WO2018181563A1 - アミド化合物の水素化に用いる水素添加反応用触媒およびこれを用いたアミン化合物の製造方法。 - Google Patents

アミド化合物の水素化に用いる水素添加反応用触媒およびこれを用いたアミン化合物の製造方法。 Download PDF

Info

Publication number
WO2018181563A1
WO2018181563A1 PCT/JP2018/012955 JP2018012955W WO2018181563A1 WO 2018181563 A1 WO2018181563 A1 WO 2018181563A1 JP 2018012955 W JP2018012955 W JP 2018012955W WO 2018181563 A1 WO2018181563 A1 WO 2018181563A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
platinum
amide compound
compound
vanadium
Prior art date
Application number
PCT/JP2018/012955
Other languages
English (en)
French (fr)
Inventor
金田 清臣
敬人 満留
由紀夫 高木
Original Assignee
国立大学法人大阪大学
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, エヌ・イーケムキャット株式会社 filed Critical 国立大学法人大阪大学
Priority to DE112018001699.4T priority Critical patent/DE112018001699T5/de
Priority to US16/496,998 priority patent/US20200016576A1/en
Publication of WO2018181563A1 publication Critical patent/WO2018181563A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/50Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/023Preparation; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/027Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements containing only one hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/027Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements containing only one hetero ring
    • C07D295/03Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements containing only one hetero ring with the ring nitrogen atoms directly attached to acyclic carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a catalyst containing platinum and vanadium, which is used in a hydrogenation reaction in which an amide compound is converted to an amine compound, supported on a carrier, and a method for producing an amine compound using the same.
  • the reduction reaction using an amide compound as an amine compound is one of the most difficult reactions in the reduction of carboxylic acid derivatives because amides are difficult to reduce.
  • the reduction reaction is lithium aluminum hydride in small amounts test studies like for the amide compound to amine compound (LiAlH 4), a method using stoichiometrically a strong reducing agent such as sodium borohydride (NaBH 4) is but generally Because of the high generation and reactivity of large amounts of metal waste for use in industrial scale synthesis, it is dangerous to generate hydrogen etc. when used in large quantities, and the post-treatment and other operations are complicated. It was.
  • the reduction reaction from amide to amine using molecular hydrogen as a reducing agent is an environment-friendly amine synthesis method because only harmless water is by-produced.
  • the catalytic hydrogen reduction reaction of this amide has been studied for a long time, and has been carried out using a copper-chromium, rhenium or nickel catalyst, but the reaction conditions are high and high pressure such as a hydrogen pressure of 200 atm and a reaction temperature of 200 ° C. or higher. Need.
  • Non-Patent Documents 1 and 2 report hydrogenation of amides under low-temperature and low-pressure conditions of 120 ° C., 10 atm or 160 ° C. and 5 atm by adding molecular sieves to the reaction system.
  • the substrate applicability is poor, and alcohol by C—N cleavage is by-produced.
  • these catalysts cannot be reused.
  • Non-Patent Document 3 there is a reaction using a homogeneous catalyst reported in Non-Patent Document 3, but there is a problem that alcohol due to CN cleavage is by-produced. In addition, it is difficult to repeatedly use an expensive catalyst in a reaction using a homogeneous catalyst.
  • an object of the present invention is a catalyst capable of performing a reduction reaction from an amide compound to an amine compound, which can be used even under mild conditions, and has durability that can be used repeatedly while maintaining high activity. Is to provide.
  • a catalyst containing platinum and vanadium and supported on a carrier has high hydrogenation activity, selectivity, durability, and reactivity with respect to an amide compound. As a result, the present invention has been completed.
  • the present invention comprises mixing a carrier with a catalyst for hydrogenation reaction of an amide compound characterized in that platinum and vanadium are supported on a carrier, a platinum compound and a vanadium compound, and then drying the mixture.
  • a process for producing a catalyst for hydrogenation reaction of the amide compound characterized in that
  • the present invention is also a method for producing an amine compound, characterized in that an amide compound is brought into contact with the catalyst for hydrogenation reaction of the amide compound and hydrogenated to obtain an amine compound.
  • this invention is an amine compound manufactured with the manufacturing method of the said amine compound.
  • the catalyst of the present invention can be used under mild conditions, synthesis from an amide compound to an amine compound is safe and easy.
  • the catalyst of the present invention does not require any special operation during production, and can be produced inexpensively and safely.
  • the catalyst of the present invention can be used for industrial synthesis from an amide compound to an amine compound.
  • the catalyst of the present invention is supported on a carrier, expensive platinum can be easily recovered by filtration after use, and the recovered catalyst can maintain the original activity and selectivity.
  • the catalyst of the present invention can be easily reused.
  • FIG. 2 is a TEM image of the catalyst Pt-V / HAP of the present invention.
  • 3 is an ADF-STEM image of Pt-V / HAP obtained in Production Example 1.
  • 3 is an element mapping image of Pt—V / HAP Ca obtained in Production Example 1.
  • FIG. 2 is an element mapping image of V of Pt—V / HAP obtained in Production Example 1.
  • FIG. 2 is an element mapping image of Pt of Pt—V / HAP obtained in Production Example 1.
  • FIG. The element mapping images of Pt-V / HAP Ca ⁇ V ⁇ Pt obtained in Production Example 1 are superimposed.
  • 6 is a diagram showing the results of EDS line analysis of Pt—V / HAP obtained in Production Example 1.
  • the catalyst for hydrogenation reaction of the amide compound of the present invention (hereinafter referred to as “the catalyst of the present invention”) is a catalyst in which platinum and vanadium are supported on a carrier.
  • the catalyst of the present invention may be described as “XY / Z” (X and Y are metal names such as platinum and vanadium, and Z is a support name).
  • platinum which comprises the catalyst of this invention is not specifically limited,
  • a platinum particle is preferable.
  • the platinum particles are platinum particles selected from at least one of platinum metal and platinum oxide, and preferably metal platinum particles.
  • the platinum particles are not particularly limited as long as they contain platinum, and may contain a small amount of a noble metal such as ruthenium (Ru), rhodium (Rh), palladium (Pd), but preferably Metallic platinum.
  • the platinum particles may be primary particles or secondary particles.
  • the average particle diameter of the platinum particles is preferably 1 to 30 nm, more preferably 1 to 10 nm. In the present specification, the “average particle diameter” means an average value of the diameters of an arbitrary number of particles observed with an electron microscope.
  • vanadium Although the vanadium which comprises the catalyst of this invention is not specifically limited, for example, a vanadium oxide is preferable.
  • the vanadium oxide are selected from at least one of vanadate ions (VO 4 3 ⁇ , VO 3 3 ⁇ ), vanadium pentoxide, vanadium oxide (II), vanadium oxide (IV), and the like. , preferably V 2 O 5.
  • the catalyst of the present invention can further contain ruthenium.
  • the ruthenium is not particularly limited, and examples thereof include ruthenium oxide and metal ruthenium.
  • metal ruthenium may be alloyed with platinum, and ruthenium oxide may form a composite oxide with vanadium oxide. The alloying and the formation of the complex oxide can be performed according to a conventional method.
