WO2018181224A1 - ゴム組成物およびその製造方法 - Google Patents

ゴム組成物およびその製造方法 Download PDF

Info

Publication number
WO2018181224A1
WO2018181224A1 PCT/JP2018/012224 JP2018012224W WO2018181224A1 WO 2018181224 A1 WO2018181224 A1 WO 2018181224A1 JP 2018012224 W JP2018012224 W JP 2018012224W WO 2018181224 A1 WO2018181224 A1 WO 2018181224A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
cellulose
component
acid
rubber
Prior art date
Application number
PCT/JP2018/012224
Other languages
English (en)
French (fr)
Inventor
雄介 安川
康太郎 伊藤
昌浩 森田
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2019509837A priority Critical patent/JP7061998B2/ja
Publication of WO2018181224A1 publication Critical patent/WO2018181224A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to a rubber composition and a method for producing the same, and more particularly to a rubber composition containing modified cellulose nanofibers and a method for producing the same.
  • a rubber composition containing a rubber component and cellulosic fibers is known to have excellent mechanical strength.
  • Patent Document 1 a dispersion obtained by fibrillating short fibers having an average fiber diameter of less than 0.5 ⁇ m in water and a rubber latex are mixed and dried to uniformly distribute the short fibers in the rubber. It is described that a master batch of dispersed rubber / short fibers can be obtained, and that a rubber composition having an excellent balance between rubber reinforcement and fatigue resistance can be produced from this master batch.
  • Patent Document 2 describes that dispersibility is improved by adding cellulose nanofibers and a silane coupling agent to a rubber component.
  • Patent Document 3 discloses that a finely modified cellulose fiber obtained by treating a carboxyl group-containing fine cellulose fiber having a predetermined amount of carboxyl groups with a hydrophobic modifying agent having a hydrocarbon group is a rubber component when blended with a rubber component. It is described that the dispersibility in the resin is excellent.
  • an object of the present invention is to provide a rubber composition containing a rubber component and a cellulosic fiber, which has good strength at high strain, and a method for producing the same.
  • the present invention provides the following [1] to [15].
  • the component (C) is oleylamine, stearylamine, tetradecylamine, 1-hexenylamine, 1-dodecenylamine, 9,12-octadecadienylamine, 9,12,15-octadecatrienylamine, and
  • the method for producing a rubber composition according to any one of [1] to [12] comprising the following steps [I] and [II].
  • Step [I] Step of mixing modified cellulose nanofiber and rubber component to obtain a mixture
  • Step [II] Step of adding a surfactant to the resulting mixture and kneading to obtain a rubber composition
  • Step [i] Step of mixing components (A), (B) and (C) to obtain a mixture
  • Step [ii] Step of kneading the resulting mixture to obtain a rubber composition [15] Step below
  • Step [IA] A step of drying the mixture obtained in Step [I] or [i] prior to Step [II] or [ii]
  • the rubber composition of the present invention contains a rubber component and modified cellulose nanofibers, and can exhibit good strength at high strain. Moreover, according to the manufacturing method of this invention, such a rubber composition can be manufactured efficiently.
  • the present invention relates to a rubber composition containing (A) component: modified cellulose nanofiber, (B) component: rubber component, and (C) component: surfactant, and a method for producing the same.
  • the rubber composition contains the components (A) to (C), good strength can be exhibited at high strain.
  • Modified cellulose nanofibers are fine fibers made from modified cellulose.
  • the average fiber diameter of the modified cellulose nanofiber is not particularly limited, but the length weighted average fiber diameter is usually about 2 to 500 nm, preferably 2 to 50 nm.
  • the average fiber length of the modified cellulose nanofiber is not particularly limited, but the length weighted average fiber length is preferably 50 to 2000 nm.
  • Length-weighted average fiber diameter and length-weighted average fiber length (hereinafter simply referred to as “average fiber diameter” or “average fiber length”) are measured using an atomic force microscope (AFM) or a transmission electron microscope (TEM). It is obtained by observing each fiber.
  • the average aspect ratio of the modified cellulose nanofiber is 10 or more. Although an upper limit is not specifically limited, It is 1000 or less. The average aspect ratio can be calculated by the following formula (1).
  • average aspect ratio average fiber length / average fiber diameter
  • Modified cellulose is obtained by modifying cellulose contained in cellulosic materials.
  • the cellulosic material only needs to contain cellulose, and is not particularly limited.
  • the cellulosic material is derived from plants, animals (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (Acetobacter)), and microbial products. Things.
  • Plant-derived cellulosic materials include, for example, wood, bamboo, hemp, jute, kenaf, farmland waste, cloth, pulp (eg, softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), hardwood Bleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, waste paper).
  • pulp eg, softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), hardwood Bleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, waste paper).
  • NUKP softwood unbleached kraft pulp
  • the cellulosic material may be any of these, or a combination of two types of cellulosic materials, preferably a plant- or microbial-derived cellulosic material, more preferably a plant-derived cellulosic material, and even more preferably. Is pulp.
  • Cellulose-based materials usually contain fibrous cellulose (cellulosic fibers).
  • the average fiber diameter of cellulosic fibers is not particularly limited, but the average fiber diameter of cellulosic raw materials derived from softwood kraft pulp, which is a common pulp, is usually about 30 to 60 ⁇ m, and cellulose derived from hardwood kraft pulp.
  • the average fiber diameter of the system raw material is usually about 10 to 30 ⁇ m.
  • the average fiber diameter of cellulosic raw materials derived from pulp that has undergone general refining other than softwood kraft pulp and hardwood kraft pulp is usually about 50 ⁇ m.
  • Cellulose has three hydroxyl groups per glucose unit and can be modified in various ways.
  • modification usually chemical modification
  • esterification such as oxidation, etherification, and phosphoric esterification, silane coupling, fluorination, and cationization.
  • oxidation (carboxylation), etherification (for example, carboxymethylation), cationization, and esterification are preferable, and oxidation (carboxylation) and carboxymethylation are more preferable.
  • a group represented by —COOH is referred to as an acid-type carboxyl group (acid type)
  • a group represented by —COO 2 — is referred to as a salt-type carboxyl group (salt type).
  • the counter cation of the salt-type carboxyl group is not particularly limited, and examples thereof include alkali metal ions such as sodium ions and potassium ions, and other metal ions.
  • the modified cellulose (oxidized cellulose) and modified cellulose nanofiber (oxidized cellulose nanofiber) obtained through oxidation preferably have a structure in which at least one hydroxyl group of cellulose is selectively oxidized.
  • At least one hydroxyl group of the glucopyranose ring constituting cellulose has a carboxyl group, and the hydroxyl group at the 6-position of at least one glucopyranose ring constituting cellulose has a carboxyl group. preferable.
  • the amount of carboxyl groups of the oxidized cellulose and the oxidized cellulose nanofiber is preferably 0.5 mmol / g or more, more preferably 0.6 mmol / g or more, or 0.8 mmol / g or more, further preferably 1 with respect to the absolute dry mass. 0.0 mmol / g or more.
  • the upper limit of the amount is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less, and still more preferably 2.0 mmol / g or less.
  • the amount is preferably 0.5 to 3.0 mmol / g, more preferably 0.6 to 2.0 mmol / g or 0.8 to 2.5 mmol / g, and 1.0 to 2.0 mmol / g. Further preferred.
  • the amount of carboxyl groups of oxidized cellulose nanofibers is usually the same as that of oxidized cellulose before defibration.
  • the oxidation method is not particularly limited, and examples thereof include a method of oxidizing a cellulosic raw material in water using an oxidizing agent in the presence of an N-oxyl compound and at least one of bromide and iodide. According to this method, a carbon atom having a primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized to produce a group selected from the group consisting of an aldehyde group, a carboxyl group, and a carboxylate group.
  • concentration of the cellulose raw material at the time of reaction is not specifically limited, 5 mass% or less is preferable.
  • N-oxyl compound refers to a compound capable of generating a nitroxy radical.
  • examples of the N-oxyl compound include 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “TEMPO”), or 4-hydroxy-2,2,6,6. -Tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “4-hydroxy TEMPO”).
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical
  • 4-hydroxy TEMPO 4-hydroxy-2,2,6,6. -Tetramethyl-1-piperidine-N-oxy radical
  • the amount of the N-oxyl compound used may be an amount that catalyzes the oxidation reaction of cellulose as a raw material.
  • 0.01 mmol or more is preferable and 0.02 mmol or more is more preferable with respect to 1 g of absolutely dry cellulose.
  • the upper limit is preferably 10 mmol or less, more preferably 1 mmol or less, and even more preferably 0.5 mmol or less.
  • the amount of the N-oxyl compound used is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and still more preferably 0.02 to 0.5 mmol with respect to 1 g of absolutely dry cellulose.
  • Bromide is a compound containing bromine, for example, an alkali metal bromide that can be dissociated and ionized in water.
  • the iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used is not particularly limited and can be selected within a range that can promote the oxidation reaction.
  • the total amount of bromide and iodide is preferably 0.1 mmol or more, more preferably 0.5 mmol or more, based on 1 g of absolutely dry cellulose.
  • the upper limit of the amount is preferably 100 mmol or less, more preferably 10 mmol or less, and even more preferably 5 mmol or less.
  • the total amount of bromide and iodide is preferably from 0.1 to 100 mmol, more preferably from 0.1 to 10 mmol, and even more preferably from 0.5 to 5 mmol, based on 1 g of absolutely dry cellulose.
  • the oxidizing agent is not particularly limited, and examples thereof include halogen, hypohalous acid, halous acid, perhalogen acid, salts thereof, halogen oxide, and peroxide.
  • hypohalous acid or a salt thereof is preferable because it is inexpensive and has a low environmental burden
  • hypochlorous acid or a salt thereof is more preferable
  • sodium hypochlorite is more preferable.
  • the amount of the oxidizing agent used is preferably 0.5 mmol or more, more preferably 1 mmol or more, and further preferably 3 mmol or more with respect to 1 g of absolutely dry cellulose.
  • the upper limit of the amount is preferably 500 mmol or less, more preferably 50 mmol or less, further preferably 25 mmol or less, and still more preferably 10 mmol or less. Therefore, the amount of the oxidizing agent used is preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and even more preferably 3 to 10 mmol, based on 1 g of absolutely dry cellulose.
  • the amount of the oxidizing agent used is preferably 1 mol or more with respect to 1 mol of the N-oxyl compound, and the upper limit is preferably 40 mol or less. Therefore, the amount of the oxidizing agent used is preferably 1 to 40 mol with respect to 1 mol of the N-oxyl compound.
  • Conditions such as pH and temperature during the oxidation reaction are not particularly limited. In general, the oxidation reaction proceeds efficiently even under relatively mild conditions.
  • the reaction temperature is preferably 4 ° C or higher, more preferably 15 ° C or higher.
  • the upper limit of the temperature is preferably 40 ° C. or lower, and more preferably 30 ° C. or lower. Accordingly, the reaction temperature is preferably 4 to 40 ° C., and may be about 15 to 30 ° C., that is, room temperature.
  • the pH of the reaction solution is preferably 8 or more, and more preferably 10 or more.
  • the upper limit of pH is preferably 12 or less, and more preferably 11 or less. Accordingly, the pH of the reaction solution is preferably about 8 to 12, more preferably about 10 to 11.
  • reaction medium for the oxidation is preferably water for reasons such as ease of handling and the difficulty of side reactions.
  • the reaction time in the oxidation can be appropriately set according to the progress of the oxidation, and is usually 0.5 hours or more, and the upper limit is usually 6 hours or less, preferably 4 hours or less. Accordingly, the reaction time in the oxidation is usually about 0.5 to 6 hours, preferably about 0.5 to 4 hours.
  • Oxidation may be carried out in two or more stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt generated as a by-product in the first-stage reaction. Can be oxidized well.
  • ozone oxidation Another example of the carboxylation (oxidation) method is ozone oxidation.
  • oxidation reaction By this oxidation reaction, at least the 2- and 6-position hydroxyl groups of the glucopyranose ring constituting the cellulose are oxidized and the cellulose chain is decomposed.
  • the ozone treatment is usually performed by bringing a gas containing ozone into contact with a cellulosic material.
  • the ozone treatment is usually performed by bringing a gas containing ozone into contact with a cellulosic material.
  • the ozone concentration in the gas is preferably 50 g / m 3 or more.
  • the upper limit is preferably 250 g / m 3 or less, more preferably 220 g / m 3. Therefore, the ozone concentration in the gas is preferably 50 ⁇ 250g / m 3, more preferably 50 ⁇ 220g / m 3.
  • the amount of ozone added is preferably 0.1 parts by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid content of the cellulosic material.
  • the upper limit of the amount of ozone added is usually 30 parts by mass or less.
  • the amount of ozone added is preferably 0.1 to 30 parts by mass and more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the solid content of the cellulosic raw material.
  • the ozone treatment temperature is usually 0 ° C. or higher, preferably 20 ° C. or higher, and the upper limit is usually 50 ° C. or lower. Accordingly, the ozone treatment temperature is preferably 0 to 50 ° C., more preferably 20 to 50 ° C.
  • the ozone treatment time is usually 1 minute or longer, preferably 30 minutes or longer, and the upper limit is usually 360 minutes or shorter. Accordingly, the ozone treatment time is usually about 1 to 360 minutes, and preferably about 30 to 360 minutes.
  • the oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid.
  • Examples of the method for the additional oxidation treatment include a method in which an oxidant is dissolved in a polar organic solvent such as water or alcohol to prepare an oxidant solution, and a cellulose-based raw material is immersed in the oxidant solution.
  • the amount of the carboxyl group, carboxylate group, and aldehyde group contained in the oxidized cellulose nanofiber can be adjusted by controlling the oxidizing conditions such as the addition amount of the oxidizing agent and the reaction time.
  • the oxidized cellulose after oxidation is preferably converted into acid-type oxidized cellulose or acid-type oxidized cellulose nanofibers by desalting.
  • the salt-type carboxyl group can be converted to an acid-type carboxyl group by desalting.
  • the oxidized cellulose (nanofiber) that has undergone desalting is referred to as acid-type oxidized cellulose (nanofiber) or oxidized cellulose (nanofiber) (acid type), respectively.
  • Oxidized cellulose and oxidized cellulose (nanofibers) that have not undergone desalting are referred to as salt-type oxidized cellulose (nanofibers) or oxidized cellulose (nanofibers) (salt type).
  • Desalting may be performed at any point before or after defibration (oxidized cellulose nanofiber), which will be described later. Desalting means that a salt (for example, sodium salt) contained in oxidized cellulose (salt type) or oxidized cellulose nanofiber (salt type) is replaced with a proton to form an acid type.
  • Examples of the desalting method after oxidation include a method of adjusting the inside of the system to be acidic, and a method of contacting oxidized cellulose or oxidized cellulose nanofiber with a cation exchange resin.
  • the pH in the system is preferably adjusted to 2 to 6, more preferably 2 to 5, and still more preferably 2.3 to 5.
  • an acid for example, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, sulfurous acid, nitrous acid and phosphoric acid; organic acids such as acetic acid, lactic acid, succinic acid, citric acid and formic acid is usually used.
  • a washing treatment may be appropriately performed.
  • the cation exchange resin both strong acid ion exchange resin and weak acid ion exchange resin can be used as long as the counter ion is H + .
  • the ratio between the oxidized cellulose and the cation exchange resin is not particularly limited, and those skilled in the art can appropriately set the ratio from the viewpoint of efficiently performing proton substitution.
  • the collection of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
  • the ratio of the acid-type carboxyl group is preferably 40% or more, more preferably 60% or more, and 85% or more. More preferably.
  • the ratio of an acid type carboxyl group can be calculated by the following method. First, 250 mL of 0.1 mass% slurry of oxidized cellulose nanofiber (salt type) before desalting is prepared. 0.1 M hydrochloric acid aqueous solution is added to the prepared slurry to adjust the pH to 2.5, and then 0.1 N sodium hydroxide aqueous solution is added to measure the electric conductivity until the pH becomes 11. From the amount (a) of sodium hydroxide consumed in the neutralization step of the weak acid with a slow change in electrical conductivity, the amount of acid-type carboxyl groups and the amount of salt-type carboxyl groups, ie, total The amount of carboxyl groups is calculated.
  • the ratio of acid type carboxyl groups can be calculated using the following formula (4).
  • Ratio of acid-type carboxyl groups (%) (Amount of acid-type carboxyl groups / total amount of carboxyl groups) ⁇ 100
  • etherification examples include etherification by carboxymethylation, etherification by methylation, etherification by ethylation, etherification by cyanoethylation, etherification by hydroxyethylation, etherification by hydroxypropylation, ethylhydroxyethylation And etherification by hydroxypropylmethylation.
  • carboxymethylation etherification by carboxymethylation
  • methylation etherification by ethylation
  • cyanoethylation etherification by hydroxyethylation
  • etherification by hydroxypropylation ethylhydroxyethylation
  • etherification by hydroxypropylation ethylhydroxyethylation
  • etherification by hydroxypropylmethylation ethylhydroxyethylation
  • the modified cellulose (carboxymethylated cellulose) and cellulose nanofiber (carboxymethylated cellulose nanofiber) obtained through carboxymethylation preferably have a structure in which at least one hydroxyl group of cellulose is carboxymethylated.
  • the degree of carboxymethyl substitution per anhydroglucose unit of carboxymethylated cellulose and carboxymethylated cellulose nanofibers is preferably 0.01 or more, more preferably 0.05 or more, and even more preferably 0.10 or more.
  • the upper limit of the degree of substitution is preferably 0.50 or less, more preferably 0.40 or less, and still more preferably 0.35 or less. Accordingly, the degree of carboxymethyl substitution is preferably from 0.01 to 0.50, more preferably from 0.05 to 0.40, and even more preferably from 0.10 to 0.35.
  • the degree of carboxymethyl substitution of carboxymethylated cellulose nanofibers is usually equivalent to that of carboxymethylated cellulose before defibration.
  • the degree of carboxymethyl substitution per glucose unit is measured, for example, by the following method. That is, 1) About 2.0 g of carboxymethylated cellulose (absolutely dry) is precisely weighed and put into a 300 mL conical stoppered Erlenmeyer flask. 2) Add 100 mL of special concentrated nitric acid 100 mL to 1000 mL of methanol, shake for 3 hours, and convert carboxymethyl cellulose salt (carboxymethylated cellulose) to carboxymethylated cellulose having a carboxyl group (hereinafter referred to as “acid type carboxymethyl”). It is also called “modified cellulose”.
  • F Factor of 0.1N H 2 SO 4
  • F ′ Factor of 0.1N NaOH
  • the carboxymethylation method is not particularly limited, and examples thereof include a method in which a cellulose-based material as a starting material is mercerized and then etherified.
  • a solvent is usually used.
  • water, alcohol (for example, lower alcohol), and these mixed solvents are mentioned, for example.
  • the lower alcohol include methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butyl alcohol, isobutyl alcohol, and tertiary butyl alcohol.
  • the mixing ratio of the lower alcohol in the mixed solvent is preferably 60 to 95% by mass.
  • the amount of the solvent is usually at least 3 times the mass of the cellulosic material.
  • the upper limit of the amount is not particularly limited, but is usually 20 mass times or less. Therefore, the amount of the solvent is preferably 3 to 20 times by mass.
  • Mercerization is usually performed by mixing a starting material and a mercerizing agent.
  • mercerizing agents include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • the amount of the mercerizing agent used is preferably 0.5 times mol or more, more preferably 1.0 times mol or more, further preferably 1.5 times mol or more per anhydroglucose residue of the starting material.
  • the upper limit of the amount is usually 20 times mol or less, preferably 10 times mol or less, more preferably 5 times mol or less. Therefore, the amount of the mercerizing agent used is preferably 0.5 to 20 times mol, more preferably 1.0 to 10 times mol, and further preferably 1.5 to 5 times mol.
  • the reaction temperature for mercerization is usually 0 ° C. or higher, preferably 10 ° C. or higher, and the upper limit is usually 70 ° C. or lower, preferably 60 ° C. or lower. Accordingly, the reaction temperature is usually 0 to 70 ° C., preferably 10 to 60 ° C.
  • the reaction time is usually 15 minutes or longer, preferably 30 minutes or longer.
  • the upper limit of the time is usually 8 hours or less, preferably 7 hours or less. Accordingly, the reaction time is usually 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • the etherification reaction is usually performed by adding a carboxymethylating agent to the reaction system after mercerization.
  • a carboxymethylating agent monochloroacetic acid and sodium monochloroacetate are preferable.
  • the addition amount of the carboxymethylating agent is usually preferably 0.05 times mole or more, more preferably 0.5 times mole or more, more preferably 0.8 times mole or more per glucose residue of cellulose contained in the cellulosic raw material.
  • the upper limit of the amount is usually 10.0 times mol or less, preferably 5 times mol or less, more preferably 3 times mol or less, and therefore the amount is preferably 0.05 to 10.0 times mol, More preferably, it is 0.5-5 moles, and still more preferably 0.8-3 moles.
  • the reaction temperature is usually 30 ° C. or higher, preferably 40 ° C. or higher, and the upper limit is usually 90 ° C. or lower, preferably 80 ° C. or lower.
  • the reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C.
  • the reaction time is usually 30 minutes or longer, preferably 1 hour or longer, and the upper limit is usually 10 hours or shorter, preferably 4 hours or shorter. Accordingly, the reaction time is usually 30 minutes to 10 hours, preferably 1 hour to 4 hours.
  • the reaction solution may be stirred as necessary during the carboxymethylation reaction.
  • the carboxymethylated cellulose after etherification is preferably converted into acid-type carboxymethylated cellulose or acid-type carboxymethylated cellulose nanofibers by desalting.
  • the salt-type carboxyl group can be converted to an acid-type carboxyl group by desalting.
  • desalted carboxymethylated cellulose (nanofiber) is referred to as acid-type carboxymethylated cellulose (nanofiber) or carboxymethylated cellulose (nanofiber) (acid type).
  • the desalting may be performed at any time point before defibration (carboxymethylated cellulose) and after defibration (carboxymethylated cellulose nanofiber), which will be described later.
  • Desalting means that a salt (for example, sodium salt) contained in carboxymethylated cellulose (salt type) and carboxymethylated cellulose nanofiber (salt type) is replaced with a proton to form an acid type.
  • Examples of the desalting method after etherification include a method of contacting carboxymethylated cellulose or carboxymethylated cellulose nanofiber with a cation exchange resin.
