WO2018177216A1 - 传输信号的方法和装置 - Google Patents

传输信号的方法和装置 Download PDF

Info

Publication number
WO2018177216A1
WO2018177216A1 PCT/CN2018/080274 CN2018080274W WO2018177216A1 WO 2018177216 A1 WO2018177216 A1 WO 2018177216A1 CN 2018080274 W CN2018080274 W CN 2018080274W WO 2018177216 A1 WO2018177216 A1 WO 2018177216A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
synchronization signal
time
sequence
units
Prior art date
Application number
PCT/CN2018/080274
Other languages
English (en)
French (fr)
Inventor
施弘哲
刘瑾
罗俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18776633.2A priority Critical patent/EP3573388B1/en
Publication of WO2018177216A1 publication Critical patent/WO2018177216A1/zh
Priority to US16/585,531 priority patent/US20200028641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0647Synchronisation among TDM nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for transmitting signals.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • TDM Time Division Multiplexing
  • the synchronization service needs to meet different business needs. For example, when based on beam access, the synchronization signal is repeatedly transmitted multiple times during the beam scanning process, which increases the access waiting time to some extent. Therefore, the design of the synchronization signal needs to consider the delay overhead to improve the synchronization efficiency. Therefore, how to improve the synchronization efficiency has become a technical problem to be solved in the fifth generation communication.
  • the present application provides a method and apparatus for transmitting signals that can improve synchronization efficiency.
  • a method of transmitting a signal comprising:
  • the second time-frequency resource includes a plurality of second frequency units on the first time unit, the plurality of first frequency units and the plurality of second frequencies
  • the cells alternate with each other in the frequency domain.
  • the plurality of first frequency units that send the first synchronization signal and the plurality of second frequency units that send the second synchronization signal alternate with each other in the frequency domain, such that the first synchronization signal and the second synchronization signal It can be uniformly transmitted within the synchronous bandwidth, which can reduce the transmission delay of the synchronization signal and improve the accuracy of the frequency offset step estimation based on the synchronization signal, thereby improving the synchronization efficiency.
  • the first time-frequency resource and the second time-frequency resource are comb structures.
  • the frequency ranges of the first time-frequency resource and the second time-frequency resource both cover a synchronization bandwidth.
  • the time unit may represent a time domain resource of the transmitted signal, such as an OFDM symbol.
  • the first synchronization signal may be a PSS and the second synchronization signal may be an SSS.
  • the lengths of the first synchronization signal and the second synchronization signal may be longer than the lengths of the PSS and SSS in LTE.
  • the method further includes:
  • the second synchronization signal is generated.
  • sending the first synchronization signal on the first time-frequency resource includes:
  • Transmitting the second synchronization signal on the second time-frequency resource including:
  • a sequence of the second synchronization signal is transmitted on each of the plurality of second frequency units.
  • an adjacent one of the first frequency unit and one of the second frequency units may be referred to as a minimum synchronization bandwidth.
  • a specific terminal device that does not support the entire synchronization bandwidth can detect a synchronization signal on one or several minimum synchronization bandwidths to implement a basic synchronization function, and a terminal device supporting the entire synchronization bandwidth can detect a synchronization signal over the entire synchronization bandwidth.
  • a frequency domain width of the first frequency unit is a frequency domain width occupied by a sequence of the first synchronization signal
  • a frequency domain width of the second frequency unit is occupied by a sequence of the second synchronization signal. Frequency domain width.
  • sending the first synchronization signal on the first time-frequency resource includes:
  • Transmitting the second synchronization signal on the second time-frequency resource including:
  • Different portions of the sequence of the second synchronization signals are transmitted on different ones of the plurality of second frequency units.
  • the frequency domain width of the first frequency unit is a first predetermined frequency domain width
  • the frequency domain width of the second frequency unit is a second predetermined frequency domain width
  • the first synchronization signal may use a longer sequence than the sequence of the PSS in LTE, and the longer sequence may be a long sequence or a sequence formed by the same or different sequence connections.
  • the lengths of the same or different sequences may be the same or different; similarly, the second synchronization signal may adopt a longer sequence than the sequence of the SSS in LTE, and the longer sequence may be a long sequence or may be Sequences formed by the same or different sequences are joined, and the lengths of these same or different sequences may be the same or different.
  • the sequence of the first synchronization signal is used to indicate the manner in which the first synchronization signal and the second synchronization signal are transmitted.
  • a method of transmitting a signal comprising:
  • the first time-frequency resource includes a plurality of first frequency units on the first time unit;
  • the second time-frequency resource includes a plurality of second frequency units on the first time unit, the plurality of first frequency units and the plurality of second frequencies
  • the cells alternate with each other in the frequency domain.
  • the plurality of first frequency units that send the first synchronization signal and the plurality of second frequency units that send the second synchronization signal alternate with each other in the frequency domain, such that the first synchronization signal and the second synchronization signal It can be uniformly transmitted within the synchronous bandwidth, which can reduce the transmission delay of the synchronization signal and improve the accuracy of the frequency offset step estimation based on the synchronization signal, thereby improving the synchronization efficiency.
  • the first time-frequency resource and the second time-frequency resource are comb structures.
  • the frequency ranges of the first time-frequency resource and the second time-frequency resource both cover a synchronization bandwidth.
  • the method further includes:
  • Synchronization of the downlink communication link is performed according to the first synchronization signal and the second synchronization signal.
  • receiving the first synchronization signal on the first time-frequency resource includes:
  • Receiving the second synchronization signal on the second time-frequency resource including:
  • a sequence of the second synchronization signal is received on each of the plurality of second frequency units.
  • a frequency domain width of the first frequency unit is a frequency domain width occupied by a sequence of the first synchronization signal
  • a frequency domain width of the second frequency unit is occupied by a sequence of the second synchronization signal. Frequency domain width.
  • receiving the first synchronization signal on the first time-frequency resource includes:
  • Receiving the second synchronization signal on the second time-frequency resource including:
  • Different portions of the sequence of the second synchronization signals are received on different ones of the plurality of second frequency units.
  • the frequency domain width of the first frequency unit is a first predetermined frequency domain width
  • the frequency domain width of the second frequency unit is a second predetermined frequency domain width
  • the method further includes:
  • an apparatus for transmitting a signal comprising a processor and a transceiver, is operative to perform the method of the first aspect described above or any possible implementation thereof.
  • an apparatus for transmitting a signal comprising a processor and a transceiver, is operative to perform the method of the second aspect described above or any possible implementation thereof.
  • a computer storage medium having stored therein program code, the program code being operative to indicate a method of performing the first or second aspects described above or any possible implementation thereof.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the above aspects or any of its possible implementations.
  • FIG. 1 is a schematic diagram of a communication system applied in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a position allocation mode of PSS and SSS in different duplex modes of a 4G system.
  • FIG. 3 is a schematic flowchart of a method for transmitting a signal according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of time-frequency resources of a transmission signal according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a transmission signal according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a transmission signal of another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting a signal according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting a signal according to another embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • FIG. 1 is a schematic diagram of a communication system to which the embodiment of the present application is applied.
  • network 100 can include network device 102 and terminal devices 104, 106, 108, 110, 112, and 114, wherein the network device and the terminal device are connected by wireless.
  • FIG. 1 only takes a network as a network device as an example, but the embodiment of the present application is not limited thereto.
  • the network may further include more network devices; similarly, the network may also include more terminals.
  • the device, and the network device may also include other devices.
  • the terminal device may also refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user agent.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • PLMN public land mobile network
  • the network device may be a device for communicating with the terminal device, and the network device may be a Global System of Mobile communication (GSM) or a base station in Code Division Multiple Access (CDMA) (Base Transceiver Station) , BTS), may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • Evolutional Node B, eNB or eNodeB evolved base station
  • the network device may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network. Or a network device or the like in a future evolved PLMN network.
  • CRAN Cloud Radio Access Network
  • FIG. 2 shows a frame position allocation mode of PSS and SSS in a frequency division duplex (FDD) and a time division duplex (TDD) mode of an existing 4G system.
