WO2018180922A1 - 太陽電池モジュールおよびその製造方法 - Google Patents

太陽電池モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2018180922A1
WO2018180922A1 PCT/JP2018/011512 JP2018011512W WO2018180922A1 WO 2018180922 A1 WO2018180922 A1 WO 2018180922A1 JP 2018011512 W JP2018011512 W JP 2018011512W WO 2018180922 A1 WO2018180922 A1 WO 2018180922A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
metal
wire
cell module
solder
Prior art date
Application number
PCT/JP2018/011512
Other languages
English (en)
French (fr)
Inventor
徹 寺下
玄介 小泉
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201880010219.6A priority Critical patent/CN110249434A/zh
Priority to US16/495,509 priority patent/US20200098943A1/en
Priority to JP2019509678A priority patent/JPWO2018180922A1/ja
Publication of WO2018180922A1 publication Critical patent/WO2018180922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module and a manufacturing method thereof.
  • a solar cell using a crystalline semiconductor substrate such as a single crystal silicon substrate or a polycrystalline silicon substrate has a small area of one substrate. Therefore, in practical use, a plurality of solar cells are electrically connected and modularized. The output is increased.
  • a double-sided electrode type solar cell having electrodes on the light-receiving surface and the back surface, a plurality of light-receiving surface electrodes of one of the adjacent two solar cells are electrically connected to the back electrode of the other solar cell.
  • Solar cells are connected in series.
  • a back junction solar cell in which electrodes are provided only on the back surface, a plurality of solar cells are connected in series by electrically connecting the n-side electrode of one solar cell and the p-type electrode of the other solar cell.
  • a wiring material is used for electrical connection between the electrodes of adjacent solar cells.
  • a wiring material in which the surface of a strip-shaped flat metal wire is coated with solder is used.
  • Patent Document 1 and Patent Document 2 disclose that a braided wire obtained by bundling a plurality of metal strands is used as a wiring material and solder-connected to a metal electrode of a solar cell.
  • the braided wire Since the braided wire has high stretchability and flexibility, in the solar cell module using the braided wire as a wiring material, the stress on the connection portion due to temperature change is reduced, which contributes to the improvement of durability.
  • the wiring material is compared with the case where the flat (flat) wiring material is used. It has been found that the bonding force between the metal electrode and the metal electrode is small, and in the temperature cycle test of the solar cell module, the wiring material is easily peeled off from the metal electrode.
  • An object of the present invention is to provide a solar cell module having high reliability with respect to temperature change, in which peeling between the solar cell and the wiring material due to temperature change is suppressed, stress on the connection portion between the solar cell and wiring material is hardly generated. To do.
  • the solar cell module of the present invention includes a solar cell string in which a plurality of solar cells are electrically connected by a wiring material.
  • the wiring member is a braided wire having a flat cross-sectional shape composed of a plurality of metal wires.
  • the metal electrode of the solar cell and the wiring material are connected by soldering.
  • the solder connection between the solar cell and the wiring material is performed by infiltrating the solder material into the gap between the metal wires from the outer periphery of the braided wire. It is preferable that a space between a plurality of metal strands constituting the braided wire is filled with a solder material.
  • the solar cell may be a double-sided electrode type or a back surface junction type.
  • the present invention when the present invention is applied to a solar cell module provided with a back junction solar cell, the reliability improvement effect with respect to temperature change tends to become remarkable.
  • the braided wire there is a flat knitted wire obtained by knitting a plurality of converging wires obtained by converging a plurality of metal strands.
  • the flat knitted wire one having 10 or less strands included in one focusing wire is preferably used.
  • the metal strand is preferably made of copper or a copper alloy.
  • the metal strand may be subjected to coating treatment or surface treatment by plating or the like.
  • the metal electrode of the solar cell is a silver electrode
  • the metal strand of the braided wire is preferably a silver-coated copper wire.
  • the area ratio of the region filled with the solder material in the cross section of the wiring material is preferably 10 to 90%.
  • the area ratio of the voids in which no metal wire is present and the solder material is not filled is preferably 30% or less.
  • the solar cell module of the present invention has excellent temperature cycle durability because the wiring material connecting the solar cells has flexibility and the bonding strength between the solar cell electrode and the wiring material is high.
  • FIG. 1 is a schematic cross-sectional view of a solar cell module (hereinafter referred to as “module”) according to an embodiment.
  • a module 200 shown in FIG. 1 includes a solar cell string in which a plurality of solar cells 102, 103, and 104 (hereinafter referred to as “cells”) are electrically connected via wiring members 83 and 84.
  • the module shown in FIG. 1 uses a back junction solar cell (back junction cell) as a cell.
  • the back junction cell includes a p-type semiconductor layer and an n-type semiconductor layer on the back side of a semiconductor substrate such as crystalline silicon.
  • the back junction cell does not have a metal electrode on the light receiving surface of the semiconductor substrate, and photocarriers (holes and electrons) generated on the semiconductor substrate are supplied to the p-side electrode and n-type semiconductor layer provided on the p-type semiconductor layer. It collect
  • the metal electrode can be formed by a known method such as printing or plating.
  • a known method such as printing or plating.
  • an Ag electrode formed by screen printing of Ag paste, a copper plating electrode formed by electrolytic plating, or the like is preferably used. Since the back junction cell does not have a metal electrode on the light receiving surface, when viewed from the light receiving surface side, the entire surface of the cell has a uniform appearance in black.
  • the cell used in the module may be a double-sided electrode type cell having metal electrodes on the light receiving surface and the back surface.
  • the shape of the cell is not particularly limited, but is generally rectangular in plan view. A rectangle includes a square and a rectangle.
  • the “rectangular shape” does not need to be a perfect square or rectangle.
  • the shape of the semiconductor substrate may be a semi-square type (a rectangular corner having a rounded corner or a notch). Good.
  • the light receiving surface of the cell is provided with an uneven structure.
  • the uneven shape is preferably a quadrangular pyramid shape (pyramid shape).
  • the pyramidal concavo-convex structure is formed, for example, by subjecting the surface of a single crystal silicon substrate to anisotropic etching.
  • the height of the unevenness provided on the light receiving surface of the cell is, for example, about 0.5 to 10 ⁇ m, and preferably about 1 to 5 ⁇ m.
  • An uneven structure may also be provided on the back surface of the cell.
  • FIG. 2 is a plan view of the back side of a solar cell grid in which a plurality of back junction cells are arranged in a grid.
  • the solar cell strings 100, 110, 120 to which a plurality of back junction cells are connected along the first direction (x direction) are along the second direction (y direction) orthogonal to the first direction. Are arranged side by side.
  • the solar cell string 100 includes a plurality of cells 101 to 105 arranged in the first direction.
  • a solar cell string is formed by electrically connecting the electrodes provided on the back side of the cell via the wiring members 82 to 85.
  • a plurality of cells are connected in series by connecting the p-side electrode of one of the two adjacent cells and the n-side electrode of the other cell via a wiring material.
  • the cells can be connected in parallel by connecting the n-side electrodes or the p-side electrodes of adjacent cells.
  • the wiring member 81 disposed at one end in the first direction includes a lead wire 81a that can be connected to an external circuit.
