JP6867212B2 - 光検出器及び測距装置 - Google Patents

光検出器及び測距装置 Download PDF

Info

Publication number
JP6867212B2
JP6867212B2 JP2017072504A JP2017072504A JP6867212B2 JP 6867212 B2 JP6867212 B2 JP 6867212B2 JP 2017072504 A JP2017072504 A JP 2017072504A JP 2017072504 A JP2017072504 A JP 2017072504A JP 6867212 B2 JP6867212 B2 JP 6867212B2
Authority
JP
Japan
Prior art keywords
photodetector
detection units
spad
incident
mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017072504A
Other languages
English (en)
Other versions
JP2018173379A (ja
Inventor
謙太 東
謙太 東
尾崎 憲幸
憲幸 尾崎
柏田 真司
真司 柏田
木村 禎祐
禎祐 木村
勇 高井
勇 高井
松原 弘幸
弘幸 松原
太田 充彦
充彦 太田
誠良 平塚
誠良 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2017072504A priority Critical patent/JP6867212B2/ja
Priority to PCT/JP2018/013820 priority patent/WO2018181979A1/ja
Priority to CN201880021577.7A priority patent/CN110462426B/zh
Publication of JP2018173379A publication Critical patent/JP2018173379A/ja
Priority to US16/584,093 priority patent/US11422241B2/en
Application granted granted Critical
Publication of JP6867212B2 publication Critical patent/JP6867212B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode

Description

本開示は、アバランシェ効果を利用した光検出器及びこれを利用した測距装置に関する。
従来、アバランシェ効果を利用した光検出器として、アバランシェフォトダイオード(以下、APD)をガイガーモードで動作させて光検出を行う光検出器が知られている。
ガイガーモードで動作するAPDは、SPADと呼ばれ、逆バイアス電圧としてブレイクダウン電圧よりも高い電圧を印加することにより動作する。なお、SPADは、Single
Photon Avalanche Diode の略である。
SPADはフォトンが入射し、応答が発生すると、ブレイクダウンするため、SPADには、応答後にリチャージするためのリチャージ制御部が設けられる。リチャージ制御部は、所謂クエンチ抵抗であり、抵抗若しくはMOSFET等の半導体素子にて構成される。
そして、リチャージ制御部は、SPADのブレイクダウンにより流れる電流により検出信号を出力すると共に、その電流により生じる電圧降下によって、SPADの応答を停止させて、SPADに電荷をリチャージさせる。
また、SPADは、応答直後にリチャージし、光検出が可能になると、結晶欠陥等にトラップされたキャリアにより、光の入射に依らない疑似応答を生じることがあるため、応答後、一定の不感時間(以下、デッドタイム)、を設定する必要がある。
しかし、この種の光検出器を車載レーダ等の測距装置に利用する場合、デッドタイムは、距離測定の応答性の低下の原因となり、車載システムに影響を与えることがある。
そこで、この種の光検出器においては、特許文献1に記載のように、光検出用の画素を複数のSPADで構成し、所定の測定時間毎に、応答したSPADの数を計数して、その数が所定の閾値以上であるときに、画素へ光が入射したと判断するようにしている。
特許第5644294号公報
ところで、特許文献1に記載の光検出器においては、疑似応答等のノイズによって複数のSPADがランダムに応答する通常時には、測定時間内に応答するSPADの数が少ないことから、ノイズの影響を受けることなく光の入射を検出できる。
しかし、複数のSPADが同時に応答すると、その後、疑似応答するSPADの数が増加するため、光の入射を誤検出してしまい、検出精度が低下することが考えられる。
つまり、例えば、測距装置において、測定対象に向けて照射した光がクラッタとして光検出器に入射した場合や、高反射物体から強い反射光が光検出器に入射した場合には、画素を構成する複数のSPADが同時に応答することがある。
この場合、複数のSPADは、強い光で同時に応答した後、多数のSPADが略同時に
疑似応答することになるため、その疑似応答により光入力を誤検出してしまい、検出精度が低下するのである。
本開示の一局面は、フォトンの入射に応答する複数のSPADを備えた光検出器において、複数のSPADが同時に応答しても、次に疑似応答するSPADの数を減らして、検出精度を向上できるようにすることが望ましい。
本開示の一局面の光検出器においては、フォトンの入射に応答するSPAD(4)を有する検出部(2,2A,2B)を複数備える。そして、複数の検出部のうちの少なくとも一つは、SPADがフォトンの入射に応答した後、次に応答可能になるまでの復帰時間が、他の検出部のSPADの復帰時間と異なるように構成されている。
このため、光検出器に強い光が入射して、各検出部のSPADが同時に応答したとしても、その後、同時に疑似応答するSPADの数を減らすことができるようになる。従って、本開示の光検出器を用いて、応答したSPADの数から光の入射を検出するようにすれば、SPADの疑似応答によって検出精度が低下するのを抑制できる。
なお、この欄及び特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
第1実施形態の光検出器の概略構成を表す説明図である。 第1実施形態の光検出器に設けられた検出部の構成を表す回路図である。 第1実施形態の検出部を構成するSPADのリチャージ状態を表すタイムチャートである。 第2実施形態のグループBの検出部の構成を表す回路図である。 第2実施形態の検出部を構成するSPADのリチャージ状態を表すタイムチャートである。 第3実施形態の検出部を構成するパルス出力部の閾値と復帰時間とを表すタイムチャートである。 第4実施形態の測距装置の構成を表すブロック図である。 測距装置における照射タイミングと光検出器の駆動開始タイミングを表すタイムチャートである。 光検出器の駆動電圧によりSPADのリチャージ時間を駆動開始直後と応答後とで変化させた状態を表すタイムチャートである。 光検出器の駆動開始後に応答可能となるSPADの数の変化を表す説明図であり、図10Aは、SPADの復帰タイミングをばらつかせたときのSPADの数の変化を表し、図10Bは、SPADを一斉復帰させたときのSPADの数の変化を表す。
以下に本発明の実施形態を図面と共に説明する。
