WO2018180131A1 - 熱発電セル及び熱発電モジュール - Google Patents

熱発電セル及び熱発電モジュール Download PDF

Info

Publication number
WO2018180131A1
WO2018180131A1 PCT/JP2018/007286 JP2018007286W WO2018180131A1 WO 2018180131 A1 WO2018180131 A1 WO 2018180131A1 JP 2018007286 W JP2018007286 W JP 2018007286W WO 2018180131 A1 WO2018180131 A1 WO 2018180131A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
metal thin
strip
refractory material
cooling
Prior art date
Application number
PCT/JP2018/007286
Other languages
English (en)
French (fr)
Inventor
精祐 児子
照美 中村
奨 目黒
加藤 誠一
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to EP18775937.8A priority Critical patent/EP3591723B1/en
Priority to JP2019509025A priority patent/JP6778968B2/ja
Priority to US16/498,892 priority patent/US11393969B2/en
Publication of WO2018180131A1 publication Critical patent/WO2018180131A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention relates to a device structure for thermoelectric conversion using a metal thermoelectric material.
  • thermoelectric material of a semiconductor carriers (electrons and holes) having high kinetic energy in a high temperature part diffuse to a lower temperature to generate an electromotive force. Since the potential difference is reversed between n-type and p-type semiconductors, a large electromotive force can be obtained by connecting in series a pnp ⁇ -type structure in which n-type and p-type semiconductors are alternately connected via metal electrodes. (For example, Patent Document 1).
  • thermoelectric materials Since electrons are electric carriers as well as carriers that carry heat, thermoelectric materials have two properties: low thermal conductivity and high electrical conductivity. However, the characteristics of both are in a trade-off relationship. Therefore, a bismuth-tellurium alloy (Bi 2 Te 3 ) having both characteristics is used as a thermoelectric material despite being harmful.
  • thermoelectric materials carriers are only electrons, so the device structure is different from semiconductor thermoelectric materials.
  • the generation of electricity by the Seebeck effect which occurs when the kinetic energy of electrons increases in the high temperature part and diffuses to the low temperature side, is the same in both cases.
  • Patent Document 2 discloses a thermoelectric power generation module in which thermoelectric materials and metals are alternately inclined and processed into tubes, and the directions of heat flow and current are orthogonalized.
  • thermoelectric materials and metals are alternately inclined and processed into tubes, and the directions of heat flow and current are orthogonalized.
  • heat is transferred preferentially through a metal layer having higher thermal conductivity than the thermoelectric material layer, and therefore the temperature gradient of each thermoelectric material layer is z.
  • An axial component is generated. For this reason, an electromotive force in the z-axis direction is generated in each thermoelectric material layer by the Seebeck effect, and the electromotive forces are superimposed in series in the stacked body.
  • thermoelectric material used for the thermoelectric generation tube can be used as long as it has a Seebeck coefficient of 30 ⁇ V / K or more and an electric resistivity of 10 m ⁇ ⁇ cm or less.
  • thermoelectric generation tubes are not insulated and have an electrically integrated structure. Therefore, when the heat flow fluctuates microscopically, a reactive current is generated between the laminated layers and the thermoelectric conversion efficiency is lowered. Therefore, in the embodiment of the thermoelectric generation tube, Bi 2 Te 3 which is excellent in thermoelectric characteristics is used as usual, and Te compounds such as Bi 2 Te 3 are harmful to the human body, so care must be taken in handling.
  • thermocouples used for temperature measurement use thermoelectric materials that have no safety problems, but have not yet been able to perform thermoelectric generation using the thermoelectric materials.
  • thermoelectric power it is possible to generate thermoelectric power using a thermocouple material, but if a thermocouple is connected in series, the internal resistance increases as the voltage increases. Therefore, as seen in Non-Patent Document 1, it has been difficult to develop a practical thermoelectric conversion device using a thermocouple thermoelectric material.
  • thermocouple The characteristics required for the thermocouple are that a voltage proportional to the temperature is generated, that the temperature measurement range is wide, and that the durability is high. For this reason, no research and development has been conducted to reduce the internal resistance of the thermocouple, which is the cause of the low current. Under the above circumstances, in order to spread environmentally friendly thermoelectric generation as a countermeasure against global warming, thermoelectric generation using a safe and inexpensive thermoelectric material, not a toxic material such as Bi 2 Te 3 There is a need for versatile technology that enables
  • thermocouples used for temperature measurement in general are connected in series, the voltage increases, but the internal resistance increases at the same time, so the thermocouple material of the thermocouple cannot be used for thermoelectric generation.
  • the device structure is reviewed retrospectively to the principle of thermoelectric power generation, and a thermoelectric conversion device using a safe thermoelectric material used for a thermocouple is developed.
  • thermoelectric generator cell of the present invention is a thermoelectric generator cell using thermoelectric power generation based on the Seebeck effect of a metal material, and has a structure that makes good use of the conductivity and thermal conductivity of the metal material.
  • a temperature difference holding unit that maintains a temperature difference between a high temperature part and a low temperature part of the material, and a metal material member having a structure that minimizes an internal resistance that represents a relationship between voltage and current in the power generation element. .
  • thermoelectric generation device As a means for solving the cause of difficulty in thermoelectric generation using the thermoelectric material of the thermocouple, the inventors do not assume the functions necessary for thermoelectric generation alone, but each component constituting the thermoelectric generation device. By separating the functions into components and making a device structure in which “no electricity flows in the direction of heat flow and heat does not flow easily in the direction of electricity flow”, “thermal conductivity required for thermoelectric materials is small and We have come up with a structure that substitutes for some of the material properties that have a trade-off relationship with high electrical conductivity.
  • thermoelectric power generation cell of the following [2] to [6]
  • the apparent thermal conductivity is reduced as a whole by laminating an insulating film having a low thermal conductivity and a thin metal plate, so that the thin metal wire or the extended conductor portion
  • the following ingenuity was made to increase the apparent electrical conductivity as a whole by detouring and connecting the composite laminates.
  • the thermoelectric generator cell of the present invention has, for example, as shown in FIGS. 1 (A) and 1 (B), a multi-layered structure in which a plurality of thermoelectric power generation unit units are stacked, and a heating unit 11 side of the multi-layered body. It is a thermoelectric generation cell provided with the provided heat collecting plate 8 and the heat sink 9 provided in the heat radiating part side of the multiple laminated body.
  • the thermoelectric power generation unit includes a first metal thin plate 1, a second metal thin plate 2 joined to the first metal thin plate 1, and a second face facing the joining surface 6 of the first and second metal thin plates.
  • the cold junction 7 which joined the edge part used as an other end with respect to the edge part connected to the 1st and 2nd metal thin plate is provided.
  • thermoelectric generator cell of the present invention configured as described above, the heat flow passes through the joint surface of the composite laminate and flows from the high temperature side to the low temperature side, and the current flows for each unit unit of the metal thin plate 1, the strand 4, the cold junction, Since the wire 5 and the metal thin plate 2 flow in this order and the heat flow and the current cross-flow, the interference between the heat flow and the current can be reduced.
  • the cross-sectional areas and lengths of the strands 4 and 5 are appropriately selected so that the strands 4 and 5 act as a temperature difference holding unit.
  • the cross-sectional area and length of the wires 4 and 5 are appropriately selected, and the wires 4 and 5 are As a structure that is mechanically connected to 2 and pulled out from the composite laminate, the overall electrical conductivity is increased and the internal resistance is minimized by bypassing the composite laminate using metal thin wires and connecting them.
  • the thermoelectric power generation cell of the present invention has a multi-layered structure in which a plurality of thermoelectric power generation unit units are stacked, and a heating unit 111 side of the multi-layered body. It is a thermoelectric generation cell provided with the provided heat collecting plate 108 and the heat sink 109 provided in the heat radiating part side of the multiple laminated body.
  • the thermoelectric generator unit includes a first metal thin plate 101, a second metal thin plate 102 joined to the first metal thin plate, and a second metal facing the joining surface 106 of the first and second metal thin plates.
  • the cold junction 107 which joined the edge part used as the other end with respect to the edge part connected to the 1st and 2nd metal thin plate is provided.
  • an extended conductor portion is used in [3] instead of the second strand in [2].
  • the shape of the extended conductor portion is, for example, a band shape or a tape shape, and it is easy to take a large cross-sectional area as compared with the strand, and it can be used as a temperature difference holding portion, or a composite laminate using a metal extended conductor portion. By connecting by detouring, the apparent electrical conductivity can be increased as a whole, and the internal resistance can be minimized.
  • thermoelectric generator cell of the present invention preferably, the cold junctions of the thermoelectric generator cell are cooled in several groups or collectively to prevent generation of reverse thermoelectromotive force at each cold junction. Good.
  • the thermoelectric generator cell of the present invention preferably, as the insulating film of the thermoelectric generator cell, in addition to insulating between the laminates, an insulating material having plasticity that absorbs thermal displacement between the laminates is used. Good.
  • the metal thin plate 1 is a metal having an electric resistance of 70 ⁇ ⁇ cm ⁇ or less and a thermal conductivity of 60 W / m ⁇ K or more
  • the metal thin plate 2 is an electric
  • a metal having a resistivity of 70 ⁇ ⁇ cm or less and a thermal conductivity of 40 W / m ⁇ K or less is preferably used.
  • the electrical resistivity of tellurium used as the thermoelectric material is 400 m ⁇ ⁇ cm, which exceeds the upper limit of 70 ⁇ ⁇ cm of the electrical resistivity of [6], and toxic tellurium is not used as a specific matter of this invention.
  • thermoelectric generation module of the present invention is a thermoelectric generation module using the thermoelectric generation cell composed of the unit unit described above, wherein the stacking direction of the thermoelectric generation cells is arranged perpendicular to the heating surface.
  • the heating surface may be a flat surface or a curved surface.
  • thermoelectric power generation cell having a structure in which a cooling insulating oil part provided on the cooling part side of the power generation unit unit is provided is a basic structure.
  • the shape of the thermoelectric generator unit is devised as a temperature difference holding unit that maintains the temperature difference between the high temperature part and the low temperature part generated between the heating part and the cooling insulating oil part.
  • the shape of the metal conductor of the thermoelectric generator unit is devised as a structure that minimizes the internal resistance representing the relationship between voltage and current in the power generation element.
  • thermoelectric generator cell of the present invention a plurality of thermoelectric generator units are stacked in a state where they are insulated and separated from each other by adjacent thermoelectric generator units.
  • Refractory material frame 210 held in a state, heating unit 211 of a plurality of laminated units of thermoelectric generation unit units provided in refractory material frame 210, and cooling insulating oil provided on the cooling unit side of thermoelectric generation unit units
  • a thermoelectric generator unit having a structure spanned between the refractory material frame 210 and the cooling insulating oil portion 212, and the thermoelectric generator unit unit includes the refractory material frame 210.
  • first strip-shaped metal thin plate 201 having a structure spanned between the cooling insulation oil portion 212 and the fireproof material frame 210 and the cooling insulation oil portion 212.
  • Frame 210 is in contact with the first strip metal sheet
  • a cold junction 207 located at the end opposite to the joining surface of the first and second strip-shaped metal thin plates, and the cold junction has a structure cooled by the cooling insulating oil portion 212.
  • the first strip-shaped metal thin plate has a first extended conductor portion 204 positioned between the refractory material frame 210 and the cooling insulating oil portion 212
  • the second belt-like metal thin plate may have a second extended conductor portion 205 located between the refractory material frame 210 and the cooling insulating oil portion 212.
  • the joining surface 206 is joined by diffusion joining or laser beam welding.
  • the joining surface 206 of the first and second strip-shaped metal thin plates has a structure folded inside the refractory material frame 210 with the insulating layer interposed therebetween. It is good to have.
  • thermoelectric generation cell of the present invention a plurality of thermoelectric generation unit units are stacked in a state where they are insulated and separated from each other.
  • a refractory material frame 310 held in a state, a heating unit 311 of a plurality of stacked units of thermoelectric generator units provided in the refractory material frame 310, and first and first provided on both sides of the refractory material frame 310.
  • Two cooling insulating oil portions 312a and 312b, and first and second cooling insulating oil portions 312a and 312b provided on the first and second cooling portion sides of the thermoelectric generator unit.
  • the unit unit is structured to be stretched between the first cooling insulating oil part 312a, the refractory material frame 310, and the second cooling insulating oil part 312b.
  • the thermoelectric generator unit unit is a first strip-shaped metal thin plate 301 having a structure spanned between the first cooling insulating oil portion 312a and the refractory material frame 310. And a second strip-shaped metal sheet that is spanned between the refractory material frame 310 and the second cooling insulating oil portion 312b and joined to the first strip-shaped metal sheet by the refractory material frame 310. 302, an insulating layer 303 formed on the side opposite to the joint surface 306 of the first and second strip-shaped metal thin plates, and the first and second strips of the first and second strip-shaped metal thin plates.
  • the second cold junction may have a structure that is cooled by the second cooling insulating oil portion 312b.
  • the first strip-shaped metal thin plate has a first extended conductor portion 304 positioned between the first cooling insulating oil portion 312a and the refractory material frame 310.
  • the second strip-shaped metal thin plate preferably includes a second extension conductor portion 305 positioned between the refractory material frame 310 and the second cooling insulating oil portion 312b.
  • the thermoelectric generator unit described in [14] further includes a third belt-shaped metal thin plate 321 having a structure spanned between the second cooling insulating oil portion 312b and the refractory material frame 310, and a fireproof A fourth belt-like metal thin plate 322 that is spanned between the material-made frame 310 and the first cooling insulating oil portion 312a and joined to the third belt-like metal thin plate by the refractory material-made frame 310; A second insulating layer 323 formed on the opposite side surface of the third and fourth strip-shaped metal thin plates to the side opposite to the joint surface 326 of the third and fourth strip-shaped metal thin plates;
  • the second cold junction 307b cooled by the insulating oil portion 312b has a structure for joining the cold junction side end of the second strip metal thin plate and the cold junction side end of the third strip metal thin plate.
  • the first cold junction 307a cooled by the first cooling insulating oil portion 312a has a fourth It is good to have the structure which joins the cold junction side edge part of a strip
  • the third strip metal sheet has a third extended conductor portion 324 positioned between the second cooling insulating oil section 312b and the refractory material frame 310, and the fourth strip metal sheet is It is preferable to have a fourth extension conductor portion 325 positioned between the refractory material frame 310 and the first cooling insulating oil portion 312a.
  • the present invention has an effect that a part of the material characteristics necessary for thermoelectric generation is replaced by the function of the device structure, and thermoelectric generation using a safe and inexpensive thermoelectric material is possible.
  • FIG. 1 is a structural view of a composite laminated thermoelectric power generation cell showing an embodiment of the present invention, in which FIG. It is a principal part block diagram explaining the structure of the conventional thermocouple.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the distribution state of the voltage and electric current inside the thermoelectric generation cell which shows one Example of this invention, (A) is the voltage integrated value for every measurement terminal number, (B) is the composite lamination
  • FIG. 4 is a structural diagram of a composite stacked thermoelectric generator cell according to another embodiment of the present invention, where (A) is a cross-sectional view and (B) is a plan view in the BB direction of (A).