  • the catalyst of the present invention contains ruthenium, a part of the platinum or vanadium described above may be replaced with ruthenium.
  • the composition ratio of platinum, ruthenium, and vanadium is as described above with respect to the composition ratio of platinum and vanadium, and is converted into the number of moles of platinum (Pt) as metal: ruthenium (Ru) as metal.
  • the molar ratio [Pt: Ru] is 1: 0.1 to 10, preferably 1: 0.5 to 5, and more preferably 1: 0.8 to 1.2.
  • the support (base material) of the catalyst of the present invention is not particularly limited.
  • Various physical properties such as adsorption capacity of the carrier are not particularly limited.
  • the adsorption capacity may be 0.1 to 300 m 2 / g as a so-called BET value, and the average particle diameter is 0. It may be 0.02 to 100 ⁇ m.
  • the adsorption capacity of the carrier is preferably 0.5 to 180 m 2 / g.
  • the form of the carrier is not particularly limited, and examples thereof include powder, spherical granular, irregular granular, cylindrical pellet, extruded shape, and ring shape.
  • inorganic oxides such as hydroxyapatite (HAP), titania, alumina, silica, carbon powder and the like can be used, and hydroxyapatite is preferable.
  • the hydroxyapatite is not particularly limited, and not only calcium hydroxide phosphate having a stoichiometric composition of general Ca 10 (PO 4 ) 6 (OH) 2 but water having a composition similar to this composition. Contains calcium oxide phosphate compounds and tricalcium phosphate.
  • the mode in which platinum and vanadium are supported on the support is not particularly limited, and various modes can be taken depending on the form of the support, and the position where the support is simply controlled. It may not be, inside the pores or layers, or only on the surface, but platinum with a small particle diameter is dispersed and supported, and vanadium is present in the vicinity of platinum or on platinum. Is preferred.
  • the amount of platinum and vanadium oxide supported on the carrier in the catalyst of the present invention is not particularly limited.
  • the amount of platinum in terms of metal is preferably 0.1 to 10 wt%.
  • the catalyst of the present invention uses the carrier as described above, it is needless to say that separation after the use in the reaction is easy, and it is advantageous in reusing the catalyst.
  • the above-described platinum and vanadium may be supported on a carrier, and another catalyst, a carrier, or the like may be contained according to a conventional method as long as the effect is not impaired.
  • the catalyst of the present invention can be produced by a method of mixing a mixed solution of a platinum compound and a vanadium compound (optionally a ruthenium compound) and a carrier and then drying the mixture (hereinafter referred to as “the method of the present invention”).
  • the platinum compound used in the method of the present invention is not particularly limited, but is preferably one that becomes platinum particles on a carrier when dried.
  • platinum compounds include platinum acetylacetonate (Pt (acac) 2 ), tetraammineplatinum (II) acetate, dinitrodiammineplatinum (II), hexaammineplatinum (IV) carbonate, bis (diben).
  • Pt (acac) 2 platinum acetylacetonate
  • II tetraammineplatinum
  • II dinitrodiammineplatinum
  • IV hexaammineplatinum
  • Pt (acac) 2 is particularly preferred.
  • the vanadium compound used in the method of the present invention is not particularly limited, but preferably generates vanadium oxide on the carrier when dried.
  • vanadium compounds include vanadium complex salts such as vanadyl acetylacetonate (VO (acac) 2 ), bis (taltolato) bis [oxovanadium (IV)] acid tetramethylammonium, and vanadium (V) ammonium.
  • VO (acac) 2 vanadium complex salts
  • VO (acac) 2 vanadium complex salts
  • bis (taltolato) bis [oxovanadium (IV)] acid tetramethylammonium bis vanadium (V) ammonium.
  • salts such as vanadium naphthenate, and VO (acac) 2 is particularly preferable.
  • the ruthenium compound used in the method of the present invention is not particularly limited.
  • complex salts such as ruthenium (II) nitrosyl and hexaammineruthenium acetate.
  • ruthenium chloride and Ru (acac) 3 are preferable.
  • the mixed solution used in the method of the present invention is obtained by suspending the platinum compound and the vanadium compound (if necessary, a ruthenium compound) in a solvent.
  • the solvent include water, organic solvents such as alcohol and acetone, and these solvents may be used alone or in combination.
  • the platinum compound and the vanadium compound are in a molar ratio of 1: 0.1 to 10, preferably 1: 0.5 to 5, and more preferably 1: 1.
  • a ruthenium compound is contained, a part of platinum or vanadium described above may be replaced with a ruthenium compound.
  • the temperature of the solvent is not particularly limited, but is, for example, 0 to 100 ° C., preferably 10 to 50 ° C.
  • the mixed solution prepared as described above is then mixed with a carrier.
  • the method of mixing the above mixed solution and the carrier is not particularly limited, but it is sufficient that each component is sufficiently dispersed, and the carrier is 0.1 to 100 g, preferably 1 to 1, with respect to 0.1 mmol of metal in terms of platinum. Perform with stirring in an amount of 10 g. After mixing, stirring is continued for 0.5 to 12 hours, preferably 1 to 3 hours.
  • the drying is performed at 80 to 200 ° C. for 1 to 56 hours. After drying, for example, it is preferably fired at 250 to 700 ° C. for 1 to 12 hours using a muffle furnace or the like, and may be further pulverized.
  • the catalyst of the present invention thus obtained is one in which platinum and vanadium (ruthenium if necessary) are supported on a carrier.
  • the catalyst of the present invention could be manufactured by, for example, TEM (Transmission Electron Microscope; Transmission Electron Microscope), FE-SEM (Field Emission-Scanning Electron Microscope), EDX (Denerg). X-ray Spectroscopy (energy dispersive X-ray spectroscopy) or the like.
  • the catalyst of the present invention is for hydrogenation reaction of amide compounds. Therefore, when the catalyst of the present invention is brought into contact with an amide compound, it can be hydrogenated (reduced) to produce an amine compound.
  • the amide compound is not particularly limited as long as it is a compound having an amide bond.
  • a amide compound having a secondary or higher amide compound, an amide compound containing an aromatic substituent, a lactam or a tertiary amide and a carbonyl bonded to the N atom is preferred, and an amide compound containing a secondary or higher amide compound or an aromatic substituent is more preferred.
  • the method of bringing the catalyst of the present invention into contact with the amide compound and hydrogenating is not particularly limited, and may be appropriately selected.
  • the amide compound may be hydrogenated by bringing the catalyst of the present invention, the amide compound, and hydrogen gas into contact in a liquid phase in a pressure-resistant container such as an autoclave.
  • a molecular sieve or the like may be placed in a container in order to remove water and advance the reaction.
  • the catalyst of the present invention may be subjected to a reduction treatment before hydrogenation.
  • the liquid phase is preferably an organic solvent alone or a mixture of several organic solvents, more preferably an organic solvent alone.
  • the organic solvent used above is not particularly limited, but examples thereof include aliphatic hydrocarbons having 5 to 20 carbon atoms such as dodecane and cyclohexane, aromatic hydrocarbons having 7 to 9 carbon atoms such as toluene and xylene, and dimethyl ether.
  • Ethers having a chain structure or a cyclic structure such as dimethoxyethane (DME), oxetane, tetrahydrofuran (THF), tetrahydropyran (THP), furan, dibenzofuran, furan, polyethers such as polyethylene glycol, polypropylene glycol, etc.
  • DME dimethoxyethane
  • THF tetrahydrofuran
  • THP tetrahydropyran
  • furan dibenzofuran
  • polyethers such as polyethylene glycol, polypropylene glycol, etc.
