WO2018179354A1 - 半導体装置の製造方法、基板処理装置およびプログラム - Google Patents
半導体装置の製造方法、基板処理装置およびプログラム Download PDFInfo
- Publication number
- WO2018179354A1 WO2018179354A1 PCT/JP2017/013634 JP2017013634W WO2018179354A1 WO 2018179354 A1 WO2018179354 A1 WO 2018179354A1 JP 2017013634 W JP2017013634 W JP 2017013634W WO 2018179354 A1 WO2018179354 A1 WO 2018179354A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- metal film
- substrate
- film
- metal
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 93
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000004065 semiconductor Substances 0.000 title claims description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 91
- 239000002184 metal Substances 0.000 claims abstract description 91
- 238000005530 etching Methods 0.000 claims abstract description 59
- 238000011534 incubation Methods 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 claims description 409
- 238000012545 processing Methods 0.000 claims description 164
- 238000000034 method Methods 0.000 claims description 88
- 230000008569 process Effects 0.000 claims description 59
- 238000002407 reforming Methods 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 238000005121 nitriding Methods 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 claims description 2
- 239000012495 reaction gas Substances 0.000 claims 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 238000009413 insulation Methods 0.000 abstract 2
- 239000010408 film Substances 0.000 description 131
- 235000012431 wafers Nutrition 0.000 description 76
- 230000004048 modification Effects 0.000 description 32
- 238000012986 modification Methods 0.000 description 32
- 230000015572 biosynthetic process Effects 0.000 description 26
- 230000000694 effects Effects 0.000 description 22
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 15
- 238000003860 storage Methods 0.000 description 15
- 239000011261 inert gas Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 238000010926 purge Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000003779 heat-resistant material Substances 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 239000012159 carrier gas Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- AKJVMGQSGCSQBU-UHFFFAOYSA-N zinc azanidylidenezinc Chemical compound [Zn++].[N-]=[Zn].[N-]=[Zn] AKJVMGQSGCSQBU-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
- C23C16/14—Deposition of only one other metal element
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45534—Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
- C23C16/45546—Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45578—Elongated nozzles, tubes with holes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F4/00—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
- H01L21/28562—Selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
- H01L21/30612—Etching of AIIIBV compounds
- H01L21/30621—Vapour phase etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76865—Selective removal of parts of the layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
- H01L21/76876—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
Definitions
- the present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a program.
- an electrode for a word line of a MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
- a barrier film As a process of manufacturing a semiconductor device (device) for forming a control gate film of a flash memory, an electrode for a word line of a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor), and a barrier film, it is applied to a substrate in a processing chamber.
- a substrate process performed by supplying a processing gas for example, a film formation process or an oxidation process is performed.
- a selective thin film growth method in a semiconductor device manufacturing method is a selective CVD in which a film is grown by an epitaxial growth technique in which Si or SiGe is grown on a crystalline Si substrate or a method of supplying a continuous source gas. and so on. All of these methods used the difference in the growth time (incubation time) of the thin film on the surface of different materials, but it was not possible to form a thick film within a finite time or due to incomplete selectivity. Thus, practical application has been limited.
- thin films for various processing so-called hard masks, are used for processing semiconductor devices. Conventionally, in order to separate the surface to be processed (etched) from the surface that is not, resist, etc. Therefore, it was necessary to process the hard mask itself.
- An object of the present invention is to provide a technique for selectively growing a film with high selectivity on substrates having different surfaces.
- a film can be selectively grown with good selectivity for substrates having different surfaces.
- FIG. 2 is a schematic cross-sectional view along the line AA in FIG. 1.
- FIG. 4A is a diagram for explaining the incubation time
- FIG. 4B is a diagram for explaining an alternating sequence of film formation and etching
- FIG. 4C is a film by an alternating sequence of film formation and etching. It is an image figure of growth. It is a figure which shows the timing of the suitable gas supply in the film-forming process of the 1st Embodiment of this invention.
- ⁇ ⁇ manufacturing cost
- the present invention in order to solve the problem of increasing the number of processes, it is intended to provide a technique for forming a film only where it is desired to form a film.
- the film C grows from both the bottom and the side wall, the film that grows from the side wall eventually blocks the gas inlet. Voids and seams occur. If the film can be formed on the substrate A but with a selectivity such that the film is not formed on the substrate B, the film grows from the bottom of the hole or trench and can be embedded without causing a void or seam.
- the purpose can be achieved by growing it at a desired site.
- it is sometimes difficult to grow a thin film at a desired site only by film formation because of incomplete selectivity (breakage of selectivity).
- another problem is encountered in the method of continuously supplying the processing gas (film forming gas). That is, the thickness of the thin film to be formed depends on the surface density of the part to be grown. This phenomenon is called a loading effect and is a problem to be overcome in selective growth performed by continuously flowing a processing gas.
- film formation and etching are alternately performed in a method of alternately performing film formation and etching will be described. In this method, it is possible to supply a sufficiently excessive film forming material and etching material to the surface on which the thin film is to be grown, and the effect of alleviating the loading effect is great.
- FIG. 4C shows the change in film thickness with respect to time when the sequence of FIG. 4B is performed.
- the film starts to be attached immediately after the start of film formation.
- the substrate B the film starts to be attached after the incubation time t delay has elapsed. Etching is performed at this timing to remove the film on the substrate B. In this etching process, the film on the substrate A is also etched by dT. In order to increase the film thickness on the substrate A while suppressing the film formation on the substrate B, it is necessary that (film thickness TA attached to the substrate A)>dT> (film thickness TB attached to the substrate B). Therefore, high controllability is required for etching.
- etching As a method for improving the controllability of etching, it is conceivable to perform etching at a low temperature and a low pressure. As another method for improving the controllability of etching, there can be considered a sequence of alternately supplying a modifying gas for modifying the surface of the film to be etched and an etching gas for etching the modified layer without etching the film.
- the thickness of the reformed layer by the reformed gas is preferably saturated with respect to the exposure amount of the reformed gas.
- the substrate processing apparatus 10 is configured as an example of an apparatus used in a semiconductor device manufacturing process.
- the substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system).
- the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
- An outer tube 203 that constitutes a reaction vessel (processing vessel) concentrically with the heater 207 is disposed inside the heater 207.
- the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
- a manifold (inlet flange) 209 is disposed below the outer tube 203 concentrically with the outer tube 203.
- the manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened.
- An O-ring 220a as a seal member is provided between the upper end portion of the manifold 209 and the outer tube 203. As the manifold 209 is supported by the heater base, the outer tube 203 is installed vertically.
- An inner tube 204 that constitutes a reaction vessel is disposed inside the outer tube 203.
- the inner tube 204 is made of a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
- a processing vessel (reaction vessel) is mainly constituted by the outer tube 203, the inner tube 204, and the manifold 209.
- a processing chamber 201 is formed in a cylindrical hollow portion of the processing container (inside the inner tube 204).
- the processing chamber 201 is configured to be able to accommodate wafers 200 as substrates in a state where they are arranged in multiple stages in a vertical posture in a horizontal posture by a boat 217 described later.
- nozzles 410, 420, 430, and 440 are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
- Gas supply pipes 310, 320, 330, and 340 are connected to the nozzles 410, 420, 430, and 440, respectively.
- the processing furnace 202 of this embodiment is not limited to the above-mentioned form. The number of nozzles and the like is appropriately changed as necessary.
