WO2018180938A1 - 表示装置、及び、表示装置の製造方法 - Google Patents

表示装置、及び、表示装置の製造方法 Download PDF

Info

Publication number
WO2018180938A1
WO2018180938A1 PCT/JP2018/011562 JP2018011562W WO2018180938A1 WO 2018180938 A1 WO2018180938 A1 WO 2018180938A1 JP 2018011562 W JP2018011562 W JP 2018011562W WO 2018180938 A1 WO2018180938 A1 WO 2018180938A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display device
liquid crystal
polarizing plate
panel
Prior art date
Application number
PCT/JP2018/011562
Other languages
English (en)
French (fr)
Inventor
坂井 彰
雅浩 長谷川
厚志 伴
浩二 村田
雄一 川平
箕浦 潔
貴子 小出
中村 浩三
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/499,238 priority Critical patent/US11307337B2/en
Publication of WO2018180938A1 publication Critical patent/WO2018180938A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present invention relates to a display device and a method for manufacturing the display device. More specifically, the present invention relates to a display device such as an organic electroluminescence display device and a liquid crystal display device, and a method for manufacturing the display device.
  • a polarizing plate is bonded on the outer side of a display panel.
  • a metal material is used for the cathode of an organic electroluminescence display device, internal reflection of the display panel becomes very large. Therefore, a circularly polarizing plate, which is a kind of polarizing plate, is provided as a countermeasure.
  • the term “polarizing plate” refers to a polarizer exhibiting a polarizing function, a protective film for protecting the polarizer, a retardation plate for improving the performance of the display, an adhesive for integrating these members, etc. Refers to a laminate comprising
  • the conventional polarizing plate includes a plurality of constituent members having a thickness of several ⁇ m to several tens of ⁇ m, and thus there is a limitation on thinning, and it does not support flexibility.
  • the conventional circularly polarizing plate has a larger number of constituent members than the linearly polarizing plate and tends to be thick, and thus it has been difficult to cope with flexibility.
  • the pressure-sensitive adhesive layer contained in the polarizing plate tends to cause problems such as white turbidity in a bending test and a moisture resistance test.
  • an elliptically polarizing plate described in Patent Document 1 As a conventional thinned polarizing plate, for example, an elliptically polarizing plate described in Patent Document 1 can be cited.
  • a translucent protective film, a polarizing element, and an optical anisotropic element are laminated in this order, and the optical anisotropic element exhibits a liquid crystal composition exhibiting at least positive uniaxiality.
  • a nematic alignment liquid crystal layer in which the alignment is fixed after nematic alignment in a liquid crystal state is included.
  • the present invention has been made in view of the above situation, and provides a display device that can be thinned and has excellent flexibility and durability, and a display device manufacturing method suitable for manufacturing the display device. It is intended to do.
  • the present inventors have arranged a retardation layer and a polarizing layer on the viewer side of the display device.
  • the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
  • the display panel, the retardation layer, and the polarizer are laminated and integrated in this order from the back side to the observation surface side without interposing an adhesive layer. Display device.
  • a first alignment film is formed on a display panel, a solution containing the first polymerizable liquid crystal is applied on the first alignment film, and the first polymerizable property is applied.
  • Forming a polarizer by applying a solution to be contained and curing the second polymerizable liquid crystal, thereby producing a display device.
  • FIG. 1 It is a cross-sectional schematic diagram which shows the structure of the circularly-polarizing plate with which the organic electroluminescent display apparatus of Embodiment 1 (Example 1) is provided.
  • 3 is a schematic cross-sectional view illustrating a configuration of an organic electroluminescence display panel included in the organic electroluminescence display device of Example 1.
  • FIG. It is a cross-sectional schematic diagram which shows the structure of the circularly-polarizing plate with which the organic electroluminescent display apparatus of Example 2 is provided.
  • 6 is a schematic cross-sectional view showing a configuration of a liquid crystal display device of Example 3.
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration of a liquid crystal display device of Example 4.
  • observation surface side means a side closer to the screen (display surface) of the display device
  • back side means more than the screen (display surface) of the display device. It means the far side.
  • the “retardation layer” means a retardation layer that gives an in-plane retardation of at least 10 nm to light having a wavelength of 550 nm.
  • light having a wavelength of 550 nm is light having the highest human visibility.
  • ns represents the larger one of the main refractive indexes nx and ny in the in-plane direction of the retardation layer
  • nf is the smaller one of the main refractive indexes nx and ny in the in-plane direction of the retardation layer. Represents.
  • the main refractive index indicates a value with respect to light having a wavelength of 550 nm unless otherwise specified.
  • the in-plane slow axis of the retardation layer indicates an axis in a direction corresponding to ns, and the in-plane fast axis indicates an axis in a direction corresponding to nf.
  • d represents the thickness of the retardation layer.
  • the “phase difference” means an in-plane phase difference with respect to light having a wavelength of 550 nm.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of a circularly polarizing plate included in the organic electroluminescence display device of Embodiment 1.
  • the organic electroluminescence display device according to the first embodiment has an organic electroluminescence panel (display panel) 10, reversely, without an adhesive layer from the back side to the observation surface side.
  • a coating ⁇ / 4 retardation layer ( ⁇ / 4 plate) 21 and a coating polarizing layer (polarizer) 25 exhibiting wavelength dispersion are laminated and integrated in this order.
  • the “adhesive layer” means a layer including at least one of a pressure-sensitive adhesive having a pressure-sensitive adhesive function and an adhesive having an adhesive function.
  • the coating ⁇ / 4 retardation layer 21 is a layer composed of an alignment film aligned in a specific direction and a cured product of polymerizable liquid crystal (hereinafter referred to as “reactive mesogen” in order from the back side to the observation surface side. It is preferable to include a layer.
  • the alignment film a film generally used in the field of liquid crystal display panels such as polyimide can be used.
  • the alignment film can be formed by applying a solution on the organic electroluminescence panel 10 and curing it by a method such as baking or light irradiation.
  • a method such as baking or light irradiation.
  • For the alignment treatment of the alignment film rubbing, light irradiation, or the like can be used.
  • Surface treatment such as plasma surface treatment may be performed on the surface of the organic electroluminescence panel 10 on which the solution is applied.
  • the reactive mesogen layer can be formed by applying a polymerizable liquid crystal on an alignment film that has been subjected to an alignment treatment and curing it by a method such as baking or light irradiation.
  • the cured polymerizable liquid crystal is aligned according to the alignment direction of the alignment film determined by the alignment process, and exhibits a phase difference.
  • the phase difference of the reactive mesogen layer is determined by the product of the birefringence ⁇ n of the polymerizable liquid crystal and the thickness d of the reactive mesogen layer.
  • liquid crystal molecules having a photoreactive group are preferably used as the polymerizable liquid crystal.
  • liquid crystal molecules having photoreactive groups include biphenyl groups, terphenyl groups, naphthalene groups, phenylbenzoate groups, azobenzene groups, substituents (mesogen groups) such as derivatives thereof, cinnamoyl groups, chalcone groups, and cinnamylidene.
  • a polymer or oligomer having a structure in the main chain (hereinafter also simply referred to as “polymer”) can be given.
  • a polymer may be a homopolymer consisting of a single repeating unit or a copolymer consisting of two or more repeating units having different side chain structures.
  • Such copolymers include any of alternating, random and craft types.
  • the side chain related to at least one repeating unit is a side chain having a structure having both a mesogenic group and a photoreactive group as described above, and the side chain related to another repeating unit is the mesogenic group. It may have no group or photoreactive group.
  • Solvents used for application of the polymerizable liquid crystal include, for example, toluene, ethylbenzene, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol methyl ether, dibutyl ether, acetone, methyl ethyl ketone, ethanol, propanol, cyclohexane, cyclopentanone, methyl
  • Solvents used for application of the polymerizable liquid crystal include, for example, toluene, ethylbenzene, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol methyl ether, dibutyl ether, acetone, methyl ethyl ketone, ethanol, propanol, cyclohexane, cyclopentanone, methyl
  • Examples include cyclohexane, tetrahydrofuran, dioxane, cyclohexanone
  • the coating ⁇ / 4 retardation layer 21 is preferably one that imparts an in-plane retardation of 1 ⁇ 4 wavelength to light having a wavelength of at least 550 nm, specifically, to light having a wavelength of 550 nm. It is preferable to provide an in-plane retardation of 100 nm or more and 176 nm or less.
  • the coating polarizing layer 25 is a reactive material containing, in order from the back surface side to the observation surface side, an alignment film that has been subjected to an alignment treatment in a specific direction, and a material that exhibits polarization performance such as a dichroic dye that is aligned in that direction. It is preferable to provide a mesogenic layer.
  • the alignment film in the coating polarizing layer 25 can be formed in the same manner as the alignment film in the coating ⁇ / 4 retardation layer 21.
  • the reactive mesogen layer in the coating polarizing layer 25 is the same as the reactive mesogen layer in the coating ⁇ / 4 retardation layer 21 except that it contains a dichroic substance that exhibits polarization performance such as a dichroic dye. It can be formed similarly.
  • the combination of the coating polarizing layer 25 and the coating ⁇ / 4 retardation layer 21 functions as a circularly polarizing plate. As a result, the internal reflection of the display panel can be reduced, so that a good black display in which reflection of external light (reflection) is suppressed can be realized, and the visibility of the display image when used outdoors is greatly improved. .
  • the organic electroluminescence display device of Embodiment 1 may include other constituent members.
  • a touch panel sensor may be provided.
  • the touch panel sensor may be provided on the observation surface side with respect to the coating polarizing layer 25, or may be provided on the back side with respect to the coating ⁇ / 4 retardation layer 21, and provided in the organic electroluminescence panel 10. May be.
  • reflection of external light by the touch panel sensor can be suppressed.
  • a cover member may be attached to the observation surface side of the coating polarizing layer 25 via an optical transparent adhesive sheet (OCA).
  • OCA optical transparent adhesive sheet
  • the cover member preferably has a transparent display area, and an area other than the display area may be provided with a design such as a color or a pattern.
  • an antireflection film may be provided on the observation surface side of the coating polarizing layer 25. Thereby, reflection of external light can be reduced and reflection of external light on the display surface of the display device can be further suppressed.
  • an AR (Anti Reflection) film based on the principle of thin film interference an LR (Low Reflection) film, and a moth-eye film having a surface structure having a lattice shape are preferably used.
  • the retardation layer and the polarizer are sequentially laminated on the display panel without coating the adhesive layer, so that the display device is thinned. it can.
  • the display panel functions as a support, so that it is not necessary to use a protective film as in the prior art.
  • flexibility and durability can be improved by not including an adhesive layer or being able to thin the circularly polarizing plate portion.
  • an organic electroluminescence display device including the organic electroluminescence 10 is shown as a display panel.
  • the display device of the present invention uses a liquid crystal panel as a display panel, and a coating ⁇ / 4 retardation layer is formed on the liquid crystal panel.
  • stacked 21 and the coating polarizing layer 25 may be sufficient.
  • the organic electroluminescence panel 10, the coating ⁇ / 4 retardation layer 21 and the coating polarizing layer 25 are laminated and integrated in this order without interposing an adhesive layer.
  • the display device of the present invention may be any display panel, retardation layer, and polarizer that are laminated and integrated in this order without an adhesive layer, for example, a display panel and a polarizer. There may be a plurality of retardation layers provided between and other optical members besides the display panel, the retardation layer and the polarizer.
  • the display device of the present invention has a structure in which each constituent member provided between the display panel and the polarizer is laminated and integrated without interposing an adhesive layer. For example, an adhesive layer is interposed between the display panel and the polarizer, or a component between the display panel and the polarizer is simply stacked without being integrated. Different.
  • Example 1 the display device of Embodiment 1 was actually manufactured by the following method.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration of an organic electroluminescence display panel included in the organic electroluminescence display device according to the first embodiment.
  • a method for producing the organic electroluminescence display device of Example 1 will be described with reference to FIGS.
  • a molybdenum (Mo) film 12 as a heat absorption layer was formed on a glass substrate 11 which is a supporting substrate by a sputtering method.
  • a silane coupling agent is applied by a spin coating method, and a film made of a polyimide precursor is formed by a slit coating method.