  • DME dimethoxyethane
  • THF tetrahydrofuran
  • TMP tetrahydropyran
  • furan dibenzofuran
  • polyethers such as polyethylene glycol, polypropylene glycol, etc.
  • DME is particularly preferable.
  • the amount of the organic solvent used is preferably in the range where the concentration of the amide compound is about 0.5 to 2.0% by mass, for example.
  • the amount of the catalyst of the present invention used is, for example, about 0.0001 to 50 mol%, preferably about 0.01 to 20 mol%, based on the amount of platinum in the catalyst, preferably about 0 to 20 mol%. About 1 to 5 mol% is more preferable.
  • the catalyst of the present invention can smoothly advance the hydrogenation reaction even under mild conditions.
  • the reaction temperature can be appropriately adjusted according to the type of substrate, the type of target product, and the like. For example, it is 100 ° C. or less, preferably 10 to 100 ° C., more preferably about 20 to 80 ° C., particularly preferably. It is about 30 to 70 ° C.
  • the pressure during the reaction is 5 MPa or less, preferably normal pressure to 4 MPa, more preferably 2 to 3.5 MPa.
  • the reaction time can be appropriately adjusted according to the reaction temperature and pressure, and is, for example, about 10 minutes to 56 hours, preferably about 20 minutes to 48 hours, and particularly preferably about 40 minutes to 30 hours.
  • An amine compound is obtained by hydrogenating an amide compound by the above-described method, but an amine compound that is difficult to produce by a normal cross-coupling reaction or the like can also be produced by the method of the present invention.
  • an aryl halide is directly bonded to the N atom of the amine by reacting an aryl halide with a primary or secondary amine in the presence of a Pd catalyst.
  • one or more carbon atoms or methylene chains cannot be interposed between the N atom and the aromatic ring.
  • the amide compound obtained by acylating the N atom of the amine is hydrogenated, resulting in a C atom having one or more carbon atoms or a methylene chain interposed in the N atom of the original amine.
  • -N bonds can be generated. Examples thereof include morpholine ⁇ 4-cyclohexylcarbonylmorpholine ⁇ 4-cyclohexylmethylmorpholine, piperidine ⁇ 1-phenylacetylpiperidine ⁇ 1-phenethylpiperidine, benzylmethylamine ⁇ benzylmethylphenylacetylamide ⁇ benzylmethylphenethylamine, and the like. It is done.
  • the catalyst of the present invention platinum, which is an active component, is supported on a carrier, so that the supported platinum is less likely to become large particles even during the reaction.
  • the catalyst of the present invention can be easily recovered from the reaction solution after hydrogenation by a physical separation method such as filtration or centrifugation.
  • the recovered catalyst of the present invention can be reused as it is or after washing, drying, calcination and the like, if necessary. Washing, drying, calcination and the like may be performed in the same manner as in the production of the catalyst of the present invention.
  • the recovered catalyst of the present invention can show almost the same catalytic ability as an unused catalyst of the present invention, and even if the use-regeneration is repeated several times, the decrease in the catalytic ability is remarkably suppressed. Can do. Therefore, according to the present invention, the catalyst that normally occupies a large proportion of the cost of hydrogenation can be recovered and reused, so that the cost of hydrogenation of the amide compound can be greatly reduced.
  • the catalyst of the present invention and the examples of the present invention will be specifically described.
  • the present invention is not limited to the following examples, and can be widely applied within the scope of the gist of the present invention. is there.
  • FIG. 1 shows a TEM image of Pt—V / HAP
  • FIG. 2 shows an ADF-STEM image
  • FIG. 3 shows an element mapping image of Ca
  • FIG. 4 shows an element mapping image of V
  • FIG. 5 shows an element mapping image of Pt.
  • FIG. 6 shows an overlay of element mapping images of Ca, V, and Pt.
  • platinum particles are supported on a carrier, vanadium oxide (V 2 O 5 ) is present near or on the platinum particles, platinum (Pt) as metal: vanadium as metal
  • platinum (Pt) platinum as metal: vanadium as metal
  • the average particle size of the platinum particles was 2.2 nm.
  • Pt-V / C Pt-V / C was obtained in the same manner except that the HAP of Production Example 1 was replaced with porous carbon (trade name: carbon, mesoporous) manufactured by Sigma-Aldrich.
  • Pt-V / TiO 2 was obtained in the same manner except that the HAP of Production Example 1 was replaced with titania (JRC TIO-4) which is a reference catalyst of the Catalysis Society of Japan.
  • Pt—V / Al 2 O 3 was obtained in the same manner except that the HAP of Production Example 1 was replaced with Sumitomo Chemical's alumina (AKP-G015).
  • Pt—V / SiO 2 Pt—V / SiO 2 was obtained in the same manner except that the HAP in Production Example 1 was replaced with silica (Q-3) from Fuji Silysia Chemical.
  • Pt-Re / HAP was obtained in the same manner except that VO (acac) 2 of Production Example 1 was replaced with Re 2 (CO) 10 of Strem Chemicals.
  • Platinum (Pt) as metal: rhenium (Re) as metal in terms of moles [mol: [Pt: Re] 6: 7, and the amount of platinum as metal is 5.8 wt%. I understood.
  • Pt—Mo / HAP was obtained in the same manner except that VO (acac) 2 in Production Example 1 was replaced with (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O manufactured by Nacalai Tesque.
  • Pt-W / HAP was obtained in the same manner except that VO (acac) 2 in Production Example 1 was replaced with (NH 4 ) 10 H 2 (W 2 O 7 ) 6 ⁇ xH 2 O from Sigma-Aldrich.
  • Pd-V / HAP Preparation of Pd-V / HAP was obtained in the same manner except that Pt (acac) 2 manufactured by N.E. Chemcat Co. in Production Example 1 was replaced with Pd (acac) 2 manufactured by Sigma-Aldrich.
  • Rh-V / HAP was obtained in the same manner except that Pt (acac) 2 manufactured by N.E. Chemcat Co. in Production Example 1 was replaced with Rh (acac) 3 manufactured by Mitsuwa Chemicals.
  • Production Example 13 Preparation of Pt / HAP: Pt / HAP was obtained in the same manner except that VO (acac) 2 of Production Example 1 was omitted. The amount of platinum as a metal was found to be 5.8 wt%.
  • V / HAP was obtained in the same manner except that Pt (acac) 2 manufactured by N.E. The amount of vanadium as a metal was found to be 1.8 wt%.
  • Example 1 The catalysts obtained in Production Examples 1 to 14 were each made of 50 ml of stainless steel with the catalyst amount shown in Table 1, 5 mL of 1,2-dimethoxyethane (DME) as a solvent, and 0.5 mmol of N-acetylmorpholine as a substrate.
  • DME 1,2-dimethoxyethane
  • the hydrogenation reaction was performed under the conditions shown in Table 1. After the reaction, the yield of 2 was measured using a gas chromatograph. The results are shown in Table 1.
  • Example 2 Pt-V / HAP obtained in Production Example 1 was added to a 50 mL stainless steel autoclave as a solvent by adding the catalyst amount in Table 2 and the substrate 0.5 mmol, and Wako Pure Chemicals Molecular Sieves 4 kg: 0.1 g, respectively.
  • 1,2-Dimethoxyethane (DME) (5 mL) was added to carry out a hydrogenation reaction at a reaction temperature of 70 ° C. and a hydrogen pressure of 3 MPa. After the reaction, the yield of 4 was measured using a gas chromatograph. The results are shown in Table 2.
  • Example 3 Catalyst recycling: After the reaction in Example 1, the Pt-V / HAP used was separated by centrifugation, washed with 1,2-dimethoxyethane (DME) as a solvent and recovered from the reaction system. This recovered Pt-V / HAP was used again for the same reaction. The results are shown in Table 3.
  • DME 1,2-dimethoxyethane
  • the catalyst of the present invention is useful for safely producing amino compounds useful in various pharmaceuticals, agricultural chemicals and other various industrial fields under mild conditions. Further, the catalyst of the present invention can be produced inexpensively and safely. more than