- the gas supply pipes 310, 320, 330, and 340 are provided with mass flow controllers (MFCs) 312, 322, 332, and 342, which are flow controllers (flow controllers) in order from the upstream side.
- MFCs mass flow controllers
- the gas supply pipes 310, 320, 330, and 340 are provided with valves 314, 324, 334, and 344, which are on-off valves, respectively.
- Gas supply pipes 510, 520, 530, and 540 for supplying an inert gas are connected to the downstream sides of the valves 314, 324, 334, and 344 of the gas supply pipes 310, 320, 330, and 340, respectively.
- MFCs 512, 522, 532, and 542 that are flow rate controllers (flow rate control units) and valves 514, 524, 534, and 544 that are on-off valves are sequentially provided from the upstream side. Is provided.
- the nozzles 410, 420, 430, and 440 are configured as L-shaped nozzles, and the horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
- the vertical portions of the nozzles 410, 420, 430, and 440 are disposed inside a channel-shaped (groove-shaped) preliminary chamber 201 a that protrudes radially outward of the inner tube 204 and extends in the vertical direction. It is provided in the preliminary chamber 201a along the inner wall of the inner tube 204 (upward in the arrangement direction of the wafers 200).
- the nozzles 410, 420, 430, and 440 are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410 a and 420 a are respectively provided at positions facing the wafer 200. , 430a, 440a. Accordingly, the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, 430a, and 440a of the nozzles 410, 420, 430, and 440, respectively.
- a plurality of gas supply holes 410a, 420a, 430a, 440a are provided from the lower part to the upper part of the inner tube 204, have the same opening area, and are provided at the same opening pitch.
- the gas supply holes 410a, 420a, 430a, and 440a are not limited to the above-described form.
- the opening area may be gradually increased from the lower part of the inner tube 204 toward the upper part. Thereby, the flow rate of the gas supplied from the gas supply holes 410a, 420a, 430a, 440a can be made more uniform.
- a plurality of gas supply holes 410 a, 420 a, 430 a, 440 a of the nozzles 410, 420, 430, 440 are provided at positions from the bottom to the top of the boat 217 described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410 a, 420 a, 430 a, and 440 a of the nozzles 410, 420, and 430 is supplied to the wafers 200, that is, the boat 217 stored from the bottom to the top of the boat 217. It is supplied to the entire area of the accommodated wafer 200.
- the nozzles 410, 420, 430, and 440 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but may be provided so as to extend to the vicinity of the ceiling of the boat 217. preferable.
- a reducing gas is supplied into the processing chamber 201 as a processing gas via the MFC 312, the valve 314, and the nozzle 410.
- the first reducing gas for example, diborane (B 2 H 6 ), which is a B-containing gas containing boron (B), is used.
- the second reducing gas for example, hydrogen (H 2 ) that is an H-containing gas containing hydrogen atoms (H) is used.
- the first reducing gas and the second reducing gas may be supplied into the processing chamber 201, or the processing chamber 201 is switched between the first reducing gas and the second reducing gas. It is good also as a common pipe supplied to the inside.
- hydrogen (H 2 ) is used in a reforming step described later, the reducing gas may be referred to as a reformed gas (second reformed gas).
- a metal-containing gas containing a metal element (also referred to as a metal-containing raw material (gas)) is supplied into the processing chamber 201 through the MFC 322, the valve 324, and the nozzle 420 as a processing gas.
- a metal-containing gas for example, tungsten hexafluoride (WF 6 ) containing tungsten (W) as a metal element is used.
- an etching gas is supplied as a processing gas into the processing chamber 201 through the MFC 332, the valve 334, and the nozzle 430.
- the etching gas for example, nitrogen trifluoride (NF 3 ) which is a halide and is a fluorine-containing gas is used.
- a reformed gas is supplied as a processing gas into the processing chamber 201 through the MFC 342, the valve 344, and the nozzle 440.
- a reformed gas for example, ozone (O 3 ) is used as an oxidizing gas that is an oxygen-containing gas.
- O 3 ozone
- NH 3 ammonia
- H 2 is used as a reformed gas in the reforming step described later, O 3 or NH 3 may be referred to as a first reformed gas and H 2 may be referred to as a second reformed gas.
- nitrogen (N 2 ) gas as an inert gas is MFC 512, 522, 532, 542, valves 514, 524, 534, 544, nozzles 410, 420, respectively. It is supplied into the processing chamber 201 through 430 and 440.
- N 2 gas is used as the inert gas.
- the inert gas for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas other than N 2 gas.
- a rare gas such as xenon (Xe) gas may be used.
- the gas supply pipes 310, 320, 330, and 340, MFCs 312, 322, 332, and 342, valves 314, 324, 334, and 344, and nozzles 410, 420, 430, and 440 constitute a processing gas supply system. Only the nozzles 410, 420, 430, and 440 may be considered as the processing gas supply system.
- the processing gas supply system may be simply referred to as a gas supply system.
- the reducing gas supply system is mainly configured by the gas supply pipe 310, the MFC 312 and the valve 314.
- the nozzle 410 may be included in the reducing gas supply system.
- the metal-containing gas supply system When flowing a metal-containing gas from the gas supply pipe 320, the metal-containing gas supply system is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 320 may be included in the metal-containing gas supply system. Good.
- an etching gas supply system is mainly configured by the gas supply pipe 330, the MFC 332, and the valve 334.
- the nozzle 430 may be included in the etching gas supply system.
- the reformed gas When the reformed gas is supplied from the gas supply pipe 340, the reformed gas supply system is mainly configured by the gas supply pipe 340, the MFC 342, and the valve 344.
- An inert gas supply system is mainly configured by the gas supply pipes 510, 520, 530, and 540, the MFCs 512, 522, 532, and 542, and the valves 514, 524, 534, and 544.
- the inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
- the gas supply method is performed in an annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200, that is, in the spare chamber 201a in a cylindrical space.
- Gas is conveyed via nozzles 410, 420, 430, and 440 arranged in the above. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a, 440a provided at positions facing the wafers of the nozzles 410, 420, 430, 440.
- the gas supply hole 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, the gas supply hole 430a of the nozzle 430, and the gas supply hole 440a of the nozzle 440 are parallel to the surface of the wafer 200, that is, horizontally.
- the raw material gas and the like are jetted out.
- the exhaust hole (exhaust port) 204a is a through hole formed at a position opposite to the nozzles 410, 420, 430, and 440 on the side wall of the inner tube 204, that is, a position 180 degrees opposite to the spare chamber 201a.
- it is a slit-like through hole that is elongated in the vertical direction.
- the gas that is supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a, and 440a of the nozzles 410, 420, 430, and 440 and flows on the surface of the wafer 200, that is, the residual gas (residual gas) is Then, the gas flows into an exhaust path 206 formed by a gap formed between the inner tube 204 and the outer tube 203 through the exhaust hole 204a.
- the gas flowing into the exhaust path 206 flows into the exhaust pipe 231 and is discharged out of the processing furnace 202.
- the exhaust hole 204a is provided at a position facing the plurality of wafers 200 (preferably a position facing from the upper part to the lower part of the boat 217), and from the gas supply holes 410a, 420a, 430a, 440a to the wafer in the processing chamber 201.
- the gas supplied in the vicinity of 200 flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then flows into the exhaust path 206 through the exhaust holes 204a. That is, the gas remaining in the processing chamber 201 is exhausted in parallel to the main surface of the wafer 200 through the exhaust hole 204a.