[第1実施形態]
図1に示すように、本実施形態の光検出器1は、フォトンの入射を検出する複数の検出部2を縦・横方向に格子状に配置することにより、一つの画素を構成する受光アレイとして構成されている。
各検出部2は、図2に示すように、SPAD4を備え、SPAD4にフォトンが入射すると、その検出信号として、パルス出力部8から、所定パルス幅のパルス信号であるデジ
タルパルスVを出力するように構成されている。
そして、光検出器1には、各検出部2から略同時刻に出力されたパルス信号の数をカウントし、そのカウント値が所定の閾値以上であるときに、光検出器1にて構成される画素にて光が検出されたと判定して、トリガ信号を出力する出力判定部10が接続されている。
次に、光検出器1を構成する複数の検出部2は、フォトンの入射に応答してから、次に応答可能となるまでの復帰時間が異なる2つのグループA,Bに分けられている。
各グループA,Bの検出部2A,2Bの数は略同じであり、光検出器1において光を受光する受光面上でグループA,B毎に検出部2A,2Bが偏ることがないよう、分散して配置されている。具体的には、各検出部2A,2Bは、受光面上で縦方向及び横方向に連続することのないよう、縦方向及び横方向に交互に配置されており、所謂市松模様を呈している。
次に、検出部2A,2Bの構成を、図2を用いて説明する。
図2に示すように、2種類の検出部2A,2Bの基本構成は同じであり、SPAD4と、クエンチ抵抗6と、パルス出力部8とを備える。
SPAD4は、上述したようにガイガーモードで動作可能なAPDであり、クエンチ抵抗6は、SPAD4への通電経路に直列接続されている。
クエンチ抵抗6は、SPAD4にフォトンが入射して、SPAD4がブレイクダウンしたときに、SPAD4に流れる電流により、電圧降下を発生して、SPAD4のガイガー放電を停止させるものであり、本実施形態では、MOSFETにて構成されている。
このため、本実施形態では、クエンチ抵抗6を構成するMOSFETに所定のゲート電圧Vを印加することでMOSFETをオンさせ、そのオン抵抗により、MOSFETをクエンチ抵抗6として動作させ、SPAD4に逆バイアス電圧を印加することができる。また、ゲート電圧Vの印加を停止することで、SPAD4への通電経路を遮断し、SPAD4の動作を停止させることができる。
次に、クエンチ抵抗6の両端電圧は、パルス出力部8に入力される。パルス出力部8は、SPAD4がフォトンの入射に応答した際に流れる電流をクエンチ抵抗6の両端電圧から検出して、その電圧が閾値電圧以上であるときに、検出信号としてデジタルパルスV
を出力するよう構成されている。
一方、SPAD4は、アノードがクエンチ抵抗6を介してグラウンドラインに接地され、カソードが電源ラインに接続されている。このため、SPAD4の両端電圧VSPADは、図3に示すように、SPAD4にフォトンが入射する前の初期状態では、電源ラインから供給される電源電圧VDDに対応した初期電圧となる。
このようにSPAD4に電圧が印加されている状態で、図3に示す時点t1にてSPAD4にフォトンが入射すると、SPAD4がブレイクダウンしてクエンチ抵抗6に電流が流れ、クエンチ抵抗6で電圧降下が生じるため、両端電圧VSPADは一旦低下する。そして、その後、両端電圧VSPADは、クエンチ抵抗6を介してSPAD4がリチャージされることにより上昇し、SPAD4がフォトンの入射に応答可能な初期電圧に復帰する。
従って、SPAD4は、フォトンの入射に応答した後、クエンチ抵抗6を介して電荷がリチャージされるまでは、フォトンの入射に応答しない不感状態となる。そして、このリ
チャージに要するリチャージ時間が、光検出器1を構成する全ての検出部2A,2Bにおいて同一であると、各検出部2がフォトンの入射に応答してから、次に応答可能になるまでの復帰時間も同じになる。
この結果、複数の検出部2A,2Bの殆どが応答するような強い光が光検出器1に入射した際には、各検出部2A,2Bにおいて、強い光に応答した後、ほぼ同時に疑似応答が発生することがあり、この場合、出力判定部10では疑似応答による誤検出が発生する。
そこで、本実施形態では、上記のように光検出器1を構成する複数の検出部2を、2つのグループA,Bに分けて、図3に示すように、グループA,B間で、検出部2A、2Bを構成するSPAD4のリチャージ時間TCA,TCBが異なるように構成している。
具体的には、本実施形態では、本開示のリチャージ制御部として機能するクエンチ抵抗6を構成しているMOSFETのサイズを変えることで、MOSFETに流れるリチャージ電流が、検出部2Aと検出部2Bとで異なるようにしている。
つまり、本実施形態では、クエンチ抵抗6を構成するMOSFETの飽和電流を変えることで、リチャージ電流を制御し、検出部2A、2Bを構成するSPAD4のリチャージ時間TCA,TCBが異なるようにしている。