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

白金とバナジウムが担体に担持されたことを特徴とするアミド化合物の水素添加反応用触媒およびこれを用いたアミン化合物の製造方法により、温和な条件下でも使用でき、高い活性を維持したまま、繰り返し使用できるような耐久性も備えたアミド化合物をアミン化合物にする還元反応を行える触媒を提供する。

Description

アミド化合物の水素化に用いる水素添加反応用触媒およびこれを用いたアミン化合物の製造方法。
 本発明は、アミド化合物をアミン化合物にする水素添加反応に用いる、白金とバナジウムを含み、担体に担持された触媒およびこれを用いたアミン化合物の製造方法に関するものである。
 アミド化合物をアミン化合物にする還元反応は、アミドが難還元性であるため、カルボン酸誘導体の還元の中で最も難しい反応の一つである。
 アミド化合物をアミン化合物にする還元反応は研究等の少量試験では水素化アルミニウムリチウム(LiAlH)、水素化ホウ素ナトリウム(NaBH)等の強力な還元剤を化学量論的に用いる方法が一般だが、工業規模の合成に使用するには大量の金属廃棄物の発生や反応性が高いために大量に用いると水素等が発生し危険であり、後処理等の操作が煩雑であること等が問題となっていた。
 一方、分子状水素を還元剤とするアミドからアミンへの還元反応は、無害な水のみを副生するため環境調和型のアミンの合成方法である。このアミドの触媒的水素還元反応は古くから研究されており、銅-クロム、レニウムまたはニッケル触媒を用いて行われてきたが、水素圧200気圧、反応温度200℃以上等の高温高圧な反応条件を必要とする。
 近年、非特許文献1や2ではモレキュラーシーブスを反応系内に添加することで120℃、10atmまたは160℃、5atmという低温低圧条件下でのアミドの水素化が報告されている。しかし、基質適用性に乏しく、C-N開裂によるアルコールが副生してしまうという問題点があった。また、これらの触媒は再使用できない。
 また、非特許文献3で報告されている均一系触媒を用いた反応もあるが、C-N開裂によるアルコールが副生してしまうという問題点があった。また、均一系触媒を用いた反応では高価な触媒を繰り返し使用することが難しい。
 そのため、工業的に使用するためには、温和な条件下でも使用でき、高い活性を維持したまま、繰り返し使用できるような耐久性が高い触媒が求められる。
R. Burch, C. Paun, X.-M. Cao, P. Crawford, P. Goodrich, C. Hardacre, P. Hu, L. McLaughlin, J. Sa, J. M. Thompson, Catalytic hydrogenation of tertiary amides at low temperatures and pressures using bimetallic Pt/Re-based catalysts. J. Catal. 283, 89-97 (2011) M. Stein, B. Breit, Catalytic hydrogenation of amides to amines under mild conditions. Angew. Chem. Int. Ed. 125, 2287-2290 (2013) E. Balaraman, B. Gnanaprakasam, L. J. W. Shimon, D. Milstein, Direct hydrogenation of amides to alcohols and amines under mild conditions. J. Am. Chem. Soc. 132, 16756-16758 (2010)
 従って、本発明の課題は、アミド化合物をアミン化合物にする還元反応を行える触媒であって、温和な条件下でも使用でき、高い活性を維持したまま、繰り返し使用できるような耐久性も備えた触媒を提供することである。
 本発明者らは、上記課題を解決するために鋭意研究した結果、白金とバナジウムを含み、担体に担持された触媒が、アミド化合物に対する高い水素化活性、選択性、耐久性、反応性を有することを見出し、本発明を完成させた。
 すなわち、本発明は、白金とバナジウムが担体に担持されたことを特徴とするアミド化合物の水素添加反応用触媒および白金化合物およびバナジウム化合物の混合液と、担体を混合した後、これを乾燥することを特徴とする前記アミド化合物の水素添加反応用触媒の製造方法である。
 また、本発明は、アミド化合物を、上記アミド化合物の水素添加反応用触媒に接触させて水素添加し、アミン化合物を得ることを特徴とするアミン化合物の製造方法である。
 更に、本発明は、上記アミン化合物の製造方法で製造されたアミン化合物である。
 本発明の触媒は、温和な条件下で使用できるため、アミド化合物からアミン化合物への合成が安全で容易になる。
 また、本発明の触媒は、製造の際に、特別な操作を必須としないため、安価で安全に製造できる。
 そのため、本発明の触媒は、アミド化合物からアミン化合物への工業的な合成に利用できる。
 また、本発明の触媒は担体に担持されているため使用後に、ろ過によって容易に高価な白金を回収可能であり、更にこの回収された触媒は当初の活性・選択性を維持できる。
 そのため、本発明の触媒は、再利用も容易である。
本発明の触媒Pt-V/HAPのTEM像である。 製造例1で得られたPt-V/HAPのADF-STEM画像である。 製造例1で得られたPt-V/HAPのCaの元素マッピング画像である。 製造例1で得られたPt-V/HAPのVの元素マッピング画像である。 製造例1で得られたPt-V/HAPのPtの元素マッピング画像である。 製造例1で得られたPt-V/HAPのCa・V・Ptの元素マッピング画像を重ねたものである。 製造例1で得られたPt-V/HAPのEDSライン分析の結果を示す図である。
 本発明のアミド化合物の水素添加反応用触媒(以下、「本発明の触媒」という)は、白金とバナジウムが、担体に担持されたものである。なお、本明細書においては、本発明の触媒は、「X-Y/Z」(X、Yは白金、バナジウム等の金属名、Zは担体名)等と記載することがある。
 (白金)
 本発明の触媒を構成する白金は、特に限定されないが、例えば、白金粒子が好ましい。ここで白金粒子とは、金属白金または酸化白金の少なくとも1種から選ばれる白金の粒子であり、好ましくは金属白金の粒子である。
 ここで、白金粒子は、白金を含有していれば特に制限されるものではなく、ルテニウム(Ru)やロジウム(Rh)やパラジウム(Pd)等の貴金属を少量含んでいても良いが、好ましくは金属白金である。白金粒子は一次粒子でもよく、二次粒子であってもよい。白金粒子の平均粒子径は1~30nmが好ましく、1~10nmがより好ましい。なお、本明細書において「平均粒子径」とは、電子顕微鏡で任意の数の粒子の直径を観察し、それらの直径の平均値のことをいう。
 (バナジウム)
 本発明の触媒を構成するバナジウムは、特に限定されないが、例えば、バナジウム酸化物が好ましい。バナジウム酸化物としては、例えば、バナジン酸イオン(VO 3-、VO 3-)、五酸化バナジウム、酸化バナジウム(II)または酸化バナジウム(IV)等のうち少なくとも1種から選ばれるものであり、好ましくはVである。
(白金-バナジウム[Pt-V]のモル比)
 本発明の触媒における、白金とバナジウムの組成比は、金属としての白金(Pt):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Pt:V]=1:0.1~10、好ましくは1:0.5~5、更に好ましくは1:0.8~1.2である。
 (ルテニウム)
 本発明の触媒には、更にルテニウムを含有させることができる。このルテニウムは、特に限定されないが、例えば、酸化ルテニウム、金属ルテニウム等である。また、金属ルテニウムは白金と合金化していてもよく、酸化ルテニウムが酸化バナジウムと複合酸化物を形成していてもよい。なお、前記合金化や複合酸化物の形成は常法に従ってすることができる。
 本発明の触媒に、ルテニウムを含有させる場合、上記した白金またはバナジウムの一部をルテニウムに置き換えればよい。
(白金-ルテニウム-バナジウム[Pt-Ru-V]のモル比)
本発明の触媒における、白金とルテニウムとバナジウムの組成比は、白金とバナジウムの組成比に関しては前述であり、金属としての白金(Pt):金属としてのルテニウム(Ru)のモル数のモル数換算で、モル比[Pt:Ru]=1:0.1~10、好ましくは1:0.5~5、更に好ましくは1:0.8~1.2である。
(担体)
 本発明の触媒の担体(母材)は、特に限定されるものではない。担体の吸着能等の諸物性も、特に限定されるものではないが、例えば、その吸着能は、いわゆるBET値として0.1~300m/gであってもよく、平均粒径としては0.02~100μmであってもよい。本発明においては、担体の吸着能は、0.5~180m/gであることが好ましい。
 また、担体の形態は、特に限定されず、例えば、粉末状、球形粒状、不定形顆粒状、円柱形ペレット状、押し出し形状、リング形状等が挙げられる。
 上記のような担体としては、例えば、ハイドロキシアパタイト(HAP)、チタニア、アルミナ、シリカ等の無機酸化物やカーボン粉末等を用いることができ、好ましくはハイドロキシアパタイトである。
 上記ハイドロキシアパタイトとしては、特に制限されることはなく、一般的なCa10(PO(OH)の化学量論的組成の水酸化リン酸カルシウムのみならず、この組成に類似した組成の水酸化リン酸カルシウム化合物やリン酸三カルシウム等を含む。