  • the polyimide film 13 was formed by baking at a baking temperature of 400 ° C.
  • a silicon oxynitride (SiON) film and a silicon nitride (SiNx) film were sequentially laminated by a plasma CVD method to form a protective film 14.
  • An aluminum (Al) film as an anode, a thin film transistor (TFT), and a wiring were formed on the protective film 14 to form a TFT layer 15.
  • a TFT substrate was obtained.
  • an organic electroluminescence layer 16 in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and an ITO film as a cathode were sequentially laminated was formed.
  • a silicon nitride (SiNx) film and a silicon oxynitride (SiON) film were sequentially laminated by plasma CVD so as to cover the organic electroluminescence layer 16 to form a sealing film 17.
  • the organic electroluminescence panel 10 was obtained.
  • the prepared alignment film solution is applied on the organic electroluminescence panel 10 by a flexographic printing method, dried in an oven at 80 ° C. for 1 minute, cured by irradiation with UV light, and an alignment film having a thickness of 100 nm is manufactured. did. Further, the alignment film was rubbed in the 0 ° azimuth and subjected to alignment treatment.
  • Polymerizable liquid crystal of the following chemical formula (1) 12.31 parts by weight Polymeric liquid crystal of the following chemical formula (2): 0.86 parts by weight Polymerization initiator “irgacure 369” (manufactured by BASF): 0.73 parts by weight leveling agent “ BYK-361N "(manufactured by BYK-Chemie): 0.01 parts by weight
  • the prepared polymerizable liquid crystal solution A is applied on the alignment film subjected to the alignment treatment by the slit coat method, dried in an oven at 120 ° C. for 1 minute, and the irradiation amount is 400 mJ / cm 2 with a high-pressure mercury lamp. Then, UV light was irradiated and cured to prepare a coating ⁇ / 4 retardation layer 21. As a result of measuring the wavelength dispersion of the produced coating ⁇ / 4 retardation layer 21 with AxoScan (manufactured by Axometrics), it was confirmed that the film exhibited reverse wavelength dispersion.
  • the coating polarizing layer 25 was directly laminated on the produced coating ⁇ / 4 retardation layer 21.
  • the same alignment film solution as that used for the preparation of the coating ⁇ / 4 retardation layer 21 is applied by a flexographic printing method and dried in an oven at 80 ° C. for 1 minute.
  • the film was cured by irradiating UV light to produce an alignment film having a thickness of 100 nm. Further, the alignment film was rubbed in a 45 ° azimuth and subjected to an alignment treatment.
  • the polymerizable liquid crystal solution B prepared by mixing the following materials is applied by the slit coat method, dried in an oven at 120 ° C. for 1 minute, and the irradiation amount is 400 mJ / cm 2 with a high-pressure mercury lamp.
  • the coating polarizing layer 25 was produced by irradiating with UV light and curing.
  • a circularly polarizing plate 20 composed of a laminate of the coating ⁇ / 4 retardation layer 21 and the coating polarizing layer 25 was obtained.
  • the thickness of the produced circularly polarizing plate 20 of Example 1 was 5 ⁇ m.
  • a molybdenum (Mo) film 12 and a polyimide film 13 are formed on a glass substrate 11 which is a support substrate at the time of manufacturing the panel.
  • a glass substrate 11 and the Mo film 12 are peeled off at the end of the manufacture and the polyimide film 13 is used as a support substrate for a product, a glass substrate may be used as a support substrate for a product.
  • FIG. 3 is a schematic cross-sectional view illustrating a configuration of a circularly polarizing plate included in the organic electroluminescence display device of Example 2.
  • FIG. 3 the method of manufacturing the organic electroluminescent display apparatus of Example 2 is demonstrated.
  • the coating positive C plate 22 was directly laminated on the organic electroluminescence panel 10 produced in the same manner as in Example 1 by the following method.
  • the prepared vertical alignment film solution was applied on the organic electroluminescence panel 10 by a flexographic printing method so as to have a thickness of 100 nm, and dried in an oven at 80 ° C. for 1 minute to prepare a vertical alignment film.
  • a polymerizable liquid crystal solution “RMM28B” manufactured by Merck was applied on the prepared vertical alignment film to a thickness of 4 ⁇ m by a slit coating method, dried in an oven at 65 ° C. for 5 minutes, and then a high-pressure mercury lamp.
  • the coating positive C plate 22 was prepared by irradiating with UV light so that the irradiation amount was 400 mJ / cm 2 .
  • the produced coating positive C plate 22 had a thickness direction retardation (Rth) of 97 nm.
  • Example 2 In the same manner as in Example 1, the coating ⁇ / 4 retardation layer 21 and the coating polarizing layer 25 exhibiting reverse wavelength dispersion were directly laminated on the coating positive C plate 22 in this order.
  • a circularly polarizing plate 20 composed of a laminate of the coating positive C plate 22, the coating ⁇ / 4 retardation layer 21 and the coating polarizing layer 25 was obtained.
  • the thickness of the produced circularly polarizing plate 20 of Example 2 was 9 ⁇ m.
  • FIG. 4 is a schematic cross-sectional view illustrating the configuration of the liquid crystal display device according to the third embodiment.
  • a method of manufacturing the liquid crystal display device of Example 3 will be described with reference to FIG.
  • a substrate in which a color filter (CF) layer 42 and a black matrix (BM) 43 of red / green / blue (RGB) are arranged on a glass substrate 41 is prepared, and a CF layer is prepared.
  • an overcoat (OC) layer 44 made of a thermosetting resin was laminated.
  • Photo spacers (PS) 46 were formed with a resist (photosensitive resin) at a height of 3.3 ⁇ m so that the liquid crystal layer 53 had a thickness of 3.3 ⁇ m.
  • a color filter (CF) substrate 40 was obtained.
  • a polyimide-based material was formed on the CF substrate 40 using a flexographic printing method so as to have a thickness of 100 nm, and a rubbing process was performed so that the alignment direction of liquid crystal molecules was 0 °, thereby forming an alignment film 51.
  • a TFT substrate 54 on which TFTs, pixel electrodes and the like were formed was prepared, and an alignment film 51 was also formed on the TFT substrate 54 under the same conditions as when formed on the CF substrate 40.
  • thermosetting sealant was drawn on the outer edge of the CF substrate 40 covered with the alignment film 51 with a drawing apparatus, and the CF substrate 40 and the TFT substrate 54 were bonded together. Then, an empty liquid crystal having a cavity at the center where the outer edge of the CF substrate 40 and the outer edge of the TFT substrate 54 are joined by the seal 52 by baking in an oven at 140 ° C. for 1 hour to cure the thermosetting sealant. A panel was produced.
  • a liquid crystal layer 53 was formed. The thickness of the liquid crystal layer 53 was controlled by the photo spacer 46 as described above, and was 3.3 ⁇ m.
  • the manufactured liquid crystal panel is subjected to slimming treatment so that the CF substrate 40 and the TFT substrate 54 are each 0.15 mm, and then used on the observation surface side of the CF substrate 40 to prevent alignment disturbance due to charging or as a touch panel sensor.
  • the ITO thin film 56 to be formed was formed by sputtering.
  • the liquid crystal panel 50 was obtained by the above.
  • Example 3 a liquid crystal display device of Example 3 was obtained.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the liquid crystal display device of Example 4.
  • the back side of the liquid crystal panel with an in-cell retardation layer from the glass substrate 41 is referred to as “in-cell”, and the observation surface side from the glass substrate 41 is referred to as “out-cell”.
  • Example 4 the liquid crystal display device of Example 4 was obtained.
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration of a circularly polarizing plate included in the organic electroluminescence display device of Comparative Example 1.
  • a method of manufacturing the organic electroluminescence display device of Comparative Example 1 will be described with reference to FIG.
  • polarizing plates with an adhesion layer were equipped with the polarizing plate 101 and the adhesion layer 102 which have the structure by which the protective film was laminated
  • PVA polyvinyl alcohol
  • As the ⁇ / 2 plate 103A with an adhesive layer a commercially available ZEONOR film “NZF” (manufactured by Nitto Denko Corporation) was used.
  • the ⁇ / 2 plate 103A with the adhesive layer was provided with the ⁇ / 2 retardation layer 103 and the adhesive layer 104 made of cycloolefin polymer (COP) resin.
  • COP cycloolefin polymer
  • ⁇ / 4 plate 105A with an adhesive layer a commercially available ZEONOR film “NZF” (manufactured by Nitto Denko Corporation) was used.
  • the ⁇ / 4 plate 105 ⁇ / b> A with the adhesive layer was provided with a ⁇ / 4 retardation layer 105 made of a cycloolefin polymer (COP) resin and an adhesive layer 106.
  • the axial angle of the polarizing plate 101 was 45 °
  • the axial angle of the ⁇ / 2 retardation layer 103 was 60 °
  • the axial angle of the ⁇ / 4 retardation layer 105 was 120 °.
  • the produced circularly polarizing plate 200 had a thickness of 240 ⁇ m.
  • FIG. 7 is a schematic cross-sectional view illustrating a configuration of a circularly polarizing plate included in the organic electroluminescence display device of Comparative Example 2.
  • FIG. 7 the method of manufacturing the organic electroluminescent display apparatus of the comparative example 2 is demonstrated.
  • the alignment film solution prepared in the same manner as in Example 1 was applied by flexographic printing, dried in an oven at 80 ° C. for 1 minute, and cured by irradiation with UV light to prepare an alignment film. . Further, the alignment film was rubbed and an alignment treatment was performed.
  • a polymerizable liquid crystal solution “RMS03-013” (manufactured by Merck) was applied on the alignment film subjected to the alignment treatment by a slit coating method. Thereafter, it was dried in an oven at 120 ° C. for 1 minute, and irradiated with UV light to be cured, so that a ⁇ / 2 retardation layer 114 and a ⁇ / 4 retardation layer 116 were produced. At this time, the film thickness of the ⁇ / 2 retardation layer 114 was 2.2 ⁇ m, and the film thickness of the ⁇ / 4 retardation layer 116 was 1.1 ⁇ m.
  • FIG. 8 is a schematic cross-sectional view illustrating a configuration of a circularly polarizing plate included in the organic electroluminescence display device of Comparative Example 3.
  • the method of manufacturing the organic electroluminescent display apparatus of the comparative example 3 is demonstrated.
  • Circular Polarizing Plate The circular polarizing plate mounted on a commercially available organic electroluminescence panel “Galaxy S7” (manufactured by Samsung Electronics Co., Ltd.) was peeled off and used as the circular polarizing plate 220 of Comparative Example 3.
  • the thickness of the circularly polarizing plate 220 was 143 ⁇ m.
  • FIG. 9 is a schematic cross-sectional view illustrating a configuration of a circularly polarizing plate included in the organic electroluminescence display device of Comparative Example 4.
  • a method for manufacturing the organic electroluminescence display device of Comparative Example 4 will be described with reference to FIG.
  • Circular Polarizing Plate A coated polarizing layer 132 was produced on the TAC film 131 in the same manner as in Example 1. Furthermore, a coating ⁇ / 4 retardation layer 133 showing reverse wavelength dispersion was produced on the coating polarizing layer 132 by the same method as in Example 1. Finally, the pressure-sensitive adhesive layer 134 was bonded to produce the circularly polarizing plate 230 of Comparative Example 4. As the adhesive layer 134, “PD-S1” (manufactured by Panac) was used. The thickness of the produced circularly polarizing plate 230 was 70 ⁇ m.
  • FIG. 10 is a schematic cross-sectional view illustrating a configuration of a circularly polarizing plate included in the organic electroluminescence display device of Comparative Example 5.
  • a method for manufacturing the organic electroluminescence display device of Comparative Example 5 will be described with reference to FIG.
  • Bending (bending) test The organic electroluminescence panel thus produced was repeatedly bent 5000 times so that a half of the long side of the panel of the organic electroluminescence panel was supported as a fulcrum. After the test, the presence or absence of defects such as cracking of the protective film inside the panel, cracking of the polarizing layer, and cloudiness of the adhesive layer was confirmed.
  • Humidity resistance test Stored in an environment of 60 ° C. and 90% RH for 1000 hours, turned on the panel, and confirmed the presence or absence of display defects.
  • Reflective viewing angle In a bright room environment of 5000 lux, five subjects were asked to observe the panel from a polar angle of 50 ° to determine whether the panel was easy to see. If the number of people judged to be easy to see was 2 or less, it was judged as “X”, 3 to 4 as “ ⁇ ”, and 5 as “ ⁇ ”.
  • the thickness of the polarizing plate on the observation surface side was 9 ⁇ m or less, and the display device was thinned.
  • the display devices of Examples 1 and 2 were all good in the bending test, the moisture resistance test, and the reflection viewing angle test results.
  • the display devices of Examples 3 and 4 since the type of the display panel was a liquid crystal panel including a glass substrate, the bending test was not performed, but both the moisture resistance test and the reflection viewing angle test results It was good.
  • the thickness of the polarizing plate on the observation surface side was 70 ⁇ m or more, and the display devices could not be thinned.
  • One embodiment of the present invention is a display in which a display panel, a retardation layer, and a polarizer are stacked and integrated in this order without an adhesive layer from the back side to the observation surface side.
  • the retardation layer and the polarizer preferably contain a cured product of a polymerizable liquid crystal.
  • the combination of the retardation layer and the polarizer preferably constitutes a circularly polarizing plate.
  • the display panel may be an organic electroluminescence panel or a liquid crystal panel.
  • the display device of the present invention may further include a touch panel sensor on the back side of the retardation layer.
  • a first alignment film is formed on a display panel, a solution containing the first polymerizable liquid crystal is applied on the first alignment film, and the first polymerizable property is applied.
  • Forming a polarizer by applying a solution to be contained and curing the second polymerizable liquid crystal, thereby producing a display device.

