WO2018181088A1 - 電解コンデンサ - Google Patents

電解コンデンサ Download PDF

Info

Publication number
WO2018181088A1
WO2018181088A1 PCT/JP2018/011967 JP2018011967W WO2018181088A1 WO 2018181088 A1 WO2018181088 A1 WO 2018181088A1 JP 2018011967 W JP2018011967 W JP 2018011967W WO 2018181088 A1 WO2018181088 A1 WO 2018181088A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
heat radiation
radiation layer
heat
capacitor element
Prior art date
Application number
PCT/JP2018/011967
Other languages
English (en)
French (fr)
Inventor
貴行 松本
穂菜美 西野
藤田 真
田代 智之
将人 森
日野 裕久
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019509754A priority Critical patent/JP7245996B2/ja
Priority to CN201880020534.7A priority patent/CN110462772A/zh
Publication of WO2018181088A1 publication Critical patent/WO2018181088A1/ja
Priority to US16/574,511 priority patent/US20200013557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0003Protection against electric or thermal overload; cooling arrangements; means for avoiding the formation of cathode films

Definitions

  • the present invention relates to an electrolytic capacitor, and more particularly to improvement of heat dissipation.
  • one aspect of the present invention provides a capacitor element, a case that houses the capacitor element, and an insulating first heat radiation layer that is disposed so as to cover at least a part of the capacitor element.
  • an electrolytic capacitor having a thermal conductivity ⁇ C in the thickness direction of the case of 1 W / m ⁇ K or more and a thermal emissivity of the first heat radiation layer of 0.7 or more.
  • heat generated from the capacitor element is easily dissipated to the outside of the case, so that the lifetime can be extended and the ripple current can be set high.
  • the electrolytic capacitor according to the present embodiment includes a capacitor element, a case for housing the capacitor element, and an insulating first heat radiation layer disposed so as to cover at least a part of the capacitor element.
  • the thermal conductivity ⁇ C in the thickness direction of the case is 1 W / m ⁇ K or more, and the thermal emissivity ⁇ 1 of the first heat radiation layer is 0.7 or more.
  • the thermal emissivity ⁇ is a ratio of the thermal radiation amount of the substance to the thermal radiation amount of the black body that is a virtual object, and is the same numerical value as the heat absorption rate ⁇ . That is, a substance having a high thermal emissivity ⁇ also has a high heat absorption rate ⁇ . Therefore, the heat generated from the capacitor element is quickly absorbed by the first heat radiation layer and radiated to the case, and then efficiently conducted to the outside of the case having high thermal conductivity in the thickness direction. Therefore, the lifetime can be increased and the ripple current can be set high.
  • the capacitor element is accommodated in a bottomed case, for example.
  • the thermal conductivity ⁇ C in the thickness direction of the case is 1 W / m ⁇ K or more, and preferably 2 W / m ⁇ K or more. Thereby, the thermal conductivity from the inside of the case to the outside is improved.
  • the material of the case is not particularly limited. Resin (epoxy resin, phenol resin, polyester resin, melamine resin, polyimide resin, etc.), metal (aluminum, iron, stainless steel, etc.), ceramics (aluminum oxide, zirconium dioxide, aluminum nitride) , Silicon nitride, etc.).
  • a filler having thermal conductivity for the material hereinafter referred to as a first thermal conductive filler
  • the shape of the first heat conductive filler is not particularly limited, but in order to increase the thermal conductivity in the thickness direction, it is preferable that the fillers come into contact with each other and heat is efficiently transmitted. Therefore, the heat conductive filler is preferably in the form of particles.
  • the particulate form is, for example, a shape having an aspect ratio of 1 or more and less than 2. Moreover, you may use combining the heat conductive filler of a high aspect ratio, and the heat conductive filler of a low aspect ratio. Thereby, the heat conductive filler is closely packed.
  • the average particle diameter of the first heat conductive filler is not particularly limited, but is, for example, 1 to 50 ⁇ m.
  • the average particle diameter is a particle diameter (D50) at a cumulative volume of 50% of the volume particle size distribution (hereinafter the same).
  • the average particle diameter D50 is measured by, for example, a laser diffraction scattering method using a laser diffraction particle size distribution measuring apparatus.
  • the outer surface of the case that does not face the capacitor element may be covered with a resin film.
  • Information such as a product number, a model name, and a manufacturer name is described on the resin film by printing, stamping, or the like as necessary.
  • a resin film generally has a medium thermal emissivity (for example, 0.6 to 0.7), but has a low thermal conductivity (for example, 0.1 W / m ⁇ K). Even when the case is covered with such a resin film, the first thermal radiation layer having a high thermal conductivity ⁇ C in the thickness direction of the case and excellent in the thermal emissivity ⁇ is adjacent to the case. The heat dissipation from the capacitor case to the outside of the case is enhanced. As will be described later, when at least one of the first heat radiation layer, the second heat radiation layer, and the heat conduction layer is disposed on the outer surface of the case, the resin film is disposed outside the layer.
  • the first heat radiation layer is an inner surface, an outer surface of the case, or a surface of the capacitor element, It arrange
  • the first heat radiation layer may be disposed on the inner surface of the case facing the capacitor element so as to cover at least part thereof, or disposed on the surface of the capacitor element so as to cover at least part thereof. It may be arranged on the outer surface of the case so as to cover at least a part thereof.
  • the 1st thermal radiation layer is arrange
  • the thermal emissivity ⁇ 1 of the first thermal radiation layer is 0.7 or more, and preferably 0.85 or more. Thereby, the heat generated from the capacitor element is quickly absorbed by the first heat radiation layer and is efficiently radiated to the case.
  • the thermal emissivity ⁇ 1 is 1 or less.
  • the first heat radiation layer is, for example, an insulating and heat radiation filler (hereinafter referred to as a first heat radiation filler) and an insulating binder (hereinafter referred to as a first binder). ,including.
  • a first heat radiation filler an insulating and heat radiation filler
  • a first binder an insulating binder
  • the first heat radiating filler zinc oxide, silicon oxide, magnesium oxide, ceramics such as titanium oxide and iron oxide, Ensutetaito (MgO ⁇ SiO 2), Di of the side (CaO ⁇ MgO ⁇ 2SiO 2) , forsterite ( 2Mg 2 ⁇ SiO 4 ), zircon (ZrO 2 ⁇ SiO 2 ), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO), hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O), steer tight (MgO ⁇ SiO 2), mullite (3Al 2 O 3 ⁇ 2SiO 2 ), spodumene (Li 2 O ⁇ Al 2 O 3 ⁇ SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2 Si 2 O 8), part-time job (NaAlSi 3 O 8), willemite, heaven such as petalite Mineral or synthetic minerals, and the
  • a 1st thermal radiation filler contains at least 1 selected from the group which consists of an aluminum element, a magnesium element, and silicon in the point which is excellent in thermal radiation, and contains all these elements especially. Is preferred. Specifically, cordierite is preferable.
  • the average particle diameter of the first heat radiation filler is not particularly limited, and is, for example, 1.0 to 50 ⁇ m.
  • the first binder is not particularly limited, and is a polyolefin resin (eg, polyethylene resin, polypropylene resin, polymethylpentene resin, etc.), polyester resin (eg, polyethylene terephthalate resin, polybutylene terephthalate resin, etc.), polycarbonate resin, poly Examples thereof include thermoplastic resins such as arylate resin, polyether ketone resin, and silicone resin, and thermosetting resins such as acrylic resin, epoxy resin, oxetane resin, cyanate resin, phenol resin, and resole resin. These may be used alone or in combination of two or more. Especially, an epoxy resin and a silicone resin are preferable at the point which is excellent in heat resistance.
  • a polyolefin resin eg, polyethylene resin, polypropylene resin, polymethylpentene resin, etc.
  • polyester resin eg, polyethylene terephthalate resin, polybutylene terephthalate resin, etc.
  • polycarbonate resin poly Examples thereof include thermoplastic resins
  • the content of the first heat radiation filler in the first heat radiation layer is not particularly limited. Especially, from a thermal radiation viewpoint, it is preferable that the said content of a 1st thermal radiation filler is 50 mass% or more, and it is more preferable that it is 70 mass% or more. On the other hand, from the viewpoint of the strength of the first heat radiation layer, the content of the first heat radiation filler is preferably 95% by mass or less, and more preferably 85% by mass or less.
  • the thickness of the first heat radiation layer is not particularly limited. However, if the first heat radiation layer is excessively thin, the effect of the first heat radiation layer is sufficient due to the influence of the heat reflectivity due to the case where the first heat radiation layer is formed or the surface of the capacitor element. May not be demonstrated.
  • a material having a metallic luster generally has high heat reflectivity and low emissivity. Therefore, for example, when the first heat radiation layer is disposed on the inner surface of the case and the inner surface of the case has a metallic luster, the first heat radiation layer is absorbed by the first heat radiation layer and radiated toward the case. Heat is easily reflected on the inner surface of the case and is not easily released to the outside.
  • the thickness of the first heat radiation layer is preferably 10 ⁇ m or more, and more preferably 30 ⁇ m or more.