- the exhaust hole 204a is not limited to being configured as a slit-like through hole, and may be configured by a plurality of holes.
- the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
- a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
- an APC (Auto Pressure Controller) valve 243 a vacuum pump as a vacuum exhaust device 246 is connected.
- the APC valve 243 can open and close the valve while the vacuum pump 246 is operated, thereby evacuating and stopping the vacuum exhaust in the processing chamber 201. Further, the APC valve 243 can be operated while the vacuum pump 246 is operated. By adjusting the opening, the pressure in the processing chamber 201 can be adjusted.
- An exhaust system that is, an exhaust line, is mainly configured by the exhaust hole 204a, the exhaust path 206, the exhaust pipe 231, the APC valve 243, and the pressure sensor 245. Note that the vacuum pump 246 may be included in the exhaust system.
- a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209.
- the seal cap 219 is configured to contact the lower end of the manifold 209 from the lower side in the vertical direction.
- the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
- an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
- a rotation mechanism 267 that rotates the boat 217 that accommodates the wafers 200 is installed on the seal cap 219 on the opposite side of the processing chamber 201.
- a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
- the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
- the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the outer tube 203.
- the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down.
- the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217 and the wafers 200 accommodated in the boat 217 into and out of the processing chamber 201.
- the boat 217 as the substrate support is configured to support a plurality of, for example, 25 to 200 wafers 200 in a horizontal posture and in a multi-stage by aligning them in the vertical direction with their centers aligned. It is configured to arrange at intervals.
- the boat 217 is made of a heat-resistant material such as quartz or SiC.
- a heat insulating plate 218 made of a heat resistant material such as quartz or SiC is supported in multiple stages (not shown) in a horizontal posture. With this configuration, heat from the heater 207 is not easily transmitted to the seal cap 219 side.
- this embodiment is not limited to the above-mentioned form.
- a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
- a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and by adjusting the energization amount to the heater 207 based on the temperature information detected by the temperature sensor 263,
- the temperature inside the processing chamber 201 is configured to have a desired temperature distribution.
- the temperature sensor 263 is configured in an L shape similarly to the nozzles 410, 420, 430, and 440, and is provided along the inner wall of the inner tube 204.
- the controller 280 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 280a, a RAM (Random Access Memory) 280b, a storage device 280c, and an I / O port 280d.
- the RAM 280b, the storage device 280c, and the I / O port 280d are configured to exchange data with the CPU 280a via an internal bus.
- an input / output device 282 configured as a touch panel or the like is connected to the controller 280.
- the storage device 280c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
- a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of a semiconductor device manufacturing method described later, and the like are stored in a readable manner.
- the process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 280 to execute each step (each step) in the semiconductor device manufacturing method described later, and functions as a program.
- the process recipe, the control program, and the like are collectively referred to simply as a program.
- the RAM 280b is configured as a memory area (work area) in which a program or data read by the CPU 280a is temporarily stored.
- the I / O port 280d includes the above-described MFC 312, 322, 332, 342, 512, 522, 532, 542, valve 314, 324, 334, 342, 514, 524, 534, 544, pressure sensor 245, APC valve 243, The vacuum pump 246, the heater 207, the temperature sensor 263, the rotation mechanism 267, the boat elevator 115, etc. are connected.
- the CPU 280a is configured to read and execute a control program from the storage device 280c, and to read a recipe or the like from the storage device 280c in response to an operation command input from the input / output device 282 or the like.
- the CPU 280a adjusts the flow rates of various gases by the MFCs 312, 322, 332, 342, 512, 522, 532, 542, valves 314, 324, 334, 344, 514, 524, and 534 in accordance with the contents of the read recipe.
- the controller 280 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
- the above-mentioned program can be configured by installing it in a computer.
- the storage device 280c and the external storage device 283 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
- the recording medium may include only the storage device 280c alone, the external storage device 283 alone, or both.
- the provision of the program to the computer may be performed using communication means such as the Internet or a dedicated line without using the external storage device 283.
- Substrate processing process film formation process
- a manufacturing process of a semiconductor device device
- an example of a process of selectively growing a metal film on a substrate will be described with reference to FIG.
- the step of selectively growing the metal film on the substrate is performed using the processing furnace 202 of the substrate processing apparatus 10 described above.
- the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 280.
- wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface thereof”. "(That is, a wafer including a predetermined layer or film formed on the surface).
- wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
- substrate is also synonymous with the term “wafer”.
- a titanium nitride film (TiN film, first metal film) and an insulating film such as an oxide or silicon (Si) film having a longer incubation time than the first metal film were formed (exposed) on the outermost surface.
- a plurality of wafers 200 are loaded into the processing chamber 201 (boat loading). Specifically, when a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 as shown in FIG. And is carried into the processing chamber 201. In this state, the seal cap 219 closes the lower end opening of the reaction tube 203 via the O-ring 220.
- the processing chamber 201 is evacuated by a vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 keeps operating at least until the processing on the wafer 200 is completed. Further, the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the energization amount to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
- TiN film, first metal film a titanium nitride film (TiN film, first metal film) and an insulating film such as an oxide or silicon (Si) film having a longer incubation time than the first metal film were formed on the outermost surface.
- a step of selectively growing a W film (second metal film) on the (exposed) TiN film on the wafer 200 is executed.
- B 2 H 6 gas supply step The valve 314 is opened, and a B 2 H 6 gas that is a B-containing gas is allowed to flow as a first reducing gas in the gas supply pipe 310.
- the flow rate of the B 2 H 6 gas is adjusted by the MFC 312, supplied into the processing chamber 201 from the gas supply hole 410 a of the nozzle 410, and exhausted from the exhaust pipe 231.
- B 2 H 6 gas is supplied to the wafer 200.
- the valve 514 is opened and N 2 gas is allowed to flow into the gas supply pipe 510.
- the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512.
- N 2 gas is supplied into the processing chamber 201 together with B 2 H 6 gas, and is exhausted from the exhaust pipe 231.
- the valves 524, 534, and 544 are opened, and N 2 gas is allowed to flow into the gas supply pipes 520, 530, and 540.
- the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 320, 330, and 340 and the nozzles 420, 430, and 440 and is exhausted from the exhaust pipe 231.
- the APC valve 243 When flowing the B 2 H 6 gas, the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 10 to 3990 Pa.
- the supply flow rate of the B 2 H 6 gas controlled by the MFC 312 is, for example, a flow rate in the range of 0.01 to 20 slm.
- the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 0.0.01 to 30 slm.
- the time for supplying the B 2 H 6 gas to the wafer 200 is, for example, a time within the range of 0.01 to 60 seconds.
- the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 100 to 350 ° C., for example.
- the gases flowing into the processing chamber 201 are only B 2 H 6 gas and N 2 gas, and the outermost surface of the wafer 200 is reduced by supplying the B 2 H 6 gas.
- the valve 324 is opened, and a WF 6 gas that is a raw material gas is caused to flow into the gas supply pipe 320.
- the flow rate of the WF 6 gas is adjusted by the MFC 322, supplied from the gas supply hole 420 a of the nozzle 420 into the processing chamber 201, and exhausted from the exhaust pipe 231.
- WF 6 gas is supplied to the wafer 200.
- the valve 524 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 520.
- the flow rate of the N 2 gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, supplied to the processing chamber 201 together with the WF 6 gas, and exhausted from the exhaust pipe 231.
- the valves 514, 534, and 544 are opened, and N 2 gas is allowed to flow into the gas supply pipes 510, 530, and 540.