この結果、本実施形態の光検出器1によれば、光検出器1に強い光が入射し、光検出器1内の複数のSPAD4が略同時に応答したとしても、その後、各グループA,Bの検出部2A,2Bで発生する疑似応答のタイミングをずらすことができる。このため、光検出器1を構成する複数のSPAD4がほぼ同時に疑似応答することによって、出力判定部10で光の入射が誤検出されるのを抑制できる。
なお、本実施形態のように、検出部2Aと検出部2BとでSPAD4のリチャージ時間を異なる時間に設定するには、必ずしも、クエンチ抵抗6を構成するMOSFETを異なるサイズにする必要はなく、下記のようにしてもよい。
(1)クエンチ抵抗6をMOSFETにて構成した場合、そのオン抵抗は、MOSFETのゲート電圧Vで調整できることから、検出部2Aと検出部2BとでMOSFETのゲート電圧Vを変えるだけでも、リチャージ時間TCA,TCBを異なる時間に設定できる。
(2)クエンチ抵抗6は、図2に点線で示すように、抵抗器や配線抵抗等の抵抗7にて構成することができる。従って、この場合には、その抵抗7の抵抗値を、検出部2Aと検出部2Bとで異なる値に設定するようにすれば、リチャージ時間TCA,TCBを異なる時間に設定できる。
(3)MOSFETや抵抗にて構成されるクエンチ抵抗6は、本開示のリチャージ制御部として機能するが、このリチャージ制御部を介してSPAD4をリチャージするのに要する電流量は、図2に点線で示す、SPAD4、もしくはリチャージ制御部の寄生容量Cによっても変化する。
従って、クエンチ抵抗6を介してSPAD4をリチャージするのに要する電流量は、その寄生容量Cを調整したり、別途コンデンサを設けたりすることで、調整できる。
このため、寄生容量やコンデンサの容量を利用して、検出部2Aと検出部2Bとで、SPAD4をリチャージするのに必要な電流量を変えることによっても、リチャージ時間TCA,TCBを異なる時間に設定できる。
なお、MOSFETを異なるサイズにする構成、及び、上記(1)〜(3)の構成は、適宜組み合わせて実施することもできる。そして、これらの構成により、リチャージ時間
を変更すれば、SPAD4が同時に応答可能となるのを抑制して、出力判定部10による検出精度を向上できる。
また、本実施形態では、光検出器1を構成する検出部2は、2つのグループA、Bに分けられ、グループA、B毎に、検出部2を構成するSPAD4のリチャージ時間が設定されるものとして説明した。
しかし、このグループ分けは一例であり、例えば、検出部2を更に多くのグループに分けて、グループ毎にリチャージ時間を設定するようにしてもよく、或いは、光検出器1を構成する全ての検出部2で、SPAD4のリチャージ時間が異なるようにしてもよい。
なお、いずれの場合も、隣接する検出部2間でSPAD4のリチャージ時間が異なるように、各検出部2を分散配置するとよい。
[第2実施形態]
上述した第1実施形態では、複数の検出部2を構成するSPAD4のリチャージ時間をばらつかせることで、各検出部2がフォトンの入射に応答してから、次に応答可能になるまでの復帰時間をばらつかせるものとして説明した。
しかし、復帰時間をばらつかせるには、必ずしもSPAD4のリチャージ時間をばらつかせる必要はなく、SPAD4の応答後にリチャージを開始するまでの時間がばらつくようにしてもよい。
そこで、第2実施形態では、第1実施形態と同様に複数の検出部2を2つのグループA、Bに分けて、図5に示すように、グループBの検出部2Bだけ、SPAD4が応答すると、その後一定時間T1だけリチャージの開始を遅延させるようにする。
具体的には、例えば、図4に示すように、グループBの検出部2Bに、パルス出力部8からデジタルパルスVが出力されると、その一定時間T1後、遅延パルスV1を発生するパルス発生部9を設ける。
そして、このパルス発生部9からの遅延パルスV1が、クエンチ抵抗6を構成するMOSFETのゲートに印加されることで、SPAD4のリチャージを開始する。
このようにすれば、グループBの検出部2Bだけ、SPAD4の応答後のリチャージ開始タイミングが遅れることになる。
従って、このように構成しても、検出部2A,2B間で、SPAD4の応答後のリチャージに要する時間が異なり、検出部2A,2BのSPAD4が同時に応答可能となるのを抑制できる。
このため、本実施形態においても、光検出器1を構成する複数のSPAD4がほぼ同時に疑似応答することによって、出力判定部10で光の入射が誤検出されるのを抑制できる。
なお、本実施形態では、SPAD4のリチャージ開始タイミングを遅延させるパルス発生部9を、グループBの検出部2Bに設けるものとして説明したが、全ての検出部2に設けるようにしてもよい。
そして、この場合、複数の検出部2を3グループ以上に分けたグループ毎、或いは、全ての検出部2で、遅延時間T1が異なるように、パルス発生部9を構成すれば、各検出部2でのSPAD4の復帰時間をより細かくばらつかせることができる。