  • the cation exchange resin both strong acid ion exchange resin and weak acid ion exchange resin can be used as long as the counter ion is H + .
  • the ratio between the carboxymethylated cellulose and the cation exchange resin when they are brought into contact with each other is not particularly limited, and those skilled in the art can appropriately set them from the viewpoint of efficiently performing proton substitution.
  • the ratio of the aqueous dispersion after addition of the cation exchange resin is preferably adjusted to 2 to 6, more preferably 2 to 5, with respect to the aqueous dispersion of carboxymethylated cellulose nanofibers. can do.
  • the collection of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
  • the acid-type carboxymethylated cellulose and acid-type carboxymethylated cellulose nanofiber used in the present invention preferably have an acid-type carboxyl group ratio of 40% or more, more preferably 60% or more, 85 % Or more is more preferable.
  • the ratio of the acid-type carboxyl group can be calculated by the following method. First, 250 mL of 0.1 mass% slurry of carboxymethylated cellulose nanofiber (salt type) before desalting is prepared. 0.1 M hydrochloric acid aqueous solution is added to the prepared slurry to adjust the pH to 2.5, and then 0.1 N sodium hydroxide aqueous solution is added to measure the electric conductivity until the pH becomes 11. From the amount (a) of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electrical conductivity is gradual, the following formula (6) is used to determine the amount of acid-type carboxyl groups and the amount of salt-type carboxyl groups: The amount of carboxyl groups is calculated.
  • the ratio of acid-type carboxyl groups can be calculated using the following formula (8).
  • Ratio of acid type carboxyl groups (%) (Amount of acid type carboxyl groups / total amount of carboxyl groups) ⁇ 100
  • Modified cellulose (cationized cellulose) and cellulose nanofiber (cationized cellulose nanofiber) obtained through cationization contain at least one cation such as ammonium, phosphonium, sulfonium, or a group having the cation in the molecule. It is preferable to include at least one group having ammonium, and it is more preferable to include at least one group having quaternary ammonium.
  • the degree of cation substitution per glucose unit of the cationized cellulose and the cationized cellulose nanofiber is preferably 0.01 or more, more preferably 0.02 or more, and further preferably 0.03 or more.
  • the upper limit of the degree of substitution is preferably 0.40 or less, more preferably 0.30 or less, and still more preferably 0.20 or less. Accordingly, the degree of cation substitution is preferably from 0.01 to 0.40, more preferably from 0.02 to 0.30, and even more preferably from 0.03 to 0.20.
  • the degree of cation substitution per glucose unit is 0.01 or more, nano-defibration can be sufficiently performed.
  • the degree of cation substitution per glucose unit is 0.40 or less, swelling or dissolution can be suppressed, whereby the fiber form can be maintained, and a situation where nanofibers cannot be obtained can be prevented.
  • the degree of cation substitution of the cationized cellulose nanofiber is usually the same as that of the cationized cellulose before defibration.
  • the degree of cation substitution per glucose unit of cationized cellulose and cationized cellulose nanofibers can be adjusted by the amount of cationizing agent added and the composition ratio of water or alcohol.
  • the degree of cation substitution refers to the number of substituents introduced per unit structure (glucopyranose ring) constituting cellulose. That is, the degree of cation substitution is defined as “a value obtained by dividing the number of moles of the introduced substituent by the total number of moles of hydroxyl groups of the glucopyranose ring”. Since pure cellulose has three substitutable hydroxyl groups per unit structure (glucopyranose ring), the theoretical maximum value of the degree of cation substitution is 3 (the minimum value is 0).
  • the degree of cation substitution can be determined as an average value of the number of moles of substituents per mole of anhydroglucose unit using the following formula (9).
  • the method of cationization is not particularly limited, and examples thereof include a method in which a cationizing agent and a catalyst are reacted with a cellulose-based raw material in the presence of water or alcohol.
  • the cationizing agent include glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydride (eg, 3-chloro-2-hydroxypropyltrimethylammonium hydride) or a halohydrin type thereof. By using any of these, a cationized cellulose having a group containing quaternary ammonium can be obtained.
  • the catalyst include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • the alcohol examples include alcohols having 1 to 4 carbon atoms.
  • the amount of the cationizing agent is preferably 5 parts by mass or more, more preferably 10 parts by mass or more with respect to 100 parts by mass of the cellulosic material.
  • the upper limit of the amount is usually 800 parts by mass or less, preferably 500 parts by mass or less.
  • the amount of the catalyst is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the cellulosic raw material.
  • the upper limit of the amount is usually 20 parts by mass or less, preferably 15 parts by mass or less.
  • the amount of alcohol is preferably 50 parts by mass or more, more preferably 100 parts by mass or more with respect to 100 parts by mass of the cellulosic material.
  • the upper limit of the amount is usually 50000 parts by mass or less, preferably 500 parts by mass or less.
  • the reaction temperature during cationization is usually 10 ° C or higher, preferably 30 ° C or higher, and the upper limit is usually 90 ° C or lower, preferably 80 ° C or lower.
  • the reaction time is usually 10 minutes or more, preferably 30 minutes or more, and the upper limit is usually 10 hours or less, preferably 5 hours or less.
  • the reaction solution may be stirred as necessary during the cationization reaction.
  • the cationized cellulose after cationization is preferably converted into base-type cationized cellulose or base-type cationized cellulose nanofibers by desalting.
  • the salt in the cationized cellulose can be converted to a base by desalting.
  • cationized cellulose (nanofibers) that has undergone desalting is referred to as basic cationized cellulose (nanofibers) or cationized cellulose (nanofibers) (base type).
  • cationized cellulose and cationized cellulose nanofibers that have not undergone desalting are referred to as salt-type cationized cellulose (nanofibers) or cationized cellulose (nanofibers) (salt type).
  • Desalting may be performed at any time point before defibration (cationized cellulose) and after defibration (cationized cellulose nanofiber), which will be described later.
  • Desalting means that a salt (for example, Cl ⁇ ) contained in cationized cellulose (salt type) and cationized cellulose nanofiber (salt type) is replaced with a base to obtain a basic type.
  • Examples of the desalting method after cationization include a method of bringing cationized cellulose or cationized cellulose nanofibers into contact with an anion exchange resin.
  • an anion exchange resin any of a strong basic ion exchange resin and a weak basic ion exchange resin can be used as long as the counter ion is OH 2 — .
  • the ratio of both when the modified cellulose is brought into contact with the anion exchange resin is not particularly limited, and those skilled in the art can appropriately set from the viewpoint of efficiently performing cation substitution.
  • the ratio is adjusted so that the pH of the aqueous dispersion after addition of the anion exchange resin is preferably 8 to 13 and more preferably 9 to 13 with respect to the aqueous dispersion of cationized cellulose nanofibers. be able to.
  • the collection of the anion exchange resin after contact may be performed by a conventional method such as suction filtration.
  • the esterification method is not particularly limited, and examples thereof include a method (phosphate esterification method) in which a compound having a phosphate group is reacted with a cellulose-based raw material.
  • the phosphoric acid esterification method include a method of mixing a powder or aqueous solution of a compound having a phosphoric acid group with a cellulose-based raw material, a method of adding an aqueous solution of a compound having a phosphoric acid group to a slurry of a cellulose-based raw material, and the like. The latter is preferred. Thereby, the uniformity of reaction can be improved and esterification efficiency can be improved.
  • Examples of the compound having a phosphoric acid group include phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, esters thereof, and salts thereof. These compounds are low-cost, easy to handle, and can introduce a phosphate group into cellulose to improve the fibrillation efficiency.
  • Examples of the compound having a phosphate group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, Examples include tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium metaphosphate.
  • the compound having a phosphate group may be one kind or a combination of two or more kinds.
  • phosphoric acid phosphoric acid sodium salt, phosphoric acid potassium salt, phosphoric acid
  • Ammonium salt is preferable
  • sodium salt of phosphoric acid is more preferable
  • sodium dihydrogen phosphate and disodium hydrogen phosphate are more preferable.
  • the pH of the aqueous solution of the compound having a phosphoric acid group is preferably 7 or less because the efficiency of introducing a phosphoric acid group is increased. From the viewpoint of suppressing the hydrolysis of pulp fibers, a pH of 3 to 7 is more preferable.
  • a compound having a phosphate group is added to a suspension of a cellulose-based raw material (for example, a solid content concentration of 0.1 to 10% by mass) with stirring to introduce the phosphate group into the cellulose.
  • the amount of the phosphoric acid group-containing compound is preferably 0.2 parts by mass or more, and more preferably 1 part by mass or more as the amount of phosphorus atoms.
  • the upper limit is preferably 500 parts by mass or less, and more preferably 400 parts by mass or less. Thereby, the yield corresponding to the usage-amount of the compound which has a phosphate group can be obtained efficiently. Therefore, 0.2 to 500 parts by mass is preferable, and 1 to 400 parts by mass is more preferable.
  • a basic compound When reacting a cellulose-based material with a compound having a phosphate group, a basic compound may be further added to the reaction system.
  • a method of adding a basic compound to a reaction system for example, a method of adding a basic compound to a slurry of a cellulose-based material, an aqueous solution of a compound having a phosphate group, or a slurry of a cellulose-based material and a compound having a phosphate group Is mentioned.
  • the basic compound is not particularly limited, but is preferably basic, and more preferably a nitrogen-containing compound that exhibits basicity. “Show basic” usually means that the aqueous solution of the basic compound is pink to red in the presence of the phenolphthalein indicator and / or the pH of the aqueous solution of the basic compound is greater than 7. .
  • the basic compound is preferably a compound having a nitrogen atom exhibiting basicity, and more preferably a compound having an amino group exhibiting basicity. Examples of the compound having a basic amino group include urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, and hexamethylenediamine.
  • the amount of the basic compound added is preferably 2 to 1000 parts by mass, and more preferably 100 to 700 parts by mass.
  • the reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C.
  • the reaction time is not particularly limited, but is usually about 1 to 600 minutes, preferably 30 to 480 minutes. When the conditions for the esterification reaction are within any of these ranges, it is possible to suppress the cellulose from being excessively esterified and easily dissolved, and the yield of phosphorylated esterified cellulose can be improved.
  • a suspension of phosphate esterified cellulose or phosphate ester cellulose nanofiber is usually obtained.
  • the suspension of phosphate esterified cellulose or phosphate ester cellulose nanofiber is dehydrated as necessary.
  • Heat treatment is preferably performed after dehydration. Thereby, hydrolysis of cellulose can be suppressed.
  • the heating temperature is preferably 100 to 170 ° C. While water is included in the heat treatment, heat is performed at 130 ° C or less (preferably 110 ° C or less), and after removing water, the heat treatment is performed at 100 to 170 ° C. More preferably.
  • the phosphoric acid esterification reaction introduces a phosphate group substituent into the cellulose and electrically repels the cellulose. Therefore, phosphate esterified cellulose can be easily defibrated to cellulose nanofibers.
  • the degree of phosphate group substitution per glucose unit in the phosphate esterified cellulose is preferably 0.001 or more. Thereby, sufficient defibration (for example, nano defibration) can be implemented.
  • the upper limit is preferably 0.40 or less. Thereby, swelling or melt
  • the phosphate group substitution degree per glucose unit of the phosphate esterified cellulose nanofiber is more preferably 0.001 to 0.40.
  • the phosphorylated cellulose is subjected to a washing treatment such as washing with cold water after boiling. Thereby, defibration can be performed efficiently.
  • the defibration may be performed on the cellulose-based raw material before modification or may be performed on the modified cellulose, but the latter is preferable because energy required for defibration is reduced by modification.
  • the defibrating process may be performed once or a plurality of times.
  • defibration may be performed before and after desalting.
  • the device used for defibration is not particularly limited, and examples thereof include high-speed rotation type, colloid mill type, high-pressure type, roll mill type, ultrasonic type and the like, and high-pressure or ultra-high-pressure homogenizers are preferable, and wet type High pressure or ultra high pressure homogenizers are more preferred.
  • These apparatuses are preferable because a strong shearing force can be applied to the modified cellulose.
  • the shear rate is preferably 1000 sec -1 or more. Thereby, there are few aggregation structures and it can be made into a nanofiber uniformly.
  • the pressure applied to the modified cellulose is preferably 50 MPa or more, more preferably 100 MPa or more, and further preferably 140 MPa or more.
  • Defibration is usually performed in a dispersion.
  • the dispersion is usually an aqueous dispersion such as an aqueous dispersion.
  • preliminary processing may be performed as necessary. Examples of the pretreatment include mixing, stirring, and emulsification, and may be performed using a known device (for example, a high-speed shear mixer).
  • the lower limit of the solid content concentration of the cellulose raw material or modified cellulose in the dispersion is usually 0.1% by mass or more, preferably Is 0.2% by mass or more, more preferably 0.3% by mass or more.
  • the upper limit is usually 10% by mass or less, preferably 6% by mass or less.
  • filtration may be performed as necessary, and it is preferable to perform filtration after defibration of the modified cellulose.
  • Foreign matter such as undefibrated fibers may remain in the dispersion of modified cellulose nanofibers due to insufficient defibration, and such foreign matter can be removed by filtration.
  • the rubber composition is formed with the foreign matter remaining, the rubber composition is easily broken starting from the foreign matter, and disadvantages such as a decrease in strength may occur. Therefore, this can be prevented by filtration.
  • the filtration treatment includes, for example, a treatment of subjecting the dispersion of modified cellulose nanofibers (usually an aqueous dispersion) to pressure filtration or filtration under reduced pressure with a differential pressure of 0.01 MPa or more, preferably 0.01 to 10 MPa. Can be mentioned.
  • a differential pressure 0.01 MPa or more
  • a sufficient amount of filtration treatment can be obtained without performing substantial dilution (dilution is preferably not performed in consideration of the subsequent steps).
  • the differential pressure is 0.01 to 10 MPa, a sufficient amount of filtration treatment can be obtained even when the concentration of the modified cellulose nanofibers in the dispersion or the viscosity of the dispersion is high.
  • the concentration of the modified cellulose nanofiber in the modified cellulose nanofiber dispersion during filtration is usually 0.1 to 5% by mass, preferably 0.2 to 4% by mass, more preferably 0.5. To 3% by mass.
  • apparatuses used for filtration include Nutsche type, candle type, leaf disk type, drum type, filter press type, belt filter type, and the like.
  • the amount of filtration treatment is preferably 10 L / m 2 or more per hour, and more preferably 100 L / m 2 or more.
  • Examples of the filtration method include auxiliary filtration using a filter aid and filtration of a filter medium using a porous filter medium.
  • One filtration method may be selected and implemented, or two or more filtration methods may be used. You may use together. In this case, the order of the filtration methods can be arbitrarily selected.
  • any one filtration process should just be implemented with the said filtration differential pressure, All the filtration processes may be implemented with the said filtration differential pressure.
  • the filter aid is preferably a substantially granular material.
  • the average particle diameter of the granular material is preferably 150 ⁇ m or less, more preferably 1 to 150 ⁇ m, still more preferably 10 to 75 ⁇ m, still more preferably 15 to 45 ⁇ m, and particularly preferably 25 to 45 ⁇ m.
  • the average particle diameter exceeds 1 ⁇ m, a decrease in filtration rate can be suppressed.
  • the average particle diameter is less than 150 ⁇ m, foreign matters can be sufficiently captured, and filtration can be performed efficiently.
  • the shape of the filter aid examples include a substantially spherical shape such as diatomaceous earth and a rod shape such as powdered cellulose.
  • the average particle diameter can be measured with a laser diffraction measuring instrument in accordance with JIS Z8825-1.
  • Auxiliary filtration using a filter aid includes pre-coat filtration that forms a layer of filter aid on the filter medium, and body feed filtration that premixes a filter aid and a dispersion of modified cellulose nanofibers and filters them. Any of these methods may be used, or both methods may be combined. Combining both is more preferable because the throughput is improved and the quality of the filtrate is improved. Moreover, you may perform multistage adjuvant filtration by changing the kind of filter aid. When carrying out two or more stages of filtration steps using a filter aid, it is sufficient that any one filtration step is carried out at the filtration differential pressure, and all filtration steps are carried out at the filtration differential pressure. Good.
  • the filter aid either an inorganic compound or an organic compound may be used, but a granular one is preferred.
  • Preferable examples of the filter aid include diatomaceous earth, powdered cellulose, pearlite, and activated carbon.
  • Diatomaceous earth refers to soft rock or soil mainly composed of diatom shell, and is mainly composed of silica.
  • Diatomaceous earth may contain components other than silica, such as alumina, iron oxide, and alkali metal oxides. Further, a porous material having a high porosity and a cake bulk density of about 0.2 to 0.45 g / cm 3 is preferable.
  • fired products and flux fired products are preferred, and freshwater diatomaceous earth is also preferred. Examples of such diatomaceous earth include Celite (registered trademark) manufactured by Celite and Ceratom (registered trademark) manufactured by Eagle Pitcher Minerals.
  • Powdered cellulose refers to rod-like particles made of microcrystalline cellulose obtained by removing non-crystalline parts of wood pulp by acid hydrolysis, and then pulverizing and sieving.
  • the degree of polymerization of cellulose in the powdered cellulose is preferably about 100 to 500.
  • the crystallinity of powdered cellulose by X-ray diffraction method is preferably 70 to 90%.
  • the volume average particle size measured by the laser diffraction particle size distribution analyzer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. When the volume average particle diameter is 100 ⁇ m or less, a cellulose nanofiber dispersion excellent in fluidity can be obtained.
  • the powdered cellulose is, for example, a rod shaft produced by a method in which an undegraded residue obtained after acid hydrolysis of a selected pulp is purified and dried, pulverized and sieved, and has a certain particle size distribution.
  • Examples thereof include crystalline cellulose powder, KC Flock (registered trademark) manufactured by Nippon Paper Industries, Theolas (registered trademark) manufactured by Asahi Kasei Chemicals, and Avicel (registered trademark) manufactured by FMC.
  • filter media examples include filters made of materials such as metal fibers, cellulose, polypropylene, polyester, nylon, glass, cotton, polytetrafluoroethylene, polyphenylene sulfide, filters, membranes, filter cloths, and filters made by sintering metal powder. Or a slit filter. Among these, a metal filter or a membrane filter is preferable.
  • the preferred average pore diameter of the filter medium is not particularly limited when used in combination with the above filter aid.
  • the average pore diameter of the filter medium is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, and still more preferably 1 ⁇ 30 ⁇ m.
  • the average pore size is smaller than 0.01 ⁇ m, a sufficient filtration rate may not be obtained.
  • it is larger than 100 ⁇ m it is difficult to obtain a filtering effect because foreign matters cannot be captured.
  • the dispersibility of the modified cellulose nanofiber dispersion after filtration is preferably evaluated by the following method. After the surface tension adjusting agent is added to the modified cellulose nanofiber dispersion, it is thinned. A pair of polarizing plates are arranged on both surfaces of the thin film so that the polarization axes are orthogonal to each other. Light is irradiated from one polarizing plate side, and a transmission image is acquired from the other polarizing plate side. The image is subjected to image analysis to determine the foreign matter area, and the foreign matter area ratio per 1 g of the cellulose nanofiber dry mass is calculated.
  • the cellulose nanofiber dispersion after filtration preferably has a foreign matter area ratio of 25% or less in the evaluation method.
  • the component (A) may be one type of modified cellulose nanofiber or a combination of two or more types of modified cellulose nanofiber.
  • the component (A) preferably contains at least one carboxyl group-containing cellulose nanofiber such as oxidized cellulose nanofiber or carboxymethylated cellulose nanofiber, and contains at least oxidized cellulose nanofiber and / or carboxymethylated cellulose nanofiber. More preferably.
  • the hydrophilic group of the surfactant that is the component (C) and the carboxyl group of the carboxyl group-containing cellulose nanofiber strongly interact, and the compatibility between the cellulose nanofiber and the rubber component that is the component (B) is compatible.
  • the cellulose nanofibers can be more uniformly dispersed in the rubber component, and the strength of the rubber composition can be significantly improved.
  • the component (A) may be a mixture of modified cellulose nanofibers and a water-soluble polymer.
  • water-soluble polymers include cellulose derivatives (for example, carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, ethylcellulose), xanthan gum, xyloglucan, dextrin, dextran, carrageenan, locust bean gum, alginic acid, alginate, pullulan, starch, Snack flour, scrap flour, positive starch, phosphorylated starch, corn starch, gum arabic, gellan gum, gellan gum, polydextrose, pectin, chitin, water-soluble chitin, chitosan, casein, albumin, soy protein lysate, peptone, polyvinyl alcohol, polyacrylamide , Sodium polyacrylate, polyvinylpyrrolidone, polyvinyl acetate, polyamino acid, polylactic acid, polymalic acid, polyglycerin, late
  • the rubber component is a raw material of rubber and refers to a material that is crosslinked to become rubber.
  • the rubber component there are a rubber component for natural rubber and a rubber component for synthetic rubber.
  • the rubber component for natural rubber includes, for example, natural rubber (NR) in a narrow sense without chemical modification; chemically modified natural rubber such as chlorinated natural rubber, chlorosulfonated natural rubber, and epoxidized natural rubber; Rubber; Deproteinized natural rubber.
  • Examples of rubber components for synthetic rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer.
  • BR butadiene rubber
  • SBR styrene-butadiene copolymer rubber
  • IR isoprene rubber
  • NBR acrylonitrile-butadiene rubber
  • chloroprene rubber chloroprene rubber