 本発明の触媒において、白金とバナジウムが担体に担持される態様は、特に制限されるものではなく、担体の形態により、種々の態様を採ることができ、担持される位置も単純に制御されていなくてもよいし、細孔や層の内側であったり、表面のみであってもよいが、粒子径の小さな白金が分散して担持され、バナジウムは、白金の近傍または白金上に存在する方が好ましい。なお、本発明の触媒における白金とバナジウム酸化物の担体への担持量は、特に限定されないが、例えば、金属換算の白金の量で0.1~10wt%であることが好ましい。
 本発明の触媒は、上記したような担体を用いているため、反応に使用した後に分離も容易になり、触媒の再使用においても有利であることは言うまでもない。
(触媒に追加できる成分)
 本発明の触媒は、上記した白金とバナジウム(必要によりルテニウム)が担体に担持されていればよく、効果を損なわない範囲で、別の触媒や担体等を常法に従って含有させてもよい。
(本発明の触媒の製造方法)
 本発明の触媒は、白金化合物およびバナジウム化合物(必要によりルテニウム化合物)の混合液と、担体を混合した後、これを乾燥する方法により製造できる(以下、「本発明方法」という)。
 本発明方法に用いられる白金化合物は、特に限定されないが、好ましくは乾燥した際に担体上で白金粒子となるものである。このような白金化合物としては、例えば、白金アセチルアセトナト(Pt(acac))、テトラアンミン白金(II)酢酸塩、ジニトロジアンミン白金(II)、ヘキサアンミン白金(IV)炭酸塩、ビス(ジベンザルアセトン)白金(0)等の白金錯体塩、塩化白金、硝酸白金、テトラクロロ白金酸カリウム等の塩が挙げられ、特にPt(acac)が好ましい。
 また、本発明方法に用いられるバナジウム化合物は、特に限定されないが、好ましくは乾燥した際に担体上でバナジウム酸化物を生じるものである。このようなバナジウム化合物としては、例えば、バナジルアセチルアセトナト(VO(acac))、ビス(タルトラト)ビス[オキソバナジウム(IV)]酸テトラメチルアンモニウム等のバナジウム錯体塩、バナジン(V)酸アンモニウム、ナフテン酸バナジウム等の塩が挙げられ、特にVO(acac)が好ましい。
 更に、本発明方法に用いられるルテニウム化合物は、特に限定されないが、例えば、塩化ルテニウム、酢酸ルテニウム等の塩やルテニウムアセチルアセトナト、ドデカカルボニル三ルテニウム(0)、ホルマトジカルボニルルテニウム(I)、硝酸ルテニウム(II)ニトロシル、ヘキサアンミンルテニウム酢酸塩等の錯体塩等が挙げられる。これらの中でも塩化ルテニウム、Ru(acac)が好ましい。
 本発明方法に用いられる混合液は、上記白金化合物およびバナジウム化合物(必要によりルテニウム化合物)を、溶媒に懸濁させたものである。溶媒としては、例えば、水や、アルコール、アセトン等の有機溶媒が挙げられ、これらの溶媒は1種または2種以上を組み合わせてもよい。混合液中、白金化合物とバナジウム化合物はモル比で1:0.1~10、好ましくは1:0.5~5、更に好ましくは1:1である。ルテニウム化合物を含有させる場合、上記した白金またはバナジウムの一部をルテニウム化合物に置き換えればよい。なお、溶媒の温度は特に限定されないが、例えば、0~100℃、好ましくは10~50℃である。
 上記のようにして調製した混合液は、次に、担体と混合する。上記混合液と、担体を混合する方法は特に限定されないが、各成分が十分に分散する量があれば良く、金属換算の白金0.1mmolに対して担体0.1~100g、好ましくは1~10gの量で撹拌しながら行う。混合後は0.5~12時間、好ましくは1~3時間撹拌を続ける。
 上記のようにして混合液と担体を混合した後は乾燥させればよい。乾燥の前には、洗浄、ろ過、濃縮等の前処理をして溶媒を除去させることが好ましい。乾燥の条件は特に限定されないが、例えば、80~200℃で1~56時間乾燥させる。乾燥後は、例えば、マッフル炉等を使用して250~700℃で1~12時間焼成等することが好ましく、更に、粉砕等を行ってもよい。
 斯くして得られる本発明の触媒は、白金とバナジウム(必要によりルテニウム)が担体に担持されたものとなる。
 なお、本発明の触媒が製造できたことは、例えば、TEM(Transmission Electron Microscope;透過型電子顕微鏡)、FE-SEM(Field Emission-Scanning Electron Microscope;電界放射型走査電子顕微鏡)、EDX(Energy Dispersive X-ray Spectroscopy;エネルギー分散型X線分光法)等で確認することができる。
(アミド化合物の水素化)
 本発明の触媒は、アミド化合物の水素添加反応用である。そのため、本発明の触媒は、アミド化合物に接触させれば、水素添加(還元)してアミン化合物を製造することができる。
 アミド化合物としては、アミド結合を有する化合物であれば特に限定されないが、例えば、2級以上のアミド化合物または芳香族置換基を含むアミド化合物、ラクタムまたは3級アミドにおいてN原子に結合しているカルボニルを含まない置換基の2つがお互いに連結していて環状構造を取るアミド化合物等が好ましく、2級以上のアミド化合物または芳香族置換基を含むアミド化合物がより好ましい。
 アミド化合物に、本発明の触媒を接触させて水素添加する方法は特に限定されず、適宜選択すればよい。具体的には、オートクレーブ等の耐圧性の容器中、液相で本発明の触媒と、アミド化合物と、水素ガスを接触させることによりアミド化合物の水素添加を行えばよい。また、水素添加の際には、水を除去して反応を進行させるために、モレキュラーシーブ等を容器中に入れておいてもよい。更に、本発明の触媒は、水素添加前に還元処理を予め行っておいてもよい。
 液相は有機溶剤のみあるいは数種の有機溶剤の混液が好ましく、有機溶剤のみがより好ましい。上記で用いられる有機溶剤は、特に限定されないが、例えば、ドデカン、シクロヘキサン等の炭素原子数5~20の脂肪族炭化水素、トルエン、キシレン等の炭素原子数7~9の芳香族炭化水素、ジメチルエーテル、ジメトキシエタン(DME)、オキセタン、テトラヒドロフラン(THF)、テトラヒロドピラン(THP)、フラン、ジベンゾフラン、フラン等の鎖状構造または環状構造を有するエーテル、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル等から選択される1種以上が挙げられ、これらの中でも特にDMEが好ましい。
 有機溶剤の使用量は、例えば、上記アミド化合物の濃度が0.5~2.0質量%程度となる範囲内が好ましい。また、本発明の触媒の使用量は、例えば、触媒中の白金の量を基準としてアミド化合物に対して0.0001~50モル%程度であり、0.01~20モル%程度が好ましく、0.1~5モル%程度がより好ましい。
 本発明の触媒は、温和な条件でも、円滑に水素添加反応を進行させることができる。反応温度としては、基質の種類や目的生成物の種類等に応じて適宜調整することができ、例えば、100℃以下、好ましくは10~100℃、より好ましくは20~80℃程度、特に好ましくは30~70℃程度である。反応時の圧力は、5MPa以下、好ましくは常圧~4MPa、より好ましくは2~3.5MPaである。反応時間は、反応温度および圧力に応じて適宜調整することができ、例えば10分~56時間程度、好ましくは20分~48時間程度、特に好ましくは40分~30時間程度である。
 上記した方法によりアミド化合物を水素添加してアミン化合物が得られるが、通常のクロスカップリング反応等で製造することが難しいようなアミン化合物でも本発明の方法では製造できる。具体的に、C-Nカップリングの代表例であるBuchwald-Hartwig反応では、ハロゲン化アリールと1・2級アミンをPd触媒存在下で反応させて、当該アミンのN原子に直接アリール基を結合させることができるが、N原子と芳香環の間にひとつ以上の炭素原子またはメチレン鎖を介在させることはできない。しかしながら、上記した方法では、アミンのN原子をアシル化することによって得たアミド化合物を水素化することで、結果として元のアミンのN原子にひとつ以上の炭素原子またはメチレン鎖を介在させたC-N結合を生成させることができる。このような例としては、モルホリン→4-シクロヘキシルカルボニルモルホリン→4-シクロヘキシルメチルモルホリン、ピペリジン→1-フェニルアセチルピペリジン→1-フェネチルピペリジン、ベンジルメチルアミン→ベンジルメチルフェニルアセチルアミド→ベンジルメチルフェネチルアミン等が挙げられる。
(触媒の再利用)
 本発明の触媒は活性成分である白金が担体に担持されているため、反応中においても担持された白金が大きな粒子になりにくい。また、本発明の触媒は、例えば、水素添加後に反応液から濾過、遠心分離等の物理的な分離手法により容易に回収することができる。回収された本発明の触媒はそのまま、あるいは、必要により、洗浄、乾燥、焼成等を施した後、再利用することができる。洗浄、乾燥、焼成等は本発明の触媒の製造の際と同様に行えばよい。
 回収された本発明の触媒は、未使用の本発明の触媒と比べ、ほぼ同等の触媒能を示すことができ、使用-再生を複数回繰り返しても、その触媒能の低下を著しく抑制することができる。そのため、本発明によれば、通常、水素添加の費用の多くの割合を占める触媒を回収し、繰り返し利用することができるため、アミド化合物の水素添加のコストを大幅に削減することができる。
