何れか1項に記載の光検出器。
  6.  前記少なくとも一つの検出部は、前記SPADがフォトンの入射に応答した後、前記リチャージ制御部が前記リチャージを開始するまでの時間が、前記別の少なくとも一つの検出部と異なるように構成されている、請求項2~請求項5の何れか1項に記載の光検出器。
  7.  前記複数の検出部は、それぞれ、前記フォトンの検出信号として、前記SPADからの出力と閾値電圧とを大小判定してデジタルパルスを出力するように構成されたパルス出力部(8)を備えている、請求項1~請求項6の何れか1項に記載の光検出器。
  8.  前記少なくとも一つの検出部は、前記パルス出力部の閾値電圧が、前記別の少なくとも一つの検出部と異なるように構成されている、請求項7に記載の光検出器。
  9.  前記複数の検出部は、前記SPADの復帰時間に応じて複数のグループに分けられ、各グループの検出部は、光を受光する受光面上でグループ毎に偏ることのないよう、分散して配置されている、請求項1~請求項8の何れか1項に記載の光検出器。
  10.  前記少なくとも一つの検出部は、当該光検出器の駆動開始時に前記SPADが前記フォトンの入射に応答可能となるタイミングが、前記別の少なくとも一つの検出部と異なるように制御される、請求項1~請求項9の何れか1項に記載の光検出器。
  11.  前記複数の検出部は、当該光検出器の駆動開始時に前記SPADが前記フォトンの入射に応答可能となるタイミングが同一となるように制御される第1グループと、該タイミングが異なるタイミングとなるように制御される第2グループとに分けられている、請求項10に記載の光検出器。
  12.  前記少なくとも一つの検出部は、当該光検出器の駆動開始直後に前記SPADが前記フォトンの入射に応答可能となるのに要する復帰時間が、当該SPADが前記フォトンの入射に応答した後、次に応答可能になるまでの復帰時間よりも短くなるように制御される、請求項1~請求項11の何れか1項に記載の光検出器。
  13.  前記複数の検出部から出力される信号の数が所定の閾値以上であるときに、前記複数の検出器にて構成される画素にて光が検出されたことを表す信号を出力するように構成された出力判定部(10)、
     を備えた、請求項1~請求項12の何れか1項に記載の光検出器。
  14.  請求項1~請求項12の何れか1項に記載の光検出器(1)と、
     信号光を投光するように構成された光照射部(22)と、
     前記光照射部が前記信号光を投光してから、該信号光が物体に反射して、前記光検出器にて受光されるまでの時間を計測し、該時間に基づき前記物体までの距離を算出するように構成された距離算出部(24)と、
     を備えた、測距装置。
  15.  前記距離算出部は、前記光照射部が前記信号光を投光した後、前記光検出器の駆動を開始するよう構成されている、請求項14に記載の測距装置。
  16.  前記距離演算部は、前記光照射部が前記信号光を投光してから、該信号光の反射光が前記光検出器にて受光されるまでの時間を測定する測定動作を複数回実施し、該複数回の測定結果を積算して、前記物体までの距離を算出すると共に、各回の測定動作毎に、前記光照射部が前記信号光を投光してから前記光検出器の駆動を開始するまでの時間を変更するように構成されている、請求項15に記載の測距装置。
PCT/JP2018/013820 2017-03-31 2018-03-30 光検出器及び測距装置 WO2018181979A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880021577.7A CN110462426B (zh) 2017-03-31 2018-03-30 光检测器以及测距装置
US16/584,093 US11422241B2 (en) 2017-03-31 2019-09-26 Photodetector and distance measurement apparatus comprising plural single photon avalanche diodes with different recovery time periods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072504 2017-03-31
JP2017072504A JP6867212B2 (ja) 2017-03-31 2017-03-31 光検出器及び測距装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/584,093 Continuation US11422241B2 (en) 2017-03-31 2019-09-26 Photodetector and distance measurement apparatus comprising plural single photon avalanche diodes with different recovery time periods

Publications (1)

Publication Number Publication Date
WO2018181979A1 true WO2018181979A1 (ja) 2018-10-04

Family

ID=63677550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013820 WO2018181979A1 (ja) 2017-03-31 2018-03-30 光検出器及び測距装置

Country Status (4)

