WO2018179354A1 - 半導体装置の製造方法、基板処理装置およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置およびプログラム Download PDF

Info

Publication number
WO2018179354A1
WO2018179354A1 PCT/JP2017/013634 JP2017013634W WO2018179354A1 WO 2018179354 A1 WO2018179354 A1 WO 2018179354A1 JP 2017013634 W JP2017013634 W JP 2017013634W WO 2018179354 A1 WO2018179354 A1 WO 2018179354A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
metal film
substrate
film
metal
Prior art date
Application number
PCT/JP2017/013634
Other languages
English (en)
French (fr)
Inventor
求 出貝
中谷 公彦
芦原 洋司
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2017/013634 priority Critical patent/WO2018179354A1/ja
Priority to CN201780086010.3A priority patent/CN110268506A/zh
Priority to JP2019508123A priority patent/JP6847202B2/ja
Priority to KR1020197022784A priority patent/KR102331573B1/ko
Publication of WO2018179354A1 publication Critical patent/WO2018179354A1/ja
Priority to US16/535,677 priority patent/US11152215B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76865Selective removal of parts of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD

Definitions

  • the present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a program.
  • an electrode for a word line of a MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • a barrier film As a process of manufacturing a semiconductor device (device) for forming a control gate film of a flash memory, an electrode for a word line of a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor), and a barrier film, it is applied to a substrate in a processing chamber.
  • a substrate process performed by supplying a processing gas for example, a film formation process or an oxidation process is performed.
  • a selective thin film growth method in a semiconductor device manufacturing method is a selective CVD in which a film is grown by an epitaxial growth technique in which Si or SiGe is grown on a crystalline Si substrate or a method of supplying a continuous source gas. and so on. All of these methods used the difference in the growth time (incubation time) of the thin film on the surface of different materials, but it was not possible to form a thick film within a finite time or due to incomplete selectivity. Thus, practical application has been limited.
  • thin films for various processing so-called hard masks, are used for processing semiconductor devices. Conventionally, in order to separate the surface to be processed (etched) from the surface that is not, resist, etc. Therefore, it was necessary to process the hard mask itself.
  • An object of the present invention is to provide a technique for selectively growing a film with high selectivity on substrates having different surfaces.
  • a film can be selectively grown with good selectivity for substrates having different surfaces.
  • FIG. 2 is a schematic cross-sectional view along the line AA in FIG. 1.
  • FIG. 4A is a diagram for explaining the incubation time
  • FIG. 4B is a diagram for explaining an alternating sequence of film formation and etching
  • FIG. 4C is a film by an alternating sequence of film formation and etching. It is an image figure of growth. It is a figure which shows the timing of the suitable gas supply in the film-forming process of the 1st Embodiment of this invention.
  • ⁇ ⁇ manufacturing cost
  • the present invention in order to solve the problem of increasing the number of processes, it is intended to provide a technique for forming a film only where it is desired to form a film.
  • the film C grows from both the bottom and the side wall, the film that grows from the side wall eventually blocks the gas inlet. Voids and seams occur. If the film can be formed on the substrate A but with a selectivity such that the film is not formed on the substrate B, the film grows from the bottom of the hole or trench and can be embedded without causing a void or seam.
  • the purpose can be achieved by growing it at a desired site.
  • it is sometimes difficult to grow a thin film at a desired site only by film formation because of incomplete selectivity (breakage of selectivity).
  • another problem is encountered in the method of continuously supplying the processing gas (film forming gas). That is, the thickness of the thin film to be formed depends on the surface density of the part to be grown. This phenomenon is called a loading effect and is a problem to be overcome in selective growth performed by continuously flowing a processing gas.
  • film formation and etching are alternately performed in a method of alternately performing film formation and etching will be described. In this method, it is possible to supply a sufficiently excessive film forming material and etching material to the surface on which the thin film is to be grown, and the effect of alleviating the loading effect is great.
  • FIG. 4C shows the change in film thickness with respect to time when the sequence of FIG. 4B is performed.
  • the film starts to be attached immediately after the start of film formation.
  • the substrate B the film starts to be attached after the incubation time t delay has elapsed. Etching is performed at this timing to remove the film on the substrate B. In this etching process, the film on the substrate A is also etched by dT. In order to increase the film thickness on the substrate A while suppressing the film formation on the substrate B, it is necessary that (film thickness TA attached to the substrate A)>dT> (film thickness TB attached to the substrate B). Therefore, high controllability is required for etching.
  • etching As a method for improving the controllability of etching, it is conceivable to perform etching at a low temperature and a low pressure. As another method for improving the controllability of etching, there can be considered a sequence of alternately supplying a modifying gas for modifying the surface of the film to be etched and an etching gas for etching the modified layer without etching the film.
  • the thickness of the reformed layer by the reformed gas is preferably saturated with respect to the exposure amount of the reformed gas.
  • the substrate processing apparatus 10 is configured as an example of an apparatus used in a semiconductor device manufacturing process.
  • the substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • An outer tube 203 that constitutes a reaction vessel (processing vessel) concentrically with the heater 207 is disposed inside the heater 207.
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a manifold (inlet flange) 209 is disposed below the outer tube 203 concentrically with the outer tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened.
  • An O-ring 220a as a seal member is provided between the upper end portion of the manifold 209 and the outer tube 203. As the manifold 209 is supported by the heater base, the outer tube 203 is installed vertically.
  • An inner tube 204 that constitutes a reaction vessel is disposed inside the outer tube 203.
  • the inner tube 204 is made of a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a processing vessel (reaction vessel) is mainly constituted by the outer tube 203, the inner tube 204, and the manifold 209.
  • a processing chamber 201 is formed in a cylindrical hollow portion of the processing container (inside the inner tube 204).
  • the processing chamber 201 is configured to be able to accommodate wafers 200 as substrates in a state where they are arranged in multiple stages in a vertical posture in a horizontal posture by a boat 217 described later.
  • nozzles 410, 420, 430, and 440 are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Gas supply pipes 310, 320, 330, and 340 are connected to the nozzles 410, 420, 430, and 440, respectively.
  • the processing furnace 202 of this embodiment is not limited to the above-mentioned form. The number of nozzles and the like is appropriately changed as necessary.
  • the gas supply pipes 310, 320, 330, and 340 are provided with mass flow controllers (MFCs) 312, 322, 332, and 342, which are flow controllers (flow controllers) in order from the upstream side.
  • MFCs mass flow controllers
  • the gas supply pipes 310, 320, 330, and 340 are provided with valves 314, 324, 334, and 344, which are on-off valves, respectively.
  • Gas supply pipes 510, 520, 530, and 540 for supplying an inert gas are connected to the downstream sides of the valves 314, 324, 334, and 344 of the gas supply pipes 310, 320, 330, and 340, respectively.
  • MFCs 512, 522, 532, and 542 that are flow rate controllers (flow rate control units) and valves 514, 524, 534, and 544 that are on-off valves are sequentially provided from the upstream side. Is provided.
  • the nozzles 410, 420, 430, and 440 are configured as L-shaped nozzles, and the horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portions of the nozzles 410, 420, 430, and 440 are disposed inside a channel-shaped (groove-shaped) preliminary chamber 201 a that protrudes radially outward of the inner tube 204 and extends in the vertical direction. It is provided in the preliminary chamber 201a along the inner wall of the inner tube 204 (upward in the arrangement direction of the wafers 200).
  • the nozzles 410, 420, 430, and 440 are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410 a and 420 a are respectively provided at positions facing the wafer 200. , 430a, 440a. Accordingly, the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, 430a, and 440a of the nozzles 410, 420, 430, and 440, respectively.
  • a plurality of gas supply holes 410a, 420a, 430a, 440a are provided from the lower part to the upper part of the inner tube 204, have the same opening area, and are provided at the same opening pitch.
  • the gas supply holes 410a, 420a, 430a, and 440a are not limited to the above-described form.
  • the opening area may be gradually increased from the lower part of the inner tube 204 toward the upper part. Thereby, the flow rate of the gas supplied from the gas supply holes 410a, 420a, 430a, 440a can be made more uniform.
  • a plurality of gas supply holes 410 a, 420 a, 430 a, 440 a of the nozzles 410, 420, 430, 440 are provided at positions from the bottom to the top of the boat 217 described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410 a, 420 a, 430 a, and 440 a of the nozzles 410, 420, and 430 is supplied to the wafers 200, that is, the boat 217 stored from the bottom to the top of the boat 217. It is supplied to the entire area of the accommodated wafer 200.
  • the nozzles 410, 420, 430, and 440 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but may be provided so as to extend to the vicinity of the ceiling of the boat 217. preferable.
  • a reducing gas is supplied into the processing chamber 201 as a processing gas via the MFC 312, the valve 314, and the nozzle 410.
  • the first reducing gas for example, diborane (B 2 H 6 ), which is a B-containing gas containing boron (B), is used.
  • the second reducing gas for example, hydrogen (H 2 ) that is an H-containing gas containing hydrogen atoms (H) is used.
  • the first reducing gas and the second reducing gas may be supplied into the processing chamber 201, or the processing chamber 201 is switched between the first reducing gas and the second reducing gas. It is good also as a common pipe supplied to the inside.
  • hydrogen (H 2 ) is used in a reforming step described later, the reducing gas may be referred to as a reformed gas (second reformed gas).
  • a metal-containing gas containing a metal element (also referred to as a metal-containing raw material (gas)) is supplied into the processing chamber 201 through the MFC 322, the valve 324, and the nozzle 420 as a processing gas.
  • a metal-containing gas for example, tungsten hexafluoride (WF 6 ) containing tungsten (W) as a metal element is used.
  • an etching gas is supplied as a processing gas into the processing chamber 201 through the MFC 332, the valve 334, and the nozzle 430.
  • the etching gas for example, nitrogen trifluoride (NF 3 ) which is a halide and is a fluorine-containing gas is used.
  • a reformed gas is supplied as a processing gas into the processing chamber 201 through the MFC 342, the valve 344, and the nozzle 440.
  • a reformed gas for example, ozone (O 3 ) is used as an oxidizing gas that is an oxygen-containing gas.
  • O 3 ozone
  • NH 3 ammonia
  • H 2 is used as a reformed gas in the reforming step described later, O 3 or NH 3 may be referred to as a first reformed gas and H 2 may be referred to as a second reformed gas.
  • nitrogen (N 2 ) gas as an inert gas is MFC 512, 522, 532, 542, valves 514, 524, 534, 544, nozzles 410, 420, respectively. It is supplied into the processing chamber 201 through 430 and 440.
  • N 2 gas is used as the inert gas.
  • the inert gas for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas other than N 2 gas.
  • a rare gas such as xenon (Xe) gas may be used.
  • the gas supply pipes 310, 320, 330, and 340, MFCs 312, 322, 332, and 342, valves 314, 324, 334, and 344, and nozzles 410, 420, 430, and 440 constitute a processing gas supply system. Only the nozzles 410, 420, 430, and 440 may be considered as the processing gas supply system.
  • the processing gas supply system may be simply referred to as a gas supply system.
  • the reducing gas supply system is mainly configured by the gas supply pipe 310, the MFC 312 and the valve 314.
  • the nozzle 410 may be included in the reducing gas supply system.
  • the metal-containing gas supply system When flowing a metal-containing gas from the gas supply pipe 320, the metal-containing gas supply system is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 320 may be included in the metal-containing gas supply system. Good.
  • an etching gas supply system is mainly configured by the gas supply pipe 330, the MFC 332, and the valve 334.
  • the nozzle 430 may be included in the etching gas supply system.
  • the reformed gas When the reformed gas is supplied from the gas supply pipe 340, the reformed gas supply system is mainly configured by the gas supply pipe 340, the MFC 342, and the valve 344.
  • An inert gas supply system is mainly configured by the gas supply pipes 510, 520, 530, and 540, the MFCs 512, 522, 532, and 542, and the valves 514, 524, 534, and 544.
  • the inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
  • the gas supply method is performed in an annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200, that is, in the spare chamber 201a in a cylindrical space.