  • the thickness of the first heat radiation layer is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the first heat radiation layer preferably has thermal conductivity, and more preferably has high thermal conductivity in the thickness direction. Thereby, since the heat absorbed by the first heat radiation layer is radiated toward the case and conducted, heat dissipation to the outside of the case is further enhanced. In this case, it is more preferable that the first heat radiation layer and the case are in contact with each other.
  • the thermal conductivity ⁇ 1 in the thickness direction of the first heat radiation layer is preferably 1 W / m ⁇ K or more, and more preferably 2 W / m ⁇ K or more. Thereby, the thermal conductivity to a case improves.
  • the electrolytic capacitor preferably includes an insulating second heat radiation layer together with the first heat radiation layer.
  • the second heat radiation layer is preferably arranged so as to face the first heat radiation layer across the case. Thereby, the heat generated from the capacitor element can be radiated more efficiently.
  • the first heat radiation layer is disposed on the inner surface of the case
  • the second heat radiation layer is disposed on the outer surface opposite to the inner surface of the case so as to cover at least a part thereof. It is preferable.
  • the second heat radiation layer is preferably disposed on the outer surface of the case so as to cover at least a part thereof.
  • the thermal emissivity ⁇ 2 of the second thermal radiation layer is not particularly limited, but is preferably 0.7 or more, and more preferably 0.85 or more, from the viewpoint of thermal radiation.
  • the thermal emissivity ⁇ 2 is 1 or less.
  • the configuration of the second heat radiation layer is not particularly limited, but may be the same as that of the first heat radiation layer.
  • the thickness of the second heat radiation layer may also be the same as that of the first heat radiation layer.
  • the second heat radiation layer also preferably has thermal conductivity, and more preferably has high thermal conductivity in the thickness direction.
  • the thermal conductivity ⁇ 2 in the thickness direction of the second heat radiation layer is preferably 1 W / m ⁇ K or more, and more preferably 2 W / m ⁇ K or more.
  • the electrolytic capacitor may include a heat conductive layer together with the first heat radiation layer.
  • the heat conduction layer may be disposed so as to be interposed between the first heat radiation layer and the case, or outside the case. It may be arranged on the surface.
  • a heat conductive layer is arrange
  • the heat conductivity ⁇ L in the thickness direction of the heat conductive layer is preferably equal to or higher than the heat conductivity ⁇ 1 in the thickness direction of the first heat radiation layer.
  • the thermal conductivity ⁇ L is preferably 1 W / m ⁇ K or more and more preferably 2 W / m ⁇ K or more in terms of further improving the thermal conductivity from the inside of the case to the outside. preferable.
  • the heat conductive layer includes, for example, a heat conductive filler (hereinafter referred to as a second heat conductive filler) and a binder (hereinafter referred to as a second binder).
  • a heat conductive filler hereinafter referred to as a second heat conductive filler
  • a binder hereinafter referred to as a second binder
  • the second heat conductive filler include the same as the first filler.
  • silicon carbide is preferable in terms of excellent thermal conductivity.
  • the average particle diameter of the second heat conductive filler is not particularly limited and is, for example, 5 to 50 ⁇ m. It does not specifically limit as a 2nd binder, Resin similar to a 1st binder is mentioned.
  • an epoxy resin and a silicone resin are preferable at the point which is excellent in heat resistance.
  • the content of the second heat conductive filler in the heat conductive layer is not particularly limited. Among these, from the viewpoint of thermal conductivity, the content of the second thermal conductive filler is preferably 50% by mass or more, and more preferably 60% by mass or more. On the other hand, from the viewpoint of the strength of the heat conductive layer, the content of the second heat conductive filler is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the thickness of the heat conductive layer is not particularly limited, but is preferably 10 ⁇ m or more and more preferably 30 ⁇ m or more from the viewpoint of thermal conductivity.
  • the thickness of the heat conduction layer is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • FIG. 1 to 5 are schematic sectional views of an electrolytic capacitor 100 according to each embodiment.
  • the configuration of the electrolytic capacitor 100 is not limited to this.
  • the electrolytic capacitor 100 includes at least a part of a capacitor element 10, a case 20 that houses the capacitor element, and an inner surface of the case 20 that faces the capacitor element 10. And an insulating first heat radiation layer 30 ⁇ / b> A arranged to cover.
  • Such an electrolytic capacitor 100 is manufactured as follows, for example. First, a material of the first heat radiation layer 30A (for example, a mixture of a first heat radiation filler and a first binder) is applied to a plate-like material that is a material of the case 20, or the material is formed into a sheet shape. The sheet material formed into a laminate is laminated to obtain a laminate. The obtained laminate is molded into the shape of the case 20 so that the first heat radiation layer 30A is on the inside, and then the capacitor element 10 is accommodated. When the case 20 is made of a metal material, the case 20 is molded by, for example, drawing. When the material of the first heat radiation layer 30A includes a thermosetting resin, the case 20 is molded and then heated to cure the thermosetting resin. The case 20 may be heated before or after the capacitor element 10 is accommodated.
  • a material of the first heat radiation layer 30A for example, a mixture of a first heat radiation filler and a first binder
  • the first heat radiation layer 30A having a high heat emissivity ⁇ is disposed so as to face the capacitor element 10 which is a heat source, the heat generated from the capacitor element 10 quickly reaches the first heat radiation layer 30A. Absorbed.
  • the first heat radiation layer 30A is formed on the inner surface of the case 20 having a high thermal conductivity ⁇ in the thickness direction. Therefore, the heat absorbed by the first heat radiation layer 30 ⁇ / b> A is quickly conducted from the inner surface of the case 20 to the outer surface and released to the outside of the electrolytic capacitor 100.
  • the electrolytic capacitor 100 further includes a sealing body 21 that closes the opening of the case 20, a seat plate 22 that covers the sealing body 21, lead wires 23 ⁇ / b> A and 23 ⁇ / b> B that are led out from the sealing body 21 and penetrate the seat plate 22, and each lead.
  • Lead tabs 24A and 24B for connecting the wires and the respective electrodes of the capacitor element 10; The vicinity of the opening end of the case 20 is drawn inward, and the opening end is curled so as to be crimped to the sealing body 21.
  • Electrolytic capacitor 100 further includes an electrolyte accommodated in case 20 together with capacitor element 10.
  • the electrolytic capacitor 100 As shown in FIG. 2, the electrolytic capacitor 100 according to the second embodiment, except that the insulating first heat radiation layer 30 ⁇ / b> A is disposed on the surface of the capacitor element 10 so as to cover at least a part thereof. This is the same as in the first embodiment. In this case, it is preferable that the first heat radiation layer 30A and the case 20 are in contact with each other in that the thermal conductivity from the first heat radiation layer 30A to the case 20 is increased.
  • Such an electrolytic capacitor 100 for example, after applying the material of the first heat radiation layer 30A to the surface of the capacitor element 10, or after melting and bonding a sheet material obtained by molding the material into a sheet shape, It is obtained by housing in the case 20.
  • the material of the first heat radiation layer 30A includes a thermosetting resin
  • the surface of the capacitor element 10 is covered with the material of the first heat radiation layer 30A, and then the capacitor element 10 is heated to form a thermosetting resin. Is cured.
  • the capacitor element 10 may be heated before being accommodated in the case 20 or after being accommodated.
  • the first heat radiation layer 30A Since the first heat radiation layer 30A is in contact with the capacitor element 10, the heat generated from the capacitor element 10 is more quickly absorbed by the first heat radiation layer 30A. In addition, since the first heat radiation layer 30A is disposed so as to face the case 20 having excellent thermal conductivity ⁇ in the thickness direction, the heat absorbed by the first heat radiation layer 30A is Is rapidly conducted from the inner surface to the outer surface and discharged to the outside of the electrolytic capacitor 100.
  • the electrolytic capacitor 100 according to the third embodiment covers at least a part of the outer surface of the case 20 together with the first heat radiation layer 30 ⁇ / b> A disposed on the inner surface of the case 20.
  • the second embodiment is the same as the first embodiment except that the second heat radiation layer 30B is provided.
  • Such an electrolytic capacitor 100 is manufactured as follows, for example. First, the material of the first heat radiation layer 30A is applied to one surface of a plate-like material that is a material of the case 20, or a sheet material obtained by molding the material into a sheet shape is laminated, and the other of the plate-like materials is laminated. On this surface, the material of the second heat radiation layer 30B is applied, or a sheet material obtained by forming the material into a sheet shape is laminated to obtain a laminate. The obtained laminate is molded into the shape of the case 20 so that the first heat radiation layer 30A is on the inside, and then the capacitor element 10 is accommodated.
  • the material of the second heat radiation layer 30B is formed on the outer surface of the case 20. It may be applied.