  • FDD mode the PSS is transmitted on the 0th subframe and the 5th subframe, and the SSS is located on the first symbol before the PSS.
  • TDD mode the PSS is transmitted on the 1st subframe and the 6th subframe, and the SSS is located on the third symbol before the PSS.
  • the synchronization bandwidth is a subcarrier near the center frequency of the system, for example, 6 resource blocks (RBs). PSS and SSS are located on different symbols in the synchronous bandwidth according to the TDM method.
  • the synchronization bandwidth may be similar to the definition of the 4G system, or may be different from the 4G system, that is, a new definition may be adopted in the future communication system, which is not limited in this embodiment of the present application.
  • the embodiment of the present application provides a synchronization signal scheme suitable for next generation communication, which can improve synchronization efficiency.
  • the technical solutions of the embodiments of the present application are described in detail below.
  • FIG. 3 is a schematic flowchart of a method for transmitting a signal according to an embodiment of the present application.
  • the network device in FIG. 3 may be the network device 102 in FIG. 1; the terminal device may be the terminal device in the terminal devices 104, 106, 108, 110, 112, and 114 in FIG.
  • the number of the network device and the terminal device may not be limited to the examples in this embodiment or other embodiments, and details are not described herein again.
  • the network device sends a first synchronization signal on the first time-frequency resource, where the first time-frequency resource includes multiple first frequency units on the first time unit.
  • the network device sends a second synchronization signal on the second time-frequency resource, where the second time-frequency resource includes multiple second frequency units on the first time unit, and the multiple first frequency units and the multiple The second frequency units alternate with each other in the frequency domain.
  • the first synchronization signal and the second synchronization signal are respectively transmitted on different frequency units on the first time unit. That is to say, the first synchronization signal and the second synchronization signal are transmitted by using a Frequency Division Multiplexing (FDM) method. Further, the plurality of first frequency units transmitting the first synchronization signal and the plurality of second frequency units transmitting the second synchronization signal alternate with each other in the frequency domain, that is, the first frequency unit and the second frequency unit are spaced apart from each other.
  • FDM Frequency Division Multiplexing
  • the frequency domain widths of different first frequency units may be the same or different; the frequency domain widths of different second frequency units may be the same or different; the frequency of the first frequency unit and the second frequency unit
  • the domain widths may be the same or different, and the embodiments of the present application are not limited thereto.
  • the first time-frequency resource and the second time-frequency resource are comb structures.
  • a second frequency unit is separated between two first frequency units of the first time-frequency resource, and a second frequency unit is separated between two second frequency units of the second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource are comb structures.
  • the time unit may represent a time domain resource of the transmission signal, such as an Orthogonal Frequency Division Multiplexing (OFDM) symbol, or another unit that represents a time domain resource.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the embodiment of the present application does not limit the name of the time unit, that is, in the future communication system, the time unit can adopt the name in the future communication system.
  • the frequency ranges of the first time-frequency resource and the second time-frequency resource both cover a synchronization bandwidth.
  • the plurality of first frequency units and the plurality of second frequency units alternate with each other in the frequency domain, such that the plurality of first frequency units and the plurality of second frequency units can spread over the entire synchronization bandwidth. That is, although the second frequency unit is spaced between the plurality of first frequency units, the frequency ranges covered by the plurality of first frequency units are still consistent with the synchronization bandwidth, and differs by at most the frequency domain width of one second frequency unit. Similarly, the frequency ranges covered by the plurality of second frequency units are also consistent with the synchronization bandwidth, and differs by at most the frequency domain width of one first frequency unit.
  • the first synchronizing signal and the second synchronizing signal can be uniformly transmitted within the synchronizing bandwidth, so that the accuracy of the frequency offset step estimation based on the synchronizing signal can be improved.
  • the first synchronization signal may be a PSS
  • the second synchronization signal may be an SSS. It should be understood that the embodiment of the present application does not limit the name of the synchronization signal, that is, in future communication systems, the synchronization signal may adopt a name in a future communication system.
  • the network device generates the first synchronization signal and generates the second synchronization signal before transmitting the synchronization signal.
  • the lengths of the first synchronization signal and the second synchronization signal may be longer than the lengths of the PSS and the SSS in the LTE.
  • the sequence of the first synchronization signal may be sent on each of the plurality of first frequency units
  • a sequence of the second synchronization signal is transmitted on each of the plurality of second frequency units.
  • the sequence of the first synchronization signals transmitted on the plurality of first frequency units is the same, that is, the sequence of the first synchronization signals is repeatedly transmitted on each of the first frequency units;
  • the sequence of the second synchronization signals transmitted on the two frequency units is the same, that is, the sequence of the second synchronization signals is repeatedly transmitted on each of the second frequency units.
  • the terminal device can implement the basic synchronization function by the synchronization signals detected on one of the first frequency unit and the second frequency unit.
  • an adjacent one of the first frequency unit and one of the second frequency units may be referred to as a minimum synchronization bandwidth.
  • a specific terminal device that does not support the entire synchronization bandwidth can detect a synchronization signal on one or several minimum synchronization bandwidths to implement a basic synchronization function, and a terminal device supporting the entire synchronization bandwidth can detect a synchronization signal over the entire synchronization bandwidth.
  • the frequency domain width of the first frequency unit is a frequency domain width occupied by the sequence of the first synchronization signal
  • the frequency domain width of the second frequency unit is a sequence of the second synchronization signal. The frequency domain width occupied.
  • a sequence of first synchronization signals can be transmitted on a first frequency unit, and a sequence of second synchronization signals can be transmitted on a second frequency unit.
  • the sequence of the first synchronization signal and the sequence of the second synchronization signal may adopt a sequence of length 62, and the frequency domain widths of the first frequency unit and the second frequency unit may be 6 RBs respectively, to respectively transmit the first A sequence of synchronization signals and a sequence of second synchronization signals.
  • sequence of the first synchronization signal and the sequence of the second synchronization signal may also adopt a sequence of other lengths, which is not limited by the embodiment of the present application.
  • the frequency domain widths of the first frequency unit and the second frequency unit may be determined by the sequence of the first synchronization signal and the length of the sequence of the second synchronization signal, respectively.
  • the sequence of the first synchronization signal and the sequence of the second synchronization signal may use a sequence of the existing PSS and the SSS, respectively, but the embodiment of the present application does not limit this.
  • different parts of the sequence of the first synchronization signal may be sent on different first frequency units of the plurality of first frequency units;
  • Different portions of the sequence of the second synchronization signals are transmitted on different ones of the plurality of second frequency units.
  • different portions of the sequence of the first synchronization signal are respectively transmitted on the plurality of first frequency units, and each of the first frequency units transmits a part of the sequence of the first synchronization signal, and the plurality of A signal transmitted on a frequency unit constitutes a sequence of first synchronization signals; similarly, different portions of the sequence of second synchronization signals are respectively transmitted on a plurality of second frequency units, and a second synchronization signal is transmitted on each second frequency unit A portion of the sequence, the signals transmitted on the plurality of second frequency units form a sequence of second synchronization signals.
  • the synchronization signal adopts a long sequence, the synchronization signal can be uniformly transmitted within the synchronization bandwidth, and the accuracy of the frequency offset step estimation based on the synchronization signal can be improved.
  • the frequency domain width of the first frequency unit is a first predetermined frequency domain width
  • the frequency domain width of the second frequency unit is a second predetermined frequency domain width
  • the length of the portion of the sequence of the first synchronization signal transmitted on each of the first frequency units may be a predetermined length, that is, the sequence of the first synchronization signal is divided into several parts, and the length of each part may be pre- Configuration; similarly, the length of the portion of the sequence of the second synchronization signal transmitted on each of the second frequency units may be a predetermined length, that is, the sequence of the second synchronization signal is divided into several parts, and the length of each part may be Pre-configured. Accordingly, the frequency domain widths of the first frequency unit and the second frequency unit may correspond to each portion of the sequence of the first synchronization signal and the length of each portion of the sequence of the second synchronization signal, respectively.