[第3実施形態]
上述した第1、第2実施形態では、複数の検出部2を構成するSPAD4のリチャージ時間若しくはリチャージ開始時間をばらつかせることで、SPAD4自体の復帰時間をばらつかせるものとして説明した。
しかし、出力判定部10が光検出器1への光の入射を誤判定するのを防止するには、各検出部2からSPAD4の疑似応答による検出信号が同時に出力されるのを防止できればよいので、必ずしもSPAD4自体の復帰時間をばらつかせる必要はない。
つまり、図6に示すように、グループA,Bの検出部2A,2Bにおいて、時点t1でSPAD4が応答して、デジタルパルスVを出力してから、次にデジタルパルスV
の出力が可能となる時点ta,tbまでの時間を、異なる時間に設定してもよい。
具体的には、グループA,Bの検出部2A,2Bに設けられるパルス出力部8の閾値電圧VTHA ,VTHB を、それぞれ、異なる電圧値に設定する。
このように構成すれば、検出部2A,2BにおいてSPAD4が同時に応答して、検出信号であるデジタルパルスVを出力した後、SPAD4の疑似応答により検出部2A,2Bから同時にデジタルパルスVが出力されるのを抑制できる。
このため、本実施形態においても、光検出器1を構成する複数のSPAD4がほぼ同時に疑似応答することによって、出力判定部10で光の入射が誤検出されるのを抑制できる。
なお、パルス出力部8の閾値電圧を異なる電圧値に設定するのは、複数の検出部2を3グループ以上に分けたグループ毎に行うようにしてもよく、或いは、全ての検出部2でパルス出力部8の閾値電圧を異なる電圧値に設定するようにしてもよい。
[第4実施形態]
上述した第1〜第3実施形態では、複数の検出部2を構成するSPAD4のリチャージ時間やリチャージ開始時間、或いは、検出信号出力後次に出力可能となるまでの時間、をばらつかせることで、SPAD4若しくは検出部2の復帰時間をばらつかせるものとした。
従って、上記実施形態の光検出器1を利用すれば、出力判定部10において、複数の検出部2を構成するSPAD4の疑似応答により、光検出器1に光が入射したことが誤判定されて、その旨を表す信号が出力されるのを抑制できる。
しかし、光検出器1の駆動開始時に、複数の検出部2のSPAD4へ電源電圧VDDが同時に印加された場合、SPAD4への電荷のチャージが略同時に完了して、通常時よりも多くのSPAD4が、フォトンの入射に応答することも考えられる。そして、このように多くのSPAD4が略同時に応答すると、出力判定部10にて、光検出器1に光が入射したことが誤判定されることになる。
このため、上記各実施形態の光検出器1の駆動を開始する際には、各検出部2において、異なるタイミングでSPAD4がフォトンの入射に応答可能となるよう、各SPAD4の駆動開始タイミングを制御するとよい。
そこで、第4実施形態では、光検出器1の駆動開始時に、複数の検出部2に設けられたSPAD4の駆動開始タイミングを制御することで、光検出器1の駆動開始直後に多数のSPAD4が応答するのを抑制できるようにした測距装置20について説明する。
図7に示すように、本実施形態の測距装置20は、光検出器1と、測距対象に向けて距離測定用の信号光を投光する光照射部22と、距離算出部24とを備える。
距離算出部24は、光照射部22が信号光を投光してから、信号光が測定対象である物体で反射し、その反射光が光検出器1にて受光されるまでの時間を計測し、その計測時間から物体までの距離を算出するよう構成されている。
また、光検出器1は、第1〜第3実施形態にて説明した光検出器1であり、上述した出力判定部10を介して、検出信号を距離算出部24に出力するよう構成されている。
そして、距離算出部24は、図8に示すように、まず、時点t11にて、光照射部22に駆動信号VLDを出力することで、信号光を投光させ、その後、時点t12A ,t12B で、各グループA,Bの検出部2A,2Bに対し、駆動信号VQCH_A , VQCH_B を出力する。
この駆動信号VQCH_A , VQCH_B は、クエンチ抵抗6を構成しているMOSFETをオンさせて、各検出部2A,2BのSPAD4に逆バイアス電圧を印加し、SPAD4に電荷をチャージするためのものである。
このように、本実施形態では、距離算出部24が、光照射部22に信号光を投光させた後、駆動信号VQCH_A , VQCH_B を順に立ち上げる。このため、光照射部22からの信号光が装置内部で反射し、クラッタとして光検出器1に入射しても、そのクラッタにより複数のSPAD4が同時に応答して、光検出器1から距離算出部24に検出信号が出力されるのを防止できる。
また、光検出器1において、グループAの検出部2AとグループBの検出部2Bとでは、駆動信号VQCH_A , VQCH_B の入力タイミングのずれによって、測距開始後、SPAD4がチャージされて、フォトンに応答可能となるまでの時間が異なることになる。