- the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310, 330, and 340 and the nozzles 410, 430, and 440 and is exhausted from the exhaust pipe 231.
- the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 0.1 to 6650 Pa.
- the supply flow rate of the WF 6 gas controlled by the MFC 322 is set, for example, within a range of 0.01 to 10 slm.
- the supply flow rate of N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 0.1 to 30 slm.
- the time for supplying the WF 6 gas to the wafer 200 is, for example, a time within the range of 0.01 to 600 seconds.
- the temperature of the heater 207 is set to a temperature at which the temperature of the wafer 200 becomes the same as that in step 21, for example.
- the gases flowing into the processing chamber 201 are only WF 6 gas and N 2 gas.
- the WF 6 gas By supplying the WF 6 gas, a W layer having a thickness of, for example, less than one atomic layer to several atomic layers is formed on the wafer 200.
- a W layer having a predetermined thickness (for example, 0.1 to 4.0 nm) is formed on the TiN film of the wafer 200 by performing a cycle of performing the above steps in order one or more times (a predetermined number of times (n 1 time)).
- the above cycle is preferably repeated a plurality of times.
- NF 3 gas supply step The valve 334 is opened, and an NF 3 gas that is an etching gas is caused to flow into the gas supply pipe 330.
- the flow rate of the NF 3 gas is adjusted by the MFC 332, supplied from the gas supply hole 430 a of the nozzle 430 into the processing chamber 201, and exhausted from the exhaust pipe 231.
- NF 3 gas is supplied to the wafer 200.
- the valve 534 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 530.
- the flow rate of the N 2 gas that has flowed through the gas supply pipe 530 is adjusted by the MFC 532, supplied into the processing chamber 201 together with the NF 3 gas, and exhausted from the exhaust pipe 231.
- the valves 514, 524, 544 are opened, and the N 2 gas is caused to flow into the gas supply pipes 510, 520, 540.
- the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310, 320, 340 and the nozzles 410, 420, 440 and is exhausted from the exhaust pipe 231.
- the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 0 to 100 Pa. Preferably, the pressure is lower than that in the W layer forming step.
- the supply flow rate of the NF 3 gas controlled by the MFC 332 is set to a flow rate in the range of 0.01 to 1 slm, for example.
- the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 1 to 5 slm.
- the time for supplying the NF 3 gas to the wafer 200 is, for example, a time within a range of 30 to 600 seconds.
- the temperature of the heater 207 is set so that the temperature of the wafer 200 is within a range of 100 to 500 ° C., for example.
- the temperature is lower than that in the W layer forming step.
- the W layer formed on the wafer 200 is etched by NF 3 gas. Due to the difference in incubation time, the W layer formed on the TiN film on the wafer 200 is thicker than the W layer formed on the insulating film. Therefore, even after the W layer formed on the insulating film is etched, A W layer remains on the TiN film by a predetermined thickness. When the W layer formed on the insulating film is etched, the supply of NF 3 gas is stopped.
- a W film having a predetermined thickness (for example, 2 to 20 nm) is formed on the TiN film of the wafer 200 by performing a cycle of sequentially performing the W layer forming step and the etching step one or more times (a predetermined number of times (n 2 times)).
- the above cycle is preferably repeated a plurality of times.
- N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, 530, and 540 and exhausted from the exhaust pipe 231.
- the N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with an inert gas, and the gas and by-products remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 (after purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
- Modification 1 of the first embodiment will be described with reference to FIG.
- the description of the same parts as those in the first embodiment is omitted, and the details of the different parts are mainly described.
- the difference of the first modification from the first embodiment is that, in the etching process, a pre-treatment step is performed before the NF 3 gas supply step. Below, a pre-processing process is demonstrated.
- Pre-treatment step (O 3 gas supply step)
- O 3 gas which is a reformed gas (oxidizing gas)
- the flow rate of the O 3 gas is adjusted by the MFC 342, supplied from the gas supply hole 440 a of the nozzle 440 into the processing chamber 201, and exhausted from the exhaust pipe 231.
- O 3 gas is supplied to the wafer 200.
- the valve 544 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 540.
- the flow rate of the N 2 gas flowing through the gas supply pipe 540 is adjusted by the MFC 542, supplied into the processing chamber 201 together with the O 3 gas, and exhausted from the exhaust pipe 231.
- the valves 514, 524, and 534 are opened, and N 2 gas is allowed to flow into the gas supply pipes 510, 520, and 530.
- the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310, 320, 330 and the nozzles 410, 420, 430 and is exhausted from the exhaust pipe 231.
- the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 50 to 500 Pa.
- the supply flow rate of the O 3 gas controlled by the MFC 342 is, for example, a flow rate in the range of 0.1 to 3 slm.
- the supply flow rate of N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 0.1 to 3 slm.
- the time for supplying the O 3 gas to the wafer 200 is, for example, a time within the range of 200 to 2000 seconds.
- the temperature of the heater 207 is set so that the temperature of the wafer 200 is within a range of 100 to 400 ° C., for example.
- the W layer formed on the wafer 200 is modified (oxidized) by the O 3 gas.
- the W film having the predetermined thickness is formed on the TiN film of the wafer 200 by performing a cycle of sequentially performing the W layer forming step and the etching step one or more times (a predetermined number of times (n 4 times)).
- the above-described cycle is preferably repeated a plurality of times, but the example of oxidizing using O 3 gas, which is an oxidizing gas, as the reformed gas has been described in the above-described pretreatment step, but the present invention is not limited thereto.
- nitridation may be performed using a nitriding gas as the reforming gas, and for example, ammonia (NH 3 ) gas may be used as the nitriding gas.
- Modification 2 of the first embodiment will be described with reference to FIG.
- the description of the same parts as those in the first embodiment is omitted, and the details of the different parts are mainly described.
- the difference of the second modification from the first embodiment is that, in the etching process, a post-treatment step is performed after the NF 3 gas supply step. Below, a post-processing process is demonstrated.
- H 2 gas supply step (Post-treatment step (H 2 gas supply step))
- the valve 314 is opened, and H 2 gas that is the second reducing gas is caused to flow into the gas supply pipe 340.
- the flow rate of the H 2 gas is adjusted by the MFC 312, supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201, and exhausted from the exhaust pipe 231.
- H 2 gas is supplied to the wafer 200.
- the valve 514 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 510.
- the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, supplied into the processing chamber 201 together with the H 2 gas, and exhausted from the exhaust pipe 231.
- the valves 524, 534, and 544 are opened, and the N 2 gas is allowed to flow into the gas supply pipes 520, 530, and 540.
- the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 320, 330, and 340 and the nozzles 420, 430, and 440 and is exhausted from the exhaust pipe 231.
- the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 500 to 2000 Pa.
- the supply flow rate of H 2 gas controlled by the MFC 312 is, for example, a flow rate in the range of 0.5 to 3 slm.
- the supply flow rate of N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 0.5 to 3 slm.
- the time for supplying the H 2 gas to the wafer 200 is, for example, a time within the range of 1800 to 7200 seconds.
- the temperature of the heater 207 is set so that the temperature of the wafer 200 is within a range of 100 to 400 ° C., for example.
- the W layer formed on the TiN film of the wafer 200 is modified (reduced) by the H 2 gas.
- the W film having the predetermined thickness is formed on the TiN film of the wafer 200 by performing one or more cycles (a predetermined number of times (n 6 times)) of performing the W layer forming process and the etching process in order.