  • the material of the first heat radiation layer 30A and / or the material of the second heat radiation layer 30B includes a thermosetting resin
  • the case 20 is molded and then heated to cure the thermosetting resin. The case 20 may be heated before or after the capacitor element 10 is accommodated.
  • the first heat radiation layer 30A and the second heat radiation layer 30B are opposed to each other with the case 20 therebetween.
  • the heat generated from the capacitor element 10 is quickly absorbed by the first heat radiation layer 30A disposed so as to face the capacitor element 10 as a heat source.
  • the heat absorbed by the first heat radiation layer 30A is quickly conducted from the inner surface of the case 20 to the outer surface.
  • the second heat radiation layer 30 ⁇ / b> B having high heat radiation is disposed on the outer surface of the case 20, heat is more easily conducted in the thickness direction of the case 20.
  • the heat conducted to the outer surface of the case 20 is efficiently radiated to the outside of the case 20 by the second heat radiation layer 30B.
  • the electrolytic capacitor 100 As shown in FIG. 4, the electrolytic capacitor 100 according to the fourth embodiment has a heat disposed in contact with the inner surface of the case 20 so as to be interposed between the first heat radiation layer 30 ⁇ / b> A and the case 20. It is the same as that of 1st Embodiment except providing the conductive layer 40.
  • FIG. 4 It is the same as that of 1st Embodiment except providing the conductive layer 40.
  • Such an electrolytic capacitor 100 is manufactured as follows, for example. First, the material of the heat conductive layer 40 (for example, a mixture of the second heat conductive filler and the second binder) is applied to one surface of the plate-like material that is the material of the case 20, or the material is a sheet. The sheet material formed into a shape is laminated, and the material of the first heat radiation layer 30A is further applied to the surface, or the sheet material formed from the above material into a sheet shape is laminated to obtain a laminate. The obtained laminate is molded into the shape of the case 20 so that the first heat radiation layer 30A is on the inside, and then the capacitor element 10 is accommodated.
  • the material of the heat conductive layer 40 for example, a mixture of the second heat conductive filler and the second binder
  • the case 20 is molded and then heated to cure the thermosetting resin.
  • the case 20 may be heated before or after the capacitor element 10 is accommodated.
  • the first heat radiation layer 30A having a high heat emissivity ⁇ heat absorptance ⁇
  • the heat generated from the capacitor element 10 is promptly changed to the first. Is absorbed by the heat radiation layer 30A.
  • the heat conduction layer 40 is disposed so as to contact the inner surface of the case 20 and cover at least a part thereof, so that the heat absorbed by the first heat radiation layer 30 ⁇ / b> A is the heat conduction layer 40.
  • the electrolytic capacitor 100 according to the fifth embodiment is the same as the first embodiment except that the insulating first heat radiation layer 30 ⁇ / b> A is disposed so as to cover the entire surface of the capacitor element 10. It is the same.
  • Such an electrolytic capacitor 100 is obtained, for example, by storing the capacitor element 10 in the case 20 and then filling the case 20 with the material of the first heat radiation layer 30A.
  • the material of the first heat radiation layer 30A includes a thermosetting resin
  • the case 20 is filled with the material of the heat radiation layer 30A and then heated to cure the thermosetting resin.
  • the first heat radiation layer 30 ⁇ / b> A that covers the entire surface of the capacitor element 10 and is in contact with the case 20 can be easily formed.
  • the first heat radiation layer 30A is formed so as to fill between the case 20 and the capacitor element 10, the heat dissipation is further improved.
  • the first heat radiation layer 30A covers the entire surface of the capacitor element 10, the heat generated from the capacitor element 10 is more quickly absorbed by the first heat radiation layer 30A.
  • the first heat radiation layer 30A is in contact with the case 20 having excellent thermal conductivity ⁇ in the thickness direction, the heat absorbed by the first heat radiation layer 30A is from the inner surface of the case 20. It is quickly conducted to the outer surface and discharged to the outside of the electrolytic capacitor 100.
  • FIG. 6 is a schematic diagram in which a part of the capacitor element 10 is developed.
  • the configuration of the capacitor element 10 is not limited to this.
  • the capacitor element 10 includes a foil-like anode 11, a foil-like cathode 12, and a separator 13 interposed therebetween.
  • the anode 11 and the cathode 12 are wound with a separator 13 interposed therebetween to form a wound body.
  • the outermost periphery of the wound body is fixed by a winding tape 14.
  • the anode 11 is connected to the lead tab 24A, and the cathode 12 is connected to the lead tab 24B.
  • Capacitor element 10 may be a laminated type in which anode 11 and cathode 12 are laminated with separator 13 interposed.
  • the capacitor element 10 may include a sintered body (porous body) containing a valve action metal as an anode body. When the sintered body is used, one end of the lead on the anode side is embedded in the sintered body.
  • a capacitor element includes, for example, the above-described anode body, a dielectric layer that covers the anode body, and a cathode portion that covers the dielectric layer.
  • the cathode portion includes, for example, a solid electrolyte layer covering the dielectric layer and a cathode lead layer covering the solid electrolyte layer.
  • the anode 11 includes, for example, an anode body and a dielectric layer that covers the anode body.
  • the anode body can include a valve action metal, an alloy containing the valve action metal, a compound containing the valve action metal, and the like. These may be used alone or in combination of two or more.
  • As the valve action metal for example, aluminum, tantalum, niobium and titanium are preferably used.
  • the surface of the anode body is porous. Such an anode body can be obtained, for example, by roughening the surface of a base material (such as a foil-like or plate-like base material) containing a valve metal by etching or the like.
  • the dielectric layer includes an oxide of a valve metal (for example, aluminum oxide or tantalum oxide).
  • the dielectric layer is formed along the porous surface (including the inner wall surface of the hole) of the anode body.
  • the dielectric layer is formed, for example, by anodizing the surface of the anode body by chemical conversion treatment or the like.
  • Anodization can be performed by a known method such as chemical conversion treatment.
  • the chemical conversion treatment for example, by immersing the anode body in the chemical conversion liquid, the surface of the anode body is impregnated with the chemical conversion liquid, and a voltage is applied between the anode body and the cathode immersed in the chemical conversion liquid. Can be done.
  • the cathode 12 is not particularly limited as long as it has a function as a cathode.
  • the cathode 12 is formed of, for example, a valve action metal, an alloy containing the valve action metal, a compound containing the valve action metal, and the like, like the anode 11. If necessary, the surface of the cathode 12 may be roughened.
  • separator 13 As the separator 13, a nonwoven fabric made of cellulose fiber, a nonwoven fabric made of glass fiber, a microporous membrane made of polyolefin, a woven fabric, a nonwoven fabric or the like is preferably used.
  • the thickness of the separator 13 is, for example, 10 to 300 ⁇ m, and preferably 10 to 60 ⁇ m.
  • an electrolytic solution As the electrolyte, an electrolytic solution, a solid electrolyte, or both can be used.
  • the electrolytic solution may be a non-aqueous solvent or a mixture of a non-aqueous solvent and an ionic substance (solute, for example, an organic salt) dissolved in the non-aqueous solvent.
  • the non-aqueous solvent may be an organic solvent or an ionic liquid.
  • ethylene glycol, propylene glycol, sulfolane, ⁇ -butyrolactone, N-methylacetamide and the like can be used.
  • organic salts include trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, mono 1,3-dimethyl-2-phthalate
  • organic salts include trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, mono 1,3-dimethyl-2-phthalate
  • examples include ethyl imidazolinium.
  • the solid electrolyte includes, for example, a manganese compound and a conductive polymer.
  • a conductive polymer for example, polypyrrole, polythiophene, polyaniline, and derivatives thereof can be used.
  • the solid electrolyte layer may contain a dopant. More specifically, the solid electrolyte layer can include poly (3,4-ethylenedioxythiophene) (PEDOT) as the conductive polymer and polystyrene sulfonic acid (PSS) as the dopant.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • a solid electrolyte containing a conductive polymer can be formed, for example, by subjecting a raw material monomer to chemical polymerization and / or electrolytic polymerization on a dielectric layer formed on an anode body.
  • the dielectric layer can be formed by applying a solution in which the conductive polymer is dissolved or a dispersion liquid in which the conductive polymer is dispersed to the dielectric layer.
  • the solid electrolyte may be disposed between the anode 11 and the cathode 12, and the wound body around which the anode 11, the separator 13, and the cathode 12 are wound is used as a treatment liquid containing a raw material monomer or a conductive polymer. It may be formed by impregnation.
  • the electrolytic capacitor according to the present invention is excellent in heat dissipation, it can be used for various purposes.
  • Electrolytic capacitor 10 Capacitor element 11: Anode 12: Cathode 13: Separator 14: Retaining tape 20: Case 21: Sealing body 22: Seat plate 23A, 23B: Lead wire 24A, 24B: Lead tab 30A: First heat Radiation layer 30B: second heat radiation layer 40: heat conduction layer