このため、本実施形態によれば、光検出器1の駆動開始後に複数のSPAD4が同時に応答可能になるのを抑制することができる。よって、光検出器1の駆動開始直後に、光検出器1を構成する複数の検出部2から多くのデジタルパルスVが出力されて、出力判定部10から距離算出部24に検出信号が出力されるのを抑制できる。
なお、距離算出部24は、図9に示すように、光照射部22に信号光を投光させた後、時点t12A ,t12B で駆動信号VQCH_A , VQCH_B を立ち上げ、時点t12A ,t12B から一定時間T2経過後に、その電圧値を低下させるようにしてもよい。
このようにすれば、光検出器1の駆動開始直後には、検出部2A,2BのSPAD4をより短時間でチャージして、フォトンの入射に応答できるようにし、その後は、SPAD4のチャージ時間がばらつくように、MOSFETのゲート電圧を設定できるようになる。
また、本実施形態のように、光検出器1の駆動開始後、複数のSPAD4が応答可能になるタイミングを制御する場合も、そのタイミング制御を、複数の検出部2を3グループ以上に分けたグループ毎に行うようにしてもよい。また、全ての検出部2で、SPAD4が応答可能になるタイミングが異なるように制御してもよい。
[変形例1]
そして、特に、光検出器1の駆動開始後に応答可能となるSPAD4の数を、駆動開始後の通常時の数に近づけるには、図10Aに示すように、光検出器1を構成する複数の検出部2を動作させるようにするとよい。
つまり、光検出器1を構成する複数の検出部2を2つグループに分け、一方のグループの検出部2には同時に駆動信号を入力することでSPAD4を同時に応答可能状態に復帰させる。
また、他方のグループの検出部2には、一方のグループの検出部2に駆動信号を入力した後、任意の時間間隔で順に駆動信号を入力することで、各検出部2を構成する複数のSPAD4が応答可能になるタイミングをばらつかせる。
このようにすれば、光検出器1の駆動開始後に応答可能となるSPAD4の数を低減できると共に、その後、応答可能なSPAD4の数が変動するのを抑制できる。このため、光検出器1に実際に光が入射して、実際に応答するSPAD4の数が増加した際に、出力判定部10にて光の入射を精度よく判定することが可能となる。
つまり、図10Bに示すように、光検出器1を構成する複数の検出部2に同時に駆動信号を入力して全てのSPAD4を同時に復帰させた場合、応答可能なSPADの数は、駆動開始直後に増大してから、疑似応答等によって周期的に増減するようになる。
これに対し、本変形例1のように複数のSPAD4を復帰させるようにすれば、光検出器1の駆動開始後、フォトンに応答可能なSPAD4の数を平均化して、出力判定部10による光入射の判定制度を高めることができるようになる。
[変形例2]
一方、距離算出部24は、光照射部22から信号光を投光させてから光検出器1にて反射光が受光されるまでの時間を測定する測定動作を複数回実施し、その複数回の測定結果を積算して物体までの距離を算出するように構成されていてもよい。
そして、この場合には、図7に点線で示すように、距離算出部24にタイミング制御部25を設け、タイミング制御部25にて、各回の測定動作毎に光検出器1の駆動開始タイミングを変化させるようにしてもよい。つまり、各回の測定動作毎に、光照射部22が信号光を投光してから、光検出器1の駆動を開始するまでの時間を変更するのである。
このようにすれば、光検出器1の駆動開始後、応答可能なSPADの数が変動したとしても、光照射部22から信号光を投光させてからの、経過時間毎の応答可能なSPADの数の変動は、測定動作1回毎に異なることになる。
従って、複数回の測定結果を積算することにより、駆動開始後の応答可能なSPADの数の変動の影響を抑制でき、光検出器1を構成する複数の検出部2の駆動開始タイミングをばらつかせなくても、上記と同様の効果を得ることができるようになる。
以上、本発明を実施するための形態について説明したが、本発明は上述の実施形態に限定されることなく、種々変形して実施することができる。
例えば、第4実施形態では、本開示の光検出器1を用いて測定対象となる物体までの距離を測定する測距装置20を例にとり説明したが、本開示の光検出器1の用途は、測距装置20に限定されるものではなく、光検出が必要な種々の装置に利用することができる。
そして、この場合、光検出器1を駆動する際には、第4実施形態の距離算出部24のように、各検出部2に対し駆動信号を異なるタイミングで入力するようにすれば、出力判定部10での光入射の判定精度を高めることができる。
また、実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によっ
て実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。
1…光検出器、2,2A,2B…検出部、4…SPAD。