  • styrene-isoprene copolymer examples include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer.
  • Diene rubbers such as united rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber; butyl rubber (IIR), ethylene-propylene rubber (EPM, EPDM), acrylic rubber (ACM), epichlorohydride Non-diene rubbers such as rubber (CO, ECO), fluoro rubber (FKM), silicone rubber (Q), urethane rubber (U), and chlorosulfonated polyethylene (CSM). Of these, natural rubber and diene rubber are preferable, and diene natural rubber (narrowly defined natural rubber (NR) without chemical modification) is more preferable.
  • a component may be used alone or in combination of two or more.
  • a surfactant is a substance that can have at least one hydrophilic group and at least one hydrophobic group in the molecule, and a precursor thereof (for example, both of the above groups can be present in the presence of a metal salt). Substance).
  • the surfactant include a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • cationic surfactant examples include aliphatic amines (for example, oleylamine, stearylamine, tetradecylamine, 1-hexenylamine, 1-dodecenylamine, 9,12-octadecadienylamine (linoleamine), 9 , 12,15-octadecatrienylamine, linoleylamine, dodecylamine, propylamine, methylamine and other monoalkylamines, dialkylamines, trialkylamines), tetramethylammonium salts (eg, tetramethylammonium chloride, water) Tetramethylammonium oxide), tetrabutylammonium salts (eg, tetrabutylammonium chloride), alkyltrimethylammonium salts (eg, alkyltrimethylammonium chloride, octyltrimethylammonium chloride, Decyltrimethylammonium chloride
  • anionic surfactant examples include carboxylic acids (for example, sodium octoate, sodium decanoate, sodium laurate, sodium myristate, sodium palmitate, sodium stearate, perfluorononanoic acid, sodium N-lauroyl sarcosine, Sodium cocoyl glutamate, alphasulfo fatty acid methyl ester salt), sulfonic acid (for example, sodium 1-hexanesulfonate, sodium 1-octanesulfonate, sodium 1-decanesulfonate, sodium 1-dodecanesulfonate, perfluorobutanesulfonic acid, Sodium alkylbenzene sulfonate, sodium toluene sulfonate, sodium cumene sulfonate, sodium octyl benzene sulfonate, naphthalene sulfone Sodium, disodium naphthalene disulfonate, tri
  • Nonionic surfactants include, for example, glycerin fatty acid esters (eg, glyceryl laurate, glyceryl monostearate), sorbitan fatty acid esters, polyoxyethylene alkyl ethers (eg, pentaethylene glycol monododecyl ether, octaethylene glycol monoester).
  • glycerin fatty acid esters eg, glyceryl laurate, glyceryl monostearate
  • sorbitan fatty acid esters eg, polyoxyethylene alkyl ethers (eg, pentaethylene glycol monododecyl ether, octaethylene glycol monoester).
  • Dodecyl ether eg, polyoxyethylene alkylphenyl ether, octylphenol ethoxylate, nonylphenol ethoxylate
  • polyoxyalkylene glycol eg, polyoxyethylene polyoxypropylene glycol
  • polyoxyalkylene sorbitan fatty acid ester eg, , Polyoxyethylene sorbitan fatty acid ester, polyoxyethylene hexitan fatty acid Steal, sorbitan fatty acid ester polyethylene glycol
  • alkanolamides eg, lauric acid diethanolamide, oleic acid diethanolamide, stearic acid diethanolamide, cocamide DEA
  • alkyl glucosides eg, octyl glucoside, decyl glucoside, lauryl glucoside
  • amphoteric surfactants include higher alcohols (eg, cetanol, stearyl alcohol, oleyl alcohol), betaine compounds (eg, lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, dodecylaminomethyldimethylsulfopropylbetaine, octadecyl).
  • higher alcohols eg, cetanol, stearyl alcohol, oleyl alcohol
  • betaine compounds eg, lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, dodecylaminomethyldimethylsulfopropylbetaine, octadecyl.
  • the component (C) is preferably an amphoteric surfactant and a cationic surfactant, more preferably a cationic surfactant, and still more preferably an aliphatic amine.
  • the aliphatic amine is selected from the group consisting of 15 to 20 carbon atoms, containing at least one (preferably one) unsaturated bond in the structure, and being a primary amine. It is preferable to satisfy one or more, more preferably all, oleylamine, stearylamine or 1-hexenylamine is more preferable, and oleylamine is even more preferable.
  • Component (C) may be a single surfactant or a combination of two or more surfactants.
  • composition> The contents of the components (A) to (C) in the rubber composition are not particularly limited, but preferred amounts are as follows.
  • the content of the component (A) is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and further preferably 3 parts by mass or more with respect to 100 parts by mass of the component (B).
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less. Thereby, the workability in the manufacturing process can be maintained. Accordingly, 1 to 50 parts by mass is preferable, 2 to 40 parts by mass is more preferable, and 3 to 30 parts by mass is further preferable.
  • the content of the component (C) is preferably 5 or 10 parts by mass or more, more preferably 15 or 20 parts by mass or more, and further preferably 40 parts by mass or more with respect to 100 parts by mass of the component (A).
  • the upper limit is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and still more preferably 70 parts by mass or less.
  • the workability in the manufacturing process can be maintained. Accordingly, 5 to 100 parts by mass or 10 to 100 parts by mass is preferable, 15 to 80 parts by mass or 20 to 80 parts by mass is more preferable, and 40 to 70 parts by mass is further preferable.
  • the rubber composition may further contain one or two or more optional components according to demands such as uses of the rubber composition described later.
  • Optional components include, for example, reinforcing agents (for example, carbon black, silica), silane coupling agents, crosslinking agents, vulcanization accelerators, vulcanization acceleration aids (for example, zinc oxide and stearic acid), oils, cured resins And compounding agents that can be used in the rubber industry, such as waxes, anti-aging agents, and coloring agents. Of these, vulcanization accelerators and vulcanization accelerators are preferred.
  • the content of the optional component may be appropriately determined according to conditions such as the type of the optional component, and is not particularly limited.
  • the rubber composition is an unvulcanized rubber composition or a final product
  • the crosslinking agent include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group.
  • sulfur is preferable.
  • 1.0 mass part or more is preferable with respect to 100 mass parts of (B) component, as for content of a crosslinking agent, 1.5 mass parts or more is more preferable, and 1.7 mass parts or more is further more preferable.
  • the upper limit is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and still more preferably 5 parts by mass or less.
  • Examples of the vulcanization accelerator include Nt-butyl-2-benzothiazole sulfenamide and N-oxydiethylene-2-benzothiazolyl sulfenamide.
  • content of a vulcanization accelerator 0.1 mass part or more is preferable with respect to 100 mass parts of (B) component, 0.3 mass part or more is more preferable, and 0.4 mass part or more is further more preferable.
  • the upper limit is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and still more preferably 2 parts by mass or less.
  • the components (A) to (C) and the optional component may be present independently, or may be present as a reaction product of at least two components.
  • the reaction product include a reaction product formed by ionic bonding of the component (C) and the component (A), and specifically include aliphatic amine-modified oxidized cellulose nanofibers.
  • the content of each component in the rubber composition usually conforms to the amount used as a raw material.
  • the use of the rubber composition of the present invention is not particularly limited as long as it is a composition for obtaining rubber as a final product. That is, it may be an intermediate for producing rubber (masterbatch), an unvulcanized rubber composition containing a vulcanizing agent, or a rubber as a final product.
  • the use of the final product is not particularly limited, for example, transportation equipment such as automobiles, trains, ships, airplanes, etc .; electrical appliances such as personal computers, televisions, telephones, watches; mobile communication equipment such as mobile phones; portable music playback equipment, video Recycling equipment, printing equipment, copying equipment, sports equipment; building materials; office equipment such as stationery; containers; containers.
  • transportation equipment such as automobiles, trains, ships, airplanes, etc .
  • electrical appliances such as personal computers, televisions, telephones, watches
  • mobile communication equipment such as mobile phones
  • building materials office equipment such as stationery
  • office equipment such as stationery
  • containers containers.
  • the rubber composition of the present invention is preferably produced by a production method comprising the following steps [I] and [II] or a production method comprising the following steps [i] and [ii]. It is more preferable to manufacture by this manufacturing method.
  • Step [ i] Step of mixing components (A), (B) and (C) to obtain a mixture Step [ii]: Step of kneading the resulting mixture to obtain a rubber composition
  • a rubber composition having good strength at high strain can be produced through the steps [I] and [II] or the steps [i] and [ii].
  • specific examples and amounts of the components (A) to (C) and optional components are as described above.
  • the form of the component (B) to be mixed is not particularly limited.
  • examples thereof include a solid rubber component, a dispersion (latex) in which the rubber component is dispersed in a dispersion medium, and a solution dissolved in a solvent.
  • examples of the dispersion medium and the solvent include water and organic solvents.
  • the amount of the liquid is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the rubber component (the total amount when two or more rubber components are used).
  • Mixing can be carried out using a known apparatus such as a homomixer, a homogenizer, a propeller stirrer or the like.
  • the mixing temperature is not limited, but room temperature (20 to 30 ° C.) is preferable. You may adjust mixing time suitably.
  • the form of the component (A) used for mixing is not particularly limited.
  • examples include a dispersion in which modified cellulose nanofibers are dispersed in a dispersion medium, a dry solid of the dispersion, and a wet solid of the dispersion.
  • the concentration of the modified cellulose nanofibers in the dispersion may be 0.1 to 5% (w / v) when the dispersion medium is water, and the dispersion medium contains water and an organic solvent such as alcohol. 0.1 to 20% (w / v).
  • the wet solid is a solid in an intermediate state between the dispersion and the dry solid.
  • the amount of the dispersion medium in the wet solid obtained by dehydrating the dispersion by a usual method is preferably 5 to 15% by mass with respect to the modified cellulose nanofiber. By adding the liquid or further drying, the amount of the dispersion medium in the wet solid can be adjusted appropriately.
  • the component (A) may be a combination of two or more modified cellulose nanofibers.
  • the form when the mixture of the modified cellulose nanofiber as the component (A) and the water-soluble polymer solution is used for mixing is not particularly limited, and for example, a mixed solution, a dry solid of the mixed solution, a mixed solution Liquid wet solids. The amount of liquid in the mixture and its dry solids may be in the above range.
  • the addition timing of the component (C) is not particularly limited, and the components (A) to (C) may be added and mixed at the same time, or after the components (A) and (C) are mixed in advance ( Component B) may be added, the latter being preferred.
  • step [IA] Drying process>
  • the mixture obtained in steps [I] and [i] is preferably subjected to step [IA] before being subjected to steps [II] and [ii].
  • step [IA] the mixture obtained in step [I] or [i] is dried.
  • the drying method is not particularly limited, and any of a heating method, a coagulation method, and a combination thereof may be used, but a heat treatment is preferable.
  • the conditions for the heat treatment are not particularly limited, but an example is as follows.
  • the heating temperature is preferably 40 ° C. or higher and lower than 100 ° C.
  • the treatment time is preferably 1 to 24 hours. By setting the heating temperature or the heating time to the above conditions, damage to the rubber component can be suppressed.
  • the mixture after drying may be completely dried or the solvent may remain. Further, the drying method is not limited to the above method, and a conventionally known method for removing the solvent may be appropriately selected.
  • the mixture obtained through step [I], [i] or [IA] is kneaded.
  • the kneading may be performed using a kneader according to a known method.
  • the kneader include open kneaders such as two rolls and three rolls, closed kneaders such as meshing Banbury mixers, tangential Banbury mixers, and pressure kneaders.
  • Steps [II] and [ii] may be steps through multi-stage kneading. For example, a combination of kneading with a closed kneader in the first stage and re-kneading with an open kneader thereafter can be mentioned.
  • step [II] component (C): surfactant is added to the mixture.
  • Component (C) is added when kneading the mixture obtained in step [I] or the mixture obtained through step [IA] using the kneader.
  • the time of addition is not particularly limited, and examples thereof include one at the start of kneading, one during kneading, and both.
  • the addition method of a component is not specifically limited, For example, the predetermined amount lump addition and sequential addition are mentioned. Any method may be used as long as the surfactant is uniformly kneaded with the mixture, and is not particularly limited.
  • any additive such as a filler and a vulcanizing agent may be added and kneaded together with the mixture.
  • the order of addition of the mixture, component (C), and optional additives is not limited. After the mixture is first put into the kneader, the surfactant and optional additives may be added and kneaded. Conversely, after the component (C) and optional additives are added first, It may be added and kneaded. Component (C) and optional additives may be blended in advance in the mixture and added to the kneader. When a vulcanizing agent is added, the vulcanizing agent is preferably added at the final stage of kneading. The kneading time may be any as long as the component (C) is uniformly kneaded with the mixture, but is usually about 3 to 20 minutes.
  • the kneading temperature may be about room temperature (for example, about 15 to 30 ° C.), but may be heated to a certain high temperature.
  • the upper limit of the temperature is usually 150 ° C. or lower, preferably 140 ° C. or lower, more preferably 130 ° C. or lower.
  • the minimum of temperature is 15 degreeC or more, Preferably it is 20 degreeC or more, More preferably, it is 30 degreeC or more.
  • the kneading temperature is preferably 15 to 150 ° C, more preferably 20 to 140 ° C, and further preferably 30 to 130 ° C.
  • the obtained kneaded material is preferably used as it is as a master batch.
  • the obtained kneaded material may be used as a final product.
  • arbitrary additives such as a rubber component and a vulcanizing agent are additionally added to the kneaded product and kneaded again.
  • steps [II] and [ii] after kneading is completed, molding may be performed as necessary.
  • the molding include mold molding, injection molding, extrusion molding, hollow molding, and foam molding, and an apparatus may be appropriately selected according to the shape, application, and molding method of the final product.
  • steps [II] and [ii] it is preferable to heat after completion of kneading, preferably after molding.
  • a crosslinking agent preferably a crosslinking agent and a vulcanization accelerator
  • vulcanization vulcanization treatment
  • the heating temperature is preferably 150 ° C. or higher, and the upper limit is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. Therefore, about 150 to 200 ° C. is preferable, and about 150 to 180 ° C. is more preferable.
  • the heating device include vulcanization devices such as mold vulcanization, can vulcanization, and continuous vulcanization.
  • a finishing treatment may be performed as necessary.
  • the finishing treatment include polishing, surface treatment, lip finishing, lip cutting, and chlorine treatment, and only one of these treatments may be performed, or a combination of two or more may be used.
  • “at the time of high strain” in the present invention is defined as a measurement condition of M100 or more.
  • This slurry was treated three times with an ultra-high pressure homogenizer (treatment pressure 140 MPa) to obtain a washed acid-type oxidized cellulose nanofiber aqueous dispersion (1 wt%).
  • the ratio of acid-type carboxyl groups in the obtained acid-type oxidized cellulose nanofiber aqueous dispersion was 97%.
  • This slurry was treated three times with an ultra-high pressure homogenizer (treatment pressure 140 MPa) to obtain a washed acid-type oxidized cellulose nanofiber aqueous dispersion (1 wt%).
  • the ratio of the acid-type carboxyl group of the obtained acid-type oxidized cellulose nanofiber aqueous dispersion was 95%.
  • ⁇ Manufacture example 3 Manufacture of carboxymethylated cellulose nanofiber
  • pulp Nippon Paper Industries Co., Ltd.
  • sodium hydroxide 111 g (2.25 moles per anhydroglucose residue of the starting material) was added by mass, and water was added so that the pulp solid content was 20% (w / v).
  • 216 g of sodium monochloroacetate in terms of active ingredient, 1.5 times mol per glucose residue of pulp was added. After stirring for 30 minutes, the temperature was raised to 70 ° C. and stirred for 1 hour.
  • the cation exchange resin was recovered by suction filtration to obtain an acid-type carboxymethylated cellulose nanofiber aqueous dispersion (1 wt%).
  • the ratio of the acid-type carboxyl group of the obtained acid-type carboxymethylated cellulose nanofiber aqueous dispersion was 91%.
  • ⁇ Manufacture example 4 Manufacture of cationized cellulose nanofiber To pulper which can stir a pulp, pulp (NBKP, Nippon Paper Industries Co., Ltd.) 200g by dry mass and 24g sodium hydroxide by dry mass are added, and pulp solid concentration is 15 Water was added so that it might become%. Then, after stirring for 30 minutes at 30 ° C., the temperature was raised to 70 ° C., and 200 g (in terms of active ingredient) of 3-chloro-2-hydroxypropyltrimethylammonium chloride was added as a cationizing agent.
  • NKP Nippon Paper Industries Co., Ltd.
  • Example 1 500 g of acid-type oxidized cellulose nanofiber aqueous dispersion (1% by weight) obtained in Production Example 1 and natural rubber latex (trade name HA-LATEX, manufactured by Resex Corp., solid content concentration 61.4%) 162.9 g Were mixed so that the mass ratio of the rubber component to the cellulose nanofibers was 100: 5, and the mixture was stirred at 23 ° C. for 10 minutes with a TK homomixer (8000 rpm). This aqueous suspension was dried in a heating oven at 70 ° C. for 19 hours to obtain a mixture.
  • TK homomixer 8000 rpm
  • Example 2 A sheet of the rubber composition was obtained in the same manner as in Example 1 except that the acid type carboxymethylated cellulose nanofiber aqueous dispersion (1 wt%) obtained in Production Example 3 was used, and the physical property values were evaluated. .
  • Example 3 A rubber composition sheet was obtained in the same manner as in Example 1 except that the basic cationized cellulose nanofiber aqueous dispersion (1 wt%) obtained in Production Example 4 was used, and the physical properties were evaluated.
  • Example 4 A rubber composition sheet was obtained in the same manner as in Example 1 except that 2.1 g of stearylamine was used as the surfactant, and the physical properties were evaluated.
  • Example 5 A rubber composition sheet was obtained in the same manner as in Example 1 except that 0.8 g of 1-hexenylamine was used as the surfactant, and the physical properties were evaluated.
  • Example 6 A rubber composition sheet was obtained in the same manner as in Example 1 except that 500 g of the acid-type oxidized cellulose nanofiber aqueous dispersion (1 wt%) obtained in Production Example 2 was used, and the physical properties were evaluated.
  • Example 7 A rubber composition sheet was obtained in the same manner as in Example 1 except that the amount of oleylamine added as a surfactant was 1.0 g, and the physical properties were evaluated.
  • Example 8 In Production Example 1, a rubber composition sheet was obtained in the same manner as in Example 1 except that the oxidized (carboxylated) cellulose nanofiber dispersion (salt type, 1% by weight) obtained before desalting was used. The physical property values were evaluated.
  • Example 9 1000 g of acid-type oxidized cellulose nanofiber aqueous dispersion (1% by weight) obtained in Production Example 1 and natural rubber latex (trade name HA-LATEX, manufactured by Resex Corp., solid content concentration 61.4%) 162.9 g Were mixed so that the mass ratio of the rubber component to the cellulose nanofibers was 100: 10, and the mixture was stirred at 23 ° C. for 10 minutes with a TK homomixer (8000 rpm). This aqueous suspension was dried in a heating oven at 70 ° C. for 19 hours to obtain a mixture.
  • TK homomixer 8000 rpm
  • Example 10 2000 g of acid-type oxidized cellulose nanofiber aqueous dispersion (1% by weight) obtained in Production Example 1 and natural rubber latex (trade name HA-LATEX, manufactured by Resitex Corporation, solid content concentration 61.4%) 162.9 g Were mixed so that the mass ratio of the rubber component to the cellulose nanofibers was 100: 20, and the mixture was stirred at 23 ° C. for 10 minutes with a TK homomixer (8000 rpm). This aqueous suspension was dried in a heating oven at 70 ° C. for 19 hours to obtain a mixture.
  • TK homomixer 8000 rpm
  • Natural rubber latex (trade name HA-LATEX, manufactured by Resitex Co., Ltd., solid content concentration 61.4%) with respect to 500 g of the acid-type oxidized cellulose nanofiber aqueous dispersion (1 wt%) obtained in Production Example 1 162.9 g was mixed so that the mass ratio of the rubber component to the cellulose nanofibers was 100: 5, and 2.1 g of oleylamine was further mixed, followed by stirring at 23 ° C. for 10 minutes with a TK homomixer (8000 rpm). . This aqueous suspension was dried in a heating oven at 70 ° C. for 19 hours to obtain a mixture.
  • the resulting mixture (105 g) was kneaded at 70 ° C. for 10 minutes using a Laboplast Mill (Toyo Seiki Seisakusho Co., Ltd.).
  • a Laboplast Mill Toyo Seiki Seisakusho Co., Ltd.
  • a vulcanization accelerator N-oxydiethylene-2-benzothiazolylsulfenamide
  • zinc oxide 6.0 g
  • zinc oxide 6.0 g
  • 0.5 g of stearic acid 0.5 g of stearic acid.
  • open roll manufactured by Kansai Roll Co., Ltd.
  • kneading was performed at 40 ° C. for 15 minutes to obtain a sheet of an unvulcanized rubber composition.
  • the sheet was sandwiched between molds and press-crosslinked at 150 ° C. for 15 minutes to obtain a rubber composition sheet having a thickness of about 2 mm. This was cut into test pieces of a predetermined shape, and the physical property values were evaluated.
  • Example 12 2.1 g of oleylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to 500 g of the acid-type oxidized cellulose nanofiber aqueous dispersion (1 wt%) obtained in Production Example 1, and the mixture was stirred at room temperature for 3 hours to modify oleylamine. It was obtained - (NH 3 + -R TOCN- COO) oxidized cellulose nanofibers.
  • a rubber component and cellulose nanofibers were mixed with 502.1 g of oleylamine-modified oxidized cellulose nanofibers by mixing 162.9 g of natural rubber latex (trade name HA-LATEX, manufactured by Residex Co., Ltd., solid content concentration 61.4%). The mass ratio was 100: 5, and the mixture was stirred with a TK homomixer (8000 rpm) at 23 ° C. for 10 minutes. This aqueous suspension was dried in a heating oven at 70 ° C. for 19 hours to obtain a mixture.
  • a rubber composition sheet was obtained by vulcanization and molding in the same manner as in Example 1 except that the obtained mixture was used in place of the kneaded product in Example 1, and the physical properties were evaluated.
  • Example 13 A rubber composition sheet was obtained in the same manner as in Example 12 except that the acid type carboxymethylated cellulose nanofiber aqueous dispersion (1 wt%) obtained in Production Example 3 was used, and the physical properties were evaluated. .
  • the results are shown in Table 1.
  • the tensile stress of the example is larger than that of the comparative example at M100 and M300 at the time of high strain, and the strength at the time of high strain of the rubber composition of the example is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本発明は、ゴム成分とセルロース系繊維とを含み、高ひずみ時の強度が良好であり得るゴム組成物とその製造方法を提供することを目的とする。すなわち、本発明は、(A)成分:変性セルロースナノファイバー、(B)成分:ゴム成分、および(C)成分:界面活性剤を含むゴム組成物、および、工程[I]:(A)成分と(B)成分:ゴム成分を混合し、混合物を得る工程、および工程[II]:得られる混合物に、(C)成分を添加、混練し、ゴム組成物を得る工程を有する、ゴム組成物の製造方法;工程[i]:(A)、(B)および(C)成分を混合し、混合物を得る工程、および工程[ii]:得られる混合物を混練し、ゴム組成物を得る工程を有する、ゴム組成物の製造方法を提供する。