Abstract

コンデンサ素子と、前記コンデンサ素子を収容するケースと、前記コンデンサ素子の少なくとも一部を覆うように配置された絶縁性の第1の熱放射層と、を備え、前記ケースの厚み方向の熱伝導率λCが、1W/m・K以上であり、前記第1の熱放射層の熱放射率ε1が、0.7以上である、電解コンデンサ。前記第1の熱放射層は、前記ケースの前記コンデンサ素子に対向する内表面に、その少なくとも一部を覆うように配置されていてもよいし、前記コンデンサ素子の表面に、その少なくとも一部を覆うように配置されていてもよい。これにより、高い放熱性を備える電解コンデンサを提供する。

Description

電解コンデンサ
 本発明は、電解コンデンサに関し、特に放熱性の向上に関する。
 電解コンデンサに交流電圧を印加すると、電解コンデンサには交流の充放電電流(リプル電流)が流れる。電解コンデンサを構成するコンデンサ素子はESRといわれる内部抵抗を有しているため、リプル電流により発熱する。この熱により、コンデンサ素子は劣化し易く、長期間の使用が困難になる場合がある。そこで、電解コンデンサのケースの表面に熱放射塗布層を設けるなどの放熱対策がなされている(特許文献1等)。
特開2012-64842号公報
 しかし、特許文献1のように、ケースの表面に熱放射性の層を設けただけでは、放熱効果は十分ではない。
 上記に鑑み、本発明の一局面は、コンデンサ素子と、前記コンデンサ素子を収容するケースと、前記コンデンサ素子の少なくとも一部を覆うように配置された絶縁性の第1の熱放射層と、を備え、前記ケースの厚み方向の熱伝導率λが、1W/m・K以上であり、前記第1の熱放射層の熱放射率が、0.7以上である、電解コンデンサに関する。
 本発明によれば、コンデンサ素子から生じる熱がケースの外部に放熱され易くなるため、高寿命化が可能になるとともに、リプル電流を高く設定することができる。
本発明の実施形態に係る電解コンデンサの一例を模式的に示す断面図である。 本発明の実施形態に係る電解コンデンサの他の例を模式的に示す断面図である。 本発明の実施形態に係る電解コンデンサのさらに他の例を模式的に示す断面図である。 本発明の実施形態に係る電解コンデンサのさらに他の例を模式的に示す断面図である。 本発明の実施形態に係る電解コンデンサのさらに他の例を模式的に示す断面図である。 本発明の実施形態に係るコンデンサ素子の構成を説明するための概略図である。
 本実施形態に係る電解コンデンサは、コンデンサ素子と、コンデンサ素子を収容するケースと、コンデンサ素子の少なくとも一部を覆うように配置された絶縁性の第1の熱放射層と、を備える。ケースの厚み方向の熱伝導率λは1W/m・K以上であり、第1の熱
放射層の熱放射率εは0.7以上である。
 熱放射率εは、仮想的な物体である黒体の熱放射量に対するその物質の熱放射量の割合であり、熱吸収率αと同じ数値である。つまり、熱放射率εの高い物質は、熱吸収率αも高い。そのため、コンデンサ素子から生じる熱は、第1の熱放射層に速やかに吸収されるとともにケースへと放射され、その後、厚み方向に高い熱伝導性を有するケースの外部へと効率よく伝導される。よって、高寿命化が可能になるとともに、リプル電流を高く設定することができる。
(ケース)
 コンデンサ素子は、例えば有底のケースに収容されている。ケースの厚み方向の熱伝導率λは1W/m・K以上であり、2W/m・K以上であることが好ましい。これにより、ケースの内部から外部への熱伝導性が向上する。
 ケースの素材としては特に限定されず、樹脂(エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、メラミン樹脂、ポリイミド樹脂等)、金属(アルミニウム、鉄、ステンレス鋼等)、セラミックス(酸化アルミニウム、二酸化ジルコニウム、窒化アルミニウム、窒化ケイ素等)などが挙げられる。樹脂のように厚み方向の熱伝導率λが1W/m・K未満の材質をケースに用いる場合、その材質に熱伝導性を有するフィラー(以下、第1の熱伝導フィラーと称す。)を配合することが好ましい。第1の熱伝導フィラーとしては特に限定されず、銀、銅、グラファイト、炭化珪素、酸化アルミニウム、窒化ホウ素、炭化珪素、窒化アルミニウム等が例示できる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 第1の熱伝導フィラーの形状は特に限定されないが、厚み方向における熱伝導率を高めるためには、フィラー同士が接触して、効率的に熱が伝わることが好ましい。そのため、熱伝導フィラーは、粒子状であることが好ましい。粒子状とは、例えば、アスペクト比が1以上、2未満の形状である。また、高アスペクト比の熱伝導フィラーと低アスペクト比の熱伝導フィラーとを組み合わせて用いてもよい。これにより、熱伝導フィラーが最密充填化される。
 第1の熱伝導フィラーの平均粒径も特に限定されないが、例えば、1~50μmである。平均粒径は、体積粒度分布の累積体積50%における粒径(D50)である(以下、同じ)。平均粒径D50は、例えば、レーザー回折式の粒度分布測定装置を用いたレーザー回折散乱法によって測定される。
 ケースのコンデンサ素子に対向しない外表面は、樹脂フィルムによって被覆されていてもよい。樹脂フィルムには、必要に応じて製品番号、型名、メーカー名等の情報が印刷、捺印等により記載される。
 樹脂フィルムは、一般的に、中程度の熱放射率(例えば、0.6~0.7)を有するものの、熱伝導率は低い(例えば、0.1W/m・K)。ケースがこのような樹脂フィルムで被覆されている場合であっても、ケースの厚み方向の熱伝導率λが高く、さらに、熱放射率εに優れる第1の熱放射層がケースに隣接して配置されていることにより、コンデンサ素子から生じる熱のケースの外部への放熱性は高まる。後述するように、第1の熱放射層、第2の熱放射層および熱伝導層の少なくとも1層をケースの外表面に配置する場合、樹脂フィルムは、上記層よりも外側に配置される。
(第1の熱放射層)
 第1の熱放射層は、ケースの内表面、外表面あるいはコンデンサ素子の表面であって、
コンデンサ素子の少なくとも一部を覆うことができるような位置に配置される。第1の熱放射層は、ケースのコンデンサ素子に対向する内表面に、その少なくとも一部を覆うように配置されていてもよいし、コンデンサ素子の表面に、その少なくとも一部を覆うように配置されていてもよいし、ケースの外表面に、その少なくとも一部を覆うように配置されていてもよい。なかでも、コンデンサ素子から生じた熱を効率的に吸収できる点で、第1の熱放射層は、ケースの内表面および/またはコンデンサ素子の表面に接触するように配置されることが好ましい。
 第1の熱放射層の熱放射率εは0.7以上であり、0.85以上であることが好ましい。これにより、コンデンサ素子から生じた熱は、速やかに第1の熱放射層に吸収されるとともに、ケースへと効率よく放射される。熱放射率εは1以下である。
 第1の熱放射層は、例えば、絶縁性であり熱放射性を有するフィラー(以下、第1の熱放射フィラーと称す。)と、絶縁性のバインダ(以下、第1のバインダと称す。)と、を含む。