 以下、本発明の触媒、並びに本発明の実施例について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の趣旨の範囲で広く応用が可能なものである。
製 造 例 1
   Pt-V/HAPの調製:
 アセトン90mLにエヌ・イー ケムキャット社製Pt(acac)2 0.4mmolとシグマアルドリッチ社のVO(acac)を0.4mmol加え室温で30分撹拌した。更に和光純薬社のHAP(商品名「リン酸三カルシウム」)1.0gを加えて室温で4時間撹拌した。得られた混合物から溶媒をロータリーエバポレータで除去し、淡緑色の粉末を得た。得られた粉末を110℃で終夜乾燥した。更に、乾燥した粉末をメノウ鉢で粉砕し、大気中で、2時間、300℃で焼成し、濃灰色の粉末(Pt-V/HAP)が得られた。
 上記で得られたPt-V/HAPについて種々の解析を行った。Pt-V/HAPのTEM像を図1に、ADF-STEM画像を図2に、Caの元素マッピング画像を図3に、Vの元素マッピング画像を図4に、Ptの元素マッピング画像を図5に、Ca・V・Ptの元素マッピング画像を重ねたものを図6に示した。これらの結果から、本発明の触媒は、白金粒子が担体に担持され、酸化バナジウム(V)が白金粒子の近傍または上に存在し、金属としての白金(Pt):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Pt:V]=6:7、また金属としての白金量は5.8wt%であることが分かった。また、Pt-V/HAPのEDSライン分析の結果(図7)から、白金粒子の平均粒子径は2.2nmであった。
製 造 例 2
   Pt-V/Cの調製:
 製造例1のHAPをシグマアルドリッチ社の多孔質カーボン(商品名:炭素、メソポーラス)に替えた以外は同様にしてPt-V/Cが得られた。金属としての白金(Pt):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Pt:V]=6:7、また金属としての白金量は5.8wt%であることが分かった。
製 造 例 3
   Pt-V/TiOの調製:
 製造例1のHAPを触媒学会の参照触媒であるチタニア(JRC TIO-4)に替えた以外は同様にしてPt-V/TiOが得られた。金属としての白金(Pt):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Pt:V]=6:7、また金属としての白金量は5.8wt%であることが分かった。
製 造 例 4
   Pt-V/Alの調製:
 製造例1のHAPを住友化学社のアルミナ(AKP-G015)に替えた以外は同様にしてPt-V/Alが得られた。金属としての白金(Pt):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Pt:V]=6:7、また金属としての白金量は5.8wt%であることが分かった。
製 造 例 5
   Pt-V/SiOの調製:
 製造例1のHAPを富士シリシア化学社のシリカ(Q-3)に替えた以外は同様にしてPt-V/SiOが得られた。金属としての白金(Pt):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Pt:V]=6:7、また金属としての白金量は5.8wt%であることが分かった。
製 造 例 6
   Pt-Ru-V/TiOの調製:
 水90mLにエヌ・イー ケムキャット社製40mM RuCl水溶液5.0mL(Ru:0.2mmol)とTiO 0.5g、K(PtCl)を0.085g(Pt:0.2mmol)加え、更に40mM VCl水溶液 5.0mL(V:0.2mmol)加え室温で6時間撹拌した。得られた混合物に28wt%アンモニア水1.0mLを加え、90℃で6時間加熱撹拌した。溶液を脱イオン水で濾過洗浄し、得られた粉末を110℃で終夜乾燥した。乾燥した粉末をメノウ鉢で粉砕し、灰色の粉末(Pt―Ru-V/HAP)が得られた。得られた粉末中の金属比は金属としての白金(Pt):金属としてのルテニウム(Ru):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Pt:Ru:V]=1:1:1、また金属としての白金量は7.8wt%であった。
製 造 例 7
   Pt-Re/HAPの調製:
 製造例1のVO(acac)をStrem Chemicals社のRe(CO)10に替えた以外は同様にしてPt-Re/HAPが得られた。金属としての白金(Pt):金属としてのレニウム(Re)のモル数のモル数換算で、モル比[Pt:Re]=6:7、また金属としての白金量は5.8wt%であることが分かった。
製 造 例 8
   Pt-Mo/HAPの調製:
 製造例1のVO(acac)をナカライテスク社の(NHMo24・4HOに替えた以外は同様にしてPt-Mo/HAPが得られた。金属としての白金(Pt):金属としてのモリブデン(Mo)のモル数のモル数換算で、モル比[Pt:Mo]=6:7、また金属としての白金量は5.8wt%であることが分かった。
製 造 例 9
   Pt-W/HAPの調製:
 製造例1のVO(acac)をシグマアルドリッチ社の(NH10(W・xHOに替えた以外は同様にしてPt-W/HAPが得られた。金属としての白金(Pt):金属としてのタングステン(W)のモル数のモル数換算で、モル比[Pt:W]=6:7、また金属としての白金量は5.8wt%であることが分かった。
製 造 例 10
   Pd-V/HAPの調製:
 製造例1のエヌ・イー ケムキャット社製Pt(acac)をシグマアルドリッチ社のPd(acac)に替えた以外は同様にしてPd-V/HAPが得られた。金属としてのパラジウム(Pd):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Pd:V]=6:7、また金属としてのパラジウム量は3.2wt%であることが分かった。
製 造 例 11
   Ru-V/HAPの調製:
 製造例1のエヌ・イー ケムキャット社製Pt(acac)をエヌ・イー ケムキャット社製のRu(acac)に替えた以外は同様にしてRu-V/HAPが得られた。金属としてのルテニウム(Ru):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Ru:V]=6:7、また金属としてのルテニウム量は3.0wt%であることが分かった。
製 造 例 12
   Rh-V/HAPの調製:
 製造例1のエヌ・イー ケムキャット社製Pt(acac)を三津和化学薬品社のRh(acac)に替えた以外は同様にしてRh-V/HAPが得られた。金属としてのロジウム(Rh):金属としてのバナジウム(V)のモル数のモル数換算で、モル比[Rh:V]=6:7、また金属としてのロジウム量は3.1wt%であることが分かった。
製 造 例 13
   Pt/HAPの調製:
 製造例1のVO(acac)を除いた以外は同様にしてPt/HAPが得られた。金属としての白金量は5.8wt%であることが分かった。
製 造 例 14
   V/HAPの調製:
 製造例1のエヌ・イー ケムキャット社製Pt(acac)を除いた以外は同様にしてV/HAPが得られた。金属としてのバナジウム量は1.8wt%であることが分かった。
実 施 例 1
 製造例1~14で得られた触媒を、それぞれ表1の触媒量と、溶媒である1,2-ジメトキシエタン(DME)5mL、そして基質であるN-アセチルモルホリン0.5mmolを50mLのステンレス製オートクレーブに加えて表1の条件で水素化反応を行った。反応後、ガスクロマトグラフを用いて2の収率を測定した。結果を表1に記した。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-T000002
 少なくとも白金とバナジウムの両方を担持した触媒は、アミド化合物の水素添加反応を温和な条件下で行えることが分かった。また、Pt-V/HAPは、アミド化合物の水素添加反応を温和な条件下で収率よく行えることが分かった。また、Pt-Ru-V/TiOも問題なく反応が進むことが分かった。
実 施 例 2
 製造例1で得られたPt-V/HAPを、それぞれ表2の触媒量と基質0.5mmol、和光純薬社のモレキュラーシーブス4Å:0.1gを50mLのステンレス製オートクレーブに加え、溶媒である1,2-ジメトキシエタン(DME)5mLを加えて、反応温度70℃、水素圧3MPaの下で水素化反応を行った。反応後、ガスクロマトグラフを用いて4の収率を測定した。結果を表2に記した。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-T000004
 Pt-V/HAPは、基質が変わってもアミド化合物の水素添加反応を温和な条件下で収率よく行えることが分かった。
実 施 例 3
   触媒の再利用:
 実施例1の反応後、使用したPt-V/HAPを遠心分離により分離し、溶媒である1,2-ジメトキシエタン(DME)で洗浄して反応系から回収した。この回収したPt-V/HAPを、再度同じ反応に使用した。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000005
 Pt-V/HAPは、性能の劣化なく再利用できることがわかった。
 本発明の触媒は、種々の医薬、農薬、その他種々の工業分野において有用なアミノ化合物を温和な条件で安全に製造するのに有用である。また、本発明の触媒は、安価で安全に製造できる。
                          以  上

