WO2018180537A1 - 光送信器及び光送信方法 - Google Patents
光送信器及び光送信方法 Download PDFInfo
- Publication number
- WO2018180537A1 WO2018180537A1 PCT/JP2018/010183 JP2018010183W WO2018180537A1 WO 2018180537 A1 WO2018180537 A1 WO 2018180537A1 JP 2018010183 W JP2018010183 W JP 2018010183W WO 2018180537 A1 WO2018180537 A1 WO 2018180537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modulator
- signal
- modulation
- amplitude
- low
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0121—Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
- G02F1/0123—Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5057—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
- H04B10/50572—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulating signal amplitude including amplitude distortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
- H04B10/556—Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
- H04B10/5561—Digital phase modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/58—Compensation for non-linear transmitter output
Definitions
- the present invention relates to an optical transmitter and an optical transmission method, and more particularly to an optical transmitter and an optical transmission method including an optical modulator.
- Lithium niobate (LN) modulators have been used for optical modulators used in optical transceivers (optical transceivers) and optical transmitters.
- LN Lithium niobate
- compact pluggable optical transceivers such as CFP (C Form Factor Pluggable) 2 and CFP 4 have been standardized. For this reason, downsizing of the optical modulator is required.
- QPSK Quadrature Phase Shift Keying
- DP-8QAM Dual Polarization-8 Quadrature Amplitude Modulation
- Patent Document 1 discloses a method for optimizing the drive amplitude of an optical modulator.
- the technique of Patent Document 1 superimposes a low-frequency signal (dither signal) on a modulation signal input to an optical modulator, and monitors the dither signal appearing in the optical output of the optical modulator, thereby obtaining an optimum value of the modulation degree.
- dither signal a low-frequency signal
- a Mach-Zehnder type semiconductor optical modulator made of indium phosphide or silicon is known.
- the semiconductor optical modulator may have higher nonlinearity of input / output characteristics (transfer characteristics) due to the electroabsorption effect peculiar to the semiconductor.
- the transfer characteristic is nonlinear, the modulation output with respect to the drive amplitude of the optical modulator becomes asymmetric between the positive phase modulation direction and the negative phase modulation direction. Due to this asymmetry, it is difficult to specify the optimum operating point (bias) and driving amplitude of the optical modulator even using the method described in Patent Document 1, resulting in transmission characteristics It causes deterioration.
- the linearity of the transfer characteristic can be secured by limiting the range of the drive amplitude of the optical modulator.
- the drive amplitude of the optical modulator is lowered, the amplitude of the output light of the optical modulator is lowered, and the optical output power is lowered. Therefore, in order to drive the semiconductor optical modulator under optimum conditions, it is necessary to clarify the transfer characteristics of the optical modulator.
- An object of the present invention is to clarify the characteristics of an optical modulator having output asymmetry due to nonlinear effects.
- An optical transmitter includes a light source that outputs light of a predetermined wavelength, a modulator that modulates light output from the light source with a modulation signal, and a modulator driving unit that outputs the modulation signal to the modulator. And outputting a low-frequency signal to the modulator and the modulator driving means, amplitude-modulating the modulation signal with the low-frequency signal, intensity-modulating the amplitude-modulated modulation signal with the low-frequency signal, Control means for receiving a monitor signal including the component of the low-frequency signal, and detection means for extracting the low-frequency component of the optical signal output from the modulator and outputting it as the monitor signal.
- the optical transmission method of the present invention outputs light of a predetermined wavelength, and modulates the light output from the light source with a modulation signal in the modulator, outputs the modulation signal to the modulator, and outputs the modulation signal.
- the present invention can clarify the characteristics of an optical modulator having output asymmetry due to nonlinear effects.
- FIG. 6 is a first diagram illustrating an example of a modulation operation of modulator 102.
- FIG. 6 is a second diagram illustrating an example of a modulation operation of modulator 102.
- FIG. 10 is a third diagram illustrating an example of a modulation operation of modulator 102.
- 4 is a flowchart illustrating an example of an operation procedure of the optical transmitter 100. It is a figure explaining the example of the modulation operation
- FIG. 1 is a block diagram illustrating a configuration example of an optical transmitter 100 according to the first embodiment of this invention.
- optical modulator is simply referred to as “modulator”.
- the optical transmitter 100 includes a modulator driver 101, a modulator 102, a light source 103, a detector 104, and a controller 105.
- the modulator driving unit 101 serves as a modulator driving unit that outputs a modulation signal to the modulator 102.
- the detection unit 104 serves as detection means for extracting a low frequency component of the optical signal output from the modulator 102.
- the control unit 105 serves as a control unit that controls the modulation signal.
- the light source 103 outputs continuous light having a predetermined wavelength.
- the modulator driver 101 outputs a modulation signal to the modulator 102.
- the control unit 105 modulates the amplitude of the modulation signal in the modulator driving unit 101 with a low-frequency signal having a frequency lower than that of the modulation signal.
- the control unit 105 further modulates the intensity of the modulated signal amplitude-modulated by the modulator driving unit 101 using the low-frequency signal in the modulator 102.
- the modulation signal subjected to amplitude modulation and intensity modulation modulates the output light of the light source 103 input to the modulator 102.
- the modulator 102 modulates the output light of the light source 103 and outputs the modulated light (transmission light).
- the control unit 105 receives the low frequency signal (monitor signal) extracted by the detection unit 104.
- FIG. 2 is a first diagram for explaining an example of the modulation operation of the modulator 102.
- FIG. 2 shows an example of the modulation operation of the modulator 102 when a low frequency signal is inputted from the control unit 105 only to the modulator driving unit 101. That is, FIG. 2 shows a case where the modulation signal is subjected to amplitude modulation in the modulator driving unit 101 but not subjected to intensity modulation in the modulator 102.
- FIG. 2 represents a transfer characteristic of the modulator 102.
- a sine wave curve (A) in FIG. The horizontal axis of the transfer characteristic is the driving voltage of the modulator 102, and the vertical axis is the optical output power of the modulator 102.
- the height of the left peak (P2) and the right peak (P1) of the transfer characteristic of the modulator 102 is asymmetric. This asymmetry is due to the nonlinear nature of the material properties of the modulator 102.
- the peak height of the transfer characteristic of the modulator 102 may be different for each peak.
- the lower waveform (B) in FIG. 2 shows the modulation signal input to the modulator 102 and its envelope.
- the horizontal axis of the waveform (B) is the voltage of the modulation signal, and the vertical axis is time.
- the modulator driving unit 101 outputs a modulation signal that is amplitude-modulated by a low-frequency signal.
- the left and right amplitude fluctuation amounts of the envelope of the amplitude-modulated modulation signal are the same and the phases are opposite.
- the waveform (C) in FIG. 2 shows the waveform of each peak of the low frequency signal component corresponding to the transfer characteristics peaks P1 and P2 included in the monitor signal.
- the monitor signal (P1) is a monitor signal for the peak P1
- the monitor signal (P2) is a monitor signal for the peak P2. The amplitudes of these signals are minimized when the center of the amplitude of the modulation signal coincides with the transfer characteristic peak.
- the voltage difference (positional shift in the left-right direction) between the voltage at the center of the envelope of the modulation signal corresponding to the peak P1 (hereinafter referred to as “positive envelope”) and the peak P1.
- V1 is larger than the voltage difference V2 between the voltage at the center of the envelope corresponding to the left peak P2 (hereinafter referred to as “negative envelope”) and the peak P2. Since the slope of the transfer characteristic is larger in the vicinity of the center of the amplitude of the positive envelope than in the vicinity of the center of the amplitude of the negative envelope, the amplitude of the monitor signal (P1) is the same as that of the monitor signal (P2). Larger than the amplitude.