 第1の熱放射フィラーとしては、酸化亜鉛、酸化ケイ素、酸化マグネシウム、酸化チタンおよび酸化鉄等のセラミックス、エンステタイト(MgO・SiO)、ディオブサイド(CaO・MgO・2SiO)、フォルステライト(2Mg・SiO)、ジルコン(ZrO・SiO)、コージェライト(2MgO・2Al・5SiO)、ハイドロタルサイト(MgAl(OH)16CO・4HO)、ステアタイト(MgO・SiO)、ムライト(3Al・2SiO)、スポジュメン(LiO・Al・SiO)、ワラストナイト(CaSiO)、アノーサイト(CaAlSi)、アルバイト(NaAlSi)、ウィレマイト、ペタライト等の天然鉱物あるいは人工鉱物等が挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、第1の熱放射フィラーは、熱放射性に優れる点で、アルミニウム元素、マグネシウム元素およびケイ素よりなる群から選択される少なくとも1つを含むことが好ましく、特に、これらの元素をすべて含むことが好ましい。具体的には、コージェライトが好ましい。第1の熱放射フィラーの平均粒径は特に限定されず、例えば、1.0~50μmである。
 第1のバインダとしては、特に限定されず、ポリオレフィン樹脂(例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルペンテン樹脂等)、ポリエステル樹脂(例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等)、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエーテルケトン樹脂およびシリコーン樹脂等の熱可塑性樹脂、および、アクリル樹脂、エポキシ樹脂、オキセタン樹脂、シアネート樹脂、フェノール樹脂およびレゾール樹脂等の熱硬化性樹脂が挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、耐熱性に優れる点で、エポキシ樹脂、シリコーン樹脂が好ましい。
 第1の熱放射層における第1の熱放射フィラーの含有量は、特に限定されない。なかでも、熱放射性の観点から、第1の熱放射フィラーの上記含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。一方、第1の熱放射層の強度の観点から、第1の熱放射フィラーの上記含有量は、95質量%以下であることが好ましく、85質量%以下であることがより好ましい。
 第1の熱放射層の厚みも特に限定されない。ただし、第1の熱放射層が過度に薄いと、第1の熱放射層が形成されるケースあるいはコンデンサ素子の表面による熱の反射率が影響して、第1の熱放射層の効果が十分に発揮されない場合がある。金属光沢を備える物質は、一般的に熱の反射率が高く、放射率が低い。そのため、例えば、第1の熱放射層がケ
ースの内表面に配置されていて、かつ、ケースの内表面が金属光沢を有する場合、第1の熱放射層によって吸収され、ケースに向けて放射された熱は、ケースの内表面に反射され易くなって、外部に放出され難くなる。この点を考慮すると、第1の熱放射層の厚みは、10μm以上であることが好ましく、30μm以上であることがより好ましい。一方、電解コンデンサの小型化の観点から、第1の熱放射層の厚みは、200μm以下であることが好ましく、100μm以下であることがより好ましい。
 第1の熱放射層は、熱伝導性を有することが好ましく、厚み方向に高い熱伝導性を有することがより好ましい。これにより、第1の熱放射層に吸収された熱は、ケースに向けて放射されるとともに伝導されるため、ケースの外部への放熱性がさらに高まる。この場合、第1の熱放射層とケースとは接触していることがより好ましい。第1の熱放射層の厚み方向の熱伝導率λは、1W/m・K以上であることが好ましく、2W/m・K以上であることがより好ましい。これにより、ケースへの熱伝導性が向上する。
(第2の熱放射層)
 電解コンデンサは、第1の熱放射層とともに、絶縁性の第2の熱放射層を備えることが好ましい。第2の熱放射層は、第1の熱放射層とケースを挟んで対向するように配置することが好ましい。これにより、コンデンサ素子から生じた熱をさらに効率的に放射することができる。例えば、第1の熱放射層がケースの内表面に配置される場合、第2の熱放射層は、ケースの内表面とは反対側の外表面に、その少なくとも一部を覆うように配置されることが好ましい。第1の熱放射層がコンデンサ素子の表面に配置される場合も同様に、第2の熱放射層は、ケースの外表面に、その少なくとも一部を覆うように配置されることが好ましい。
 第2の熱放射層の熱放射率εは特に限定されないが、熱放射性の観点から、0.7以上であることが好ましく、0.85以上であることがより好ましい。熱放射率εは1以下である。第2の熱放射層の構成は特に限定されないが、第1の熱放射層と同様の構成であってもよい。第2の熱放射層の厚みも、第1の熱放射層と同じであってもよい。
 第2の熱放射層も、熱伝導性を有することが好ましく、厚み方向に高い熱伝導性を有することがより好ましい。第2の熱放射層の厚み方向の熱伝導率λは、1W/m・K以上であることが好ましく、2W/m・K以上であることがより好ましい。
(熱伝導層)
 電解コンデンサは、第1の熱放射層とともに、熱伝導層を備えていてもよい。熱伝導層を、ケースの内表面または外表面に接触させて、その少なくとも一部を覆うように配置することにより、ケースの内部から外部への熱伝導性が高まって、放熱性がさらに向上する。
 例えば、第1の熱放射層がケースの内表面に配置される場合、熱伝導層は、第1の熱放射層とケースとの間に介在するように配置してもよいし、ケースの外表面に配置してもよい。なかでも、ケース内部の温度を低下させ易い点で、熱伝導層は、第1の熱放射層とケースとの間に介在するように配置されることが好ましい(第4実施形態)。第1の熱放射層がコンデンサ素子の表面に配置される場合も同様である。
 熱伝導層の厚み方向の熱伝導率λは、第1の熱放射層の厚み方向の熱伝導率λ以上であることが好ましい。なかでも、ケースの内部から外部への熱伝導性がより向上する点で、熱伝導率λは、1W/m・K以上であることが好ましく、2W/m・K以上であることがより好ましい。
 熱伝導層は、例えば、熱伝導フィラー(以下、第2の熱伝導フィラーと称す。)とバインダ(以下、第2のバインダと称す。)とを含む。
 第2の熱伝導フィラーとしては、第1のフィラーと同じものが挙げられる。なかでも、熱伝導性に優れる点で、炭化ケイ素が好ましい。第2の熱伝導フィラーの平均粒径は特に限定されず、例えば、5~50μmである。第2のバインダとしては特に限定されず、第1のバインダと同様の樹脂が挙げられる。なかでも、耐熱性に優れる点で、エポキシ樹脂、シリコーン樹脂が好ましい。
 熱伝導層における第2の熱伝導フィラーの含有量は、特に限定されない。なかでも、熱伝導性の観点から、第2の熱伝導フィラーの上記含有量は、50質量%以上であることが好ましく、60質量%以上であることがより好ましい。一方、熱伝導層の強度の観点から、第2の熱伝導フィラーの上記含有量は、95質量%以下であることが好ましく、90質量%以下であることがより好ましい。