  • thermoelectric generator module As a heating / cooling system for a thermoelectric generator module according to another embodiment of the present invention, a structural diagram in which a plurality of strip-like thermoelectric generator cells are arranged, (A) is a cross-sectional view, and (B) is a cross-sectional view taken along line BB of (A). It is a top view of a direction.
  • FIG. 4 is a structural diagram of a thermoelectric generator module according to another embodiment of the present invention, where (A) is a cross-sectional view and (B) is a plan view in the BB direction of (A). Suitable for scale-up required to increase power generation.
  • a metal thin plate is a material shown in Table 1 and has a thickness of 0.1 to 3 mm and a size of 5 to 100 mm square.
  • the reason for limiting the numerical value is that, when the thickness is 0.1 mm or less, the joining process becomes difficult, and when the thickness is 3 mm or more, the number of stacked layers is reduced, so that an effective thermal current cannot be obtained. This is because when the size is 5 mm square or less, the bonding area is small and an effective thermal current cannot be obtained, and when the size is 100 mm square or more, thermal deformation becomes large and durability is lowered.
  • the strand is a material shown in Table 1 and is a thin wire having a diameter of 0.1 to 3 mm and a length of 50 to 200 mm.
  • the reason for limiting the numerical value is that when the diameter is 0.1 mm or less, the electric resistance becomes excessive, and when the diameter is 3 mm or more, the heat conduction becomes excessive, and an effective thermal current cannot be obtained.
  • the insulating film is an inorganic material such as magnesia, zirconia, or alumina, and is a film formed of a heat-resistant adhesive having plasticity that absorbs thermal displacement between layers in addition to an insulating property of about 3 kV / mm.
  • the extended conductor portion is a strip-shaped metal tape made of the materials shown in Table 1 and having a thickness of 0.1 to 3 mm, a length of 50 to 200 mm, and a width of 2 to 30 mm.
  • the connection is preferably one that can ensure electrical connection and mechanical connection at a high temperature of about 1000 ° C., for example, laser beam welding may be used.
  • the joining is preferably one that can ensure electrical connection and mechanical connection at a cold junction of about 0 to 50 ° C., for example, brazing or soldering.
  • thermoelectric generation cell is a thermoelectric generation cell that uses thermoelectric generation based on the Seebeck effect of a metal material.
  • This thermoelectric generator cell has a structure that takes advantage of the electrical conductivity and thermal conductivity of the metal material, a temperature difference holding unit that maintains a temperature difference between the high temperature part and the low temperature part of the metal material, and a voltage in the thermoelectric generator cell. And a member made of the metal material having a structure for minimizing an internal resistance representing a relationship between current and current.
  • thermoelectric generator cell according to the present invention is provided on the heating unit 11 side of a multi-layered body formed by laminating a plurality of thermoelectric power generation unit units and the multi-layered body.
  • the refractory material frame 10 is a cylindrical frame that covers the peripheral surface of the plurality of laminates when the bottom surface of the plurality of laminates is covered with the heat collecting plate 8 and the top surface is covered with the heat sink 9. There may be provided a slit or an opening window for drawing out the element wire 4 and the second element wire 5.
  • a plurality of laminates composed of the first metal thin plate 1, the second metal thin plate 2, and the insulating film 3 are laminated in a plurality of laminates covered with the refractory material frame 10.
  • any appropriate metal material can be used as long as it is a metal plate material having an appropriate strength as a structural material.
  • a metal plate material having an appropriate strength as a structural material.
  • a magnesium alloy plate, a stainless steel plate, a copper plate, a steel plate A variety of things can be used.
  • an insulating material is stuck or insulation is ensured. A surface treatment that can be performed is recommended.
  • the refractory material frame 10 is made of, for example, refractory cement or refractory ceramics.
  • the thermoelectric generation unit unit has a first metal thin plate 1, a second metal thin plate 2, an insulating film 3, a first strand 4, a second strand 5, a joining surface 6, and a cold junction 7. Yes.
  • the first metal thin plate 1 is preferably a metal plate made of Cu, Al, Ni, Fe, Sn, for example, and has an electric resistance of 70 ⁇ ⁇ cm or less as shown in Table 1 to be described later.
  • a metal having a rate of 60 W / m ⁇ K or more is preferable.
  • the second metal thin plate 2 is joined to the first metal thin plate 1, and is preferably a metal plate made of alumel, Ti, constantan, or chromel, for example, as shown in Table 1 described later. Is preferably 70 ⁇ ⁇ cm or less and a thermal conductivity of 40 W / m ⁇ K or less.
  • alumel has a composition of nickel (Ni) 94 wt%, manganese (Mn) 2.5 wt%, aluminum (Al) 2 wt%, silicon (Si) 1 wt%, and iron (Fe) 0.5 wt%.
  • Chromel has a composition of 89 wt% nickel (Ni), 9.8 wt% chromium (Cr), 1 wt% iron (Fe), and 0.2 wt% manganese (Mn).
  • Mangan has a composition of copper (Cu) 55 wt% and nickel (Ni) 45 wt%.
  • the insulating film 3 is arranged in a state of being overlapped on the facing surface of the second thin metal plate 2.
  • the opposing surface of the 2nd metal thin plate 2 is a surface facing the joining surface 6 of the 1st and 2nd metal thin plate.
  • the first strand 4 is connected to the thin metal plate 1 and made of the same material as the thin metal plate 1.
  • the second strand 5 is connected to the metal thin plate 2 and is made of the same material as the metal thin plate 2. For this joining, it is desirable to be able to ensure electrical connection and mechanical connection even at a high temperature of about 1000 ° C., for example, laser beam welding may be used.
  • the bonding surface 6 is a bonding surface between the first and second metal thin plates.
  • the cold junction 7 is obtained by joining the end portions which are the other ends of the first and second strands.
  • the end part which becomes the other end of the 1st and 2nd strand is the opposite side of the 1st and 2nd strand with respect to the end part connected to the 1st and 2nd metal sheet. It is an end.
  • the cooling unit 12 cools the cold junctions 7 provided in each of the thermoelectric generation unit units in several groups or collectively.
  • the heat received by the heat collecting plate 8 shown in FIG. 1 (A) generates a thermoelectromotive force at the joining surface 6 where the metal thin plate 1 and the metal thin plate 2 are diffusion-bonded and penetrates the insulating film 3 to the upper layer.
  • the heat is transmitted and is repeatedly generated, and the heat flows and is dissipated from the heat sink 9 to the atmosphere.
  • the thermal current generated at the joint surface 6 once goes out of the stack by the first strand 4, passes through the cold junction 7 in the cooling section (12), and then passes through the second strand 5. Return to lamination.
  • the above mechanism is repeated by the same number as the number of layers, and the increased thermal current flows from the positive electrode to the external load circuit.
  • thermoelectric generator cell the situation where an electromotive force is generated inside the thermoelectric generator cell is summarized in FIGS. 3 (a) and 3 (b).
  • FIG. 3A the voltage and current between the positive electrode of the thermoelectric generator cell and the measurement terminal of each unit unit increase stepwise with an even number of measurement terminal numbers. That is, the thermoelectromotive force is generated at the joint surface 6 and is not generated at the cold junction 7.
  • a 12 mm square metal thin plate is compared with a 0.3 mm diameter thermocouple shown in FIG. 3 digits or more.
  • the wire connected to the composite laminated metal thin plate has a diameter and length in which the heat of the composite laminate is difficult to be transmitted, for example, a diameter of 0.3 mm and a length of 70 mm, and the other end of the strand is joined to form a cold junction.
  • the arrangement order of the two kinds of metals is reversed in every other joint, and in the opposite joint, the order is reversed. Electromotive force is generated and the overall electromotive force is reduced. However, if the temperature difference at the junction is zero, the electromotive force at the junction is zero. In the present embodiment, the electromotive force in the reverse direction is made substantially zero by cooling the cold junction where the joining of the two kinds of metals is in the reverse direction.
  • thermoelectric generation cell A combination of the composite laminate and the cold junction of the wire is used as a unit unit, and a plurality of unit units are stacked to form a thermoelectric generation cell.
  • the junction area of the thermoelectric generator cell is 5 digits or more larger than the thermocouple having a diameter of 0.3 mm shown in FIG.
  • the heat given to the thermoelectric generation cell is repeatedly used for thermoelectric generation through the joint surface, and the heat dissipated from the upper surface of the thermoelectric generation cell is reduced to increase the electromotive force.
  • the bottom surface of the thermoelectric generator cell is heated and each cold junction of the wire is cooled, the heat flow passes through the composite laminate to the low temperature side and is dissipated from the upper surface of the thermoelectric generator cell.
  • the generated thermal current repeatedly increases by detouring back to the composite laminate via each cold junction of the wire.
  • thermoelectric generator cell The device structure of the thermoelectric generator cell will be described in more detail below.
  • a laminated structure of metal thin plate 1 / metal thin plate 2 / insulating film is formed by superimposing an insulating film on a joined body obtained by joining two kinds of metal thin plates 1 and 2, and strands 4 and 5 of the same material as metal thin plates 1 and 2 are formed.
  • strands 4 and 5 are formed.
  • thermoelectric generation cell A plurality of unit units are laminated to form a composite laminated thermoelectric generation cell in which metal thin plate 1 / metal thin plate 2 / insulating film 3 / metal thin plate 1 / metal thin plate 2 / insulating film 3 are repeated.
  • the heat flow of the thermoelectric generator cell flows from the high temperature side to the low temperature side through the joint surface of the composite laminate, and the generated current is generated from the electrically connected wires that repeat the joint surface-cold junction-joint surface-cold junction.
  • the detour flows.
  • the heat flow flows through the composite laminate, but the current is cut off, and the current flows through the bypass, but the heat flow hardly flows. That is, the heat flow and the current are in a cross-flow state, there is no interference between the heat flow and the current, and a stable thermoelectromotive force is obtained.
  • the material of the strand is the same as that of the metal thin plates 1 and 2 and the diameter of the strand is, for example, about 0.3 mm in diameter so that the internal resistance does not increase.
  • the length of the wire is set to about 70 mm so that the heat of the metal thin plates 1 and 2 is not easily transmitted to the cold junction.
  • the power generation characteristic (temperature difference of 120 ° C.) of a copper / constantan thermocouple having a diameter of 0.3 mm and a length of 10 cm, which is the technical root of the present invention, is as shown in FIG. : 3.7 mV, internal resistance: 3.1 ⁇ , maximum output was only 1 ⁇ W.
  • Example 1 12 mm square and 0.3 mm thick copper and constantan were bonded at a bonding temperature of about 840 ° C., a heating time of 30 minutes, a pressure of about 1.7 MPa, and a bonding atmosphere of about 1.8 ⁇ 10 ⁇ 3 Pa.
  • 12 mm square and 0.3 mm thick copper correspond to the first thin metal plate 1.
  • a constantan of 12 mm square and 0.3 mm thickness corresponds to the second metal thin plate 2.
  • the joining portion of copper and constantan corresponds to the joining surface 6 of the first and second metal thin plates. As shown in FIG. 1 (A), the joined 12 mm square copper / constantan thin plates were laminated with 6 layers stacked therebetween.
  • Example 1 As a result, in Example 1, as shown in FIG. 4B, the no-load voltage was 45.9 mV and the internal resistance was 2.95 ⁇ , and the voltage was 12 times (3.7) compared to the comparative example. ⁇ 45.9 mV), the internal resistance remained unchanged (3.1 ⁇ 2.95 ⁇ ), and the maximum output increased from 1 ⁇ W to 176 ⁇ W, demonstrating the effect of the present invention.
  • FIG. 5 shows the temperature characteristics of the no-load voltage in Example 1. The no-charge voltage increases with a quadratic curve as the temperature difference increases, and shows a different aspect from a semiconductor material in which the thermoelectromotive force decreases at a high temperature. That is, the result of FIG.
  • thermoelectromotive force increases as the feature of the metal thermoelectric material becomes higher, and is superior.
  • Example 1 as shown in FIG. 3B, it was found that when the bottom surface of the thermoelectric generator cell was heated to 250 ° C., the top surface temperature of the thermoelectric generator cell was as high as 110 ° C. and there was a large amount of unused heat.
  • Example 2 Therefore, in Example 2, the number of stacked layers is increased from 6 layers in Example 1 to 50 layers, and the upper surface temperature is lowered to near room temperature. Furthermore, as a scale-up, the joint surface is expanded from 12 mm square to 50 mm square, and 300 thermoelectric generator cells are arranged in a plane (15 ⁇ 20), so that the level of power generation is equivalent to 1.2 kW / m 2 solar power generation. It becomes a thermoelectric power generation module having capacity.
  • FIG. 6 illustrates a thermoelectric generation module in which six thermoelectric generation cells are arranged in a plane.
  • the thermoelectric generator cell according to the present embodiment includes a plurality of laminates formed by laminating a plurality of thermoelectric generation unit units, a heat collecting plate 28 provided on the heating unit 31 side of the plurality of laminates, and a plurality of laminates. And a heat radiating plate 29 provided on the heat radiating part side of the body.
  • a cold junction is thermally connected to the cooling unit 32.
  • the thermoelectric generator unit has a first strand (24) and a second strand (25), and, similarly to the thermoelectric generator unit shown in FIG. A thin metal plate, an insulating film, a bonding surface, and a cold junction.
  • FIG. 7 shows a third embodiment of a thermoelectric generation module having a pipe structure in which thermoelectric generation cells are arranged in a tube shape as a heating / cooling method of the thermoelectric generation module.
  • a thermoelectric generator cell in the thermoelectric generator cell according to the present embodiment, a plurality of laminated bodies formed by laminating a plurality of thermoelectric generator unit units are arranged radially. Since a high-temperature gas such as combustion exhaust gas or a high-temperature fluid flows through the tube-shaped central cavity, a heat collecting plate 48 is provided on the heating unit 51 side of the multilayer body. A heat radiating plate 49 is provided on the tube-shaped cylindrical outer edge portion as the heat radiating portion side of the multilayer body.
  • the cooling unit 52 is provided, for example, as a heat radiating fin on the heat radiating plate 49, and preferably a cold junction is thermally connected.
  • the refractory material frame 50 is a substantially three-stroke columnar frame provided in a wedge-shaped gap between a plurality of laminated bodies arranged radially.
  • the substantially three-drawn columnar tip is in contact with the heat collecting plate 48 located on the tube-shaped central cavity side.
  • the bottom part of the substantially three-stroke columnar shape is in contact with the heat radiating plate 49 located on the tubular cylindrical outer edge side.
  • Each laminated body separated by the refractory material frame 50 is laminated with a first metal thin plate, a second metal thin plate, and an insulating film.
  • warm water is allowed to flow through the pipe and acts as the heating unit 51 side of the multilayer body via the heat collecting plate 48. Further, by bringing the pipe into contact with a coolant such as cold water, for example, the heat radiating plate 49 on the pipe surface and the cooling unit 52 that is exposed to the pipe surface are cooled.
  • a coolant such as cold water
  • the heating surface can be formed into an arbitrary curved shape by arranging the stacking direction of the thermoelectric generator cells perpendicularly to the heating surface and filling and fixing the refractory material frame. It can be a thermoelectric generation module.
  • an extended conductor portion is used instead of the second strand of Example 1.
  • the shape of the extended conductor portion is, for example, a band shape or a tape shape, and it is easy to take a large cross-sectional area as compared with the strand, and it can be used as a temperature difference holding portion, or a composite laminate using a metal extended conductor portion.
  • FIG. 8 is a structural diagram of a composite laminated thermoelectric generator cell showing Example 4, where (A) is a cross-sectional view and (B) is a plan view in the BB direction of (A). 8 (A) and 8 (B), those having the same functions as those in FIGS. 1 (A) and 1 (B) are designated by the corresponding names, and the detailed description thereof is omitted. .
  • the thermoelectric generator cell according to the present embodiment includes a plurality of laminates formed by laminating a plurality of thermoelectric generation unit units, a heat collecting plate 108 provided on the heating unit 111 side of the plurality of laminates, and a plurality of laminates.
  • thermoelectric power generation unit units are electrically connected in series.
  • thermoelectric generation unit unit on the heat radiating plate 109 side is connected to the negative electrode terminal 133
  • thermoelectric generation unit unit on the heat collecting plate 108 side is connected to the positive electrode terminal 134.