  • the wiring member 86 arranged at the other end in the first direction is connected to the solar cell string 110 adjacent in the second direction.
  • FIG. 3 is a schematic perspective view of the solar cell string 100.
  • adjacent cells are connected by two wiring members.
  • the number of wiring members arranged between adjacent cells is appropriately set according to the electrode pattern shape of the cells.
  • a braided wire having a flat cross section made of a plurality of metal wires is used as a wiring material for connecting adjacent cells.
  • the width of the wiring material is, for example, about 1 mm to 5 mm.
  • the thickness of the wiring material is, for example, about 30 ⁇ m to 500 ⁇ m.
  • the thickness of the wiring material is preferably 50 to 300 ⁇ m from the viewpoint of ensuring conductivity and increasing the adhesion between the wiring material and the electrode by infiltrating the solder in the entire thickness direction of the braided wire.
  • the contact area between the cell and the wiring material can be increased, and the contact resistance can be reduced. Further, by increasing the contact area between the cell and the wiring material, the adhesion reliability between the cell and the wiring material is increased, and the durability of the solar cell module is improved.
  • connection failure such as peeling of the wiring material is caused due to a difference in linear expansion coefficient between the wiring material and the cell due to temperature change. Prone to occur.
  • a braided wire made of a plurality of strands is flexible and stretchable, so that stress resulting from the difference in linear expansion accompanying temperature change can be absorbed and dissipated by the wiring material. Therefore, even when the contact area between the cell and the wiring material is increased, high adhesion reliability can be maintained.
  • the braided wire having a flat cross-sectional shape may be formed by knitting a plurality of metal strands so as to have a flat shape, and the braided wire obtained by knitting a plurality of strands into a cylindrical shape is converted into a flat cross-sectional shape by rolling. Also good.
  • the method of knitting the metal strand is not particularly limited, but a flat knitted wire obtained by converging about 3 to 50 strands and braiding a plurality of converging wires is preferable.
  • the flat knitted wire is knitted so that each strand is exposed on the surface, there are many contacts between the strand and the electrode of the solar cell, and electrical connection can be reliably performed.
  • a wire compliant with JSC (Japan Electric Wire Industry Association Standard) 1236 is used as the flat knitted wire.
  • JSC Joint Electric Wire Industry Association Standard
  • the number of strands contained in one focusing wire is preferably 10 or less.
  • the flat knitted wire is preferably knitted with about 10 to 50 converging wires, and the number of strands constituting the flat knitted wire is preferably about 30 to 500.
  • the metal material constituting the metal strand is not particularly limited as long as it is conductive. In order to reduce the electrical loss due to the resistance of the wiring material, it is preferable that the metal material constituting the strand of the braided wire has a low resistivity. Among these, copper, a copper alloy containing copper as a main component, aluminum, or an aluminum alloy containing aluminum as a main component are preferable because the material is low cost.
  • the surface of the strand may be covered with tin plating, silver plating or the like.
  • the wiring material connected to the silver electrode is a braided wire made of a copper wire whose surface is coated.
  • a braided wire of a metal strand having a silver coating layer on the surface of a metal wire made of copper or a copper alloy because the solder joint strength to the silver electrode is high and solder erosion due to heating can be suppressed.
  • the strands that make up the braided wire may be blackened.
  • the braided wire as the wiring material becomes black and the metal reflection is reduced. Therefore, the wiring material and the back junction cell are unified in black, and the design of the solar cell module is improved.
  • Plating and blackening treatment may be performed after forming the braided wire by knitting the strands.
  • a wiring material used for connection between adjacent cells By cutting a long braided wire into a predetermined length, a wiring material used for connection between adjacent cells can be obtained.
  • the length of the wiring material is determined by the sum of the distance between adjacent cells and about twice the length in the x direction of the connection region between the cell and the wiring material.
  • the connection region between the cell and the wiring material In the double-sided electrode type cell, generally, the connection region between the cell and the wiring material is from one end of the cell in the x direction to the vicinity of the other end.
  • the wiring material In the back junction cell, the wiring material is connected to only one end of the cell so that the n-side electrode and the p-side electrode are not short-circuited by the wiring material (see FIG. 3). Therefore, the length in the x direction of the connection region between the cell and the wiring material is about 2 to 15 mm. If the length in the x direction of the connection region between the cell and the wiring material is excessively small, the connection area is insufficient, resulting in a decrease
  • the pitch of the braided wire is preferably 10 mm or less, more preferably 5 mm or less, further preferably 3 mm or less, and particularly preferably 2 mm or less.
  • Adjacent cells are connected to each other via a wiring material to produce a solar cell string.
  • the electrode of the cell and the wiring material are connected by solder.
  • a solder material is infiltrated into the braided wire to fill the gaps between the plurality of metal wires constituting the braided wire with solder.
  • solder adheres to the surface of the wiring material and is joined to the cell.
  • a braided wire as a wiring material and filling a gap between the metal strands with a solder material, the adhesion reliability between the cell and the wiring material can be improved.
  • the bonding strength between the cell and the braided wire can be improved by penetrating the solder into the braided wire and filling the gap between the metal wires with the solder material.
  • the method for infiltrating the solder material into the braided wire is not particularly limited, but it is preferable to use solder flux.
  • solder flux for example, by allowing the solder flux to penetrate into the braided wire before the solder connection, the molten solder can easily penetrate into the braided wire.
  • preliminary solder is provided on the metal electrode of the cell, a braided wire as a wiring material is disposed thereon, and flux is applied to the inside of the braided wire by applying flux from above the braided wire. Thereafter, when heating is performed from above the braided wire, the molten solder material penetrates into the gaps between the metal wires by capillary action.
  • additional soldering may be performed to allow the molten solder material to penetrate into the braided wire from the upper surface of the braided wire.
  • solder paste containing solder powder and flux when solder paste containing solder powder and flux is used, the molten solder is likely to penetrate into the braided wire.
  • the solder paste is applied on the metal electrode of the cell, a braided wire as a wiring material is disposed thereon, and heating is performed from above the braided wire.
  • the flux that exudes from the solder paste by heating penetrates into the braided wire due to capillary action, and accordingly, the molten solder material easily penetrates into the gaps between the metal strands.
  • Solder material in the cross section of the wiring material (region surrounded by the strands arranged on the outer periphery) in the cross section (yz plane) in the direction orthogonal to the extending direction of the wiring material at the connection portion between the cell and the wiring material
  • the area ratio of the region filled with is preferably 10 to 90%, more preferably 20 to 85%, and still more preferably 25 to 80%.
  • the area ratio of the strands in the region inside the wiring member is preferably 10 to 90%, more preferably 15 to 80%, and further preferably 20 to 75%. If the ratio of the wire to the solder material inside the wiring material is in the above range, both adhesion and conductivity can be achieved.