  • Gas is conveyed via nozzles 410, 420, 430, and 440 arranged in the above. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a, 440a provided at positions facing the wafers of the nozzles 410, 420, 430, 440.
  • the gas supply hole 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, the gas supply hole 430a of the nozzle 430, and the gas supply hole 440a of the nozzle 440 are parallel to the surface of the wafer 200, that is, horizontally.
  • the raw material gas and the like are jetted out.
  • the exhaust hole (exhaust port) 204a is a through hole formed at a position opposite to the nozzles 410, 420, 430, and 440 on the side wall of the inner tube 204, that is, a position 180 degrees opposite to the spare chamber 201a.
  • it is a slit-like through hole that is elongated in the vertical direction.
  • the gas that is supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a, and 440a of the nozzles 410, 420, 430, and 440 and flows on the surface of the wafer 200, that is, the residual gas (residual gas) is Then, the gas flows into an exhaust path 206 formed by a gap formed between the inner tube 204 and the outer tube 203 through the exhaust hole 204a.
  • the gas flowing into the exhaust path 206 flows into the exhaust pipe 231 and is discharged out of the processing furnace 202.
  • the exhaust hole 204a is provided at a position facing the plurality of wafers 200 (preferably a position facing from the upper part to the lower part of the boat 217), and from the gas supply holes 410a, 420a, 430a, 440a to the wafer in the processing chamber 201.
  • the gas supplied in the vicinity of 200 flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then flows into the exhaust path 206 through the exhaust holes 204a. That is, the gas remaining in the processing chamber 201 is exhausted in parallel to the main surface of the wafer 200 through the exhaust hole 204a.
  • the exhaust hole 204a is not limited to being configured as a slit-like through hole, and may be configured by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
  • an APC (Auto Pressure Controller) valve 243 a vacuum pump as a vacuum exhaust device 246 is connected.
  • the APC valve 243 can open and close the valve while the vacuum pump 246 is operated, thereby evacuating and stopping the vacuum exhaust in the processing chamber 201. Further, the APC valve 243 can be operated while the vacuum pump 246 is operated. By adjusting the opening, the pressure in the processing chamber 201 can be adjusted.
  • An exhaust system that is, an exhaust line, is mainly configured by the exhaust hole 204a, the exhaust path 206, the exhaust pipe 231, the APC valve 243, and the pressure sensor 245. Note that the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209.
  • the seal cap 219 is configured to contact the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
  • a rotation mechanism 267 that rotates the boat 217 that accommodates the wafers 200 is installed on the seal cap 219 on the opposite side of the processing chamber 201.
  • a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the outer tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217 and the wafers 200 accommodated in the boat 217 into and out of the processing chamber 201.
  • the boat 217 as the substrate support is configured to support a plurality of, for example, 25 to 200 wafers 200 in a horizontal posture and in a multi-stage by aligning them in the vertical direction with their centers aligned. It is configured to arrange at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat resistant material such as quartz or SiC is supported in multiple stages (not shown) in a horizontal posture. With this configuration, heat from the heater 207 is not easily transmitted to the seal cap 219 side.
  • this embodiment is not limited to the above-mentioned form.
  • a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and by adjusting the energization amount to the heater 207 based on the temperature information detected by the temperature sensor 263,
  • the temperature inside the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is configured in an L shape similarly to the nozzles 410, 420, 430, and 440, and is provided along the inner wall of the inner tube 204.
  • the controller 280 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 280a, a RAM (Random Access Memory) 280b, a storage device 280c, and an I / O port 280d.
  • the RAM 280b, the storage device 280c, and the I / O port 280d are configured to exchange data with the CPU 280a via an internal bus.
  • an input / output device 282 configured as a touch panel or the like is connected to the controller 280.
  • the storage device 280c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of a semiconductor device manufacturing method described later, and the like are stored in a readable manner.
  • the process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 280 to execute each step (each step) in the semiconductor device manufacturing method described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • the RAM 280b is configured as a memory area (work area) in which a program or data read by the CPU 280a is temporarily stored.
  • the I / O port 280d includes the above-described MFC 312, 322, 332, 342, 512, 522, 532, 542, valve 314, 324, 334, 342, 514, 524, 534, 544, pressure sensor 245, APC valve 243, The vacuum pump 246, the heater 207, the temperature sensor 263, the rotation mechanism 267, the boat elevator 115, etc. are connected.
  • the CPU 280a is configured to read and execute a control program from the storage device 280c, and to read a recipe or the like from the storage device 280c in response to an operation command input from the input / output device 282 or the like.
  • the CPU 280a adjusts the flow rates of various gases by the MFCs 312, 322, 332, 342, 512, 522, 532, 542, valves 314, 324, 334, 344, 514, 524, and 534 in accordance with the contents of the read recipe.
  • the controller 280 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
  • the above-mentioned program can be configured by installing it in a computer.
  • the storage device 280c and the external storage device 283 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • the recording medium may include only the storage device 280c alone, the external storage device 283 alone, or both.
  • the provision of the program to the computer may be performed using communication means such as the Internet or a dedicated line without using the external storage device 283.
  • Substrate processing process film formation process
  • a manufacturing process of a semiconductor device device
  • an example of a process of selectively growing a metal film on a substrate will be described with reference to FIG.
  • the step of selectively growing the metal film on the substrate is performed using the processing furnace 202 of the substrate processing apparatus 10 described above.
  • the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 280.
  • wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface thereof”. "(That is, a wafer including a predetermined layer or film formed on the surface).
  • wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
  • substrate is also synonymous with the term “wafer”.
  • a titanium nitride film (TiN film, first metal film) and an insulating film such as an oxide or silicon (Si) film having a longer incubation time than the first metal film were formed (exposed) on the outermost surface.
  • a plurality of wafers 200 are loaded into the processing chamber 201 (boat loading). Specifically, when a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 as shown in FIG. And is carried into the processing chamber 201. In this state, the seal cap 219 closes the lower end opening of the reaction tube 203 via the O-ring 220.
  • the processing chamber 201 is evacuated by a vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 keeps operating at least until the processing on the wafer 200 is completed. Further, the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the energization amount to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • TiN film, first metal film a titanium nitride film (TiN film, first metal film) and an insulating film such as an oxide or silicon (Si) film having a longer incubation time than the first metal film were formed on the outermost surface.
  • a step of selectively growing a W film (second metal film) on the (exposed) TiN film on the wafer 200 is executed.
  • B 2 H 6 gas supply step The valve 314 is opened, and a B 2 H 6 gas that is a B-containing gas is allowed to flow as a first reducing gas in the gas supply pipe 310.
  • the flow rate of the B 2 H 6 gas is adjusted by the MFC 312, supplied into the processing chamber 201 from the gas supply hole 410 a of the nozzle 410, and exhausted from the exhaust pipe 231.
  • B 2 H 6 gas is supplied to the wafer 200.
  • the valve 514 is opened and N 2 gas is allowed to flow into the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512.
  • N 2 gas is supplied into the processing chamber 201 together with B 2 H 6 gas, and is exhausted from the exhaust pipe 231.
  • the valves 524, 534, and 544 are opened, and N 2 gas is allowed to flow into the gas supply pipes 520, 530, and 540.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 320, 330, and 340 and the nozzles 420, 430, and 440 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 When flowing the B 2 H 6 gas, the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 10 to 3990 Pa.
  • the supply flow rate of the B 2 H 6 gas controlled by the MFC 312 is, for example, a flow rate in the range of 0.01 to 20 slm.
  • the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 0.0.01 to 30 slm.
  • the time for supplying the B 2 H 6 gas to the wafer 200 is, for example, a time within the range of 0.01 to 60 seconds.
  • the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 100 to 350 ° C., for example.
  • the gases flowing into the processing chamber 201 are only B 2 H 6 gas and N 2 gas, and the outermost surface of the wafer 200 is reduced by supplying the B 2 H 6 gas.
  • the valve 324 is opened, and a WF 6 gas that is a raw material gas is caused to flow into the gas supply pipe 320.
  • the flow rate of the WF 6 gas is adjusted by the MFC 322, supplied from the gas supply hole 420 a of the nozzle 420 into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • WF 6 gas is supplied to the wafer 200.
  • the valve 524 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 520.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, supplied to the processing chamber 201 together with the WF 6 gas, and exhausted from the exhaust pipe 231.
  • the valves 514, 534, and 544 are opened, and N 2 gas is allowed to flow into the gas supply pipes 510, 530, and 540.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310, 330, and 340 and the nozzles 410, 430, and 440 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 0.1 to 6650 Pa.
  • the supply flow rate of the WF 6 gas controlled by the MFC 322 is set, for example, within a range of 0.01 to 10 slm.
  • the supply flow rate of N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 0.1 to 30 slm.
  • the time for supplying the WF 6 gas to the wafer 200 is, for example, a time within the range of 0.01 to 600 seconds.
  • the temperature of the heater 207 is set to a temperature at which the temperature of the wafer 200 becomes the same as that in step 21, for example.
  • the gases flowing into the processing chamber 201 are only WF 6 gas and N 2 gas.
  • the WF 6 gas By supplying the WF 6 gas, a W layer having a thickness of, for example, less than one atomic layer to several atomic layers is formed on the wafer 200.
  • a W layer having a predetermined thickness (for example, 0.1 to 4.0 nm) is formed on the TiN film of the wafer 200 by performing a cycle of performing the above steps in order one or more times (a predetermined number of times (n 1 time)).
  • the above cycle is preferably repeated a plurality of times.
  • NF 3 gas supply step The valve 334 is opened, and an NF 3 gas that is an etching gas is caused to flow into the gas supply pipe 330.
  • the flow rate of the NF 3 gas is adjusted by the MFC 332, supplied from the gas supply hole 430 a of the nozzle 430 into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • NF 3 gas is supplied to the wafer 200.
  • the valve 534 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 530.
  • the flow rate of the N 2 gas that has flowed through the gas supply pipe 530 is adjusted by the MFC 532, supplied into the processing chamber 201 together with the NF 3 gas, and exhausted from the exhaust pipe 231.
  • the valves 514, 524, 544 are opened, and the N 2 gas is caused to flow into the gas supply pipes 510, 520, 540.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310, 320, 340 and the nozzles 410, 420, 440 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 0 to 100 Pa. Preferably, the pressure is lower than that in the W layer forming step.
  • the supply flow rate of the NF 3 gas controlled by the MFC 332 is set to a flow rate in the range of 0.01 to 1 slm, for example.
  • the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 1 to 5 slm.
  • the time for supplying the NF 3 gas to the wafer 200 is, for example, a time within a range of 30 to 600 seconds.
  • the temperature of the heater 207 is set so that the temperature of the wafer 200 is within a range of 100 to 500 ° C., for example.
  • the temperature is lower than that in the W layer forming step.
  • the W layer formed on the wafer 200 is etched by NF 3 gas. Due to the difference in incubation time, the W layer formed on the TiN film on the wafer 200 is thicker than the W layer formed on the insulating film. Therefore, even after the W layer formed on the insulating film is etched, A W layer remains on the TiN film by a predetermined thickness. When the W layer formed on the insulating film is etched, the supply of NF 3 gas is stopped.
  • a W film having a predetermined thickness (for example, 2 to 20 nm) is formed on the TiN film of the wafer 200 by performing a cycle of sequentially performing the W layer forming step and the etching step one or more times (a predetermined number of times (n 2 times)).
  • the above cycle is preferably repeated a plurality of times.