  • the thermoelectric generator unit includes a first metal thin plate 101, a second metal thin plate 102 bonded to the first metal thin plate, a bonding surface 106, an insulating film 103, a first extension conductor portion 104, and a second extension conductor. A portion 105 and a cold junction 107 are provided.
  • the insulating film 103 is formed so as to be superimposed on the facing surface of the second metal thin plate 102 facing the bonding surface 106 of the first and second metal thin plates.
  • the first extended conductor portion 104 is a strip-shaped metal thin plate that is connected to the first metal thin plate 101 and made of the same material as the first metal thin plate 101.
  • the second extension conductor portion 105 is connected to the second metal thin plate 102 and is a strip-shaped metal thin plate made of the same material as the second metal thin plate 102.
  • the cold junction 107 is a cold junction in which the other end is joined to the end of the first and second extension conductors 104 and 105 connected to the first and second thin metal plates 101 and 102. It is a contact point.
  • thermoelectric generation mechanism is repeated by the same number as the number of layers, and the increased thermal current flows to an external load circuit connected to the positive terminal 134 and the negative terminal 133.
  • the heat flow and current paths are separated as a device structure in which electricity does not flow in the direction of heat flow and heat does not flow easily in the direction of flow of electricity. By cross-flowing, the heat electromotive force is stabilized without interference of heat flow and current.
  • the device structure is reviewed retrospectively to the principle of thermoelectric power generation, and a thermoelectric conversion device using a safe thermoelectric material used for a thermocouple is developed. It's enough. Therefore, it is not necessary to limit to a structure in which the heat flow and current paths are separated and cross-flowed as in the composite laminated thermoelectric generation cells of Examples 1 to 4 above.
  • thermoelectric power generation cell that uses thermoelectric power generation by the Seebeck effect of a metal material, and has a structure that takes advantage of the good conductivity and thermal conductivity of the metal material. What is necessary is just to provide the temperature difference holding
  • FIG. 9 is a structural diagram in which a plurality of strip-like thermoelectric generator cells are arranged as a heating / cooling method of a thermoelectric generator module showing Embodiment 5 of the present invention, where (A) is a cross-sectional view, and (B) is a cross-sectional view of (A). It is a top view of a BB direction.
  • 9 (A) and 9 (B) components having the same functions as those in FIGS. 1 (A), (B), FIGS. 8 (A) and (B) are described with corresponding names. And detailed description thereof is omitted.
  • thermoelectric generator cell includes a refractory material frame 210, a heating unit 211 having a plurality of laminated bodies, and a cooling insulating oil unit 212, and the thermoelectric power generation unit unit includes a refractory material frame 210 and a cooling unit. It has a structure spanned between the insulating oil part 212.
  • the refractory material frame 210 is used for stacking a plurality of thermoelectric generation unit units in a state where they are insulated and separated from adjacent thermoelectric generation unit units.
  • a refractory ceramic ensures electrical insulation.
  • the multi-layer heating unit 211 is a heating unit of the multi-layer body of the thermoelectric power generation unit unit provided inside the refractory material frame 210 and is in contact with a high-temperature gas such as a combustion gas.
  • the refractory material frame 210 is provided with an upper opening 214 and a lower opening 215 so that the gas medium heated by the heating part 211 is blown through.
  • the cooling insulating oil part 212 is provided on the cooling part side of the thermoelectric generator unit.
  • thermoelectric power generation unit units are electrically connected in series.
  • the thermoelectric generation unit unit located on the uppermost side of the refractory material frame 210 is connected to the negative electrode terminal 233
  • the thermoelectric generation unit unit located on the lowermost side of the refractory material frame 210 is connected to the positive electrode terminal 234. ing.
  • the thermoelectric generator unit includes a first strip metal thin plate 201, a second strip metal thin plate 202, an insulating layer 203, a first extension conductor portion 204, a second extension conductor portion 205, and a cold junction 207.
  • the first strip-shaped metal thin plate 201 has a structure including a portion located inside the refractory material frame 210 and a portion spanned between the refractory material frame 210 and the cooling insulating oil portion 212. Similar metal materials are used.
  • the second strip-shaped metal thin plate 202 has a structure composed of a portion located inside the refractory material frame 210 and a portion spanned between the refractory material frame 210 and the cooling insulating oil portion 212,
  • the material frame 210 is joined to the first strip metal sheet.
  • the insulating layer 203 is formed on the side opposite to the joint between the first and second strip-shaped metal thin plates and located on the side opposite to the joint surface 206 of the first and second strip-shaped thin metal plates. Since the insulating layer 203 may be provided in a high temperature portion inside the refractory material frame 210, it preferably has heat resistance.
  • the cold junction 207 is located at the end opposite to the joining surface of the first and second strip-shaped metal thin plates and is cooled by the cooling insulating oil portion 212.
  • the first strip-shaped metal thin plate 201 has a first extended conductor portion 204 positioned between the refractory material frame 210 and the cooling insulating oil portion 212, and the second strip-shaped metal thin plate 202 is a refractory material frame. It is preferable to have a second extension conductor portion 205 located between 210 and the cooling insulating oil portion 212.
  • the first extension conductor part 204 and the second extension conductor part 205 act as a temperature difference holding part that maintains a temperature difference between the refractory material frame 210 that is a high temperature part and the cooling insulating oil part 212 that is a low temperature part. Further, the first strip metal thin plate 201 and the second strip metal thin plate 202, the first extension conductor portion 204 and the second extension conductor portion 205 minimize the internal resistance representing the relationship between the voltage and the current in the power generation element. It also acts as a structure.
  • the assembly state and operation of the apparatus configured as described above will be described.
  • the central portions of the first and second strip-shaped metal thin plates 201 and 202 cut into strips are surface-bonded to form a bonding surface 206.
  • belt-shaped metal thin plates 201 and 202 including the joining surface 206 is bend
  • a plurality of pairs (6 pairs in FIG. 9B) of unit units of the thermoelectric generator cell are fixed to the refractory material frame 210 and stacked in a grate pattern.
  • the first extension conductor part 204 of the first strip metal thin plate 201 is connected to the end of the second extension conductor part 205 of the second strip metal thin plate 202 of the adjacent thermoelectric generation cell.
  • the cold junction 207 is formed by bonding.
  • the heat supplied by the heating unit 211 shown in FIG. 9A is heated at the joint surface 206 obtained by diffusion-bonding the first and second strip-shaped metal thin plates 201 and 202.
  • An electromotive force is generated, blown between adjacent thermoelectric power generation cells and transmitted to the upper thermoelectric power generation cell, and repeatedly generates a thermoelectromotive force to become a heat flow, and from the cooling insulating oil portion 212 through the radiation fins 213. Dissipated into the atmosphere.
  • the thermal current generated on the joining surface 206 is temporarily out of the stack by the first extension conductor portion 204, passes through the cold junction 207 in the cooling insulating oil portion 212, and is then sent by the second extension conductor portion 205. Return to the next stack.
  • the above thermoelectric generation mechanism is repeated by the same number as the number of layers, and the increased thermal current flows to an external load circuit connected to the positive terminal 234 and the negative terminal 233.
  • FIG. 10 is a structural diagram of a thermoelectric generator module showing Embodiment 6 of the present invention, in which (A) is a cross-sectional view and (B) is a plan view in the BB direction of (A).
  • Example 6 is suitable for the scale-up required for increasing the amount of power generation.
  • FIGS. 10A and 10B the same action as in FIGS. 1A and 1B, FIGS. 8A and 8B, FIGS. 9A and 9B is performed. Uses corresponding descriptions with corresponding names and omits detailed descriptions.
  • thermoelectric generator cell includes a refractory material frame 310, a multi-layered heating unit 311, first and second cooling insulating oil units 312a, 312b, and a thermoelectric generation unit unit.
  • the refractory material frame 310 is used for laminating a plurality of thermoelectric generation unit units in a state of being insulated from adjacent thermoelectric generation unit units.
  • the refractory material frame 310 ensures electrical insulation by using a refractory ceramic, for example.
  • the heating unit 311 of the multiple laminated body is a heating unit of the laminated body of the thermoelectric power generation unit unit provided inside the refractory material frame 310 and is in contact with a high-temperature gas such as a combustion gas.
  • the refractory material frame 310 is provided with an upper opening 314 and a lower opening 315 so that the gas medium heated by the heating unit 311 blows through.
  • the first and second cooling insulating oil portions 312a and 312b are provided at predetermined intervals on both sides of the refractory material frame 310, and are provided on the first and second cooling portion sides of the thermoelectric generator unit. It has been. Radiating fins 313a and 313b are provided above the cooling insulating oil portions 312a and 312b. Heat radiating plates 309a and 309b are connected to the heat radiating fins 313a and 313b, respectively. The heat sinks 309a and 309b are located in the cooling insulating oil portions 312a and 312b. In the multi-layered body, the thermoelectric power generation unit units are electrically connected in series.
  • thermoelectric generation unit unit located on the uppermost side of the refractory material frame 310 is connected to the negative electrode terminal 333
  • thermoelectric generation unit unit located on the lowermost side of the refractory material frame 310 is connected to the positive electrode terminal 334. ing.
  • the thermoelectric generator unit includes a first strip metal sheet 301, a second strip metal sheet 302, an insulating layer 303, a joint surface 306, a first cold junction 307a, a second cold junction 307b, and a third strip metal sheet. 321, a fourth strip metal thin plate 322, a bonding surface 326, and a second insulating layer 323.
  • the first strip-shaped metal thin plate 301 has a structure including a portion located inside the refractory material frame 310 and a portion spanned between the first cooling insulating oil portion 312a and the refractory material frame 310. Therefore, the same metal material as that of the thin metal plate is used.
  • the second strip-shaped metal thin plate 302 has a structure including a portion located inside the refractory material frame 310 and a portion spanned between the refractory material frame 310 and the second cooling insulating oil portion 312b.
  • the first strip metal thin plate 301 is joined to the inside of the refractory material frame 310.
  • the insulating layer 303 is formed on the side opposite to the bonding surface 306 of the first and second strip-shaped metal thin plates and opposite to the bonding surface 306 of the first and second strip-shaped metal thin plates, and ensures electrical insulation. .
  • the insulating layer 303 is preferably provided with heat resistance because it may be provided in a high temperature portion inside the refractory material frame 310.
  • the 1st cold junction 307a is located in the edge part on the opposite side to the joint surface of a 1st and 2nd strip
  • the 2nd cold junction 307b is located in the edge part on the opposite side to the joining surface of a 1st and 2nd strip
  • the third strip-shaped metal thin plate 321 has a structure including a portion located inside the refractory material frame 310 and a portion spanned between the second cooling insulating oil portion 312 b and the refractory material frame 310. Therefore, the same metal material as that of the thin metal plate is used.
  • the fourth strip-shaped metal thin plate 322 has a structure including a portion located inside the refractory material frame 310 and a portion spanned between the refractory material frame 310 and the first cooling insulating oil portion 312a. And it joins to a 3rd strip
  • the second insulating layer 323 is formed on the opposite side surface of the third and fourth strip-shaped metal thin plates located on the side surface opposite to the joint surface 326 of the third and fourth strip-shaped metal thin plates.
  • the second cold junction 307b cooled by the second cooling insulating oil portion 312b is joined to the cold junction side end of the second strip metal sheet and the cold junction side end of the third strip metal sheet. It has a structure.
  • the first cold junction 307a cooled by the first cooling insulating oil portion 312a joins the cold junction side end of the fourth strip metal sheet and the cold junction side end of the first strip metal sheet. It has a structure.
  • the first strip-shaped metal thin plate 301 has a first extended conductor portion 304 located between the first cooling insulating oil portion 312 a and the refractory material frame 310.
  • belt-shaped metal thin plate 302 has the 2nd extension conductor part 305 located between the refractory material frame 310 and the 2nd cooling insulation oil part 312b.
  • the first extension conductor part 304 and the second extension conductor part 305 act as a temperature difference holding part that maintains the temperature difference between the refractory material frame 310 that is a high temperature part and the cooling insulating oil parts 312a and 312b that are low temperature parts. To do.
  • the first strip metal thin plate 301, the second strip metal thin plate 302, the first extension conductor portion 304, and the second extension conductor portion 305 minimize the internal resistance that represents the relationship between voltage and current in the power generation element. It also acts as a structure.
  • the third strip-shaped metal thin plate 321 has a third extended conductor portion 324 located between the second cooling insulating oil portion 312 b and the refractory material frame 310.
  • the fourth strip-shaped metal thin plate 322 has a fourth extended conductor portion 325 positioned between the refractory material frame 310 and the first cooling insulating oil portion 312a.
  • the third extension conductor part 324 and the fourth extension conductor part 325 act as a temperature difference holding part that maintains a temperature difference between the refractory material frame 310 that is a high temperature part and the cooling insulating oil parts 312a and 312b that are low temperature parts. To do.
  • the first strip metal thin plate 321, the second strip metal thin plate 322, the third extension conductor portion 324, and the fourth extension conductor portion 325 minimize the internal resistance representing the relationship between the voltage and the current in the power generation element. It also acts as a structure.
  • the operation of the sixth embodiment is basically the same as that of the fifth embodiment. Furthermore, according to the structure of the sixth embodiment, by making the joining surfaces 306 and 326 of the strip-shaped metal thin plates to be elongated without being bent, heat deformation can be easily absorbed and durability is increased. At the same time, two insulating oil baths as the cooling insulating oil portions 312a and 312b are provided, and the cold junction gap is widened to improve the cooling effect.
  • thermoelectric material used in the thermoelectric generator cell is shown as the thermoelectric material used in the thermoelectric generator cell, but the thermoelectric material used in the present invention is not limited to the above.
  • the electrical resistance shown in Table 1 is 70 ⁇ ⁇ cm or less and the thermal conductivity is 60 W / m ⁇ K or more (Cu, Al, Ni, Fe, Sn), and the electrical resistance is 70 ⁇ ⁇ cm or less and the thermal conductivity.
  • Is combined with metals of 40 W / m ⁇ K or less (alumel, Ti, constantan, chromel), and two types of metals with different thermal conductivity more than twice, such as Al / Ti, Al / chromel, Al / constantan, Ni / Ti, Fe / constantan, Sn / Ti, or the like can be used by bonding.
  • diffusion bonding was adopted as a method for joining the thin metal plates.
  • the vacuum deposition method, the base Treated plating methods and rolling clad methods can be used.
  • industrial production becomes possible by joining thin metal sheets with a large area by a rolling clad method and cutting by laser processing or the like that does not damage the joining interface.
  • thermoelectric generation cell of the present invention a thermoelectric conversion device using a cheap and safe general-purpose thermoelectric material can be realized without using harmful bismuth tellurium (Bi 2 Te 3 ), and thermoelectric generation is widely spread. Technology base is possible. According to the thermoelectric generator cell of the present invention, it is not competing with the development of conventional thermoelectric materials, and the development and popularization of thermoelectric power generation can be achieved by a device structure that maximizes the performance of general-purpose thermoelectric materials. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】 安全で安価な汎用的熱電材料を用いた熱発電セルを提供する。 【解決手段】 熱発電単位ユニットを、隣接した熱発電単位ユニット相互で絶縁した状態で、複数積層した状態で保持する耐火材製枠(310)と、前記耐火材製枠に設けられた、前記熱発電単位ユニットの複数積層体の加熱部(311)と、前記耐火材製枠の両側に設けられた第1及び第2の冷却絶縁油部(312a、312b)であって、前記熱発電単位ユニットの第1及び第2の冷却部側に設けられた第1及び第2の冷却絶縁油部(312a、312b)とを備え、前記熱発電単位ユニットは、前記第1の冷却絶縁油部、前記耐火材製枠、及び前記第2の冷却絶縁油部の間に伸長した状態で架け渡される構造の熱発電セル。