Description

ゴム組成物およびその製造方法
 本発明は、ゴム組成物およびその製造方法に関し、詳しくは、変性セルロースナノファイバーを含有するゴム組成物およびその製造方法に関する。
 ゴム成分とセルロース系繊維とを含むゴム組成物は、優れた機械強度を有することが知られている。例えば、特許文献1には、平均繊維径が0.5μm未満の短繊維を水中でフィブリル化させて得られる分散液とゴムラテックスとを混合し乾燥させることにより、短繊維をゴム中に均一に分散させたゴム/短繊維のマスターバッチが得られること、および、このマスターバッチからゴム補強性と耐疲労性のバランスに優れるゴム組成物を製造できることが記載されている。
 一般にゴム成分とセルロース系繊維とは相溶性が低い。例えば、特許文献2には、ゴム成分中にセルロースナノ繊維およびシランカップリング剤を添加することにより、分散性が良好になることが記載されている。特許文献3には、所定量のカルボキシル基量を有するカルボキシル基含有微細セルロース繊維を炭化水素基を有する疎水変性処理剤で処理して得られる微細変性セルロース繊維が、ゴム成分との配合時にゴム成分中での分散性が優れたものとなることが記載されている。
特開2006-206864号公報 特開2009-191198号公報 特開2014-125607号公報
 しかしながら、ゴム成分とセルロース系繊維を含む従来のゴム組成物が様々な分野に応用されるには、更なる強度の向上が必要とされている。特に高ひずみ時(例えばひずみ100%以上)での強度の向上が求められていた。
 そこで本発明は、高ひずみ時における強度が良好な、ゴム成分とセルロース系繊維とを含むゴム組成物、およびその製造方法を提供することを目的とする。
 本発明は以下の〔1〕~〔15〕を提供する。
〔1〕(A)成分:変性セルロースナノファイバー、
 (B)成分:ゴム成分、および
 (C)成分:界面活性剤
を含むゴム組成物。
〔2〕(A)成分が、酸化セルロースナノファイバーを含む、〔1〕に記載のゴム組成物。
〔3〕酸化セルロースナノファイバーのカルボキシル基含量が、酸化セルロースナノファイバーの絶乾質量に対して0.5mmol/g~3.0mmol/gである、〔2〕に記載のゴム組成物。
〔4〕酸化セルロースナノファイバーが、酸型酸化セルロースナノファイバーである、〔2〕または〔3〕に記載のゴム組成物。
〔5〕(A)成分が、カルボキシメチル化セルロースナノファイバーを含む、〔1〕に記載のゴム組成物。
〔6〕カルボキシメチル化セルロースナノファイバーのグルコース単位当たりのカルボキシメチル置換度が、0.01~0.50である、〔5〕に記載のゴム組成物。
〔7〕カルボキシメチル化セルロースナノファイバーが、酸型カルボキシメチル化セルロースナノファイバーである、〔5〕または〔6〕に記載のゴム組成物。
〔8〕(B)成分が、ジエン系ゴムを含む、〔1〕~〔7〕のいずれか1項に記載のゴム組成物。
〔9〕(B)成分が、天然ゴムを含む、〔1〕~〔8〕のいずれか1項に記載のゴム組成物。
〔10〕(C)成分が、陽イオン性界面活性剤、または両性界面活性剤を含む、〔1〕~〔9〕のいずれか1項に記載のゴム組成物。
〔11〕(C)成分が、脂肪族アミンを含む、〔1〕~〔10〕のいずれか1項に記載のゴム組成物。
〔12〕(C)成分が、オレイルアミン、ステアリルアミン、テトラデシルアミン、1-ヘキセニルアミン、1-ドデセニルアミン、9,12-オクタデカジエニルアミン、9,12,15-オクタデカトリエニルアミン、およびリノレイルアミンからなる群より選択される少なくとも1種の脂肪族アミンを含む、〔1〕~〔11〕のいずれか1項に記載のゴム組成物。
〔13〕下記工程[I]および[II]を有する、〔1〕~〔12〕のいずれか1項に記載のゴム組成物の製造方法。
 工程[I]:変性セルロースナノファイバーとゴム成分を混合し、混合物を得る工程
 工程[II]:得られる混合物に、界面活性剤を添加、混練し、ゴム組成物を得る工程
〔14〕下記[i]および[ii]を有する、〔1〕~〔12〕のいずれか1項に記載のゴム組成物の製造方法。
 工程[i]:(A)、(B)および(C)成分を混合し、混合物を得る工程、および
 工程[ii]:得られる混合物を混練し、ゴム組成物を得る工程
〔15〕下記工程[IA]をさらに有する〔13〕または〔14〕に記載のゴム組成物の製造方法。
 工程[IA]:工程[I]または[i]で得られる混合物を、工程[II]又は[ii]に先立ち乾燥する工程
 本発明のゴム組成物は、ゴム成分と変性セルロースナノファイバーを含み、高ひずみ時において良好な強度を発揮することができる。また、本発明の製造方法によれば、このようなゴム組成物を効率的に製造することができる。
 本発明は、(A)成分:変性セルロースナノファイバー、(B)成分:ゴム成分、(C)成分:界面活性剤を含むゴム組成物と、その製造方法に関する。
 ゴム組成物が(A)~(C)成分を含むことにより、高ひずみ時に良好な強度を示すことができる。
<(A)成分:変性セルロースナノファイバー>
 変性セルロースナノファイバーとは、変性セルロースを原料とする微細繊維である。変性セルロースナノファイバーの平均繊維径は、特に限定されないが、長さ加重平均繊維径は、通常2~500nm程度であり、好ましくは2~50nmである。変性セルロースナノファイバーの平均繊維長は、特に限定されないが、長さ加重平均繊維長は、好ましくは50~2000nmである。長さ加重平均繊維径および長さ加重平均繊維長(以下、単に「平均繊維径」、「平均繊維長」ともいう)は、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察して求められる。変性セルロースナノファイバーの平均アスペクト比は、10以上である。上限は特に限定されないが、1000以下である。平均アスペクト比は、下式(1)により算出できる。
(1):平均アスペクト比=平均繊維長/平均繊維径
 変性セルロースは、セルロース系原料に含まれるセルロースを変性して得られる。セルロース系原料は、セルロースを含んでいればよく、特に限定されないが、例えば、植物、動物(例えば、ホヤ類)、藻類、微生物(例えば、酢酸菌(アセトバクター))、微生物産生物に由来するものが挙げられる。植物由来のセルロース系原料としては、例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(例えば、針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、再生パルプ、古紙)が挙げられる。セルロース系原料は、これらのいずれかでもよく、2種類のセルロース系原料の組み合わせでもよく、好ましくは植物または微生物由来のセルロース系原料であり、より好ましくは植物由来のセルロース系原料であり、さらに好ましくはパルプである。
 セルロース系原料は通常、繊維状のセルロース(セルロース系繊維)を含む。セルロース系繊維の平均繊維径は、特に制限されないが、一般的なパルプである針葉樹クラフトパルプに由来するセルロース系原料の平均繊維径は、通常30~60μm程度であり、広葉樹クラフトパルプに由来するセルロース系原料の平均繊維径は、通常10~30μm程度である。針葉樹クラフトパルプおよび広葉樹クラフトパルプ以外の、一般的な精製を経たパルプに由来するセルロース系原料の平均繊維径は、通常50μm程度である。
 セルロースは、グルコース単位あたり3つのヒドロキシル基を有しており、各種の変性を行うことが可能である。変性(通常は、化学変性)としては、例えば、酸化、エーテル化、リン酸エステル化等のエステル化、シランカップリング、フッ素化、カチオン化が挙げられる。中でも、酸化(カルボキシル化)、エーテル化(例えば、カルボキシメチル化)、カチオン化、エステル化が好ましく、酸化(カルボキシル化)、カルボキシメチル化がより好ましい。
 本発明において、酸化やエーテル化によりセルロースのヒドロキシル基がカルボキシル基に変性した場合、実際には-COOHで表される基と、-COO-で表される基が混在している。そこで-COOHで表される基を酸型カルボキシル基(酸型)、-COO-で表される基を塩型カルボキシル基(塩型)と称する。塩型カルボキシル基のカウンターカチオンは特に限定されず、例えば、ナトリウムイオンやカリウムイオン等のアルカリ金属イオン、その他の金属イオンが挙げられる。
[酸化(カルボキシル化)]
 酸化を経て得られる変性セルロース(酸化セルロース)および変性セルロースナノファイバー(酸化セルロースナノファイバー)は、セルロースの水酸基の少なくとも1つが選択的に酸化された構造を有することが好ましい。
 酸化セルロースナノファイバーは、セルロースを構成するグルコピラノース環の水酸基の少なくとも1つがカルボキシル基を有することが好ましく、セルロースを構成する少なくとも1つのグルコピラノース環の6位の水酸基がカルボキシル基を有することがより好ましい。
 酸化セルロースおよび酸化セルロースナノファイバーのカルボキシル基量は、絶乾質量に対して、好ましくは0.5mmol/g以上、より好ましくは0.6mmol/g以上または0.8mmol/g以上、さらに好ましくは1.0mmol/g以上である。当該量の上限は、好ましくは3.0mmol/g以下、より好ましくは2.5mmol/g以下、さらに好ましくは2.0mmol/g以下である。従って、当該量は0.5~3.0mmol/gが好ましく、0.6~2.0mmol/gまたは0.8~2.5mmol/gがより好ましく、1.0~2.0mmol/gがさらに好ましい。酸化セルロースナノファイバーのカルボキシル基量は、解繊前の酸化セルロースのそれと通常は同値である。
 酸化方法は特に限定されないが、例えば、N-オキシル化合物と、臭化物、およびヨウ化物の少なくともいずれかとの存在下で、酸化剤を用いて水中でセルロース系原料を酸化する方法が挙げられる。この方法によれば、セルロース表面のグルコピラノース環のC6位の1級水酸基を有する炭素原子が選択的に酸化され、アルデヒド基、カルボキシル基、およびカルボキシレート基からなる群より選ばれる基が生じる。反応時のセルロース系原料の濃度は特に限定されないが、5質量%以下が好ましい。
 N-オキシル化合物とは、ニトロキシラジカルを発生し得る化合物をいう。N-オキシル化合物としては、例えば、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、「TEMPO」ともいう)、または4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、「4-ヒドロキシTEMPO」ともいう)が挙げられる。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。
 N-オキシル化合物の使用量は、原料となるセルロースの酸化反応を触媒する量であればよい。例えば、絶乾1gのセルロースに対して、0.01mmol以上が好ましく、0.02mmol以上がより好ましい。上限は、10mmol以下が好ましく、1mmol以下がより好ましく、0.5mmol以下がさらに好ましい。従って、N-オキシル化合物の使用量は、絶乾1gのセルロースに対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.02~0.5mmolがさらに好ましい。
 臭化物とは臭素を含む化合物であり、例えば、水中で解離してイオン化可能な臭化アルカリ金属が挙げられる。また、ヨウ化物とはヨウ素を含む化合物であり、例えば、ヨウ化アルカリ金属が挙げられる。臭化物またはヨウ化物の使用量は、特に限定されず、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は絶乾1gのセルロースに対して、0.1mmol以上が好ましく、0.5mmol以上がより好ましい。当該量の上限は、100mmol以下が好ましく、10mmol以下がより好ましく、5mmol以下がさらに好ましい。従って、臭化物およびヨウ化物の合計量は、絶乾1gのセルロースに対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。
 酸化剤は、特に限定されないが、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸、これらの塩、ハロゲン酸化物、過酸化物が挙げられる。中でも、安価で環境負荷が少ないことから、次亜ハロゲン酸またはその塩が好ましく、次亜塩素酸またはその塩がより好ましく、次亜塩素酸ナトリウムがさらに好ましい。酸化剤の使用量は、絶乾1gのセルロースに対して、0.5mmol以上が好ましく、1mmol以上がより好ましく、3mmol以上がさらに好ましい。当該量の上限は、500mmol以下が好ましく、50mmol以下がより好ましく、25mmol以下がさらに好ましく、10mmol以下がさらにより好ましい。従って、酸化剤の使用量は絶乾1gのセルロースに対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolがさらにより好ましい。N-オキシル化合物を用いる場合、酸化剤の使用量はN-オキシル化合物1molに対して1mol以上が好ましく、上限は40mol以下が好ましい。従って、酸化剤の使用量は、N-オキシル化合物1molに対して1~40molが好ましい。
 酸化反応時のpH、温度等の条件は、特に限定されない。一般に、酸化反応は、比較的温和な条件であっても効率よく進行する。反応温度は、4℃以上が好ましく、15℃以上がより好ましい。当該温度の上限は40℃以下が好ましく、30℃以下がより好ましい。従って、反応温度は4~40℃が好ましく、15~30℃程度、すなわち室温でもよい。反応液のpHは、8以上が好ましく、10以上がより好ましい。pHの上限は、12以下が好ましく、11以下がより好ましい。従って、反応液のpHは、好ましくは8~12、より好ましくは10~11程度である。通常、酸化反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHは低下する傾向にある。そのため、酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液等のアルカリ性溶液を添加して、反応液のpHを上記の範囲に維持することが好ましい。酸化の際の反応媒体は、取扱いの容易さや、副反応が生じにくいこと等の理由から、水が好ましい。
 酸化における反応時間は、酸化の進行程度に従って適宜設定することができ、通常は0.5時間以上であり、その上限は通常は6時間以下、好ましくは4時間以下である。従って、酸化における反応時間は通常0.5~6時間、好ましくは0.5~4時間程度である。酸化は、2段階以上の反応に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。
 カルボキシル化(酸化)方法の別の例として、オゾン酸化が挙げられる。この酸化反応により、セルロースを構成するグルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾン処理は通常、オゾンを含む気体とセルロース系原料とを接触させることにより行われる。
 オゾン処理は、通常、オゾンを含む気体とセルロース系原料とを接触させることにより行われる。気体中のオゾン濃度は、50g/m3以上が好ましい。上限は、250g/m3以下が好ましく、220g/m3以下がより好ましい。従って、気体中のオゾン濃度は、50~250g/m3が好ましく、50~220g/m3がより好ましい。オゾン添加量は、セルロース系原料の固形分100質量部に対し、0.1質量部以上が好ましく、5質量部以上がより好ましい。オゾン添加量の上限は、通常30質量部以下である。従って、オゾン添加量は、セルロース系原料の固形分100質量部に対し、0.1~30質量部が好ましく、5~30質量部がより好ましい。オゾン処理温度は、通常0℃以上であり、好ましくは20℃以上であり、上限は通常50℃以下である。従って、オゾン処理温度は、0~50℃が好ましく、20~50℃がより好ましい。オゾン処理時間は、通常は1分以上であり、好ましくは30分以上であり、上限は通常360分以下である。従って、オゾン処理時間は、通常は1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件が上述の範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となり得る。
 オゾン処理されたセルロースに対しさらに、酸化剤を用いた追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、例えば、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物、酸素、過酸化水素、過硫酸、過酢酸が挙げられる。追酸化処理の方法としては、例えば、酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を調製し、酸化剤溶液中にセルロース系原料を浸漬させる方法が挙げられる。酸化セルロースナノファイバーに含まれるカルボキシル基、カルボキシレート基、アルデヒド基の量は、酸化剤の添加量、反応時間等の酸化条件をコントロールすることで調整することができる。
[酸型酸化セルロース]
 酸化後の酸化セルロースは、脱塩により酸型酸化セルロース、または酸型酸化セルロースナノファイバーに変換することが好ましい。脱塩により、塩型カルボキシル基を酸型カルボキシル基に変換できる。本明細書において、脱塩を経た酸化セルロース(ナノファイバー)を、それぞれ酸型酸化セルロース(ナノファイバー)、または酸化セルロース(ナノファイバー)(酸型)と言う。また、脱塩を経ていない酸化セルロースおよび酸化セルロース(ナノファイバー)を、塩型酸化セルロース(ナノファイバー)、または酸化セルロース(ナノファイバー)(塩型)と言う。脱塩は、後述の解繊前(酸化セルロース)および解繊後(酸化セルロースナノファイバー)の何れかの時点で行えばよい。脱塩とは、酸化セルロース(塩型)、または酸化セルロースナノファイバー(塩型)に含まれる塩(例えば、ナトリウム塩)をプロトンに置換し酸型とすることを意味する。酸化後の脱塩方法としては例えば、系内を酸性に調整する方法、および、酸化セルロースまたは酸化セルロースナノファイバーを陽イオン交換樹脂と接触させる方法が挙げられる。系内を酸性に調整する場合、系内のpHは、好ましくは2~6、より好ましくは2~5、さらに好ましくは2.3~5に調整される。酸性に調整するには、通常は酸(例えば、硫酸、塩酸、硝酸、亜硫酸、亜硝酸、リン酸等の無機酸;酢酸、乳酸、蓚酸、クエン酸、蟻酸等の有機酸)が用いられる。酸の添加後には、適宜洗浄処理を行ってもよい。前記の陽イオン交換樹脂は、対イオンがH+である限り、強酸性イオン交換樹脂および弱酸性イオン交換樹脂のいずれも用いることができる。酸化セルロースを陽イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。接触後の陽イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。
 本発明にて用いられる酸型酸化セルロースおよび酸型酸化セルロースナノファイバーは、酸型カルボキシル基の割合が40%以上であることが好ましく、60%以上であることがより好ましく、85%以上であることがさらに好ましい。
 なお、酸型カルボキシル基の割合は以下の方法で算出することができる。先ず、脱塩処理前の酸化セルロースナノファイバー(塩型)の0.1質量%スラリーを250mL調製する。調製したスラリーに、0.1M塩酸水溶液を加えてpH2.5とした後、0.1Nの水酸化ナトリウム水溶液を添加してpHが11になるまで電気電導度を測定する。電気電導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式(2)を用いて、酸型カルボキシル基量および塩型カルボキシル基量、つまりトータルのカルボキシル基量を算出する。
(2):トータルのカルボキシル基量(mmol/g酸化セルロースナノファイバー(塩型))=a(ml)×0.1/酸化セルロースナノファイバー(塩型)の質量(g)
 次に、脱塩処理した酸型酸化セルロースナノファイバーの0.1質量%スラリーを250mL調製する。調製したスラリーに、0.1Nの水酸化ナトリウム水溶液を添加してpHが11になるまで電気電導度を測定する。電気電導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(b)から、下式(3)を用いて、酸型カルボキシル基量を算出する。
(3):酸型カルボキシル基量(mmol/g酸型酸化セルロースナノファイバー)=b(ml)×0.1/酸型酸化セルロースナノファイバーの質量(g)
 算出したトータルのカルボキシル基量と酸型カルボキシル基量から、下式(4)を用いて酸型カルボキシル基の割合を算出することができる。
(4):酸型カルボキシル基の割合(%)=(酸型カルボキシル基量/トータルのカルボキシル基量)×100
[エーテル化]
 エーテル化としては、例えば、カルボキシメチル化によるエーテル化、メチル化によるエーテル化、エチル化によるエーテル化、シアノエチル化によるエーテル化、ヒドロキシエチル化によるエーテル化、ヒドロキシプロピル化によるエーテル化、エチルヒドロキシエチル化によるエーテル化、ヒドロキシプロピルメチル化によるエーテル化が挙げられる。一例としてカルボキシメチル化の方法を以下に説明する。
 カルボキシメチル化を経て得られる変性セルロース(カルボキシメチル化セルロース)およびセルロースナノファイバー(カルボキシメチル化セルロースナノファイバー)は、セルロースの水酸基の少なくとも1つがカルボキシメチル化された構造を有することが好ましい。