  • the first synchronization signal may adopt a longer sequence than the sequence of the PSS in LTE, and the longer sequence may be a long sequence or may be connected by the same or different sequence.
  • the formed sequence, the lengths of the same or different sequences may be the same or different; similarly, the second synchronization signal may adopt a longer sequence than the sequence of the SSS in LTE, and the longer sequence may be a long sequence. Or a sequence formed by the same or different sequence linkages, the lengths of these same or different sequences may be the same or different.
  • the network device may indicate a manner in which the synchronization signal is sent, for example, indicating whether the manner shown in FIG. 5 is used or the manner shown in FIG. 6 is used.
  • the sequence of the first synchronization signal is used to indicate a manner in which the first synchronization signal and the second synchronization signal are sent.
  • the terminal device may determine, according to the sequence adopted by the first synchronization signal, a manner of transmitting the first synchronization signal and the second synchronization signal.
  • different transmission modes may be indicated by different sequences by increasing the number of local sequences of the first synchronization signal.
  • the current LTE PSS uses three ZC sequences as the local sequence, and its root index (root) is [25 29 34], which is used to distinguish the cell ID (Cell ID) [0 1 2], and can add three additional ZCs.
  • each Cell ID corresponds to two ZC local sequences, which are used to distinguish two different synchronization signal transmission modes.
  • the above indication manner is only an example, and the specific indication manner is not limited in the embodiment of the present application.
  • the synchronization signal transmission mode can also be pre-configured so that the network device no longer needs to indicate to the terminal device.
  • the terminal device performs synchronization of the downlink communication link according to the first synchronization signal and the second synchronization signal.
  • the terminal device receives the first synchronization signal on the first time-frequency resource, the second synchronization signal on the second time-frequency resource, and synchronizes the downlink communication link according to the first synchronization signal and the second synchronization signal.
  • the terminal device may receive the first synchronization signal on each of the plurality of first frequency units. a sequence; receiving a sequence of the second synchronization signal on each of the plurality of second frequency units.
  • the terminal device can implement a basic synchronization function according to a synchronization signal detected on a first frequency unit and a second frequency unit, and implement a complete synchronization function according to the synchronization signal detected over the entire synchronization bandwidth.
  • the terminal device may receive the sequence of the first synchronization signal on different first frequency units of the plurality of first frequency units. a different portion; receiving a different portion of the sequence of the second synchronization signal on a different one of the plurality of second frequency units.
  • the signals received on the plurality of first frequency units form a sequence of first synchronization signals
  • the signals received on the plurality of second frequency units form a sequence of second synchronization signals.
  • the terminal device implements a complete synchronization function based on the synchronization signal detected over the entire synchronization bandwidth.
  • the terminal device may determine, according to a sequence adopted by the first synchronization signal, a manner of transmitting the first synchronization signal and the second synchronization signal. For example, it is determined whether the sequence of transmitting the entire synchronization signal on each frequency unit as shown in FIG. 5 described above is used, or the manner in which different portions of the sequence of the synchronization signal are transmitted on different frequency units as shown in FIG. 6 described above is employed.
  • the plurality of first frequency units that send the first synchronization signal and the plurality of second frequency units that send the second synchronization signal alternate with each other in the frequency domain, such that the first synchronization signal and the second synchronization signal It can be uniformly transmitted within the synchronous bandwidth, which can reduce the transmission delay of the synchronization signal and improve the accuracy of the frequency offset step estimation based on the synchronization signal, thereby improving the synchronization efficiency.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 7 is a schematic block diagram of an apparatus 700 for transmitting signals in accordance with one embodiment of the present application.
  • the device 700 can be a network device.
  • the apparatus 700 may correspond to a network device in each method embodiment, and may have any function of the network device in the method.
  • the apparatus 700 includes a processor 710 and a transceiver 720.
  • the processor 710 is configured to generate a first synchronization signal and generate a second synchronization signal
  • the transceiver 720 is configured to send the first synchronization signal on a first time-frequency resource, where the first time-frequency resource includes multiple first frequency units on a first time unit, and the second time-frequency resource Transmitting the second synchronization signal, where the second time-frequency resource includes a plurality of second frequency units on the first time unit, and the plurality of first frequency units and the plurality of second frequency units are in a frequency domain Alternate.
  • the first time-frequency resource and the second time-frequency resource are comb structures.
  • the frequency ranges of the first time-frequency resource and the second time-frequency resource both cover a synchronization bandwidth.
  • the transceiver 720 is configured to:
  • a sequence of the second synchronization signal is transmitted on each of the plurality of second frequency units.
  • a frequency domain width of the first frequency unit is a frequency domain width occupied by a sequence of the first synchronization signal
  • a frequency domain width of the second frequency unit is the second synchronization signal.
  • the frequency domain width occupied by the sequence is a frequency domain width occupied by the sequence.
  • the transceiver 720 is configured to:
  • Different portions of the sequence of the second synchronization signals are transmitted on different ones of the plurality of second frequency units.
  • the frequency domain width of the first frequency unit is a first predetermined frequency domain width
  • the frequency domain width of the second frequency unit is a second predetermined frequency domain width
  • the sequence used by the first synchronization signal is used to indicate a manner in which the first synchronization signal and the second synchronization signal are sent.
  • FIG. 8 is a schematic block diagram of an apparatus 800 for transmitting signals in accordance with another embodiment of the present application.
  • the device 800 can be a terminal device.
  • the apparatus 800 may correspond to a terminal device in each method embodiment, and may have any function of the terminal device in the method.
  • the apparatus 800 includes a processor 810 and a transceiver 820.
  • the transceiver 820 is configured to receive the first synchronization signal on the first time-frequency resource, where the first time-frequency resource includes multiple first frequency units on the first time unit, and on the second time-frequency resource Receiving a second synchronization signal, where the second time-frequency resource includes a plurality of second frequency units on the first time unit, the plurality of first frequency units and the plurality of second frequency units alternate in frequency domain ;
  • the processor 810 is configured to perform synchronization of a downlink communication link according to the first synchronization signal and the second synchronization signal.
  • the first time-frequency resource and the second time-frequency resource are comb structures.
  • the frequency ranges of the first time-frequency resource and the second time-frequency resource both cover a synchronization bandwidth.
  • the transceiver 820 is configured to:
  • a sequence of the second synchronization signal is received on each of the plurality of second frequency units.
  • a frequency domain width of the first frequency unit is a frequency domain width occupied by a sequence of the first synchronization signal
  • a frequency domain width of the second frequency unit is the second synchronization signal.
  • the frequency domain width occupied by the sequence is a frequency domain width occupied by the sequence.
  • the transceiver 820 is configured to:
  • Different portions of the sequence of the second synchronization signals are received on different ones of the plurality of second frequency units.
  • the frequency domain width of the first frequency unit is a first predetermined frequency domain width
  • the frequency domain width of the second frequency unit is a second predetermined frequency domain width
  • the processor 810 is further configured to:
  • processor 710 and/or the processor 810 in the embodiment of the present application may be implemented by a processing unit or a chip.
  • the processing unit may be composed of multiple units in the implementation process.
  • the transceiver 720 or the transceiver 820 in the embodiment of the present application may be implemented by a transceiver unit or a chip.
  • the transceiver 720 or the transceiver 820 may be composed of a transmitter or a receiver, or may be received by a transmitting unit or a receiver. Unit composition.
  • the network device or the terminal device may further include a memory, where the program may store the program code, and the processor calls the program code stored in the memory to implement the corresponding function of the network device or the terminal device.
  • the device of the embodiment of the present invention may be a Field-Programmable Gate Array (FPGA), may be an Application Specific Integrated Circuit (ASIC), or may be a System on Chip (SoC). It can also be a Central Processor Unit (CPU), a Network Processor (NP), a Digital Signal Processor (DSP), or a Microcontroller (Micro).
  • the Controller Unit (MCU) can also be a Programmable Logic Device (PLD) or other integrated chip.
  • the embodiment of the present application further provides a communication system, including the network device in the foregoing network device embodiment and the terminal device in the terminal device embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)
  • the term "and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships.
  • a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信号的方法和装置。该方法包括:在第一时频资源上发送第一同步信号,其中,该第一时频资源包括第一时间单元上的多个第一频率单元;以及在第二时频资源上发送第二同步信号,其中,该第二时频资源包括该第一时间单元上的多个第二频率单元,该多个第一频率单元与该多个第二频率单元在频域上相互交替。本申请实施例的技术方案,能够提高同步效率。