Description

熱発電セル及び熱発電モジュール
 本発明は、金属の熱電材料を用いた熱電変換のデバイス構造に関するものである。
 利用されていない廃熱を電気に変換して環境負荷を軽減することは、時代の要請であり、熱エネルギーを電気に直接変換するゼーベック効果によって、2種類の異種金属または半導体の両端に温度差をつけると起電力が発生することはよく知られている。
 例えば、半導体の熱電材料では、高温部で運動エネルギーの大きくなったキャリア(電子と正孔)が、温度の低い方に拡散して起電力が発生する。n型とp型半導体では電位差が逆になるため、金属電極を介してn型とp型半導体を交互に接続したp-n-pのπ型構造を直列接続して大きな起電力を得ることができる(例えば、特許文献1)。
 電子は電気のキャリアであると同時に熱を運ぶキャリアなので、熱電材料には熱伝導度が小さく且つ電気伝導度が大きいという二つの特性がある。しかし、両者の特性はトレードオフ関係にある。そこで、両者の特性を有するビスマス・テルル合金(BiTe)が、有害であるにも拘わらず、熱電材料として使われている。
 金属の熱電材料では、キャリアは電子だけなので、半導体の熱電材料とはデバイス構造が異なる。しかし、高温部で電子の運動エネルギーが大きくなって低温側に拡散して起きるゼーベック効果によって発電することは、両者で同じである。
 金属の熱電材料を用いた新技術として、特許文献2では、熱電材料と金属を交互に傾斜接合してチューブに加工し、熱流と電流の向きを直交させた熱発電モジュールが開示されている。この技術では、熱発電チューブ内と表面の間に温度差を与えると、熱電材料層よりも熱伝導性の高い金属層を熱が優先的に伝達するため、各熱電材料層の温度勾配にz軸方向成分が生じる。このため、各熱電材料層にはゼーベック効果によってz軸方向の起電力が発生し、起電力が積層体内で直列的に重畳される。積層の傾斜角度と寸法を最適化して積層間の熱流を安定させると、全体としてチューブ内側の電極とチューブ表面の電極の間に大きな電位差が発生する。熱発電チューブに使用する熱電材料には、ゼーベック係数が30μV/K以上で電気抵抗率が10mΩ・cm以下の金属であれば利用できると記載されている。
 しかし、上記熱発電チューブの積層間は絶縁されておらず、電気的に一体構造であるので、熱流がミクロ的に変動すると積層間に無効電流が発生して熱電変換効率が低下する。そのため、熱発電チューブの実施例では、従来通り熱電特性に優れるBiTeが使われており、BiTe等のTe化合物は人体に有害であるため取扱いに注意が必要となる。
 一方、温度測定に使う熱電対には、安全性に全く問題のない熱電材料が使われているが、その熱電材料を用いた熱発電を行うには至っていない。
 原理的には熱電対の熱電材料を用いて熱発電することは可能であるが、熱電対を直列に接続すると、電圧が増加すると同時に内部抵抗が増加する。そのため、非特許文献1に見られるように、熱電対の熱電材料を用いた実用的熱電変換デバイスを開発することは困難であるとされてきた。
 熱電対に必要な特性は、温度に比例した電圧が発生すること、温度測定範囲が広いこと、耐久性が高いこと等であり、電流が少ないことは問題にならない。そのため、電流が少ない原因である熱電対の内部抵抗を小さくする研究開発は、今まで行われて来なかった。
 上記の状況下にあって、地球温暖化対策として環境に優しい熱発電を普及させるためには、BiTeのような毒性のある材料ではなく、安全で安価な熱電材料を用いた熱発電を可能にする汎用性のある技術が必要である。
特開2013-016685公報 特開2016-63075公報
株式会社八光電機、熱の実験室-第3回、2004.11、インターネット<URL:http://www.hakko.co.jp>
 汎用的に温度測定に使われる熱電対を直列に接続すると、電圧が増加するが、同時に内部抵抗が増加するため、熱電対の熱電材料は熱発電に利用できなかった。その課題を解決するため、熱発電の原理に遡ってデバイス構造を見直し、熱電対に使用されているような安全な熱電材料を用いた熱電変換デバイスを開発する。
発明が解決するための手段
[1] 本発明の熱発電セルは、金属材料の有するゼーベック効果による熱発電を用いた熱発電セルであって、当該金属材料の導電性と熱伝導性の良好性を生かす構造として、当該金属材料の高温部と低温部の温度差を維持する温度差保持部と、発電素子における電圧と電流の関係を表す内部抵抗を極小化する構造を有する金属材料の部材とを備えることを特徴とする。
 また、発明者らは、熱電対の熱電材料を用いて熱発電が困難な原因を解決する手段として、熱発電に必要な機能を熱電材料だけが担うのではなく、熱発電デバイスを構成する各構成要素に機能分離し、「熱の流れる方向には電気が流れなく、電気の流れる方向には熱が流れ難くいデバイス構造」にすることによって、「熱電材料に必要な熱伝導度が小さく且つ電気伝導度が大きいトレードオフ関係にある材料特性」の一部を代替する構造を想到した。
 つまり、以下の[2]~[6]の熱発電セルとして、熱伝導率の小さい絶縁膜と金属薄板を複合積層することで全体として見掛け熱伝導率を小さくし、金属の細線又は延長導体部を用いて複合積層体を迂回させて接続することで全体として見掛け電気伝導率を大きくする以下の創意工夫を行った。
[2] 本発明の熱発電セルは、例えば図1(A)、(B)に示すように、熱発電単位ユニットを複数積層してなる複数積層体と、複数積層体の加熱部11側に設けられた集熱板8と、複数積層体の放熱部側に設けられた放熱板9とを備える熱発電セルである。熱発電単位ユニットは、第1の金属薄板1と、第1の金属薄板1に接合された第2の金属薄板2と、第1と第2の金属薄板の接合面6と対向する第2の金属薄板2の対向面に重ねた絶縁膜3と、第1の金属薄板1に接続される第1の素線4であって、第1の金属薄板1と同じ材質の第1の素線4と、第2の金属薄板2に接続される第2の素線5であって、第2の金属薄板2と同じ材質の第2の素線5と、第1と第2の素線の、第1及び第2の金属薄板に接続された端部に対して、他端となる端部を接合した冷接点7とを備える。
 このように構成された本発明の熱発電セルにおいて、熱流は複合積層の接合面を貫通して高温側から低温側へ流れ、電流は単位ユニット毎に金属薄板1、素線4、冷接点、素線5、金属薄板2の順に流れ、且つ、熱流と電流がクロスフローするので、熱流と電流の干渉が少なくて済む。
 また、素線4、5は温度差保持部として作用させるべく、素線4、5の断面積と長さを適切に選択する。発電素子における電圧と電流の関係を表す内部抵抗を極小化する構造とするために、素線4、5の断面積と長さを適切に選択すると共に、素線4、5を金属薄板1、2に機械的に接続して複合積層から引き出す構造として、金属の細線を用いて複合積層を迂回させて接続することで全体として見掛け電気伝導率を大きくして、内部抵抗を極小化している。
[3] 本発明の熱発電セルは、例えば図8(A)、(B)に示すように、熱発電単位ユニットを複数積層してなる複数積層体と、複数積層体の加熱部111側に設けられた集熱板108と、複数積層体の放熱部側に設けられた放熱板109とを備える熱発電セルである。熱発電単位ユニットは、第1の金属薄板101と、第1の金属薄板に接合された第2の金属薄板102と、第1と第2の金属薄板の接合面106と対向する第2の金属薄板102の対向面に重ねた絶縁膜103と、第1の金属薄板101に接続される第1の延長導体部104であって、第1の金属薄板と同じ材質の第1の延長導体部104と、第2の金属薄板102に接続される第2の延長導体部105であって、第2の金属薄板と同じ材質の第2の延長導体部105と、第1と第2の延長導体部の、第1及び第2の金属薄板に接続された端部に対して、他端となる端部を接合した冷接点107とを備える。
 このように構成された本発明の熱発電セルにおいて、[2]の第2の素線に代えて、[3]では延長導体部が用いられる。延長導体部の形状は、例えば帯状やテープ状であり、素線と比較して断面積を大きく取りやすくなり、温度差保持部として作用させることも、金属の延長導体部を用いて複合積層を迂回させて接続することで全体として見掛け電気伝導率を大きくして、内部抵抗を極小化することもできる。
[4] 本発明の熱発電セルにおいて、好ましくは、上記の熱発電セルの各冷接点を、幾つかのグループまたは一括して冷却することにより、各冷接点における逆熱起電力の発生を防ぐとよい。
[5] 本発明の熱発電セルにおいて、好ましくは、上記の熱発電セルの絶縁膜として、積層間を絶縁することに加えて、積層間の熱変位を吸収する可塑性を有する絶縁材料を用いるとよい。
[6] 本発明の熱発電セルにおいて、好ましくは、上記の金属薄板1として、電気抵抗が70μΩ・cm 以下で且つ熱伝導率が60W/m・K以上の金属、及び金属薄板2として、電気抵抗率が70μΩ・cm以下で且つ熱伝導率が40W/m・K以下の金属を用いるとよい。熱電材料として使われるテルルの電気抵抗率は400mΩ・cmであり、[6]の電気抵抗率の上限値70μΩ・cmを超えており、この発明特定事項としては有毒なテルルを使用してない。
[7] 本発明の熱発電セルにおいて、好ましくは、第1と第2の金属薄板(101、102)は、耐火材製枠(10、110)の内部で、前記絶縁層を挟んだ構造を有するとよい。
[8] 本発明の熱発電モジュールは、上記の単位ユニットからなる熱発電セルを用いた熱発電モジュールであって、熱発電セルの積層方向を加熱面に対し垂直に配置することを特徴とする。前記の加熱面は平面または曲面であっても良い。
 さらに、発明者らは、熱電対の熱電材料を用いて熱発電が困難な原因を解決する他の態様[9]~[16]として、熱発電単位ユニットの複数積層体の加熱部と、熱発電単位ユニットの冷却部側に設けられた冷却絶縁油部を設ける構造の熱発電セルを基本構造としている。熱発電セルにおいて、加熱部と冷却絶縁油部との間で生ずる高温部と低温部の温度差を維持する温度差保持部として、熱発電単位ユニットの形状を工夫している。さらに、発電素子における電圧と電流の関係を表す内部抵抗を極小化する構造として、熱発電単位ユニットの金属導体の形状を工夫している。
[9] 本発明の熱発電セルは、例えば図9(A)、(B)に示すように、熱発電単位ユニットを、隣接した熱発電単位ユニット相互で絶縁・分離した状態で、複数積層した状態で保持する耐火材製枠210と、耐火材製枠210に設けられた、熱発電単位ユニットの複数積層体の加熱部211と、熱発電単位ユニットの冷却部側に設けられた冷却絶縁油部212とを備え、熱発電単位ユニットは耐火材製枠210と冷却絶縁油部212との間に架け渡される構造を有する熱発電セルであって、熱発電単位ユニットは、耐火材製枠210と冷却絶縁油部212との間に架け渡される構造の第1の帯状金属薄板201と、耐火材製枠210と冷却絶縁油部212との間に架け渡される構造であって、耐火材製枠210で第1の帯状金属薄板に接合された第2の帯状金属薄板202と、第1と第2の帯状金属薄板の接合面206と反対側面に位置する第1及び第2の帯状金属薄板の接合反対側面に形成された絶縁層203と、第1と第2の帯状金属薄板の接合面と反対側の端部に位置する冷接点207であって、当該冷接点は冷却絶縁油部212で冷却される構造を有する。
[10] 本発明の熱発電セルにおいて、好ましくは、第1の帯状金属薄板は、耐火材製枠210と冷却絶縁油部212との間に位置する第1の延長導体部204を有し、第2の帯状金属薄板は、耐火材製枠210と冷却絶縁油部212との間に位置する第2の延長導体部205を有するとよい。
[11] 本発明の熱発電セルにおいて、好ましくは、前記接合面206は、拡散接合またはレーザービーム溶接により接合されるとよい。
[12] 本発明の熱発電セルにおいて、好ましくは、第1と第2の帯状金属薄板の接合面206は、耐火材製枠210の内部で、前記絶縁層を挟んで折畳まれた構造を有するとよい。