 カルボキシメチル化セルロースおよびカルボキシメチル化セルロースナノファイバーの無水グルコース単位当たりのカルボキシメチル置換度は、0.01以上が好ましく、0.05以上がより好ましく、0.10以上がさらに好ましい。当該置換度の上限は、0.50以下が好ましく、0.40以下がより好ましく、0.35以下がさらに好ましい。従って、カルボキシメチル置換度は、0.01~0.50が好ましく、0.05~0.40がより好ましく、0.10~0.35がさらに好ましい。カルボキシメチル化セルロースナノファイバーのカルボキシメチル置換度は、解繊前のカルボキシメチル化セルロースのそれと通常は同値である。
 グルコース単位当たりのカルボキシメチル置換度の測定は、例えば、次の方法による。すなわち、1)カルボキシメチル化セルロース(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。2)メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(カルボキシメチル化セルロース)をカルボキシル基を有するカルボキシメチル化セルロース(以下、「酸型カルボキシメチル化セルロース」ともいう)にする。3)酸型カルボキシメチル化セルロース(絶乾)を1.5~2.0g精秤し、300mL容共栓付き三角フラスコに入れる。4)80%メタノール15mLで酸型カルボキシメチル化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。5)指示薬としてフェノールフタレインを用いて、0.1NのH2SO4で過剰のNaOHを逆滴定する。6)カルボキシメチル置換度(DS)を、下式(5)によって算出する。
(5):A=[(100×F’-(0.1NのH2SO4)(mL)×F)×0.1]/(酸型カルボキシメチル化セルロースの絶乾質量(g))
 DS=0.162×A/(1-0.058×A)
A:酸型カルボキシメチル化セルロース1gの中和に要する1NのNaOH量(mL)
F:0.1NのH2SO4のファクター
F’:0.1NのNaOHのファクター
 カルボキシメチル化方法は、特に限定されないが、例えば、出発原料としてのセルロース系原料をマーセル化し、その後エーテル化する方法が挙げられる。当該方法には、通常、溶媒が使用される。溶媒としては、例えば、水、アルコール(例えば低級アルコール)およびこれらの混合溶媒が挙げられる。低級アルコールとしては例えば、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブチルアルコール、イソブチルアルコール、第3級ブチルアルコールが挙げられる。混合溶媒における低級アルコールの混合割合は、60~95質量%が好ましい。溶媒の量は、セルロース系原料に対し通常は3質量倍以上である。当該量の上限は特に限定されないが通常は20質量倍以下である。従って、溶媒の量は3~20質量倍が好ましい。
 マーセル化は、通常、出発原料とマーセル化剤とを混合して行う。マーセル化剤としては例えば、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属が挙げられる。マーセル化剤の使用量は、出発原料の無水グルコース残基当たり0.5倍モル以上が好ましく、1.0倍モル以上がより好ましく、1.5倍モル以上がさらに好ましい。当該量の上限は、通常20倍モル以下であり、10倍モル以下が好ましく、5倍モル以下がより好ましい。従って、マーセル化剤の使用量は、0.5~20倍モルが好ましく、1.0~10倍モルがより好ましく、1.5~5倍モルがさらに好ましい。
 マーセル化の反応温度は、通常0℃以上であり、好ましくは10℃以上であり、上限は通常70℃以下、好ましくは60℃以下である。従って、反応温度は通常0~70℃、好ましくは10~60℃である。反応時間は、通常15分以上、好ましくは30分以上である。当該時間の上限は、通常8時間以下、好ましくは7時間以下である。従って、反応時間は、通常は15分~8時間、好ましくは30分~7時間である。
 エーテル化反応は、通常、カルボキシメチル化剤をマーセル化後に反応系に追加して行う。カルボキシメチル化剤としては、モノクロロ酢酸、モノクロロ酢酸ナトリウムが好ましい。
 カルボキシメチル化剤の添加量は、セルロース系原料に含まれるセルロースのグルコース残基当たり通常は0.05倍モル以上が好ましく、0.5倍モル以上がより好ましく、0.8倍モル以上がさらに好ましい。当該量の上限は、通常10.0倍モル以下であり、5倍モル以下が好ましく、3倍モル以下がより好ましい、従って、当該量は好ましくは0.05~10.0倍モルであり、より好ましくは0.5~5倍モルであり、さらに好ましくは0.8~3倍モルである。反応温度は通常30℃以上、好ましくは40℃以上であり、上限は通常90℃以下、好ましくは80℃以下である。従って、反応温度は通常30~90℃、好ましくは40~80℃である。反応時間は、通常30分以上であり、好ましくは1時間以上であり、その上限は、通常は10時間以下であり、好ましくは4時間以下である。従って、反応時間は、通常は30分~10時間であり、好ましくは1時間~4時間である。カルボキシメチル化反応の間必要に応じて、反応液を撹拌してもよい。
[酸型カルボキシメチル化セルロース]
 エーテル化後のカルボキシメチル化セルロースは、脱塩により酸型カルボキシメチル化セルロースまたは酸型カルボキシメチル化セルロースナノファイバーに変換することが好ましい。脱塩により、塩型カルボキシル基を酸型カルボキシル基に変換できる。本明細書において、脱塩を経たカルボキシメチル化セルロース(ナノファイバー)を酸型カルボキシメチル化セルロース(ナノファイバー)、またはカルボキシメチル化セルロース(ナノファイバー)(酸型)と言う。脱塩は、後述の解繊前(カルボキシメチル化セルロース)および解繊後(カルボキシメチル化セルロースナノファイバー)のいずれの時点で行ってもよい。脱塩は、カルボキシメチル化セルロース(塩型)、およびカルボキシメチル化セルロースナノファイバー(塩型)に含まれる塩(例えば、ナトリウム塩)をプロトンに置換し酸型とすることを意味する。エーテル化(例えば、カルボキシルメチル化)後の脱塩方法としては例えば、カルボキシメチル化セルロースまたはカルボキシメチル化セルロースナノファイバーを陽イオン交換樹脂と接触させる方法が挙げられる。陽イオン交換樹脂は、対イオンがH+である限り、強酸性イオン交換樹脂および弱酸性イオン交換樹脂のいずれも用いることができる。カルボキシメチル化セルロースを陽イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。一例を挙げると、カルボキシメチル化セルロースナノファイバー水分散液に対し、陽イオン交換樹脂添加後の水分散液のpHが好ましくは2~6、より好ましくは2~5となるように、比率を調整することができる。接触後の陽イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。
 本発明にて用いられる酸型カルボキシメチル化セルロースおよび酸型カルボキシメチル化セルロースナノファイバーは、酸型カルボキシル基の割合が40%以上であることが好ましく、60%以上であることがより好ましく、85%以上であることがさらに好ましい。
 酸型カルボキシル基の割合は以下の方法で算出することができる。先ず、脱塩処理前のカルボキシメチル化セルロースナノファイバー(塩型)の0.1質量%スラリーを250mL調製する。調製したスラリーに、0.1M塩酸水溶液を加えてpH2.5とした後、0.1Nの水酸化ナトリウム水溶液を添加してpHが11になるまで電気電導度を測定する。電気電導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式(6)を用いて、酸型カルボキシル基量および塩型カルボキシル基量、つまりトータルのカルボキシル基量を算出する。
(6):トータルのカルボキシル基量(mmol/gカルボキシメチル化セルロースナノファイバー(塩型))=a(ml)×0.1/カルボキシメチル化セルロースナノファイバー(塩型)の質量(g)
 次に、脱塩処理した酸型カルボキシメチル化セルロースナノファイバーの0.1質量%スラリーを250mL調製する。調製したスラリーに、0.1Nの水酸化ナトリウム水溶液を添加してpHが11になるまで電気電導度を測定する。電気電導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(b)から、下式(7)を用いて、酸型カルボキシル基量を算出する。
(7):酸型カルボキシル基量(mmol/g酸型カルボキシメチル化セルロースナノファイバー)=b(ml)×0.1/酸型カルボキシメチル化セルロースナノファイバーの質量(g)
 算出したトータルのカルボキシル基量と酸型カルボキシル基量から、下式(8)を用いて酸型カルボキシル基の割合を算出することができる。
(8):酸型カルボキシル基の割合(%)=(酸型カルボキシル基量/トータルのカルボキシル基量)×100
[カチオン化]
 カチオン化を経て得られる変性セルロース(カチオン化セルロース)およびセルロースナノファイバー(カチオン化セルロースナノファイバー)は、分子中に、アンモニウム、ホスホニウム、スルホニウム等のカチオン、または該カチオンを有する基を少なくとも1つ含んでいればよく、アンモニウムを有する基を少なくとも1つ含むことが好ましく、四級アンモニウムを有する基を少なくとも1つ含むことがより好ましい。
 カチオン化セルロースおよびカチオン化セルロースナノファイバーのグルコース単位当たりのカチオン置換度は、0.01以上が好ましく、0.02以上がより好ましく、0.03以上がさらに好ましい。当該置換度の上限は、0.40以下が好ましく、0.30以下がより好ましく、0.20以下がさらに好ましい。従って、カチオン置換度は0.01~0.40が好ましく、0.02~0.30がより好ましく、0.03~0.20がさらに好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基が導入されている変性セルロース(カチオン化セルロース)は、容易にナノ解繊することができる。グルコース単位当たりのカチオン置換度が0.01以上であることにより、十分にナノ解繊することができる。一方、グルコース単位当たりのカチオン置換度が0.40以下であることにより、膨潤または溶解を抑制でき、これにより繊維形態を維持でき、ナノファイバーとして得られない事態を防止できる。カチオン化セルロースナノファイバーのカチオン置換度は、解繊前のカチオン化セルロースのそれと通常は同値である。
 カチオン化セルロースおよびカチオン化セルロースナノファイバーのグルコース単位当たりのカチオン置換度は、カチオン化剤の添加量、水またはアルコールの組成比率によって調整できる。カチオン置換度とは、セルロースを構成する単位構造(グルコピラノース環)あたりの導入された置換基の個数を示す。すなわちカチオン置換度は、「導入された置換基のモル数をグルコピラノース環の水酸基の総モル数で割った値」として定義される。純粋セルロースは単位構造(グルコピラノース環)あたり3個の置換可能な水酸基を有しているため、カチオン置換度の理論最大値は3(最小値は0)である。
 グルコース単位当たりのカチオン置換度の測定方法の一例を以下に説明する。試料(カチオン化セルロース)を乾燥させた後に、全窒素分析計TN-10(三菱化学株式会社製)で窒素含有量を測定する。例えば、カチオン化剤として3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライドを用いた場合、次式によりカチオン化度が算出される。カチオン置換度は、下式(9)を用いて無水グルコース単位1モル当たりの置換基のモル数の平均値として求められ得る。
(9):カチオン置換度=(162×N)/(1-116×N)
  N:カチオン化セルロース1gあたりの窒素含有量(mol)
 カチオン化の方法は、特に限定されないが、例えば、セルロース系原料にカチオン化剤と触媒を水またはアルコールの存在下で反応させる方法が挙げられる。カチオン化剤としては、例えば、グリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリアルキルアンモニウムハイドライト(例:3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムハイドライト)またはこれらのハロヒドリン型が挙げられ、これらのいずれかを用いることで、四級アンモニウムを含む基を有するカチオン化セルロースを得ることができる。触媒としては、例えば、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属が挙げられる。アルコールとしては、例えば、炭素原子数1~4のアルコールが挙げられる。カチオン化剤の量は、セルロース系原料100質量部に対して好ましくは5質量部以上であり、より好ましくは10質量部以上である。当該量の上限は通常800質量部以下であり、好ましくは500質量部以下である。触媒の量は、好ましくはセルロース系原料100質量部に対して0.5質量部以上であり、より好ましくは1質量部以上である。当該量の上限は、通常20質量部以下であり、好ましくは15質量部以下である。アルコールの量は、好ましくはセルロース系原料100質量部に対して50質量部以上であり、より好ましくは100質量部以上である。当該量の上限は、通常50000質量部以下であり、好ましくは500質量部以下である。
 カチオン化の際の反応温度は、通常10℃以上、好ましくは30℃以上であり、上限は、通常90℃以下、好ましくは80℃以下である。反応時間は、通常10分以上であり、好ましくは30分以上であり、上限は、通常は10時間以下、好ましくは5時間以下である。カチオン化反応の間必要に応じて、反応液を撹拌してもよい。
[塩基型カチオン化セルロース]
 カチオン化後のカチオン化セルロースは、脱塩により塩基型カチオン化セルロースまたは塩基型カチオン化セルロースナノファイバーに変換することが好ましい。脱塩により、カチオン化セルロース中の塩を塩基に変換できる。本明細書において、脱塩を経たカチオン化セルロース(ナノファイバー)を、塩基型カチオン化セルロース(ナノファイバー)、またはカチオン化セルロース(ナノファイバー)(塩基型)と言う。また、脱塩を経ていないカチオン化セルロースおよびカチオン化セルロースナノファイバーを、塩型カチオン化セルロース(ナノファイバー)、またはカチオン化セルロース(ナノファイバー)(塩型)と言う。脱塩は、後述の解繊前(カチオン化セルロース)および解繊後(カチオン化セルロースナノファイバー)のいずれの時点で行ってもよい。脱塩は、カチオン化セルロース(塩型)、およびカチオン化セルロースナノファイバー(塩型)に含まれる塩(例えばCl-)を塩基に置換し塩基型とすることを意味する。カチオン化後の脱塩方法としては例えば、カチオン化セルロースまたはカチオン化セルロースナノファイバーを陰イオン交換樹脂と接触させる方法が挙げられる。陰イオン交換樹脂は、対イオンがOHである限り、強塩基性イオン交換樹脂および弱塩基性イオン交換樹脂のいずれも用いることができる。変性セルロースを陰イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、カチオン置換を効率的に行うとの観点から適宜設定し得る。一例を挙げると、カチオン化セルロースナノファイバー水分散液に対し、陰イオン交換樹脂添加後の水分散液のpHが好ましくは8~13、より好ましくは9~13となるように、比率を調整することができる。接触後の陰イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。
[エステル化]
 エステル化方法は、特に限定されないが、例えば、セルロース系原料に対しリン酸基を有する化合物を反応させる方法(リン酸エステル化方法)が挙げられる。リン酸エステル化方法としては、例えば、セルロース系原料にリン酸基を有する化合物の粉末または水溶液を混合する方法、セルロース系原料のスラリーにリン酸基を有する化合物の水溶液を添加する方法等が挙げられ、後者が好ましい。これにより、反応の均一性を高め、且つエステル化効率を高めることができる。
 リン酸基を有する化合物としては例えば、リン酸、ポリリン酸、亜リン酸、ホスホン酸、ポリホスホン酸、これらのエステル、これらの塩が挙げられる。これらの化合物であると、低コストであり、扱い易く、セルロースにリン酸基を導入して、解繊効率の向上が図れる。リン酸基を有する化合物としては例えば、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウムが挙げられる。リン酸基を有する化合物は、1種、または2種以上の組み合わせでもよい。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましく、リン酸のナトリウム塩がより好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがさらに好ましい。また、反応の均一性が高まり、且つリン酸基導入の効率が高くなることから、エステル化においてはリン酸基を有する化合物の水溶液を用いることが好ましい。リン酸基を有する化合物の水溶液のpHは、リン酸基導入の効率が高くなることから、7以下が好ましい。パルプ繊維の加水分解を抑える観点から、pH3~7がより好ましい。
 リン酸エステル化方法を一例を挙げて以下に説明する。セルロース系原料の懸濁液(例えば、固形分濃度0.1~10質量%)にリン酸基を有する化合物を撹拌しながら添加し、セルロースにリン酸基を導入する。セルロース系原料を100質量部とした際に、リン酸基を有する化合物の添加量はリン原子の量として、0.2質量部以上が好ましく、1質量部以上がより好ましい。これにより、エステル化セルロースまたはエステル化セルロースナノファイバーの収率をより向上させることができる。上限は、500質量部以下が好ましく、400質量部以下がより好ましい。これにより、リン酸基を有する化合物の使用量に見合った収率を効率よく得ることができる。従って、0.2~500質量部が好ましく、1~400質量部がより好ましい。
 セルロース系原料に対しリン酸基を有する化合物を反応させる際、さらに塩基性化合物を反応系に加えてもよい。塩基性化合物を反応系に加える方法としては例えば、セルロース系原料のスラリー、リン酸基を有する化合物の水溶液、またはセルロース系原料とリン酸基を有する化合物のスラリーに、塩基性化合物を添加する方法が挙げられる。
 塩基性化合物は特に限定されないが、塩基性を示すことが好ましく、塩基性を示す窒素含有化合物がより好ましい。「塩基性を示す」とは通常、フェノールフタレイン指示薬の存在下で塩基性化合物の水溶液が桃~赤色を呈すること、および/または、塩基性化合物の水溶液のpHが7より大きいことを意味する。塩基性化合物は、好ましくは、塩基性を示す窒素原子を有する化合物であり、より好ましくは、塩基性を示すアミノ基を有する化合物である。塩基性を示すアミノ基を有する化合物としては、例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンが挙げられる。この中でも低コストで扱いやすい点で、尿素が好ましい。塩基性化合物の添加量は、2~1000質量部が好ましく、100~700質量部がより好ましい。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、通常1~600分程度であり、30~480分が好ましい。エステル化反応の条件がこれらのいずれかの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを抑制でき、リン酸エステル化セルロースの収率を向上できる。
 セルロース系原料にリン酸基を有する化合物を反応させた後、通常はリン酸エステル化セルロースまたはリン酸エステル化セルロースナノファイバーの懸濁液が得られる。リン酸エステル化セルロースまたはリン酸エステル化セルロースナノファイバーの懸濁液は必要に応じて脱水される。脱水後には加熱処理を行うことが好ましい。これにより、セルロースの加水分解を抑えることができる。加熱温度は、100~170℃が好ましく、加熱処理の際に水が含まれている間は130℃以下(好ましくは110℃以下)で加熱し、水を除いた後100~170℃で加熱処理することがより好ましい。
 リン酸エステル化反応により、セルロースにリン酸基置換基が導入され、セルロース同士が電気的に反発する。そのため、リン酸エステル化セルロースは、容易にセルロースナノファイバーまで解繊することができる。リン酸エステル化セルロースのグルコース単位当たりのリン酸基置換度は0.001以上が好ましい。これにより、十分な解繊(例えばナノ解繊)が実施できる。上限は、0.40以下が好ましい。これにより、リン酸エステル化セルロースの膨潤または溶解が抑制され、セルロースナノファイバーが得られない事態の発生を抑制することができる。従って、リン酸基置換度は、0.001~0.40でが好ましい。リン酸エステル化セルロースナノファイバーのグルコース単位当たりのリン酸基置換度は、0.001~0.40がより好ましい。
 リン酸エステル化セルロースに対して、煮沸後冷水で洗浄する等の洗浄処理がなされることが好ましい。これにより解繊を効率よく行うことができる。
[解繊(ナノ解繊)]
 解繊は、変性前のセルロース系原料に行ってもよく、変性セルロースに行ってもよいが、変性により解繊に必要なエネルギーが低減されるため、後者が好ましい。解繊処理は1回行ってもよく、複数回行ってもよい。変性セルロースまたは変性セルロースナノファイバーの製造において脱塩処理を行う場合には、脱塩の前後のそれぞれにおいて解繊を行ってもよい。
 解繊に用いる装置は、特に限定されないが、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式等の方式の装置が挙げられ、高圧または超高圧ホモジナイザーが好ましく、湿式の、高圧または超高圧ホモジナイザーがより好ましい。これらの装置は、変性セルロースに強力なせん断力を印加することができるので好ましい。せん断速度は1000sec-1以上が好ましい。これにより、凝集構造が少なく、均一にナノファイバー化することができる。変性セルロースに印加する圧力は、好ましくは50MPa以上であり、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。