Abstract

本発明は、薄型化が可能であり、フレキシブル性及び耐久性に優れた表示装置、及び、該表示装置の製造に適した表示装置の製造方法を提供する。本発明は、(I)背面側から観察面側に向かって、粘接着剤層を介在することなく、表示パネル、位相差層、及び、偏光子がこの順に積層されて一体化された表示装置、及び、(II)表示パネル上に第一の配向膜を形成し、上記第一の配向膜上に第一の重合性液晶を含有する溶液を塗布し、上記第一の重合性液晶を硬化させることによって位相差層を形成する工程と、上記位相差層上に第二の配向膜を形成し、上記第二の配向膜上に第二の重合性液晶及び二色性物質を含有する溶液を塗布し、上記第二の重合性液晶を硬化させることによって偏光子を形成する工程と、を含む表示装置の製造方法である。

Description

表示装置、及び、表示装置の製造方法
本発明は、表示装置、及び、表示装置の製造方法に関する。より詳しくは、有機エレクトロルミネッセンス表示装置、液晶表示装置等の表示装置、及び、表示装置の製造方法に関するものである。
近年、有機エレクトロルミネッセンス表示装置(OLED)や液晶表示装置(LCD)に代表される表示装置に対し、表示面を曲面にしたカーブド・ディスプレイや、折り畳み可能なフォルダブル・ディスプレイを実現するために、フレキシブル化への対応の要望が強まっており、特に、バックライト等の部材が不要であることから薄型化に有利な構造を有する有機エレクトロルミネッセンス表示装置について、フレキシブル化の期待が高まっている。
ところで、表示装置においては、表示品位やデザイン性を確保するために、表示パネルの外側に偏光板が貼合されることが一般的である。例えば、有機エレクトロルミネッセンス表示装置は、陰極に金属材料を用いると表示パネルの内部反射が非常に大きくなるので、その対策として偏光板の一種である円偏光板が設けられる。なお、「偏光板」という用語は、偏光機能を呈する偏光子の他、偏光子を保護する保護フィルム、ディスプレイの性能を改善する位相差板、それらの各部材を一体化するための粘着剤等を含む積層体を指す。
従来の商物流では、偏光板メーカーが偏光板を製造し、表示パネルメーカーが偏光板を表示パネルに貼合することが一般的であったため、偏光板の各構成部材は、表示パネルへの貼合前に、粘着剤や接着剤を用いて一体化する必要がある。また、仮に偏光子と位相差板の積層に粘着剤や接着剤を使用しなかったとしても、偏光板を表示パネルに貼合するために用いる粘着剤や接着剤については省略できない。このため、偏光板は粘着剤や接着剤を含まざるを得ないということが技術常識であった。
また、偏光板メーカーとしては、経済合理性を確保するため、指定サイズへの裁断加工よりも前の工程は長尺のロール状態でハンドリングしたいという事情があるが、一般に30μmよりも薄いものを長尺のロール状態でハンドリングすることは難しく、巻取中に破断したり、シワが発生したりしてしまう。このため、仮に偏光子や位相差板を薄型化できたとしても、ハンドリング性を良くするための支持体としても機能する保護フィルムは省略できないということが技術常識であった。
このように、従来の偏光板は、数μm~数十μmの厚みを持つ複数の構成部材を含むため、薄型化に制約があり、フレキシブル化に対応していなかった。特に、従来の円偏光板は、直線偏光板よりも構成部材の数が多く、厚くなりやすいため、フレキシブル化への対応は困難であった。更に、偏光板が原因となる耐久性やコストの課題が多くあり、改善が望まれていた。例えば、偏光板に含まれる粘着剤層は、屈曲試験や耐湿試験において、白濁する等の不具合を生じやすかった。
従来の薄型化された偏光板としては、例えば、特許文献1に記載された楕円偏光板が挙げられる。特許文献1の楕円偏光板は、透光性保護フィルム、偏光素子及び光学異方素子とが、この順に積層されており、該光学異方素子が少なくとも正の一軸性を示す液晶性組成物を液晶状態においてネマチック配向させた後、該配向を固定化したネマチック配向液晶層を含むことを特徴とするものである。
特開2007-322777号公報
特許文献1に記載された楕円偏光板によれば、ネマチック配向液晶層を含む光学異方素子の使用と保護フィルムの1層省略により、一定の薄型化の効果は得られるが、依然として保護フィルムが1層残っており、かつ表示パネルに貼合するための粘着剤が残っている。したがって、偏光板の更なる薄型化を図り、フレキシブル化に対応することが求められていた。
本発明は、上記現状に鑑みてなされたものであり、薄型化が可能であり、フレキシブル性及び耐久性に優れた表示装置、及び、該表示装置の製造に適した表示装置の製造方法を提供することを目的とするものである。
本発明者らは、薄型化が可能であり、フレキシブル性及び耐久性に優れた表示装置を実現する方法について種々検討した結果、表示装置の観察者側に位相差層や偏光層を配置するために用いられている粘接着剤層を省略することに着目した。そして、粘接着剤層を省略することで、表示装置の薄型化が可能となるだけでなく、フレキシブル性及び耐久性を向上させることができ、それによって折り曲げ可能な表示装置(フォルダブル・ディスプレイ)を実現できることを見出した。これにより、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、背面側から観察面側に向かって、粘接着剤層を介在することなく、表示パネル、位相差層、及び、偏光子がこの順に積層されて一体化された表示装置である。
本発明の別の一態様は、表示パネル上に第一の配向膜を形成し、上記第一の配向膜上に第一の重合性液晶を含有する溶液を塗布し、上記第一の重合性液晶を硬化させることによって位相差層を形成する工程と、上記位相差層上に第二の配向膜を形成し、上記第二の配向膜上に第二の重合性液晶及び二色性物質を含有する溶液を塗布し、上記第二の重合性液晶を硬化させることによって偏光子を形成する工程と、を含む表示装置の製造方法である。
本発明によれば、薄型化が可能であり、フレキシブル性及び耐久性に優れた表示装置を実現することができる。
実施形態1(実施例1)の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。 実施例1の有機エレクトロルミネッセンス表示装置が備える有機エレクトロルミネッセンス表示パネルの構成を示す断面模式図である。 実施例2の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。 実施例3の液晶表示装置の構成を示す断面模式図である。 実施例4の液晶表示装置の構成を示す断面模式図である。 比較例1の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。 比較例2の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。 比較例3の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。 比較例4の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。 比較例5の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。また、各実施形態の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
本明細書中、「観察面側」とは、表示装置の画面(表示面)に対してより近い側を意味し、「背面側」とは、表示装置の画面(表示面)に対してより遠い側を意味する。
本明細書中、「位相差層」とは、少なくとも波長550nmの光に対して10nm以上の面内位相差を付与する位相差層を意味する。ちなみに、波長550nmの光は、人間の視感度が最も高い波長の光である。面内位相差は、R=(ns-nf)×dで定義される。ここで、nsは、位相差層の面内方向の主屈折率nx及びnyのうちの大きい方を表し、nfは、位相差層の面内方向の主屈折率nx及びnyのうちの小さい方を表す。主屈折率は、特に断りのない限り、波長550nmの光に対する値を指している。位相差層の面内遅相軸はnsに対応する方向の軸を指し、面内進相軸はnfに対応する方向の軸を指す。dは、位相差層の厚さを表す。本明細書中、特に断りがなければ、「位相差」は、波長550nmの光に対する面内位相差を意味している。
<実施形態1>
図1は、実施形態1の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。図1に示すように、実施形態1の有機エレクトロルミネッセンス表示装置は、背面側から観察面側に向かって、粘接着剤層を介在することなく、有機エレクトロルミネッセンスパネル(表示パネル)10、逆波長分散性を示すコーティングλ/4位相差層(λ/4板)21、及び、コーティング偏光層(偏光子)25がこの順に積層されて一体化されている。ここで、「粘接着剤層」とは、粘着機能を有する粘着剤及び接着機能を有する接着剤の少なくとも一方を含む層を意味する。
コーティングλ/4位相差層21は、背面側から観察面側に向かって順に、特定方位に配向処理された配向膜と、重合性液晶の硬化物で構成される層(以下、「リアクティブメソゲン層」ともいう)とを備えることが好ましい。
配向膜としては、ポリイミド等の液晶表示パネルの分野で一般的なものを用いることができる。配向膜は、有機エレクトロルミネッセンスパネル10上に、溶液を塗布し、焼成、光照射等の方法で硬化させることにより形成できる。配向膜の配向処理は、ラビング、光照射等を用いることができる。有機エレクトロルミネッセンスパネル10の溶液が塗布される面には、プラズマ表面処理等の表面処理が行われてもよい。
リアクティブメソゲン層は、配向処理が施された配向膜上に、重合性液晶を塗布し、焼成、光照射等の方法で硬化させることにより形成できる。硬化された重合性液晶は、配向処理により定められた配向膜の配向方位に応じて配向し、位相差を発現する。リアクティブメソゲン層の位相差は、重合性液晶の複屈折率Δnとリアクティブメソゲン層の厚さdとの積により決まる。