[13] 本発明の熱発電セルは、例えば図10(A)、(B)に示すように、熱発電単位ユニットを、隣接した熱発電単位ユニット相互で絶縁・分離した状態で、複数積層した状態で保持する耐火材製枠310と、耐火材製枠310に設けられた、熱発電単位ユニットの複数積層体の加熱部311と、耐火材製枠310の両側に設けられた第1及び第2の冷却絶縁油部312a、312bであって、熱発電単位ユニットの第1及び第2の冷却部側に設けられた第1及び第2の冷却絶縁油部312a、312bとを備え、熱発電単位ユニットは、第1の冷却絶縁油部312a、耐火材製枠310、及び第2の冷却絶縁油部312bの間に伸長した状態で架け渡される構造とする。
[14] 本発明の熱発電セルにおいて、好ましくは、熱発電単位ユニットは、第1の冷却絶縁油部312aと耐火材製枠310との間に架け渡される構造の第1の帯状金属薄板301と、耐火材製枠310と第2の冷却絶縁油部312bとの間に架け渡される構造であって、耐火材製枠310で第1の帯状金属薄板に接合された第2の帯状金属薄板302と、第1と第2の帯状金属薄板の接合面306と反対側面に位置する第1及び第2の帯状金属薄板の接合反対側面に形成された絶縁層303と、第1と第2の帯状金属薄板の接合面と反対側の端部に位置する第1の冷接点307aであって、当該第1の冷接点は第1の冷却絶縁油部312aで冷却される構造を有し、第1と第2の帯状金属薄板の接合面と反対側の端部に位置する第2の冷接点307bであって、当該第2の冷接点は第2の冷却絶縁油部312bで冷却される構造を有するとよい。
[15] 本発明の熱発電セルにおいて、好ましくは、第1の帯状金属薄板は、第1の冷却絶縁油部312aと耐火材製枠310との間に位置する第1の延長導体部304を有し、第2の帯状金属薄板は、耐火材製枠310と第2の冷却絶縁油部312bとの間に位置する第2の延長導体部305を有するとよい。
[16] [14]に記載の熱発電単位ユニットは、さらに、第2の冷却絶縁油部312bと耐火材製枠310との間に架け渡される構造の第3の帯状金属薄板321と、耐火材製枠310と第1の冷却絶縁油部312aとの間に架け渡される構造であって、耐火材製枠310で第3の帯状金属薄板に接合された第4の帯状金属薄板322と、第3と第4の帯状金属薄板の接合面326と反対側面に位置する第3と第4の帯状金属薄板の接合反対側面に形成された第2の絶縁層323とを備え、第2の冷却絶縁油部312bで冷却される第2の冷接点307bには、第2の帯状金属薄板の冷接点側端部と第3の帯状金属薄板の冷接点側端部とを接合する構造を有し、第1の冷却絶縁油部312aで冷却される第1の冷接点307aには、第4の帯状金属薄板の冷接点側端部と第1の帯状金属薄板の冷接点側端部とを接合する構造を有するとよい。
[17] 第3の帯状金属薄板は、第2の冷却絶縁油部312bと耐火材製枠310との間に位置する第3の延長導体部324を有し、第4の帯状金属薄板は、耐火材製枠310と第1の冷却絶縁油部312aとの間に位置する第4の延長導体部325を有するとよい。
 本発明は、熱発電に必要な材料特性の一部をデバイス構造の機能で代替し、安全で安価な熱電材料を用いた熱発電を可能にするという効果がある。
本発明の一実施例を示す複合積層型熱発電セルの構造図で、(A)は断面図、(B)は(A)のB-B方向の平面図である。 従来の熱電対の構造を説明する要部構成図である。 本発明の一実施例を示す熱発電セル内部の電圧と電流の分布状態を説明する図で、(A)は測定端子番号毎の電圧積算値、(B)は測定対象の複合積層型熱発電セルの構造図である。 従来の熱電対と実施例1の発電特性の比較図で、温度差:120℃の場合を示している。 実施例1の無負荷電圧の温度特性を示す図である。 本発明の他の実施例を示す複数の積層型熱発電セルを平面配列した熱発電モジュールの要部断面図である。 本発明の他の実施例を示す複数の積層型熱発電セルをチューブ状に配列した熱発電モジュールの要部断面図である。 本発明の他の実施例を示す複合積層型熱発電セルの構造図で、(A)は断面図、(B)は(A)のB-B方向の平面図である。 本発明の他の実施例を示す熱発電モジュールの加熱・冷却方式として、帯状の熱発電セルを複数配列した構造図で、(A)は断面図、(B)は(A)のB-B方向の平面図である。 本発明の他の実施例を示す熱発電モジュールの構造図で、(A)は断面図、(B)は(A)のB-B方向の平面図である。発電量増加に必要なスケールアップに適している。
 本明細書における技術用語の定義
 ・金属薄板とは、表1に示す材質で、厚さ0.1~3mm、5~100mm角サイズの薄板をいう。数値限定の理由は、厚さ0.1mm以下では接合加工が困難になり、3mm以上では積層数が少なくなるために有効な熱電流が得られないからである。5mm角以下のサイズでは接合面積が小さく有効な熱電流が得られず、100mm角以上では熱変形が大きくなり耐久性が低下するからである。
 ・素線とは、表1に示す材質で、直径0.1~3mm、50~200mmの長さの細線をいう。数値限定の理由は、直径0.1mm以下では電気抵抗が過大になり、直径3mm以上では熱伝導が過大になり、有効な熱電流が得られないからである。
 ・絶縁膜とは、マグネシア、ジルコニア、アルミナ等の無機材料で、3kV/mm程度の絶縁性に加え、積層間の熱変位を吸収する可塑性を有する耐熱接着剤で形成された膜状をいう。
 ・延長導体部とは、表1に示す材質で、厚さ0.1~3mm、50~200mmの長さ、幅2~30mmの帯状の金属テープをいう。
 ・接続とは、例えば1000℃程度の高温における電気的な接続と機械的な接続が確保できるものが望ましく、例えばレーザービーム溶接を用いるとよい。
 ・接合とは、例えば0~50℃程度の冷接点における電気的な接続と機械的な接続が確保できるものが望ましく、例えばロウ付けやはんだ付けを用いるとよい。
 本実施の形態に係る熱発電セルは、金属材料の有するゼーベック効果による熱発電を用いた熱発電セルである。この熱発電セルは、当該金属材料の導電性と熱伝導性の良好性を生かす構造として、当該金属材料の高温部と低温部の温度差を維持する温度差保持部と、熱発電セルにおける電圧と電流の関係を表す内部抵抗を極小化する構造を有する前記金属材料の部材と、を備える。
 以下図を用いて本発明に係る熱発電セルのデバイス構造を以下に説明する。本実施形態では、同じ作用を有する部材には、同じ名称を用い、必要に応じて、重複する説明は略す場合がある。
 図1(A)、(B)においては、本実施の形態に係る熱発電セルは、熱発電単位ユニットを複数積層してなる複数積層体と、複数積層体の加熱部11側に設けられた集熱板8と、複数積層体の放熱部側に設けられた放熱板9とを備える。耐火材製枠10は、複数積層体の底面を集熱板8で被覆し、頂面を放熱板9で被覆した場合の、複数積層体の周面を覆う筒状の枠体で、第1の素線4と第2の素線5を引き出すためのスリットや開口窓が設けてあっても良い。耐火材製枠10で覆われる複数積層体には、第1の金属薄板1、第2の金属薄板2、及び絶縁膜3からなる積層体が複数積層されている。
 集熱板8及び放熱板9には、構造材として適切な強度を有する金属製板材であれば適宜の金属材料を用いることができ、アルミ板のほか、マグネシウム合金板、スレンレス鋼板、銅板、鋼板など各種のものを用いることができる。また、集熱板8及び放熱板9には、接触する第1の金属薄板1や第2の金属薄板2との電気的な絶縁を確保する為、絶縁材料を貼付したり、絶縁性を確保できる表面処理をしたりするとよい。耐火材製枠10は、例えば耐火セメントや耐火セラミックスで製造される。
 熱発電単位ユニットは、第1の金属薄板1、第2の金属薄板2、絶縁膜3、第1の素線4、第2の素線5、接合面6、及び冷接点7を有している。
 ここで、第1の金属薄板1は、例えばCu、Al、Ni、Fe、Snを材料とする金属板がよく、後述する表1に示すように、電気抵抗が70μΩ・cm以下で且つ熱伝導率が60W/m・K以上の金属が好ましい。第2の金属薄板2は、第1の金属薄板1に接合されているもので、例えばアルメル、Ti、コンスタンタン、クロメルを材料とする金属板がよく、後述する表1に示すように、電気抵抗が70μΩ・cm以下で且つ熱伝導率が40W/m・K以下の金属が好ましい。ここで、アルメルはニッケル(Ni)94wt%、マンガン(Mn)2.5wt%、アルミニウム(Al)2wt%、ケイ素(Si)1wt%、鉄(Fe)0.5wt%の組成をもつ。クロメルはニッケル(Ni)89wt%、クロム(Cr)9.8wt%、鉄(Fe)1wt%、マンガン(Mn)0.2wt%の組成をもつ。コンスタンタンは、銅(Cu)55wt%、ニッケル(Ni)45wt%の組成をもつ。
 絶縁膜3は、第2の金属薄板2の対向面に重ねた状態で配置される。第2の金属薄板2の対向面は、第1と第2の金属薄板の接合面6と対向する面である。
 第1の素線4は、金属薄板1に接続されると共に、金属薄板1と同じ材質よりなる。第2の素線5は、金属薄板2に接続されると共に、金属薄板2と同じ材質よりなる。この接合は、例えば1000℃程度の高温状態においても、電気的な接続と機械的な接続が確保できるものが望ましく、例えばレーザービーム溶接を用いるとよい。
 接合面6は、上述したように、第1と第2の金属薄板の接合面である。冷接点7は、第1と第2の素線の他端となる端部を接合したものである。ここで、第1と第2の素線の他端となる端部は、第1及び第2の金属薄板に接続された端部に対して、第1と第2の素線の反対側の端部である。
 冷却部12は、熱発電単位ユニットの各々に設けられた冷接点7を幾つかのグループまたは一括して冷却する。
 このように構成された装置の動作を次に説明する。
 図1(A)に示す集熱板8で受熱した熱は、金属薄板1と金属薄板2を拡散接合した接合面6で熱起電力を発生し、絶縁膜3を貫通して上の層に伝わり、繰り返し熱起電力を発生しながら、熱流になって、放熱板9から大気放散される。一方、接合面6で発生した熱電流は、第1の素線4によって一旦、積層の外に出て、冷却部(12)にある冷接点7を経て、第2の素線5によって次の積層に戻る。上記のメカニズムが積層数と同じ数だけ繰り返し、増加した熱電流が正極から外部の負荷回路に流れる。
 本発明の特徴を具体的に示すために、熱発電セル内部で起電力が発生する状況を図3(a)、(b)にまとめる。図3(a)に示すように、熱発電セルの正極と各単位ユニットの測定端子との間の電圧と電流は、偶数の測定端子番号で階段的に増加する。つまり、熱起電力は接合面6で発生し、冷接点7では発生しない。
 図3(a)に示す電圧と電流の微細な変化は、測定端子番号11では電圧と電流が僅かに低下しており、この部分では逆起電力が僅かに発生している。しかし、その他の測定端子番号では逆起電力は発生していない。
 以上説明したように、各冷接点を一様に冷却すれば、接合面と冷接点の接続数に比例して電圧と電流が一様に増加し、熱発電セルの起電力は単位ユニットの積層数に比例する設計指針が得られる。
 以下に本発明の特徴を具体的に説明する。熱伝導率の異なる2種類の金属薄板を接合し、絶縁膜を重ねて複合積層にすると、例えば、接合面積は、12mm角の金属薄板では、図2に示す直径0.3mmの熱電対に比べて3桁以上大きくなる。
 上記複合積層した金属薄板に接続した素線は、複合積層体の熱が伝わり難い直径と長さ、例えば、直径0.3mm、長さ70mmとし、素線の他端を接合して冷接点を形成する。
 原理的には2種類の金属を接合して複数の接合部を直列に接続すると、2種類の金属の並び順が接合部の一つ置きに逆向きになり、逆向きの接合部では逆向きの起電力が発生して全体の起電力が低下する。しかし、接合部の温度差をゼロにすれば、その接合部での起電力はゼロになる。本実施の形態では、2種類の金属の接合が逆向きになる冷接点を冷却することによって、逆向きの起電力を実質的にゼロにする。