  • the area ratio of the voids in the section of the wiring material is preferably 30% or less, more preferably 10% or less, further preferably 5% or less, particularly preferably 1% or less, and most preferably 0%. Adhesiveness and electrical conductivity are improved by filling the entire internal space of the wiring material (the space between the metal wires) with the solder material.
  • the evaluation of the cross-section of the wiring material after the solder connection is performed on a cross-section at a location 2 pitches away from the cut surface.
  • the evaluation is performed with a cross section at a position farthest from the cut surface of the connection region.
  • the wiring material made of braided wire is flexible and stretchable, it can also be used for alignment of the string connection direction (x direction). Wiring material made of braided wire is also bent in the cell thickness direction (z direction), so it is possible to dissipate stress in the thickness direction and connect multiple cells even when the cells are warped Problems such as breakage when handling a subsequent string can be suppressed.
  • a solder connection pad may be disposed at a portion where the finger electrodes at the cell edge are gathered, and a wiring material may be connected thereon. Since the braided wire composed of a plurality of strands is flexible and stretchable, the wiring material can be aligned on the solder connection pad by bending the wiring material. Therefore, the area of the solder connection pad can be reduced.
  • a wiring material may be connected to each of the electrode provided on the light receiving surface of the cell and the electrode provided on the back surface.
  • a grid-shaped pattern electrode comprising a plurality of finger electrodes and bus bar electrodes orthogonal to the finger electrodes is provided on the light receiving surface, and a wiring material is connected over substantially the entire length of the bus bar electrode. .
  • a solar cell string in which a plurality of cells are connected via a wiring material is sandwiched between a light receiving surface protective material 91 and a back surface protective material 92 via a sealing material 95.
  • a sealing material 95 is sandwiched between a light receiving surface protective material 91 and a back surface protective material 92 via a sealing material 95.
  • the solar cell string is sealed.
  • a plurality of solar cell strings may be connected to form a solar cell grid as shown in FIG.
  • EVAT isocyanurate
  • PVB polyvinyl butyrate
  • silicon silicon
  • urethane acrylic
  • epoxy epoxy
  • the light-receiving surface protective material 91 is light transmissive, and glass, transparent plastic, or the like is used.
  • the back surface protective material 92 may be any of light transmitting property, light absorbing property, and light reflecting property.
  • As the light-reflecting back surface protective material a material exhibiting a metallic color or white color is preferable, and a white resin film, a laminate in which a metal foil such as aluminum is sandwiched between resin films, and the like are preferably used.
  • the light-absorbing protective material for example, a material including a black resin layer and the like and having a black appearance is used. If a black sheet is used as a back surface protection material in a module having a back surface junction cell, the appearance color of the back surface protection material and the cell is close, so that the gap between the cells arranged apart is not conspicuous, and a highly designable module can get.
  • the braided wire that has been blackened is used as the wiring material, the wiring material and the back surface protection material exposed between adjacent cells are unified in black in addition to the back junction cell, so the entire surface is unified in black. A module with high design properties can be obtained.
  • a back junction cell was fabricated using a 6-inch n-type single crystal silicon substrate (a semi-square type with a side length of 156 mm) having a thickness of 160 ⁇ m.
  • a metal electrode on the back surface an Ag / Cu electrode provided with a copper plating electrode on a silver paste electrode was formed by the following procedure.
  • a silver paste is screen-printed on each of the n-type semiconductor layer and the p-type semiconductor layer, pre-baked at 140 ° C. for about 20 minutes, and then a silicon oxide layer having a refractive index of 1.7 is formed by plasma CVD.
  • a film having a thickness of 80 nm was formed. Due to the heating during film formation, degassing and volume change of the paste electrode occurred from the Ag paste electrode, and a cracked opening was formed in the silicon oxide layer formed on the underlying layer.
  • This substrate was immersed in an electrolytic copper plating tank, and copper was deposited on the Ag silver paste electrode through the opening of the silicon oxide layer to form a copper plating electrode having a thickness of 20 ⁇ m.
  • Example 1 A flat-plated tin-plated copper wire (width: about 2mm, thickness: about 200 ⁇ m, knitted) with a tin-plated copper wire with a diameter of about 80 ⁇ m as a strand and 16 converging wires (64 strands) converging four strands.
  • a pitch of about 1 mm) was cut to a length of 20 mm, and one end was soldered onto the electrode of the back junction cell (connection length of about 4 mm).
  • preliminary solder was provided on the electrode of the cell, a flat knitted wire was placed thereon, a flux was applied, and the flux penetrated into the flat knitted wire. Thereafter, additional soldering was performed from above the flat knitted wire using a soldering iron.
  • FIG. 4 shows an optical microscope image and an SEM image of a cross section of the soldered portion (distance from the cut surface of the braided wire is about 3 mm).
  • the entire void inside the flat knitted wire is filled with the solder material, and the area ratio of the region filled with the solder material in the cross section of the flat knitted wire is about 50%.
  • Example 2 The above flat knitted tin-plated copper wire is immersed in an electroless palladium plating solution containing 0.5 g / L of palladium ("OPC Black Copper” manufactured by Okuno Pharmaceutical Co., Ltd.) and subjected to electroless plating at room temperature. A flat knitted wire which was entirely treated with conductive black was obtained. Using this blackened flat knitted wire, soldering was performed on the electrodes of the back junction cell in the same manner as in Example 1. The optical microscope image and SEM image of the cross section of a soldering part are shown in FIG. The entire void inside the flat knitted wire is filled with the solder material, and the area ratio of the region filled with the solder material in the cross section of the flat knitted wire is about 72%.
  • Example 1 and Example 2 and Comparative Example 1 From the comparison between Example 1 and Example 2 and Comparative Example 1, by allowing the flux to penetrate inside the braided wire, the solder material penetrates into the gap between the metal strands, and the metal electrode and the braided wire It can be seen that the connectivity can be improved.
  • a back junction cell was fabricated using a 6-inch n-type single crystal silicon substrate (a semi-square type with a side length of 156 mm) having a thickness of 160 ⁇ m.
  • a silver paste was screen printed and heated at 180 ° C. for 60 minutes to form a 30 ⁇ m thick silver electrode.
  • Example 3 A flat knitted silver-plated copper wire (width: about 2mm, thickness: about 200 ⁇ m) in which silver-plated copper wire with a diameter of about 80 ⁇ m is used as a strand, and 16 converging wires (64 strands) converging four strands. , Knitting pitch of about 1 mm) was cut to a length of 20 mm, and one end was soldered onto the silver electrode of the back junction cell in the same manner as in Example 1.
  • Table 1 shows the bonding strength between the wiring material (flat knitted wire) and the silver electrode in the solar cell modules of Example 3 and Comparative Example 2, and the output change rate before and after sealing.
  • Example 3 using a braided wire using a silver-coated copper wire as the element wire, no change was observed in the bonding strength before and after heating at 150 ° C., and the mini-module after sealing was the same as before sealing The above characteristics were exhibited. Further, solder remained on the surface of the cell after the wiring material was peeled off (FIG. 7A), and the solder adhered to the surface of the wiring material after the peeling, so that no solder erosion occurred.
  • Solar cell module 101-105 Solar cell (cell) 81-86 Wiring material (braided wire) 832 Connection region 100, 110, 120 Solar cell string 91 Light-receiving surface protective material 92 Back surface protective material 95 Sealing material 200 Solar cell module