  • N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, 530, and 540 and exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with an inert gas, and the gas and by-products remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 (after purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • Modification 1 of the first embodiment will be described with reference to FIG.
  • the description of the same parts as those in the first embodiment is omitted, and the details of the different parts are mainly described.
  • the difference of the first modification from the first embodiment is that, in the etching process, a pre-treatment step is performed before the NF 3 gas supply step. Below, a pre-processing process is demonstrated.
  • Pre-treatment step (O 3 gas supply step)
  • O 3 gas which is a reformed gas (oxidizing gas)
  • the flow rate of the O 3 gas is adjusted by the MFC 342, supplied from the gas supply hole 440 a of the nozzle 440 into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • O 3 gas is supplied to the wafer 200.
  • the valve 544 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 540.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 540 is adjusted by the MFC 542, supplied into the processing chamber 201 together with the O 3 gas, and exhausted from the exhaust pipe 231.
  • the valves 514, 524, and 534 are opened, and N 2 gas is allowed to flow into the gas supply pipes 510, 520, and 530.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310, 320, 330 and the nozzles 410, 420, 430 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 50 to 500 Pa.
  • the supply flow rate of the O 3 gas controlled by the MFC 342 is, for example, a flow rate in the range of 0.1 to 3 slm.
  • the supply flow rate of N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 0.1 to 3 slm.
  • the time for supplying the O 3 gas to the wafer 200 is, for example, a time within the range of 200 to 2000 seconds.
  • the temperature of the heater 207 is set so that the temperature of the wafer 200 is within a range of 100 to 400 ° C., for example.
  • the W layer formed on the wafer 200 is modified (oxidized) by the O 3 gas.
  • the W film having the predetermined thickness is formed on the TiN film of the wafer 200 by performing a cycle of sequentially performing the W layer forming step and the etching step one or more times (a predetermined number of times (n 4 times)).
  • the above-described cycle is preferably repeated a plurality of times, but the example of oxidizing using O 3 gas, which is an oxidizing gas, as the reformed gas has been described in the above-described pretreatment step, but the present invention is not limited thereto.
  • nitridation may be performed using a nitriding gas as the reforming gas, and for example, ammonia (NH 3 ) gas may be used as the nitriding gas.
  • Modification 2 of the first embodiment will be described with reference to FIG.
  • the description of the same parts as those in the first embodiment is omitted, and the details of the different parts are mainly described.
  • the difference of the second modification from the first embodiment is that, in the etching process, a post-treatment step is performed after the NF 3 gas supply step. Below, a post-processing process is demonstrated.
  • H 2 gas supply step (Post-treatment step (H 2 gas supply step))
  • the valve 314 is opened, and H 2 gas that is the second reducing gas is caused to flow into the gas supply pipe 340.
  • the flow rate of the H 2 gas is adjusted by the MFC 312, supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • H 2 gas is supplied to the wafer 200.
  • the valve 514 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, supplied into the processing chamber 201 together with the H 2 gas, and exhausted from the exhaust pipe 231.
  • the valves 524, 534, and 544 are opened, and the N 2 gas is allowed to flow into the gas supply pipes 520, 530, and 540.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 320, 330, and 340 and the nozzles 420, 430, and 440 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 500 to 2000 Pa.
  • the supply flow rate of H 2 gas controlled by the MFC 312 is, for example, a flow rate in the range of 0.5 to 3 slm.
  • the supply flow rate of N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 0.5 to 3 slm.
  • the time for supplying the H 2 gas to the wafer 200 is, for example, a time within the range of 1800 to 7200 seconds.
  • the temperature of the heater 207 is set so that the temperature of the wafer 200 is within a range of 100 to 400 ° C., for example.
  • the W layer formed on the TiN film of the wafer 200 is modified (reduced) by the H 2 gas.
  • the W film having the predetermined thickness is formed on the TiN film of the wafer 200 by performing one or more cycles (a predetermined number of times (n 6 times)) of performing the W layer forming process and the etching process in order.
  • the above cycle is preferably repeated a plurality of times.
  • Modification 3 of the first embodiment will be described with reference to FIG.
  • the description of the same parts as those of the first embodiment and other modified examples is omitted, and the details of the different parts are mainly described.
  • the third modification there is a combination of modification 1 and modification 2, in the etching step, to preprocess step according to a modified example 1 before performing the NF 3 gas supplying step, NF 3 gas supply
  • modification 1 and modification 2 in the etching step, to preprocess step according to a modified example 1 before performing the NF 3 gas supplying step, NF 3 gas supply
  • the W layer formed on the insulating film is etched.
  • the W film having the predetermined thickness is formed on the TiN film of the wafer 200 by performing one or more cycles (a predetermined number of times (n 8 times)) of sequentially performing the W layer forming process and the etching process.
  • the above cycle is preferably repeated a plurality of times.
  • Modification 4 of the first embodiment will be described with reference to FIG.
  • the description of the same parts as those of the first embodiment and other modified examples is omitted, and the details of the different parts are mainly described.
  • the post-processing step is performed again.
  • the process conditions and the like are the same as those in the post-processing steps described in the third modification, and thus are omitted.
  • the W layer forming process is performed in two stages.
  • a W nucleus layer is first formed by a W nucleus layer forming step, and then the W nucleus layer is used as a nucleus. Form a layer.
  • the W layer formation step described in the first embodiment is a W nucleus layer formation step, and the W layer formed in the W nucleus layer formation step is referred to as a W nucleus layer.
  • the W bulk layer forming step will be described.
  • H 2 gas and WF 6 gas supply step The valves 314 and 324 are opened, and H 2 gas and WF 6 gas are allowed to flow into the gas supply pipes 310 and 320, respectively.
  • the flow rates of the H 2 gas flowing through the gas supply pipe 310 and the WF 6 gas flowing through the gas supply pipe 320 are adjusted by the MFCs 312 and 322, respectively, from the gas supply holes 410a and 420a of the nozzles 410 and 420, respectively. Is exhausted from the exhaust pipe 231.
  • H 2 gas and WF 6 gas are supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to H 2 gas and WF 6 gas.
  • the valves 534 and 544 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipes 530 and 540, respectively.
  • the N 2 gas flowing through the carrier gas supply pipes 530 and 540 is adjusted in flow rate by the MFCs 532 and 542, supplied to the processing chamber 201 together with the H 2 gas or WF 6 gas, and exhausted from the exhaust pipe 231.
  • the valves 534 and 544 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipes 530 and 540.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 330 and 340 and the nozzles 430 and 440 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 10 to 3990 Pa.
  • the supply flow rate of H 2 gas controlled by the MFC 312 is, for example, a flow rate in the range of 100 to 20000 sccm
  • the supply flow rate of WF 6 gas controlled by the MFC 322 is, for example, a flow rate in the range of 10 to 1000 sccm.
  • the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 10 to 10,000 sccm.
  • the time for supplying the H 2 gas and WF 6 gas to the wafer 200 is, for example, a time within the range of 1 to 1000 seconds.
  • the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 100 to 600 ° C., for example.
  • the gases flowing into the processing chamber 201 are only H 2 gas and WF 6 gas, and a thickness of, for example, 10 to 30 nm is formed on the W nucleus layer formed on the wafer 200 by the supply of the WF 6 gas.
  • the W bulk layer is formed.
  • the valves 312 and 322 are closed, and the supply of H 2 gas and WF 6 gas is stopped.
  • the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and H 2 after contributing to unreacted or bulk W layer formation remaining in the processing chamber 201.
  • Gas and WF 6 gas are excluded from the processing chamber 201.
  • the valves 514, 524, 534, and 544 remain open, and the supply of N 2 gas into the processing chamber 201 is maintained.
  • the N 2 gas acts as a purge gas, and it is possible to enhance the effect of removing unreacted H 2 gas and WF 6 gas remaining in the processing chamber 201 or contributing to formation of the bulk W layer from the processing chamber 201.
  • the pretreatment step, the residual gas removal step, the NF 3 gas supply step, and the residual gas removal step are sequentially performed one or more times (predetermined number (n 11 times)), thereby The W layer formed on the film is etched.
  • the W film having the predetermined thickness is formed on the TiN film of the wafer 200 by performing one or more cycles (a predetermined number of times (n 12 times)) of sequentially performing the W layer forming process and the etching process.
  • the above-described cycle is preferably repeated a plurality of times, and each modification of the first embodiment may be appropriately combined with this embodiment.
  • the W nucleus layer is formed by the W nucleus layer forming step, the W nucleus layer is used as a nucleus, and then the W bulk layer is formed by the W bulk layer forming step to thereby adhere to the TiN film as a base. It is possible to form a W film well.
  • the present invention is not limited to this.
  • a tantalum nitride film TaN film
  • molybdenum nitride film MoN film
  • ZnN films zinc nitride films
  • AlN films aluminum nitride films
  • B 2 H 6 as a B-containing gas as the first reducing gas
  • triborane (B 3 H 8) in place of B 2 H 6 using a gas or the like
  • phosphine (PH 3 ) which is a phosphorus (P) -containing gas, or monosilane (SiH 4 ) gas or disilane (Si 2 ) as a silicon (Si) -containing gas (silane-based gas).
  • PH 3 phosphine
  • P phosphorus
  • SiH 4 monosilane
  • Si 2 silicon
  • H 6 silicon
  • NF 3 that is an F-containing gas
  • an F-containing gas such as ClF 3 , HF, or F 2 or a chlorine (Cl) -containing gas is used instead of NF 3. Etc. can also be used.
  • deuterium has been described an example of using H 2 gas as H-containing gas as the second reducing gas, instead of H 2 gas, H-containing gas other elements free ( It is also possible to use D 2 ) gas, ammonia (NH 3 ) gas, or the like.
  • the substrate processing apparatus is a batch type vertical apparatus that processes a plurality of substrates at a time, and a nozzle for supplying a processing gas is erected in one reaction tube, and the reaction tube
  • the processing gas may be supplied from a gas supply port that opens in a side wall of the inner tube, instead of being supplied from a nozzle standing in the inner tube.
  • the exhaust port opened to the outer tube may be opened according to the height at which there are a plurality of substrates stacked and accommodated in the processing chamber.
  • the shape of the exhaust port may be a hole shape or a slit shape.
  • the W layer forming step and the etching step are performed in the same processing chamber.
  • the present invention is not limited thereto, and the W layer forming step and the etching step may be performed in different processing chambers. Good.
  • film formation can be performed with the same sequence and processing conditions as in the above-described embodiment.
  • the process recipes are the contents of the substrate processing (film type, composition ratio, film quality, film thickness, processing procedure, processing of the thin film to be formed) It is preferable to prepare individually (multiple preparations) according to the conditions. And when starting a substrate processing, it is preferable to select a suitable process recipe suitably from several process recipes according to the content of a substrate processing.
  • the substrate processing apparatus includes a plurality of process recipes individually prepared according to the contents of the substrate processing via an electric communication line or a recording medium (external storage device 283) on which the process recipe is recorded. It is preferable to store (install) in advance in the storage device 280c.
  • the CPU 280a included in the substrate processing apparatus When starting the substrate processing, the CPU 280a included in the substrate processing apparatus appropriately selects an appropriate process recipe from a plurality of process recipes stored in the storage device 280c according to the content of the substrate processing. Is preferred. With this configuration, thin films with various film types, composition ratios, film qualities, and film thicknesses can be formed for general use with good reproducibility using a single substrate processing apparatus. In addition, it is possible to reduce the operation burden on the operator (such as an input burden on the processing procedure and processing conditions), and to quickly start the substrate processing while avoiding an operation error.
  • the present invention can be realized by changing a process recipe of an existing substrate processing apparatus, for example.
  • the process recipe according to the present invention is installed in an existing substrate processing apparatus via a telecommunication line or a recording medium recording the process recipe, or input / output of the existing substrate processing apparatus It is also possible to operate the apparatus and change the process recipe itself to the process recipe according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