- the above cycle is preferably repeated a plurality of times.
- Modification 3 of the first embodiment will be described with reference to FIG.
- the description of the same parts as those of the first embodiment and other modified examples is omitted, and the details of the different parts are mainly described.
- the third modification there is a combination of modification 1 and modification 2, in the etching step, to preprocess step according to a modified example 1 before performing the NF 3 gas supplying step, NF 3 gas supply
- modification 1 and modification 2 in the etching step, to preprocess step according to a modified example 1 before performing the NF 3 gas supplying step, NF 3 gas supply
- the W layer formed on the insulating film is etched.
- the W film having the predetermined thickness is formed on the TiN film of the wafer 200 by performing one or more cycles (a predetermined number of times (n 8 times)) of sequentially performing the W layer forming process and the etching process.
- the above cycle is preferably repeated a plurality of times.
- Modification 4 of the first embodiment will be described with reference to FIG.
- the description of the same parts as those of the first embodiment and other modified examples is omitted, and the details of the different parts are mainly described.
- the post-processing step is performed again.
- the process conditions and the like are the same as those in the post-processing steps described in the third modification, and thus are omitted.
- the W layer forming process is performed in two stages.
- a W nucleus layer is first formed by a W nucleus layer forming step, and then the W nucleus layer is used as a nucleus. Form a layer.
- the W layer formation step described in the first embodiment is a W nucleus layer formation step, and the W layer formed in the W nucleus layer formation step is referred to as a W nucleus layer.
- the W bulk layer forming step will be described.
- H 2 gas and WF 6 gas supply step The valves 314 and 324 are opened, and H 2 gas and WF 6 gas are allowed to flow into the gas supply pipes 310 and 320, respectively.
- the flow rates of the H 2 gas flowing through the gas supply pipe 310 and the WF 6 gas flowing through the gas supply pipe 320 are adjusted by the MFCs 312 and 322, respectively, from the gas supply holes 410a and 420a of the nozzles 410 and 420, respectively. Is exhausted from the exhaust pipe 231.
- H 2 gas and WF 6 gas are supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to H 2 gas and WF 6 gas.
- the valves 534 and 544 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipes 530 and 540, respectively.
- the N 2 gas flowing through the carrier gas supply pipes 530 and 540 is adjusted in flow rate by the MFCs 532 and 542, supplied to the processing chamber 201 together with the H 2 gas or WF 6 gas, and exhausted from the exhaust pipe 231.
- the valves 534 and 544 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipes 530 and 540.
- the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 330 and 340 and the nozzles 430 and 440 and is exhausted from the exhaust pipe 231.
- the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 10 to 3990 Pa.
- the supply flow rate of H 2 gas controlled by the MFC 312 is, for example, a flow rate in the range of 100 to 20000 sccm
- the supply flow rate of WF 6 gas controlled by the MFC 322 is, for example, a flow rate in the range of 10 to 1000 sccm.
- the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, 532, and 542 is, for example, a flow rate in the range of 10 to 10,000 sccm.
- the time for supplying the H 2 gas and WF 6 gas to the wafer 200 is, for example, a time within the range of 1 to 1000 seconds.
- the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 100 to 600 ° C., for example.
- the gases flowing into the processing chamber 201 are only H 2 gas and WF 6 gas, and a thickness of, for example, 10 to 30 nm is formed on the W nucleus layer formed on the wafer 200 by the supply of the WF 6 gas.
- the W bulk layer is formed.
- the valves 312 and 322 are closed, and the supply of H 2 gas and WF 6 gas is stopped.
- the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and H 2 after contributing to unreacted or bulk W layer formation remaining in the processing chamber 201.
- Gas and WF 6 gas are excluded from the processing chamber 201.
- the valves 514, 524, 534, and 544 remain open, and the supply of N 2 gas into the processing chamber 201 is maintained.
- the N 2 gas acts as a purge gas, and it is possible to enhance the effect of removing unreacted H 2 gas and WF 6 gas remaining in the processing chamber 201 or contributing to formation of the bulk W layer from the processing chamber 201.
- the pretreatment step, the residual gas removal step, the NF 3 gas supply step, and the residual gas removal step are sequentially performed one or more times (predetermined number (n 11 times)), thereby The W layer formed on the film is etched.
- the W film having the predetermined thickness is formed on the TiN film of the wafer 200 by performing one or more cycles (a predetermined number of times (n 12 times)) of sequentially performing the W layer forming process and the etching process.
- the above-described cycle is preferably repeated a plurality of times, and each modification of the first embodiment may be appropriately combined with this embodiment.
- the W nucleus layer is formed by the W nucleus layer forming step, the W nucleus layer is used as a nucleus, and then the W bulk layer is formed by the W bulk layer forming step to thereby adhere to the TiN film as a base. It is possible to form a W film well.
- the present invention is not limited to this.
- a tantalum nitride film TaN film
- molybdenum nitride film MoN film
- ZnN films zinc nitride films
- AlN films aluminum nitride films
- B 2 H 6 as a B-containing gas as the first reducing gas
- triborane (B 3 H 8) in place of B 2 H 6 using a gas or the like
- phosphine (PH 3 ) which is a phosphorus (P) -containing gas, or monosilane (SiH 4 ) gas or disilane (Si 2 ) as a silicon (Si) -containing gas (silane-based gas).
- PH 3 phosphine
- P phosphorus
- SiH 4 monosilane
- Si 2 silicon
- H 6 silicon
- NF 3 that is an F-containing gas
- an F-containing gas such as ClF 3 , HF, or F 2 or a chlorine (Cl) -containing gas is used instead of NF 3. Etc. can also be used.
- deuterium has been described an example of using H 2 gas as H-containing gas as the second reducing gas, instead of H 2 gas, H-containing gas other elements free ( It is also possible to use D 2 ) gas, ammonia (NH 3 ) gas, or the like.
- the substrate processing apparatus is a batch type vertical apparatus that processes a plurality of substrates at a time, and a nozzle for supplying a processing gas is erected in one reaction tube, and the reaction tube
- the processing gas may be supplied from a gas supply port that opens in a side wall of the inner tube, instead of being supplied from a nozzle standing in the inner tube.
- the exhaust port opened to the outer tube may be opened according to the height at which there are a plurality of substrates stacked and accommodated in the processing chamber.
- the shape of the exhaust port may be a hole shape or a slit shape.
- the W layer forming step and the etching step are performed in the same processing chamber.
- the present invention is not limited thereto, and the W layer forming step and the etching step may be performed in different processing chambers. Good.
- film formation can be performed with the same sequence and processing conditions as in the above-described embodiment.
- the process recipes are the contents of the substrate processing (film type, composition ratio, film quality, film thickness, processing procedure, processing of the thin film to be formed) It is preferable to prepare individually (multiple preparations) according to the conditions. And when starting a substrate processing, it is preferable to select a suitable process recipe suitably from several process recipes according to the content of a substrate processing.
- the substrate processing apparatus includes a plurality of process recipes individually prepared according to the contents of the substrate processing via an electric communication line or a recording medium (external storage device 283) on which the process recipe is recorded. It is preferable to store (install) in advance in the storage device 280c.