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池モジュールは、複数の太陽電池(102,103,104)の金属電極が配線材(83,84)により電気的に接続された太陽電池ストリング(100)を備える。配線材は、複数の金属素線からなる断面扁平形状の編組線である。太陽電池の金属電極と配線材とが半田により接続されている。編組線を構成する複数の金属素線の間の空隙には半田材料が充填されていることが好ましい。例えば、編組線の外周から、編組線を構成する複数の金属素線の間の空隙に半田材料を浸透させることにより、太陽電池と配線材との間の空隙に半田材料が充填される。

Description

太陽電池モジュールおよびその製造方法
 本発明は、太陽電池モジュールおよびその製造方法に関する。
 単結晶シリコン基板や多結晶シリコン基板等の結晶半導体基板を用いた太陽電池は、1つの基板の面積が小さいため、実用に際しては、複数の太陽電池を電気的に接続してモジュール化を行い、出力を高めている。受光面および裏面に電極を有する両面電極型の太陽電池では、隣接する2つの太陽電池の一方の太陽電池の受光面電極と他方の太陽電池の裏面電極とを電気的に接続することにより、複数の太陽電池が直列接続される。裏面にのみ電極が設けられている裏面接合太陽電池では、一方の太陽電池のn側電極と他方の太陽電池のp型電極とを電気的に接続することにより、複数の太陽電池が直列接続される。
 隣接する太陽電池の電極の電気的接続には、配線材が用いられる。一般には、帯状の平角金属線の表面を半田被覆した配線材が用いられている。特許文献1および特許文献2には、複数本の金属素線を束ねた編組線を配線材として用い、太陽電池の金属電極に半田接続することが開示されている。
特開平11-177117号公報 特開2005-353549号公報
 編組線は伸縮性および柔軟性が高いため、編組線を配線材として用いた太陽電池モジュールでは、温度変化に起因する接続部分への応力が低減し、耐久性の向上に寄与する。しかしながら、本発明者らが検討を行ったところ、配線材としての編組線を太陽電池の金属電極に半田接続した場合、平板状(平角状)の配線材を用いた場合に比べて、配線材と金属電極との接合力が小さく、太陽電池モジュールの温度サイクル試験において、金属電極からの配線材の剥離が生じやすいことが判明した。
 本発明は、温度変化による太陽電池と配線材との剥離が抑制され、太陽電池と配線材との接続部分への応力が生じ難く、温度変化に対する信頼性の高い太陽電池モジュールの提供を目的とする。
 本発明の太陽電池モジュールは、複数の太陽電池が配線材により電気的に接続された太陽電池ストリングを備える。配線材は、複数の金属素線からなる断面扁平形状の編組線である。太陽電池の金属電極と配線材とは半田接続されている。例えば、編組線の外周から、金属素線の間の空隙に半田材料を浸透させることにより、太陽電池と配線材との半田接続がおこなわれる。編組線を構成する複数の金属素線の間の空隙には半田材料が充填されることが好ましい。
 太陽電池は、両面電極型でも裏面接合型でもよい。特に、裏面接合型太陽電池を備える太陽電池モジュールに本発明を適用した場合に、温度変化に対する信頼性向上効果が顕著となる傾向がある。
 編組線の具体例としては、複数の金属素線を集束した集束線の複数を編んだ平編線が挙げられる。平編線は、1本の集束線に含まれる素線が10本以下のものが好ましく用いられる。金属素線は銅または銅合金からなるものが好ましい。金属素線はめっき等による被覆処理や表面処理が施されたものでもよい。太陽電池の金属電極が銀電極である場合、編組線の金属素線は、銀被覆された銅線であることが好ましい。
 太陽電池モジュールでは、配線材の断面において半田材料が充填されている領域の面積割合が、10~90%であることが好ましい。配線材の断面において、金属素線が存在せずかつ半田材料に充填されていない空隙の面積割合は30%以下が好ましい。
 本発明の太陽電池モジュールは、太陽電池を接続する配線材が柔軟性を有しており、かつ太陽電池の電極と配線材との接合力が高いため、温度サイクル耐久性に優れる。
一実施形態にかかる太陽電池モジュールの模式的断面図である。 太陽電池グリッドの裏面の平面図である。 太陽電池ストリングの概略斜視図である。 実施例の太陽電池と配線材との接続部分の断面像である。 実施例の太陽電池と配線材との接続部分の断面像である。 比較例の太陽電池と配線材との接続部分の断面像である。 配線材を接合後に加熱した試料の剥離試験後のセル表面の顕微鏡写真である。
 図1は、一実施形態の太陽電池モジュール(以下、「モジュール」と記載する)の模式的断面図である。図1に示すモジュール200は、複数の太陽電池102,103,104(以下、「セル」と記載する)が、配線材83,84を介して電気的に接続された太陽電池ストリングを備える。
 図1に示すモジュールは、セルとして裏面接合太陽電池(裏面接合セル)を用いている。裏面接合セルは、結晶シリコン等の半導体基板の裏面側にp型半導体層およびn型半導体層を備える。裏面接合セルは、半導体基板の受光面に金属電極を有さず、半導体基板で生成した光キャリア(正孔および電子)を、p型半導体層上に設けられたp側電極およびn型半導体層上に設けられたn側電極により回収する。
 金属電極は、印刷やメッキ等の公知の方法により形成できる。例えば、Agペーストのスクリーン印刷により形成されたAg電極や、電解メッキにより形成された銅メッキ電極等が好ましく用いられる。裏面接合セルは受光面に金属電極を有していないため、受光面側から視認した場合は、セルの全面が黒色系で統一された外観を有している。
 モジュールに用いられるセルは、受光面および裏面のそれぞれに金属電極を備える両面電極型セルでもよい。セルの形状は特に限定されないが、一般には平面視矩形状である。矩形は正方形および長方形を含む。「矩形状」とは、完全な正方形または長方形である必要はなく、例えば、半導体基板の形状はセミスクエア型(矩形の角が丸みを帯びているものや、切欠き部が存在するもの)でもよい。
 半導体基板に取り込まれる光量を増大させ、変換効率を向上するために、セルの受光面には、凹凸構造が設けられていることが好ましい。凹凸の形状は、四角錐形状(ピラミッド形状)が好ましい。ピラミッド形状の凹凸構造は、例えば、単結晶シリコン基板の表面に異方性エッチング処理を施すことにより形成される。セルの受光面に設けられる凹凸の高さは、例えば、0.5~10μm程度であり、好ましくは1~5μm程度である。セルの裏面にも凹凸構造が設けられていてもよい。
 図2は、複数の裏面接合セルがグリッド状に配置された太陽電池グリッドの裏面側の平面図である。太陽電池グリッド180では、第一方向(x方向)に沿って複数の裏面接合セルが接続された太陽電池ストリング100,110,120が、第一方向と直交する第二方向(y方向)に沿って並んで配置されている。
 太陽電池ストリング100は、第一方向に沿って並んだ複数のセル101~105を備える。セルの裏面側に設けられた電極を、配線材82~85を介して電気的に接続することにより、太陽電池ストリングが形成される。隣接する2つのセルのうちの一方のセルのp側電極と他方のセルのn側電極とを配線材を介して接続することにより、複数のセルが直列に接続される。隣接するセルのn側電極同士またはp側電極同士を接続することにより、セルを並列接続することもできる。
 太陽電池ストリング100において、第一方向の一方の端部に配置された配線材81は、外部回路と接続可能な引き出し線81aを備える。第一方向の他方の端部に配置された配線材86は、第二方向に隣接する太陽電池ストリング110と接続されている。
 図3は、太陽電池ストリング100の概略斜視図である。図3では、隣接するセル同士が2本の配線材により接続されている。隣接するセル間に配置される配線材の数は、セルの電極パターン形状等に応じて適宜に設定される。
[配線材]
 本発明のモジュールでは、隣接するセル間を接続する配線材として、複数の金属素線からなる断面扁平形状の編組線が用いられる。配線材の幅は例えば1mm~5mm程度である。配線材の厚みは例えば30μm~500μm程度である。導電性を確保し、かつ編組線の厚み方向の全体に半田を浸透させて配線材と電極との接着性を高める観点から、配線材の厚みは50~300μmが好ましい。