- the monitor signal output from the detection unit 104 is output with the monitor signal (P1) and the monitor signal (P2) indicated by the waveform (C) in FIG. Therefore, only by modulating the amplitude of the modulation signal with the low frequency signal, the transfer characteristic of the modulator 102 (that is, the relationship between the drive voltage and the output power) is known for each peak from the low frequency signal included in the monitor signal. I can't.
- FIG. 3 is a second diagram for explaining an example of the modulation operation of the modulator 102.
- the modulated signal is not subjected to the amplitude modulation of FIG. 2 by the low frequency signal in the modulator driving unit 101, and is subjected to the intensity modulation by the low frequency signal in the modulator 102. That is, the control unit 105 intensity-modulates the modulation signal input to the modulator 102 with the low frequency signal.
- a central sinusoidal curve (D) in FIG. 3 shows the transfer characteristic of the modulator 102 as in FIG.
- the control unit 105 intensity-modulates the modulation signal with the low frequency signal. That is, as shown in the lower waveform (E) of FIG. 3, unlike FIG. 2, the envelope of the modulation signal is modulated by the low frequency signal while the amplitude of the modulation signal remains constant. That is, the positive waveform and the negative waveform of the envelope vary in phase.
- the waveform (F) in FIG. 3 shows an example of the waveform of the monitor signal.
- the waveform (E) of FIG. 3 the phase of the waveform of the positive envelope is inverted compared to the waveform (B) of FIG. For this reason, the waveform (monitor signal (P1)) of the low frequency component corresponding to the positive envelope is also in the opposite phase to the waveform (C) in FIG.
- the monitor signal (P1) and the monitor signal (P2) indicated by the waveform (F) in FIG. Therefore, even when the modulation signal is intensity-modulated with a low-frequency signal as shown in FIG. 3, the transfer characteristic of the modulator 102 is changed for each peak from the low-frequency signal included in the monitor signal, as in FIG. I can't know.
- the control unit 105 amplitude-modulates the modulation signal output from the modulator driving unit 101 with a low-frequency signal, and further intensity-modulates the amplitude-modulated modulation signal with the low-frequency signal. That is, the control unit 105 outputs the low frequency signal to both the modulator driving unit 101 and the modulator 102.
- the envelope of the modulation signal that modulates the output light of the light source 103 in the modulator 102 has a shape in which the envelope of the modulation signal in FIGS. 2 and 3 is superimposed.
- FIG. 4 is a third diagram for explaining an example of the modulation operation of the modulator 102.
- FIG. 4 shows an example of the waveform of the modulation signal in the modulator 102 when the control unit 105 outputs the low frequency signal to both the modulator driving unit 101 and the modulator 102.
- the modulation signal is amplitude-modulated by the modulator driver 101 and intensity-modulated by the modulator 102.
- a curve (G) in FIG. 4 shows the transfer characteristic of the modulator 102 as in FIGS.
- the positive envelope of the modulation signal generated by the low-frequency signal in the modulator driving unit 101 is canceled by the low-frequency signal input to the modulator 102.
- an envelope due to the low frequency signal is generated only on the negative side of the modulation signal (waveform (H) in FIG. 4).
- the detection unit 104 outputs only the monitor signal (P2) corresponding to the negative envelope on which the low frequency signal is superimposed (waveform (I) in FIG. 4).
- This monitor signal indicates the transfer characteristic of the modulator 102 on the peak P2 side.
- the control unit 105 can set the drive voltage on the peak P2 side of the modulator 102 based on the monitor signal.
- FIG. 5 is a flowchart illustrating an example of an operation procedure of the control unit 105 according to the first embodiment.
- the control unit 105 outputs a low frequency signal to the modulator driving unit 101 and the modulator 102 (step S01).
- the control unit 105 causes the modulator driving unit 101 and the modulator 102 to perform amplitude modulation and intensity modulation on the modulation signal (step S02).
- the control unit 105 receives a monitor signal having only a low frequency component of the electrical signal output from the modulator 102 (step S03).
- the optical transmitter 100 according to the first embodiment having such a configuration can clarify the characteristics of a modulator having output asymmetry due to a nonlinear effect.
- the detection unit 104 filters the electrical signal output from the modulator 102 and outputs a signal having the frequency of the low frequency signal input to the modulator driving unit 101 and the modulator 102. It outputs to the control part 105 as a monitor signal.
- the control unit 105 sets a driving condition for the modulator 102 based on the monitor signal received from the detection unit 104. Setting of the driving condition of the modulator 102 can be performed by a bias voltage applied to the modulator 102, a driving amplitude of the modulation signal, and predistortion. Predistortion refers to an operation of operating the modulator 102 using a modulation signal to which distortion is added in advance so as to reduce the asymmetry of the output light of the modulator 102.
- the modulator 102 can be driven under conditions that take into account the transfer characteristics of the modulator 102, so that high-output and high-quality transmission characteristics are realized.
- the bias voltage of the modulation signal, the drive amplitude of the modulation signal, and the predistortion are controlled by the control unit 105 controlling the modulator drive unit 101 or the modulator 102.
- the control unit 105 can improve the operating condition of the modulator at the peak P2 by controlling the bias voltage and the amplitude of the modulation signal so that the amplitude of the monitor signal (P2) in FIG. 4 is minimized.
- control unit 105 can set the half value of the amplitude of the modulation signal that minimizes the amplitude of the monitor signal as the drive voltage on the negative side of the modulator 102.
- the modulator 102 may control the bias voltage according to an instruction from the control unit 105.
- the modulator driving unit 101 may control the amplitude of the modulation signal according to an instruction from the control unit 105. Since the modulator 102 can be driven with a larger amplitude by improving the driving conditions of the modulator 102, high output and high quality transmission characteristics are realized in the optical transmitter 100.
- the setting of the driving condition of the modulator 102 may be executed during operation of the optical transmitter 100 in accordance with a change in characteristics required by the system for the optical transmitter 100.
- the trigger for setting the driving condition may be detection of a change over time in the transfer characteristic of the modulator 102, path switching on the system side, or the like.
- an optical transmitter capable of clarifying the characteristics of a modulator having output asymmetry due to nonlinear effects and realizing high-output and high-quality transmission characteristics is provided. Can be provided.
- FIG. 6 is a diagram for explaining an example of the modulation operation of the modulator 102 in the third embodiment. Unlike FIG. 4, FIG. 6 shows an example in which the low frequency signal is superimposed only on the positive envelope of the modulation signal. A curve (J) in FIG. 6 shows the transfer characteristic of the modulator 102 as in FIGS.
- the control unit 105 inputs the low frequency signal to the modulator driving unit 101 and the modulator 102 so that only the negative envelope of the low frequency signal on the negative side of the modulation signal is canceled, so that the low frequency signal is transmitted only to the positive side.
- An envelope is generated (waveform (K) in FIG. 6).
- control unit 105 inverts the phase difference of the low frequency signal output to the modulator driving unit 101 and the modulator 102 from that in FIG. 4, and the low frequency signal component of the negative envelope is canceled in the modulator 102. Adjust the amplitude of the low-frequency signal so that As a result, the detection unit 104 outputs only the monitor signal (P1) corresponding to the positive envelope on which the low frequency signal is superimposed (waveform (L) in FIG. 6).
- the control unit 105 adjusts the phase of the low-frequency signal so that the low-frequency signal is superimposed only on the negative envelope of the modulation signal. As a result, the control unit 105 can detect the transfer characteristic of the peak P2 based on the monitor signal (P2).
- the control unit 105 inverts the phase of the low-frequency signal applied to the modulator 102 so that the low-frequency signal is superimposed only on the positive envelope of the modulation signal. Then, the control unit 105 can detect the transfer characteristic of the peak P1 based on the monitor signal (P1). In this way, the control unit 105 can detect the transfer characteristics of both the peaks P1 and P2.