Description

传输信号的方法和装置
本申请要求于2017年3月31日提交中国专利局、申请号为201710205838.8、申请名称为“传输信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输信号的方法和装置。
背景技术
长期演进(Long Term Evolution,LTE)中同步信号中的主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)采用时分复用(Time Division Multiplexing,TDM)方式。PSS和SSS都占据完整的同步带宽。
第五代通信(New Radio,NR)中,同步业务需要满足不同的业务需求。例如,在基于波束接入时,同步信号在波束扫描的过程中会重复发送多次,这在一定程度上增加了接入等待时间。因此同步信号的设计就需要考虑时延开销,以提高同步效率。因此,如何提高同步效率成为第五代通信中亟待解决的一个技术问题。
发明内容
本申请提供了一种传输信号的方法和装置,能够提高同步效率。
第一方面,提供了一种传输信号的方法,包括:
在第一时频资源上发送第一同步信号,其中,该第一时频资源包括第一时间单元上的多个第一频率单元;以及
在第二时频资源上发送第二同步信号,其中,该第二时频资源包括该第一时间单元上的多个第二频率单元,该多个第一频率单元与该多个第二频率单元在频域上相互交替。
在本申请实施例中,发送第一同步信号的多个第一频率单元与发送第二同步信号的多个第二频率单元在频域上相互交替,这样,第一同步信号和第二同步信号可以在同步带宽内均匀发送,既能减少同步信号的传输时延,又能提高基于同步信号进行的频偏步长估计的精度,从而能够提高同步效率。
在一些可能的实现方式中,该第一时频资源和该第二时频资源均为梳状结构。
在一些可能的实现方式中,该第一时频资源和该第二时频资源的频率范围均覆盖同步带宽。
在一些可能的实现方式中,时间单元可以表示传输信号的时域资源,例如OFDM符号。
在一些可能的实现方式中,第一同步信号可以为PSS,第二同步信号可以为SSS。
在一些可能的实现方式中,第一同步信号和第二同步信号的长度可以比LTE中的PSS和SSS的长度更长。
在一些可能的实现方式中,该方法还包括:
产生该第一同步信号;以及
产生该第二同步信号。
在一些可能的实现方式中,在第一时频资源上发送第一同步信号,包括:
在该多个第一频率单元中的每个第一频率单元上发送该第一同步信号的序列;
在第二时频资源上发送第二同步信号,包括:
在该多个第二频率单元中的每个第二频率单元上发送该第二同步信号的序列。
在一些可能的实现方式中,相邻的一个第一频率单元和一个第二频率单元可以称为最小同步带宽。这样,不支持整个同步带宽的特定的终端设备可以在一个或几个最小同步带宽上检测同步信号,实现基本的同步功能,而支持整个同步带宽的终端设备可以在整个同步带宽上检测同步信号,实现同步功能。
在一些可能的实现方式中,该第一频率单元的频域宽度为该第一同步信号的序列占用的频域宽度,该第二频率单元的频域宽度为该第二同步信号的序列占用的频域宽度。
在一些可能的实现方式中,在第一时频资源上发送第一同步信号,包括:
在该多个第一频率单元中的不同第一频率单元上发送该第一同步信号的序列的不同部分;
在第二时频资源上发送第二同步信号,包括:
在该多个第二频率单元中的不同第二频率单元上发送该第二同步信号的序列的不同部分。
在一些可能的实现方式中,该第一频率单元的频域宽度为第一预定频域宽度,该第二频率单元的频域宽度为第二预定频域宽度。
在一些可能的实现方式中,第一同步信号可以采用比LTE中的PSS的序列更长的序列,该更长的序列可以是一个长的序列,或者是由相同或不同的序列连接形成的序列,这些相同或不同的序列的长度可以相同或不同;类似地,第二同步信号可以采用比LTE中的SSS的序列更长的序列,该更长的序列可以是一个长的序列,或者是由相同或不同的序列连接形成的序列,这些相同或不同的序列的长度可以相同或不同。
在一些可能的实现方式中,该第一同步信号采用的序列用于指示该第一同步信号和该第二同步信号的发送方式。
第二方面,提供了一种传输信号的方法,包括:
在第一时频资源上接收第一同步信号,其中,该第一时频资源包括第一时间单元上的多个第一频率单元;以及
在第二时频资源上接收第二同步信号,其中,该第二时频资源包括该第一时间单元上的多个第二频率单元,该多个第一频率单元与该多个第二频率单元在频域上相互交替。
在本申请实施例中,发送第一同步信号的多个第一频率单元与发送第二同步信号的多个第二频率单元在频域上相互交替,这样,第一同步信号和第二同步信号可以在同步带宽内均匀发送,既能减少同步信号的传输时延,又能提高基于同步信号进行的频偏步长估计的精度,从而能够提高同步效率。
在一些可能的实现方式中,该第一时频资源和该第二时频资源均为梳状结构。
在一些可能的实现方式中,该第一时频资源和该第二时频资源的频率范围均覆盖同步带宽。
在一些可能的实现方式中,该方法还包括:
根据该第一同步信号和该第二同步信号进行下行通信链路的同步。
在一些可能的实现方式中,在第一时频资源上接收第一同步信号,包括:
在该多个第一频率单元中的每个第一频率单元上接收该第一同步信号的序列;
在第二时频资源上接收第二同步信号,包括:
在该多个第二频率单元中的每个第二频率单元上接收该第二同步信号的序列。
在一些可能的实现方式中,该第一频率单元的频域宽度为该第一同步信号的序列占用的频域宽度,该第二频率单元的频域宽度为该第二同步信号的序列占用的频域宽度。
在一些可能的实现方式中,在第一时频资源上接收第一同步信号,包括:
在该多个第一频率单元中的不同第一频率单元上接收该第一同步信号的序列的不同部分;
在第二时频资源上接收第二同步信号,包括:
在该多个第二频率单元中的不同第二频率单元上接收该第二同步信号的序列的不同部分。
在一些可能的实现方式中,该第一频率单元的频域宽度为第一预定频域宽度,该第二频率单元的频域宽度为第二预定频域宽度。
在一些可能的实现方式中,该方法还包括:
根据该第一同步信号采用的序列,确定该第一同步信号和该第二同步信号的发送方式。
第三方面,提供了一种传输信号的装置,包括处理器和收发器,可以执行上述第一方面或其任意可能的实现方式中的方法。
第四方面,提供了一种传输信号的装置,包括处理器和收发器,可以执行上述第二方面或其任意可能的实现方式中的方法。
第五方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码可以用于指示执行上述第一或二方面或其任意可能的实现方式中的方法。
第六方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述任一方面或其任意可能的实现方式中的方法。
附图说明
图1是本申请实施例应用的一种通信系统的示意图。
图2是4G系统的不同双工模式下PSS和SSS的位置分配模式示意图。
图3是本申请实施例的传输信号的方法的示意性流程图。
图4是本申请实施例的传输信号的时频资源的示意图。
图5是本申请一个实施例的传输信号的示意图。
图6是本申请另一个实施例的传输信号的示意图。
图7是本申请一个实施例的传输信号的装置的示意性框图。
图8是本申请另一实施例的传输信号的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
图1给出了本申请实施例应用的一种通信系统的示意图。如图1所示,网络100可以包括网络设备102以及终端设备104、106、108、110、112和114,其中,网络设备与终端设备之间通过无线连接。应理解,图1仅以网络包括一个网络设备为例进行说明,但本申请实施例并不限于此,例如,网络还可以包括更多的网络设备;类似地,网络也可以包括更多的终端设备,并且网络设备还可以包括其它设备。
本说明书结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
本说明书结合网络设备描述了各个实施例。网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