課題 材質の異なる表面を有する基板に対して選択性良く膜を選択成長させることができる技術を提供する。 解決手段 (a)表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、金属含有ガスと反応ガスとを交互に供給して、前記基板上に第2の金属膜を形成する工程と、(b)前記基板に対して、エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する工程と、を有し、(a)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させる。

Description

半導体装置の製造方法、基板処理装置およびプログラム
 本発明は、半導体装置の製造方法、基板処理装置およびプログラムに関する。
 Flashメモリのコントロールゲート膜やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)のワードライン向け電極、バリア膜を形成するため半導体装置(デバイス)の製造工程の一工程として、処理室内の基板に対して処理ガスを供給することで行われる基板処理、例えば成膜処理や酸化処理等が行われることがある。
特開2012-67328号公報
 従来、半導体装置の製造方法における選択的な薄膜の成長方法は、結晶Si基板にSiまたはSiGeを成長させる、エピタキシャル成長技術や、連続的な原料ガスを供給する方法によって、膜を成長させる選択的CVDなどがある。これらの方法はいずれも、材質の異なる表面における薄膜の成長時間差(インキュベーションタイム)を利用する方法であったが、有限の時間内には厚く成膜できないことや、選択性の不完全性に起因して、実用化は限定的となっていた。また、半導体デバイスの加工には、種々の加工用の薄膜、いわゆるハードマスクが用いられているが、従来の場合、加工したい(エッチングしたい)表面と、そうでない表面とを分ける為に、レジスト等による露光をおこない、ハードマスク自体を加工する必要があった。この方法では、レジスト加工を行う工程分だけ、製造コストが増加する問題があった。したがって、選択性が向上した選択的成長技術が提供できれば、加工したい表面とそうでない表面を、成膜プロセスのみで区分けることが可能となり、半導体装置の製造上、コストの低減に寄与することが可能となる。
 本発明の目的は、材質の異なる表面を有する基板に対して選択性良く膜を選択成長させる技術を提供することである。
 本発明の一態様によれば、
 (a)表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、金属含有ガスと反応ガスとを交互に供給して、前記基板上に第2の金属膜を形成する工程と、
(b)前記基板に対して、エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する工程と、
を有し、(a)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させる技術が提供される。
 材質の異なる表面を有する基板に対して選択性良く膜を選択成長させることができる。
本発明の実施形態で好適に用いられる基板処理装置の処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 図1のA-A線に沿った概略的な横断面図である。 図1に示す基板処理装置が有するコントローラの構成を示すブロック図である。 図4(a)はインキュベーションタイムを説明する図であり、図4(b)は成膜とエッチングの交互シーケンスを説明する図であり、図4(c)は成膜とエッチングの交互シーケンスによる膜の成長のイメージ図である。 本発明の第1の実施形態の成膜処理における好適なガス供給のタイミングを示す図である。 本発明の第1の実施形態の変形例1の成膜処理における好適なガス供給のタイミングを示す図である。 本発明の第1の実施形態の変形例2の成膜処理における好適なガス供給のタイミングを示す図である。 本発明の第1の実施形態の変形例3の成膜処理における好適なガス供給のタイミングを示す図である。 本発明の第1の実施形態の変形例4の成膜処理における好適なガス供給のタイミングを示す図である。 本発明の第2の実施形態の成膜処理における好適なガス供給のタイミングを示す図である。
 集積回路の微細化が進むにつれ、ダブルパターニングのような手法が取り入れられ、微細構造を形成するための工程数( = 製造コスト)が増加している。微細構造を形成する際、まずウエハ上に一様に成膜し、次に所望のパターンを描写し、最後に不要な個所を除去する複数の工程が必要になる。本発明では、工程数増加の課題を解決するために成膜したい所にだけ成膜する技術を提供することを意図する。
 底が基板A、側壁が基板Bで形成されたホールやトレンチの埋め込みを行う際、底と側壁の両方から膜Cが成長した場合、最終的には側壁から成長する膜によりガスの入口がふさがれてボイドやシームが発生する。基板A上では成膜するが、基板B上では成膜しないような選択性のある成膜ができれば、膜はホールやトレンチの底から成長しボイドやシームを生じることなく埋め込みが可能である。
 成膜時における選択的成長方法は、それが理想的に機能すれば、所望の部位に成長させることで、目的を達することができる。しかしながら、成膜のみで所望の部位に薄膜を成長させることは、選択性の不完全性(選択性の破れ)がともなうため、困難である場合がある。また、処理ガス(成膜ガス)を連続的に供給する方法においては、もう一つの課題に直面する。それは、成膜する薄膜の厚さが、成長させる部位の表面密度に依存することである。この現象はローディング効果と呼ばれるものであり、連続的に処理ガスを流して行う選択成長において、克服すべき問題である。以下では、成膜とエッチングを繰り返し交互に行う方法において、成膜及びエッチングも交互に行う例について説明する。この方法では、薄膜を成長させるべき表面に対して、十分過剰な成膜原料、エッチング原料を供給することが可能であり、ローディング効果を緩和する効果が大きい。
 図4(a)のように、膜の付き始めの遅れ(インキュベーション)が下地ごとに異なることを利用する。インキュベーションの長い下地においてもサイクルを重ねるうちに核成長が始まり膜が付き始めるのでこの方法だけでは成膜したくない所に成膜せずに成膜したい所で目的の膜厚を得るには不十分である。そこでエッチングにより成膜したくない下地に成長し始めた膜を除去する。基板Aだけに膜Cを成膜したければ基板A上で所望の膜厚になるまで成膜とエッチングを交互に繰り返す図4(b)のシーケンスを行うことで基板A上に基板Bに対して選択的に成膜する。
 図4(b)のシーケンスを行った場合の時間に対する膜厚の変化を図4(c)に示す。基板A上では成膜開始直後から膜が付き始める。一方、基板B上ではインキュベーション時間tdelay経過後に膜が付き始める。このタイミングでエッチングを行い基板B上の膜を除去する。このエッチングの工程では基板A上の膜もdTだけエッチングされる。基板B上で成膜を抑制しつつ基板A上で膜厚を増やすには(基板Aに付いた膜厚TA)>dT>(基板Bに付いた膜厚TB)である必要がある。そのためエッチングには高い制御性が求められる。エッチングの制御性を高める方法としては低温、低圧でエッチングを行うことが考えられる。エッチングの制御性を高めるほかの手法としてはエッチング対象の膜の表面を改質する改質ガスと膜はエッチングしないが改質された層はエッチングするエッチングガスを交互に供給するシーケンスが考えられる。改質ガスによる改質層の厚さは改質ガスの暴露量に対して飽和することが好ましい。
<本発明の第1の実施形態>
 以下、本発明の一実施形態について、図1~5を参照しながら説明する。基板処理装置10は半導体装置の製造工程において使用される装置の一例として構成されている。
(1)基板処理装置の構成
 基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO)、炭化シリコン(SiC)などの耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属からなり、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英(SiO)、炭化シリコン(SiC)などの耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。
 処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。
 処理室201内には、ノズル410,420,430,440がマニホールド209の側壁およびインナチューブ204を貫通するように設けられている。ノズル410,420,430,440には、ガス供給管310,320,330,340が、それぞれ接続されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。ノズル等の数は、必要に応じて、適宜変更される。
 ガス供給管310,320,330,340には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,322,332,342がそれぞれ設けられている。また、ガス供給管310,320,330,340には、開閉弁であるバルブ314,324,334,344がそれぞれ設けられている。ガス供給管310,320,330,340のバルブ314,324,334,344の下流側には、不活性ガスを供給するガス供給管510,520,530,540がそれぞれ接続されている。ガス供給管510,520,530,540には、上流側から順に、流量制御器(流量制御部)であるMFC512,522,532,542および開閉弁であるバルブ514,524,534,544がそれぞれ設けられている。
 ノズル410,420,430,440は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁およびインナチューブ204を貫通するように設けられている。ノズル410,420,430,440の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。
 ノズル410,420,430,440は、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔410a,420a,430a,440aが設けられている。これにより、ノズル410,420,430,440のガス供給孔410a,420a,430a,440aからそれぞれウエハ200に処理ガスを供給する。このガス供給孔410a,420a,430a,440aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410a,420a,430a,440aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420a,430a,440aから供給されるガスの流量をより均一化することが可能となる。
 ノズル410,420,430,440のガス供給孔410a,420a,430a,440aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410,420,430のガス供給孔410a,420a,430a,440aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200、すなわちボート217に収容されたウエハ200の全域に供給される。ノズル410,420,430,440は、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。
 ガス供給管310からは、処理ガスとして、還元ガスがMFC312、バルブ314、ノズル410を介して処理室201内に供給される。第1の還元ガスとしては、例えば、ホウ素(B)を含むB含有ガスであるジボラン(B)等が用いられる。第2の還元ガスとしては、例えば、水素原子(H)を含むH含有ガスである水素(H)が用いられる。処理内容に応じて、第1の還元ガスと第2の還元ガスの片方のみを処理室201内へ供給してもよいし、第1の還元ガスと第2の還元ガスを切り換えて処理室201内へ供給する共通管としてもよい。なお、水素(H)を後述する改質工程で用いる場合は還元ガスを改質ガス(第2の改質ガス)と称する場合もある。