重合性液晶としては、光反応性基を有する液晶分子が好適に用いられる。光反応性基を有する液晶分子としては、例えば、ビフェニル基、ターフェニル基、ナフタレン基、フェニルベンゾエート基、アゾベンゼン基、これらの誘導体などの置換基(メソゲン基)と、シンナモイル基、カルコン基、シンナミリデン基、β-(2-フェニル)アクリロイル基、桂皮酸基、これらの誘導体などの光反応性基を併せ有する構造の側鎖を有し、アクリレート、メタクリレート、マレイミド、N-フェニルマレイミド、シロキサンなどの構造を主鎖に有するポリマー又はオリゴマー(以下、単に「ポリマー」ともいう)を挙げることができる。かかるポリマーは、単一の繰り返し単位からなるホモポリマーであってもよく、側鎖の構造の異なる2以上の繰り返し単位からなるコポリマーであってもよい。かかるコポリマーとしては、交互型、ランダム型、クラフト型などのいずれをも含む。また、かかるコポリマーにおいては、少なくとも一の繰り返し単位に係る側鎖が、上記の如きメソゲン基と光反応性基を併せ有する構造の側鎖であり、他の繰り返し単位に係る側鎖が、かかるメソゲン基や光反応性基を有さないものであってよい。
重合性液晶の塗布に用いられる溶媒としては、例えば、トルエン、エチルベンゼン、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル、ジブチルエーテル、アセトン、メチルエチルケトン、エタノール、プロパノール、シクロヘキサン、シクロペンタノン、メチルシクロヘキサン、テトラヒドロフラン、ジオキサン、シクロヘキサノン、n-ヘキサン、酢酸エチル、酢酸ブチル、プロピレングリコールメチルエーテルアセテート、メトキシブチルアセテート、N-メチルピロリドン、ジメチルアセトアミドなどが挙げられる。これらは何れかを単独で用いることもでき、2種以上を併用することもできる。
コーティングλ/4位相差層21は、少なくとも波長550nmの光に対して1/4波長の面内位相差を付与するものであることが好ましく、具体的には、少なくとも波長550nmの光に対して100nm以上、176nm以下の面内位相差を付与するものであることが好ましい。
コーティング偏光層25は、背面側から観察面側に向かって順に、特定方位に配向処理された配向膜と、該方位に配向した二色性染料等の偏光性能を発現させる材料を含有したリアクティブメソゲン層とを備えることが好ましい。コーティング偏光層25中の配向膜は、コーティングλ/4位相差層21中の配向膜と同様にして形成することができる。
コーティング偏光層25中のリアクティブメソゲン層は、二色性染料等の偏光性能を発現させる二色性物質を含有させることを除いて、コーティングλ/4位相差層21中のリアクティブメソゲン層と同様にして形成することができる。
コーティング偏光層25とコーティングλ/4位相差層21の組み合わせは、円偏光板として機能する。これにより、表示パネルの内部反射を低減できるので、外光の反射(映り込み)が抑制された良好な黒表示を実現でき、特に屋外で使用したときの表示画像の視認性が大幅に向上する。
なお、実施形態1の有機エレクトロルミネッセンス表示装置は、他の構成部材を含んでいてもよい。例えば、タッチパネル用センサーが設けられてもよい。タッチパネル用センサーは、コーティング偏光層25よりも観察面側に設けられてもよいし、コーティングλ/4位相差層21よりも背面側に設けられてもよく、有機エレクトロルミネッセンスパネル10の内部に設けられてもよい。タッチパネル用センサーをコーティングλ/4位相差層21よりも背面側に配置することで、タッチパネル用センサーでの外光の反射を抑制することができる。
また、コーティング偏光層25の観察面側には、光学透明粘着シート(OCA)を介して、カバー部材が貼り付けられてもよい。カバー部材は、表示領域が透明であることが好ましく、表示領域以外の領域には色、模様等の意匠が施されていてもよい。
また、コーティング偏光層25の観察面側に、反射防止フィルムを設けてもよい。これにより、外光の反射を低減し、表示装置の表示面における外光の映り込みをより抑制することができる。反射防止フィルムとしては、薄膜干渉を原理とするAR(Anti Reflection)フィルムやLR(Low Reflection)フィルム、蛾の目状の表面構造を有するモスアイフィルムが好適に用いられる。
以上のように、実施形態1では、表示パネル上に直接、粘接着剤層を介さずに、位相差層と偏光子とをコーティング(塗布)により順に積層形成するので、表示装置を薄型化できる。コーティングの際、表示パネルが支持体として機能することにより、従来のように保護フィルムを使用する必要がない。また、粘接着剤層が含まれないことや円偏光板部分を薄くできることによって、フレキシブル性及び耐久性を向上させることができる。
<その他の実施形態>
実施形態1では、表示パネルとして有機エレクトロルミネッセンス10を備える有機エレクトロルミネッセンス表示装置を示したが、本発明の表示装置は、表示パネルとして液晶パネルを用い、液晶パネル上にコーティングλ/4位相差層21及びコーティング偏光層25を積層した液晶表示装置であってもよい。
また、実施形態1では、粘接着剤層を介在することなく、有機エレクトロルミネッセンスパネル10、コーティングλ/4位相差層21及びコーティング偏光層25がこの順に積層されて一体化されているが、本発明の表示装置は、粘接着剤層を介在することなく、表示パネル、位相差層及び偏光子がこの順に積層されて一体化されたものであればよく、例えば、表示パネルと偏光子との間に設けられる位相差層が複数であってもよいし、表示パネル、位相差層及び偏光子以外に、他の光学部材が設けられてもよい。但し、本発明の表示装置は、表示パネルと偏光子との間に設けられる各構成部材が、粘接着剤層を介在することなく積層されて一体化された構造を有するものであることから、例えば、表示パネルと偏光子との間に粘接着剤層が介在するものや、表示パネルと偏光子との間の構成部材が一体化されることなく単に重ねて配置されたものとは異なる。
以下に実施例及び比較例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
<実施例1>
実施例1では、以下の方法により実施形態1の表示装置を実際に製造した。図2は、実施例1の有機エレクトロルミネッセンス表示装置が備える有機エレクトロルミネッセンス表示パネルの構成を示す断面模式図である。以下、図1及び2に基づいて、実施例1の有機エレクトロルミネッセンス表示装置を製造する方法について説明する。
(1)有機エレクトロルミネッセンスパネル(OLED)の作製
支持基板であるガラス基板11上に、熱吸収層としてのモリブデン(Mo)膜12をスパッタ法にて形成した。次に、Mo膜12の濡れ性及び密着性を向上させるために、シランカップリング剤をスピンコート法にて塗工し、さらに、スリットコート法にてポリイミドの前駆体からなる膜を形成し、焼成温度400℃で焼成し、ポリイミド膜13を形成した。ポリイミド膜13上に、プラズマCVD法にて酸化窒化シリコン(SiON)膜及び窒化シリコン(SiNx)膜を順に積層し、保護膜14を形成した。保護膜14上に陽極としてのアルミニウム(Al)膜、薄膜トランジスタ(TFT)及び配線を形成し、TFT層15を形成した。以上により、TFT基板が得られた。
得られたTFT基板上に正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、及び、陰極としてのITO膜を順に積層した有機エレクトロルミネッセンス層16を形成した。有機エレクトロルミネッセンス層16を覆うように、プラズマCVD法にて、窒化シリコン(SiNx)膜及び酸化窒化シリコン(SiON)膜を順に積層し、封止膜17を形成した。以上により、有機エレクトロルミネッセンスパネル10が得られた。
(2)偏光板付き有機エレクトロルミネッセンスパネルの作製
得られた有機エレクトロルミネッセンスパネル10の上に、下記の方法で逆波長分散性を示すコーティングλ/4位相差層21を直接積層した。
〔コーティングλ/4位相差層21の作製〕
まず、メチルエチルケトン(MEK)及びメチルイソブチルケトン(MIBK)を10:1の重量比で含有する混合溶剤に対して、固形分濃度が20%になるように下記材料を添加し、配向膜溶液を作製した。
(配向膜溶液の材料)
ウレタン(メタ)アクリレートオリゴマー「UV1700B」(日本合成化学社製):50重合部
ペンタエリスリトールトリアクリレート(PETA)「ライトアクリレートPE-3A」(共栄社化学社製):50重量部
光重合開始剤「ルシリンTPO」(BASF社製):4重量部
有機エレクトロルミネッセンスパネル10の上に、作製した配向膜溶液をフレキソ印刷法にて塗工し、80℃のオーブンで1分間乾燥し、UV光を照射し硬化させ、100nmの厚みの配向膜を作製した。更に、配向膜を0°方位にラビングし、配向処理を行った。
次に、シクロペンタノン及びN-メチル-2-ピロリドン(NMP)を6:4の重量比で含有する溶媒に対して、濃度17重量%となるように上記材料を混合させ、重合性液晶溶液Aを作製した。
(重合性液晶溶液Aの材料)
下記化学式(1)の重合性液晶:12.31重量部
下記化学式(2)の重合性液晶:0.86重量部
重合開始剤「irgacure369」(BASF社製):0.73重量部
レベリング剤「BYK-361N」(BYK-Chemie社製):0.01重量部
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
配向処理された配向膜の上に、作製した重合性液晶溶液Aをスリットコート法にて塗工し、120℃のオーブンで1分間乾燥し、高圧水銀ランプで照射量400mJ/cmとなるようにUV光を照射し硬化させ、コーティングλ/4位相差層21を作製した。作製したコーティングλ/4位相差層21の波長分散を、AxoScan(Axometrics社製)にて測定した結果、逆波長分散性を示していることを確認した。
続いて、作製したコーティングλ/4位相差層21の上に、コーティング偏光層25を直接積層した。
〔コーティング偏光層25の作製〕
コーティングλ/4位相差層21の上に、コーティングλ/4位相差層21の作製に用いたものと同じ配向膜溶液をフレキソ印刷法にて塗工し、80℃のオーブンで1分間乾燥し、UV光を照射し硬化させ、100nmの厚みの配向膜を作製した。更に、配向膜を45°方位にラビングし、配向処理を行った。
次に、下記材料を混合して作製した重合性液晶溶液Bをスリットコート法にて塗工し、120℃のオーブンで1分間乾燥させ、高圧水銀ランプで照射量400mJ/cmとなるようにUV光を照射し硬化させ、コーティング偏光層25を作製した。