Claims (15)

  1. フォトンの入射に応答するSPAD(4)を有する検出部(2,2A,2B)を複数備え、
    前記複数の検出部は、それぞれ、前記SPADが前記フォトンの入射に応答した際に流れる電流により電圧降下を生じさせて前記SPADの応答を停止させ、その後、当該SPADに電荷をリチャージして前記フォトンの入射に応答可能となるよう復帰させるクエンチ抵抗(6,7)を備え、
    前記複数の検出部のうちの少なくとも一つは、前記SPADがフォトンの入射に応答した後、前記クエンチ抵抗を介して前記SPADに流れるリチャージ電流が、他の検出部と異なるように構成されることで、前記リチャージにより次に応答可能になるまでの復帰時間が、他の検出部の前記SPADの復帰時間と異なるように設定されている、光検出器。
  2. 前記複数の検出部は、それぞれ、前記クエンチ抵抗としてMOSFET(6)を備え、
    前記複数の検出部のうちの少なくとも一つは、前記MOSFETのサイズを変えることで、前記リチャージ電流が他の検出部と異なるように構成されている、請求項1に記載の光検出器。
  3. 前記複数の検出部は、それぞれ、前記クエンチ抵抗としてMOSFET(6)を備え、 前記複数の検出部のうちの少なくとも一つは、前記MOSFETのゲート電圧を変えることで、前記リチャージ電流が他の検出部と異なるように構成されている、請求項1に記載の光検出器。
  4. 前記複数の検出部は、それぞれ、前記クエンチ抵抗として、抵抗器若しくは配線抵抗にて構成される抵抗(7)を備え、
    前記複数の検出部のうちの少なくとも一つは、前記抵抗の抵抗値により、前記リチャージ電流が他の検出部と異なるように構成されている、請求項1に記載の光検出器。
  5. 前記複数の検出部のうちの少なくとも一つは、前記クエンチ抵抗に並列に接続される寄生容量若しくはコンデンサの容量を変えることで、前記リチャージ電流が他の検出部と異なるように構成されている、請求項1に記載の光検出器。
  6. フォトンの入射に応答するSPAD(4)を有する検出部(2,2A,2B)を複数備え、
    前記複数の検出部は、それぞれ、
    前記SPADが前記フォトンの入射に応答した際に流れる電流により電圧降下を生じさせて前記SPADの応答を停止させ、その後、当該SPADに電荷をリチャージして前記フォトンの入射に応答可能となるよう復帰させるクエンチ抵抗として、MOSFET(6)を備えると共に、
    前記フォトンの検出信号として、前記SPADからの出力と閾値電圧とを大小判定してデジタルパルスを出力するパルス出力部(8)を備え、
    前記複数の検出部のうちの少なくとも一つは、前記パルス出力部から出力されるデジタルパルスを遅延させて前記MOSFETに入力することで、前記SPADがフォトンの入射に応答した後、前記MOSFETが前記リチャージを開始するまでの時間が、他の検出部と異なるように構成されている、光検出器。
  7. フォトンの入射に応答するSPAD(4)を有する検出部(2,2A,2B)を複数備え、
    前記複数の検出部は、それぞれ、
    前記SPADが前記フォトンの入射に応答した際に流れる電流により電圧降下を生じさせて前記SPADの応答を停止させ、その後、当該SPADに電荷をリチャージして前記フォトンの入射に応答可能となるよう復帰させるクエンチ抵抗(6,7)と、
    前記フォトンの検出信号として、前記SPADからの出力と閾値電圧とを大小判定してデジタルパルスを出力するパルス出力部(8)と、
    を備え、
    前記複数の検出部のうちの少なくとも一つは、前記パルス出力部の閾値電圧が、他の検出部と異なるように構成されている、光検出器。
  8. 前記複数の検出部のうちの少なくとも一つと、前記他の検出部は、それぞれ、異なるグループに分けられ、各グループの検出部は、光を受光する受光面上でグループ毎に偏ることのないよう、分散して配置されている、請求項1〜請求項7の何れか1項に記載の光検出器。
  9. フォトンの入射に応答するSPAD(4)を有する検出部(2,2A,2B)を複数備えた光検出器であって、
    前記複数の検出部は、それぞれ、前記SPADが前記フォトンの入射に応答した際に流れる電流により電圧降下を生じさせて前記SPADの応答を停止させ、その後、当該SPADに電荷をリチャージして前記フォトンの入射に応答可能となるよう復帰させるクエンチ抵抗として、MOSFET(6)を備え、
    前記複数の検出部のうちの少なくとも一つは、当該光検出器の駆動開始時に前記MOSFETをオンするタイミングが、他の検出部とは異なるように構成されている、光検出器。
  10. 前記複数の検出部は、当該光検出器の駆動開始時に前記MOSFETがオンされるタイミングが同一となるように制御される第1グループと、前記MOSFETがオンされるタイミングが前記第1グループよりも遅く、互いに異なるタイミングとなるように制御される第2グループとに分けられている、請求項9に記載の光検出器。
  11. 前記複数の検出部のうちの少なくとも一つは、当該光検出器の駆動開始直後に前記SPADが前記フォトンの入射に応答可能となるのに要する復帰時間が、当該SPADが前記フォトンの入射に応答した後、次に応答可能になるまでの復帰時間よりも短くなるよう、前記MOSFETの駆動電圧を変化させるように構成されている、請求項9又は請求項10に記載の光検出器。
  12. 前記複数の検出部から出力される信号の数が所定の閾値以上であるときに、前記複数の検出器にて構成される画素にて光が検出されたことを表す信号を出力する出力判定部(10)、
    を備えた、請求項1〜請求項11の何れか1項に記載の光検出器。
  13. 請求項1〜請求項12の何れか1項に記載の光検出器(1)と、
    信号光を投光する光照射部(22)と、
    前記光照射部が前記信号光を投光してから、該信号光が物体に反射して、前記光検出器にて受光されるまでの時間を計測し、該時間に基づき前記物体までの距離を算出する距離算出部(24)と、
    を備えた、測距装置。
  14. 前記距離算出部は、前記光照射部が前記信号光を投光した後、前記光検出器の駆動を開始するよう構成されている、請求項13に記載の測距装置。
  15. 前記距離演算部は、前記光照射部が前記信号光を投光してから、該信号光の反射光が前記光検出器にて受光されるまでの時間を測定する測定動作を複数回実施し、該複数回の測定結果を積算して、前記物体までの距離を算出すると共に、各回の測定動作毎に、前記光照射部が前記信号光を投光してから前記光検出器の駆動を開始するまでの時間を変更する
    ように構成されている、請求項14に記載の測距装置。
JP2017072504A 2017-03-31 2017-03-31 光検出器及び測距装置 Active JP6867212B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017072504A JP6867212B2 (ja) 2017-03-31 2017-03-31 光検出器及び測距装置
PCT/JP2018/013820 WO2018181979A1 (ja) 2017-03-31 2018-03-30 光検出器及び測距装置
CN201880021577.7A CN110462426B (zh) 2017-03-31 2018-03-30 光检测器以及测距装置
US16/584,093 US11422241B2 (en) 2017-03-31 2019-09-26 Photodetector and distance measurement apparatus comprising plural single photon avalanche diodes with different recovery time periods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072504A JP6867212B2 (ja) 2017-03-31 2017-03-31 光検出器及び測距装置