 複合積層と素線の冷接点の組み合わせを単位ユニットとし、複数の単位ユニットを積み重ねて熱発電セルを形成する。熱発電セルの接合面積は、図2に示す直径0.3mmの熱電対に比べて5桁以上大きくなる。熱発電セルに与えた熱は、繰り返し接合面を貫通して熱発電に使われ、熱発電セルの上面から放散する熱が減少して起電力が増える。
 熱発電セルの底面を加熱し、素線の各冷接点を冷却すると、熱流は複合積層を貫通して低温側へ流れて熱発電セルの上面から放散される。一方、発生した熱電流は、素線の各冷接点を経由して複合積層に戻る迂回を繰り返して増加する。
 熱発電セルのデバイス構造をより詳しく以下に説明する。2種類の金属薄板1、2を接合した接合体に絶縁膜を重ねて金属薄板1/金属薄板2/絶縁膜の積層構造を形成し、金属薄板1、2と同じ材質の素線4、5を金属薄板1、2に接続して積層構造体の横方向に引き出し、素線4、5の端を接合して冷接点を形成して単位ユニットにする。
 単位ユニットを複数積層し、金属薄板1/金属薄板2/絶縁膜3/金属薄板1/金属薄板2/絶縁膜3が繰り返す複合積層の熱発電セルを形成する。熱発電セルの熱流は、複合積層の接合面を貫通して高温側から低温側へ流れ、発生した電流は、接合面-冷接点-接合面-冷接点を繰り返す電気的に接続した素線の迂回路を流れる。
 上記の結果、熱流は複合積層を貫通して流れるが電流は遮断され、電流は前記迂回路を流れるが熱流は殆ど流れない状態になる。つまり、熱流と電流がクロスフローする状態になって、熱流と電流の干渉がなくなり、安定した熱起電力が得られる。
 温度の高い接合面と冷却した冷接点の間の熱流を少なくするために、素線で接続する。素線の材質は金属薄板1、2と同じ材質とし、素線の直径は、内部抵抗が増加しないように、例えば、直径0.3mm程度にする。素線の長さは70mm程度にして金属薄板1、2の熱が冷接点に伝わり難くする。
 比較例として、本発明の技術的ルーツである直径0.3mm、長さ10cmの銅/コンスタンタンの熱電対の発電特性(温度差120℃)は、図4(a)のように、無負荷電圧:3.7mV、内部抵抗:3.1Ω、最大出力は僅か1μWであった。
 <実施例1>
 12mm角で0.3mm厚の銅とコンスタンタンを、接合温度:約840℃、加熱時間:30分、加圧:約1.7MPa、接合雰囲気:約1.8×10-3Paで接合した。ここで、12mm角で0.3mm厚の銅は、第1の金属薄板1に相当する。また、12mm角で0.3mm厚のコンスタンタンは、第2の金属薄板2に相当する。銅とコンスタンタンの接合部位は、第1と第2の金属薄板の接合面6に相当する。
 接合した12mm角の銅/コンスタンタンの薄板を図1(A)に示すように、絶縁膜を間に挟んで6層を重ねて積層した。
 その結果、実施例1では、図4(b)に示すように、無負荷電圧:45.9mV、内部抵抗:2.95Ωになり、前記の比較例に比べ、電圧は12倍(3.7→45.9mV)に増加、内部抵抗は変わらず(3.1≒2.95Ω)、最大出力は1μW から176μWに増加し、本発明の効果を実証した。なお、図5には、実施例1の無負荷電圧の温度特性を示した。無電荷電圧は、温度差の増加と共に、二次曲線で増加しており、高温では熱起電力が低下する半導体材料とは異なる様相を示す。すなわち、図5の結果は、金属の熱電材料の特長が高温になるほど熱起電力が増加して優れていることを示している。
 実施例1では、図3(b)に示すように、熱発電セル底面を250℃に加熱した場合、熱発電セルの上面温度は110℃と高く、未利用の熱量が多いことが判った。
 <実施例2>
 そのため、実施例2では、積層数を実施例1の6層から50層に増やし、上面温度を室温近くに下げる。更にスケールアップとして、接合面を12mm角から50mm角に拡大し、300個の熱発電セルを平面配列(15×20)することにより、1.2kW/mの太陽光発電と同等レベルの発電能力を有する熱発電モジュールになる。
 図6に6個の熱発電セルを平面配置した熱発電モジュールを例示する。
 図においては、本実施の形態に係る熱発電セルは、熱発電単位ユニットを複数積層してなる複数積層体と、複数積層体の加熱部31側に設けられた集熱板28と、複数積層体の放熱部側に設けられた放熱板29とを備える。冷却部32には、冷接点が熱的に接続されている。
 熱発電単位ユニットは、第1の素線(24)、第2の素線(25)を有すると共に、図1(A)に示す熱発電単位ユニットと同様に、第1の金属薄板、第2の金属薄板、絶縁膜、接合面、及び冷接点を有している。
 <実施例3>
 熱発電モジュールの加熱・冷却方式として、熱発電セルをチューブ状に配列したパイプ構造の熱発電モジュールの実施例3を図7に示す。
 図においては、本実施の形態に係る熱発電セルは、熱発電単位ユニットを複数積層してなる複数積層体を、放射状に複数配置してある。チューブ状の中心空洞部には燃焼排ガスのような高温ガスや高温流体が流されるので、複数積層体の加熱部51側として集熱板48が設けられる。チューブ状の円筒外縁部には、複数積層体の放熱部側として放熱板49が設けられる。冷却部52は、例えば放熱板49に放熱フィンとして設けられるもので、好ましくは冷接点が熱的に接続されているとよい。
 耐火材製枠50は、放射状に複数配置された複数積層体の楔状の隙間に設けられる略三画柱状の枠体である。略三画柱状の先端部は、チューブ状の中心空洞部側に位置する集熱板48と接している。略三画柱状の底辺部は、チューブ状の円筒外縁部側に位置する放熱板49と接している。耐火材製枠50で隔てられる各積層体には、第1の金属薄板、第2の金属薄板、及び絶縁膜が積層されている。
 このように構成された装置においては、パイプ内に温水を流し、集熱板48を介して複数積層体の加熱部51側として作用させる。また、パイプを、例えば冷水等の冷媒と接触させることで、パイプ表面の放熱板49とパイプ表面に出した冷却部52を冷却する。また、加熱面が円柱以外の曲面であっても、熱発電セルの積層方向を加熱面に垂直に配列して耐火材製枠を充填して固定することによって、加熱面が任意な曲面形状の熱発電モジュールにすることができる。
 <実施例4>
 実施例1の第2の素線に代えて、この実施の形態では延長導体部が用いられる。延長導体部の形状は、例えば帯状やテープ状であり、素線と比較して断面積を大きく取りやすくなり、温度差保持部として作用させることも、金属の延長導体部を用いて複合積層を迂回させて接続することで全体として見掛け電気伝導率を大きくして、内部抵抗を極小化することもできる。
 図8は、実施例4を示す複合積層型熱発電セルの構造図で、(A)は断面図、(B)は(A)のB-B方向の平面図である。なお、図8(A)、(B)において、図1(A)、(B)と同一の作用をするものには、対応する名称を付して説明を援用し、詳細な説明を省略する。
 図においては、本実施の形態に係る熱発電セルは、熱発電単位ユニットを複数積層してなる複数積層体と、複数積層体の加熱部111側に設けられた集熱板108と、複数積層体の放熱部側に設けられた放熱板109とを備える。複数積層体は、各熱発電単位ユニットが電気的に直列に接続されている。ここで放熱板109側の熱発電単位ユニットが負極端子133と接続されており、集熱板108側の熱発電単位ユニットが正極端子134と接続されている。
 熱発電単位ユニットは、第1の金属薄板101、第1の金属薄板に接合された第2の金属薄板102、接合面106、絶縁膜103、第1の延長導体部104、第2の延長導体部105、冷接点107を備える。
 絶縁膜103は、第1と第2の金属薄板の接合面106と対向する第2の金属薄板102の対向面に重ねて形成されたものである。第1の延長導体部104は、第1の金属薄板101に接続されると共に、第1の金属薄板101と同じ材質の帯状の金属薄板である。第2の延長導体部105は、第2の金属薄板102に接続されると共に、第2の金属薄板102と同じ材質の帯状の金属薄板である。冷接点107は、第1と第2の延長導体部104、105の、第1及び第2の金属薄板101、102に接続された端部に対して、他端となる端部を接合した冷接点である。
 このように構成された装置の動作を次に説明する。
 図8(A)に示す集熱板108で受熱した熱は、金属薄板101と金属薄板102を拡散接合した接合面106で熱起電力を発生し、絶縁膜103を貫通して上の層に伝わり、繰り返し熱起電力を発生しながら、熱流になって、放熱板109から大気放散される。一方、接合面106で発生した熱電流は、第1の延長導体部104によって一旦、積層の外に出て、冷却部112にある冷接点107を経て、第2の延長導体部105によって次の積層に戻る。上記の熱発電メカニズムが積層数と同じ数だけ繰り返し、増加した熱電流が、正極端子134と負極端子133に接続された外部の負荷回路に流れる。
 上記の実施例1~4の複合積層型熱発電セルにおいては、熱の流れる方向には電気が流れなく、電気の流れる方向には熱が流れ難くいデバイス構造として、熱流と電流の経路を分離してクロスフローさせることにより、熱流と電流の干渉をなくして熱起電力を安定化するものである。
 しかし、本発明の課題を解決するためには、熱発電の原理に遡ってデバイス構造を見直し、熱電対に使用されているような安全な熱電材料を用いた熱電変換デバイスを開発するものであれば足りる。従って、上記の実施例1~4の複合積層型熱発電セルのように熱流と電流の経路を分離してクロスフローする構造に限定する必要はなく、要は、本発明の熱発電セルは、金属材料の有するゼーベック効果による熱発電を用いた熱発電セルであって、当該金属材料の導電性と熱伝導性の良好性を生かす構造として、当該金属材料の高温部と低温部の温度差を維持する温度差保持部と、発電素子における電圧と電流の関係を表す内部抵抗を極小化する構造を有する金属材料の部材とを備えるものであればよい。
<実施例5>
 図9は、本発明の実施例5を示す熱発電モジュールの加熱・冷却方式として、帯状の熱発電セルを複数配列した構造図で、(A)は断面図、(B)は(A)のB-B方向の平面図である。なお、図9(A)、(B)において、図1(A)、(B)、図8(A)、(B)と同一の作用をするものには、対応する名称を付して説明を援用し、詳細な説明を省略する。
 図においては、本実施の形態に係る熱発電セルは、耐火材製枠210、複数積層体の加熱部211、冷却絶縁油部212を備えると共に、熱発電単位ユニットは耐火材製枠210と冷却絶縁油部212との間に架け渡される構造を有する。
 耐火材製枠210は、熱発電単位ユニットを、隣接した熱発電単位ユニット相互で絶縁・分離した状態で、複数積層するために用いられるもので、例えば耐火性のセラミックにより電気的絶縁も確保している。複数積層体の加熱部211は、耐火材製枠210の内部に設けられた、熱発電単位ユニットの複数積層体の加熱部で、例えば燃焼ガス等の高温ガスと接触する。耐火材製枠210には上部開口部214、下部開口部215が設けられており、加熱部211で加熱されたガス媒体が吹き抜ける構造となっている。冷却絶縁油部212は、熱発電単位ユニットの冷却部側に設けられている。冷却絶縁油部212の上部は、放熱フィン213が設けられている。放熱フィン213には、放熱板209が接続されている。放熱板209は、冷却絶縁油部212内に位置する。
 複数積層体は、各熱発電単位ユニットが電気的に直列に接続されている。ここで耐火材製枠210の最も上側に位置する熱発電単位ユニットが負極端子233と接続されており、耐火材製枠210の最も下側に位置する熱発電単位ユニットが正極端子234と接続されている。
 熱発電単位ユニットは、第1の帯状金属薄板201、第2の帯状金属薄板202、絶縁層203、第1の延長導体部204、第2の延長導体部205、及び冷接点207を備えている。