- the CPU 280a included in the substrate processing apparatus When starting the substrate processing, the CPU 280a included in the substrate processing apparatus appropriately selects an appropriate process recipe from a plurality of process recipes stored in the storage device 280c according to the content of the substrate processing. Is preferred. With this configuration, thin films with various film types, composition ratios, film qualities, and film thicknesses can be formed for general use with good reproducibility using a single substrate processing apparatus. In addition, it is possible to reduce the operation burden on the operator (such as an input burden on the processing procedure and processing conditions), and to quickly start the substrate processing while avoiding an operation error.
- the present invention can be realized by changing a process recipe of an existing substrate processing apparatus, for example.
- the process recipe according to the present invention is installed in an existing substrate processing apparatus via a telecommunication line or a recording medium recording the process recipe, or input / output of the existing substrate processing apparatus It is also possible to operate the apparatus and change the process recipe itself to the process recipe according to the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
(a)表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、金属含有ガスと反応ガスとを交互に供給して、前記基板上に第2の金属膜を形成する工程と、
(b)前記基板に対して、エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する工程と、
を有し、(a)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させる技術が提供される。
以下、本発明の一実施形態について、図1~5を参照しながら説明する。基板処理装置10は半導体装置の製造工程において使用される装置の一例として構成されている。
基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
半導体装置(デバイス)の製造工程の一工程として、基板に金属膜を選択成長させる工程の一例について、図5を用いて説明する。基板に金属膜を選択成長させる工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ280により制御される。
最表面にチタン窒化膜(TiN膜、第1の金属膜)と、酸化物やシリコン(Si)膜等であって第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された(露出した)複数枚のウエハ200を処理室201内に搬入(ボートロード)する。具体的には、複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
まず、ウエハ200上に、金属層であるW層を形成する工程を実行する。
バルブ314を開き、ガス供給管310内に、第1の還元ガスとしてB含有ガスであるB2H6ガスを流す。B2H6ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、B2H6ガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にN2ガスを流す。ガス供給管510内を流れたN2ガスは、MFC512により流量調整される。N2ガスはB2H6ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420,430,440内へのB2H6ガスの侵入を防止するために、バルブ524,534,544を開き、ガス供給管520,530,540内にN2ガスを流す。N2ガスは、ガス供給管320,330,340、ノズル420,430,440を介して処理室201内に供給され、排気管231から排気される。
B2H6ガスの供給を所定時間供給した後、バルブ314を閉じて、B2H6ガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは還元に寄与した後のB2H6ガスを処理室201内から排除する。このときバルブ514,524,534,544は開いたままとして、N2ガスの処理室201内への供給を維持する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくは還元に寄与した後のB2H6ガスを処理室201内から排除する効果を高めることができる。
バルブ324を開き、ガス供給管320内に原料ガスであるWF6ガスを流す。WF6ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してWF6ガスが供給されることとなる。このとき同時にバルブ524を開き、ガス供給管520内にN2ガス等の不活性ガスを流す。ガス供給管520内を流れたN2ガスは、MFC522により流量調整され、WF6ガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410,430,440内へのWF6ガスの侵入を防止するために、バルブ514,534,544を開き、ガス供給管510,530,540内にN2ガスを流す。N2ガスは、ガス供給管310,330,340、ノズル410,430,440を介して処理室201内に供給され、排気管231から排気される。
W層が形成された後、バルブ324を閉じ、WF6ガスの供給を停止する。そして、B2H6ガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはW層形成に寄与した後のWF6ガスを処理室201内から排除する。
上記したステップを順に行うサイクルを1回以上(所定回数(n1回)行うことにより、ウエハ200のTiN膜上に、所定の厚さ(例えば0.1~4.0nm)のW層を形成する。上述のサイクルは、複数回繰り返すのが好ましい。
続いて、ウエハ200の絶縁膜上に形成されたW層をエッチングする工程を実行する。
バルブ334を開き、ガス供給管330内にエッチングガスであるNF3ガスを流す。NF3ガスは、MFC332により流量調整され、ノズル430のガス供給孔430aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してNF3ガスが供給されることとなる。このとき同時にバルブ534を開き、ガス供給管530内にN2ガス等の不活性ガスを流す。ガス供給管530内を流れたN2ガスは、MFC532により流量調整され、NF3ガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410,420,440内へのNF3ガスの侵入を防止するために、バルブ514,524,544を開き、ガス供給管510,520,540内にN2ガスを流す。N2ガスは、ガス供給管310,320,340、ノズル410,420,440を介して処理室201内に供給され、排気管231から排気される。
W層がエッチングされた後、バルブ334を閉じ、NF3ガスの供給を停止する。そして、B2H6ガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはW層のエッチングに寄与した後のNF3ガスを処理室201内から排除する。
W層形成工程とエッチング工程とを順に行うサイクルを1回以上(所定回数(n2回)行うことにより、ウエハ200のTiN膜上に、所定の厚さ(例えば2~20nm)のW膜を選択成長させる。上述のサイクルは、複数回繰り返すのが好ましい。
ガス供給管510,520,530,540のそれぞれからN2ガスを処理室201内へ供給し、排気管231から排気する。N2ガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
本実施形態によれば、以下に示す1つまたは複数の効果を得ることができる。
(a)W層形成とエッチングとを交互に行うことにより、金属膜と絶縁膜とが形成された基板の金属膜上にのみW膜を選択性よく選択成長させることが可能となる。
(b)W膜形成工程より低温、低圧でエッチング工程を行うことにより、エッチングの制御性を高め、金属膜と絶縁膜とが形成された基板の金属膜上にのみW膜を選択性よく選択成長させることが可能となる。
第1の実施形態の変形例1について、図6を用いて説明する。ここで、第1の実施形態と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
バルブ344を開き、ガス供給管340内に改質ガス(酸化ガス)であるO3ガスを流す。O3ガスは、MFC342により流量調整され、ノズル440のガス供給孔440aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してO3ガスが供給されることとなる。このとき同時にバルブ544を開き、ガス供給管540内にN2ガス等の不活性ガスを流す。ガス供給管540内を流れたN2ガスは、MFC542により流量調整され、O3ガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410,420,430内へのO3ガスの侵入を防止するために、バルブ514,524,534を開き、ガス供給管510,520,530内にN2ガスを流す。N2ガスは、ガス供給管310,320,330、ノズル410,420,430を介して処理室201内に供給され、排気管231から排気される。
W層が十分に改質された後、バルブ344を閉じ、O3ガスの供給を停止する。そして、B2H6ガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはW層の改質に寄与した後のO3ガスを処理室201内から排除する。
O3ガス供給ステップ、残留ガス除去ステップ、NF3ガス供給ステップ、残留ガス除去ステップを順に行うサイクルを1回以上(所定回数(n3回)行うことにより、絶縁膜上に形成されたW層をエッチングする。
本変形例1によれば、本実施形態で得られる上述の(a)(b)の効果に加えて、以下の効果を得ることができる。
(c)W層を改質(酸化)することにより、エッチングに必要とされるエッチング温度を低くすることができるため、よりエッチング効率および制御性を向上させることが可能となる。