 

Claims (15)

  1.  白金とバナジウムが担体に担持されたことを特徴とするアミド化合物の水素添加反応用触媒。
  2.  担体が、ハイドロキシアパタイト、チタニア、アルミナ、シリカ、カーボンのうち少なくとも1つを含むものである請求項1に記載のアミド化合物の水素添加反応用触媒。
  3.  担体が、ハイドロキシアパタイトである請求項1に記載のアミド化合物の水素添加反応用触媒。
  4.  アミド化合物が、2級以上のアミド化合物または芳香族置換基を含むアミド化合物である請求項1~3の何れかに記載のアミド化合物の水素添加反応用触媒。
  5.  更に、ルテニウムが担持されたものである請求項1~4の何れかに記載のアミド化合物の水素添加反応用触媒。
  6.  アミド化合物を、請求項1~5の何れかに記載のアミド化合物の水素添加反応用触媒に接触させて水素添加し、アミン化合物を得ることを特徴とするアミン化合物の製造方法。
  7.  水素添加を、100℃以下で行うものである請求項6に記載のアミン化合物の製造方法。
  8.  水素添加を、5MPa以下で行うものである請求項6または7に記載のアミン化合物の製造方法。
  9.  アミド化合物が、2級以上のアミド化合物または芳香族置換基を含むアミド化合物である請求項6~8の何れかに記載のアミン化合物の製造方法。
  10.  請求項6~9の何れかに記載のアミン化合物の製造方法で製造されたアミン化合物。
  11.  白金化合物およびバナジウム化合物の混合液と、担体を混合した後、これを乾燥することを特徴とする請求項1記載のアミド化合物の水素添加反応用触媒の製造方法。
  12.  白金化合物およびバナジウム化合物の混合液が、白金化合物およびバナジウム化合物を、溶媒に懸濁させたものである請求項11記載のアミド化合物の水素添加反応用触媒の製造方法。
  13.  溶媒が、水である請求項12記載のアミド化合物の水素添加反応用触媒の製造方法。
  14.  混合液が、更に、ルテニウム化合物を含有するものである請求項11~13の何れかに記載のアミド化合物の水素添加反応用触媒の製造方法。
  15.  担体が、ハイドロキシアパタイト、チタニア、アルミナ、シリカ、カーボンのうち少なくとも1つを含むものである請求項11~14の何れかに記載のアミド化合物の水素添加反応用触媒の製造方法。
     