 熱伝導層の厚みも特に限定されないが、熱伝導性の観点から、10μm以上であることが好ましく、30μm以上であることがより好ましい。一方、電解コンデンサの小型化の観点から、熱伝導層の厚みは、200μm以下であることが好ましく、100μm以下であることがより好ましい。
 以下、図面を参照しながら、各実施形態について詳細に説明する。図1~5は、各実施形態に係る電解コンデンサ100の断面模式図である。ただし、電解コンデンサ100の構成はこれに限定されない。
[第1実施形態]
 第1実施形態に係る電解コンデンサ100は、図1に示すように、コンデンサ素子10と、コンデンサ素子を収容するケース20と、ケース20のコンデンサ素子10に対向する内表面に、その少なくとも一部を覆うように配置された絶縁性の第1の熱放射層30Aと、を備える。
 このような電解コンデンサ100は、例えば、以下のようにして製造される。まず、ケース20の材料である板状物に、第1の熱放射層30Aの材料(例えば、第1の熱放射フィラーと第1のバインダとの混合物)を塗布するか、上記材料をシート状に成形したシート材を積層して、積層体を得る。得られた積層体を、第1の熱放射層30Aが内側になるようにケース20の形状に成型し、その後、コンデンサ素子10を収容する。ケース20が金属材料から構成される場合、ケース20の成型は、例えば絞り加工により行われる。第1の熱放射層30Aの材料が熱硬化性樹脂を含む場合、ケース20を成型した後、加熱して、熱硬化性樹脂を硬化させる。ケース20の加熱は、コンデンサ素子10が収容される前であってもよいし、収容された後であってもよい。
 熱放射率εの高い第1の熱放射層30Aが、熱源であるコンデンサ素子10に対面するように配置されるため、コンデンサ素子10から生じた熱は、速やかに第1の熱放射層30Aに吸収される。加えて、第1の熱放射層30Aは、厚み方向の熱伝導率λの高いケース20の内表面に形成されている。そのため、第1の熱放射層30Aに吸収された熱は、ケース20の内表面から外表面に速やかに伝導されて、電解コンデンサ100の外部に放出される。
 電解コンデンサ100は、さらに、ケース20の開口を塞ぐ封口体21と、封口体21を覆う座板22と、封口体21から導出され、座板22を貫通するリード線23A、23Bと、各リード線とコンデンサ素子10の各電極とを接続するリードタブ24A、24Bと、を備える。ケース20の開口端近傍は、内側に絞り加工されており、開口端は封口体
21にかしめるようにカール加工されている。電解コンデンサ100は、さらに、コンデンサ素子10とともにケース20に収容される電解質を備える。
[第2実施形態]
 第2実施形態に係る電解コンデンサ100は、図2に示すように、絶縁性の第1の熱放射層30Aがコンデンサ素子10の表面に、その少なくとも一部を覆うように配置されていること以外、第1実施形態と同様である。この場合、第1の熱放射層30Aからケース20への熱伝導性が高まる点で、第1の熱放射層30Aとケース20とは接触していることが好ましい。
 このような電解コンデンサ100は、例えば、コンデンサ素子10の表面に、第1の熱放射層30Aの材料を塗布するか、上記材料をシート状に成形したシート材を熱溶融して接着した後、ケース20に収容することにより得られる。第1の熱放射層30Aの材料が熱硬化性樹脂を含む場合、コンデンサ素子10の表面を第1の熱放射層30Aの材料で被覆した後、コンデンサ素子10を加熱して、熱硬化性樹脂を硬化させる。コンデンサ素子10の加熱は、ケース20に収容される前であってもよいし、収容された後であってもよい。
 第1の熱放射層30Aがコンデンサ素子10に接触しているため、コンデンサ素子10から生じた熱は、より速やかに第1の熱放射層30Aに吸収される。加えて、第1の熱放射層30Aは、厚み方向の熱伝導率λに優れるケース20に対向するように配置されているため、第1の熱放射層30Aに吸収された熱は、ケース20の内表面から外表面に速やかに伝導されて、電解コンデンサ100の外部に放出される。
[第3実施形態]
 第3実施形態に係る電解コンデンサ100は、図3に示すように、ケース20の内表面に配置された第1の熱放射層30Aとともに、ケース20の外表面に、その少なくとも一部を覆うように配置された第2の熱放射層30Bを備えること以外、第1実施形態と同様である。
 このような電解コンデンサ100は、例えば、以下のようにして製造される。まず、ケース20の材料である板状物の一方の面に、第1の熱放射層30Aの材料を塗布するか、上記材料をシート状に成形したシート材を積層し、板状物の他方の面に、第2の熱放射層30Bの材料を塗布するか、上記材料をシート状に成形したシート材を積層して、積層体を得る。得られた積層体を、第1の熱放射層30Aが内側になるようにケース20の形状に成型した後、コンデンサ素子10を収容する。あるいは、第1実施形態と同様の方法により、内表面に第1の熱放射層30Aが配置されたケース20を作製した後、ケース20の外表面に、第2の熱放射層30Bの材料を塗布してもよい。第1の熱放射層30Aの材料および/または第2の熱放射層30Bの材料が熱硬化性樹脂を含む場合、ケース20を成型した後、加熱して、熱硬化性樹脂を硬化させる。ケース20の加熱は、コンデンサ素子10が収容される前であってもよいし、収容された後であってもよい。
 本実施形態では、第1の熱放射層30Aと第2の熱放射層30Bとが、ケース20を介して対向している。コンデンサ素子10から生じた熱は、熱源であるコンデンサ素子10に対面するように配置された第1の熱放射層30Aに速やかに吸収される。そして、第1の熱放射層30Aに吸収された熱は、ケース20の内表面から外表面に速やかに伝導される。このとき、熱放射性の高い第2の熱放射層30Bがケース20の外表面に配置されているため、熱は、ケース20の厚み方向にさらに伝導され易い。ケース20の外表面に伝導された熱は、第2の熱放射層30Bによって効率よくケース20の外部に放射される。
[第4実施形態]
 第4実施形態に係る電解コンデンサ100は、図4に示すように、第1の熱放射層30Aとケース20との間に介在するように、ケース20の内表面に接触させて配置された熱伝導層40を備えること以外、第1実施形態と同様である。
 このような電解コンデンサ100は、例えば、以下のようにして製造される。まず、ケース20の材料である板状物の一方の面に、熱伝導層40の材料(例えば、第2の熱伝導フィラーと第2のバインダとの混合物)を塗布するか、上記材料をシート状に成形したシート材を積層し、その表面に、さらに第1の熱放射層30Aの材料を塗布するか、上記材料をシート状に成形したシート材を積層して、積層体を得る。得られた積層体を、第1の熱放射層30Aが内側になるようにケース20の形状に成型した後、コンデンサ素子10を収容する。第1の熱放射層30Aの材料および/または熱伝導層40の材料が熱硬化性樹脂を含む場合、ケース20を成型した後、加熱して、熱硬化性樹脂を硬化させる。ケース20の加熱は、コンデンサ素子10が収容される前であってもよいし、収容された後であってもよい。