目前PSS和SSS采用TDM方式,PSS和SSS都占据完整的同步带宽。例如,图2示出了现有4G系统的频分双工(Frequency Division Duplex,FDD)、时分双工(Time Division Duplex,TDD)模式下,PSS和SSS的帧位置分配模式。在FDD模式下,PSS在第0子帧和第5子帧上传输,SSS位于PSS之前的第一个符号上。在TDD模式下,PSS在第1子帧和第6子帧上传输,SSS位于PSS之前的第三个符号上。在现有4G系统中, 同步带宽为系统中心频点附近的子载波,例如,6个资源块(Resource Block,RB)。PSS和SSS在同步带宽上,按照TDM方式位于不同符号上。
在本申请实施例中,同步带宽可以采用与4G系统类似的定义,也可以采用与4G系统不同的定义,即在未来通信系统中可以采用新的定义,本申请实施例对此并不限定。
本申请实施例提供了一种适合下一代通信的同步信号方案,能够提高同步效率。下面对本申请实施例的技术方案进行详细描述。
图3示出了本申请实施例的传输信号的方法的示意性流程图。图3中的网络设备可以为图1中的网络设备102;终端设备可以为图1中的终端设备104、106、108、110、112和114中的终端设备。当然,实际系统中,网络设备和终端设备的数量可以不局限于本实施例或其他实施例的举例,以下不再赘述。
310,网络设备在第一时频资源上发送第一同步信号,其中,该第一时频资源包括第一时间单元上的多个第一频率单元。
320,网络设备在第二时频资源上发送第二同步信号,其中,该第二时频资源包括该第一时间单元上的多个第二频率单元,该多个第一频率单元与该多个第二频率单元在频域上相互交替。
在本申请实施例中,第一同步信号和第二同步信号分别在第一时间单元上的不同频率单元上发送。也就是说,第一同步信号和第二同步信号采用频分复用(Frequency Division Multiplexing,FDM)方式发送。进一步地,发送第一同步信号的多个第一频率单元与发送第二同步信号的多个第二频率单元在频域上相互交替,即第一频率单元与第二频率单元相互间隔。
在本申请实施例中,不同第一频率单元的频域宽度可以相同,也可以不同;不同第二频率单元的频域宽度可以相同,也可以不同;第一频率单元和第二频率单元的频域宽度可以相同,也可以不同,本申请实施例对此并不限定。
可选地,在本申请一个实施例中,该第一时频资源和该第二时频资源均为梳状结构。
例如,如图4所示,第一时频资源的两个第一频率单元之间间隔一个第二频率单元,第二时频资源的两个第二频率单元之间间隔一个第一频率单元,这样,第一时频资源和第二时频资源均为梳状结构。
在本申请实施例中,时间单元可以表示传输信号的时域资源,例如正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,或者其他表示时域资源的单元,本申请实施例对此并不限定。另外,本申请实施例并不限定时间单元的名称,也就是说,在未来通信系统中,时间单元可以采用在未来通信系统中的名称。
可选地,在本申请一个实施例中,该第一时频资源和该第二时频资源的频率范围均覆盖同步带宽。
具体而言,多个第一频率单元与多个第二频率单元在频域上相互交替,这样,多个第一频率单元和多个第二频率单元都可以遍布整个同步带宽。也就是说,尽管多个第一频率单元之间间隔了第二频率单元,多个第一频率单元涵盖的频率范围仍与同步带宽一致,最多相差一个第二频率单元的频域宽度。同理,多个第二频率单元涵盖的频率范围也与同步带宽一致,最多相差一个第一频率单元的频域宽度。
这样,第一同步信号和第二同步信号可以在同步带宽内均匀地发送,从而可以提高 基于同步信号进行的频偏步长估计的精度。
在本申请实施例中,可选地,第一同步信号可以为PSS,第二同步信号可以为SSS。应理解,本申请实施例并不限定同步信号的名称,也就是说,在未来通信系统中,同步信号可以采用在未来通信系统中的名称。
可选地,网络设备在发送上述同步信号前,先产生该第一同步信号,以及产生该第二同步信号。
可选地,在本申请实施例中,第一同步信号和第二同步信号的长度可以比LTE中的PSS和SSS的长度更长。
可选地,在本申请一个实施例中,可以在该多个第一频率单元中的每个第一频率单元上发送该第一同步信号的序列;
在该多个第二频率单元中的每个第二频率单元上发送该第二同步信号的序列。
具体而言,如图5所示,多个第一频率单元上发送的第一同步信号的序列相同,即,在每个第一频率单元上重复发送该第一同步信号的序列;多个第二频率单元上发送的第二同步信号的序列相同,即,在每个第二频率单元上重复发送该第二同步信号的序列。这样,终端设备可以通过在一个第一频率单元和一个第二频率单元上检测的同步信号,实现基本的同步功能。
可选地,相邻的一个第一频率单元和一个第二频率单元可以称为最小同步带宽。这样,不支持整个同步带宽的特定的终端设备可以在一个或几个最小同步带宽上检测同步信号,实现基本的同步功能,而支持整个同步带宽的终端设备可以在整个同步带宽上检测同步信号,实现同步功能。
在本实施例中,可选地,该第一频率单元的频域宽度为该第一同步信号的序列占用的频域宽度,该第二频率单元的频域宽度为该第二同步信号的序列占用的频域宽度。
这样,一个第一频率单元上可以发送第一同步信号的序列,一个第二频率单元上可以发送第二同步信号的序列。举例来说,第一同步信号的序列和第二同步信号的序列可以采用长度为62的序列,第一频率单元和第二频率单元的频域宽度可以分别为6个RB,以分别发送第一同步信号的序列和第二同步信号的序列。
应理解,第一同步信号的序列和第二同步信号的序列也可以采用其他长度的序列,本申请实施例对此并不限定。相应地,第一频率单元和第二频率单元的频域宽度可以分别由第一同步信号的序列和第二同步信号的序列的长度决定。
可选地,作为一个实施例,上述的第一同步信号的序列和第二同步信号的序列可以分别采用现有的PSS和SSS的序列,但本申请实施例对此并不限定。
可选地,在本申请一个实施例中,可以在该多个第一频率单元中的不同第一频率单元上发送该第一同步信号的序列的不同部分;
在该多个第二频率单元中的不同第二频率单元上发送该第二同步信号的序列的不同部分。
具体而言,如图6所示,第一同步信号的序列的不同部分分别在多个第一频率单元上发送,每个第一频率单元上发送第一同步信号的序列的一部分,多个第一频率单元上发送的信号组成第一同步信号的序列;类似地,第二同步信号的序列的不同部分分别在多个第二频率单元上发送,每个第二频率单元上发送第二同步信号的序列的一部分,多个第二 频率单元上发送的信号组成第二同步信号的序列。这样,在同步信号采用长序列时,同步信号可以在同步带宽内均匀发送,能够提高基于同步信号进行的频偏步长估计的精度。
在本实施例中,可选地,该第一频率单元的频域宽度为第一预定频域宽度,该第二频率单元的频域宽度为第二预定频域宽度。
具体而言,每个第一频率单元上发送的第一同步信号的序列的部分的长度可以为预定长度,即,将第一同步信号的序列分为几部分发送,以及每部分的长度可以预配置;类似地,每个第二频率单元上发送的第二同步信号的序列的部分的长度可以为预定长度,即,将第二同步信号的序列分为几部分发送,以及每部分的长度可以预配置。相应地,第一频率单元和第二频率单元的频域宽度可以分别对应第一同步信号的序列的每部分和第二同步信号的序列的每部分的长度。
可选地,在本申请实施例中,第一同步信号可以采用比LTE中的PSS的序列更长的序列,该更长的序列可以是一个长的序列,或者是由相同或不同的序列连接形成的序列,这些相同或不同的序列的长度可以相同或不同;类似地,第二同步信号可以采用比LTE中的SSS的序列更长的序列,该更长的序列可以是一个长的序列,或者是由相同或不同的序列连接形成的序列,这些相同或不同的序列的长度可以相同或不同。
应理解,图5和图6所示的方式还可以结合实施。例如,可以在同步带宽的一部分上按照图6所示的方式在多个频率单元上发送同步信号的序列,并在同步带宽的多个部分上进行重复。该结合的方式也应涵盖在本申请实施例的范围之内。
可选地,网络设备可以指示同步信号的发送方式,例如,指示采用上述图5所示的方式还是采用上述图6所示的方式。