 ガス供給管320からは、処理ガスとして、金属元素を含む金属含有ガス(金属含有原料(ガス)とも称する)が、MFC322、バルブ324、ノズル420を介して処理室201内に供給される。金属含有ガスとしては、例えば、金属元素としてのタングステン(W)を含む六フッ化タングステン(WF)が用いられる。
 ガス供給管330からは、処理ガスとして、エッチングガスが、MFC332、バルブ334、ノズル430を介して処理室201内に供給される。エッチングガスとしては、例えば、ハロゲン化物であり、フッ素含有ガスである三フッ化窒素(NF)が用いられる。
 ガス供給管340からは、処理ガスとして、改質ガスが、MFC342、バルブ344、ノズル440を介して処理室201内に供給される。改質ガスとしては、例えば、酸素含有ガスである酸化ガスとしてオゾン(O)が用いられる。改質ガスとして、例えば、窒素含有ガスである窒化ガスとしてアンモニア(NH)を用いることも可能である。Hを後述する改質工程で改質ガスとして用いる場合は、OもしくはNHを第1の改質ガスと称し、Hを第2の改質ガスと称する場合もある。
 ガス供給管510,520,530,540からは、不活性ガスとして、例えば窒素(N)ガスが、それぞれMFC512,522,532,542、バルブ514,524,534,544、ノズル410,420,430,440を介して処理室201内に供給される。なお、以下、不活性ガスとしてNガスを用いる例について説明するが、不活性ガスとしては、Nガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
 主に、ガス供給管310,320,330,340、MFC312,322,332,342、バルブ314,324,334,344、ノズル410,420,430,440により処理ガス供給系が構成されるが、ノズル410,420,430,440のみを処理ガス供給系と考えてもよい。処理ガス供給系を、単に、ガス供給系と称することもできる。ガス供給管310から還元ガスを流す場合、主に、ガス供給管310,MFC312、バルブ314により還元ガス供給系が構成されるが、ノズル410を還元ガス供給系に含めて考えてもよい。ガス供給管320から金属含有ガスを流す場合、主に、ガス供給管320,MFC322、バルブ324により金属含有ガス供給系が構成されるが、ノズル320を金属含有ガス供給系に含めて考えてもよい。ガス供給管330からエッチングガスを流す場合、主に、ガス供給管330,MFC332、バルブ334によりエッチングガス供給系が構成されるが、ノズル430をエッチングガス供給系に含めて考えてもよい。ガス供給管340から改質ガスを流す場合、主に、ガス供給管340,MFC342、バルブ344により改質ガス供給系が構成されるが、ノズル440を改質ガス供給系に含めて考えてもよい。主に、ガス供給管510,520,530,540、MFC512,522,532,542、バルブ514,524,534,544により不活性ガス供給系が構成される。不活性ガス供給系を、パージガス供給系、希釈ガス供給系、或いは、キャリアガス供給系と称することもできる。
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内、すなわち、円筒状の空間内の予備室201a内に配置したノズル410,420,430,440を経由してガスを搬送している。そして、ノズル410,420,430,440のウエハと対向する位置に設けられた複数のガス供給孔410a,420a,430a,440aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410a、ノズル420のガス供給孔420a、ノズル430のガス供給孔430a、ノズル440のガス供給孔440aにより、ウエハ200の表面と平行方向、すなわち水平方向に向かって原料ガス等を噴出させている。
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410,420,430,440に対向した位置、すなわち予備室201aとは180度反対側の位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。そのため、ノズル410,420,430,440のガス供給孔410a,420a,430a,440aから処理室201内に供給され、ウエハ200の表面上を流れたガス、すなわち、残留するガス(残ガス)は、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間からなる排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。
 排気孔204aは、複数のウエハ200と対向する位置(好ましくはボート217の上部から下部と対向する位置)に設けられており、ガス供給孔410a、420a、430a,440aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向、すなわちウエハ200の表面と平行方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。すなわち、処理室201に残留するガスは、排気孔204aを介してウエハ200の主面に対して平行に排気される。なお、排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができる。主に、排気孔204a,排気路206,排気管231,APCバルブ243および圧力センサ245により、排気系すなわち排気ラインが構成される。なお、真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217およびボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が水平姿勢で多段(図示せず)に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料からなる筒状の部材として構成された断熱筒を設けてもよい。
 図2に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410,420,430,440と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ280は、CPU(Central Processing Unit)280a,RAM(Random Access Memory)280b,記憶装置280c,I/Oポート280dを備えたコンピュータとして構成されている。RAM280b,記憶装置280c,I/Oポート280dは、内部バスを介して、CPU280aとデータ交換可能なように構成されている。コントローラ280には、例えばタッチパネル等として構成された入出力装置282が接続されている。
 記憶装置280cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置280c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ280に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピおよび制御プログラムの組み合わせを含む場合がある。RAM280bは、CPU280aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート280dは、上述のMFC312,322,332,342,512,522,532,542、バルブ314,324,334,342,514,524,534,544、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU280aは、記憶装置280cから制御プログラムを読み出して実行すると共に、入出力装置282からの操作コマンドの入力等に応じて記憶装置280cからレシピ等を読み出すように構成されている。CPU280aは、読み出したレシピの内容に沿うように、MFC312,322,332,342,512,522,532,542による各種ガスの流量調整動作、バルブ314,324,334,344,514,524,534,544の開閉動作、APCバルブ243の開閉動作およびAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動および停止、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。
 コントローラ280は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置280cや外部記憶装置283は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置280c単体のみを含む場合、外部記憶装置283単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置283を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程(成膜工程)
 半導体装置(デバイス)の製造工程の一工程として、基板に金属膜を選択成長させる工程の一例について、図5を用いて説明する。基板に金属膜を選択成長させる工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ280により制御される。
 なお、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合)がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。なお、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハ搬入)
 最表面にチタン窒化膜(TiN膜、第1の金属膜)と、酸化物やシリコン(Si)膜等であって第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された(露出した)複数枚のウエハ200を処理室201内に搬入(ボートロード)する。具体的には、複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
(圧力調整および温度調整)
 処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
続いて、最表面にチタン窒化膜(TiN膜、第1の金属膜)と、酸化物やシリコン(Si)膜等であって第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された(露出した)ウエハ200上のTiN膜上に、W膜(第2の金属膜)を選択成長させる工程を実行する。
[タングステン(W)層形成工程(W deposition)]
 まず、ウエハ200上に、金属層であるW層を形成する工程を実行する。
(Bガス供給ステップ)
 バルブ314を開き、ガス供給管310内に、第1の還元ガスとしてB含有ガスであるBガスを流す。Bガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、Bガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にNガスを流す。ガス供給管510内を流れたNガスは、MFC512により流量調整される。NガスはBガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420,430,440内へのBガスの侵入を防止するために、バルブ524,534,544を開き、ガス供給管520,530,540内にNガスを流す。Nガスは、ガス供給管320,330,340、ノズル420,430,440を介して処理室201内に供給され、排気管231から排気される。