第1の実施形態の変形例2について、図7を用いて説明する。ここで、第1の実施形態と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
バルブ314を開き、ガス供給管340内に第2の還元ガスであるH2ガスを流す。H2ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してH2ガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にN2ガス等の不活性ガスを流す。ガス供給管510内を流れたN2ガスは、MFC512により流量調整され、H2ガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル420,430,440内へのH2ガスの侵入を防止するために、バルブ524,534,544を開き、ガス供給管520,530,540内にN2ガスを流す。N2ガスは、ガス供給管320,330,340、ノズル420,430,440を介して処理室201内に供給され、排気管231から排気される。
W層が十分に改質された後、バルブ314を閉じ、H2ガスの供給を停止する。そして、B2H6ガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはW層の改質に寄与した後のH2ガスを処理室201内から排除する。
NF3ガス供給ステップ、残留ガス除去ステップ、H2ガス供給ステップ、残留ガス除去ステップを順に行うサイクルを1回以上(所定回数(n5回)行うことにより、絶縁膜上に形成されたW層をエッチングする。
本変形例2によれば、本実施形態で得られる上述の(a)(b)の効果に加えて、以下の効果を得ることができる。
(d)エッチングガスの供給と改質を交互に行うことにより、エッチング効率および制御性を向上させることが可能となる。
第1の実施形態の変形例3について、図8を用いて説明する。ここで、第1の実施形態や他の変形例と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
本変形例3によれば、本実施形態で得られる上述の(a)(b)の効果に加えて、(c)(d)の効果を得ることができる。
第1の実施形態の変形例4について、図9を用いて説明する。ここで、第1の実施形態や他の変形例と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
本変形例4によれば、本実施形態で得られる上述の(a)(b)(c)(d)の効果に加えて、以下の効果を得ることができる。
(e)エッチング工程の最後に再度、改質を行うことにより、次のW層形成工程においてW層を効率よく形成することが可能となる。
第2の実施形態について、図10を用いて説明する。ここで、第1の実施形態や他の変形例と同様の箇所については説明を省略し、異なる箇所について主に詳細を説明する。
W核層を形成した後、金属バルク層であるWバルク層を形成するステップを実行する。
バルブ314、324を開き、ガス供給管310,320内にそれぞれH2ガス、WF6ガスを流す。ガス供給管310内を流れたH2ガスおよびガス供給管320内を流れたWF6ガスは、MFC312,322によりそれぞれ流量調整されてノズル410,420のガス供給孔410a,420aからそれぞれ処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してH2ガスおよびWF6ガスが供給されることとなる。すなわちウエハ200の表面はH2ガスおよびWF6ガスに暴露されることとなる。このとき同時にバルブ534,544を開き、キャリアガス供給管530,540内にそれぞれN2ガスを流す。キャリアガス供給管530,540内を流れたN2ガスは、MFC532,542によりそれぞれ流量調整されてH2ガスもしくはWF6ガスと一緒にそれぞれ処理室201内に供給され、排気管231から排気される。このとき、ノズル430,440内へのH2ガスおよびWF6ガスの侵入を防止するために、バルブ534,544を開き、キャリアガス供給管530,540内にN2ガスを流す。N2ガスは、ガス供給管330,340,ノズル430,440を介して処理室201内に供給され、排気管231から排気される。
バルクW層を形成した後、バルブ312、322を閉じて、H2ガスおよびWF6ガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはバルクW層形成に寄与した後のH2ガスおよびWF6ガスを処理室201内から排除する。このときバルブ514,524,534,544は開いたままとして、N2ガスの処理室201内への供給を維持する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくはバルクW層形成に寄与した後のH2ガスおよびWF6ガスを処理室201内から排除する効果を高めることができる。
本実施形態によれば、第1の実施形態および変形例1~4で得られる上述の(a)~(e)の効果のうち少なくともひとつが得られるとともに、以下の効果を得ることができる。
(f)W核層形成工程によりW核層を形成し、W核層を核として、次に、Wバルク層形成工程によりWバルク層を形成することにより、下地であるTiN膜との密着性よくW膜を形成することが可能となる。
280 コントローラ
200 ウエハ(基板)
201 処理室
Claims (11)
- (a)表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、金属含有ガスと反応ガスとを交互に供給して、前記基板上に第2の金属膜を形成する工程と、
(b)前記基板に対して、エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する工程と、
を有し、(a)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させる半導体装置の製造方法。 - 前記(b)では、エッチングガスを供給する前に、前記基板に対して第1の改質ガスを供給して、前記基板上に形成された前記第2の金属膜を改質する工程を有し、前記第2の金属膜を改質する工程と、前記改質された第2の金属膜に対して前記エッチングガスを供給する工程とを交互に繰り返すことにより、前記絶縁膜上に形成された前記第2の金属膜を除去する請求項1に記載の半導体装置の製造方法。
- 前記第1の改質ガスは、酸化ガスもしくは窒化ガスである請求項2に記載の半導体装置の製造方法。
- 前記エッチングガスは、ハロゲン化物である請求項3に記載の半導体装置の製造方法。
- 前記(b)では、エッチングガスを供給した後に、前記基板に対して第2の改質ガスを供給して、前記エッチングガスが供給された後の基板を改質する工程を有し、前記基板に対して前記エッチングガスを供給する工程と前記基板に対して前記第2の改質ガスを供給する工程とを交互に繰り返すことにより、前記絶縁膜上に形成された前記第2の金属膜を除去する請求項1に記載の半導体装置の製造方法。
- 前記第2の改質ガスは、水素含有ガスである請求項5に記載の半導体装置の製造方法。
- 前記第2の金属膜は、タングステン膜もしくはチタン窒化膜である請求項1のいずれかに記載の半導体装置の製造方法。
- (a-1)表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、金属含有ガスと第1の還元ガスとを交互に供給して、前記基板上に第1の金属層を形成する工程と、
(a-2)前記基板に対して、前記金属含有ガスと第2の還元ガスとを同時に供給して、前記第1の金属層の上に第2の金属層を形成する工程と、
を有し、
(a-3)前記(a-1)と(a-2)とを交互に繰り返すことにより、前記基板上に第2の金属膜を形成する工程と、
(b)前記基板に対して、エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する工程と、
を有し、(a-3)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させる半導体装置の製造方法。 - 前記金属含有ガスはフッ化タングステンであり、前記第1の還元ガスはジボラン、モノシラン、ジシランのいずれかであり、前記第2の還元ガスは水素であり、前記第2の金属膜はタングステン膜である請求項8に記載の半導体装置の製造方法。
- 基板を収容する処理室と、
前記処理室に、金属含有ガス、反応ガス、エッチングガスを供給するガス供給系と、
(a)前記処理室に収容された基板であって、表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、前記金属含有ガスと前記反応ガスとを交互に供給して、前記基板上に第2の金属膜を形成する処理と、(b)前記基板に対して、前記エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する処理と、を有し、(a)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させるよう構成される制御部と、
を有する基板処理装置。 - (a)基板処理装置の処理室に収容された基板であって、表面に、第1の金属膜と、前記第1の金属膜よりインキュベーションタイムが長い絶縁膜とが形成された基板に対して、金属含有ガスと反応ガスとを交互に供給して、前記基板上に第2の金属膜を形成する手順と、
(b)前記基板に対して、エッチングガスを供給して、前記第1の金属膜上に形成された前記第2の金属膜を残しつつ、前記絶縁膜上に形成された第2の金属膜を除去する手順と、
を有し、(a)と(b)とを交互に繰り返すことにより、前記第1の金属膜上に前記第2の金属膜を選択成長させる手順をコンピュータにより前記基板処理装置に実行させるプログラム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/013634 WO2018179354A1 (ja) | 2017-03-31 | 2017-03-31 | 半導体装置の製造方法、基板処理装置およびプログラム |
CN201780086010.3A CN110268506A (zh) | 2017-03-31 | 2017-03-31 | 半导体装置的制造方法、基板处理装置及程序 |
JP2019508123A JP6847202B2 (ja) | 2017-03-31 | 2017-03-31 | 半導体装置の製造方法、基板処理装置およびプログラム |
KR1020197022784A KR102331573B1 (ko) | 2017-03-31 | 2017-03-31 | 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 |
US16/535,677 US11152215B2 (en) | 2017-03-31 | 2019-08-08 | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/013634 WO2018179354A1 (ja) | 2017-03-31 | 2017-03-31 | 半導体装置の製造方法、基板処理装置およびプログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/535,677 Continuation US11152215B2 (en) | 2017-03-31 | 2019-08-08 | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179354A1 true WO2018179354A1 (ja) | 2018-10-04 |
Family
ID=63674512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013634 WO2018179354A1 (ja) | 2017-03-31 | 2017-03-31 | 半導体装置の製造方法、基板処理装置およびプログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11152215B2 (ja) |