Country Link
US (1) US11422241B2 (ja)
JP (1) JP6867212B2 (ja)
CN (1) CN110462426B (ja)
WO (1) WO2018181979A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095514A1 (ja) * 2018-11-08 2020-05-14 ソニー株式会社 距離センサ装置、制御方法及び電子機器
JP2021090230A (ja) * 2021-03-10 2021-06-10 キヤノン株式会社 光電変換装置及び撮像システム
WO2021251057A1 (ja) * 2020-06-12 2021-12-16 ソニーセミコンダクタソリューションズ株式会社 光検出回路および測距装置
EP3892972A4 (en) * 2018-12-05 2022-01-19 Sony Semiconductor Solutions Corporation PHOTO DETECTION DEVICE, CONTROL METHOD FOR PHOTO DETECTION DEVICE AND DISTANCE MEASUREMENT DEVICE
US11265500B2 (en) 2019-06-11 2022-03-01 Kabushiki Kaisha Toshiba Photodetection apparatus, electronic apparatus and photodetection method
US11652116B2 (en) 2019-09-05 2023-05-16 Kabushiki Kaisha Toshiba Light detection apparatus with array controlled by shielded light detectors and electronic device
WO2023171146A1 (ja) * 2022-03-10 2023-09-14 ソニーセミコンダクタソリューションズ株式会社 光検出装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019146725A1 (ja) * 2018-01-26 2021-03-04 浜松ホトニクス株式会社 光検出装置
US10775486B2 (en) * 2018-02-15 2020-09-15 Velodyne Lidar, Inc. Systems and methods for mitigating avalanche photodiode (APD) blinding
DE102018120141A1 (de) * 2018-08-17 2020-02-20 Sick Ag Erfassen von Licht mit einer Vielzahl von Lawinenphotodiodenelementen
JP6852041B2 (ja) 2018-11-21 2021-03-31 キヤノン株式会社 光電変換装置及び撮像システム
US11393870B2 (en) * 2018-12-18 2022-07-19 Canon Kabushiki Kaisha Photoelectric conversion device, imaging system, and mobile apparatus
US20220137194A1 (en) * 2019-03-07 2022-05-05 Sony Semiconductor Solutions Corporation Light receiving device and range-finding device
JP7443006B2 (ja) 2019-09-19 2024-03-05 株式会社東芝 光検出器及び距離測定装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264097A (ja) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp 光子検出装置
JP2013020972A (ja) * 2011-07-12 2013-01-31 Leica Microsystems Cms Gmbh 光検出装置および方法
JP2014081254A (ja) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc 光学的測距装置
JP2015117970A (ja) * 2013-12-17 2015-06-25 株式会社デンソー レーダ装置
JP2016145776A (ja) * 2015-02-09 2016-08-12 三菱電機株式会社 レーザ受信装置
US20160371419A1 (en) * 2015-06-17 2016-12-22 General Electric Company Adjustment and compensation of delays in photo sensor microcells
JP2016225453A (ja) * 2015-05-29 2016-12-28 シャープ株式会社 光センサ
JP2017026615A (ja) * 2015-07-27 2017-02-02 ジック アーゲー ガイガーモードのアバランシェフォトダイオードを有する受光器及び読み出し方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361882B2 (en) * 2005-04-14 2008-04-22 Sensors Unlimited, Inc. Method and apparatus for providing non-linear, passive quenching of avalanche currents in Geiger-mode avalanche photodiodes
JP2008177296A (ja) * 2007-01-17 2008-07-31 Toyota Central R&D Labs Inc 半導体装置、pnダイオード、igbt、及びそれらの製造方法
GB2451678A (en) * 2007-08-10 2009-02-11 Sensl Technologies Ltd Silicon photomultiplier circuitry for minimal onset and recovery times
DE102009029372A1 (de) * 2009-09-11 2011-03-24 Robert Bosch Gmbh Messvorrichtung zur Messung einer Entfernung zwischen der Messvorrichtung und einem Zielobjekt mit Hilfe optischer Messstrahlung
JP5644294B2 (ja) 2010-09-10 2014-12-24 株式会社豊田中央研究所 光検出器
EP2469301A1 (en) * 2010-12-23 2012-06-27 André Borowski Methods and devices for generating a representation of a 3D scene at very high speed
US8791514B2 (en) * 2011-07-06 2014-07-29 Siemens Medical Solutions Usa, Inc. Providing variable cell density and sizes in a radiation detector
CN103207024A (zh) * 2013-02-27 2013-07-17 南京邮电大学 一种单光子雪崩二极管探测器的模拟信号读出方法
JP2016061614A (ja) * 2014-09-16 2016-04-25 株式会社東芝 信号処理装置、放射線検出装置および信号処理方法
JP6477083B2 (ja) * 2015-03-19 2019-03-06 株式会社豊田中央研究所 光学的測距装置
CN105047517B (zh) * 2015-07-08 2017-11-14 武汉京邦科技有限公司 一种数字光电倍增器件
CN105606232B (zh) * 2016-01-28 2019-03-12 中国人民解放军信息工程大学 一种探测光信号的实现方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264097A (ja) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp 光子検出装置
JP2013020972A (ja) * 2011-07-12 2013-01-31 Leica Microsystems Cms Gmbh 光検出装置および方法
JP2014081254A (ja) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc 光学的測距装置
JP2015117970A (ja) * 2013-12-17 2015-06-25 株式会社デンソー レーダ装置
JP2016145776A (ja) * 2015-02-09 2016-08-12 三菱電機株式会社 レーザ受信装置
JP2016225453A (ja) * 2015-05-29 2016-12-28 シャープ株式会社 光センサ
US20160371419A1 (en) * 2015-06-17 2016-12-22 General Electric Company Adjustment and compensation of delays in photo sensor microcells
JP2017026615A (ja) * 2015-07-27 2017-02-02 ジック アーゲー ガイガーモードのアバランシェフォトダイオードを有する受光器及び読み出し方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095514A1 (ja) * 2018-11-08 2020-05-14 ソニー株式会社 距離センサ装置、制御方法及び電子機器
EP3892972A4 (en) * 2018-12-05 2022-01-19 Sony Semiconductor Solutions Corporation PHOTO DETECTION DEVICE, CONTROL METHOD FOR PHOTO DETECTION DEVICE AND DISTANCE MEASUREMENT DEVICE
US11265500B2 (en) 2019-06-11 2022-03-01 Kabushiki Kaisha Toshiba Photodetection apparatus, electronic apparatus and photodetection method
US11652116B2 (en) 2019-09-05 2023-05-16 Kabushiki Kaisha Toshiba Light detection apparatus with array controlled by shielded light detectors and electronic device
WO2021251057A1 (ja) * 2020-06-12 2021-12-16 ソニーセミコンダクタソリューションズ株式会社 光検出回路および測距装置
JP2021090230A (ja) * 2021-03-10 2021-06-10 キヤノン株式会社 光電変換装置及び撮像システム
JP7265828B2 (ja) 2021-03-10 2023-04-27 キヤノン株式会社 光電変換装置及び撮像システム
WO2023171146A1 (ja) * 2022-03-10 2023-09-14 ソニーセミコンダクタソリューションズ株式会社 光検出装置