(重合性液晶溶液Bの材料)
重合性液晶溶液「RMS03-013」(Merck社製):100重量部
二色性染料「NKX2029」(林原生物化学研究所製):2重量部
以上により、コーティングλ/4位相差層21及びコーティング偏光層25の積層体で構成された円偏光板20が得られた。作製した実施例1の円偏光板20の厚みは5μmであった。
最後に、ガラス基板11側からレーザー光を照射し、Mo膜12とポリイミド層13の密着性を低下させ、ガラス基板11及びMo膜12を有機エレクトロルミネッセンスパネル10の他の部分から剥離し、実施例1の偏光板付きフレキシブル有機エレクトロルミネッセンスパネルを作製した。
なお、本実施例では、フレキシブル性に優れた有機エレクトロルミネッセンスパネルを得るために、パネル製造時の支持基板であるガラス基板11上に、モリブデン(Mo)膜12及びポリイミド膜13を形成し、パネル製造の最後にガラス基板11及びMo膜12を剥離してポリイミド膜13を製品時の支持基板としたが、製品時の支持基板としてガラス基板を使用してもよい。
<実施例2>
図3は、実施例2の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。以下、図3に基づいて、実施例2の有機エレクトロルミネッセンス表示装置を製造する方法について説明する。
まず、実施例1と同様にして作製された有機エレクトロルミネッセンスパネル10の上に、下記の方法でコーティング・ポジティブCプレート22を直接積層した。
〔コーティング・ポジティブCプレート22の作製〕
N-メチル-2-ピロリドン及びブチルセロソルブを7:3の重量比で含有する溶媒に対して、下記材料を混合し、垂直配向膜溶液を作製した。
(垂直配向膜溶液の材料)
スチレン16.6重量部、メタクリル酸メチル16.6重量部及びシクロヘキサンマレイミド16.6重量部を混合して得られた共重合体:50重量部
1,6-ヘキサンジオールジアクリレート(HDDA):50重量部
続いて、有機エレクトロルミネッセンスパネル10の上に、作製した垂直配向膜溶液を厚み100nmとなるようにフレキソ印刷法にて塗工し、80℃のオーブンで1分間乾燥し、垂直配向膜を作製した。更に、作製した垂直配向膜上に重合性液晶溶液「RMM28B」(Merck社製)をスリットコート法で4μmの厚みとなるように塗工し、65℃のオーブンで5分間乾燥し、高圧水銀ランプで照射量400mJ/cmとなるようにUV光を照射し硬化させ、コーティング・ポジティブCプレート22を作製した。作製したコーティング・ポジティブCプレート22の厚み方向位相差(Rth)は97nmであった。
実施例1と同様の方法で、コーティング・ポジティブCプレート22の上に、逆波長分散性を示すコーティングλ/4位相差層21及びコーティング偏光層25を順に直接積層した。
以上により、コーティング・ポジティブCプレート22、コーティングλ/4位相差層21及びコーティング偏光層25の積層体で構成された円偏光板20が得られた。作製した実施例2の円偏光板20の厚みは9μmであった。
最後に、ガラス基板11側からレーザー光を照射し、Mo膜12とポリイミド層13の密着性を低下させ、ガラス基板11及びMo膜12を有機エレクトロルミネッセンスパネル10の他の部分から剥離し、実施例2の偏光板付き有機エレクトロルミネッセンスパネルを作製した。
<実施例3>
図4は、実施例3の液晶表示装置の構成を示す断面模式図である。以下、図4に基づいて、実施例3の液晶表示装置を製造する方法について説明する。
(1)液晶パネル(LCD)の作製
ガラス基板41上に、赤・緑・青(RGB)のカラーフィルタ(CF)層42及びブラックマトリックス(BM)43が配置された基板を準備し、CF層42及びBM43の表面を平坦化するために、熱硬化性樹脂からなるオーバーコート(OC)層44を積層した。フォトスペーサ(PS)46を液晶層53の厚みが3.3μmとなるように、3.3μmの高さでレジスト(感光性樹脂)により形成した。以上により、カラーフィルタ(CF)基板40が得られた。
CF基板40上に、フレキソ印刷法を用いてポリイミド系材料を厚さ100nmとなるように製膜し、液晶分子の配向方位が0°となるようにラビング処理を行って配向膜51を形成した。TFT、画素電極等が形成されたTFT基板54を準備し、TFT基板54上にも、CF基板40上に形成したときと同条件で配向膜51を形成した。
配向膜51で被覆されたCF基板40の外縁に、熱硬化シール剤を描画装置にて描画し、CF基板40とTFT基板54とを貼り合わせた。そして、140℃のオーブンで1時間焼成し、熱硬化シール剤を硬化させることにより、シール52でCF基板40の外縁とTFT基板54の外縁とが接合された中央に空洞を有する、空の液晶パネルを作製した。
得られた空の液晶パネルの中に、誘電率異方性Δεが負であるネガ型液晶(Δε=-4.0、Δn=0.095)の液晶材を、真空注入法にて封入し、液晶層53を形成した。液晶層53の厚みは、上記のとおりフォトスペーサ46により制御され、3.3μmであった。
更に、作製された液晶パネルをCF基板40、及びTFT基板54がそれぞれ0.15mmとなるようにスリミング処理した後、CF基板40の観察面側に、帯電による配向乱れ防止又はタッチパネル用センサーに用いられるITO薄膜56をスパッタ法にて製膜した。以上により、液晶パネル50が得られた。
(2)位相差層及び偏光膜の積層
液晶パネル50の観察面側に、実施例2と同様の方法で、コーティング・ポジティブCプレート22、コーティングλ/4位相差層21及びコーティング偏光層25を順に直接積層した。このとき、実施例2とは異なり、コーティングλ/4位相差層21の配向膜のラビング方位を0°、コーティング偏光層25の配向膜のラビング方位を90°とした。これにより、液晶パネル50の観察面側に、コーティング・ポジティブCプレート22、コーティングλ/4位相差層21及びコーティング偏光層25の積層体で構成された直線偏光板30が設けられた。また、液晶パネル50の背面側にも、実施例1と同様の方法で、コーティング偏光層60を直接積層した。このとき、コーティング偏光層60の配向膜のラビング方位を0°とした。
更に、コーティング偏光層60の背面側に、輝度向上フィルム「APF-V3」(3M社製)を粘着層「PD-S1」(パナック社製)を用いて積層した。最後に、液晶パネル50の背面側に、バックライトを配置した。以上により、実施例3の液晶表示装置が得られた。
<実施例4>
図5は、実施例4の液晶表示装置の構成を示す断面模式図である。以下、図5に基づいて、実施例4の液晶表示装置を製造する方法について説明する。なお、本明細書では、インセル位相差層付液晶パネルのガラス基板41よりも背面側を「インセル」と呼び、ガラス基板41よりも観察面側を「アウトセル」と呼ぶ。
(1)インセル位相差層付き液晶パネル(LCD)の作製
実施例3と同様に作製したCF基板のオーバーコート(OC)層44の上に、実施例1と同様の方法で、インセル位相差層として逆波長分散性を示すコーティングλ/4位相差層45を遅相軸が135°方位となるように配向処理して形成した。その後、フォトスペーサ(PS)46を液晶層53の厚みが3.3μmとなるように、3.3μmの高さでレジスト(感光性樹脂)により形成した。以上により、インセル位相差層付カラーフィルタ(CF)基板70が得られた。
その後、実施例3と同様の方法で、配向膜塗工、ラビング処理、基板の貼り合せ、液晶注入、スリミング処理を行い、インセル位相差層付LCDパネル80が得られた。
(2)位相差層及び偏光膜の積層
インセル位相差層付液晶パネル80の観察面側に、実施例2と同様の方法で、コーティング・ポジティブCプレート22、コーティングλ/4位相差層21及びコーティング偏光層25を順に直接積層した。このとき、実施例2とは異なり、コーティングλ/4位相差層21の配向膜のラビング方位を45°、コーティング偏光層25の配向膜のラビング方位を90°とした。これにより、液晶パネル80の観察面側に、コーティング・ポジティブCプレート22、コーティングλ/4位相差層21及びコーティング偏光層25の積層体で構成された円偏光板20が設けられた。また、液晶パネル80の背面側には、実施例1と同様の方法で、コーティング偏光層60を直接積層した。コーティング偏光層60の配向膜のラビング方位を0°とした。
更に、コーティング偏光層60の背面側に、輝度向上フィルム「APF-V3」(3M社製)を粘着層「PD-S1」(パナック社製)を用いて積層した。最後に、液晶パネル80の背面側に、バックライトを配置した。以上により、実施例4の液晶表示装置が得られた。
<比較例1>
図6は、比較例1の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。以下、図6に基づいて、比較例1の有機エレクトロルミネッセンス表示装置を製造する方法について説明する。
(1)円偏光板の作製
粘着層付き偏光板101Aと、面内位相差(Re)が270nmの粘着層付きλ/2板103Aと、面内位相差(Re)が140nmの粘着層付きλ/4板105Aとを順に貼り合わせて円偏光板200を作製した。粘着層付き偏光板101Aとしては、市販の偏光板「CVT1764FCUHC」(日東電工社製)を用いた。粘着層付き偏光板101Aは、ポリビニルアルコール(PVA)で構成された偏光子の両側に保護フィルムが積層された構成を有する偏光板101と粘着層102とを備えるものであった。粘着層付きλ/2板103Aとしては、市販のゼオノアフィルム「NZF」(日東電工社製)を用いた。粘着層付きλ/2板103Aは、シクロオレフィンポリマー(COP)樹脂で構成されたλ/2位相差層103と粘着層104とを備えるものであった。粘着層付きλ/4板105Aとしては、市販のゼオノアフィルム「NZF」(日東電工社製)を用いた。粘着層付きλ/4板105Aは、シクロオレフィンポリマー(COP)樹脂で構成されたλ/4位相差層105と、粘着層106とを備えるものであった。偏光板101の軸角度は45°、λ/2位相差層103の軸角度は60°、λ/4位相差層105の軸角度は120°とした。作製した円偏光板200の厚みは、240μmであった。
(2)偏光板付き有機エレクトロルミネッセンスパネルの作製