 Bガスを流すときは、APCバルブ243を調整して、処理室201内の圧力を、例えば10~3990Paの範囲内の圧力とする。MFC312で制御するBガスの供給流量は、例えば0.01~20slmの範囲内の流量とする。MFC512,522,532,542で制御するNガスの供給流量は、それぞれ例えば0.0.01~30slmの範囲内の流量とする。Bガスをウエハ200に対して供給する時間は、例えば0.01~60秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば100~350℃の範囲内の温度となるような温度に設定する。処理室201内に流しているガスはBガスとNガスのみであり、Bガスの供給により、ウエハ200の最表面が還元される。
(残留ガス除去ステップ)
 Bガスの供給を所定時間供給した後、バルブ314を閉じて、Bガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは還元に寄与した後のBガスを処理室201内から排除する。このときバルブ514,524,534,544は開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、処理室201内に残留する未反応もしくは還元に寄与した後のBガスを処理室201内から排除する効果を高めることができる。
(WFガス供給ステップ)
 バルブ324を開き、ガス供給管320内に原料ガスであるWFガスを流す。WFガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してWFガスが供給されることとなる。このとき同時にバルブ524を開き、ガス供給管520内にNガス等の不活性ガスを流す。ガス供給管520内を流れたNガスは、MFC522により流量調整され、WFガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410,430,440内へのWFガスの侵入を防止するために、バルブ514,534,544を開き、ガス供給管510,530,540内にNガスを流す。Nガスは、ガス供給管310,330,340、ノズル410,430,440を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば0.1~6650Paの範囲内の圧力とする。MFC322で制御するWFガスの供給流量は、例えば0.01~10slmの範囲内の流量とする。MFC512,522,532,542で制御するNガスの供給流量は、それぞれ例えば0.1~30slmの範囲内の流量とする。WFガスをウエハ200に対して供給する時間は、例えば0.01~600秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えばステップ21と同様の温度となるような温度に設定する。
 このとき、処理室201内に流しているガスはWFガスとNガスのみである。WFガスの供給により、ウエハ200上に、例えば1原子層未満から数原子層程度の厚さのW層が形成される。
(残留ガス除去ステップ)
 W層が形成された後、バルブ324を閉じ、WFガスの供給を停止する。そして、Bガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはW層形成に寄与した後のWFガスを処理室201内から排除する。
(所定回数実施)
 上記したステップを順に行うサイクルを1回以上(所定回数(n回)行うことにより、ウエハ200のTiN膜上に、所定の厚さ(例えば0.1~4.0nm)のW層を形成する。上述のサイクルは、複数回繰り返すのが好ましい。
[エッチング工程]
続いて、ウエハ200の絶縁膜上に形成されたW層をエッチングする工程を実行する。
(NFガス供給ステップ)
 バルブ334を開き、ガス供給管330内にエッチングガスであるNFガスを流す。NFガスは、MFC332により流量調整され、ノズル430のガス供給孔430aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してNFガスが供給されることとなる。このとき同時にバルブ534を開き、ガス供給管530内にNガス等の不活性ガスを流す。ガス供給管530内を流れたNガスは、MFC532により流量調整され、NFガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410,420,440内へのNFガスの侵入を防止するために、バルブ514,524,544を開き、ガス供給管510,520,540内にNガスを流す。Nガスは、ガス供給管310,320,340、ノズル410,420,440を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば0~100Paの範囲内の圧力とする。好ましくは、W層形成工程より低圧とする。MFC332で制御するNFガスの供給流量は、例えば0.01~1slmの範囲内の流量とする。MFC512,522,532,542で制御するNガスの供給流量は、それぞれ例えば1~5slmの範囲内の流量とする。NFガスをウエハ200に対して供給する時間は、例えば30~600秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば100~500℃の範囲内の時間とする。好ましくは、W層形成工程より低温とする。
 このとき、NFガスにより、ウエハ200上に形成されたW層がエッチングされる。インキュベーションタイムの差により、ウエハ200上のTiN膜上に形成されたW層は、絶縁膜上に形成されたW層より厚いため、絶縁膜上に形成されたW層がエッチングされた後も、所定の厚さだけ、TiN膜上にはW層が残る。絶縁膜上に形成されたW層がエッチングされたら、NFガスの供給を止める。
(残留ガス除去ステップ)
 W層がエッチングされた後、バルブ334を閉じ、NFガスの供給を停止する。そして、Bガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはW層のエッチングに寄与した後のNFガスを処理室201内から排除する。
[所定回数実施]
 W層形成工程とエッチング工程とを順に行うサイクルを1回以上(所定回数(n回)行うことにより、ウエハ200のTiN膜上に、所定の厚さ(例えば2~20nm)のW膜を選択成長させる。上述のサイクルは、複数回繰り返すのが好ましい。
(アフターパージおよび大気圧復帰)
 ガス供給管510,520,530,540のそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ウエハ搬出)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つまたは複数の効果を得ることができる。
(a)W層形成とエッチングとを交互に行うことにより、金属膜と絶縁膜とが形成された基板の金属膜上にのみW膜を選択性よく選択成長させることが可能となる。
(b)W膜形成工程より低温、低圧でエッチング工程を行うことにより、エッチングの制御性を高め、金属膜と絶縁膜とが形成された基板の金属膜上にのみW膜を選択性よく選択成長させることが可能となる。
<変形例1>
 第1の実施形態の変形例1について、図6を用いて説明する。ここで、第1の実施形態と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
 本変形例1が第1の実施形態と異なる箇所は、主に、エッチング工程において、NFガス供給ステップを行う前に前処理(pre-treatment)ステップを行う点である。以下に、前処理工程について説明する。
(前処理(pre-treatment)ステップ(Oガス供給ステップ))
 バルブ344を開き、ガス供給管340内に改質ガス(酸化ガス)であるOガスを流す。Oガスは、MFC342により流量調整され、ノズル440のガス供給孔440aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してOガスが供給されることとなる。このとき同時にバルブ544を開き、ガス供給管540内にNガス等の不活性ガスを流す。ガス供給管540内を流れたNガスは、MFC542により流量調整され、Oガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410,420,430内へのOガスの侵入を防止するために、バルブ514,524,534を開き、ガス供給管510,520,530内にNガスを流す。Nガスは、ガス供給管310,320,330、ノズル410,420,430を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば50~500Paの範囲内の圧力とする。MFC342で制御するOガスの供給流量は、例えば0.1~3slmの範囲内の流量とする。MFC512,522,532,542で制御するNガスの供給流量は、それぞれ例えば0.1~3slmの範囲内の流量とする。Oガスをウエハ200に対して供給する時間は、例えば200~2000秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば100~400℃の範囲内の時間とする。このとき、Oガスにより、ウエハ200上に形成されたW層が改質(酸化)される。
(残留ガス除去ステップ)
 W層が十分に改質された後、バルブ344を閉じ、Oガスの供給を停止する。そして、Bガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはW層の改質に寄与した後のOガスを処理室201内から排除する。
 次に、上述したNFガス供給ステップおよびその後の残留ガス除去ステップを行う。
(所定回数実施)
 Oガス供給ステップ、残留ガス除去ステップ、NFガス供給ステップ、残留ガス除去ステップを順に行うサイクルを1回以上(所定回数(n回)行うことにより、絶縁膜上に形成されたW層をエッチングする。
 その後、上述のW層形成工程とエッチング工程とを順に行うサイクルを1回以上(所定回数(n回)行うことにより、ウエハ200のTiN膜上に、上述の所定の厚さのW膜を選択成長させる。上述のサイクルは、複数回繰り返すのが好ましい。なお、上述の前処理ステップでは、改質ガスとして酸化ガスであるOガスを用いて酸化する例について説明したが、これに限らず、改質ガスとして窒化ガスを用いて、改質として窒化を行ってもよい。窒化ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。
(4)本変形例1による効果
 本変形例1によれば、本実施形態で得られる上述の(a)(b)の効果に加えて、以下の効果を得ることができる。
(c)W層を改質(酸化)することにより、エッチングに必要とされるエッチング温度を低くすることができるため、よりエッチング効率および制御性を向上させることが可能となる。
<変形例2>
 第1の実施形態の変形例2について、図7を用いて説明する。ここで、第1の実施形態と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
 本変形例2が第1の実施形態と異なる箇所は、主に、エッチング工程において、NFガス供給ステップを行った後に後処理(post-treatment)ステップを行う点である。以下に、後処理工程について説明する。
(後処理(post-treatment)ステップ(Hガス供給ステップ))
 バルブ314を開き、ガス供給管340内に第2の還元ガスであるHガスを流す。Hガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してHガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にNガス等の不活性ガスを流す。ガス供給管510内を流れたNガスは、MFC512により流量調整され、Hガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル420,430,440内へのHガスの侵入を防止するために、バルブ524,534,544を開き、ガス供給管520,530,540内にNガスを流す。Nガスは、ガス供給管320,330,340、ノズル420,430,440を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば500~2000Paの範囲内の圧力とする。MFC312で制御するHガスの供給流量は、例えば0.5~3slmの範囲内の流量とする。MFC512,522,532,542で制御するNガスの供給流量は、それぞれ例えば0.5~3slmの範囲内の流量とする。Hガスをウエハ200に対して供給する時間は、例えば1800~7200秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば100~400℃の範囲内の時間とする。このとき、Hガスにより、ウエハ200のTiN膜上に形成されたW層が改質(還元)される。