- the control unit 105 obtains half of the amplitude of the modulation signal for each of the peaks P1 and P2 so that the amplitude of the monitor signal is minimized, and sets the driving voltage for each peak of the modulator 102 based on the obtained amplitude. May be. Note that the control unit 105 may invert the phase of the low frequency signal applied to the modulator driving unit 101 instead of inverting the phase of the low frequency signal applied to the modulator 102.
- the drive signal is optimized by observing the characteristics of the modulator having the output asymmetry due to the nonlinear effect, thereby degrading the signal quality. Can be prevented. Furthermore, according to the third embodiment, since the control unit 105 can obtain transfer characteristics corresponding to each of the peaks P1 and P2, modulation is performed as compared with the case where the transfer characteristic of only one peak is detected. The driving conditions of the device 102 can be further improved.
- FIG. 7 is a block diagram illustrating a configuration example of the optical transmitter 200 according to the fourth embodiment.
- the control unit 105 further includes a function of controlling the wavelength of the light source 103.
- the light source 103 is a wavelength tunable laser that can set the wavelength by external control.
- the control unit 105 detects the transfer characteristic of the modulator 102 according to the procedure described in the first to third embodiments, and the modulator 102 based on the detected transfer characteristic. Set the drive conditions.
- the optical transmitter 200 clarifies the characteristics of the modulator having output asymmetry due to the nonlinear effect for each wavelength even when the wavelength of the light source 103 is changed. it can. Further, the optical transmitter 200 can drive the modulator 102 under the optimum modulation condition for each wavelength.
- the same reference numerals are assigned to the already-described elements, and duplicate descriptions are omitted.
- control unit 105 may further include a function of controlling the output power of the light source 103. Then, every time the output power of the light source 103 is changed, the control unit 105 detects the transfer characteristic of the modulator 102 by any of the procedures described in the first to third embodiments, and based on the detected transfer characteristic. Then, the driving condition of the modulator 102 may be set.
- control unit 105 may include a look-up table and a timer that describe predicted values of changes in the characteristics of the modulator 102 over time. When a predetermined time set in the timer elapses, the control unit 105 refers to the lookup table, reads a predicted value of the characteristic of the modulator 102 corresponding to the elapsed time, and drives the modulator 102 based on the predicted value. Conditions may be set.
- the look-up table may include a predicted value of change over time of the transfer characteristic of the modulator 102 corresponding to a wavelength or output power that can be set in the light source 103.
- the optical transmitter 200 of the fourth embodiment also optimizes the drive signal by observing the characteristics of the modulator having output asymmetry due to nonlinear effects. Signal quality degradation can be prevented. Furthermore, even when the wavelength or output power of the light source 103 is switched, the optical transmitter 200 of the fourth embodiment can detect the output characteristics of the modulator 102 after switching and can operate under optimum modulation conditions. It becomes. It is also possible to compensate for changes in the transfer characteristics of the modulator 102 over time.
- FIG. 8 is a block diagram illustrating a configuration example of the optical transmitter 300 according to the fifth embodiment.
- the optical transmitter 300 is a detailed configuration example of the optical transmitter 100 described in FIG.
- the light source 103 is a fixed wavelength laser or a wavelength tunable laser.
- the modulator 102 is a semiconductor optical modulator made of indium phosphide or silicon.
- the detection unit 104 is a low-pass filter or a band-pass filter that blocks a frequency higher than the frequency f0 of the low-frequency signal output from the control unit 105 to the modulator driving unit 101 and the modulator 102.
- the modulator 102 includes a termination unit 106 serving as a termination unit that terminates a modulation signal, and a modulation unit 107 serving as an optical modulation unit that modulates light output from the light source 103 based on the terminated modulation signal.
- the modulator 102 further includes a branching unit 108 serving as a branching unit that branches a part of the output of the modulation unit 107, and a conversion unit that converts the branched output light into an electrical signal and outputs the electrical signal to the detection unit 104.
- a conversion unit 109 is provided.
- the termination unit 106 further performs intensity modulation on the modulation signal using the low-frequency signal input from the control unit 105. The intensity modulation for the modulation signal has been described with reference to FIG.
- the termination unit 106 can intensity-modulate the modulation signal by changing the bias voltage of the modulation unit 107 with the low-frequency signal.
- the modulation unit 107 phase-modulates the output light of the light source 103 in accordance with the modulation signal terminated at the termination unit, and outputs it.
- a known Mach-Zehnder type semiconductor optical modulator can be used as the modulation unit 107.
- the branching unit 108 branches a part of the output light of the modulation unit 107 and outputs it to the conversion unit 109.
- the conversion unit 109 has an optical-electric conversion function for converting the branched output light into an electrical signal.
- the converter 109 outputs an electrical signal having an intensity proportional to the output power of the modulator 107 to the detector 104.
- a directional coupler composed of a semiconductor optical waveguide can be used as the branching portion 108. Further, a photodiode can be used as the conversion unit 109. Note that the branching unit 108 and the conversion unit 109 may be disposed outside the modulator 102.
- the control unit 105 has a function of generating a low-frequency signal having a frequency f0, and outputs the low-frequency signal having the frequency f0 to the modulator driving unit 101 and the modulator 102.
- the frequency f0 of the low frequency signal is lower than the frequency (modulation frequency) at which the continuous light output from the light source 103 is phase-modulated.
- the control unit 105 can adjust the phase difference between the low frequency signals output to the modulator driving unit 101 and the modulator 102.
- the control unit 105 outputs the low frequency to the modulator driving unit 101 and the termination unit 106 so that only the low frequency component of the positive envelope and the negative envelope of the modulation signal is canceled by the modulator 102. Adjust the phase and amplitude of the signal.
- an envelope of frequency f0 is generated only on the positive side or the negative side of the modulation signal.
- the shape of the envelope of the modulated light is determined by the low frequency signal applied to the modulator driver 101 and the modulator 102.
- the modulator driving unit 101 amplitude-modulates the modulation signal that drives the modulator 102 by the low-frequency signal input from the control unit 105, and terminates the amplitude-modulated modulation signal.
- the termination unit 106 intensity-modulates the amplitude-modulated modulated signal using the low-frequency signal input from the control unit 105.
- the modulation unit 107 phase-modulates the light input from the light source 103 based on the terminated modulation signal.
- the control unit 105 receives the monitor signal output from the detection unit 104, and can detect the transfer characteristic of the modulator 102 based on the component of the frequency f0 included in the monitor signal.
- the optical transmitter 300 of the fifth embodiment having such a configuration can also clarify the characteristics of a modulator having output asymmetry due to nonlinear effects.
- the control unit 105 may further set the driving condition of the modulator 102 based on the monitor signal received from the detection unit 104 as described in the second embodiment.
- the optical transmitter 300 of the fifth embodiment optimizes the drive signal by observing the characteristics of the modulator having the output asymmetry due to the non-linear effect and prevents the signal quality from deteriorating. it can.
- control unit 105 may set the driving conditions of the modulator 102 by detecting the transfer characteristics corresponding to the transfer characteristics peaks P1 and P2. .
- control unit 105 further includes a function of switching the wavelength or output power of the light source 103. Even when these switching operations are performed, the output characteristics of the modulator 102 after the switching are changed. And the modulator 102 may be operated at more favorable modulation conditions.
- the control unit 105 changes the amplitude of the modulation signal input to the modulator 102 with the low frequency signal superimposed on only one of the positive envelope and the negative envelope, and the monitor signal at that time The change in amplitude may be examined.
- the transfer characteristic of the modulator 102 can be known in more detail.
- the drive voltage corresponding to the output power of the modulator 102 at each level during multi-level amplitude modulation can be set more preferably in consideration of the nonlinearity of the modulator 102.
- Control of the amplitude of the modulation signal may be performed by the control unit 105 instructing the modulator driving unit 101.
- the control unit 105 can generate a predistortion signal that can compensate for the space between the levels of the multi-level amplitude modulation based on the transfer characteristics detected in this way.