Publications (2)

Publication Number Publication Date
JP2018173379A JP2018173379A (ja) 2018-11-08
JP6867212B2 true JP6867212B2 (ja) 2021-04-28

Family

ID=63677550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072504A Active JP6867212B2 (ja) 2017-03-31 2017-03-31 光検出器及び測距装置

Country Status (4)

Country Link
US (1) US11422241B2 (ja)
JP (1) JP6867212B2 (ja)
CN (1) CN110462426B (ja)
WO (1) WO2018181979A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3745102B1 (en) * 2018-01-26 2023-07-19 Hamamatsu Photonics K.K. Photodetector device
US10775486B2 (en) 2018-02-15 2020-09-15 Velodyne Lidar, Inc. Systems and methods for mitigating avalanche photodiode (APD) blinding
DE102018120141A1 (de) * 2018-08-17 2020-02-20 Sick Ag Erfassen von Licht mit einer Vielzahl von Lawinenphotodiodenelementen
EP3879305A4 (en) * 2018-11-08 2021-12-08 Sony Group Corporation DISTANCE SENSOR DEVICE, CONTROL PROCESS AND ELECTRONIC INSTRUMENT
JP6852041B2 (ja) 2018-11-21 2021-03-31 キヤノン株式会社 光電変換装置及び撮像システム
EP3892972A4 (en) * 2018-12-05 2022-01-19 Sony Semiconductor Solutions Corporation PHOTO DETECTION DEVICE, CONTROL METHOD FOR PHOTO DETECTION DEVICE AND DISTANCE MEASUREMENT DEVICE
US11393870B2 (en) * 2018-12-18 2022-07-19 Canon Kabushiki Kaisha Photoelectric conversion device, imaging system, and mobile apparatus
TW202040162A (zh) * 2019-03-07 2020-11-01 日商索尼半導體解決方案公司 受光裝置及測距裝置
JP7079753B2 (ja) 2019-06-11 2022-06-02 株式会社東芝 光検出装置、電子装置及び光検出方法
JP7133523B2 (ja) 2019-09-05 2022-09-08 株式会社東芝 光検出装置及び電子装置
JP7443006B2 (ja) 2019-09-19 2024-03-05 株式会社東芝 光検出器及び距離測定装置
TW202205687A (zh) * 2020-06-12 2022-02-01 日商索尼半導體解決方案公司 光檢測電路及測距裝置
JP7265828B2 (ja) * 2021-03-10 2023-04-27 キヤノン株式会社 光電変換装置及び撮像システム
JP2023132148A (ja) * 2022-03-10 2023-09-22 ソニーセミコンダクタソリューションズ株式会社 光検出装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264097A (ja) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp 光子検出装置
US7361882B2 (en) * 2005-04-14 2008-04-22 Sensors Unlimited, Inc. Method and apparatus for providing non-linear, passive quenching of avalanche currents in Geiger-mode avalanche photodiodes
JP2008177296A (ja) * 2007-01-17 2008-07-31 Toyota Central R&D Labs Inc 半導体装置、pnダイオード、igbt、及びそれらの製造方法
GB2451678A (en) * 2007-08-10 2009-02-11 Sensl Technologies Ltd Silicon photomultiplier circuitry for minimal onset and recovery times
DE102009029372A1 (de) * 2009-09-11 2011-03-24 Robert Bosch Gmbh Messvorrichtung zur Messung einer Entfernung zwischen der Messvorrichtung und einem Zielobjekt mit Hilfe optischer Messstrahlung
JP5644294B2 (ja) 2010-09-10 2014-12-24 株式会社豊田中央研究所 光検出器
EP2469301A1 (en) * 2010-12-23 2012-06-27 André Borowski Methods and devices for generating a representation of a 3D scene at very high speed
US8791514B2 (en) * 2011-07-06 2014-07-29 Siemens Medical Solutions Usa, Inc. Providing variable cell density and sizes in a radiation detector
DE102011107645A1 (de) * 2011-07-12 2013-01-17 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zum Detektieren von Licht
JP6225411B2 (ja) * 2012-10-16 2017-11-08 株式会社豊田中央研究所 光学的測距装置
CN103207024A (zh) * 2013-02-27 2013-07-17 南京邮电大学 一种单光子雪崩二极管探测器的模拟信号读出方法
JP6285168B2 (ja) * 2013-12-17 2018-02-28 株式会社デンソー レーダ装置
JP2016061614A (ja) * 2014-09-16 2016-04-25 株式会社東芝 信号処理装置、放射線検出装置および信号処理方法
JP6333189B2 (ja) * 2015-02-09 2018-05-30 三菱電機株式会社 レーザ受信装置
JP6477083B2 (ja) * 2015-03-19 2019-03-06 株式会社豊田中央研究所 光学的測距装置
JP6523046B2 (ja) * 2015-05-29 2019-05-29 シャープ株式会社 光センサ
US9767246B2 (en) * 2015-06-17 2017-09-19 General Electric Company Adjustment and compensation of delays in photo sensor microcells
CN105047517B (zh) * 2015-07-08 2017-11-14 武汉京邦科技有限公司 一种数字光电倍增器件
EP3124992B1 (de) * 2015-07-27 2017-07-12 Sick Ag Lichtempfänger mit lawinenphotodioden im geiger-modus und verfahren zum auslesen
CN105606232B (zh) * 2016-01-28 2019-03-12 中国人民解放军信息工程大学 一种探测光信号的实现方法及系统

Also Published As

Publication number Publication date
WO2018181979A1 (ja) 2018-10-04
JP2018173379A (ja) 2018-11-08
US20200018832A1 (en) 2020-01-16
CN110462426A (zh) 2019-11-15
US11422241B2 (en) 2022-08-23
CN110462426B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
JP6867212B2 (ja) 光検出器及び測距装置
US9874629B2 (en) Distance measurement device, receiver thereof and method of distance measurement
US9431439B2 (en) Light detector
US8963069B2 (en) Device having SPAD photodiodes for detecting an object with a selection of a number of photodiodes to be reversed biased
US10261175B2 (en) Ranging apparatus
US9006641B2 (en) Device for detecting an object using SPAD photodiodes
US9313434B2 (en) Pixel circuit with capacitor discharge indicative of number of events
US20190259899A1 (en) Photodetector and optical distance measuring device
US11921237B2 (en) Systems and methods for biasing light detectors
CN113534107A (zh) 输出脉宽可调节的探测电路、接收单元、激光雷达
US11953597B2 (en) Distance sensor, distance measurement device, and image sensor
CN107272010B (zh) 距离传感器及其距离测量方法、3d图像传感器
CN111656220B (zh) 用于接收光信号的接收装置
US11536811B2 (en) Distance measuring device and method
CN109716539B (zh) 光传感器及电子设备
CN111656219B (zh) 用于使用光信号确定至少一个对象的距离的装置和方法
CN109690342B (zh) 光传感器及电子设备
JP6969504B2 (ja) 測距装置
US11693116B2 (en) Distance measurement device using two light modulation frequencies and operating method thereof
US20230221442A1 (en) Lidar Clocking Schemes For Power Management
US20220413097A1 (en) Expanding a dynamic range of spad-based detectors
US20230221439A1 (en) Addressing redundant memory for lidar pixels
WO2023147143A1 (en) Overlapping sub-ranges with power stepping
CN114624724A (zh) 调节电路、光电探测器、光电探测阵列和光学系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210408

R150 Certificate of patent or registration of utility model

Ref document number: 6867212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250