 配線材を扁平形状として幅を大きくすることにより、セルと配線材との接触面積を増大し、接触抵抗を低減できる。また、セルと配線材との接触面積を増大させることにより、セルと配線材との接着信頼性が高められ、太陽電池モジュールの耐久性が向上する。
 一般的なモジュールに用いられる平角状の配線材は、セルとの接触面積が増大すると、温度変化による配線材とセルとの線膨張係数の相違に起因して配線材の剥がれ等の接続不良が生じやすい。一方、複数の素線からなる編組線は、柔軟で伸縮性を有するため、温度変化に伴う線膨張の相違に起因する応力を、配線材により吸収・散逸できる。そのため、セルと配線材との接触面積を増大させた場合でも、高い接着信頼性を維持できる。
 断面扁平形状の編組線は、扁平形状となるように複数の金属素線を編むことにより形成してもよく、複数の素線を円筒形状に編んだ編組線を、圧延加工により断面扁平形状としてもよい。金属素線の編み方は特に限定されないが、3~50本程度の素線を集束し、複数の集束線を編み組んだ平編線が好ましい。
 平編線は、それぞれの素線が表面に露出するように編まれているため、素線と太陽電池の電極との接点が多く、電気的接続を確実に実施できる。平編線としては、例えばJSC(日本電線工業会規格)1236に準拠したものが用いられる。素線の間に半田を浸透させるために、1本の集束線に含まれる素線の数は10本以下が好ましい。平編線は、10~50本程度の集束線を編んだものが好ましく、平編線を構成する素線の数は30~500本程度が好ましい。
 金属素線を構成する金属材料は、導電性であれば特に限定されない。配線材の抵抗に起因する電気的ロスを低減するために、編組線の素線を構成する金属材料は低抵抗率であることが好ましい。中でも、材料が低コストであることから、銅、銅を主成分とする銅合金、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金が好ましい。素線の表面は、スズメッキや銀メッキ等により被覆されていてもよい。
 太陽電池の金属電極が銀電極である場合に、表面被覆されていない銅の素線により構成される編組線を配線材として用いると、モジュール化の際の加熱により半田喰われが生じ、接続強度が低下する場合がある。そのため、銀電極に接続する配線材は、表面が被覆された銅線からなる編組線であることが好ましい。特に、銀電極に対する半田接合強度が高く、かつ加熱による半田喰われを抑制できることから、銅または銅合金からなる金属線の表面に銀の被覆層を有する金属素線の編組線を用いることが好ましい。
 編組線を構成する素線は黒色化処理されていてもよい。素線を黒色化処理することにより、配線材としての編組線が黒色となり金属反射が低減するため、配線材と裏面接合セルとが黒色で統一され、太陽電池モジュールの意匠性が高められる。メッキや黒色化処理等は、素線を編んで編組線を形成後に行ってもよい。
 長尺の編組線を、所定の長さに切断することにより、隣接するセル間の接続に用いられる配線材が得られる。配線材の長さは、セルと配線材との接続領域のx方向の長さの約2倍と隣接するセル間の距離の和で定められる。両面電極型セルでは、一般に、セルのx方向の一方の端部から他方の端部の近傍までがセルと配線材との接続領域となる。裏面接合セルでは、n側電極とp側電極とが配線材によって短絡しないように、セルの一方の端部のみに配線材が接続される(図3参照)。そのため、セルと配線材との接続領域のx方向の長さは、2~15mm程度である。セルと配線材との接続領域のx方向の長さが過度に小さいと、接続面積が不足して、接着強度の低下や電気的ロスの原因となる。
 編組線を切断すると、切断面の近傍の編みがほどけやすくなる。両面電極型のセルでは、セルと配線材との接続長さが大きいため、編組線の切断面近傍がほどけても特段の問題はないが、裏面接合セルでは、端部がほどけることにより、配線材とセルとの半田接続が困難となったり、電気的接続が不十分となる場合がある。切断面近傍の編みのほどけ量を小さくするために、編組線の編みのピッチは、10mm以下が好ましく、5mm以下がより好ましく、3mm以下がさらに好ましく、2mm以下が特に好ましい。
[セルと配線材の接続]
 配線材を介して隣接するセル間を互いに接続して、太陽電池ストリングを作製する。セルの電極と配線材とは、半田により接続される。編組線の内部に半田材料を浸透させて、編組線を構成する複数の金属素線の間の空隙を半田により充填することが好ましい。一般的な平角状の配線材とセルとの半田接続では、配線材の表面に半田が付着してセルと接合されている。これに対して、編組線を配線材として、金属素線の間の空隙に半田材料を充填することにより、セルと配線材との接着信頼性を向上できる。
 編組線とセルとを半田接続することは従来から提案されていたが、本発明者らの検討によれば、編組線の表面に半田を配置して加熱するのみでは、編組線の内部に半田材料が浸透せず、セルとの接続強度が不十分であった。特に、裏面接合セルは、セルと配線材との接続領域832の面積が小さいため、配線材とセルとの接合強度不足に起因する配線材の剥離が生じやすい。本発明においては、編組線の内部に半田を浸透させ、金属素線の間の空隙に半田材料を充填することにより、セルと編組線との接合強度を向上できる。
 編組線の内部に半田材料を浸透させる方法は特に限定されないが、半田フラックスを用いることが好ましい。例えば、半田接続の前に編組線の内部に半田フラックスを浸透させておくことにより、編組線の内部に溶融半田が浸透しやすくなる。具体的には、セルの金属電極上に予備半田を設け、その上に配線材としての編組線を配置し、編組線の上からフラックスを塗布することにより編線の内部にフラックスを浸透させる。その後、編組線の上から加熱を行えば、毛管現象により、金属素線の間の空隙に溶融半田材料が浸透する。加熱の際、追い半田を行い、編組線の上部表面から編組線の内部に溶融半田材料を浸透させてもよい。また、半田粉末およびフラックスを含む半田ペーストを用いた場合も、編組線の内部に溶融半田が浸透しやすくなる。半田ペーストを用いる場合は、セルの金属電極上に半田ペーストを塗布し、その上に配線材としての編組線を配置し、編組線の上から加熱を行えばよい。加熱により半田ペーストからにじみ出たフラックスが毛管現象により編組線の内部に浸透し、これに伴って金属素線の間の空隙に溶融半田材料が浸透しやすくなる。
 セルと配線材との接続部分の配線材の延在方向と直交する方向の断面(y-z面)において、配線材の断面(外周に配置された素線で囲まれた領域)における半田材料が充填されている領域の面積割合は、10~90%が好ましく、20~85%がより好ましく、25~80%がさらに好ましい。y-z断面において、配線材の内部の領域における素線の面積割合は、10~90%が好ましく、15~80%がより好ましく、20~75%がさらに好ましい。配線材の内部における素線と半田材料との割合が上記範囲であれば、接着性と導電性とを両立できる。
 y-z断面において、配線材の断面における空隙の面積割合は、30%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましく、1%以下が特に好ましく、0%が最も好ましい。配線材の内部の空隙(金属素線の間の空隙)の全体に半田材料が充填されていることにより、接着性および導電性が向上する。
 前述のように、編組線は切断面の近傍でほどけやすいため、半田接続後の配線材の断面の評価は、切断面から2ピッチ以上離れた場所の断面で行う。セルと配線材との接続長さが2ピッチ未満である場合は、接続領域の切断面から最も離れた位置の断面で評価を行う。
 編組線からなる配線材は柔軟で伸縮性を有するため、ストリングの接続方向(x方向)の位置合わせにも対応可能である。編組線からなる配線材は、セルの厚み方向(z方向)にも曲げられるため、厚み方向の応力を散逸させることが可能であり、セルに反りが生じている場合でも、複数のセルを接続後のストリングをハンドリングする際の破損等の不具合を抑制できる。
 裏面接合セルでは、セル端部のフィンガー電極が集結する部分に半田接続パッドを配置し、その上に配線材を接続してもよい。複数の素線からなる編組線は柔軟で伸縮性を有するため、配線材を曲げることにより半田接続パット上への配線材の位置合わせを実施できる。そのため、半田接続パットの狭面積化が可能である。
 両面電極型セルでは、セルの受光面に設けられた電極および裏面に設けられた電極のそれぞれに配線材を接続すればよい。一般的な両面電極型セルでは、複数のフィンガー電極とフィンガー電極に直交するバスバー電極とからなるグリッド状のパターン電極が受光面に設けられており、バスバー電極の略全長にわたって配線材が接続される。