- the interval between symbols of the modulated signal can be made uniform, so that the error rate of the output light of the modulator 102 is reduced and high quality transmission is possible.
- FIG. 9 is a block diagram illustrating a configuration example of the optical transmitter 400 according to the sixth embodiment.
- the optical transmitter 400 further includes two modulators 102-1 and 102-2, a branching unit 110, a phase shifter 111, and a coupler 112.
- the modulators 102-1 and 102-2 are the same modulators as the modulator 102 described in the above embodiments.
- the branching unit 110 is a beam splitter that divides the output light of the light source 103.
- the branching device 110 branches the output light of the light source 103 and outputs it to the modulators 102-1 and 102-2.
- Modulators 102-1 and 102-2 modulate each branched light.
- the phase of the output light of the modulator 102-2 is adjusted by the phase shifter 111 so that the phase difference from the output light of the modulator 102-1 is ⁇ / 2.
- the output light of the modulator 102-1 and the output light of the phase shifter 111 are combined by the coupler 112 and output as transmission light.
- PBC Polarization (Beam Combiner) can be used as a coupler.
- the optical transmitter 400 can perform large-capacity communication by QPSK (Quadrature1Phase Shift Keying) in addition to the effects of the optical transmitters 100, 200, and 300 described in the first to fifth embodiments. And Further, by preparing two optical transmitters 400 and combining the respective output lights with polarization, transmission with a double capacity (Dual-Polarization-QPSK) is also possible.
- QPSK Quadrature1Phase Shift Keying
- each embodiment may be realized by a central processing unit (CPU) included in the control unit 105 executing a program.
- the program is recorded on a fixed, non-temporary recording medium.
- a semiconductor memory included in the control unit 105 is used as the recording medium, but is not limited thereto.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Optical Communication System (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
[課題]非線形効果に起因する出力の非対称性を有する光変調器の特性を明確化する。 [解決手段]光送信器は、所定の波長の光を出力する光源と、光源から出力された光を変調信号によって変調する変調器と、変調器に変調信号を出力する変調器駆動部と、変調器及び変調器駆動手段に低周波信号を出力し、変調信号を低周波信号で振幅変調し、振幅変調された変調信号を低周波信号で強度変調し、低周波信号の成分を含むモニタ信号を受信する制御部と、変調器から出力される光信号の低周波成分を抽出して、モニタ信号として出力する検出部と、を備える。
Description
本発明は光送信器及び光送信方法に関し、特に、光変調器を備える光送信器及び光送信方法に関する。
光トランシーバ(光送受信器)及び光送信器で用いられる光変調器には、ニオブ酸リチウム(Lithium Niobate、LN)変調器が使用されてきた。しかし、近年、光送受信器において低消費電力化及び小型化が要求されている。例えば、CFP(C Form Factor Pluggable)2、CFP4のような、小型のプラガブル光トランシーバが標準化されている。このため、光変調器の小型化が求められている。
光送受信器の小型化と並んで、伝送容量を増加させるために、QPSK、DP-8QAM、DP-16QAM等の多値変調や、ナイキストフィルタを使用した狭帯域化による周波数利用効率の向上が求められる。QPSKはQuadrature Phase Shift Keying、DP-8QAMはDual Polarization-8 Quadrature Amplitude Modulationを意味する。このような背景から、伝送容量の増加と高品質な伝送特性とを実現するための、高性能な変調器及び変調制御方法が要求されている。
本発明に関連して、特許文献1は、光変調器の駆動振幅を最適化する方法を開示している。特許文献1の技術は、光変調器に入力される変調信号に低周波信号(ディザ信号)を重畳させ、光変調器の光出力に現れるディザ信号をモニタすることにより、変調度の最適値を求める。
小型の光変調器としては、インジウムリンやシリコンを材料としたマッハツェンダー型半導体光変調器が知られている。LN光変調器と比べて、半導体光変調器は、半導体特有の電界吸収効果に起因して、入出力特性(伝達特性)の非線形性が高い場合がある。伝達特性が非線形であると、光変調器の駆動振幅に対する変調出力が正の位相変調方向と負の位相変調方向とで非対称となる。そして、この非対称性の影響により、特許文献1に記載された方法を用いても、光変調器の最適な動作点(バイアス)及び駆動振幅を特定することが困難であり、結果として伝送特性の劣化を招く。一方、光変調器の駆動振幅の範囲を限定することで伝達特性の線形性を確保できる。しかし、光変調器の駆動振幅を下げると、光変調器の出力光の振幅が低下し、光出力パワーの低下を招く。従って、半導体光変調器を最適な条件で駆動するためには、光変調器の伝達特性を明確化する必要がある。
(発明の目的)
本願発明の目的は、非線形効果に起因する出力の非対称性を有する光変調器の特性を明確化することにある。
本願発明の目的は、非線形効果に起因する出力の非対称性を有する光変調器の特性を明確化することにある。
本発明の光送信器は、所定の波長の光を出力する光源と、前記光源から出力された光を変調信号によって変調する変調器と、前記変調器に前記変調信号を出力する変調器駆動手段と、前記変調器及び前記変調器駆動手段に低周波信号を出力し、前記変調信号を前記低周波信号で振幅変調し、前記振幅変調された前記変調信号を前記低周波信号で強度変調し、前記低周波信号の成分を含むモニタ信号を受信する制御手段と、前記変調器から出力される光信号の低周波成分を抽出して、前記モニタ信号として出力する検出手段と、を備える。
本発明の光送信方法は、所定の波長の光を出力し、変調器において、前記光源から出力された光を変調信号によって変調し、前記変調器に前記変調信号を出力し、前記変調信号を低周波信号で振幅変調し、前記振幅変調された前記変調信号を前記低周波信号で強度変調し、前記変調器から出力される光信号の低周波成分をモニタ信号として出力し、前記モニタ信号に基づいて前記変調器の伝達特性を検出する、ことを含む。
本発明は、非線形効果に起因する出力の非対称性を有する光変調器の特性を明確化できる。
(第1の実施形態)
図1は、本発明の第1の実施形態の光送信器100の構成例を示すブロック図である。以降の実施形態及び図面では、「光変調器」を単に「変調器」と記載する。光送信器100は、変調器駆動部101、変調器102、光源103、検出部104、制御部105を備える。変調器駆動部101は、変調器102に変調信号を出力する変調器駆動手段を担う。検出部104は、変調器102から出力される光信号の低周波成分を抽出する検出手段を担う。制御部105は、変調信号を制御する制御手段を担う。