実施例1と同様の方法で作製した有機エレクトロルミネッセンスパネル10と、比較例1の円偏光板200とを貼り合せた。最後に、ガラス基板側からレーザー光を照射し、Mo膜とポリイミド層の密着性を低下させ、ガラス基板及びMo膜を有機エレクトロルミネッセンスパネル10の他の部分から剥離し、比較例1の偏光板付き有機エレクトロルミネッセンスパネルを作製した。
<比較例2>
図7は、比較例2の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。以下、図7に基づいて、比較例2の有機エレクトロルミネッセンス表示装置を製造する方法について説明する。
(1)円偏光板の作製
〔片TAC偏光板の作製〕
市販の円偏光板「NZD-CVEQ」(日東電工社製)の位相差フィルムを剥離し、TACフィルム111、及び、PVAで構成された偏光子112が積層された片TAC偏光板を作製した。
〔λ/4位相差層及びλ/2位相差層の作製〕
PETフィルム上に、実施例1と同様の方法で作製した配向膜溶液をフレキソ印刷法により塗工し、80℃のオーブンで1分間乾燥し、UV光を照射し硬化させ、配向膜を作製した。更に、配向膜をラビングし、配向処理を行った。
配向処理された配向膜の上に、重合性液晶溶液「RMS03-013」(Merck社製)をスリットコート法にて塗工した。その後、120℃のオーブンで1分間乾燥し、UV光を照射し硬化させ、λ/2位相差層114及びλ/4位相差層116を作製した。このとき、λ/2位相差層114の膜厚は2.2μm、λ/4位相差層116の膜厚は1.1μmであった。
〔円偏光板の作製〕
上記にて作製した各部材を、片TAC偏光板、λ/2位相差層114及びλ/4位相差層116の順に、粘着層113及び115を介して転写・積層し、最後に粘着層117を貼り合せ、円偏光板210を作製した。粘着層113、115及び117としては、「PD-S1」(パナック社製)を用いた。偏光子112の軸角度は45°、λ/2位相差層114の軸角度は60°、λ/4位相差層116の軸角度は120°とした。作製した円偏光板210の厚みは、147μmであった。
(2)偏光板付き有機エレクトロルミネッセンスパネルの作製
実施例1と同様の方法で作製した有機エレクトロルミネッセンスパネル10と、比較例2の円偏光板210とを貼り合せた。最後に、ガラス基板側からレーザー光を照射し、Mo膜とポリイミド層の密着性を低下させ、ガラス基板及びMo膜を有機エレクトロルミネッセンスパネル10の他の部分から剥離し、比較例2の偏光板付き有機エレクトロルミネッセンスパネルを作製した。
<比較例3>
図8は、比較例3の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。以下、図8に基づいて、比較例3の有機エレクトロルミネッセンス表示装置を製造する方法について説明する。
(1)円偏光板の作製
市販の有機エレクトロルミネッセンスパネル「Galaxy S7」(サムスン電子社製)に搭載されている円偏光板を剥離し、比較例3の円偏光板220として用いた。円偏光板220を解析した結果、PVAで構成された偏光子の両側に保護フィルムが積層された偏光板121と、粘着層122と、逆波長分散性を示すλ/4位相差層123と、粘着層124とが積層されている構成であった。円偏光板220の厚みは厚みは、143μmであった。
(2)偏光板付き有機エレクトロルミネッセンスパネルの作製
実施例1と同様の方法で作製した有機エレクトロルミネッセンスパネル10と、比較例3の円偏光板220とを貼り合せた。最後に、ガラス基板側からレーザー光を照射し、Mo膜とポリイミド層の密着性を低下させ、ガラス基板及びMo膜を有機エレクトロルミネッセンスパネル10の他の部分から剥離し、比較例3の偏光板付き有機エレクトロルミネッセンスパネルを作製した。
<比較例4>
図9は、比較例4の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。以下、図9に基づいて、比較例4の有機エレクトロルミネッセンス表示装置を製造する方法について説明する。
(1)円偏光板の作製
TACフィルム131上に、実施例1と同様の方法でコーティング偏光層132を作製した。更に、コーティング偏光層132上に、実施例1と同様の方法で逆波長分散性を示すコーティングλ/4位相差層133を作製した。最後に、粘着層134を貼り合せ、比較例4の円偏光板230を作製した。粘着層134としては、「PD-S1」(パナック社製)を用いた。作製した円偏光板230の厚みは、70μmであった。
(2)偏光板付き有機エレクトロルミネッセンスパネルの作製
実施例1と同様の方法で作製した有機エレクトロルミネッセンスパネル10と、比較例4の円偏光板230とを粘着層134を用いて貼り合せた。最後に、ガラス基板側からレーザー光を照射し、Mo膜とポリイミド層の密着性を低下させ、ガラス基板及びMo膜を有機エレクトロルミネッセンスパネル10の他の部分から剥離し、比較例4の偏光板付き有機エレクトロルミネッセンスパネルを作製した。
<比較例5>
図10は、比較例5の有機エレクトロルミネッセンス表示装置が備える円偏光板の構成を示す断面模式図である。以下、図10に基づいて、比較例5の有機エレクトロルミネッセンス表示装置を製造する方法について説明する。
(1)円偏光板の作製
比較例4で作製した円偏光板230のλ/4位相差層133上に、実施例1と同様の方法でコーティング・ポジティブCプレート144を作製した。最後に、粘着層145を貼り合せ、比較例5の円偏光板240を作製した。粘着層145としては、「PD-S1」(パナック社製)を用いた。作製した円偏光板240の厚みは、74μmであった。
(2)偏光板付き有機エレクトロルミネッセンスパネルの作製
実施例1と同様の方法で作製した有機エレクトロルミネッセンスパネル10と、比較例5の円偏光板240とを粘着層145を用いて貼り合せた。最後に、ガラス基板側からレーザー光を照射し、Mo膜とポリイミド層の密着性を低下させ、ガラス基板及びMo膜を有機エレクトロルミネッセンスパネル10の他の部分から剥離し、比較例5の偏光板付き有機エレクトロルミネッセンスパネルを作製した。
<評価試験>
実施例1~4及び比較例1~5で作製した表示装置について、下記の評価試験を行い、その結果を下記表1に示した。
屈曲(折り曲げ)試験:作製した有機エレクトロルミネッセンスパネルのパネル長辺の1/2の箇所を支点とし、R=5mmの棒に添わせるように5000回繰り返し折り曲げた。試験後、パネル内部の保護膜の割れ、偏光層の割れ、粘着層の白濁といった不具合の発生の有無を確認した。
耐湿試験:60℃90%RH環境下に1000時間保存し、パネルを点灯させ、表示の不具合の有無を確認した。
反射視野角:5000luxの明室環境で、5人の被験者に極角50°からパネルを観察してもらい、パネルが見やすいかどうかを判定してもらった。見やすいと判定した人数が、2人以下ならば「×」、3~4人ならば「○」、5人ならば「◎」と判断した。
Figure JPOXMLDOC01-appb-T000003
上記表1に示したように、実施例1~4の表示装置は、いずれも観察面側の偏光板の厚みが9μm以下であり、表示装置の薄型化が実現されていた。また、実施例1及び2の表示装置は、屈曲試験、耐湿試験及び反射視野角の試験結果がいずれも良好であった。実施例3及び4の表示装置は、表示パネルの種類が、ガラス基板を含む液晶パネルであったことから、屈曲試験は実施しなかったが、耐湿試験及び反射視野角の試験結果についてはいずれも良好であった。一方、比較例1~5の表示装置は、いずれも観察面側の偏光板の厚みが70μm以上であり、表示装置を薄型化できなかった。また、比較例1~5の表示装置は、いずれも粘着層を含むものであったことから、屈曲試験で粘着層の白濁等の異常が発生し、耐湿試験で輝度ムラが発生した。なお、比較例4及び5の表示装置は、位相差層及び偏光子をコーティングにより形成したことから、比較例1~3の表示装置と比較して、観察面側の偏光板の厚みが薄く、屈曲試験において偏光層の割れは生じなかった。
[付記]
本発明の一態様は、背面側から観察面側に向かって、粘接着剤層を介在することなく、表示パネル、位相差層、及び、偏光子がこの順に積層されて一体化された表示装置である。上記位相差層及び上記偏光子は、重合性液晶の硬化物を含有することが好ましい。上記位相差層及び上記偏光子の組合せは、円偏光板を構成することが好ましい。上記表示パネルは、有機エレクトロルミネッセンスパネルであってもよいし、液晶パネルであってもよい。本発明の表示装置は、上記位相差層よりも背面側に、タッチパネル用センサーを更に備えてもよい。
本発明の別の一態様は、表示パネル上に第一の配向膜を形成し、上記第一の配向膜上に第一の重合性液晶を含有する溶液を塗布し、上記第一の重合性液晶を硬化させることによって位相差層を形成する工程と、上記位相差層上に第二の配向膜を形成し、上記第二の配向膜上に第二の重合性液晶及び二色性物質を含有する溶液を塗布し、上記第二の重合性液晶を硬化させることによって偏光子を形成する工程と、を含む表示装置の製造方法である。
10:有機エレクトロルミネッセンスパネル(表示パネル)
11:ガラス基板
12:モリブデン(Mo)膜
13:ポリイミド膜
14:保護膜
15:TFT層
16:有機エレクトロルミネッセンス層
17:封止膜
20:円偏光板
21:コーティングλ/4位相差層
22:コーティング・ポジティブCプレート
25:コーティング偏光層
30:直線偏光板
40:カラーフィルタ(CF)基板
41:ガラス基板
42:カラーフィルタ(CF)層
43:ブラックマトリックス(BM)
44:オーバーコート(OC)層
45:コーティングλ/4位相差層
46:フォトスペーサ(PS)
50:液晶パネル
51:配向膜
52:シール
53:液晶層
54:TFT基板
56:ITO薄膜
60:コーティング偏光層
70:インセル位相差層付カラーフィルタ(CF)基板
80:インセル位相差層付液晶パネル
101:偏光板
101A:粘着層付き偏光板
102、104、106、113、115、117、122、124、134、145:粘着層
103、114:λ/2位相差層
103A:粘着層付きλ/2板
105、116、123:λ/4位相差層
105A:粘着層付きλ/4板
111、131:TACフィルム
112:偏光子
121:偏光板
132:コーティング偏光層
133:コーティングλ/4位相差層
144:コーティング・ポジティブCプレート
200、210、220、230、240:円偏光板