[モジュール化]
 図1に示す太陽電池モジュール200では、複数のセルが配線材を介して接続された太陽電池ストリングが、封止材95を介して、受光面保護材91および裏面保護材92に挟持されている。例えば、受光面保護材上に、受光面封止材、太陽電池ストリング、裏面封止材および裏面保護材を順に載置した積層体を所定条件で加熱して封止材を硬化させることにより、太陽電池ストリングの封止が行われる。封止前に、複数の太陽電池ストリングを接続して、図2に示すように太陽電池グリッドを形成してもよい。
 封止材95としては、オレフィン系エラストマーを主成分とするポリエチレン系樹脂組成物、ポリプロピレン、エチレン/α‐オレフィン共重合体、エチレン/酢酸ビニル共重合体(EVA)、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、シリコン、ウレタン、アクリル、エポキシ等の透明樹脂を用いることが好ましい。受光面側と裏面側の封止材の材料は、同一でも異なっていてもよい。
 受光面保護材91は光透過性であり、ガラスや透明プラスチック等が用いられる。裏面保護材92は、光透過性、光吸収性および光反射性のいずれでもよい。光反射性の裏面保護材としては、金属色または白色等を呈するものが好ましく、白色樹脂フィルムや、樹脂フィルム間にアルミニウム等の金属箔を挟持した積層体等が好ましく用いられる。
 光吸収性の保護材としては、例えば、黒色樹脂層等を含み、外観が黒色であるものが用いられる。裏面接合セルを備えるモジュールにおいて、裏面保護材として黒色シートを用いれば、裏面保護材とセルの外観色が近いため、離間して配置されたセル間の隙間が目立たず、意匠性の高いモジュールが得られる。また、配線材として黒色化処理された編組線を用いれば、裏面接合セルに加えて、隣接するセル間に露出する配線材および裏面保護材が黒色で統一されるため、全面が黒色で統一された意匠性の高いモジュールが得られる。
 以下では、実施例および比較例を示すが、本発明は下記の実施例に限定されるものではない。
[実施例1,2および比較例1]
<裏面接合セルの作製>
 厚み160μmの6インチn型単結晶シリコン基板(1辺の長さが156mmのセミスクエア型)を用いて裏面接合セルを作製した。裏面の金属電極として、下記の手順により銀ペースト電極上に銅メッキ電極を備えるAg/Cu電極を形成した。
 n型半導体層上、およびp型半導体層上のそれぞれに、銀ペーストをスクリーン印刷し、140℃で20分程度の仮焼成を行った後、プラズマCVDにより屈折率1.7の酸化シリコン層を80nmの膜厚で製膜した。製膜時の加熱により、Agペースト電極から脱ガス及びペースト電極の体積変化が生じ、下地層上に製膜された酸化シリコン層にはき裂状態の開口が形成されていた。この基板を電解銅メッキ槽へ浸漬し、Ag銀ペースト電極上に、酸化シリコン層の開口を通じて銅析出させ、厚み20μmの銅メッキ電極を形成した。
<実施例1>
 直径約80μmのスズメッキ銅線を素線として、4本の素線を集束した集束線を16本(素線数64本)平編みした平編スズメッキ銅線(幅約2mm、厚み約200μm、編みピッチ約1mm)を、20mmの長さに切り取り、一方の端部を裏面接合セルの電極上に半田接続した(接続長さ約4mm)。まず、セルの電極上に予備半田を設け、その上に平編線を配置し、フラックスを塗布して平編線の内部にフラックスを浸透させた。その後、平編線の上から半田ごてを用いて追い半田付けを行った。半田付け部分の断面(網組線の切断面からの距離約3mm)の光学顕微鏡像およびSEM像を図4に示す。平編線の内部の空隙の全体に半田材料が充填されており、平編線の断面において半田材料が充填されている領域の面積割合は、約50%であった。
<実施例2>
 上記の平編スズメッキ銅線を0.5g/Lのパラジウムを含有する無電解パラジウムメッキ液(奥野製薬工業製「OPCブラックカッパー」)に浸漬して、常温で無電解メッキを実施して、表面全体が導電性黒色処理された平編線を得た。この黒色化平編線を用い、実施例1と同様にして、裏面接合セルの電極上に半田接続した。半田付け部分の断面の光学顕微鏡像およびSEM像を図5に示す。平編線の内部の空隙の全体に半田材料が充填されており、平編線の断面において半田材料が充填されている領域の面積割合は、約72%であった。
<比較例1>
 セルの電極上に予備半田を設け、その上に上記の平編スズメッキ銅線を配置し、フラックスを塗布せずに、平編線の上から半田ごてを用いて追い半田付けを行った。半田付け部分の断面の光学顕微鏡像およびSEM像を図6に示す。平編線の内部の空隙には半田材料が充填されていなかった。
 実施例1および実施例2と比較例1との対比から、編組線の内部にフラックスを浸透させることにより、金属素線の間の空隙に半田材料を浸透させて、金属電極と編組線との接続性を向上できることが分かる。
[実施例3および比較例2]
<裏面接合セルの作製>
 厚み160μmの6インチn型単結晶シリコン基板(1辺の長さが156mmのセミスクエア型)を用いて裏面接合セルを作製した。銀ペーストをスクリーン印刷し、180℃で60分加熱して、厚み30μmの銀電極を形成した。
<実施例3>
 直径約80μmの銀メッキ銅線を素線として、4本の素線を集束した集束線を16本(素線数64本)平編みした平編銀メッキ銅線(幅約2mm、厚み約200μm、編みピッチ約1mm)を、20mmの長さに切り取り、実施例1と同様にして、一方の端部を裏面接合セルの銀電極上に半田接続した。
<比較例2>
 メッキされていない銅線を素線とする平編み銅線を用い、実施例3と同様にして、平編み銅線の端部を裏面接合セルの銀電極上に半田接続した。
<接合強度の評価>
 引張試験機を用い、引張速度0.8mm/秒、角度90°の条件で、裏面接合セルから平編線のピール試験を行い、接合強度(ピール強度)を測定した。150℃のオーブンで10分加熱後の試料についても同様に接合強度を測定した。加熱後の試料の接合強度測定後(平編線を剥離後)のセル表面の顕微鏡写真を図7に示す。
<ミニモジュールの特性評価>
 裏面接合セルのn側の銀電極およびp側の銀電極のそれぞれに、実施例3および比較例2と同様にして平編線を半田接続し、ソーラーシミュレータにより出力を測定した。その後、バックシート/EVA封止材/平編線を接続した裏面接合セル/EVA封止材/ガラスの順に積層し、真空熱ラミネータ中で、150℃で約30分間加熱して、EVAを架橋反応させて、封止を行った。封止後のミニモジュールの出力をソーラーシミュレータにより測定し、封止前後の電流Isc、開放電圧Voc、曲線因子FF,および最大出力Pmaxの変化率(封止後/封止前)を求めた。
<評価結果>
 実施例3および比較例2の太陽電池モジュールにおける配線材(平編線)と銀電極との接合強度、および封止前後の出力の変化率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表面が被覆されていない銅線を素線とする編組線(配線材)を用いた比較例2では、150℃加熱後の配線材の接合強度がゼロ(実質的に接合していない状態)であり、配線材を剥離後のセルの表面には半田が付着していなかった(図7B)。また、150℃で封止を行ったミニモジュールでは、封止前に比べて曲線因子が大幅に低下していた。これらの結果から、比較例2では、半田接続直後は、セルの銀電極と配線材とが適切に接合されていたものの、封止の際の加熱により半田喰われが生じて電極と配線材との接合性が低下し、曲線因子が低下したと考えられる。
 一方、銀被覆された銅線を素線とする編組線を用いた実施例3では、150℃の加熱前後で接合強度に変化は見られず、封止後のミニモジュールは封止前と同等以上の特性を示していた。また、配線材を剥離後のセルの表面には半田が残存しており(図7A)、剥離後の配線材の表面にも半田が付着しており、半田喰われは生じていなかった。
 これらの結果から、銀被覆された銅線を素線とする編組線を用いることにより、銀電極との半田接合部分における半田喰われを抑制可能であり、電極と配線材との接合性に優れ出力の高い太陽電池モジュールが得られることが分かる。
  101~105   太陽電池(セル)
  81~86     配線材(編組線)
  832  接続領域
  100,110,120  太陽電池ストリング
  91   受光面保護材
  92   裏面保護材
  95   封止材
  200  太陽電池モジュール