図1は、本発明の第1の実施形態の光送信器100の構成例を示すブロック図である。以降の実施形態及び図面では、「光変調器」を単に「変調器」と記載する。光送信器100は、変調器駆動部101、変調器102、光源103、検出部104、制御部105を備える。変調器駆動部101は、変調器102に変調信号を出力する変調器駆動手段を担う。検出部104は、変調器102から出力される光信号の低周波成分を抽出する検出手段を担う。制御部105は、変調信号を制御する制御手段を担う。
光源103は所定の波長の連続光を出力する。変調器駆動部101は、変調器102へ変調信号を出力する。制御部105は、変調信号よりも周波数が低い低周波信号によって、変調器駆動部101において変調信号の振幅を変調する。制御部105は、さらに、変調器駆動部101において振幅変調された変調信号を、変調器102において、低周波信号を用いて強度変調する。振幅変調及び強度変調を受けた変調信号は、変調器102に入力された光源103の出力光を変調する。
変調器102は、光源103の出力光を変調し、変調された光(送信光)を出力する。制御部105は、検出部104において抽出された低周波信号(モニタ信号)を受信する。
光送信器100の動作例を以下に説明する。図2は、変調器102の変調動作の例を説明する第1の図である。図2は、制御部105から変調器駆動部101のみに低周波信号が入力された場合の、変調器102の変調動作の例を示す。すなわち、図2は、変調信号は変調器駆動部101において振幅変調を受けるが、変調器102においては強度変調を受けない場合を示す。
図2の正弦波状の曲線(A)は変調器102の伝達特性を示す。伝達特性の横軸は変調器102の駆動電圧であり、縦軸は変調器102の光出力パワーである。曲線(A)で示されるように、変調器102の伝達特性の左側のピーク(P2)と右側のピーク(P1)の高さ、すなわち変調器102の出力パワーは非対称である。この非対称性は、変調器102の材料の特性の非線形性に起因する。このように、変調器102の伝達特性のピークの高さがピーク毎に異なる場合がある。
図2の下の波形(B)は、変調器102に入力される変調信号及びその包絡線を示す。波形(B)の横軸は変調信号の電圧であり、縦軸は時間である。変調器駆動部101は、低周波信号によって振幅変調された変調信号を出力する。図2の波形(B)に示すように、振幅変調された変調信号の包絡線の左右の振幅の変動量は同一で位相は逆位相となる。
図2の波形(C)は、モニタ信号に含まれる、伝達特性のピークP1及びP2に対応する低周波信号成分のピーク毎の波形を示す。モニタ信号(P1)はピークP1に対するモニタ信号であり、モニタ信号(P2)はピークP2に対するモニタ信号である。これらの信号の振幅は、変調信号の振幅の中心が伝達特性のピークと一致する場合に最小となる。
図2の波形(B)では、ピークP1に対応する変調信号の包絡線(以下、「正側の包絡線」という。)の中心の電圧とピークP1との電圧差(左右方向の位置ずれ)V1は、左側のピークP2に対応する包絡線(以下、「負側の包絡線」という。)の中心の電圧とピークP2との電圧差V2よりも大きい。そして、正側の包絡線の振幅の中心付近では、負側の包絡線の振幅の中心付近と比べて伝達特性の傾きが大きいため、モニタ信号(P1)の振幅は、モニタ信号(P2)の振幅と比べて大きい。
しかしながら、実際には、検出部104から出力されるモニタ信号には、図2の波形(C)で示したモニタ信号(P1)及びモニタ信号(P2)が重なって出力される。このため、変調信号を低周波信号で振幅変調したのみでは、モニタ信号に含まれる低周波信号からは、変調器102の伝達特性(すなわち、駆動電圧と出力パワーとの関係)をピーク毎に知ることができない。
図3は、変調器102の変調動作の例を説明する第2の図である。図3では、変調信号は変調器駆動部101において低周波信号による図2の振幅変調を受けず、変調器102において低周波信号による強度変調を受ける。すなわち、制御部105は、変調器102に入力された変調信号を、低周波信号で強度変調する。図3の中央の正弦波状の曲線(D)は、図2と同様に、変調器102の伝達特性を示す。
制御部105は、変調器102において、変調信号を低周波信号によって強度変調する。すなわち、図3の下側の波形(E)に示すように、図2とは異なり、変調信号は振幅が一定のまま、包絡線が低周波信号によって変調される。すなわち、包絡線の正側の波形及び負側の波形は同位相で変動する。
図3の波形(F)は、モニタ信号の波形の例を示す。図3の波形(E)では、正側の包絡線の波形の位相が図2の波形(B)と比較して反転している。このため、正側の包絡線に対応する低周波成分の波形(モニタ信号(P1))も図2の波形(C)とは逆位相になる。
しかしながら、図3の場合も、検出部104から出力されるモニタ信号には、図3の波形(F)で示したモニタ信号(P1)及びモニタ信号(P2)が重なっている。このため、図3のように変調信号を低周波信号で強度変調した場合も、図2の場合と同様に、モニタ信号に含まれる低周波信号からは、変調器102の伝達特性をピーク毎に知ることができない。
そこで、本実施形態では、制御部105は、変調器駆動部101から出力される変調信号を低周波信号で振幅変調し、さらに、振幅変調された変調信号を低周波信号で強度変調する。すなわち、制御部105は、低周波信号を変調器駆動部101及び変調器102の両方へ出力する。この場合、変調器102において光源103の出力光を変調する変調信号の包絡線は、図2及び図3の変調信号の包絡線を重畳した形となる。
図4は、変調器102の変調動作の例を説明する第3の図である。図4は、制御部105が低周波信号を変調器駆動部101及び変調器102の両方へ出力した場合の、変調器102における変調信号の波形の例を示す。変調信号は変調器駆動部101において振幅変調され、変調器102において強度変調される。図4の曲線(G)は、図2及び図3と同様の、変調器102の伝達特性を示す。
図4においては、変調器駆動部101において低周波信号によって生成された変調信号の正側の包絡線は、変調器102に入力された低周波信号によって打ち消される。その結果、変調信号の負側にのみ低周波信号による包絡線が生じる(図4の波形(H))。その結果、検出部104は、低周波信号が重畳されている負側の包絡線に対応するモニタ信号(P2)のみを出力する(図4の波形(I))。このモニタ信号は、変調器102のピークP2側の伝達特性を示す。制御部105は、このモニタ信号に基づいて変調器102のピークP2側の駆動電圧を設定できる。
図5は、第1の実施形態における制御部105の動作手順の例を示すフローチャートである。制御部105は、変調器駆動部101及び変調器102へ低周波信号を出力する(ステップS01)。制御部105は、変調器駆動部101及び変調器102に、変調信号への振幅変調及び強度変調を行わせる(ステップS02)。制御部105は、変調器102から出力される電気信号の低周波成分のみを持つモニタ信号を受信する(ステップS03)。
以上説明したように、このような構成を備える第1の実施形態の光送信器100は、非線形効果に起因する出力の非対称性を有する変調器の特性を明確化できる。
(第2の実施形態)
図1及び図4を参照して第2の実施形態について説明する。第1の実施形態で説明したように、検出部104は、変調器102が出力する電気信号をフィルタして、変調器駆動部101及び変調器102に入力された低周波信号の周波数の信号をモニタ信号として制御部105に出力する。第2の実施形態において、制御部105は、検出部104から受信したモニタ信号に基づき変調器102の駆動条件を設定する。変調器102の駆動条件の設定は、変調器102に印加されるバイアス電圧、変調信号の駆動振幅、プリディストーションによって行うことができる。プリディストーションとは、変調器102の出力光の非対称性が低減されるような歪みがあらかじめ加えられた変調信号を用いて変調器102を動作させる操作をいう。
図1及び図4を参照して第2の実施形態について説明する。第1の実施形態で説明したように、検出部104は、変調器102が出力する電気信号をフィルタして、変調器駆動部101及び変調器102に入力された低周波信号の周波数の信号をモニタ信号として制御部105に出力する。第2の実施形態において、制御部105は、検出部104から受信したモニタ信号に基づき変調器102の駆動条件を設定する。変調器102の駆動条件の設定は、変調器102に印加されるバイアス電圧、変調信号の駆動振幅、プリディストーションによって行うことができる。プリディストーションとは、変調器102の出力光の非対称性が低減されるような歪みがあらかじめ加えられた変調信号を用いて変調器102を動作させる操作をいう。
駆動条件をより好ましく設定することにより変調器102の伝達特性を考慮した条件で変調器102を駆動させることができるため、高出力かつ高品質な伝送特性が実現される。変調信号のバイアス電圧、変調信号の駆動振幅、プリディストーションの制御は、制御部105が変調器駆動部101又は変調器102を制御することで行われる。例えば、制御部105は、図4においてモニタ信号(P2)の振幅が最小になるようにバイアス電圧及び変調信号の振幅を制御することで、ピークP2における変調器の動作条件を改善できる。例えば、制御部105は、このモニタ信号の振幅が最小になるような変調信号の振幅の半値を変調器102の負側の駆動電圧とすることができる。変調器102は、制御部105の指示によりバイアス電圧を制御してもよい。変調器駆動部101は、制御部105の指示により変調信号の振幅を制御してもよい。変調器102の駆動条件の改善により変調器102をより大きい振幅で駆動できるため、光送信器100において高出力かつ高品質な伝送特性が実現される。