JP (1) | JP6847202B2 (ja) |
KR (1) | KR102331573B1 (ja) |
CN (1) | CN110268506A (ja) |
WO (1) | WO2018179354A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023044039A (ja) * | 2021-09-17 | 2023-03-30 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115485816A (zh) * | 2020-05-08 | 2022-12-16 | 东京毅力科创株式会社 | 成膜方法和成膜装置 |
JP2024061057A (ja) * | 2022-10-21 | 2024-05-07 | 株式会社Kokusai Electric | 基板処理方法、半導体装置の製造方法、プログラムおよび基板処理装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0562934A (ja) * | 1991-09-04 | 1993-03-12 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH1187268A (ja) * | 1997-09-09 | 1999-03-30 | Matsushita Electron Corp | 半導体装置、半導体装置の製造方法、および半導体装置の製造装置 |
JP2008124181A (ja) * | 2006-11-10 | 2008-05-29 | Hitachi Kokusai Electric Inc | 基板処理装置 |
JP2012204453A (ja) * | 2011-03-24 | 2012-10-22 | Toshiba Corp | 配線の形成方法 |
JP2015029097A (ja) * | 2013-07-25 | 2015-02-12 | ラム リサーチ コーポレーションLam Research Corporation | 異なるサイズのフィーチャへのボイドフリータングステン充填 |
JP2016225396A (ja) * | 2015-05-28 | 2016-12-28 | 東京エレクトロン株式会社 | 金属膜のストレス低減方法および金属膜の成膜方法 |
JP2017014615A (ja) * | 2015-05-27 | 2017-01-19 | ラム リサーチ コーポレーションLam Research Corporation | フッ素含有量が少ないタングステン膜 |
JP2017053024A (ja) * | 2015-08-07 | 2017-03-16 | ラム リサーチ コーポレーションLam Research Corporation | タングステン堆積充填の強化のためのタングステンの原子層エッチング |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09139429A (ja) * | 1995-11-10 | 1997-05-27 | Nippon Steel Corp | 半導体装置の製造方法 |
JPH09232287A (ja) * | 1996-02-26 | 1997-09-05 | Sony Corp | エッチング方法及びコンタクトプラグ形成方法 |
US9548228B2 (en) | 2009-08-04 | 2017-01-17 | Lam Research Corporation | Void free tungsten fill in different sized features |
JP5524785B2 (ja) | 2010-09-21 | 2014-06-18 | 株式会社日立国際電気 | 半導体装置の製造方法及び基板処理装置 |
US9082684B2 (en) * | 2012-04-02 | 2015-07-14 | Applied Materials, Inc. | Method of epitaxial doped germanium tin alloy formation |
KR20160127891A (ko) * | 2015-04-27 | 2016-11-07 | 삼성전자주식회사 | 싸이클 공정을 이용한 수직 패턴의 형성방법 |
-
2017
- 2017-03-31 JP JP2019508123A patent/JP6847202B2/ja active Active
- 2017-03-31 CN CN201780086010.3A patent/CN110268506A/zh active Pending
- 2017-03-31 KR KR1020197022784A patent/KR102331573B1/ko active IP Right Grant
- 2017-03-31 WO PCT/JP2017/013634 patent/WO2018179354A1/ja active Application Filing
-
2019
- 2019-08-08 US US16/535,677 patent/US11152215B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0562934A (ja) * | 1991-09-04 | 1993-03-12 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH1187268A (ja) * | 1997-09-09 | 1999-03-30 | Matsushita Electron Corp | 半導体装置、半導体装置の製造方法、および半導体装置の製造装置 |
JP2008124181A (ja) * | 2006-11-10 | 2008-05-29 | Hitachi Kokusai Electric Inc | 基板処理装置 |
JP2012204453A (ja) * | 2011-03-24 | 2012-10-22 | Toshiba Corp | 配線の形成方法 |
JP2015029097A (ja) * | 2013-07-25 | 2015-02-12 | ラム リサーチ コーポレーションLam Research Corporation | 異なるサイズのフィーチャへのボイドフリータングステン充填 |
JP2017014615A (ja) * | 2015-05-27 | 2017-01-19 | ラム リサーチ コーポレーションLam Research Corporation | フッ素含有量が少ないタングステン膜 |
JP2016225396A (ja) * | 2015-05-28 | 2016-12-28 | 東京エレクトロン株式会社 | 金属膜のストレス低減方法および金属膜の成膜方法 |
JP2017053024A (ja) * | 2015-08-07 | 2017-03-16 | ラム リサーチ コーポレーションLam Research Corporation | タングステン堆積充填の強化のためのタングステンの原子層エッチング |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023044039A (ja) * | 2021-09-17 | 2023-03-30 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置 |
JP7387685B2 (ja) | 2021-09-17 | 2023-11-28 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018179354A1 (ja) | 2019-12-19 |
KR102331573B1 (ko) | 2021-11-25 |
CN110268506A (zh) | 2019-09-20 |
US20190371609A1 (en) | 2019-12-05 |
US11152215B2 (en) | 2021-10-19 |
KR20190100381A (ko) | 2019-08-28 |
JP6847202B2 (ja) | 2021-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI819348B (zh) | 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式 | |
WO2016046909A1 (ja) | 半導体装置の製造方法、基板処理装置、半導体装置およびプログラム | |
WO2020016914A1 (ja) | 半導体装置の製造方法、基板処理装置及びプログラム | |
US11152215B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium | |
US20240344194A1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
US11908737B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus and recording medium | |
KR102660213B1 (ko) | 반도체 장치의 제조 방법, 프로그램, 기판 처리 장치 및 기판 처리 방법 | |
US20240055259A1 (en) | Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus | |
US20220208557A1 (en) | Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus | |
WO2019186637A1 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
JP6639691B2 (ja) | 半導体装置の製造方法、プログラムおよび基板処理装置 | |
JP7273168B2 (ja) | 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置 | |
JP7159446B2 (ja) | 基板処理方法、基板処理装置、プログラムおよび半導体装置の製造方法 | |
TWI830089B (zh) | 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置 | |
JP7524333B2 (ja) | 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法 | |
JP7179962B2 (ja) | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム | |
WO2023037452A1 (ja) | 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体 | |
WO2018061144A1 (ja) | 半導体装置の製造方法 | |
JP2023023351A (ja) | 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法 | |
TW202217964A (zh) | 半導體裝置之製造方法、記錄媒體及基板處理裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17902624 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019508123 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197022784 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17902624 Country of ref document: EP Kind code of ref document: A1 |