 

Claims (11)

  1.  複数の太陽電池が配線材により電気的に接続された太陽電池ストリングを備える太陽電池モジュールであって、
     前記太陽電池は、受光面および裏面の少なくとも一方に金属電極を備え、
    前記配線材は、複数の金属素線からなる断面扁平形状の編組線であり、
     前記太陽電池の前記金属電極と前記配線材とが半田により接続されている、太陽電池モジュール。
  2.  前記編組線を構成する複数の金属素線の間の空隙に半田材料が充填されている、請求項1に記載の太陽電池モジュール。
  3.  前記配線材の断面において、半田材料が充填されている領域の面積割合が、10~90%である、請求項2に記載の太陽電池モジュール。
  4.  前記配線材の断面において、金属素線が存在せずかつ半田材料に充填されていない空隙の面積割合が30%以下である、請求項2または3に記載の太陽電池モジュール。
  5.  前記配線材は、複数の金属素線を集束した集束線の複数を編んだ平編線である、請求項1~4のいずれか1項に記載の太陽電池モジュール。
  6.  1本の集束線が10本以下の素線からなる請求項5に記載の太陽電池モジュール。
  7.  前記金属素線が銅または銅合金の金属線である、請求項1~6のいずれか1項に記載の太陽電池モジュール。
  8.  前記金属素線は、銅または銅合金からなる金属線の表面に銀またはスズの被覆層を有する、請求項1~6のいずれか1項に記載の太陽電池モジュール。
  9.  前記金属素線は、銅または銅合金からなる金属線の表面に銀の被覆層を有し、
     前記太陽電池の前記金属電極が銀電極である、請求項1~6のいずれか1項に記載の太陽電池モジュール。
  10.  前記太陽電池は、受光面に金属電極を有さず裏面のみに金属電極を備える裏面接合太陽電池であり、前記太陽電池ストリングにおいて、隣接する太陽電池の裏面同士が前記配線材を介して接続されている、請求項1~9のいずれか1項に記載の太陽電池モジュール。
  11.  請求項1~10のいずれか1項に記載の太陽電池モジュールの製造方法であって、
     前記編組線の外周から、前記編組線を構成する複数の金属素線の間の空隙に半田材料を浸透させることにより、前記太陽電池と前記配線材との半田接続がおこなわれる、太陽電池モジュールの製造方法。