 解繊は、通常、分散体中で行う。分散体は、通常、水分散液等の水系分散体である。分散に先立ち、必要に応じて予備処理を行ってもよい。予備処理としては、例えば、混合、撹拌、乳化が挙げられ、公知の装置(例えば、高速せん断ミキサー)を用いて行えばよい。
 解繊をセルロース系原料の分散体または変性セルロースの分散体に対して行う場合、分散体中のセルロース系原料または変性セルロースの固形分濃度は、下限は、通常は0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上である。これにより、処理するセルロース系原料または変性セルロースの量に対し液量が適量となり効率的である。上限は、通常10質量%以下であり、好ましくは6質量%以下である。これにより、流動性を保持することができる。
[ろ過]
 解繊後には、必要に応じてろ過を行ってもよく、変性セルロースの解繊後にはろ過を行うことが好ましい。解繊が不十分なことに起因して変性セルロースナノファイバーの分散液中には未解繊繊維等の異物が残存することがあるが、ろ過により斯かる異物を除去することができる。異物が残存した状態でゴム組成物とした場合、異物を起点としてゴム組成物が破断し易くなり、強度の低下等の不利益が生じる場合があるため、ろ過によりこれを防ぐことができる。
 ろ過処理としては、例えば、変性セルロースナノファイバーの分散体(通常は水系分散体)を0.01MPa以上の、好ましくは0.01~10MPaの差圧を付けて加圧ろ過または減圧ろ過する処理が挙げられる。差圧が0.01MPa以上であることにより、相当の希釈を行わなくとも(希釈は、その後の工程を考慮すると行わないことが好ましい)、十分なろ過処理量が得られる。差圧が0.01~10MPaであることにより、分散体中の変性セルロースナノファイバーの濃度または分散体の粘度が高い場合にも、十分なろ過処理量が得られる。ろ過の際の変性セルロースナノファイバー分散液中の変性セルロースナノファイバーの濃度は、通常、0.1~5質量%であり、好ましくは0.2~4質量%であり、より好ましくは0.5~3質量%である。ろ過に用いる装置としては、例えば、ヌッチェ型、キャンドル型、リーフディスク型、ドラム型、フィルタープレス型、ベルトフィルター型等のタイプの装置が挙げられる。
 ろ過処理量は、1時間当たり10L/m2以上が好ましく、100L/m2以上がより好ましい。ろ過の方法としては、例えば、ろ過助剤を用いる助剤ろ過、多孔質ろ材を用いるろ材ろ過が挙げられ、1つのろ過方法を選択して実施してもよいし、2つ以上のろ過方法を併用してもよい。この場合、ろ過方法の順序は任意に選択し得る。さらに2つ以上のろ過工程を実施する場合、いずれか1つのろ過工程が前記ろ過差圧で実施されていればよいが、全てのろ過工程が前記ろ過差圧で実施されてもよい。
 ろ過方法のうち、ろ過助剤を用いる助剤ろ過が好ましい。この方法によれば、ろ過助剤で形成されたろ過層を取り除くことによりろ過処理で生じたろ材の目詰まりを容易に解消することができ、連続的なろ過処理を行うことができる。ろ過助剤は、略粒状物が好ましい。粒状物の平均粒子径は、好ましくは150μm以下、より好ましくは1~150μm、さらに好ましくは10~75μm、さらにより好ましくは15~45μm、とりわけ好ましくは25~45μmである。平均粒子径が1μmを超えることにより、ろ過速度の低下が抑制され得る。平均粒子径が150μm未満であることにより、異物を十分に捉えることができ、ろ過処理を効率よく行うことができる。
 ろ過助剤の形状は、例えば、珪藻土のような略球状、粉末セルロースのような棒状が挙げられる。いずれの形状でも、JIS Z8825-1に準拠してレーザー回折式測定器により平均粒子径を測定し得る。
 ろ過助剤を用いる助剤ろ過は、ろ材の上にろ過助剤の層を形成するプレコートろ過、および、ろ過助剤と変性セルロースナノファイバーの分散体を予め混合しこれをろ過するボディーフィードろ過のいずれによって行ってもよく、両者を組み合わせて行ってもよい。両者を組合せると処理量が向上し、かつ、ろ液の品質が良好となるためより好ましい。また、ろ過助剤の種類を変えて多段階の助剤ろ過を行ってもよい。ろ過助剤を用いて2段階以上のろ過工程を実施する場合、いずれか1つのろ過工程が前記ろ過差圧で実施されていればよく、全てのろ過工程が前記ろ過差圧で実施されてもよい。
 ろ過助剤としては無機化合物、有機化合物のいずれを用いてもよいが、粒状のものが好ましい。ろ過助剤の好適例としては、珪藻土、粉末セルロース、パーライト、活性炭が挙げられる。
 珪藻土とは、主に珪藻の殻からなる軟質の岩石または土壌をいい、シリカを主成分とする。珪藻土は、アルミナ、酸化鉄、アルカリ金属の酸化物等、シリカ以外の成分を含んでいてもよい。また、多孔質で高い空隙率を有し、ケーク嵩密度が0.2~0.45g/cm程度のものが好ましい。珪藻土の中でも、焼成品および融剤焼成品が好ましく、淡水産珪藻土も好ましい。このような珪藻土としては、例えば、セライト社製のセライト(登録商標)、イーグルピッチャーミネラルズ社製のセラトム(登録商標)が挙げられる。
 粉末セルロースとは、木材パルプの非結晶部分を酸加水分解処理で除去した後、粉砕、篩分けして得られる微結晶性セルロースからなる棒軸状粒子をいう。粉末セルロースにおけるセルロースの重合度は、好ましくは100~500程度である。X線回折法による粉末セルロースの結晶化度は、好ましくは70~90%である。レーザー回折式粒度分布測定装置による体積平均粒子径は、好ましくは100μm以下であり、より好ましくは50μm以下である。体積平均粒子径が100μm以下であると、流動性に優れるセルロースナノファイバー分散液を得ることができる。粉末セルロースとしては、例えば、精選パルプを酸加水分解した後に得られる未分解残渣を精製かつ乾燥し、粉砕、篩い分けする方法により製造される棒軸状であって、一定の粒径分布を有する結晶性セルロース粉末、日本製紙社製のKCフロック(登録商標)、旭化成ケミカルズ社製のセオラス(登録商標)、FMC社製のアビセル(登録商標)が挙げられる。
 ろ材としては、例えば、金属繊維、セルロース、ポリプロピレン、ポリエステル、ナイロン、ガラス、コットン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド等の素材からなる、フィルター、メンブレン、ろ布、金属粉を焼結させてなるフィルター、またはスリット状フィルターが挙げられる。これらの中でも、金属フィルター或いはメンブレンフィルターが好ましい。
 ろ材の好ましい平均孔径は、上記のろ過助剤と併用する場合は特に限定されない。一方、上記のろ過助剤を併用せず、ろ材のみによりろ過する場合、ろ材の平均孔径は、好ましくは0.01~100μmであり、より好ましくは0.1~50μmであり、さらに好ましくは1~30μmである。平均孔径が0.01μmより小さい場合、十分なろ過速度が得られない場合がある。一方、100μmより大きい場合、異物を捉えきれないのでろ過効果が得られ難くなる場合がある。
 ろ過後の変性セルロースナノファイバー分散液の分散性は、以下の方法で評価することが好ましい。変性セルロースナノファイバー分散液に表面張力調整剤を添加した後に薄膜化する。当該薄膜の両面に、一対の偏光板を互いに偏光軸が直交するように配置する。一方の偏光板側から光を照射し、他方の偏光板側から透過画像を取得する。当該画像を画像解析して異物面積を特定し、セルロースナノファイバー絶乾質量1gあたりの異物面積比率を算出する。ろ過後のセルロースナノファイバー分散液は、当該評価方法において25%以下の異物面積比率を有することが好ましい。
 (A)成分は、1種の変性セルロースナノファイバーでもよく、2種以上の変性セルロースナノファイバーの組み合わせでもよい。(A)成分は、酸化セルロースナノファイバー、カルボキシメチル化セルロースナノファイバー等の、カルボキシル基含有セルロースナノファイバーを少なくとも1つ含むことが好ましく、酸化セルロースナノファイバーおよび/またはカルボキシメチル化セルロースナノファイバーを少なくとも含むことがより好ましい。これにより、(C)成分である界面活性剤の親水性基とカルボキシル基含有セルロースナノファイバーのカルボキシル基とが強固に相互作用し、セルロースナノファイバーと(B)成分であるゴム成分との相溶性が向上し、セルロースナノファイバーがゴム成分中により均一な分散することができ、ゴム組成物の強度を顕著に改善できる。
 (A)成分は、変性セルロースナノファイバーと水溶性高分子の混合物でもよい。水溶性高分子としては、例えば、セルロース誘導体(例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース)、キサンタンガム、キシログルカン、デキストリン、デキストラン、カラギーナン、ローカストビーンガム、アルギン酸、アルギン酸塩、プルラン、澱粉、かたくり粉、クズ粉、陽性澱粉、燐酸化澱粉、コーンスターチ、アラビアガム、ジェランガム、ゲランガム、ポリデキストロース、ペクチン、キチン、水溶性キチン、キトサン、カゼイン、アルブミン、大豆蛋白溶解物、ペプトン、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ソーダ、ポリビニルピロリドン、ポリ酢酸ビニル、ポリアミノ酸、ポリ乳酸、ポリリンゴ酸、ポリグリセリン、ラテックス、ロジン系サイズ剤、石油樹脂系サイズ剤、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミド・ポリアミン樹脂、ポリエチレンイミン、ポリアミン、植物ガム、ポリエチレンオキサイド、親水性架橋ポリマー、ポリアクリル酸塩、でんぷんポリアクリル酸共重合体、タマリンドガム、グァーガム、およびコロイダルシリカ、並びにこれらの混合物が挙げられる。中でも溶解性の点から、カルボキシメチルセルロースまたはその塩を用いることが好ましい。
<(B)成分:ゴム成分>
 ゴム成分とはゴムの原料であり、架橋してゴムとなるものをいう。ゴム成分としては、天然ゴム用のゴム成分と合成ゴム用のゴム成分が存在する。天然ゴム用のゴム成分としては、例えば、化学修飾を施さない狭義の天然ゴム(NR);塩素化天然ゴム、クロロスルホン化天然ゴム、エポキシ化天然ゴム等の化学修飾した天然ゴム;水素化天然ゴム;脱タンパク天然ゴムが挙げられる。合成ゴム用のゴム成分としては、例えば、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム等のジエン系ゴム;ブチルゴム(IIR)、エチレン-プロピレンゴム(EPM、EPDM)、アクリルゴム(ACM)、エピクロロヒドリンゴム(CO、ECO)、フッ素ゴム(FKM)、シリコーンゴム(Q)、ウレタンゴム(U)、クロロスルホン化ポリエチレン(CSM)等の非ジエン系ゴムが挙げられる。これらの中で、天然ゴムおよびジエン系のゴムが好ましく、ジエン系の天然ゴム(化学修飾を施さない狭義の天然ゴム(NR))がより好ましい。
 (B)成分は、1種単独でもよいし、2種以上の組み合わせでもよい。
<(C)成分:界面活性剤>
 界面活性剤とは、分子の中に少なくとも1つの親水性基と少なくとも1つの疎水性基とを有し得る物質、およびその前駆体(例えば、金属塩の存在下で上記両基を有し得る物質)を意味する。界面活性剤としては、例えば、陽イオン性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤が挙げられる。
 陽イオン性界面活性剤としては、例えば、脂肪族アミン(例えば、オレイルアミン、ステアリルアミン、テトラデシルアミン、1-ヘキセニルアミン、1-ドデセニルアミン、9,12-オクタデカジエニルアミン(リノールアミン)、9,12,15-オクタデカトリエニルアミン、リノレイルアミン、ドデシルアミン、プロピルアミン、メチルアミン等のモノアルキルアミン、ジアルキルアミン、トリアルキルアミン)、テトラメチルアンモニウム塩(例えば、塩化テトラメチルアンモニウム、水酸化テトラメチルアンモニウム)、テトラブチルアンモニウム塩(例えば、塩化テトラブチルアンモニウム)、アルキルトリメチルアンモニウム塩(例えば、塩化アルキルトリメチルアンモニウム、塩化オクチルトリメチルアンモニウム、塩化デシルトリメチルアンモニウム、塩化ドデシルトリメチルアンモニウム、塩化テトラデシルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、臭化アルキルトリメチルアンモニウム、臭化ヘキサデシルトリメチルアンモニウム)、ベンジルトリアルキルアンモニウム塩(例えば、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウム、塩化ベンザルコニウム(塩化ドデシルジメチルベンジルアンモニウム)、臭化ベンザルコニウム)、ジベンジルジアルキルアンモニウム塩(例えば、塩化ベンゼトニウム)、ジアルキルジメチルアンモニウム塩(例えば、塩化ジデシルジメチルアンモニウム、塩化ジステアリルジメチルアンモニウム)、アルキルピリジニウム塩(例えば、塩化ブチルピリジニウム、塩化ドデシルピリジニウム、塩化セチルピリジニウム)、脂肪族アミン塩(例えば、モノメチルアミン塩酸塩、ジメチルアミン塩酸塩、トリメチルアミン塩酸塩)が挙げられる。
 陰イオン性界面活性剤としては、例えば、カルボン酸(例えば、オクタン酸ナトリウム、デカン酸ナトリウム、ラウリン酸ナトリウム、ミリスチン酸ナトリウム、パルミチン酸ナトリウム、ステアリン酸ナトリウム、ペルフルオロノナン酸、N-ラウロイルサルコシンナトリウム、ココイルグルタミン酸ナトリウム、アルファスルホ脂肪酸メチルエステル塩)、スルホン酸(例えば、1-ヘキサンスルホン酸ナトリウム、1-オクタンスルホン酸ナトリウム、1-デカンスルホン酸ナトリウム、1-ドデカンスルホン酸ナトリウム、ペルフルオロブタンスルホン酸、直鎖アルキルベンゼンスルホン酸ナトリウム、トルエンスルホン酸ナトリウム、クメンスルホン酸ナトリウム、オクチルベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウム、ナフタレンジスルホン酸二ナトリウム、ナフタレントリスルホン酸三ナトリウム、ブチルナフタレンスルホン酸ナトリウム)、硫酸エステル(例えばラウリル硫酸ナトリウム、ミリスチル硫酸ナトリウム、ラウレス硫酸ナトリウム、ポリオキシエチレンアルキルフェノールスルホン酸ナトリウム、ラウリル硫酸アンモニウム)、リン酸エステル(例えばラウリルリン酸、ラウリルリン酸ナトリウム、ラウリルリン酸カリウム)が挙げられる。
 非イオン性界面活性剤としては、例えば、グリセリン脂肪酸エステル(例えば、ラウリン酸グリセリン、モノステアリン酸グリセリン)、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル(例えば、ペンタエチレングリコールモノドデシルエーテル、オクタエチレングリコールモノドデシルエーテル)、アルキルフェノールアルキレート(例えば、ポリオキシエチレンアルキルフェニルエーテル、オクチルフェノールエトキシレート、ノニルフェノールエトキシレート)、ポリオキシアルキレングリコール(例えば、ポリオキシエチレンポリオキシプロピレングリコール)、ポリオキシアルキレンソルビタン脂肪酸エステル(例えば、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンヘキシタン脂肪酸エステル、ソルビタン脂肪酸エステルポリエチレングリコール)、アルカノールアミド(例えば、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、ステアリン酸ジエタノールアミド、コカミドDEA)、アルキルグルコシド(例えば、オクチルグルコシド、デシルグルコシド、ラウリルグルコシド)が挙げられる。
 両性界面活性剤としては、例えば、高級アルコール(例えば、セタノール、ステアリルアルコール、オレイルアルコール)、ベタイン系化合物(例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン、ドデシルアミノメチルジメチルスルホプロピルベタイン、オクタデシルアミノメチルジメチルスルホプロピルベタイン、コカミドプロピルベタイン、コカミドプロピルヒドロキシルベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン)、アルキルアミノ酸塩(例えば、ラウロイルグルタミン酸ナトリウム、ラウロイルグルタミン酸カリウム、ラウロイルメチル-β-アラニン)、アルキルアミンオキシド(例えば、ラウリルジメチルアミンN-オキシド、オレイルジメチルアミンN-オキシド)が挙げられる。
 (C)成分は、両性界面活性剤および陽イオン性界面活性剤が好ましく、陽イオン性界面活性剤がより好ましく、脂肪族アミンがさらに好ましい。脂肪族アミンは、炭素原子数が15~20であること、その構造中に不飽和結合を少なくとも1つ(好ましくは1つ)含むこと、および1級アミンであること、からなる群より選ばれる1以上を満たすことが好ましく、すべてを満たすことがより好ましく、オレイルアミン、ステアリルアミンまたは1-ヘキセニルアミンがさらに好ましく、オレイルアミンがさらにより好ましい。
 (C)成分は、1種の界面活性剤でもよく、2種以上の界面活性剤の組み合わせでもよい。
<組成>
 ゴム組成物における(A)~(C)成分の各含有量は特に限定されないが、好ましい使用量は以下のとおりである。
 (A)成分の含有量は、(B)成分100質量部に対して1質量部以上が好ましく、2質量部以上がより好ましく、3質量部以上がさらに好ましい。これにより引張強度の向上効果が十分に発現し得る。上限は、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましい。これにより、製造工程における加工性を保持することができる。従って、1~50質量部が好ましく、2~40質量部がより好ましく、3~30質量部がさらに好ましい。
 (C)成分の含有量は、(A)成分100質量部に対して5または10質量部以上が好ましく、15または20質量部以上がより好ましく、40質量部以上がさらに好ましい。これにより引張強度の向上効果が十分に発現し得る。上限は、100質量部以下が好ましく、80質量部以下がより好ましく、70質量部以下がさらに好ましい。これにより、製造工程における加工性を保持することができる。従って、5~100質量部または10~100質量部が好ましく、15~80質量部または20~80質量部がより好ましく、40~70質量部がさらに好ましい。
<任意成分>
 ゴム組成物は、後段で説明するゴム組成物の用途等の要望に応じて1種または2種以上の任意成分をさらに含んでもよい。任意成分としては、例えば、補強剤(例えば、カーボンブラック、シリカ)、シランカップリング剤、架橋剤、加硫促進剤、加硫促進助剤(例えば、酸化亜鉛、ステアリン酸)、オイル、硬化レジン、ワックス、老化防止剤、着色剤等、ゴム工業で使用され得る配合剤が挙げられる。このうち加硫促進剤、加硫促進助剤が好ましい。任意成分の含有量は、任意成分の種類等の条件に応じて適宜決定すればよく、特に限定されない。
 ゴム組成物が未加硫ゴム組成物または最終製品である場合、任意成分として少なくとも架橋剤を含むことが好ましい。架橋剤としては、例えば、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂が挙げられる。これらの中でも硫黄が好ましい。架橋剤の含有量は、(B)成分100質量部に対し1.0質量部以上が好ましく、1.5質量部以上がより好ましく、1.7質量部以上がさらに好ましい。上限は、10質量部以下が好ましく、7質量部以下がより好ましく、5質量部以下がさらに好ましい。
 加硫促進剤としては、例えば、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミドが挙げられる。加硫促進剤の含有量は、(B)成分100質量部に対し0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.4質量部以上がさらに好ましい。上限は、5質量部以下が好ましく、3質量部以下がより好ましく、2質量部以下がさらに好ましい。
 ゴム組成物中、(A)~(C)成分および任意成分は、それぞれ独立して存在してもよく、また、少なくとも2成分の反応物として存在してもよい。反応物としては例えば、(C)成分と(A)成分がイオン結合して生成する反応物が挙げられ、具体的には例えば、脂肪族アミン修飾酸化セルロースナノファイバーが挙げられる。ゴム組成物中の各成分の含有量は、通常、原料としての使用量に準じる。
<用途>
 本発明のゴム組成物の用途は、特に制限されず、最終製品としてゴムを得るための組成物であればよい。すなわち、ゴム製造用の中間体(マスターバッチ)でもよいし、加硫剤を含む未加硫のゴム組成物でもよいし、最終製品としてのゴムでもよい。最終製品の用途は特に限定されず、例えば、自動車、電車、船舶、飛行機等の輸送機器;パソコン、テレビ、電話、時計等の電化製品;携帯電話等の移動通信機器;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品;建築材;文具等の事務機器;容器;コンテナーが挙げられる。これら以外であっても、ゴムや柔軟なプラスチックが用いられている部材への適用が可能であり、タイヤへの適用が好適である。タイヤとしては例えば、乗用車用、トラック用、バス用、重車両用等の空気入りタイヤが挙げられる。
<製造方法>
 本発明のゴム組成物は、以下の工程[I]および[II]を含む製造方法により、または、以下の工程[i]および[ii]を含む製造方法により、製造されることが好ましく、前者の製造方法により製造されることがより好ましい。
 工程[I]:(A)成分と(B)成分を混合し、混合物を得る工程