なお、変調器102の駆動条件の設定は、システムが光送信器100に要求する特性の変化に応じて、光送信器100の運用中に実行されてもよい。駆動条件の設定の契機は、変調器102の伝達特性の経時的な変動の検出やシステム側の経路切り替え等でもよい。
以上のように、第2の実施形態では、変調器の特性を観測することで駆動信号の最適化を行い信号品質の劣化を防ぐことができる。すなわち、第2の実施形態の構成によれば、非線形効果に起因する出力の非対称性を有する変調器の特性を明確化できるとともに、高出力かつ高品質な伝送特性を実現可能な光送信器を提供できる。
(第3の実施形態)
第1の実施形態の図4では、ピークP2側の伝達特性のみを出力するために、変調信号の負側の包絡線のみに低周波信号が重畳された場合について説明した。しかしながら、制御部105において変調器駆動部101及び変調器102へ出力する低周波信号の位相差を0度又は180度とすることで、正側又は負側の一方の包絡線にのみ低周波信号を重畳させることができる。すなわち、制御部105は、低周波信号の位相差を調整することで、正側の包絡線にのみ低周波信号を重畳させることができる。
第1の実施形態の図4では、ピークP2側の伝達特性のみを出力するために、変調信号の負側の包絡線のみに低周波信号が重畳された場合について説明した。しかしながら、制御部105において変調器駆動部101及び変調器102へ出力する低周波信号の位相差を0度又は180度とすることで、正側又は負側の一方の包絡線にのみ低周波信号を重畳させることができる。すなわち、制御部105は、低周波信号の位相差を調整することで、正側の包絡線にのみ低周波信号を重畳させることができる。
図1及び図6を参照して第3の実施形態を説明する。図6は、第3の実施形態における変調器102の変調動作の例を説明する図である。図4とは異なり、図6は、変調信号の正側の包絡線にのみ低周波信号が重畳されている例を示す。図6の曲線(J)は、図2~図4と同様に、変調器102の伝達特性を示す。制御部105は、変調信号の負側の低周波信号の包絡線のみが打ち消されるように低周波信号を変調器駆動部101及び変調器102に入力することで、正側にのみ低周波信号の包絡線が生じる(図6の波形(K))。この場合、制御部105は、変調器駆動部101及び変調器102へ出力する低周波信号の位相差を図4とは反転させ、負側の包絡線の低周波信号成分が変調器102において打ち消されるように低周波信号の振幅を調整する。その結果、検出部104は、低周波信号が重畳されている正側の包絡線に対応するモニタ信号(P1)のみを出力する(図6の波形(L))。
従って、まず、制御部105は、図4で説明したように、変調信号の負側の包絡線にのみ低周波信号が重畳されるように低周波信号の位相を調整する。その結果、制御部105はモニタ信号(P2)に基づいてピークP2の伝達特性を検出できる。次に、制御部105は、図6で説明したように、変調信号の正側の包絡線にのみ低周波信号が重畳されるように変調器102に加える低周波信号の位相を反転させる。そうすると、制御部105はモニタ信号(P1)に基づいてピークP1の伝達特性を検出できる。このようにして、制御部105はピークP1及びP2の双方の伝達特性を検出できる。制御部105は、モニタ信号の振幅が最小になるような変調信号の振幅の半値をピークP1及びP2のそれぞれについて求め、求められた振幅に基づいて変調器102のピーク毎の駆動電圧を設定してもよい。なお、制御部105は、変調器102に加える低周波信号の位相を反転させる代わりに、変調器駆動部101に加える低周波信号の位相を反転させてもよい。
第3の実施形態の構成によっても、第2の実施形態と同様に、非線形効果に起因する出力の非対称性を有する変調器の特性を観測することで駆動信号の最適化を行い信号品質の劣化を防ぐことができる。さらに、第3の実施形態によれば、制御部105はピークP1及びP2のそれぞれに対応する伝達特性を得ることができるため、一方のピークのみの伝達特性を検出する場合と比較して、変調器102の駆動条件をさらに改善できる。
(第4の実施形態)
図7は、第4の実施形態の光送信器200の構成例を示すブロック図である。図1に示した光送信器100と比較して、光送信器200は、制御部105が光源103の波長を制御する機能をさらに備える点で相違する。例えば、光源103は、外部からの制御で波長を設定可能な波長可変レーザである。制御部105は、光源103の波長を変更した場合には、第1~第3の実施形態で説明した手順により変調器102の伝達特性を検出し、検出された伝達特性に基づいて変調器102の駆動条件を設定する。このような構成により、第4の実施形態の光送信器200は、光源103の波長が変更された場合でも、非線形効果に起因する出力の非対称性を有する変調器の特性を波長毎に明確化できる。また、光送信器200は、波長毎に最適な変調条件で変調器102を駆動できる。なお、以降の図面及び説明では既出の要素には同一の参照符号を付して重複する説明は省略する。
図7は、第4の実施形態の光送信器200の構成例を示すブロック図である。図1に示した光送信器100と比較して、光送信器200は、制御部105が光源103の波長を制御する機能をさらに備える点で相違する。例えば、光源103は、外部からの制御で波長を設定可能な波長可変レーザである。制御部105は、光源103の波長を変更した場合には、第1~第3の実施形態で説明した手順により変調器102の伝達特性を検出し、検出された伝達特性に基づいて変調器102の駆動条件を設定する。このような構成により、第4の実施形態の光送信器200は、光源103の波長が変更された場合でも、非線形効果に起因する出力の非対称性を有する変調器の特性を波長毎に明確化できる。また、光送信器200は、波長毎に最適な変調条件で変調器102を駆動できる。なお、以降の図面及び説明では既出の要素には同一の参照符号を付して重複する説明は省略する。
なお、制御部105は光源103の出力パワーを制御する機能をさらに備えてもよい。そして、制御部105は、光源103の出力パワーを変更する毎に第1~第3の実施形態で説明したいずれかの手順により変調器102の伝達特性を検出し、検出された伝達特性に基づいて変調器102の駆動条件を設定してもよい。
さらに、制御部105は、変調器102の特性の経時的な変化の予測値を記載したルックアップテーブル及びタイマを備えてもよい。タイマに設定された所定の時間が経過すると、制御部105はルックアップテーブルを参照し、経過時間に対応する変調器102の特性の予測値を読み出し、その予測値に基づいて変調器102の駆動条件を設定してもよい。ルックアップテーブルは、光源103に設定可能な波長あるいは出力パワーに対応する、変調器102の伝達特性の経時変化の予測値を含んでもよい。
第4の実施形態の光送信器200も、第2及び第3の実施形態と同様に、非線形効果に起因する出力の非対称性を有する変調器の特性を観測することで駆動信号の最適化を行い信号品質の劣化を防ぐことができる。さらに、第4の実施形態の光送信器200は、光源103の波長又は出力パワーを切り替えた場合でも、切替後の変調器102の出力特性を検出し、最適な変調条件で動作することが可能となる。また、変調器102の伝達特性の経時変化を補償することも可能となる。
(第5の実施形態)
図8は、第5の実施形態の光送信器300の構成例を示すブロック図である。光送信器300は、図1で説明した光送信器100の詳細な構成例である。光送信器300では、光源103は、固定波長レーザ又は波長可変レーザである。変調器102は、インジウムリンやシリコンを材料とした半導体光変調器である。検出部104は、制御部105が変調器駆動部101及び変調器102へ出力する低周波信号の周波数f0よりも高い周波数を阻止するローパスフィルタ又はバンドパスフィルタである。
図8は、第5の実施形態の光送信器300の構成例を示すブロック図である。光送信器300は、図1で説明した光送信器100の詳細な構成例である。光送信器300では、光源103は、固定波長レーザ又は波長可変レーザである。変調器102は、インジウムリンやシリコンを材料とした半導体光変調器である。検出部104は、制御部105が変調器駆動部101及び変調器102へ出力する低周波信号の周波数f0よりも高い周波数を阻止するローパスフィルタ又はバンドパスフィルタである。
変調器102は、変調信号を終端する終端手段を担う終端部106、終端された変調信号に基づいて光源103から出力された光を変調する光変調手段を担う変調部107を備える。変調器102は、さらに、変調部107の出力の一部を分岐する分岐手段を担う分岐部108、分岐された出力光を電気信号に変換して電気信号を検出部104へ出力する変換手段を担う変換部109を備える。終端部106は、さらに、制御部105から入力された低周波信号を用いて、変調信号に強度変調を行う。変調信号に対する強度変調については、図3で説明した。終端部106は、低周波信号により変調部107のバイアス電圧を変化させることで、変調信号を強度変調できる。変調部107は、光源103の出力光を、終端部で終端された変調信号に応じて位相変調して出力する。変調部107として、公知のマッハツェンダー型半導体光変調器を用いることができる。