 熱放射率ε(熱吸収率α)の高い第1の熱放射層30Aが、熱源であるコンデンサ素子10に対面するように配置されるため、コンデンサ素子10から生じた熱は、速やかに第1の熱放射層30Aに吸収される。そして、熱伝導層40が、ケース20の内表面に接触し、その少なくとも一部を覆うように配置されていることにより、第1の熱放射層30Aに吸収された熱は、熱伝導層40からケース20の内表面に速やかに伝導されるとともに、ケース20外表面にまで速やかに伝導されて、電解コンデンサ100の外部に放出される。熱伝導層40が、ケース20の外表面に接触させて配置される場合も、同様である。
[第5実施形態]
 第5実施形態に係る電解コンデンサ100は、図5に示すように、絶縁性の第1の熱放射層30Aがコンデンサ素子10の表面全体を覆うように配置されていること以外、第1実施形態と同様である。
 このような電解コンデンサ100は、例えば、コンデンサ素子10をケース20に収容した後、ケース20に第1の熱放射層30Aの材料を充填することにより得られる。第1の熱放射層30Aの材料が熱硬化性樹脂を含む場合、ケース20に熱放射層30Aの材料を充填した後、加熱して、熱硬化性樹脂を硬化させる。この方法によれば、コンデンサ素子10の表面全体を覆い、かつ、ケース20に接触した第1の熱放射層30Aを容易に形成することができる。さらに、この方法によれば、ケース20とコンデンサ素子10との間を埋めるように第1の熱放射層30Aが形成されるため、放熱性はさらに向上する。
 第1の熱放射層30Aは、コンデンサ素子10の表面全体を覆うため、コンデンサ素子10から生じた熱は、より速やかに第1の熱放射層30Aに吸収される。加えて、第1の熱放射層30Aは、厚み方向の熱伝導率λに優れるケース20に接触しているため、第1の熱放射層30Aに吸収された熱は、ケース20の内表面から外表面に速やかに伝導されて、電解コンデンサ100の外部に放出される。
(コンデンサ素子)
 以下、本実施形態に係るコンデンサ素子を図面を参照しながら説明する。図6は、コンデンサ素子10の一部を展開した概略図である。ただし、コンデンサ素子10の構成はこれに限定されない。
 例えば、コンデンサ素子10は、箔状の陽極11と箔状の陰極12とこれらの間に介在するセパレータ13とを備える。陽極11および陰極12は、セパレータ13を介在させ
ながら捲回されて、捲回体を形成している。捲回体の最外周は、巻止めテープ14により固定される。陽極11は、リードタブ24Aと接続され、陰極12は、リードタブ24Bと接続されている。また、コンデンサ素子10は、陽極11および陰極12をセパレータ13を介在させながら積層させた、積層型であってもよい。
 コンデンサ素子10は、弁作用金属を含む焼結体(多孔質体)を陽極体として備えていてもよい。焼結体を用いる場合、陽極側のリードの一端は、焼結体に埋め込まれる。このようなコンデンサ素子は、例えば、上記の陽極体と、陽極体を覆う誘電体層と、誘電体層を覆う陰極部とを備える。陰極部は、例えば、誘電体層を覆う固体電解質層と、固体電解質層を覆う陰極引出層とを備える。
(陽極)
 陽極11は、例えば、陽極体と陽極体を覆う誘電体層とを備える。
 陽極体は、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などを含むことができる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタンが好ましく使用される。陽極体の表面は、多孔質である。このような陽極体は、例えば、エッチングなどにより弁作用金属を含む基材(箔状または板状の基材など)の表面を粗面化することで得られる。
 誘電体層は、弁作用金属の酸化物(例えば酸化アルミニウム、酸化タンタル)を含む。誘電体層は、陽極体の多孔質な表面(孔の内壁面を含む)に沿って形成される。
 誘電体層は、例えば、陽極体の表面を、化成処理などにより陽極酸化することで形成される。陽極酸化は、公知の方法、例えば、化成処理などにより行うことができる。化成処理は、例えば、陽極体を化成液中に浸漬することにより、陽極体の表面に化成液を含浸させ、陽極体をアノードとして、化成液中に浸漬したカソードとの間に電圧を印加することにより行うことができる。
(陰極)
 陰極12は、陰極としての機能を有していればよく、特に限定されない。陰極12は、例えば陽極11と同様に、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などにより形成される。必要に応じて、陰極12の表面を粗面化してもよい。
(セパレータ)
 セパレータ13としては、セルロース繊維製の不織布、ガラス繊維製の不織布、ポリオレフィン製の微多孔膜、織布、不織布などが好ましく用いられる。セパレータ13の厚みは、例えば10~300μmであり、10~60μmが好ましい。
(電解質)
 電解質としては、電解液、固体電解質、またはその両方を用いることができる。
 電解液としては、非水溶媒であってもよく、非水溶媒とこれに溶解させたイオン性物質(溶質、例えば、有機塩)との混合物であってもよい。非水溶媒は、有機溶媒でもよく、イオン性液体でもよい。非水溶媒としては、例えば、エチレングリコール、プロピレングリコール、スルホラン、γ-ブチロラクトン、N-メチルアセトアミドなどを用いることができる。有機塩としては、例えば、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどが挙げられる。
 固体電解質は、例えば、マンガン化合物や導電性高分子を含む。導電性高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリンおよびこれらの誘導体などを用いることができる。固体電解質層は、ドーパントを含んでもよい。より具体的には、固体電解質層は、導電性高分子としてポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、および、ドーパントとしてポリスチレンスルホン酸(PSS)を含むことができる。
 導電性高分子を含む固体電解質は、例えば、原料モノマーを、陽極体に形成された誘電体層上で化学重合および/または電解重合することにより、形成することができる。あるいは、導電性高分子が溶解した溶液、または、導電性高分子が分散した分散液を、誘電体層に塗布することにより、形成することができる。ただし、固体電解質は、陽極11と陰極12との間に配置されればよく、陽極11、セパレータ13および陰極12を巻回した巻回体を、原料モノマーあるいは導電性高分子を含む処理液に含浸させることにより、形成してもよい。
 本発明に係る電解コンデンサは、放熱性に優れるため、様々な用途に利用できる。
100:電解コンデンサ
 10:コンデンサ素子
  11:陽極
  12:陰極
  13:セパレータ
  14:巻止めテープ
 20:ケース
  21:封口体
  22:座板
  23A、23B:リード線
  24A、24B:リードタブ
 30A:第1の熱放射層
 30B:第2の熱放射層
 40:熱伝導層