可选地,在一个实施例中,该第一同步信号采用的序列用于指示该第一同步信号和该第二同步信号的发送方式。
相应地,终端设备可以根据该第一同步信号采用的序列,确定该第一同步信号和该第二同步信号的发送方式。
例如,可以通过增加第一同步信号的本地序列个数,通过不同的序列指示不同的发送方式。举例来说,目前LTE PSS采用三个ZC序列作为本地序列,其根指数(root)为[25 29 34],用于区分小区标识(Cell ID)[0 1 2],可以额外增加三个ZC序列,每一个Cell ID对应两个ZC本地序列,用于区分两种不同的同步信号发送方式。
应理解,上述指示方式只是示例,本申请实施例并不限定具体的指示方式。另外,同步信号发送方式也可以预先配置好,这样网络设备就不再需要给终端设备指示。
330,终端设备根据该第一同步信号和该第二同步信号进行下行通信链路的同步。
终端设备分别在第一时频资源上接收第一同步信号,在第二时频资源上接收第二同步信号,根据该第一同步信号和该第二同步信号进行下行通信链路的同步。
可选地,若第一同步信号和第二同步信号采用图5所示的方式发送,终端设备可以在该多个第一频率单元中的每个第一频率单元上接收该第一同步信号的序列;在该多个第二频率单元中的每个第二频率单元上接收该第二同步信号的序列。终端设备可以根据一个第一频率单元和一个第二频率单元上检测的同步信号,实现基本的同步功能,根据在整个同步带宽上检测的同步信号,实现完整的同步功能。
可选地,若第一同步信号和第二同步信号采用图6所示的方式发送,终端设备可以 在该多个第一频率单元中的不同第一频率单元上接收该第一同步信号的序列的不同部分;在该多个第二频率单元中的不同第二频率单元上接收该第二同步信号的序列的不同部分。多个第一频率单元上接收的信号组成第一同步信号的序列,多个第二频率单元上接收的信号组成第二同步信号的序列。终端设备根据在整个同步带宽上检测的同步信号,实现完整的同步功能。
可选地,终端设备可以根据第一同步信号采用的序列,确定第一同步信号和第二同步信号的发送方式。例如,确定采用上述图5所示的在每个频率单元上均发送整个同步信号的序列的方式,还是采用上述图6所示的在不同频率单元上发送同步信号的序列的不同部分的方式。
在本申请实施例中,发送第一同步信号的多个第一频率单元与发送第二同步信号的多个第二频率单元在频域上相互交替,这样,第一同步信号和第二同步信号可以在同步带宽内均匀发送,既能减少同步信号的传输时延,又能提高基于同步信号进行的频偏步长估计的精度,从而能够提高同步效率。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的传输信号的方法,下面将描述根据本申请实施例的传输信号的装置。
图7是根据本申请一个实施例的传输信号的装置700的示意性框图。该装置700可以为网络设备。
应理解,该装置700可以对应于各方法实施例中的网络设备,可以具有方法中的网络设备的任意功能。
如图7所示,该装置700包括处理器710和收发器720。
该处理器710用于,产生第一同步信号以及产生第二同步信号;
该收发器720用于,在第一时频资源上发送该第一同步信号,其中,该第一时频资源包括第一时间单元上的多个第一频率单元,以及在第二时频资源上发送该第二同步信号,其中,该第二时频资源包括该第一时间单元上的多个第二频率单元,该多个第一频率单元与该多个第二频率单元在频域上相互交替。
可选地,在本申请一个实施例中,该第一时频资源和该第二时频资源均为梳状结构。
可选地,在本申请一个实施例中,该第一时频资源和该第二时频资源的频率范围均覆盖同步带宽。
可选地,在本申请一个实施例中,该收发器720用于:
在该多个第一频率单元中的每个第一频率单元上发送该第一同步信号的序列;
在该多个第二频率单元中的每个第二频率单元上发送该第二同步信号的序列。
可选地,在本申请一个实施例中,该第一频率单元的频域宽度为该第一同步信号的序列占用的频域宽度,该第二频率单元的频域宽度为该第二同步信号的序列占用的频域宽度。
可选地,在本申请一个实施例中,该收发器720用于:
在该多个第一频率单元中的不同第一频率单元上发送该第一同步信号的序列的不同部分;
在该多个第二频率单元中的不同第二频率单元上发送该第二同步信号的序列的不同部分。
可选地,在本申请一个实施例中,该第一频率单元的频域宽度为第一预定频域宽度,该第二频率单元的频域宽度为第二预定频域宽度。
可选地,在本申请一个实施例中,该第一同步信号采用的序列用于指示该第一同步信号和该第二同步信号的发送方式。
图8是根据本申请另一实施例的传输信号的装置800的示意性框图。该装置800可以为终端设备。
应理解,该装置800可以对应于各方法实施例中的终端设备,可以具有方法中的终端设备的任意功能。
如图8所示,该装置800包括处理器810和收发器820。
该收发器820用于,在第一时频资源上接收第一同步信号,其中,该第一时频资源包括第一时间单元上的多个第一频率单元,以及在第二时频资源上接收第二同步信号,其中,该第二时频资源包括该第一时间单元上的多个第二频率单元,该多个第一频率单元与该多个第二频率单元在频域上相互交替;
该处理器810用于,根据该第一同步信号和该第二同步信号进行下行通信链路的同步。
可选地,在本申请一个实施例中,该第一时频资源和该第二时频资源均为梳状结构。
可选地,在本申请一个实施例中,该第一时频资源和该第二时频资源的频率范围均覆盖同步带宽。
可选地,在本申请一个实施例中,该收发器820用于:
在该多个第一频率单元中的每个第一频率单元上接收该第一同步信号的序列;
在该多个第二频率单元中的每个第二频率单元上接收该第二同步信号的序列。
可选地,在本申请一个实施例中,该第一频率单元的频域宽度为该第一同步信号的序列占用的频域宽度,该第二频率单元的频域宽度为该第二同步信号的序列占用的频域宽度。
可选地,在本申请一个实施例中,该收发器820用于:
在该多个第一频率单元中的不同第一频率单元上接收该第一同步信号的序列的不同部分;
在该多个第二频率单元中的不同第二频率单元上接收该第二同步信号的序列的不同部分。
可选地,在本申请一个实施例中,该第一频率单元的频域宽度为第一预定频域宽度,该第二频率单元的频域宽度为第二预定频域宽度。
可选地,在本申请一个实施例中,该处理器810还用于:
根据该第一同步信号采用的序列,确定该第一同步信号和该第二同步信号的发送方式。
应理解,本申请实施例中的处理器710和/或处理器810可以通过处理单元或芯片实现,可选地,处理单元在实现过程中可以由多个单元构成。
应理解,本申请实施例中的收发器720或收发器820可以通过收发单元或芯片实现,可选地,收发器720或收发器820可以由发射器或接收器构成,或由发射单元或接收单元构成。
可选地,网络设备或终端设备还可以包括存储器,该存储器可以存储程序代码,处理器调用存储器存储的程序代码,以实现该网络设备或该终端设备的相应功能。
本申请实施方式的装置可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA),可以是专用集成芯片(Application Specific Integrated Circuit,ASIC),还可以是系统芯片(System on Chip,SoC),还可以是中央处理器(Central Processor Unit,CPU),还可以是网络处理器(Network Processor,NP),还可以是数字信号处理电路(Digital Signal Processor,DSP),还可以是微控制器(Micro Controller Unit,MCU),还可以是可编程控制器(Programmable Logic Device,PLD)或其他集成芯片。
本申请实施例还提供了一种通信系统,包括上述网络设备实施例中的网络设备和终端设备实施例中的终端设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以 通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (34)