分岐部108は、変調部107の出力光の一部を分岐して変換部109に出力する。変換部109は、分岐された出力光を電気信号に変換する光-電気変換機能を備える。変換部109は、変調部107の出力パワーに比例した強度を持つ電気信号を検出部104へ出力する。分岐部108として半導体光導波路で構成された方向性結合器を用いることができる。また、変換部109として、フォトダイオードを用いることができる。なお、分岐部108及び変換部109は、変調器102の外部に配置されてもよい。
制御部105は、周波数f0の低周波信号を生成する機能を備え、周波数f0の低周波信号を変調器駆動部101及び変調器102へ出力する。低周波信号の周波数f0は、光源103が出力する連続光が位相変調される周波数(変調周波数)よりも低い。制御部105は、変調器駆動部101及び変調器102へ出力する低周波信号の位相差を調整できる。制御部105は、変調信号の正側の包絡線及び負側の包絡線の一方の低周波成分のみが変調器102において打ち消されるように、変調器駆動部101及び終端部106へ出力する低周波信号の位相及び振幅を調整する。その結果、変調信号の正側又は負側にのみ周波数f0の包絡線が生じる。図2~図4及び図6で説明したように、変調光の包絡線の形状は、変調器駆動部101及び変調器102に加えられた低周波信号によって定まる。
図8に示す光送信器300において、変調器駆動部101は、制御部105から入力された低周波信号によって、変調器102を駆動する変調信号を振幅変調し、振幅変調された変調信号を終端部106へ出力する。終端部106は、振幅変調された変調信号を、制御部105から入力された低周波信号を用いて強度変調する。そして、変調部107は、光源103から入力された光を、終端された変調信号に基づいて位相変調する。制御部105は検出部104から出力されるモニタ信号を受信し、モニタ信号に含まれる周波数f0の成分に基づいて変調器102の伝達特性を検出できる。
このような構成を備える第5の実施形態の光送信器300も、第1乃至第4の実施形態と同様に、非線形効果に起因する出力の非対称性を有する変調器の特性を明確化できる。
制御部105は、さらに、第2の実施形態で説明したように、検出部104から受信したモニタ信号に基づき変調器102の駆動条件を設定してもよい。その結果、第5の実施形態の光送信器300は、非線形効果に起因する出力の非対称性を有する変調器の特性を観測することで駆動信号の最適化を行い信号品質の劣化を防ぐことができる。
制御部105は、さらに、第3の実施形態で説明したように、伝達特性のピークP1及びP2のそれぞれに対応する伝達特性を検出することで、変調器102の駆動条件を設定してもよい。
制御部105は、さらに、第4の実施形態で説明したように、光源103の波長又は出力パワーを切り替える機能を備え、これらの切り替えを行った場合でも、切替後の変調器102の出力特性を検出し、変調器102をより好ましい変調条件で動作させてもよい。
制御部105は、正側の包絡線又は負側の包絡線の一方のみに低周波信号を重畳させた状態で変調器102へ入力される変調信号の振幅を変化させ、その際のモニタ信号の振幅の変化を調べてもよい。このような手順により、変調器102の伝達特性をより詳細に知ることができる。その結果、例えば、多値振幅変調時の各レベルの変調器102の出力パワーに対応する駆動電圧を、変調器102の非線形性を加味した上でより好ましく設定できる。変調信号の振幅の制御は、制御部105が変調器駆動部101に指示して行われてもよい。制御部105は、このようにして検出した伝達特性に基づいて、多値振幅変調のレベル間のスペースを補償可能なプリディストーション信号を生成できる。このようにして生成されたプリディストーション信号を用いることで、変調された信号のシンボル間の間隔を均一化できるため、変調器102の出力光の誤り率が低減され、高品質な伝送が可能になる。
(第6の実施形態)
図9は、第6の実施形態の光送信器400の構成例を示すブロック図である。光送信器400は、2台の変調器102-1及び102-2、分岐器110、移相器111、結合器112をさらに備える。変調器102-1及び102-2は、これまでの実施形態で説明した変調器102と同一の変調器である。
図9は、第6の実施形態の光送信器400の構成例を示すブロック図である。光送信器400は、2台の変調器102-1及び102-2、分岐器110、移相器111、結合器112をさらに備える。変調器102-1及び102-2は、これまでの実施形態で説明した変調器102と同一の変調器である。
分岐器110は光源103の出力光を分割するビームスプリッタである。分岐器110は、光源103の出力光を分岐して変調器102-1及び102-2へ出力する。変調器102-1及び102-2は、分岐されたそれぞれの光を変調する。変調器102-2の出力光の位相は、移相器111によって、変調器102-1の出力光との位相差がπ/2となるように調整される。変調器102-1の出力光と移相器111の出力光とは結合器112で結合されて送信光として出力される。結合器として、PBC(Polarization Beam Combiner)を用いることができる。
このような構成により、光送信器400は、第1乃至第5の実施形態で説明した光送信器100、200及び300の効果に加えて、QPSK(Quadrature Phase Shift Keying)による大容量通信を可能とする。また、光送信器400を2台用意し、それぞれの出力光を偏波合成することでさらに2倍の容量の伝送(Dual Polarization-QPSK)も可能となる。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。
また、各実施形態に記載された機能及び手順は、制御部105が備える中央処理装置(central processing unit、CPU)がプログラムを実行することにより実現されてもよい。プログラムは、固定された、一時的でない記録媒体に記録される。記録媒体としては制御部105が備える半導体メモリが用いられるが、これには限定されない。
この出願は、2017年3月28日に出願された日本出願特願2017-063183を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100、200、300、400 光送信器
101 変調器駆動部
102、102-1、102-2 変調器
103 光源
104 検出部
105 制御部
106 終端部
107 変調部
108 分岐部
109 変換部
110 分岐器
111 移相器
112 結合器
101 変調器駆動部
102、102-1、102-2 変調器
103 光源
104 検出部
105 制御部
106 終端部
107 変調部
108 分岐部
109 変換部
110 分岐器
111 移相器
112 結合器
Claims (10)
- 所定の波長の光を出力する光源と、
前記光源から出力された光を変調信号によって変調する変調器と、
前記変調器に前記変調信号を出力する変調器駆動手段と、
前記変調器及び前記変調器駆動手段に低周波信号を出力し、前記変調信号を前記低周波信号で振幅変調し、前記振幅変調された前記変調信号を前記低周波信号で強度変調し、前記低周波信号の成分を含むモニタ信号を受信する制御手段と、
前記変調器から出力される光信号の低周波成分を抽出して、前記モニタ信号として出力する検出手段と、
を備える光送信器。 - 前記制御手段は、前記振幅変調及び前記強度変調された前記変調信号の正側の包絡線及び負側の包絡線の一方のみに前記低周波信号が重畳されるように前記振幅変調及び前記強度変調を行う、請求項1に記載された光送信器。
- 前記制御手段は、
前記振幅変調及び前記強度変調された前記変調信号の正側の包絡線のみに低周波成分が重畳されるように第1の前記振幅変調及び前記強度変調を行い、
前記振幅変調及び前記強度変調された前記変調信号の負側の包絡線のみに低周波成分が重畳されるように第2の前記振幅変調及び前記強度変調を行う、
請求項1又は2に記載された光送信器。 - 前記制御手段は、前記モニタ信号に基づいて前記変調器の伝達特性を検出する、請求項1乃至3のいずれか1項に記載された光送信器。
- 前記制御手段は、前記光源の波長及び出力パワーの少なくとも一方を切り替える機能を備え、前記切り替えの実行を契機として前記変調器の伝達特性を検出する、請求項4に記載された光送信器。
- 前記制御手段は、検出された前記伝達特性に基づいて前記変調器の駆動条件を設定する、請求項4又は5に記載された光送信器。
- 前記制御手段は、前記変調器に印加されるバイアス電圧、前記変調信号の駆動振幅、前記変調信号のプリディストーション、のうち少なくとも1つに基づいて前記駆動条件を設定する、請求項6に記載された光送信器。
- 前記変調器は、前記変調信号を終端する終端手段、終端された前記変調信号に基づいて前記光源から出力された光を変調する光変調手段、前記光変調手段の出力の一部を分岐する分岐手段及び分岐された出力光を電気信号に変換して前記電気信号を前記検出手段へ出力する変換手段を備える、請求項1乃至7のいずれか1項に記載された光送信器。
- 所定の波長の光を出力し、
変調器において、光源から出力された光を変調信号によって変調し、
前記変調器に前記変調信号を出力し、
前記変調信号を低周波信号で振幅変調し、
前記振幅変調された前記変調信号を前記低周波信号で強度変調し、
前記変調器から出力される光信号の低周波成分をモニタ信号として出力し、
前記モニタ信号に基づいて前記変調器の伝達特性を検出する、