 第1の帯状金属薄板201は、耐火材製枠210の内部に位置する部分と、耐火材製枠210と冷却絶縁油部212との間に架け渡される部分とからなる構造で、金属薄板と同様の金属材料が用いられる。第2の帯状金属薄板202は、耐火材製枠210の内部に位置する部分と、耐火材製枠210と冷却絶縁油部212との間に架け渡される部分とからなる構造であって、耐火材製枠210で第1の帯状金属薄板に接合される。絶縁層203は、第1と第2の帯状金属薄板の接合面206と反対側面に位置する第1及び第2の帯状金属薄板の接合反対側面に形成される。絶縁層203は、耐火材製枠210の内側の高温部に設けられる場合もあるため、耐熱性を有していることが好ましい。冷接点207は、第1と第2の帯状金属薄板の接合面と反対側の端部に位置すると共に、冷却絶縁油部212で冷却される構造を有する。
 第1の帯状金属薄板201は、耐火材製枠210と冷却絶縁油部212との間に位置する第1の延長導体部204を有し、第2の帯状金属薄板202は、耐火材製枠210と冷却絶縁油部212との間に位置する第2の延長導体部205を有するとよい。第1の延長導体部204と第2の延長導体部205は、高温部である耐火材製枠210と低温部である冷却絶縁油部212の温度差を維持する温度差保持部として作用する。また、第1の帯状金属薄板201と第2の帯状金属薄板202、第1の延長導体部204と第2の延長導体部205は、発電素子における電圧と電流の関係を表す内部抵抗を極小化する構造としても作用する。
 このように構成された装置の組立状態と動作を次に説明する。
 まず、装置の組立状態に関しては、帯状に切断した第1及び第2の帯状金属薄板201,202の中央部を面接合して、接合面206を形成する。次に、接合面206を含む第1及び第2の帯状金属薄板201,202の中央部を折り曲げて、熱発電セルの単位ユニットを製造する。次に、熱発電セルの単位ユニットの複数対(図9(B)では6対)を、耐火材製枠210に固定して、火格子状に重ねる。冷却絶縁油部212には、第1の帯状金属薄板201の第1の延長導体部204は、隣りの熱発電セルの第2の帯状金属薄板202の第2の延長導体部205の端とを接合して、冷接点207を形成する。
 このように構成された装置の動作に関しては、図9(A)に示す加熱部211によって供給された熱は、第1及び第2の帯状金属薄板201,202を拡散接合した接合面206で熱起電力を発生し、隣りの熱発電セルの間を吹き抜けて上の熱発電セルに伝わり、繰り返し熱起電力を発生しながら、熱流になって、冷却絶縁油部212から放熱フィン213を介して大気放散される。一方、接合面206で発生した熱電流は、第1の延長導体部204によって一旦、積層の外に出て、冷却絶縁油部212にある冷接点207を経て、第2の延長導体部205によって次の積層に戻る。上記の熱発電メカニズムが積層数と同じ数だけ繰り返し、増加した熱電流が、正極端子234と負極端子233に接続された外部の負荷回路に流れる。
<実施例6>
 図10は、本発明の実施例6を示す熱発電モジュールの構造図で、(A)は断面図、(B)は(A)のB-B方向の平面図である。実施例6は、発電量増加に必要なスケールアップに適している。なお、図10(A)、(B)において、図1(A)、(B)、図8(A)、(B)、図9(A)、(B)と同一の作用をするものには、対応する名称を付して説明を援用し、詳細な説明を省略する。
 図においては、本実施の形態に係る熱発電セルは、耐火材製枠310、複数積層体の加熱部311、第1及び第2の冷却絶縁油部312a、312bを備えると共に、熱発電単位ユニットは第1の冷却絶縁油部312a、耐火材製枠310及び第2の冷却絶縁油部312bの間に伸長した状態で架け渡される構造を有する。
 耐火材製枠310は、熱発電単位ユニットを、隣接した熱発電単位ユニット相互で絶縁した状態で、複数積層する為に用いられるもので、例えば耐火性のセラミックにより電気的絶縁も確保している。複数積層体の加熱部311は、耐火材製枠310の内側に設けられた、熱発電単位ユニットの積層体の加熱部で、例えば燃焼ガス等の高温ガスと接触する。耐火材製枠310には上部開口部314、下部開口部315が設けられており、加熱部311で加熱されたガス媒体が吹き抜ける構造となっている。第1及び第2の冷却絶縁油部312a、312bは、耐火材製枠310の両側に所定の間隔を置いて設けられるもので、熱発電単位ユニットの第1及び第2の冷却部側に設けられている。冷却絶縁油部312a、312bの上部には、放熱フィン313a、313bが設けられている。放熱フィン313a、313bには、それぞれ放熱板309a、309bが接続されている。放熱板309a、309bは、冷却絶縁油部312a、312b内に位置する。
 複数積層体は、各熱発電単位ユニットが電気的に直列に接続されている。ここで耐火材製枠310の最も上側に位置する熱発電単位ユニットが負極端子333と接続されており、耐火材製枠310の最も下側に位置する熱発電単位ユニットが正極端子334と接続されている。
 熱発電単位ユニットは、第1の帯状金属薄板301、第2の帯状金属薄板302、絶縁層303、接合面306、第1の冷接点307a、第2の冷接点307b、第3の帯状金属薄板321、第4の帯状金属薄板322、接合面326、及び第2の絶縁層323を備える。
 第1の帯状金属薄板301は、耐火材製枠310の内部に位置する部分と、第1の冷却絶縁油部312aと耐火材製枠310との間に架け渡される部分とからなる構造を有するもので、金属薄板と同様の金属材料が用いられる。第2の帯状金属薄板302は、耐火材製枠310の内部に位置する部分と、耐火材製枠310と第2の冷却絶縁油部312bとの間に架け渡される部分とからなる構造であって、耐火材製枠310の内側で第1の帯状金属薄板301と接合されている。絶縁層303は、第1と第2の帯状金属薄板の接合面306と反対側面に位置する第1及び第2の帯状金属薄板の接合反対側面に形成されるもので、電気的絶縁を確保する。絶縁層303は、耐火材製枠310の内側の高温部に設けられる場合もあるため、耐熱性を有していることが好ましい。第1の冷接点307aは、第1と第2の帯状金属薄板の接合面と反対側の端部に位置するものであって、第1の冷却絶縁油部312aで冷却される構造を有する。第2の冷接点307bは、第1と第2の帯状金属薄板の接合面と反対側の端部に位置するものであって、第2の冷却絶縁油部312bで冷却される構造を有する。
 第3の帯状金属薄板321は、耐火材製枠310の内部に位置する部分と、第2の冷却絶縁油部312bと耐火材製枠310との間に架け渡される部分とからなる構造を有するもので、金属薄板と同様の金属材料が用いられる。第4の帯状金属薄板322は、耐火材製枠310の内部に位置する部分と、耐火材製枠310と第1の冷却絶縁油部312aとの間に架け渡される部分とからなる構造であって、耐火材製枠310の内側で第3の帯状金属薄板に接合される。第2の絶縁層323は、第3と第4の帯状金属薄板の接合面326と反対側面に位置する第3と第4の帯状金属薄板の接合反対側面に形成される。
 第2の冷却絶縁油部312bで冷却される第2の冷接点307bには、第2の帯状金属薄板の冷接点側端部と第3の帯状金属薄板の冷接点側端部とを接合する構造を有する。第1の冷却絶縁油部312aで冷却される第1の冷接点307aには、第4の帯状金属薄板の冷接点側端部と第1の帯状金属薄板の冷接点側端部とを接合する構造を有する。
 第1の帯状金属薄板301は、第1の冷却絶縁油部312aと耐火材製枠310との間に位置する第1の延長導体部304を有する。第2の帯状金属薄板302は、耐火材製枠310と第2の冷却絶縁油部312bとの間に位置する第2の延長導体部305を有する。第1の延長導体部304と第2の延長導体部305は、高温部である耐火材製枠310と低温部である冷却絶縁油部312a、312bの温度差を維持する温度差保持部として作用する。また、第1の帯状金属薄板301と第2の帯状金属薄板302、第1の延長導体部304と第2の延長導体部305は、発電素子における電圧と電流の関係を表す内部抵抗を極小化する構造としても作用する。
 第3の帯状金属薄板321は、第2の冷却絶縁油部312bと耐火材製枠310との間に位置する第3の延長導体部324を有する。第4の帯状金属薄板322は、耐火材製枠310と第1の冷却絶縁油部312aとの間に位置する第4の延長導体部325を有する。第3の延長導体部324と第4の延長導体部325は、高温部である耐火材製枠310と低温部である冷却絶縁油部312a、312bの温度差を維持する温度差保持部として作用する。また、第1の帯状金属薄板321と第2の帯状金属薄板322、第3の延長導体部324と第4の延長導体部325は、発電素子における電圧と電流の関係を表す内部抵抗を極小化する構造としても作用する。
 このように構成された装置の動作を次に説明する。
 実施例6の動作は、実施例5の動作と基本的に同様である。さらに、実施例6の構造によると、帯状金属薄板相互の接合面306、326を折り曲げずに、伸長した形状にすることによって、熱変形を吸収し易くなって耐久性が増す。同時に冷却絶縁油部312a、312bとしての絶縁オイルバスが2槽になり、冷接点間隙が広がって冷却効果が向上する。
 なお、上述の実施の形態においては、熱発電セルに用いる熱電材として、Cu/コンスタンタンの実施例を示したが、本発明で用いる熱電材料は上記に限らない。表1に示す電気抵抗が70μΩ・cm以下で且つ熱伝導率が60W/m・K以上の金属(Cu、Al、Ni、Fe、Sn)と、電気抵抗が70μΩ・cm以下で且つ熱伝導率が40W/m・K以下の金属(アルメル、Ti、コンスタンタン、クロメル)とを組み合わせ、熱伝導率が2倍以上違う2種類の金属、例えば、Al/Ti、Al/クロメル、Al/コンスタンタン、Ni/Ti、Fe/コンスタンタン、Sn/Ti等を接合して用いることができる。
Figure JPOXMLDOC01-appb-T000001
 金属薄板の接合方法として、実施例では拡散接合を採用したが、熱変形に対する耐久性があり、接合界面に形成される合金層の厚みが300nm以下になる方法であれば、真空蒸着法、下地処理したメッキ法、圧延クラッド法が利用できる。例えば、大面積の金属薄板を圧延クラッド法で接合し、接合界面にダメージを与えないレーザ加工等で切断することによって工業的生産が可能になる。
 本発明の熱発電セルによれば、有害なビスマス・テルル(BiTe)を用いることなく、安価で安全な汎用熱電材料を用いた熱電変換デバイスが可能になり、熱発電が広く普及する技術基盤ができる。
 本発明の熱発電セルによれば、従来の熱電材料の開発と競合するものではなく、汎用的な熱電材料の性能を最大限に発揮するデバイス構造によって、熱発電の発展と普及を図ることができる。
1、101 第1の金属薄板
2、102 第2の金属薄板
3、103 絶縁膜
4、24 第1の素線
5、25 第2の素線
6、106、206、306、326 接合面(高温接点)
7、107、207、307a、307b 冷接点(低温接点)
8、28、48、108 集熱板
9、29、49、109、209、309a、309b 放熱板
10、50、110、210、310 耐火材製枠
11、31、51、111、211、311 加熱部
12、32、52、112 冷却部
133、233、333 負極端子
134、234、334 正極端子
104、204、304 第1の延長導体部
105、205、305 第2の延長導体部
201、301 第1の帯状金属薄板
202、302 第2の帯状金属薄板
203、303、323 絶縁層
212、312a、312b 冷却絶縁油部
213、313a、313b 放熱フィン
214、314 上部開口部
215、315 下部開口部
321 第3の帯状金属薄板
322 第4の帯状金属薄板
324 第3の延長導体部
325 第4の延長導体部