PCT/JP2018/012955 2017-03-31 2018-03-28 アミド化合物の水素化に用いる水素添加反応用触媒およびこれを用いたアミン化合物の製造方法。 WO2018181563A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018001699.4T DE112018001699T5 (de) 2017-03-31 2018-03-28 Ein Hydrierungsreaktionskatalysator zur Verwendung zur Hydrierung einer Amidverbindung und eine Methode zur Produktion einer Aminverbindung durch die Verwendung desselben
US16/496,998 US20200016576A1 (en) 2017-03-31 2018-03-28 Hydrogenation reaction catalyst used to hydrogenate amide compound and method for producing amine compound using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017070127 2017-03-31
JP2017-070127 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181563A1 true WO2018181563A1 (ja) 2018-10-04

Family

ID=63677529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012955 WO2018181563A1 (ja) 2017-03-31 2018-03-28 アミド化合物の水素化に用いる水素添加反応用触媒およびこれを用いたアミン化合物の製造方法。

Country Status (3)

Country Link
US (1) US20200016576A1 (ja)
DE (1) DE112018001699T5 (ja)
WO (1) WO2018181563A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166093A1 (ja) * 2019-02-15 2020-08-20 国立大学法人大阪大学 ヒドロキシカルボン酸エステルの製造方法
WO2021109109A1 (en) * 2019-12-06 2021-06-10 Rhodia Operations Process for converting amide to amine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812017A (zh) * 2019-11-15 2021-05-18 中国科学院大连化学物理研究所 一种钨杂多酸(NC16H36)4(NH4)x[MW12O44]及其合成方法与应用
CN111450825B (zh) * 2020-04-27 2023-05-09 山西恒投环保节能科技有限公司 一种小球状SOx、NOx脱除催化剂组合物及其制备方法
CN113717127B (zh) * 2021-10-08 2023-03-31 河北师范大学 一种n-甲基吡咯烷无溶剂连续生产方法
CN115710237A (zh) * 2022-11-08 2023-02-24 河南中汇电子新材料有限公司 Nmp连续催化加氢合成n-甲基吡咯烷的制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066112A1 (en) * 2004-01-09 2005-07-21 Avantium International B.V. Method for the catalytic reduction of amides
JP2012121843A (ja) * 2010-12-09 2012-06-28 Daicel Corp アミドの脱酸素によるアミンの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10054347A1 (de) * 2000-11-02 2002-05-08 Degussa Verfahren zur katalytischen Hydrierung organischer Verbindungen und Trägerkatalysatoren hierfür
US7504540B2 (en) * 2005-06-21 2009-03-17 Taminco N.V. Process for obtaining amines by reduction of amides
US9169448B2 (en) * 2012-04-19 2015-10-27 Baker Hughes Incorporated In-situ hydrogenation of aromatic compounds for heavy oil upgrading

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066112A1 (en) * 2004-01-09 2005-07-21 Avantium International B.V. Method for the catalytic reduction of amides
JP2012121843A (ja) * 2010-12-09 2012-06-28 Daicel Corp アミドの脱酸素によるアミンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIYAGAWA, KAZUYA ET AL.: "High selective reduction reaction from amide to amine using molecular hydrogen by Ru-V bimetallic catalyst", SYMPOSIUM A PROCEEDINGS OF 116TH CATALYST SYMPOSIUM, 2015, pages 136 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166093A1 (ja) * 2019-02-15 2020-08-20 国立大学法人大阪大学 ヒドロキシカルボン酸エステルの製造方法
JPWO2020166093A1 (ja) * 2019-02-15 2021-12-16 国立大学法人大阪大学 ヒドロキシカルボン酸エステルの製造方法
JP7369373B2 (ja) 2019-02-15 2023-10-26 国立大学法人大阪大学 ヒドロキシカルボン酸エステルの製造方法
WO2021109109A1 (en) * 2019-12-06 2021-06-10 Rhodia Operations Process for converting amide to amine
EP4069670A4 (en) * 2019-12-06 2023-08-30 Rhodia Operations METHOD OF CONVERTING AMIDE TO AMINE

Also Published As

Publication number Publication date
US20200016576A1 (en) 2020-01-16
DE112018001699T5 (de) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2018181563A1 (ja) アミド化合物の水素化に用いる水素添加反応用触媒およびこれを用いたアミン化合物の製造方法。
JP7368813B2 (ja) アミド化合物の水素化に用いる水素添加反応用触媒およびこれを用いたアミン化合物の製造方法
JP6724253B2 (ja) 金属酸化物支持体を用いた乾式改質触媒及びこれを用いた合成ガスの製造方法
Li et al. Selective hydrogenation of the CC bond in cinnamaldehyde over an ultra-small Pd-Ag alloy catalyst
Venezia et al. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts
Cárdenas-Lizana et al. Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au
Putro et al. Selective hydrogenation of unsaturated carbonyls by Ni–Fe-based alloy catalysts
EP3400099B1 (en) Process for methanol synthesis using an indium oxide based catalyst
Domine et al. Development of metal nanoparticles supported materials as efficient catalysts for reductive amination reactions using high-throughput experimentation
Wang et al. Efficient tandem catalytic N-alkylation of nitroarenes with alcohols via a Co/CeO2-CN catalyst derived from a tri-metallic Co-Zn-Ce coordination polymer
André et al. Nickel carbide (Ni 3 C) nanoparticles for catalytic hydrogenation of model compounds in solvent
JP7421177B2 (ja) 水素化触媒およびこれを用いた水素化有機化合物の製造方法
EP3932545A1 (en) Hydrogenation catalyst used in amide compound hydrogenation and method for producing amine compound using same
CN111545239B (zh) 一种用于甘油氧化的固体催化剂及其制备方法
Mani et al. Continuous hydrocyclization of aqueous levulinic acid to γ-valerolactone over bi-functional Ru/NbOPO4/SBA-15 catalyst under mild conditions
JP7489065B2 (ja) アミド化合物の水素化に用いる水素添加反応用触媒およびこれを用いたアミン化合物の製造方法
RU2496574C1 (ru) Катализатор гидроочистки дизельных фракций
Ghosh et al. Synthesis of mesoporous iridium nanosponge: A highly active, thermally stable and efficient olefin hydrogenation catalyst
CN108654609A (zh) 一种含铂和\或钯负载型催化剂的制备方法及催化剂和甘油氢解方法
Sahlabji et al. Spontaneous epoxidation of styrene catalyzed by flower-like NiO nanoparticles under ambient conditions
KR101655092B1 (ko) 하이드로탈사이트형 화합물로부터 유도된 이산화탄소의 메탄화 반응용 촉매를 이용한 메탄의 제조방법, 메탄화 반응용 촉매, 및 그 촉매의 제조방법
CN107530684A (zh) 一种直接合成过氧化氢的催化剂
Yuan et al. Efficient hydrogenation of N-heteroarenes into N-heterocycles over MOF-derived CeO2 supported nickel nanoparticles
JP7468865B2 (ja) リン化コバルト触媒およびこれを用いた有機化合物の製造方法
JP7481738B2 (ja) 白金担持モリブデン酸化物触媒、ならびにその触媒を利用した一酸化炭素およびメタノールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776828

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18776828

Country of ref document: EP

Kind code of ref document: A1