(残留ガス除去ステップ)
 W層が十分に改質された後、バルブ314を閉じ、Hガスの供給を停止する。そして、Bガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはW層の改質に寄与した後のHガスを処理室201内から排除する。
 次に、上述したNFガス供給ステップおよびその後の残留ガス除去ステップを行う。
(所定回数実施)
 NFガス供給ステップ、残留ガス除去ステップ、Hガス供給ステップ、残留ガス除去ステップを順に行うサイクルを1回以上(所定回数(n回)行うことにより、絶縁膜上に形成されたW層をエッチングする。
 その後、上述のW層形成工程とエッチング工程とを順に行うサイクルを1回以上(所定回数(n回)行うことにより、ウエハ200のTiN膜上に、上述の所定の厚さのW膜を選択成長させる。上述のサイクルは、複数回繰り返すのが好ましい。
(5)本変形例2による効果
 本変形例2によれば、本実施形態で得られる上述の(a)(b)の効果に加えて、以下の効果を得ることができる。
(d)エッチングガスの供給と改質を交互に行うことにより、エッチング効率および制御性を向上させることが可能となる。
<変形例3>
 第1の実施形態の変形例3について、図8を用いて説明する。ここで、第1の実施形態や他の変形例と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
 本変形例3は、変形例1と変形例2を組み合わせたものであって、エッチング工程において、NFガス供給ステップを行う前に変形例1に記載の前処理ステップを行い、NFガス供給ステップを行った後に変形例2に記載の後処理ステップを行うものである。
ガス供給ステップ、残留ガス除去ステップ、NFガス供給ステップ、残留ガス除去ステップ、Hガス供給ステップ、残留ガス除去ステップを順に行うサイクルを1回以上(所定回数(n回)行うことにより、絶縁膜上に形成されたW層をエッチングする。
 その後、上述のW層形成工程とエッチング工程とを順に行うサイクルを1回以上(所定回数(n回)行うことにより、ウエハ200のTiN膜上に、上述の所定の厚さのW膜を選択成長させる。上述のサイクルは、複数回繰り返すのが好ましい。
(6)本変形例3による効果
 本変形例3によれば、本実施形態で得られる上述の(a)(b)の効果に加えて、(c)(d)の効果を得ることができる。
<変形例4>
 第1の実施形態の変形例4について、図9を用いて説明する。ここで、第1の実施形態や他の変形例と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
 本変形例4は、エッチング工程において、変形例3を行った後に、再度、後処理ステップを行うものである。プロセス条件等は、変形例3に記載の後処理ステップと同様なので省略する。
(7)本変形例4による効果
 本変形例4によれば、本実施形態で得られる上述の(a)(b)(c)(d)の効果に加えて、以下の効果を得ることができる。
(e)エッチング工程の最後に再度、改質を行うことにより、次のW層形成工程においてW層を効率よく形成することが可能となる。
<本発明の第2の実施形態>
 第2の実施形態について、図10を用いて説明する。ここで、第1の実施形態や他の変形例と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
 第2の実施形態では、W層形成工程を2段階で行う。下地であるTiN膜との密着性等を確保するために、まずW核層形成工程によりW核層を形成し、W核層を核として、次に、後述のWバルク層形成工程によりWバルク層を形成する。具体的には、第1の実施形態で説明したW層形成工程がW核層形成工程となり、W核層形成工程で形成されるW層をW核層と称する。以下に、Wバルク層形成工程について説明する。
[Wバルク層形成工程(Bulk W deposition)]
 W核層を形成した後、金属バルク層であるWバルク層を形成するステップを実行する。
(HガスおよびWFガス供給ステップ)
 バルブ314、324を開き、ガス供給管310,320内にそれぞれHガス、WFガスを流す。ガス供給管310内を流れたHガスおよびガス供給管320内を流れたWFガスは、MFC312,322によりそれぞれ流量調整されてノズル410,420のガス供給孔410a,420aからそれぞれ処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してHガスおよびWFガスが供給されることとなる。すなわちウエハ200の表面はHガスおよびWFガスに暴露されることとなる。このとき同時にバルブ534,544を開き、キャリアガス供給管530,540内にそれぞれNガスを流す。キャリアガス供給管530,540内を流れたNガスは、MFC532,542によりそれぞれ流量調整されてHガスもしくはWFガスと一緒にそれぞれ処理室201内に供給され、排気管231から排気される。このとき、ノズル430,440内へのHガスおよびWFガスの侵入を防止するために、バルブ534,544を開き、キャリアガス供給管530,540内にNガスを流す。Nガスは、ガス供給管330,340,ノズル430,440を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を適正に調整して、処理室201内の圧力を、例えば10~3990Paの範囲内の圧力とする。MFC312で制御するHガスの供給流量は、例えば100~20000sccmの範囲内の流量とし、MFC322で制御するWFガスの供給流量は、例えば10~1000sccmの範囲内の流量とする。MFC512,522,532,542で制御するNガスの供給流量は、それぞれ例えば10~10000sccmの範囲内の流量とする。HガスおよびWFガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば1~1000秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば100~600℃の範囲内の温度となるような温度に設定する。処理室201内に流しているガスはHガスおよびWFガスのみであり、WFガスの供給により、ウエハ200の上に形成されたW核層上に、例えば、10~30nmの厚さのWバルク層が形成される。
(残留ガス除去ステップ)
 バルクW層を形成した後、バルブ312、322を閉じて、HガスおよびWFガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはバルクW層形成に寄与した後のHガスおよびWFガスを処理室201内から排除する。このときバルブ514,524,534,544は開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、処理室201内に残留する未反応もしくはバルクW層形成に寄与した後のHガスおよびWFガスを処理室201内から排除する効果を高めることができる。
 次に、変形例1と同様に、前処理ステップ、残留ガス除去ステップ、NFガス供給ステップ、残留ガス除去ステップを順に行うサイクルを1回以上(所定回数(n11回)行うことにより、絶縁膜上に形成されたW層をエッチングする。
 その後、上述のW層形成工程とエッチング工程とを順に行うサイクルを1回以上(所定回数(n12回)行うことにより、ウエハ200のTiN膜上に、上述の所定の厚さのW膜を選択成長させる。上述のサイクルは、複数回繰り返すのが好ましい。なお、本実施形態に、適宜、第1の実施形態の各変形例を組み合わせてもよい。
(8)第2の実施形態による効果
 本実施形態によれば、第1の実施形態および変形例1~4で得られる上述の(a)~(e)の効果のうち少なくともひとつが得られるとともに、以下の効果を得ることができる。
(f)W核層形成工程によりW核層を形成し、W核層を核として、次に、Wバルク層形成工程によりWバルク層を形成することにより、下地であるTiN膜との密着性よくW膜を形成することが可能となる。
 また、上述の実施形態では、金属窒化膜としてTiN膜が基板上に形成されている例について説明したが、これに限らず、例えば、タンタル窒化膜(TaN膜)、モリブデン窒化膜(MoN膜)、亜鉛窒化膜(ZnN膜)、アルミニウム窒化膜(AlN膜)等にも適用可能である。
 また、上述の実施形態では、第1の還元ガスとしてB含有ガスとしてのBを用いる例について説明したが、Bの代わりにトリボラン(B)ガス等を用いることも可能であり、B含有ガスの代わりに、リン(P)含有ガスであるホスフィン(PH)や、シリコン(Si)含有ガス(シラン系ガス)としてモノシラン(SiH)ガスやジシラン(Si)ガス等を用いることも可能である。
 また、上述の実施形態では、エッチングガスとしてF含有ガスであるNFを用いる例について説明したが、NFの代わりにClF、HF、F等のF含有ガスや塩素(Cl)含有ガス等を用いることも可能である。
 また、上述の実施形態では、第2の還元ガスとしてH含有ガスとしてのHガスを用いる例について説明したが、Hガスの代わりに、他元素非含有のH含有ガスである重水素(D)ガスやアンモニア(NH)ガス等を用いることも可能である。
 また、上述の実施形態では、一度に複数枚の基板を処理するバッチ式の縦型装置である基板処理装置であって、1つの反応管内に処理ガスを供給するノズルが立設され、反応管の下部に排気口が設けられた構造を有する処理炉を用いて成膜する例について説明したが、他の構造を有する処理炉を用いて成膜する場合にも本発明を適用可能である。また、処理ガスはインナチューブ内に立設されたノズルから供給されるのではなく、インナチューブの側壁に開口するガス供給口から供給されるようにしてもよい。このとき、アウタチューブに開口する排気口は、処理室内に積層して収容された複数枚の基板が存在する高さに応じて開口していてもよい。また、排気口の形状は穴形状であってもよいし、スリット形状であってもよい。
 また、上述の実施形態では、W層形成工程とエッチング工程とを同じ処理室内で行う例について説明したが、これに限らず、W層形成工程とエッチング工程とをそれぞれ異なる処理室で行ってもよい。
 これらの基板処理装置を用いる場合においても、上述の実施形態と同様なシーケンス、処理条件にて成膜を行うことができる。
 これらの各種薄膜の形成に用いられるプロセスレシピ(処理手順や処理条件等が記載されたプログラム)は、基板処理の内容(形成する薄膜の膜種、組成比、膜質、膜厚、処理手順、処理条件等)に応じて、それぞれ個別に用意する(複数用意する)ことが好ましい。そして、基板処理を開始する際、基板処理の内容に応じて、複数のプロセスレシピの中から、適正なプロセスレシピを適宜選択することが好ましい。具体的には、基板処理の内容に応じて個別に用意された複数のプロセスレシピを、電気通信回線や当該プロセスレシピを記録した記録媒体(外部記憶装置283)を介して、基板処理装置が備える記憶装置280c内に予め格納(インストール)しておくことが好ましい。そして、基板処理を開始する際、基板処理装置が備えるCPU280aが、記憶装置280c内に格納された複数のプロセスレシピの中から、基板処理の内容に応じて、適正なプロセスレシピを適宜選択することが好ましい。このように構成することで、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成できるようになる。また、オペレータの操作負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。
 また、本発明は、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本発明に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本発明に係るプロセスレシピに変更したりすることも可能である。
10 基板処理装置
280 コントローラ
200 ウエハ(基板)
201 処理室