Claims (17)

  1.  金属材料の有するゼーベック効果による熱発電を用いた熱発電セルであって、
     当該金属材料の導電性と熱伝導性の良好性を生かす構造として、当該金属材料の高温部と低温部の温度差を維持する温度差保持部と、
     熱発電セルにおける電圧と電流の関係を表す内部抵抗を極小化する構造を有する前記金属材料の部材と、
     を備えることを特徴とする熱発電セル。
  2.  請求項1に記載の熱発電セルであって、
     熱発電単位ユニットを複数積層してなる複数積層体と、
     前記複数積層体の加熱部(11)側に設けられた集熱板(8)と、
     前記複数積層体の放熱部側に設けられた放熱板(9)とを備える熱発電セルであって、
     前記熱発電単位ユニットは、
      第1の金属薄板(1)と、
      前記第1の金属薄板に接合された第2の金属薄板(2)と、
      前記第1と第2の金属薄板の接合面(6)と対向する前記第2の金属薄板の対向面に重ねた絶縁膜(3)と、
      前記第1の金属薄板に接続される第1の素線(4)であって、前記第1の金属薄板と同じ材質の第1の素線と、
      前記第2の金属薄板に接続される第2の素線(5)であって、前記第2の金属薄板と同じ材質の第2の素線と、
      第1と第2の素線の、前記第1及び第2の金属薄板に接続された端部に対して、他端となる端部を接合した冷接点(7)
     を備えることを特徴とする熱発電セル。
  3.  請求項1に記載の熱発電セルであって、
     熱発電単位ユニットを複数積層してなる複数積層体と、
     前記複数積層体の加熱部(111)側に設けられた集熱板(108)と、
     前記複数積層体の放熱部側に設けられた放熱板(109)とを備える熱発電セルであって、
     前記熱発電単位ユニットは、
      第1の金属薄板(101)と、
      前記第1の金属薄板に接合された第2の金属薄板(102)と、
      前記第1と第2の金属薄板の接合面(106)と対向する前記第2の金属薄板の対向面に重ねた絶縁膜(103)と、
      前記金属薄板に接続される第1の延長導体部(104)であって、前記金属薄板と同じ材質の第1の延長導体部と、
      前記金属薄板に接続される第2の延長導体部(105)であって、前記金属薄板と同じ材質の第2の延長導体部と、
      第1と第2の延長導体部の、前記第1及び第2の金属薄板に接続された端部に対して、他端となる端部を接合した冷接点(107)と、
     を備えることを特徴とする熱発電セル。
  4.  前記熱発電単位ユニットの各々に設けられた冷接点(7、107)を幾つかのグループまたは一括して冷却する冷却部(12、112)を有することを特徴とする請求項2又は3に記載の熱発電セル。
  5.  請求項2又は3に記載の熱発電セルの絶縁膜に、積層間の熱変位を吸収する可塑性を有する絶縁材料を用いることを特徴とする請求項2又は3に記載の熱発電セル。
  6.  請求項2又は3に記載の第1の金属薄板(1、101)として、電気抵抗が70μΩ・cm以下で且つ熱伝導率が60W/m・K以上の金属、及び第2の金属薄板(2、102)として、電気抵抗が70μΩ・cm以下で且つ熱伝導率が40W/m・K以下の金属を用いることを特徴とする請求項2又は3に記載の熱発電セル。
  7.  前記第1と第2の金属薄板(101、102)は、耐火材製枠(10、110)の内部で、前記絶縁層を挟んだ構造を有することを特徴とする請求項2又は3に記載の熱発電セル。
  8.  請求項2乃至7の何れか1項に記載の熱発電セルの複数を熱発電セルの積層方向を加熱面に対して垂直に配置することを特徴とする熱発電モジュール。
  9.  請求項1に記載の熱発電セルであって、
     熱発電単位ユニットを、隣接した熱発電単位ユニット相互で絶縁した状態で、複数積層した状態で保持する耐火材製枠(210)と、
     前記耐火材製枠に設けられた、前記熱発電単位ユニットの複数積層体の加熱部(211)と、
     前記熱発電単位ユニットの冷却部側に設けられた冷却絶縁油部(212)とを備え、前記熱発電単位ユニットは前記耐火材製枠と前記冷却絶縁油部との間に架け渡される構造を有する熱発電セルであって、
     前記熱発電単位ユニットは、
      前記耐火材製枠と前記冷却絶縁油部との間に架け渡される構造の第1の帯状金属薄板(201)と、
      前記耐火材製枠と前記冷却絶縁油部との間に架け渡される構造であって、前記耐火材製枠で前記第1の帯状金属薄板に接合された第2の帯状金属薄板(202)と、
      前記第1と第2の帯状金属薄板の接合面(206)と反対側面に位置する前記第1及び第2の帯状金属薄板の接合反対側面に形成された絶縁層(203)と、
      第1と第2の帯状金属薄板の接合面と反対側の端部に位置する冷接点(207)であって、当該冷接点は前記冷却絶縁油部で冷却される構造を有する、
     ことを特徴とする熱発電セル。
  10.  前記第1の帯状金属薄板は、前記耐火材製枠と前記冷却絶縁油部との間に位置する第1の延長導体部(204)を有し、
     前記第2の帯状金属薄板は、前記耐火材製枠と前記冷却絶縁油部との間に位置する第2の延長導体部(205)を有する、
     ことを特徴とする請求項9に記載の熱発電セル。
  11.  前記第1と第2の帯状金属薄板の接合面(206)は、拡散接合またはレーザービーム溶接により接合されたことを特徴とする請求項9に記載の熱発電セル。
  12.  前記第1と第2の帯状金属薄板の接合面(206)は、耐火材製枠(210)の内部で、前記絶縁層を挟んで折畳まれた構造を有することを特徴とする請求項9に記載の熱発電セル。
  13.  請求項1に記載の熱発電セルであって、
     熱発電単位ユニットを、隣接した熱発電単位ユニット相互で絶縁した状態で、複数積層した状態で保持する耐火材製枠(310)と、
     前記耐火材製枠に設けられた、前記熱発電単位ユニットの複数積層体の加熱部(311)と、
     前記耐火材製枠の両側に設けられた第1及び第2の冷却絶縁油部(312a、312b)であって、前記熱発電単位ユニットの第1及び第2の冷却部側に設けられた第1及び第2の冷却絶縁油部(312a、312b)とを備え、前記熱発電単位ユニットは、前記第1の冷却絶縁油部、前記耐火材製枠、及び前記第2の冷却絶縁油部の間に伸長した状態で架け渡される構造の熱発電セル。
  14.  前記熱発電単位ユニットは、
      前記第1の冷却絶縁油部と前記耐火材製枠との間に架け渡される構造の第1の帯状金属薄板(301)と、
      前記耐火材製枠と前記第2の冷却絶縁油部との間に架け渡される構造であって、前記耐火材製枠で前記第1の帯状金属薄板に接合された第2の帯状金属薄板(302)と、
      前記第1と第2の帯状金属薄板の接合面(306)と反対側面に位置する前記第1及び第2の帯状金属薄板の接合反対側面に形成された絶縁層(303)と、
      第1と第2の帯状金属薄板の接合面と反対側の端部に位置する第1の冷接点(307a)であって、当該第1の冷接点は前記第1の冷却絶縁油部で冷却される構造を有し、
      第1と第2の帯状金属薄板の接合面と反対側の端部に位置する第2の冷接点(307b)であって、当該第2の冷接点は前記第2の冷却絶縁油部で冷却される構造を有する、
     ことを特徴とする請求項13に記載の熱発電セル。
  15.  前記第1の帯状金属薄板は、前記第1の冷却絶縁油部と前記耐火材製枠との間に位置する第1の延長導体部(304)を有し、
     前記第2の帯状金属薄板は、前記耐火材製枠と前記第2の冷却絶縁油部との間に位置する第2の延長導体部(305)を有する、
     ことを特徴とする請求項14に記載の熱発電セル。
  16.  請求項13に記載の前記熱発電単位ユニットは、さらに、
      前記第2の冷却絶縁油部と前記耐火材製枠との間に架け渡される構造の第3の帯状金属薄板(321)と、
      前記耐火材製枠と前記第1の冷却絶縁油部との間に架け渡される構造であって、前記耐火材製枠で前記第3の帯状金属薄板に接合された第4の帯状金属薄板(322)と、
      前記第3と第4の帯状金属薄板の接合面(326)と反対側面に位置する前記第3と第4の帯状金属薄板の接合反対側面に形成された第2の絶縁層(323)とを備え、
      前記第2の冷却絶縁油部で冷却される前記第2の冷接点(307b)には、第2の帯状金属薄板の冷接点側端部と第3の帯状金属薄板の冷接点側端部とを接合する構造を有し、
      前記第1の冷却絶縁油部で冷却される前記第1の冷接点(307a)には、第4の帯状金属薄板の冷接点側端部と第1の帯状金属薄板の冷接点側端部とを接合する構造を有する、
     ことを特徴とする請求項14に記載の熱発電セル。
  17.  前記第3の帯状金属薄板は、前記第2の冷却絶縁油部と前記耐火材製枠との間に位置する第3の延長導体部(324)を有し、
     前記第4の帯状金属薄板は、前記耐火材製枠と前記第1の冷却絶縁油部との間に位置する第4の延長導体部(325)を有し、
     ことを特徴とする請求項16に記載の熱発電セル。
PCT/JP2018/007286 2017-03-28 2018-02-27 熱発電セル及び熱発電モジュール WO2018180131A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18775937.8A EP3591723B1 (en) 2017-03-28 2018-02-27 Thermoelectric power generation cell and thermoelectric power generation module
JP2019509025A JP6778968B2 (ja) 2017-03-28 2018-02-27 熱発電セル及び熱発電モジュール
US16/498,892 US11393969B2 (en) 2017-03-28 2018-02-27 Thermoelectric generation cell and thermoelectric generation module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-062086 2017-03-28
JP2017062086 2017-03-28
JP2018-019037 2018-02-06
JP2018019037 2018-02-06

Publications (1)

Publication Number Publication Date
WO2018180131A1 true WO2018180131A1 (ja) 2018-10-04

Family

ID=63675267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007286 WO2018180131A1 (ja) 2017-03-28 2018-02-27 熱発電セル及び熱発電モジュール

Country Status (4)

Country Link
US (1) US11393969B2 (ja)
EP (1) EP3591723B1 (ja)
JP (1) JP6778968B2 (ja)
WO (1) WO2018180131A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040084A (ja) * 2019-09-05 2021-03-11 国立研究開発法人物質・材料研究機構 熱発電セル及び熱発電モジュール
JP7013611B1 (ja) 2021-06-17 2022-01-31 憲之 石村 発電装置及び発電方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202231146A (zh) * 2021-01-25 2022-08-01 優顯科技股份有限公司 電子裝置及其製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260686A (ja) * 1992-10-28 1994-09-16 Japan Energy Corp 積層サーモパイル及びその製造方法
JPH11177154A (ja) * 1997-12-09 1999-07-02 Murata Mfg Co Ltd 熱電変換基板及び当該熱電変換基板を用いた電気回路装置
JP2013016685A (ja) 2011-07-05 2013-01-24 Osaka Univ 熱電変換材料、熱電変換素子およびその作製方法
JP2015084364A (ja) * 2013-10-25 2015-04-30 株式会社デンソー 熱電変換装置およびその製造方法
JP2015233063A (ja) * 2014-06-09 2015-12-24 トヨタ自動車株式会社 熱電変換システム
JP2016063075A (ja) 2014-09-18 2016-04-25 パナソニックIpマネジメント株式会社 熱発電ユニット、熱発電システムおよび熱発電モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064064A (en) * 1961-07-17 1962-11-13 Gen Electric Thermoelectric devices
US20040178517A9 (en) * 2001-12-21 2004-09-16 Siu Wing Ming Split body peltier device for cooling and power generation applications
JP2005228915A (ja) * 2004-02-13 2005-08-25 Toshiaki Eto セパレート型ペルチェシステム
EP2375191A1 (en) * 2008-12-11 2011-10-12 Lamos Inc. Thermo-electric structure
CN103000799A (zh) * 2012-12-09 2013-03-27 雍占锋 冷端和热端分离型温差电致冷半导体技术
US9685598B2 (en) * 2014-11-05 2017-06-20 Novation Iq Llc Thermoelectric device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260686A (ja) * 1992-10-28 1994-09-16 Japan Energy Corp 積層サーモパイル及びその製造方法
JPH11177154A (ja) * 1997-12-09 1999-07-02 Murata Mfg Co Ltd 熱電変換基板及び当該熱電変換基板を用いた電気回路装置
JP2013016685A (ja) 2011-07-05 2013-01-24 Osaka Univ 熱電変換材料、熱電変換素子およびその作製方法
JP2015084364A (ja) * 2013-10-25 2015-04-30 株式会社デンソー 熱電変換装置およびその製造方法
JP2015233063A (ja) * 2014-06-09 2015-12-24 トヨタ自動車株式会社 熱電変換システム
JP2016063075A (ja) 2014-09-18 2016-04-25 パナソニックIpマネジメント株式会社 熱発電ユニット、熱発電システムおよび熱発電モジュール

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Heat laboratory-3rd", November 2004, HAKKO ELECTRIC CO., LTD.
See also references of EP3591723A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040084A (ja) * 2019-09-05 2021-03-11 国立研究開発法人物質・材料研究機構 熱発電セル及び熱発電モジュール
JP7396621B2 (ja) 2019-09-05 2023-12-12 国立研究開発法人物質・材料研究機構 熱発電セル及び熱発電モジュール
JP7013611B1 (ja) 2021-06-17 2022-01-31 憲之 石村 発電装置及び発電方法
JP2023000206A (ja) * 2021-06-17 2023-01-04 憲之 石村 発電装置及び発電方法

Also Published As

Publication number Publication date
JPWO2018180131A1 (ja) 2019-11-07
US20210202817A1 (en) 2021-07-01
EP3591723A4 (en) 2021-01-20
EP3591723A1 (en) 2020-01-08
JP6778968B2 (ja) 2020-11-04
EP3591723B1 (en) 2024-05-22
US11393969B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
Zhang et al. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery
US8378205B2 (en) Thermoelectric heat exchanger
US20050087222A1 (en) Device for producing electric energy
US8841540B2 (en) High temperature thermoelectrics
US20140261608A1 (en) Thermal Interface Structure for Thermoelectric Devices
JP6778968B2 (ja) 熱発電セル及び熱発電モジュール
JPH1052077A (ja) 熱電モジュール
TW201409920A (zh) 使用梯度熱交換器之熱電發電系統
JP2006294935A (ja) 高能率低損失熱電モジュール
US20120103379A1 (en) Thermoelectric generator including a thermoelectric module having a meandering p-n system
JP5653455B2 (ja) 熱電変換部材
JP6976631B2 (ja) 熱電モジュールおよび熱電発電装置
US20180287517A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
US20140360549A1 (en) Thermoelectric Module and Method of Making Same
JP4584355B2 (ja) 熱発電デバイスおよびそれを用いた発電方法
US20200006614A1 (en) Thermoelectric conversion device
JP6278879B2 (ja) 熱電モジュール
JP7396621B2 (ja) 熱発電セル及び熱発電モジュール
JP2014110245A (ja) 熱電変換装置
JPH08254468A (ja) 熱電対の関係にある金属材料を組み合わせた熱電発電素子及び温度センサー
JPWO2012120572A1 (ja) 熱発電素子を用いた発電方法、熱発電素子とその製造方法、ならびに熱発電デバイス
JP2017152618A (ja) 熱電モジュールとその製造方法および熱電装置
JPWO2018158980A1 (ja) 熱電変換装置
US20230263061A1 (en) Method for producing a thermoelectric module, and thermoelectric module as interference fit assembly
JPH11340523A (ja) 熱電変換システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018775937

Country of ref document: EP

Effective date: 20190930