Claims (5)

  1.  コンデンサ素子と、
     前記コンデンサ素子を収容するケースと、
     前記コンデンサ素子の少なくとも一部を覆うように配置された絶縁性の第1の熱放射層と、を備え、
     前記ケースの厚み方向の熱伝導率λが、1W/m・K以上であり、
     前記第1の熱放射層の熱放射率εが、0.7以上である、電解コンデンサ。
  2.  前記第1の熱放射層が、前記ケースの前記コンデンサ素子に対向する内表面に、その少なくとも一部を覆うように配置されている、請求項1に記載の電解コンデンサ。
  3.  前記第1の熱放射層が、前記コンデンサ素子の表面に、その少なくとも一部を覆うように配置されている、請求項1または2に記載の電解コンデンサ。
  4.  さらに、絶縁性の第2の熱放射層を備え、
     前記第2の熱放射層の熱放射率εが、0.7以上であり、
     前記第2の熱放射層が、前記ケースの前記コンデンサ素子に対向する内表面とは反対側の外表面に、その少なくとも一部を覆うように配置されている、請求項1~3のいずれか一項に記載の電解コンデンサ。
  5.  さらに、熱伝導層を備え、
     前記熱伝導層が、前記ケースの前記内表面または前記外表面に接触して、その少なくとも一部を覆うように配置されており、
     前記熱伝導層の厚み方向の熱伝導率λが、前記第1の熱放射層の厚み方向の熱伝導率λ以上である、請求項1~4のいずれか一項に記載の電解コンデンサ。
PCT/JP2018/011967 2017-03-31 2018-03-26 電解コンデンサ WO2018181088A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019509754A JP7245996B2 (ja) 2017-03-31 2018-03-26 電解コンデンサ
CN201880020534.7A CN110462772A (zh) 2017-03-31 2018-03-26 电解电容器
US16/574,511 US20200013557A1 (en) 2017-03-31 2019-09-18 Electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071831 2017-03-31
JP2017071831 2017-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/574,511 Continuation US20200013557A1 (en) 2017-03-31 2019-09-18 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
WO2018181088A1 true WO2018181088A1 (ja) 2018-10-04

Family

ID=63675806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011967 WO2018181088A1 (ja) 2017-03-31 2018-03-26 電解コンデンサ

Country Status (4)

Country Link
US (1) US20200013557A1 (ja)
JP (1) JP7245996B2 (ja)
CN (1) CN110462772A (ja)
WO (1) WO2018181088A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488786B2 (en) * 2020-03-17 2022-11-01 Apaq Technology Co., Ltd. Winding-type capacitor package structure and method of manufacturing the same
WO2023140119A1 (ja) * 2022-01-19 2023-07-27 パナソニックIpマネジメント株式会社 電解コンデンサ、及び電解コンデンサの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022111476A1 (de) * 2022-05-09 2023-11-09 Tdk Electronics Ag Kondensatorbauteil, Verwendung eines Kondensatorbauteils und Verfahren zur Herstellung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390423U (ja) * 1989-12-28 1991-09-13
JPH10214604A (ja) * 1997-01-31 1998-08-11 Toshiba Battery Co Ltd 電池及びニッケル水素二次電池
JP2005210069A (ja) * 2003-10-29 2005-08-04 Showa Denko Kk 電解コンデンサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871677A (zh) * 2003-10-29 2006-11-29 昭和电工株式会社 电解电容器
TWM373556U (en) * 2009-04-24 2010-02-01 Apaq Technology Co Ltd Capacitor with heat dissipation and energy-saving function
JP2012191178A (ja) * 2011-02-22 2012-10-04 Sanyo Electric Co Ltd 電解コンデンサおよび電解コンデンサの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390423U (ja) * 1989-12-28 1991-09-13
JPH10214604A (ja) * 1997-01-31 1998-08-11 Toshiba Battery Co Ltd 電池及びニッケル水素二次電池
JP2005210069A (ja) * 2003-10-29 2005-08-04 Showa Denko Kk 電解コンデンサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488786B2 (en) * 2020-03-17 2022-11-01 Apaq Technology Co., Ltd. Winding-type capacitor package structure and method of manufacturing the same
WO2023140119A1 (ja) * 2022-01-19 2023-07-27 パナソニックIpマネジメント株式会社 電解コンデンサ、及び電解コンデンサの製造方法

Also Published As

Publication number Publication date
JPWO2018181088A1 (ja) 2020-02-13
CN110462772A (zh) 2019-11-15
JP7245996B2 (ja) 2023-03-27
US20200013557A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
WO2018181088A1 (ja) 電解コンデンサ
KR101539835B1 (ko) 리튬 이차전지용 외장재 및 이를 포함하는 리튬 이차전지
JP5920361B2 (ja) 固体電解コンデンサ及びその製造方法
JP2023082146A (ja) 固体電解キャパシタアセンブリ
JP2011071179A (ja) 金属化フィルムコンデンサ
JP7426591B2 (ja) 電解コンデンサモジュール
JP2012049351A (ja) 固体電解コンデンサ及びその製造方法
JPWO2018142972A1 (ja) 固体電解コンデンサ
JP6664087B2 (ja) 電解コンデンサおよびその製造方法
JP2012074643A (ja) アルミニウム電解コンデンサ
CN107432090A (zh) 电子设备
JP2014138082A (ja) フィルムコンデンサ
JP2017010980A (ja) 金属化フィルムコンデンサ
JP2013055267A (ja) アルミニウム電解コンデンサ
JP7178609B2 (ja) 電解コンデンサ
US11049663B2 (en) Electrolytic capacitor
JP2009188206A (ja) フィルムコンデンサ
JP2019004100A (ja) 蓄電デバイス
CN219497567U (zh) 一种安全性固态电解电容器
JP2020167267A (ja) 電解コンデンサおよびその製造方法
WO2018235408A1 (ja) 蓄電デバイス
CN111799093B (zh) 叠层固态铝电解电容器
JP6778329B2 (ja) バッテリ構造
JP2011077282A (ja) 金属化フィルムコンデンサ
CN101329952A (zh) 改良的卷绕式电解电容器及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776933

Country of ref document: EP

Kind code of ref document: A1