 工程[II]:得られる混合物に、(C)成分を添加、混練し、ゴム組成物を得る工程
 工程[i]:(A)、(B)および(C)成分を混合し、混合物を得る工程
 工程[ii]:得られる混合物を混練し、ゴム組成物を得る工程
 工程[I]および[II]、または、工程[i]および[ii]を経ることにより、高ひずみ時における強度が良好なゴム組成物を製造することができる。なお、本発明の方法における、(A)~(C)成分および任意成分の具体例、使用量は、既述のとおりである。
 <工程[I]および[i]:混合工程>
 工程[I]および[i]において、混合に供される(B)成分の形態は特に限定されない。例えば、ゴム成分の固形物、ゴム成分を分散媒に分散させた分散液(ラテックス)および溶媒に溶解した溶液が挙げられる。分散媒および溶媒(以下、まとめて「液体」ともいう)としては、例えば、水、有機溶媒が挙げられる。液体の量は、ゴム成分(2以上のゴム成分を使用する場合、その合計量)100質量部に対して、10~1000質量部が好ましい。
 混合は、ホモミキサー、ホモジナイザー、プロペラ攪拌機等の公知の装置を用いて実施できる。混合する温度は限定されないが、室温(20~30℃)が好ましい。混合時間も適宜調整してよい。
 混合に供される(A)成分の形態は、特に限定されない。例えば、変性セルロースナノファイバーを分散媒に分散した分散液、当該分散液の乾燥固形物、当該分散液の湿潤固形物が挙げられる。分散液における変性セルロースナノファイバーの濃度は、分散媒が水である場合、0.1~5%(w/v)であってもよく、分散媒が水とアルコール等の有機溶媒とを含む場合、0.1~20%(w/v)であってもよい。本明細書において、湿潤固形物とは、前記分散液と乾燥固形物との中間の態様の固形物である。前記分散液を通常の方法で脱水して得た湿潤固形物中の分散媒の量は変性セルロースナノファイバーに対して5~15質量%が好ましい。液体の追加またはさらなる乾燥により、湿潤固形物中の分散媒の量は適宜調整し得る。
 (A)成分に関し既述のとおり、(A)成分は、2以上の変性セルロースナノファイバーの組み合わせでもよい。また、(A)成分としての変性セルロースナノファイバーと水溶性高分子溶液との混合物が混合に供される際の形態は、特に限定されず、例えば、混合液、混合液の乾燥固形物、混合液の湿潤固形物が挙げられる。混合液およびその乾燥固形物における液体の量は、上記の範囲であってよい。
 工程[i]において、(C)成分の添加時期は特に限定されず、(A)~(C)成分を同時に添加混合してもよいし、(A)および(C)成分を予め混合後に(B)成分を添加してもよく、後者が好ましい。
<工程[IA]:乾燥工程>
 工程[I]および[i]で得られる混合物は、工程[II]および[ii]に供される前に、工程[IA]に供されることが好ましい。工程[IA]では、工程[I]または[i]で得られる混合物を乾燥する。乾燥の方法は特に限定されず、加熱法、凝固法、それらの併用のいずれでもよいが、加熱処理が好ましい。加熱処理の条件は、特に限定されないが、一例を挙げると以下のとおりである。加熱温度は、40℃以上100℃未満が好ましい。処理時間は、1時間~24時間が好ましい。加熱温度または加熱時間を上記条件とすることにより、ゴム成分に対するダメージが抑えられ得る。乾燥後の混合物は絶乾状態でも、溶媒が残存していてもよい。また、乾燥の方法は上記の方法には限定されず、溶媒を除去する従来公知の方法を適宜選択すればよい。
 <工程[II]および[ii]:混練工程>
 工程[II]および[ii]においては、工程[I]、[i]または[IA]を経て得られる混合物を混練する。混練は、公知の方法に従い混練機を用いて行えばよい。混練機としては、例えば、2本ロール、3本ロール等の開放式混練機、噛合式バンバリーミキサー、接線式バンバリーミキサー、加圧ニーダー等の密閉式混練機が挙げられる。工程[II]および[ii]は、多段階の混練を経る工程でもよい。例えば、第一段階で密閉式混練機による混練およびその後の開放式混練機で再混練の組み合わせが挙げられる。
 工程[II]においては、(C)成分:界面活性剤を混合物に添加する。(C)成分の添加は、工程[I]で得られる混合物または工程[IA]を経て得られる混合物に対して上記混練機を用いて混練する際に行う。添加の時点は特に限定されず、例えば、混練開始時、混練中のいずれか、および両方が挙げられる。
 (C)成分の添加方法は、特に限定されず、例えば、所定量の一括添加、および逐次添加が挙げられる。混合物に対して界面活性剤が均一に混練されるのであれば、いずれの方法でもよく特に限定されない。
 工程[II]および[ii]において、混合物とともに充填剤、加硫剤等の任意の添加剤(配合剤)を添加し混練してもよい。混合物、(C)成分、任意の添加剤の添加順は問わない。混合物を先に混練機に投入した後、界面活性剤および任意の添加剤を投入して混練してもよく、反対に、(C)成分および任意の添加剤を先に投入した後、混合物を投入して混練してもよい。(C)成分および任意の添加剤を予め混合物に配合して混練機に添加してもよい。加硫剤を添加する場合は、加硫剤の添加は混練の最終段に行うことが好ましい。混練時間は(C)成分が混合物に対して均一に混練されればいずれでもよいが、通常3~20分程度である。
 混練温度は、常温程度(例えば、15~30℃程度)でよいが、ある程度高温に加熱してもよい。例えば、温度の上限は、通常150℃以下であり、好ましくは140℃以下であり、より好ましくは130℃以下である。温度の下限は15℃以上であり、好ましくは20℃以上であり、より好ましくは30℃以上である。混練温度は、15~150℃が好ましく、20~140℃がより好ましく、30~130℃がさらに好ましい。
 得られた混練物は、そのままマスターバッチとして利用されることが好ましい。一方、得られた混練物が最終製品として利用されてもよい。最終製品として利用される場合、混練物に対し、ゴム成分、加硫剤等の任意の添加剤が追加添加され、再度混練されることが好ましい。
 工程[II]および[ii]では、混練の終了後に、必要に応じて成形を行ってもよい。成形としては、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形が挙げられ、最終製品の形状、用途、成形方法に応じて装置を適宜選択すればよい。
 工程[II]および[ii]では、混練終了後に、好ましくは成形後に、加熱することが好ましい。ゴム組成物が架橋剤を(好ましくは架橋剤と加硫促進剤を)含む場合、加熱により架橋(加硫)処理がなされる。また、ゴム組成物が架橋剤および加硫促進剤を含まない場合も、加熱前に添加しておけば同様の効果が得られる。加熱温度は、150℃以上が好ましく、上限は200℃以下が好ましく、180℃以下がより好ましい。従って、150~200℃程度が好ましく、150~180℃程度がより好ましい。加熱装置としては例えば、型加硫、缶加硫、連続加硫等の加硫装置が挙げられる。
 混練物を最終製品とする前に、必要に応じ仕上げ処理を行ってもよい。仕上げ処理としては例えば、研磨、表面処理、リップ仕上げ、リップ裁断、塩素処理が挙げられ、これらの処理のうち1つのみを行ってもよいし2つ以上の組み合わせであってもよい。
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。物性値等数値の測定方法は、別途記載がない限り、本明細書中に記載した測定方法である。
 [物性値の測定方法]
 JIS K 6251「加硫ゴム熱可塑性ゴム-引張特性の求め方」に従い、50%引張応力(50%モジュラス。「M50」と記載する)、100%引張応力(100%モジュラス。「M100」と記載する)、300%引張応力(300%モジュラス。「M300」と記載する)を測定した。各数値が大きいほど、ゴム組成物の補強効果が高く、ゴム組成物の機械強度に優れることを示す。
 なお、本発明における「高ひずみ時」とは、上記M100以上の測定条件と定義する。
<製造例1> 酸化セルロースナノファイバーの製造
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を次亜塩素酸ナトリウムが5.5mmol/gになるように添加し、室温にて酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、分離されたパルプを十分に水洗して、酸化されたパルプ(酸化(カルボキシル化)セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.6mmol/gであった。これを水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150Mpa)で3回処理して、酸化(カルボキシル化)セルロースナノファイバー分散液(1重量%)を得た。平均繊維径は3nm、アスペクト比は250であった。この酸化セルロースナノファイバー(塩型)水分散液に対し、pHが2.4になるまでHClを添加し、ゲル状の凝集物を得た。これを脱水し、十分に水洗した後に、再度水を加えてミキサーで処理し、固形分濃度1重量%のスラリーを得た。このスラリーを、超高圧ホモジナイザー(処理圧140MPa)で3回処理することにより、洗浄後の酸型酸化セルロースナノファイバー水分散液(1重量%)を得た。得られた酸型酸化セルロースナノファイバー水分散液の酸型カルボキシル基の割合は97%であった。
<製造例2> 酸化セルロースナノファイバーの製造
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を次亜塩素酸ナトリウムが3.5mmol/gになるように添加し、室温にて酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、分離されたパルプを十分に水洗して、酸化されたパルプ(酸化(カルボキシル化)セルロース)を得た。この時のパルプ収率は91%であり、酸化反応に要した時間は80分、カルボキシル基量は1.0mmol/gであった。これを水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150Mpa)で3回処理して、酸化(カルボキシル化)セルロースナノファイバー分散液(1重量%)を得た。平均繊維径は3nm、アスペクト比は270であった。この酸化セルロースナノファイバー水分散液(塩型)に対し、pHが2.4になるまでHClを添加し、ゲル状の凝集物を得た。これを脱水し、十分に水洗した後に、再度水を加えてミキサーで処理し、固形分濃度1重量%のスラリーを得た。このスラリーを、超高圧ホモジナイザー(処理圧140MPa)で3回処理することにより、洗浄後の酸型酸化セルロースナノファイバー水分散液(1重量%)を得た。得られた酸型酸化セルロースナノファイバー水分散液の酸型カルボキシル基の割合は95%であった。
<製造例3> カルボキシメチル化セルロースナノファイバーの製造
 パルプを混ぜることができる撹拌機に、パルプ(NBKP(針葉樹晒クラフトパルプ)、日本製紙株式会社製)を乾燥質量で200g、水酸化ナトリウムを乾燥質量で111g(出発原料の無水グルコース残基当たり2.25倍モル)加え、パルプ固形分が20%(w/v)になるように水を加えた。その後、30℃で30分攪拌した後にモノクロロ酢酸ナトリウムを216g(有効成分換算、パルプのグルコース残基当たり1.5倍モル)添加した。30分撹拌した後に、70℃まで昇温し1時間撹拌した。その後、反応物を取り出して中和、洗浄して、グルコース単位当たりのカルボキシメチル置換度0.25のカルボキシルメチル化したパルプを得た。これを水で固形分1%とし、高圧ホモジナイザーにより20℃、150MPaの圧力で5回処理することにより解繊しカルボキシメチル化セルロースナノファイバー(1重量%)を得た。平均繊維径は15nm、アスペクト比は50であった。このカルボキシメチル化セルロースナノファイバー水分散液(塩型)に対し、pHが2.9になるまで陽イオン交換樹脂(アンバージェット1020、オルガノ社製)を添加し、撹拌した。吸引濾過により陽イオン交換樹脂を回収し、酸型カルボキシメチル化セルロースナノファイバー水分散液(1重量%)を得た。得られた酸型カルボキシメチル化セルロースナノファイバー水分散液の酸型カルボキシル基の割合は91%であった。
<製造例4> カチオン化セルロースナノファイバーの製造
 パルプを攪拌できるパルパーに、パルプ(NBKP、日本製紙株式会社製)を乾燥質量で200g、水酸化ナトリウムを乾燥質量で24g加え、パルプ固形濃度が15%になるように水を加えた。その後、30℃で30分攪拌した後に70℃まで昇温し、カチオン化剤として3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライドを200g(有効成分換算)添加した。1時間反応した後に、反応物を取り出して中和、洗浄して、グルコース単位当たりのカチオン置換度0.05のカチオン変性されたパルプを得た。これを固形濃度1%とし、高圧ホモジナイザーにより20℃、140MPaの圧力で2回処理することにより解繊しカチオン化セルロースナノファイバー(1重量%)を得た。平均繊維径は25nm、アスペクト比は50であった。このカチオン化セルロースナノファイバー水分散液(塩型)に対し、pHが11になるまで陰イオン交換樹脂(アンバージェット4400、オルガノ社製)を添加し、撹拌した。吸引濾過により陰イオン交換樹脂を回収し、塩基型カチオン化セルロースナノファイバー水分散液(1重量%)を得た。
 なお、上記製造例におけるカルボキシル基量、カルボキシメチル置換度、カチオン置換度は、上段にて説明した方法により測定された。
<実施例1>
 製造例1で得られた酸型の酸化セルロースナノファイバー水分散液(1重量%)500gと天然ゴムラテックス(商品名HA-LATEX、株式会社レヂテックス製、固形分濃度61.4%)162.9gを混合してゴム成分とセルロースナノファイバーとの質量比が100:5となるようにし、TKホモミキサー(8000rpm)で10分間、23℃で撹拌した。この水性懸濁液を、70℃の加熱オーブン中で19時間乾燥して混合物を得た。
 得られた混合物105gを、ラボプラストミル(株式会社東洋精機製作所)に入れて1分素練りした後、オレイルアミン2.1gを逐次添加し、全体が均一になるまで混練した。ラボプラストミルの設定温度は70℃、トータルの混練時間は10分であった。得られた混練物に対して、硫黄3.5g、加硫促進剤(N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド)0.7g、酸化亜鉛6.0g、ステアリン酸0.5gを加え、オープンロール(関西ロール社製)を用い、40℃で15分間混練して、未加硫ゴム組成物のシートを得た。このシートを金型にはさみ、150℃で15分間プレス架橋することにより、厚さ約2mmのゴム組成物のシートを得た。これを所定の形状の試験片に裁断し、物性値を評価した。すなわち、各試験片のJIS K6251「加硫ゴムおよび熱可塑性ゴム-引張特性の求め方」に従い、補強性の一つである引張強度を測定した。
<実施例2>
 製造例3で得られた酸型のカルボキシメチル化セルロースナノファイバー水分散液(1重量%)を用いた以外は、実施例1と同様にしてゴム組成物のシートを得、物性値を評価した。
<実施例3>
 製造例4で得られた塩基型のカチオン化セルロースナノファイバー水分散液(1重量%)を用いた以外は、実施例1と同様にしてゴム組成物のシートを得、物性値を評価した。   
<実施例4>
 界面活性剤としてステアリルアミン2.1gを用いた以外は、実施例1と同様にしてゴム組成物のシートを得、物性値を評価した。
<実施例5>
 界面活性剤として1-ヘキセニルアミン0.8gを用いた以外は、実施例1と同様にしてゴム組成物のシートを得、物性値を評価した。
<実施例6>
 製造例2で得られた酸型の酸化セルロースナノファイバー水分散液(1重量%)500gを用いた以外は、実施例1と同様にしてゴム組成物のシートを得、物性値を評価した。   
<実施例7>
 界面活性剤としてオレイルアミンの添加量を1.0gとした以外は、実施例1と同様にしてゴム組成物のシートを得、物性値を評価した。
<実施例8>
 製造例1において、脱塩前に得られた酸化(カルボキシル化)セルロースナノファイバー分散液(塩型、1重量%)を用いた以外は、実施例1と同様にしてゴム組成物のシートを得、物性値を評価した。
<実施例9>
 製造例1で得られた酸型の酸化セルロースナノファイバー水分散液(1重量%)1000gと天然ゴムラテックス(商品名HA-LATEX、株式会社レヂテックス製、固形分濃度61.4%)162.9gを混合してゴム成分とセルロースナノファイバーとの質量比が100:10となるようにし、TKホモミキサー(8000rpm)で10分間、23℃で撹拌した。この水性懸濁液を、70℃の加熱オーブン中で19時間乾燥して混合物を得た。
 得られた混合物110gに対して、ラボプラストミル(株式会社東洋精機製作所)を用いて、オレイルアミン2.1gを逐次添加し、70℃で10分間混練を行った。得られた混練物に対して、硫黄3.5g、加硫促進剤(N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド)0.7g、酸化亜鉛6.0g、ステアリン酸0.5gを加え、オープンロール(関西ロール社製)を用い、40℃で15分間混練して、未加硫ゴム組成物のシートを得た。このシートを金型にはさみ、150℃で15分間プレス架橋することにより、厚さ約2mmのゴム組成物のシートを得た。これを所定の形状の試験片に裁断し、物性値を評価した。
<実施例10>
 製造例1で得られた酸型の酸化セルロースナノファイバー水分散液(1重量%)2000gと天然ゴムラテックス(商品名HA-LATEX、株式会社レヂテックス製、固形分濃度61.4%)162.9gを混合してゴム成分とセルロースナノファイバーとの質量比が100:20となるようにし、TKホモミキサー(8000rpm)で10分間、23℃で撹拌した。この水性懸濁液を、70℃の加熱オーブン中で19時間乾燥して混合物を得た。
 得られた混合物120gに対して、ラボプラストミル(株式会社東洋精機製作所)を用いて、オレイルアミン2.1gを逐次添加し、70℃で10分間混練を行った。得られた混練物に対して、硫黄3.5g、加硫促進剤(N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド)0.7g、酸化亜鉛6.0g、ステアリン酸0.5gを加え、オープンロール(関西ロール社製)を用い、40℃で15分間混練して、未加硫ゴム組成物のシートを得た。このシートを金型にはさみ、150℃で15分間プレス架橋することにより、厚さ約2mmのゴム組成物のシートを得た。これを所定の形状の試験片に裁断し、物性値を評価した。
<比較例1>
 オレイルアミンを添加しなかった以外は、実施例1と同様にしてゴム組成物のシートを得、物性値を評価した。
<比較例2>
 オレイルアミンを添加しなかった以外は、実施例2と同様にしてゴム組成物のシートを得、物性値を評価した。
<比較例3>
 オレイルアミンを添加しなかった以外は、実施例3と同様にしてゴム組成物のシートを得、物性値を評価した。
<実施例11>
 製造例1で得られた酸型の酸化セルロースナノファイバー水分散液(1重量%)500gに対して、天然ゴムラテックス(商品名HA-LATEX、株式会社レヂテックス製、固形分濃度61.4%)162.9gを混合してゴム成分とセルロースナノファイバーとの質量比が100:5となるようにし、さらにオレイルアミン2.1gを混合した後、TKホモミキサー(8000rpm)で23℃で10分間撹拌した。この水性懸濁液を、70℃の加熱オーブン中で19時間乾燥して混合物を得た。
 得られた混合物105gに対して、ラボプラストミル(株式会社東洋精機製作所)を用いて、70℃で10分間混練を行った。得られた混練物に対して、硫黄3.5g、加硫促進剤(N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド)0.7g、酸化亜鉛6.0g、ステアリン酸0.5gを加え、オープンロール(関西ロール社製)を用い、40℃で15分間混練して、未加硫ゴム組成物のシートを得た。このシートを金型にはさみ、150℃で15分間プレス架橋することにより、厚さ約2mmのゴム組成物のシートを得た。これを所定の形状の試験片に裁断し、物性値を評価した。
<比較例4>
 オレイルアミンを添加しなかった以外は、実施例9と同様にしてゴム組成物のシートを得、物性値を評価した。
<比較例5>
 オレイルアミンを添加しなかった以外は、実施例10と同様にしてゴム組成物のシートを得、物性値を評価した。
<実施例12>
 製造例1で得られた酸型の酸化セルロースナノファイバー水分散液(1重量%)500gにオレイルアミン(東京化成工業株式会社製)2.1gを添加し、室温にて3時間撹拌し、オレイルアミン修飾酸化セルロースナノファイバー(TOCN-COO-NH3 +‐R)を得た。
 オレイルアミン修飾酸化セルロースナノファイバー502.1gに対して、天然ゴムラテックス(商品名HA-LATEX、株式会社レヂテックス製、固形分濃度61.4%)162.9gを混合してゴム成分とセルロースナノファイバーとの質量比が100:5となるようにし、TKホモミキサー(8000rpm)で23℃で10分間撹拌した。この水性懸濁液を、70℃の加熱オーブン中で19時間乾燥して混合物を得た。得られた混合物を、実施例1における混練物の代わりに用いたほかは、実施例1と同様に加硫、成形を行いゴム組成物のシートを得、物性値を評価した。
<実施例13>
 製造例3で得られた酸型のカルボキシメチル化セルロースナノファイバー水分散液(1重量%)を用いた以外は、実施例12と同様にしてゴム組成物のシートを得、物性値を評価した。
 結果を表1に示す。実施例の引張応力は、高ひずみ時であるM100、M300において、特に比較例より大きくなっており、実施例のゴム組成物の、高ひずみ時の強度は向上している。
Figure JPOXMLDOC01-appb-T000001