  1. 一种传输信号的方法,其特征在于,包括:
    在第一时频资源上发送第一同步信号,其中,所述第一时频资源包括第一时间单元上的多个第一频率单元;以及
    在第二时频资源上发送第二同步信号,其中,所述第二时频资源包括所述第一时间单元上的多个第二频率单元,所述多个第一频率单元与所述多个第二频率单元在频域上相互交替。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时频资源和所述第二时频资源均为梳状结构。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一时频资源和所述第二时频资源的频率范围均覆盖同步带宽。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    产生所述第一同步信号;以及
    产生所述第二同步信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述在第一时频资源上发送第一同步信号,包括:
    在所述多个第一频率单元中的每个第一频率单元上发送所述第一同步信号的序列;
    所述在第二时频资源上发送第二同步信号,包括:
    在所述多个第二频率单元中的每个第二频率单元上发送所述第二同步信号的序列。
  6. 根据权利要求5所述的方法,其特征在于,所述第一频率单元的频域宽度为所述第一同步信号的序列占用的频域宽度,所述第二频率单元的频域宽度为所述第二同步信号的序列占用的频域宽度。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述在第一时频资源上发送第一同步信号,包括:
    在所述多个第一频率单元中的不同第一频率单元上发送所述第一同步信号的序列的不同部分;
    所述在第二时频资源上发送第二同步信号,包括:
    在所述多个第二频率单元中的不同第二频率单元上发送所述第二同步信号的序列的不同部分。
  8. 根据权利要求7所述的方法,其特征在于,所述第一频率单元的频域宽度为第一预定频域宽度,所述第二频率单元的频域宽度为第二预定频域宽度。
  9. 根据权利要求5至8中任一项所述的方法,其特征在于,所述第一同步信号采用的序列用于指示所述第一同步信号和所述第二同步信号的发送方式。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述时间单元为正交频分复用OFDM符号。
  11. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一同步信号和所述第二同步信号的长度大于长期演进LTE中的主同步信号和辅同步信号SSS的长度。
  12. 一种传输信号的方法,其特征在于,包括:
    在第一时频资源上接收第一同步信号,其中,所述第一时频资源包括第一时间单元上的多个第一频率单元;以及
    在第二时频资源上接收第二同步信号,其中,所述第二时频资源包括所述第一时间单元上的多个第二频率单元,所述多个第一频率单元与所述多个第二频率单元在频域上相互交替。
  13. 根据权利要求12所述的方法,其特征在于,所述第一时频资源和所述第二时频资源均为梳状结构。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一时频资源和所述第二时频资源的频率范围均覆盖同步带宽。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一同步信号和所述第二同步信号进行下行通信链路的同步。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,所述在第一时频资源上接收第一同步信号,包括:
    在所述多个第一频率单元中的每个第一频率单元上接收所述第一同步信号的序列;
    所述在第二时频资源上接收第二同步信号,包括:
    在所述多个第二频率单元中的每个第二频率单元上接收所述第二同步信号的序列。
  17. 根据权利要求16所述的方法,其特征在于,所述第一频率单元的频域宽度为所述第一同步信号的序列占用的频域宽度,所述第二频率单元的频域宽度为所述第二同步信号的序列占用的频域宽度。
  18. 根据权利要求12至15中任一项所述的方法,其特征在于,所述在第一时频资源上接收第一同步信号,包括:
    在所述多个第一频率单元中的不同第一频率单元上接收所述第一同步信号的序列的不同部分;
    所述在第二时频资源上接收第二同步信号,包括:
    在所述多个第二频率单元中的不同第二频率单元上接收所述第二同步信号的序列的不同部分。
  19. 根据权利要求18所述的方法,其特征在于,所述第一频率单元的频域宽度为第一预定频域宽度,所述第二频率单元的频域宽度为第二预定频域宽度。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一同步信号采用的序列,确定所述第一同步信号和所述第二同步信号的发送方式。
  21. 一种传输信号的装置,其特征在于,包括处理器和收发器;其中,
    所述处理器用于,产生第一同步信号以及产生第二同步信号;
    所述收发器用于,在第一时频资源上发送所述第一同步信号,其中,所述第一时频资源包括第一时间单元上的多个第一频率单元,以及在第二时频资源上发送所述第二同步信号,其中,所述第二时频资源包括所述第一时间单元上的多个第二频率单元,所述多个第一频率单元与所述多个第二频率单元在频域上相互交替。
  22. 根据权利要求21所述的装置,其特征在于,所述第一时频资源和所述第二时频 资源均为梳状结构。
  23. 根据权利要求21或22所述的装置,其特征在于,所述第一时频资源和所述第二时频资源的频率范围均覆盖同步带宽。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,所述收发器用于:
    在所述多个第一频率单元中的每个第一频率单元上发送所述第一同步信号的序列;
    在所述多个第二频率单元中的每个第二频率单元上发送所述第二同步信号的序列。
  25. 根据权利要求24所述的装置,其特征在于,所述第一频率单元的频域宽度为所述第一同步信号的序列占用的频域宽度,所述第二频率单元的频域宽度为所述第二同步信号的序列占用的频域宽度。
  26. 根据权利要求21至23中任一项所述的装置,其特征在于,所述收发器用于:
    在所述多个第一频率单元中的不同第一频率单元上发送所述第一同步信号的序列的不同部分;
    在所述多个第二频率单元中的不同第二频率单元上发送所述第二同步信号的序列的不同部分。
  27. 根据权利要求26所述的装置,其特征在于,所述第一频率单元的频域宽度为第一预定频域宽度,所述第二频率单元的频域宽度为第二预定频域宽度。
  28. 根据权利要求24至27中任一项所述的装置,其特征在于,所述第一同步信号采用的序列用于指示所述第一同步信号和所述第二同步信号的发送方式。
  29. 一种传输信号的装置,其特征在于,包括处理器和收发器;其中,
    所述收发器用于,在第一时频资源上接收第一同步信号,其中,所述第一时频资源包括第一时间单元上的多个第一频率单元,以及在第二时频资源上接收第二同步信号,其中,所述第二时频资源包括所述第一时间单元上的多个第二频率单元,所述多个第一频率单元与所述多个第二频率单元在频域上相互交替;
    所述处理器用于,根据所述第一同步信号和所述第二同步信号进行下行通信链路的同步。
  30. 根据权利要求29所述的装置,其特征在于,所述收发器用于:
    在所述多个第一频率单元中的每个第一频率单元上接收所述第一同步信号的序列;
    在所述多个第二频率单元中的每个第二频率单元上接收所述第二同步信号的序列。
  31. 根据权利要求29所述的装置,其特征在于,所述收发器用于:
    在所述多个第一频率单元中的不同第一频率单元上接收所述第一同步信号的序列的不同部分;
    在所述多个第二频率单元中的不同第二频率单元上接收所述第二同步信号的序列的不同部分。
  32. 根据权利要求30或31所述的装置,其特征在于,所述处理器还用于:
    根据所述第一同步信号采用的序列,确定所述第一同步信号和所述第二同步信号的发送方式。
  33. 一种计算机存储介质,所述计算机存储介质中存储有程序代码,所述程序代码用于指示执行根据权利要求1至20中任一项所述的方法。
  34. 一种包含指令的计算机程序产品,所述指令在计算机上运行时,使得所述计算机 执行根据权利要求1至20中任一项所述的方法。
PCT/CN2018/080274 2017-03-31 2018-03-23 传输信号的方法和装置 WO2018177216A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18776633.2A EP3573388B1 (en) 2017-03-31 2018-03-23 Method and device for transmitting signal
US16/585,531 US20200028641A1 (en) 2017-03-31 2019-09-27 Signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710205838.8A CN108667544B (zh) 2017-03-31 2017-03-31 传输信号的方法和装置
CN201710205838.8 2017-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/585,531 Continuation US20200028641A1 (en) 2017-03-31 2019-09-27 Signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018177216A1 true WO2018177216A1 (zh) 2018-10-04