     
PCT/JP2018/011512 2017-03-28 2018-03-22 太陽電池モジュールおよびその製造方法 WO2018180922A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880010219.6A CN110249434A (zh) 2017-03-28 2018-03-22 太阳能电池模块以及其制造方法
US16/495,509 US20200098943A1 (en) 2017-03-28 2018-03-22 Solar cell module and manufacturing method thereof
JP2019509678A JPWO2018180922A1 (ja) 2017-03-28 2018-03-22 太陽電池モジュールおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-063968 2017-03-28
JP2017063968 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180922A1 true WO2018180922A1 (ja) 2018-10-04

Family

ID=63675729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011512 WO2018180922A1 (ja) 2017-03-28 2018-03-22 太陽電池モジュールおよびその製造方法

Country Status (4)

Country Link
US (1) US20200098943A1 (ja)
JP (1) JPWO2018180922A1 (ja)
CN (1) CN110249434A (ja)
WO (1) WO2018180922A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212209516U (zh) * 2020-06-05 2020-12-22 东方日升(义乌)新能源有限公司 焊带及太阳能电池组件
WO2022006533A1 (en) * 2020-07-03 2022-01-06 Xplor Llc Portable solar array with locking mechanism for maximizing electrical output
US20220143686A1 (en) * 2020-11-12 2022-05-12 Auburn University Metal additive manufacturing apparatus and method
DE102021119776A1 (de) * 2021-07-29 2023-02-02 Hanwha Q Cells Gmbh Mehradriger Anschlussverbinder für Photovoltaikmodule

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177117A (ja) * 1997-12-12 1999-07-02 Showa Shell Sekiyu Kk 太陽電池モジュール
JP2005191116A (ja) * 2003-12-24 2005-07-14 Kyocera Corp 太陽電池素子接続用インナーリード及び太陽電池モジュール
JP2005353549A (ja) * 2004-06-14 2005-12-22 Hitachi Cable Ltd リード線及びその製造方法並びに太陽電池アセンブリ
JP2012156297A (ja) * 2011-01-26 2012-08-16 Shin Etsu Chem Co Ltd 太陽電池モジュール
JP2013045994A (ja) * 2011-08-26 2013-03-04 Dexerials Corp 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法
EP2660878A1 (en) * 2012-05-04 2013-11-06 Sol Invictus Energy Hybrid woven materials useful in the production of back-contact solar cells.
WO2016096422A1 (en) * 2014-12-15 2016-06-23 Imec Vzw Method for interconnecting back-contact photovoltaic cells
JP2016219799A (ja) * 2015-05-20 2016-12-22 株式会社マイティ タブ電極および太陽電池モジュール
WO2017009957A1 (ja) * 2015-07-14 2017-01-19 三菱電機株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011869A (ja) * 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd 太陽電池モジュールおよびその製造方法
CN103972317A (zh) * 2013-01-31 2014-08-06 无锡尚德太阳能电力有限公司 一种太阳电池用互连条及其制造方法及太阳电池组件
CN204204886U (zh) * 2014-11-19 2015-03-11 魏耀光 编织带型太阳能电池光伏焊带

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177117A (ja) * 1997-12-12 1999-07-02 Showa Shell Sekiyu Kk 太陽電池モジュール
JP2005191116A (ja) * 2003-12-24 2005-07-14 Kyocera Corp 太陽電池素子接続用インナーリード及び太陽電池モジュール
JP2005353549A (ja) * 2004-06-14 2005-12-22 Hitachi Cable Ltd リード線及びその製造方法並びに太陽電池アセンブリ
JP2012156297A (ja) * 2011-01-26 2012-08-16 Shin Etsu Chem Co Ltd 太陽電池モジュール
JP2013045994A (ja) * 2011-08-26 2013-03-04 Dexerials Corp 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法
EP2660878A1 (en) * 2012-05-04 2013-11-06 Sol Invictus Energy Hybrid woven materials useful in the production of back-contact solar cells.
WO2016096422A1 (en) * 2014-12-15 2016-06-23 Imec Vzw Method for interconnecting back-contact photovoltaic cells
JP2016219799A (ja) * 2015-05-20 2016-12-22 株式会社マイティ タブ電極および太陽電池モジュール
WO2017009957A1 (ja) * 2015-07-14 2017-01-19 三菱電機株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
JPWO2018180922A1 (ja) 2020-02-06
CN110249434A (zh) 2019-09-17
US20200098943A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP5159725B2 (ja) 太陽電池ストリング及びそれを用いた太陽電池モジュール
WO2018180922A1 (ja) 太陽電池モジュールおよびその製造方法
KR101568048B1 (ko) 태양 전지 모듈
KR101498741B1 (ko) 태양 전지 모듈 및 태양 전지 모듈의 제조 방법
US20110126878A1 (en) Interconnect technologies for back contact solar cells and modules
KR101465924B1 (ko) 태양 전지 모듈의 제조 방법 및 태양 전지 모듈
US20180083152A1 (en) Crystalline silicon solar cell module and manufacturing method for same
KR101435312B1 (ko) 태양 전지 모듈, 태양 전지 모듈의 제조 방법
WO2011118688A1 (ja) 太陽電池、太陽電池モジュール、電子部品及び太陽電池の製造方法
WO2009104627A1 (ja) 太陽電池モジュール
EP2164108A1 (en) Thin-film solar cell and its manufacturing method
WO2010122875A1 (ja) 太陽電池モジュール
JP4958525B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP5183257B2 (ja) 太陽電池モジュール
EP3553832A1 (en) Solar cell module
KR20140010044A (ko) 태양 전지 모듈 및 태양 전지 모듈의 제조 방법
JP2015185695A (ja) 太陽電池モジュール及びその製造方法
WO2020031574A1 (ja) 太陽電池モジュール
WO2016002721A1 (ja) 太陽電池モジュール、太陽電池モジュール用導電部材および封止フィルム
TWI660571B (zh) 太陽能電池串及其製造方法
WO2019163778A1 (ja) 配線材、並びにそれを用いた太陽電池セル及び太陽電池モジュール
JP2015233096A (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法
WO2023054229A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
JP2011223046A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2012160769A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775986

Country of ref document: EP

Kind code of ref document: A1