Also Published As

Publication number Publication date
CN110462426A (zh) 2019-11-15
US11422241B2 (en) 2022-08-23
CN110462426B (zh) 2023-05-16
JP2018173379A (ja) 2018-11-08
JP6867212B2 (ja) 2021-04-28
US20200018832A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018181979A1 (ja) 光検出器及び測距装置
US8963069B2 (en) Device having SPAD photodiodes for detecting an object with a selection of a number of photodiodes to be reversed biased
US9874629B2 (en) Distance measurement device, receiver thereof and method of distance measurement
CN106896369B (zh) 测距装置
JP6957949B2 (ja) 光検出器
US9431439B2 (en) Light detector
US10985290B2 (en) Photodetector and optical distance measuring device
CN109115334B (zh) 光检测装置
US11921237B2 (en) Systems and methods for biasing light detectors
CA3085649C (en) Receiving arrangement for receiving light signals
EP3621296B1 (en) Detection of pulse pile up in a photoelectric conversion device comprising an array avalanche photodiodes
CN111656219B (zh) 用于使用光信号确定至少一个对象的距离的装置和方法
CN107272010B (zh) 距离传感器及其距离测量方法、3d图像传感器
US11953597B2 (en) Distance sensor, distance measurement device, and image sensor
GB2269010A (en) Photon counting APD with active quench and reset
CN111624615A (zh) 光传感器
CN109690342B (zh) 光传感器及电子设备
US20220011437A1 (en) Distance measuring device, distance measuring system, distance measuring method, and non-transitory storage medium
US20210088658A1 (en) Distance measuring apparatus
US11693116B2 (en) Distance measurement device using two light modulation frequencies and operating method thereof
CN117826125A (zh) 探测电路及其驱动方法、单光子激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774217

Country of ref document: EP

Kind code of ref document: A1