Claims (15)

  1.  (A)成分:変性セルロースナノファイバー、
     (B)成分:ゴム成分、および
     (C)成分:界面活性剤
    を含むゴム組成物。
  2.  (A)成分が、酸化セルロースナノファイバーを含む、請求項1に記載のゴム組成物。
  3.  酸化セルロースナノファイバーのカルボキシル基含量が、酸化セルロースナノファイバーの絶乾質量に対して0.5mmol/g~3.0mmol/gである、請求項2に記載のゴム組成物。
  4.  酸化セルロースナノファイバーが、酸型酸化セルロースナノファイバーである、請求項2または3に記載のゴム組成物。
  5.  (A)成分が、カルボキシメチル化セルロースナノファイバーを含む、請求項1に記載のゴム組成物。
  6.  カルボキシメチル化セルロースナノファイバーのグルコース単位当たりのカルボキシメチル置換度が、0.01~0.50である、請求項5に記載のゴム組成物。
  7.  カルボキシメチル化セルロースナノファイバーが、酸型カルボキシメチル化セルロースナノファイバーである、請求項5または6に記載のゴム組成物。
  8.  (B)成分が、ジエン系ゴムを含む、請求項1~7のいずれか1項に記載のゴム組成物。
  9.  (B)成分が、天然ゴムを含む、請求項1~8のいずれか1項に記載のゴム組成物。
  10.  (C)成分が、陽イオン性界面活性剤、または両性界面活性剤を含む、請求項1~9のいずれか1項に記載のゴム組成物。
  11.  界面活性剤が、脂肪族アミンを含む、請求項1~10のいずれか1項に記載のゴム組成物。
  12.  (C)成分が、オレイルアミン、ステアリルアミン、テトラデシルアミン、1-ヘキセニルアミン、1-ドデセニルアミン、9,12-オクタデカジエニルアミン、9,12,15-オクタデカトリエニルアミン、およびリノレイルアミンからなる群より選択される少なくとも1種の脂肪族アミンを含む、請求項1~11のいずれか1項に記載のゴム組成物。
  13.  下記[I]および[II]を有する、請求項1~12のいずれか1項に記載のゴム組成物の製造方法。
     工程[I]:(A)成分と(B)成分を混合し、混合物を得る工程、および
     工程[II]:得られる混合物に、(C)成分を添加、混練し、ゴム組成物を得る工程
  14.  下記[i]および[ii]を有する、請求項1~12のいずれか1項に記載の製造方法。
     工程[i]:(A)、(B)および(C)成分を混合し、混合物を得る工程、および
     工程[ii]:得られる混合物を混練し、ゴム組成物を得る工程
  15.  下記工程[IA]をさらに有する請求項13または14に記載の製造方法。
     工程[IA]:工程[I]または[i]で得られる混合物を、工程[II]又は[ii]に先立ち乾燥する工程
PCT/JP2018/012224 2017-03-29 2018-03-26 ゴム組成物およびその製造方法 WO2018181224A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509837A JP7061998B2 (ja) 2017-03-29 2018-03-26 ゴム組成物およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017064294 2017-03-29
JP2017-064294 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018181224A1 true WO2018181224A1 (ja) 2018-10-04

Family

ID=63677166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012224 WO2018181224A1 (ja) 2017-03-29 2018-03-26 ゴム組成物およびその製造方法

Country Status (2)

Country Link
JP (1) JP7061998B2 (ja)
WO (1) WO2018181224A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317370A (zh) * 2019-07-08 2019-10-11 华南理工大学 一种阳离子表面活性剂改性纳米纤维素/天然橡胶复合材料及其制备方法
JP2020066700A (ja) * 2018-10-25 2020-04-30 横浜ゴム株式会社 ゴムマスターバッチおよびその製造方法
JP2021001253A (ja) * 2019-06-20 2021-01-07 住友ゴム工業株式会社 ゴム・フィラー複合体の製造方法
CN112300421A (zh) * 2020-10-20 2021-02-02 上海荣南科技有限公司 一种增强型三元乙丙橡胶及其制备方法
CN114560952A (zh) * 2022-02-28 2022-05-31 北京佰尔瑞森生物科技有限公司 一种利用秸秆纤维素制备新型纤维素螯合剂的方法
CN116656014A (zh) * 2023-07-25 2023-08-29 潍坊顺福昌橡塑有限公司 一种用于全钢子午线轮胎的胎面胶组合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141637A (ja) * 2012-12-25 2014-08-07 Mitsubishi Chemicals Corp セルロースナノファイバー含有ゴムマスターバッチ
WO2015152189A1 (ja) * 2014-03-31 2015-10-08 大日精化工業株式会社 易分散性セルロース組成物の製造方法、易分散性セルロース組成物、セルロース分散樹脂組成物及びセルロース用の水系の分散処理剤の製造方法
JP2015206156A (ja) * 2012-08-10 2015-11-19 王子ホールディングス株式会社 微細繊維状セルロース凝集物
JP2015221950A (ja) * 2014-05-23 2015-12-10 ライオン株式会社 繊維製品処理液及び繊維製品の処理方法
JP2016155897A (ja) * 2015-02-23 2016-09-01 日本製紙株式会社 複合体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206156A (ja) * 2012-08-10 2015-11-19 王子ホールディングス株式会社 微細繊維状セルロース凝集物
JP2014141637A (ja) * 2012-12-25 2014-08-07 Mitsubishi Chemicals Corp セルロースナノファイバー含有ゴムマスターバッチ
WO2015152189A1 (ja) * 2014-03-31 2015-10-08 大日精化工業株式会社 易分散性セルロース組成物の製造方法、易分散性セルロース組成物、セルロース分散樹脂組成物及びセルロース用の水系の分散処理剤の製造方法
JP2015221950A (ja) * 2014-05-23 2015-12-10 ライオン株式会社 繊維製品処理液及び繊維製品の処理方法
JP2016155897A (ja) * 2015-02-23 2016-09-01 日本製紙株式会社 複合体の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066700A (ja) * 2018-10-25 2020-04-30 横浜ゴム株式会社 ゴムマスターバッチおよびその製造方法
JP7215672B2 (ja) 2018-10-25 2023-01-31 横浜ゴム株式会社 ゴムマスターバッチおよびその製造方法
JP2021001253A (ja) * 2019-06-20 2021-01-07 住友ゴム工業株式会社 ゴム・フィラー複合体の製造方法
CN110317370A (zh) * 2019-07-08 2019-10-11 华南理工大学 一种阳离子表面活性剂改性纳米纤维素/天然橡胶复合材料及其制备方法
CN112300421A (zh) * 2020-10-20 2021-02-02 上海荣南科技有限公司 一种增强型三元乙丙橡胶及其制备方法
CN114560952A (zh) * 2022-02-28 2022-05-31 北京佰尔瑞森生物科技有限公司 一种利用秸秆纤维素制备新型纤维素螯合剂的方法
CN116656014A (zh) * 2023-07-25 2023-08-29 潍坊顺福昌橡塑有限公司 一种用于全钢子午线轮胎的胎面胶组合物及其制备方法
CN116656014B (zh) * 2023-07-25 2023-10-20 潍坊顺福昌橡塑有限公司 一种用于全钢子午线轮胎的胎面胶组合物及其制备方法

Also Published As

Publication number Publication date
JPWO2018181224A1 (ja) 2020-02-06
JP7061998B2 (ja) 2022-05-02

Similar Documents

Publication Publication Date Title
JP7141950B2 (ja) ゴム組成物およびその製造方法
JP7061998B2 (ja) ゴム組成物およびその製造方法
JP6155415B1 (ja) マスターバッチ、ゴム組成物、及びそれらの製造方法
JP6153694B1 (ja) ゴム組成物の製造方法
JP6990190B2 (ja) ゴム組成物の製造方法
JP6700741B2 (ja) ゴム組成物
JP6877158B2 (ja) マスターバッチ、ゴム組成物、及びそれらの製造方法
JP2018199755A (ja) 変性セルロース繊維
JP6944451B2 (ja) マスターバッチの製造方法
JP6994345B2 (ja) ゴム組成物及び成形品
JPWO2020100979A1 (ja) アニオン変性セルロースナノファイバーを含有するマスターバッチおよびゴム組成物の製造方法
WO2018012505A1 (ja) マスターバッチの製造方法
JP2020007457A (ja) セルロースナノファイバーおよびセルロースナノファイバーを含有するゴム組成物の製造方法
JP7432390B2 (ja) 疎水化アニオン変性セルロースナノファイバー分散体及びその製造方法ならびに疎水化アニオン変性セルロースの乾燥固形物及びその製造方法
JP6951844B2 (ja) マスターバッチの製造方法
JP7546127B1 (ja) 微細セルロース繊維を含むゴム組成物の供給方法
JP7015970B2 (ja) ゴム組成物及びその製造方法
JP6832110B2 (ja) マスターバッチの製造方法
WO2024009850A1 (ja) ゴム組成物の製造方法
WO2020054342A1 (ja) ゴム組成物の製造方法
JP2020059815A (ja) アニオン変性セルロースナノファイバーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776127

Country of ref document: EP

Kind code of ref document: A1