光送信方法。 - 前記振幅変調及び前記強度変調された前記変調信号の正側の包絡線及び負側の包絡線の一方のみに前記低周波信号が重畳されるように前記振幅変調及び前記強度変調を行う、請求項9に記載された光送信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019509248A JPWO2018180537A1 (ja) | 2017-03-28 | 2018-03-15 | 光送信器及び光送信方法 |
US16/493,363 US20200033642A1 (en) | 2017-03-28 | 2018-03-15 | Optical transmitter and optical transmission method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017063183 | 2017-03-28 | ||
JP2017-063183 | 2017-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018180537A1 true WO2018180537A1 (ja) | 2018-10-04 |
Family
ID=63675852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010183 WO2018180537A1 (ja) | 2017-03-28 | 2018-03-15 | 光送信器及び光送信方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200033642A1 (ja) |
JP (1) | JPWO2018180537A1 (ja) |
WO (1) | WO2018180537A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004247968A (ja) * | 2003-02-13 | 2004-09-02 | Fujitsu Ltd | 光送信器 |
JP2005148329A (ja) * | 2003-11-14 | 2005-06-09 | Fujitsu Ltd | 光変調装置 |
WO2011043079A1 (ja) * | 2009-10-09 | 2011-04-14 | 日本電気株式会社 | 光変調器モジュール及び光信号の変調方法 |
JP2013088702A (ja) * | 2011-10-20 | 2013-05-13 | Mitsubishi Electric Corp | 光変調器の駆動制御装置 |
JP2014066968A (ja) * | 2012-09-27 | 2014-04-17 | Japan Oclaro Inc | 光モジュール、光システム、及び制御方法 |
WO2016152136A1 (ja) * | 2015-03-20 | 2016-09-29 | 日本電気株式会社 | プラガブル光モジュール、光通信システム及びプラガブル光モジュールの制御方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2487197B1 (en) * | 2009-10-07 | 2020-04-15 | Stella Chemifa Corporation | Process for producing a laminated film and solar cell backsheet |
JP2016045340A (ja) * | 2014-08-22 | 2016-04-04 | 富士通オプティカルコンポーネンツ株式会社 | 光通信装置及び光変調器の制御方法 |
CA2964052A1 (en) * | 2014-10-08 | 2016-04-14 | Nec Corporation | Optical transmitter and optical transceiver |
JP2017026989A (ja) * | 2015-07-28 | 2017-02-02 | 富士通オプティカルコンポーネンツ株式会社 | 光送信機、及び光変調器の制御方法 |
-
2018
- 2018-03-15 WO PCT/JP2018/010183 patent/WO2018180537A1/ja active Application Filing
- 2018-03-15 US US16/493,363 patent/US20200033642A1/en not_active Abandoned
- 2018-03-15 JP JP2019509248A patent/JPWO2018180537A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004247968A (ja) * | 2003-02-13 | 2004-09-02 | Fujitsu Ltd | 光送信器 |
JP2005148329A (ja) * | 2003-11-14 | 2005-06-09 | Fujitsu Ltd | 光変調装置 |
WO2011043079A1 (ja) * | 2009-10-09 | 2011-04-14 | 日本電気株式会社 | 光変調器モジュール及び光信号の変調方法 |
JP2013088702A (ja) * | 2011-10-20 | 2013-05-13 | Mitsubishi Electric Corp | 光変調器の駆動制御装置 |
JP2014066968A (ja) * | 2012-09-27 | 2014-04-17 | Japan Oclaro Inc | 光モジュール、光システム、及び制御方法 |
WO2016152136A1 (ja) * | 2015-03-20 | 2016-09-29 | 日本電気株式会社 | プラガブル光モジュール、光通信システム及びプラガブル光モジュールの制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018180537A1 (ja) | 2020-02-06 |
US20200033642A1 (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011022479A (ja) | 多値光送信器 | |
EP2530855B1 (en) | Optical transmitter, control method for the same, and optical transmission system | |
US10122507B2 (en) | Optical transmitter and method of controlling optical modulator | |
JP6019598B2 (ja) | 光送信器および光変調器のバイアス制御方法 | |
US20150071583A1 (en) | Optical modulator and optical modulation control method | |
JP6234777B2 (ja) | 光多値送信器および光トランスポンダ | |
JP5724792B2 (ja) | 光送信器、光通信システムおよび光送信方法 | |
JP6453628B2 (ja) | 光送信機、及び光変調器のバイアス制御方法 | |
US9448458B2 (en) | Optical communication device and method of controlling optical modulator | |
US10234704B2 (en) | Optical module that includes optical modulator and bias control method for optical modulator | |
US11073706B2 (en) | Transmitter and bias adjustment method | |
JP2016149685A (ja) | 光送受信器および光送受信器の制御方法 | |
JP5811531B2 (ja) | 光送信機、光通信システムおよび光送信方法 | |
JP6813528B2 (ja) | 光変調器 | |
US9634768B2 (en) | Optical communication device and method of controlling optical modulator | |
JP5104802B2 (ja) | 光変調器 | |
JP6073152B2 (ja) | 光多値信号送信器、光多値信号送受信器及び光多値信号処理ic | |
WO2018180537A1 (ja) | 光送信器及び光送信方法 | |
JP5905356B2 (ja) | 64qam光信号を生成する送信装置および方法 | |
JP2019022061A (ja) | 光送信器、変調方法、及び光伝送装置 | |
KR101864697B1 (ko) | 멀티레벨 광신호 생성 장치 | |
JP6992787B2 (ja) | 光変調回路、光送信機および光変調方法 | |
JP2008242283A (ja) | 光変調装置及び光送信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18776788 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019509248 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18776788 Country of ref document: EP Kind code of ref document: A1 |