Claims (7)

  1. 背面側から観察面側に向かって、粘接着剤層を介在することなく、表示パネル、位相差層、及び、偏光子がこの順に積層されて一体化されたことを特徴とする表示装置。
  2. 前記位相差層及び前記偏光子は、重合性液晶の硬化物を含有することを特徴とする請求項1に記載の表示装置。
  3. 前記位相差層及び前記偏光子の組合せは、円偏光板を構成することを特徴とする請求項1又は2に記載の表示装置。
  4. 前記表示パネルは、有機エレクトロルミネッセンスパネルであることを特徴とする請求項1~3のいずれかに記載の表示装置。
  5. 前記表示パネルは、液晶パネルであることを特徴とする請求項1~3のいずれかに記載の表示装置。
  6. 前記位相差層よりも背面側に、タッチパネル用センサーを更に備えることを特徴とする請求項1~5のいずれかに記載の表示装置。
  7. 表示パネル上に第一の配向膜を形成し、前記第一の配向膜上に第一の重合性液晶を含有する溶液を塗布し、前記第一の重合性液晶を硬化させることによって位相差層を形成する工程と、
    前記位相差層上に第二の配向膜を形成し、前記第二の配向膜上に第二の重合性液晶及び二色性物質を含有する溶液を塗布し、前記第二の重合性液晶を硬化させることによって偏光子を形成する工程と、を含むことを特徴とする表示装置の製造方法。
PCT/JP2018/011562 2017-03-30 2018-03-23 表示装置、及び、表示装置の製造方法 WO2018180938A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/499,238 US11307337B2 (en) 2017-03-30 2018-03-23 Display device and method for manufacturing display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068003 2017-03-30
JP2017-068003 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180938A1 true WO2018180938A1 (ja) 2018-10-04