Claims (11)

  1. (a)表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、金属含有ガスと反応ガスとを交互に供給して、前記基板上に第2の金属膜を形成する工程と、
    (b)前記基板に対して、エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する工程と、
    を有し、(a)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させる半導体装置の製造方法。
  2.  前記(b)では、エッチングガスを供給する前に、前記基板に対して第1の改質ガスを供給して、前記基板上に形成された前記第2の金属膜を改質する工程を有し、前記第2の金属膜を改質する工程と、前記改質された第2の金属膜に対して前記エッチングガスを供給する工程とを交互に繰り返すことにより、前記絶縁膜上に形成された前記第2の金属膜を除去する請求項1に記載の半導体装置の製造方法。
  3.  前記第1の改質ガスは、酸化ガスもしくは窒化ガスである請求項2に記載の半導体装置の製造方法。
  4.  前記エッチングガスは、ハロゲン化物である請求項3に記載の半導体装置の製造方法。
  5.  前記(b)では、エッチングガスを供給した後に、前記基板に対して第2の改質ガスを供給して、前記エッチングガスが供給された後の基板を改質する工程を有し、前記基板に対して前記エッチングガスを供給する工程と前記基板に対して前記第2の改質ガスを供給する工程とを交互に繰り返すことにより、前記絶縁膜上に形成された前記第2の金属膜を除去する請求項1に記載の半導体装置の製造方法。
  6.  前記第2の改質ガスは、水素含有ガスである請求項5に記載の半導体装置の製造方法。
  7.  前記第2の金属膜は、タングステン膜もしくはチタン窒化膜である請求項1のいずれかに記載の半導体装置の製造方法。
  8. (a-1)表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、金属含有ガスと第1の還元ガスとを交互に供給して、前記基板上に第1の金属層を形成する工程と、
    (a-2)前記基板に対して、前記金属含有ガスと第2の還元ガスとを同時に供給して、前記第1の金属層の上に第2の金属層を形成する工程と、
    を有し、
    (a-3)前記(a-1)と(a-2)とを交互に繰り返すことにより、前記基板上に第2の金属膜を形成する工程と、
    (b)前記基板に対して、エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する工程と、
    を有し、(a-3)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させる半導体装置の製造方法。
  9.  前記金属含有ガスはフッ化タングステンであり、前記第1の還元ガスはジボラン、モノシラン、ジシランのいずれかであり、前記第2の還元ガスは水素であり、前記第2の金属膜はタングステン膜である請求項8に記載の半導体装置の製造方法。
  10.  基板を収容する処理室と、
     前記処理室に、金属含有ガス、反応ガス、エッチングガスを供給するガス供給系と、
     (a)前記処理室に収容された基板であって、表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、前記金属含有ガスと前記反応ガスとを交互に供給して、前記基板上に第2の金属膜を形成する処理と、(b)前記基板に対して、前記エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する処理と、を有し、(a)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させるよう構成される制御部と、
     を有する基板処理装置。
  11. (a)基板処理装置の処理室に収容された基板であって、表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、金属含有ガスと反応ガスとを交互に供給して、前記基板上に第2の金属膜を形成する手順と、
    (b)前記基板に対して、エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する手順と、
    を有し、(a)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させる手順をコンピュータにより前記基板処理装置に実行させるプログラム。
PCT/JP2017/013634 2017-03-31 2017-03-31 半導体装置の製造方法、基板処理装置およびプログラム WO2018179354A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/013634 WO2018179354A1 (ja) 2017-03-31 2017-03-31 半導体装置の製造方法、基板処理装置およびプログラム
CN201780086010.3A CN110268506A (zh) 2017-03-31 2017-03-31 半导体装置的制造方法、基板处理装置及程序
JP2019508123A JP6847202B2 (ja) 2017-03-31 2017-03-31 半導体装置の製造方法、基板処理装置およびプログラム
KR1020197022784A KR102331573B1 (ko) 2017-03-31 2017-03-31 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
US16/535,677 US11152215B2 (en) 2017-03-31 2019-08-08 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013634 WO2018179354A1 (ja) 2017-03-31 2017-03-31 半導体装置の製造方法、基板処理装置およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/535,677 Continuation US11152215B2 (en) 2017-03-31 2019-08-08 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2018179354A1 true WO2018179354A1 (ja) 2018-10-04

Family

ID=63674512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013634 WO2018179354A1 (ja) 2017-03-31 2017-03-31 半導体装置の製造方法、基板処理装置およびプログラム

Country Status (5)

Country Link
US (1) US11152215B2 (ja)
JP (1) JP6847202B2 (ja)
KR (1) KR102331573B1 (ja)
CN (1) CN110268506A (ja)
WO (1) WO2018179354A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044039A (ja) * 2021-09-17 2023-03-30 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115485816A (zh) * 2020-05-08 2022-12-16 东京毅力科创株式会社 成膜方法和成膜装置
JP2024061057A (ja) * 2022-10-21 2024-05-07 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、プログラムおよび基板処理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562934A (ja) * 1991-09-04 1993-03-12 Fujitsu Ltd 半導体装置の製造方法
JPH1187268A (ja) * 1997-09-09 1999-03-30 Matsushita Electron Corp 半導体装置、半導体装置の製造方法、および半導体装置の製造装置
JP2008124181A (ja) * 2006-11-10 2008-05-29 Hitachi Kokusai Electric Inc 基板処理装置
JP2012204453A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 配線の形成方法
JP2015029097A (ja) * 2013-07-25 2015-02-12 ラム リサーチ コーポレーションLam Research Corporation 異なるサイズのフィーチャへのボイドフリータングステン充填
JP2016225396A (ja) * 2015-05-28 2016-12-28 東京エレクトロン株式会社 金属膜のストレス低減方法および金属膜の成膜方法
JP2017014615A (ja) * 2015-05-27 2017-01-19 ラム リサーチ コーポレーションLam Research Corporation フッ素含有量が少ないタングステン膜
JP2017053024A (ja) * 2015-08-07 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation タングステン堆積充填の強化のためのタングステンの原子層エッチング

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139429A (ja) * 1995-11-10 1997-05-27 Nippon Steel Corp 半導体装置の製造方法
JPH09232287A (ja) * 1996-02-26 1997-09-05 Sony Corp エッチング方法及びコンタクトプラグ形成方法
US9548228B2 (en) 2009-08-04 2017-01-17 Lam Research Corporation Void free tungsten fill in different sized features
JP5524785B2 (ja) 2010-09-21 2014-06-18 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
US9082684B2 (en) * 2012-04-02 2015-07-14 Applied Materials, Inc. Method of epitaxial doped germanium tin alloy formation
KR20160127891A (ko) * 2015-04-27 2016-11-07 삼성전자주식회사 싸이클 공정을 이용한 수직 패턴의 형성방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562934A (ja) * 1991-09-04 1993-03-12 Fujitsu Ltd 半導体装置の製造方法
JPH1187268A (ja) * 1997-09-09 1999-03-30 Matsushita Electron Corp 半導体装置、半導体装置の製造方法、および半導体装置の製造装置
JP2008124181A (ja) * 2006-11-10 2008-05-29 Hitachi Kokusai Electric Inc 基板処理装置
JP2012204453A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 配線の形成方法
JP2015029097A (ja) * 2013-07-25 2015-02-12 ラム リサーチ コーポレーションLam Research Corporation 異なるサイズのフィーチャへのボイドフリータングステン充填
JP2017014615A (ja) * 2015-05-27 2017-01-19 ラム リサーチ コーポレーションLam Research Corporation フッ素含有量が少ないタングステン膜
JP2016225396A (ja) * 2015-05-28 2016-12-28 東京エレクトロン株式会社 金属膜のストレス低減方法および金属膜の成膜方法
JP2017053024A (ja) * 2015-08-07 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation タングステン堆積充填の強化のためのタングステンの原子層エッチング

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044039A (ja) * 2021-09-17 2023-03-30 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置
JP7387685B2 (ja) 2021-09-17 2023-11-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置

Also Published As

Publication number Publication date
JPWO2018179354A1 (ja) 2019-12-19
KR102331573B1 (ko) 2021-11-25
CN110268506A (zh) 2019-09-20
US20190371609A1 (en) 2019-12-05
US11152215B2 (en) 2021-10-19
KR20190100381A (ko) 2019-08-28
JP6847202B2 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
TWI819348B (zh) 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式
WO2016046909A1 (ja) 半導体装置の製造方法、基板処理装置、半導体装置およびプログラム
WO2020016914A1 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
US11152215B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
US20240344194A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US11908737B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and recording medium
KR102660213B1 (ko) 반도체 장치의 제조 방법, 프로그램, 기판 처리 장치 및 기판 처리 방법
US20240055259A1 (en) Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
US20220208557A1 (en) Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
WO2019186637A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6639691B2 (ja) 半導体装置の製造方法、プログラムおよび基板処理装置
JP7273168B2 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
JP7159446B2 (ja) 基板処理方法、基板処理装置、プログラムおよび半導体装置の製造方法
TWI830089B (zh) 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置
JP7524333B2 (ja) 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法
JP7179962B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
WO2023037452A1 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体
WO2018061144A1 (ja) 半導体装置の製造方法
JP2023023351A (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法
TW202217964A (zh) 半導體裝置之製造方法、記錄媒體及基板處理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508123

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022784

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902624

Country of ref document: EP

Kind code of ref document: A1