Family

ID=63674234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080274 WO2018177216A1 (zh) 2017-03-31 2018-03-23 传输信号的方法和装置

Country Status (4)

Country Link
US (1) US20200028641A1 (zh)
EP (1) EP3573388B1 (zh)
CN (1) CN108667544B (zh)
WO (1) WO2018177216A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3152176A1 (en) * 2019-08-26 2021-03-04 John Boothby A box plinth and method of assembly
CN114080018A (zh) * 2020-08-21 2022-02-22 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307260A (zh) * 2014-07-24 2016-02-03 普天信息技术有限公司 同步信号序列的发送方法
US20170034798A1 (en) * 2015-07-27 2017-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Narrowband lte cell search
WO2017018966A1 (en) * 2015-07-24 2017-02-02 Intel Corporation Synchronization signals and channel structure for narrowband lte deployments
WO2017044144A1 (en) * 2015-09-11 2017-03-16 Intel IP Corporation Reference signals for initial acquisition in 5g systems
CN106537825A (zh) * 2014-07-03 2017-03-22 高通股份有限公司 无执照射频谱带上的同步信号的传送和接收

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8320907B2 (en) * 2007-12-17 2012-11-27 Lg Electronics Inc. Method for performing cell search procedure in wireless communication system
US8768359B2 (en) * 2010-08-20 2014-07-01 Qualcomm Incorporated Sample selection for secondary synchronization signal (SSS) detection
CN105991497B (zh) * 2015-01-30 2020-01-17 中兴通讯股份有限公司 数据传输方法和站点
CN107733826B (zh) * 2016-08-11 2020-07-07 华为技术有限公司 下行信号的发送、接收方法以及发送端设备、接收端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537825A (zh) * 2014-07-03 2017-03-22 高通股份有限公司 无执照射频谱带上的同步信号的传送和接收
CN105307260A (zh) * 2014-07-24 2016-02-03 普天信息技术有限公司 同步信号序列的发送方法
WO2017018966A1 (en) * 2015-07-24 2017-02-02 Intel Corporation Synchronization signals and channel structure for narrowband lte deployments
US20170034798A1 (en) * 2015-07-27 2017-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Narrowband lte cell search
WO2017044144A1 (en) * 2015-09-11 2017-03-16 Intel IP Corporation Reference signals for initial acquisition in 5g systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573388A4

Also Published As

Publication number Publication date
CN108667544A (zh) 2018-10-16
CN108667544B (zh) 2019-10-25
US20200028641A1 (en) 2020-01-23
EP3573388A4 (en) 2020-03-04
EP3573388A1 (en) 2019-11-27
EP3573388B1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
EP3557811B1 (en) Method and apparatus for transmitting reference signal
JP5763782B2 (ja) チャネル品質指標のレポート
WO2018210243A1 (zh) 一种通信方法和装置
WO2018090327A1 (zh) 传输参考信号的方法和通信设备
TW201804847A (zh) 信息傳輸方法和信息傳輸設備
WO2020029983A1 (zh) 发送和接收随机接入前导的方法以及通信装置
WO2018082457A1 (zh) 配置参考信号的方法和装置
WO2019029321A1 (zh) 一种资源分配的方法,终端以及网络设备
WO2018228587A1 (zh) 信息传输的方法、终端设备和网络设备
WO2019028793A1 (zh) 随机接入前导码传输方法及装置
WO2019051707A1 (zh) 用于传输信息的方法、终端设备和网络设备
JP6567690B2 (ja) 共通情報送信方法および装置
CN111464261B (zh) 一种信号传输、检测方法及装置
WO2018045586A1 (zh) 导频信号的传输方法和设备
WO2018171741A1 (zh) 传输信号的方法和装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
AU2017440405A1 (en) Data transmission method, terminal device, and network device
TW201909692A (zh) 無線資源管理測量的方法、終端設備和網路設備
TWI762531B (zh) 資源映射的方法和通訊設備
TW201824801A (zh) 傳輸信息的方法、網絡設備和終端設備
WO2018177216A1 (zh) 传输信号的方法和装置
WO2017193339A1 (zh) 信号传输的方法、网络设备和终端设备
JP7284159B2 (ja) データ伝送方法、端末デバイス及びネットワークデバイス
WO2016115695A1 (zh) 一种同步方法、装置及系统
WO2020098594A1 (zh) 一种序列的生成及处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018776633

Country of ref document: EP

Effective date: 20190821

NENP Non-entry into the national phase

Ref country code: DE