Family

ID=63675695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011562 WO2018180938A1 (ja) 2017-03-30 2018-03-23 表示装置、及び、表示装置の製造方法

Country Status (2)

Country Link
US (1) US11307337B2 (ja)
WO (1) WO2018180938A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136849A1 (ja) * 2018-12-27 2020-07-02 シャープ株式会社 表示装置及び表示装置の製造方法
JP2020115225A (ja) * 2018-10-15 2020-07-30 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020155119A (ja) * 2019-03-22 2020-09-24 カンブリオス フィルム ソリューションズ コーポレーション タッチパネル及びタッチパネルの製造方法
CN112164324A (zh) * 2020-09-04 2021-01-01 中国科学技术大学 具有改变出射光偏振状态的有机发光显示装置
JPWO2021039625A1 (ja) * 2019-08-28 2021-03-04
WO2021077604A1 (zh) * 2019-10-22 2021-04-29 惠州市华星光电技术有限公司 一种 3d 显示装置及 3d 显示装置的制程方法
WO2021083526A1 (en) * 2019-10-31 2021-05-06 Huawei Technologies Co., Ltd. Printed display stack for electronic device
JPWO2021124803A1 (ja) * 2019-12-17 2021-06-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114253025A (zh) * 2021-12-28 2022-03-29 无锡威峰科技股份有限公司 一种电浆显示屏

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048625A (ja) * 1996-08-02 1998-02-20 Sumitomo Chem Co Ltd 液晶ディスプレイ用タッチパネル
WO2012002140A1 (ja) * 2010-06-28 2012-01-05 株式会社Adeka 新規重合性液晶化合物、及び該重合性液晶化合物を含有する重合性液晶組成物
US20120050652A1 (en) * 2010-08-30 2012-03-01 Samsung Electronics Co., Ltd. Composition for polarizing film, polarizing film, method of manufacturing the same, and liquid crystal display provided with the polarizing film
JP2014102440A (ja) * 2012-11-21 2014-06-05 Dainippon Printing Co Ltd 光学フィルム、光学フィルム用転写体、画像表示装置
JP2014219667A (ja) * 2013-04-04 2014-11-20 日東電工株式会社 導電性フィルムおよび画像表示装置
WO2016016156A1 (en) * 2014-07-31 2016-02-04 Rolic Ag Encapsulation structure for an oled display incorporating antireflection properties
WO2017006787A1 (ja) * 2015-07-08 2017-01-12 富士フイルム株式会社 画像表示機能付きミラー
JP2017058659A (ja) * 2015-09-16 2017-03-23 三星電子株式会社Samsung Electronics Co.,Ltd. 光学フィルム、その製造方法および表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100397186C (zh) * 2004-09-16 2008-06-25 东芝松下显示技术有限公司 液晶显示元件
JP2007322777A (ja) 2006-06-01 2007-12-13 Nippon Oil Corp 楕円偏光板、楕円偏光板の製造方法、液晶表示装置およびエレクトロルミネッセンス表示装置
KR100838066B1 (ko) * 2006-07-14 2008-06-16 삼성에스디아이 주식회사 유기 발광 장치
US10216041B2 (en) 2015-09-16 2019-02-26 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof and display device
KR102472607B1 (ko) * 2016-02-03 2022-11-30 삼성디스플레이 주식회사 표시 장치
KR102364949B1 (ko) * 2016-09-29 2022-02-17 스미또모 가가꾸 가부시키가이샤 편광판의 세트, 및 그것을 이용한 ips 모드 액정 표시 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048625A (ja) * 1996-08-02 1998-02-20 Sumitomo Chem Co Ltd 液晶ディスプレイ用タッチパネル
WO2012002140A1 (ja) * 2010-06-28 2012-01-05 株式会社Adeka 新規重合性液晶化合物、及び該重合性液晶化合物を含有する重合性液晶組成物
US20120050652A1 (en) * 2010-08-30 2012-03-01 Samsung Electronics Co., Ltd. Composition for polarizing film, polarizing film, method of manufacturing the same, and liquid crystal display provided with the polarizing film
JP2014102440A (ja) * 2012-11-21 2014-06-05 Dainippon Printing Co Ltd 光学フィルム、光学フィルム用転写体、画像表示装置
JP2014219667A (ja) * 2013-04-04 2014-11-20 日東電工株式会社 導電性フィルムおよび画像表示装置
WO2016016156A1 (en) * 2014-07-31 2016-02-04 Rolic Ag Encapsulation structure for an oled display incorporating antireflection properties
WO2017006787A1 (ja) * 2015-07-08 2017-01-12 富士フイルム株式会社 画像表示機能付きミラー
JP2017058659A (ja) * 2015-09-16 2017-03-23 三星電子株式会社Samsung Electronics Co.,Ltd. 光学フィルム、その製造方法および表示装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115225A (ja) * 2018-10-15 2020-07-30 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
WO2020136849A1 (ja) * 2018-12-27 2020-07-02 シャープ株式会社 表示装置及び表示装置の製造方法
JP2020155119A (ja) * 2019-03-22 2020-09-24 カンブリオス フィルム ソリューションズ コーポレーション タッチパネル及びタッチパネルの製造方法
JPWO2021039625A1 (ja) * 2019-08-28 2021-03-04
WO2021039625A1 (ja) * 2019-08-28 2021-03-04 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置
JP7316363B2 (ja) 2019-08-28 2023-07-27 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置
WO2021077604A1 (zh) * 2019-10-22 2021-04-29 惠州市华星光电技术有限公司 一种 3d 显示装置及 3d 显示装置的制程方法
WO2021083526A1 (en) * 2019-10-31 2021-05-06 Huawei Technologies Co., Ltd. Printed display stack for electronic device
CN114616531A (zh) * 2019-10-31 2022-06-10 华为技术有限公司 用于电子设备的印刷显示器堆叠件
JPWO2021124803A1 (ja) * 2019-12-17 2021-06-24
JP7271721B2 (ja) 2019-12-17 2023-05-11 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置
CN112164324A (zh) * 2020-09-04 2021-01-01 中国科学技术大学 具有改变出射光偏振状态的有机发光显示装置

Also Published As

Publication number Publication date
US20210109269A1 (en) 2021-04-15
US11307337B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2018180938A1 (ja) 表示装置、及び、表示装置の製造方法
JP5525213B2 (ja) 偏光膜、積層体、及び液晶表示装置
JP6952779B2 (ja) 液晶表示装置
US10302828B2 (en) Optical film and display device
CN110612475B (zh) 液晶显示装置
JP5723077B1 (ja) 位相差板、楕円偏光板およびそれを用いた表示装置
WO2021177308A1 (ja) 視角制御システムおよび画像表示装置
WO2003044575A1 (fr) Plaque de polarisation circulaire et dispositif d'affichage a cristaux liquides
US10739641B2 (en) Liquid crystal display device
JP2020106781A (ja) 円偏光板および光学表示デバイス
JP7351621B2 (ja) 円偏光板および光学表示デバイス
US8259262B2 (en) Liquid crystal display apparatus having particular polarizers
WO2021246441A1 (ja) 光学フィルム、光学積層体および画像表示装置
US10983396B2 (en) Method for producing liquid crystal panel, and liquid crystal panel
US10678087B2 (en) Liquid crystal display panel and liquid crystal display device
JP2007248837A (ja) 光学異方性膜、光学補償シート、それを用いた偏光板、転写材料、ならびに液晶表示装置
WO2018021521A1 (ja) 液晶表示パネル及び液晶表示装置
TW201425352A (zh) 光聚合性液晶組成物、光學補償膜、光學補償積層膜、電極基板、液晶裝置用基板及液晶裝置
WO2017199638A1 (ja) 光学装置および表示装置
US20190285924A1 (en) Liquid crystal display device
WO2018180867A1 (ja) 位相差基板及び液晶表示装置
JP2016090866A (ja) 光学フィルムの製造方法ならびにその方法により得られた光学フィルム、該光学フィルムを用いた楕円偏光板および画像表示装置
JP6756112B2 (ja) 光学フィルム及び画像表示装置
WO2021060247A1 (ja) 位相差板、並びに、それを備えた円偏光板、液晶表示装置、及び有機el表示装置
WO2022270402A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP